1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
4 */
5
6 #ifndef _RTE_MBUF_H_
7 #define _RTE_MBUF_H_
8
9 /**
10 * @file
11 * RTE Mbuf
12 *
13 * The mbuf library provides the ability to create and destroy buffers
14 * that may be used by the RTE application to store message
15 * buffers. The message buffers are stored in a mempool, using the
16 * RTE mempool library.
17 *
18 * The preferred way to create a mbuf pool is to use
19 * rte_pktmbuf_pool_create(). However, in some situations, an
20 * application may want to have more control (ex: populate the pool with
21 * specific memory), in this case it is possible to use functions from
22 * rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
23 * details.
24 *
25 * This library provides an API to allocate/free packet mbufs, which are
26 * used to carry network packets.
27 *
28 * To understand the concepts of packet buffers or mbufs, you
29 * should read "TCP/IP Illustrated, Volume 2: The Implementation,
30 * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
31 * http://www.kohala.com/start/tcpipiv2.html
32 */
33
34 #include <stdint.h>
35 #include <rte_compat.h>
36 #include <rte_common.h>
37 #include <rte_config.h>
38 #include <rte_mempool.h>
39 #include <rte_memory.h>
40 #include <rte_prefetch.h>
41 #include <rte_branch_prediction.h>
42 #include <rte_byteorder.h>
43 #include <rte_mbuf_ptype.h>
44 #include <rte_mbuf_core.h>
45
46 #ifdef __cplusplus
47 extern "C" {
48 #endif
49
50 /**
51 * Get the name of a RX offload flag
52 *
53 * @param mask
54 * The mask describing the flag.
55 * @return
56 * The name of this flag, or NULL if it's not a valid RX flag.
57 */
58 const char *rte_get_rx_ol_flag_name(uint64_t mask);
59
60 /**
61 * Dump the list of RX offload flags in a buffer
62 *
63 * @param mask
64 * The mask describing the RX flags.
65 * @param buf
66 * The output buffer.
67 * @param buflen
68 * The length of the buffer.
69 * @return
70 * 0 on success, (-1) on error.
71 */
72 int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
73
74 /**
75 * Get the name of a TX offload flag
76 *
77 * @param mask
78 * The mask describing the flag. Usually only one bit must be set.
79 * Several bits can be given if they belong to the same mask.
80 * Ex: PKT_TX_L4_MASK.
81 * @return
82 * The name of this flag, or NULL if it's not a valid TX flag.
83 */
84 const char *rte_get_tx_ol_flag_name(uint64_t mask);
85
86 /**
87 * Dump the list of TX offload flags in a buffer
88 *
89 * @param mask
90 * The mask describing the TX flags.
91 * @param buf
92 * The output buffer.
93 * @param buflen
94 * The length of the buffer.
95 * @return
96 * 0 on success, (-1) on error.
97 */
98 int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
99
100 /**
101 * Prefetch the first part of the mbuf
102 *
103 * The first 64 bytes of the mbuf corresponds to fields that are used early
104 * in the receive path. If the cache line of the architecture is higher than
105 * 64B, the second part will also be prefetched.
106 *
107 * @param m
108 * The pointer to the mbuf.
109 */
110 static inline void
rte_mbuf_prefetch_part1(struct rte_mbuf * m)111 rte_mbuf_prefetch_part1(struct rte_mbuf *m)
112 {
113 rte_prefetch0(&m->cacheline0);
114 }
115
116 /**
117 * Prefetch the second part of the mbuf
118 *
119 * The next 64 bytes of the mbuf corresponds to fields that are used in the
120 * transmit path. If the cache line of the architecture is higher than 64B,
121 * this function does nothing as it is expected that the full mbuf is
122 * already in cache.
123 *
124 * @param m
125 * The pointer to the mbuf.
126 */
127 static inline void
rte_mbuf_prefetch_part2(struct rte_mbuf * m)128 rte_mbuf_prefetch_part2(struct rte_mbuf *m)
129 {
130 #if RTE_CACHE_LINE_SIZE == 64
131 rte_prefetch0(&m->cacheline1);
132 #else
133 RTE_SET_USED(m);
134 #endif
135 }
136
137
138 static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
139
140 /**
141 * Return the IO address of the beginning of the mbuf data
142 *
143 * @param mb
144 * The pointer to the mbuf.
145 * @return
146 * The IO address of the beginning of the mbuf data
147 */
148 static inline rte_iova_t
rte_mbuf_data_iova(const struct rte_mbuf * mb)149 rte_mbuf_data_iova(const struct rte_mbuf *mb)
150 {
151 return mb->buf_iova + mb->data_off;
152 }
153
154 /**
155 * Return the default IO address of the beginning of the mbuf data
156 *
157 * This function is used by drivers in their receive function, as it
158 * returns the location where data should be written by the NIC, taking
159 * the default headroom in account.
160 *
161 * @param mb
162 * The pointer to the mbuf.
163 * @return
164 * The IO address of the beginning of the mbuf data
165 */
166 static inline rte_iova_t
rte_mbuf_data_iova_default(const struct rte_mbuf * mb)167 rte_mbuf_data_iova_default(const struct rte_mbuf *mb)
168 {
169 return mb->buf_iova + RTE_PKTMBUF_HEADROOM;
170 }
171
172 /**
173 * Return the mbuf owning the data buffer address of an indirect mbuf.
174 *
175 * @param mi
176 * The pointer to the indirect mbuf.
177 * @return
178 * The address of the direct mbuf corresponding to buffer_addr.
179 */
180 static inline struct rte_mbuf *
rte_mbuf_from_indirect(struct rte_mbuf * mi)181 rte_mbuf_from_indirect(struct rte_mbuf *mi)
182 {
183 return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
184 }
185
186 /**
187 * Return address of buffer embedded in the given mbuf.
188 *
189 * The return value shall be same as mb->buf_addr if the mbuf is already
190 * initialized and direct. However, this API is useful if mempool of the
191 * mbuf is already known because it doesn't need to access mbuf contents in
192 * order to get the mempool pointer.
193 *
194 * @warning
195 * @b EXPERIMENTAL: This API may change without prior notice.
196 * This will be used by rte_mbuf_to_baddr() which has redundant code once
197 * experimental tag is removed.
198 *
199 * @param mb
200 * The pointer to the mbuf.
201 * @param mp
202 * The pointer to the mempool of the mbuf.
203 * @return
204 * The pointer of the mbuf buffer.
205 */
206 __rte_experimental
207 static inline char *
rte_mbuf_buf_addr(struct rte_mbuf * mb,struct rte_mempool * mp)208 rte_mbuf_buf_addr(struct rte_mbuf *mb, struct rte_mempool *mp)
209 {
210 return (char *)mb + sizeof(*mb) + rte_pktmbuf_priv_size(mp);
211 }
212
213 /**
214 * Return the default address of the beginning of the mbuf data.
215 *
216 * @warning
217 * @b EXPERIMENTAL: This API may change without prior notice.
218 *
219 * @param mb
220 * The pointer to the mbuf.
221 * @return
222 * The pointer of the beginning of the mbuf data.
223 */
224 __rte_experimental
225 static inline char *
rte_mbuf_data_addr_default(__rte_unused struct rte_mbuf * mb)226 rte_mbuf_data_addr_default(__rte_unused struct rte_mbuf *mb)
227 {
228 /* gcc complains about calling this experimental function even
229 * when not using it. Hide it with ALLOW_EXPERIMENTAL_API.
230 */
231 #ifdef ALLOW_EXPERIMENTAL_API
232 return rte_mbuf_buf_addr(mb, mb->pool) + RTE_PKTMBUF_HEADROOM;
233 #else
234 return NULL;
235 #endif
236 }
237
238 /**
239 * Return address of buffer embedded in the given mbuf.
240 *
241 * @note: Accessing mempool pointer of a mbuf is expensive because the
242 * pointer is stored in the 2nd cache line of mbuf. If mempool is known, it
243 * is better not to reference the mempool pointer in mbuf but calling
244 * rte_mbuf_buf_addr() would be more efficient.
245 *
246 * @param md
247 * The pointer to the mbuf.
248 * @return
249 * The address of the data buffer owned by the mbuf.
250 */
251 static inline char *
rte_mbuf_to_baddr(struct rte_mbuf * md)252 rte_mbuf_to_baddr(struct rte_mbuf *md)
253 {
254 #ifdef ALLOW_EXPERIMENTAL_API
255 return rte_mbuf_buf_addr(md, md->pool);
256 #else
257 char *buffer_addr;
258 buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
259 return buffer_addr;
260 #endif
261 }
262
263 /**
264 * Return the starting address of the private data area embedded in
265 * the given mbuf.
266 *
267 * Note that no check is made to ensure that a private data area
268 * actually exists in the supplied mbuf.
269 *
270 * @param m
271 * The pointer to the mbuf.
272 * @return
273 * The starting address of the private data area of the given mbuf.
274 */
275 __rte_experimental
276 static inline void *
rte_mbuf_to_priv(struct rte_mbuf * m)277 rte_mbuf_to_priv(struct rte_mbuf *m)
278 {
279 return RTE_PTR_ADD(m, sizeof(struct rte_mbuf));
280 }
281
282 /**
283 * Private data in case of pktmbuf pool.
284 *
285 * A structure that contains some pktmbuf_pool-specific data that are
286 * appended after the mempool structure (in private data).
287 */
288 struct rte_pktmbuf_pool_private {
289 uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
290 uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
291 uint32_t flags; /**< reserved for future use. */
292 };
293
294 /**
295 * Return the flags from private data in an mempool structure.
296 *
297 * @param mp
298 * A pointer to the mempool structure.
299 * @return
300 * The flags from the private data structure.
301 */
302 static inline uint32_t
rte_pktmbuf_priv_flags(struct rte_mempool * mp)303 rte_pktmbuf_priv_flags(struct rte_mempool *mp)
304 {
305 struct rte_pktmbuf_pool_private *mbp_priv;
306
307 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
308 return mbp_priv->flags;
309 }
310
311 /**
312 * When set, pktmbuf mempool will hold only mbufs with pinned external
313 * buffer. The external buffer will be attached to the mbuf at the
314 * memory pool creation and will never be detached by the mbuf free calls.
315 * mbuf should not contain any room for data after the mbuf structure.
316 */
317 #define RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF (1 << 0)
318
319 /**
320 * Returns non zero if given mbuf has a pinned external buffer, or zero
321 * otherwise. The pinned external buffer is allocated at pool creation
322 * time and should not be freed on mbuf freeing.
323 *
324 * External buffer is a user-provided anonymous buffer.
325 */
326 #define RTE_MBUF_HAS_PINNED_EXTBUF(mb) \
327 (rte_pktmbuf_priv_flags(mb->pool) & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF)
328
329 #ifdef RTE_LIBRTE_MBUF_DEBUG
330
331 /** check mbuf type in debug mode */
332 #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
333
334 #else /* RTE_LIBRTE_MBUF_DEBUG */
335
336 /** check mbuf type in debug mode */
337 #define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
338
339 #endif /* RTE_LIBRTE_MBUF_DEBUG */
340
341 #ifdef RTE_MBUF_REFCNT_ATOMIC
342
343 /**
344 * Reads the value of an mbuf's refcnt.
345 * @param m
346 * Mbuf to read
347 * @return
348 * Reference count number.
349 */
350 static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf * m)351 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
352 {
353 return __atomic_load_n(&m->refcnt, __ATOMIC_RELAXED);
354 }
355
356 /**
357 * Sets an mbuf's refcnt to a defined value.
358 * @param m
359 * Mbuf to update
360 * @param new_value
361 * Value set
362 */
363 static inline void
rte_mbuf_refcnt_set(struct rte_mbuf * m,uint16_t new_value)364 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
365 {
366 __atomic_store_n(&m->refcnt, new_value, __ATOMIC_RELAXED);
367 }
368
369 /* internal */
370 static inline uint16_t
__rte_mbuf_refcnt_update(struct rte_mbuf * m,int16_t value)371 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
372 {
373 return __atomic_add_fetch(&m->refcnt, (uint16_t)value,
374 __ATOMIC_ACQ_REL);
375 }
376
377 /**
378 * Adds given value to an mbuf's refcnt and returns its new value.
379 * @param m
380 * Mbuf to update
381 * @param value
382 * Value to add/subtract
383 * @return
384 * Updated value
385 */
386 static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf * m,int16_t value)387 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
388 {
389 /*
390 * The atomic_add is an expensive operation, so we don't want to
391 * call it in the case where we know we are the unique holder of
392 * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
393 * operation has to be used because concurrent accesses on the
394 * reference counter can occur.
395 */
396 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
397 ++value;
398 rte_mbuf_refcnt_set(m, (uint16_t)value);
399 return (uint16_t)value;
400 }
401
402 return __rte_mbuf_refcnt_update(m, value);
403 }
404
405 #else /* ! RTE_MBUF_REFCNT_ATOMIC */
406
407 /* internal */
408 static inline uint16_t
__rte_mbuf_refcnt_update(struct rte_mbuf * m,int16_t value)409 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
410 {
411 m->refcnt = (uint16_t)(m->refcnt + value);
412 return m->refcnt;
413 }
414
415 /**
416 * Adds given value to an mbuf's refcnt and returns its new value.
417 */
418 static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf * m,int16_t value)419 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
420 {
421 return __rte_mbuf_refcnt_update(m, value);
422 }
423
424 /**
425 * Reads the value of an mbuf's refcnt.
426 */
427 static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf * m)428 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
429 {
430 return m->refcnt;
431 }
432
433 /**
434 * Sets an mbuf's refcnt to the defined value.
435 */
436 static inline void
rte_mbuf_refcnt_set(struct rte_mbuf * m,uint16_t new_value)437 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
438 {
439 m->refcnt = new_value;
440 }
441
442 #endif /* RTE_MBUF_REFCNT_ATOMIC */
443
444 /**
445 * Reads the refcnt of an external buffer.
446 *
447 * @param shinfo
448 * Shared data of the external buffer.
449 * @return
450 * Reference count number.
451 */
452 static inline uint16_t
rte_mbuf_ext_refcnt_read(const struct rte_mbuf_ext_shared_info * shinfo)453 rte_mbuf_ext_refcnt_read(const struct rte_mbuf_ext_shared_info *shinfo)
454 {
455 return __atomic_load_n(&shinfo->refcnt, __ATOMIC_RELAXED);
456 }
457
458 /**
459 * Set refcnt of an external buffer.
460 *
461 * @param shinfo
462 * Shared data of the external buffer.
463 * @param new_value
464 * Value set
465 */
466 static inline void
rte_mbuf_ext_refcnt_set(struct rte_mbuf_ext_shared_info * shinfo,uint16_t new_value)467 rte_mbuf_ext_refcnt_set(struct rte_mbuf_ext_shared_info *shinfo,
468 uint16_t new_value)
469 {
470 __atomic_store_n(&shinfo->refcnt, new_value, __ATOMIC_RELAXED);
471 }
472
473 /**
474 * Add given value to refcnt of an external buffer and return its new
475 * value.
476 *
477 * @param shinfo
478 * Shared data of the external buffer.
479 * @param value
480 * Value to add/subtract
481 * @return
482 * Updated value
483 */
484 static inline uint16_t
rte_mbuf_ext_refcnt_update(struct rte_mbuf_ext_shared_info * shinfo,int16_t value)485 rte_mbuf_ext_refcnt_update(struct rte_mbuf_ext_shared_info *shinfo,
486 int16_t value)
487 {
488 if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1)) {
489 ++value;
490 rte_mbuf_ext_refcnt_set(shinfo, (uint16_t)value);
491 return (uint16_t)value;
492 }
493
494 return __atomic_add_fetch(&shinfo->refcnt, (uint16_t)value,
495 __ATOMIC_ACQ_REL);
496 }
497
498 /** Mbuf prefetch */
499 #define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
500 if ((m) != NULL) \
501 rte_prefetch0(m); \
502 } while (0)
503
504
505 /**
506 * Sanity checks on an mbuf.
507 *
508 * Check the consistency of the given mbuf. The function will cause a
509 * panic if corruption is detected.
510 *
511 * @param m
512 * The mbuf to be checked.
513 * @param is_header
514 * True if the mbuf is a packet header, false if it is a sub-segment
515 * of a packet (in this case, some fields like nb_segs are not checked)
516 */
517 void
518 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
519
520 /**
521 * Sanity checks on a mbuf.
522 *
523 * Almost like rte_mbuf_sanity_check(), but this function gives the reason
524 * if corruption is detected rather than panic.
525 *
526 * @param m
527 * The mbuf to be checked.
528 * @param is_header
529 * True if the mbuf is a packet header, false if it is a sub-segment
530 * of a packet (in this case, some fields like nb_segs are not checked)
531 * @param reason
532 * A reference to a string pointer where to store the reason why a mbuf is
533 * considered invalid.
534 * @return
535 * - 0 if no issue has been found, reason is left untouched.
536 * - -1 if a problem is detected, reason then points to a string describing
537 * the reason why the mbuf is deemed invalid.
538 */
539 __rte_experimental
540 int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
541 const char **reason);
542
543 /**
544 * Sanity checks on a reinitialized mbuf in debug mode.
545 *
546 * Check the consistency of the given reinitialized mbuf.
547 * The function will cause a panic if corruption is detected.
548 *
549 * Check that the mbuf is properly reinitialized (refcnt=1, next=NULL,
550 * nb_segs=1), as done by rte_pktmbuf_prefree_seg().
551 *
552 * @param m
553 * The mbuf to be checked.
554 */
555 static __rte_always_inline void
__rte_mbuf_raw_sanity_check(__rte_unused const struct rte_mbuf * m)556 __rte_mbuf_raw_sanity_check(__rte_unused const struct rte_mbuf *m)
557 {
558 RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
559 RTE_ASSERT(m->next == NULL);
560 RTE_ASSERT(m->nb_segs == 1);
561 __rte_mbuf_sanity_check(m, 0);
562 }
563
564 /** For backwards compatibility. */
565 #define MBUF_RAW_ALLOC_CHECK(m) __rte_mbuf_raw_sanity_check(m)
566
567 /**
568 * Allocate an uninitialized mbuf from mempool *mp*.
569 *
570 * This function can be used by PMDs (especially in RX functions) to
571 * allocate an uninitialized mbuf. The driver is responsible of
572 * initializing all the required fields. See rte_pktmbuf_reset().
573 * For standard needs, prefer rte_pktmbuf_alloc().
574 *
575 * The caller can expect that the following fields of the mbuf structure
576 * are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1,
577 * next=NULL, pool, priv_size. The other fields must be initialized
578 * by the caller.
579 *
580 * @param mp
581 * The mempool from which mbuf is allocated.
582 * @return
583 * - The pointer to the new mbuf on success.
584 * - NULL if allocation failed.
585 */
rte_mbuf_raw_alloc(struct rte_mempool * mp)586 static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
587 {
588 struct rte_mbuf *m;
589
590 if (rte_mempool_get(mp, (void **)&m) < 0)
591 return NULL;
592 __rte_mbuf_raw_sanity_check(m);
593 return m;
594 }
595
596 /**
597 * Put mbuf back into its original mempool.
598 *
599 * The caller must ensure that the mbuf is direct and properly
600 * reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
601 * rte_pktmbuf_prefree_seg().
602 *
603 * This function should be used with care, when optimization is
604 * required. For standard needs, prefer rte_pktmbuf_free() or
605 * rte_pktmbuf_free_seg().
606 *
607 * @param m
608 * The mbuf to be freed.
609 */
610 static __rte_always_inline void
rte_mbuf_raw_free(struct rte_mbuf * m)611 rte_mbuf_raw_free(struct rte_mbuf *m)
612 {
613 RTE_ASSERT(!RTE_MBUF_CLONED(m) &&
614 (!RTE_MBUF_HAS_EXTBUF(m) || RTE_MBUF_HAS_PINNED_EXTBUF(m)));
615 __rte_mbuf_raw_sanity_check(m);
616 rte_mempool_put(m->pool, m);
617 }
618
619 /**
620 * The packet mbuf constructor.
621 *
622 * This function initializes some fields in the mbuf structure that are
623 * not modified by the user once created (origin pool, buffer start
624 * address, and so on). This function is given as a callback function to
625 * rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
626 *
627 * @param mp
628 * The mempool from which mbufs originate.
629 * @param opaque_arg
630 * A pointer that can be used by the user to retrieve useful information
631 * for mbuf initialization. This pointer is the opaque argument passed to
632 * rte_mempool_obj_iter() or rte_mempool_create().
633 * @param m
634 * The mbuf to initialize.
635 * @param i
636 * The index of the mbuf in the pool table.
637 */
638 void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
639 void *m, unsigned i);
640
641 /**
642 * A packet mbuf pool constructor.
643 *
644 * This function initializes the mempool private data in the case of a
645 * pktmbuf pool. This private data is needed by the driver. The
646 * function must be called on the mempool before it is used, or it
647 * can be given as a callback function to rte_mempool_create() at
648 * pool creation. It can be extended by the user, for example, to
649 * provide another packet size.
650 *
651 * @param mp
652 * The mempool from which mbufs originate.
653 * @param opaque_arg
654 * A pointer that can be used by the user to retrieve useful information
655 * for mbuf initialization. This pointer is the opaque argument passed to
656 * rte_mempool_create().
657 */
658 void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
659
660 /**
661 * Create a mbuf pool.
662 *
663 * This function creates and initializes a packet mbuf pool. It is
664 * a wrapper to rte_mempool functions.
665 *
666 * @param name
667 * The name of the mbuf pool.
668 * @param n
669 * The number of elements in the mbuf pool. The optimum size (in terms
670 * of memory usage) for a mempool is when n is a power of two minus one:
671 * n = (2^q - 1).
672 * @param cache_size
673 * Size of the per-core object cache. See rte_mempool_create() for
674 * details.
675 * @param priv_size
676 * Size of application private are between the rte_mbuf structure
677 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
678 * @param data_room_size
679 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
680 * @param socket_id
681 * The socket identifier where the memory should be allocated. The
682 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
683 * reserved zone.
684 * @return
685 * The pointer to the new allocated mempool, on success. NULL on error
686 * with rte_errno set appropriately. Possible rte_errno values include:
687 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
688 * - E_RTE_SECONDARY - function was called from a secondary process instance
689 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
690 * - ENOSPC - the maximum number of memzones has already been allocated
691 * - EEXIST - a memzone with the same name already exists
692 * - ENOMEM - no appropriate memory area found in which to create memzone
693 */
694 struct rte_mempool *
695 rte_pktmbuf_pool_create(const char *name, unsigned n,
696 unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
697 int socket_id);
698
699 /**
700 * Create a mbuf pool with a given mempool ops name
701 *
702 * This function creates and initializes a packet mbuf pool. It is
703 * a wrapper to rte_mempool functions.
704 *
705 * @param name
706 * The name of the mbuf pool.
707 * @param n
708 * The number of elements in the mbuf pool. The optimum size (in terms
709 * of memory usage) for a mempool is when n is a power of two minus one:
710 * n = (2^q - 1).
711 * @param cache_size
712 * Size of the per-core object cache. See rte_mempool_create() for
713 * details.
714 * @param priv_size
715 * Size of application private are between the rte_mbuf structure
716 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
717 * @param data_room_size
718 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
719 * @param socket_id
720 * The socket identifier where the memory should be allocated. The
721 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
722 * reserved zone.
723 * @param ops_name
724 * The mempool ops name to be used for this mempool instead of
725 * default mempool. The value can be *NULL* to use default mempool.
726 * @return
727 * The pointer to the new allocated mempool, on success. NULL on error
728 * with rte_errno set appropriately. Possible rte_errno values include:
729 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
730 * - E_RTE_SECONDARY - function was called from a secondary process instance
731 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
732 * - ENOSPC - the maximum number of memzones has already been allocated
733 * - EEXIST - a memzone with the same name already exists
734 * - ENOMEM - no appropriate memory area found in which to create memzone
735 */
736 struct rte_mempool *
737 rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
738 unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
739 int socket_id, const char *ops_name);
740
741 /** A structure that describes the pinned external buffer segment. */
742 struct rte_pktmbuf_extmem {
743 void *buf_ptr; /**< The virtual address of data buffer. */
744 rte_iova_t buf_iova; /**< The IO address of the data buffer. */
745 size_t buf_len; /**< External buffer length in bytes. */
746 uint16_t elt_size; /**< mbuf element size in bytes. */
747 };
748
749 /**
750 * Create a mbuf pool with external pinned data buffers.
751 *
752 * This function creates and initializes a packet mbuf pool that contains
753 * only mbufs with external buffer. It is a wrapper to rte_mempool functions.
754 *
755 * @param name
756 * The name of the mbuf pool.
757 * @param n
758 * The number of elements in the mbuf pool. The optimum size (in terms
759 * of memory usage) for a mempool is when n is a power of two minus one:
760 * n = (2^q - 1).
761 * @param cache_size
762 * Size of the per-core object cache. See rte_mempool_create() for
763 * details.
764 * @param priv_size
765 * Size of application private are between the rte_mbuf structure
766 * and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
767 * @param data_room_size
768 * Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
769 * @param socket_id
770 * The socket identifier where the memory should be allocated. The
771 * value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
772 * reserved zone.
773 * @param ext_mem
774 * Pointer to the array of structures describing the external memory
775 * for data buffers. It is caller responsibility to register this memory
776 * with rte_extmem_register() (if needed), map this memory to appropriate
777 * physical device, etc.
778 * @param ext_num
779 * Number of elements in the ext_mem array.
780 * @return
781 * The pointer to the new allocated mempool, on success. NULL on error
782 * with rte_errno set appropriately. Possible rte_errno values include:
783 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
784 * - E_RTE_SECONDARY - function was called from a secondary process instance
785 * - EINVAL - cache size provided is too large, or priv_size is not aligned.
786 * - ENOSPC - the maximum number of memzones has already been allocated
787 * - EEXIST - a memzone with the same name already exists
788 * - ENOMEM - no appropriate memory area found in which to create memzone
789 */
790 __rte_experimental
791 struct rte_mempool *
792 rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
793 unsigned int cache_size, uint16_t priv_size,
794 uint16_t data_room_size, int socket_id,
795 const struct rte_pktmbuf_extmem *ext_mem,
796 unsigned int ext_num);
797
798 /**
799 * Get the data room size of mbufs stored in a pktmbuf_pool
800 *
801 * The data room size is the amount of data that can be stored in a
802 * mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
803 *
804 * @param mp
805 * The packet mbuf pool.
806 * @return
807 * The data room size of mbufs stored in this mempool.
808 */
809 static inline uint16_t
rte_pktmbuf_data_room_size(struct rte_mempool * mp)810 rte_pktmbuf_data_room_size(struct rte_mempool *mp)
811 {
812 struct rte_pktmbuf_pool_private *mbp_priv;
813
814 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
815 return mbp_priv->mbuf_data_room_size;
816 }
817
818 /**
819 * Get the application private size of mbufs stored in a pktmbuf_pool
820 *
821 * The private size of mbuf is a zone located between the rte_mbuf
822 * structure and the data buffer where an application can store data
823 * associated to a packet.
824 *
825 * @param mp
826 * The packet mbuf pool.
827 * @return
828 * The private size of mbufs stored in this mempool.
829 */
830 static inline uint16_t
rte_pktmbuf_priv_size(struct rte_mempool * mp)831 rte_pktmbuf_priv_size(struct rte_mempool *mp)
832 {
833 struct rte_pktmbuf_pool_private *mbp_priv;
834
835 mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
836 return mbp_priv->mbuf_priv_size;
837 }
838
839 /**
840 * Reset the data_off field of a packet mbuf to its default value.
841 *
842 * The given mbuf must have only one segment, which should be empty.
843 *
844 * @param m
845 * The packet mbuf's data_off field has to be reset.
846 */
rte_pktmbuf_reset_headroom(struct rte_mbuf * m)847 static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
848 {
849 m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM,
850 (uint16_t)m->buf_len);
851 }
852
853 /**
854 * Reset the fields of a packet mbuf to their default values.
855 *
856 * The given mbuf must have only one segment.
857 *
858 * @param m
859 * The packet mbuf to be reset.
860 */
rte_pktmbuf_reset(struct rte_mbuf * m)861 static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
862 {
863 m->next = NULL;
864 m->pkt_len = 0;
865 m->tx_offload = 0;
866 m->vlan_tci = 0;
867 m->vlan_tci_outer = 0;
868 m->nb_segs = 1;
869 m->port = RTE_MBUF_PORT_INVALID;
870
871 m->ol_flags &= EXT_ATTACHED_MBUF;
872 m->packet_type = 0;
873 rte_pktmbuf_reset_headroom(m);
874
875 m->data_len = 0;
876 __rte_mbuf_sanity_check(m, 1);
877 }
878
879 /**
880 * Allocate a new mbuf from a mempool.
881 *
882 * This new mbuf contains one segment, which has a length of 0. The pointer
883 * to data is initialized to have some bytes of headroom in the buffer
884 * (if buffer size allows).
885 *
886 * @param mp
887 * The mempool from which the mbuf is allocated.
888 * @return
889 * - The pointer to the new mbuf on success.
890 * - NULL if allocation failed.
891 */
rte_pktmbuf_alloc(struct rte_mempool * mp)892 static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
893 {
894 struct rte_mbuf *m;
895 if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
896 rte_pktmbuf_reset(m);
897 return m;
898 }
899
900 /**
901 * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
902 * values.
903 *
904 * @param pool
905 * The mempool from which mbufs are allocated.
906 * @param mbufs
907 * Array of pointers to mbufs
908 * @param count
909 * Array size
910 * @return
911 * - 0: Success
912 * - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
913 */
rte_pktmbuf_alloc_bulk(struct rte_mempool * pool,struct rte_mbuf ** mbufs,unsigned count)914 static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
915 struct rte_mbuf **mbufs, unsigned count)
916 {
917 unsigned idx = 0;
918 int rc;
919
920 rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
921 if (unlikely(rc))
922 return rc;
923
924 /* To understand duff's device on loop unwinding optimization, see
925 * https://en.wikipedia.org/wiki/Duff's_device.
926 * Here while() loop is used rather than do() while{} to avoid extra
927 * check if count is zero.
928 */
929 switch (count % 4) {
930 case 0:
931 while (idx != count) {
932 __rte_mbuf_raw_sanity_check(mbufs[idx]);
933 rte_pktmbuf_reset(mbufs[idx]);
934 idx++;
935 /* fall-through */
936 case 3:
937 __rte_mbuf_raw_sanity_check(mbufs[idx]);
938 rte_pktmbuf_reset(mbufs[idx]);
939 idx++;
940 /* fall-through */
941 case 2:
942 __rte_mbuf_raw_sanity_check(mbufs[idx]);
943 rte_pktmbuf_reset(mbufs[idx]);
944 idx++;
945 /* fall-through */
946 case 1:
947 __rte_mbuf_raw_sanity_check(mbufs[idx]);
948 rte_pktmbuf_reset(mbufs[idx]);
949 idx++;
950 /* fall-through */
951 }
952 }
953 return 0;
954 }
955
956 /**
957 * Initialize shared data at the end of an external buffer before attaching
958 * to a mbuf by ``rte_pktmbuf_attach_extbuf()``. This is not a mandatory
959 * initialization but a helper function to simply spare a few bytes at the
960 * end of the buffer for shared data. If shared data is allocated
961 * separately, this should not be called but application has to properly
962 * initialize the shared data according to its need.
963 *
964 * Free callback and its argument is saved and the refcnt is set to 1.
965 *
966 * @warning
967 * The value of buf_len will be reduced to RTE_PTR_DIFF(shinfo, buf_addr)
968 * after this initialization. This shall be used for
969 * ``rte_pktmbuf_attach_extbuf()``
970 *
971 * @param buf_addr
972 * The pointer to the external buffer.
973 * @param [in,out] buf_len
974 * The pointer to length of the external buffer. Input value must be
975 * larger than the size of ``struct rte_mbuf_ext_shared_info`` and
976 * padding for alignment. If not enough, this function will return NULL.
977 * Adjusted buffer length will be returned through this pointer.
978 * @param free_cb
979 * Free callback function to call when the external buffer needs to be
980 * freed.
981 * @param fcb_opaque
982 * Argument for the free callback function.
983 *
984 * @return
985 * A pointer to the initialized shared data on success, return NULL
986 * otherwise.
987 */
988 static inline struct rte_mbuf_ext_shared_info *
rte_pktmbuf_ext_shinfo_init_helper(void * buf_addr,uint16_t * buf_len,rte_mbuf_extbuf_free_callback_t free_cb,void * fcb_opaque)989 rte_pktmbuf_ext_shinfo_init_helper(void *buf_addr, uint16_t *buf_len,
990 rte_mbuf_extbuf_free_callback_t free_cb, void *fcb_opaque)
991 {
992 struct rte_mbuf_ext_shared_info *shinfo;
993 void *buf_end = RTE_PTR_ADD(buf_addr, *buf_len);
994 void *addr;
995
996 addr = RTE_PTR_ALIGN_FLOOR(RTE_PTR_SUB(buf_end, sizeof(*shinfo)),
997 sizeof(uintptr_t));
998 if (addr <= buf_addr)
999 return NULL;
1000
1001 shinfo = (struct rte_mbuf_ext_shared_info *)addr;
1002 shinfo->free_cb = free_cb;
1003 shinfo->fcb_opaque = fcb_opaque;
1004 rte_mbuf_ext_refcnt_set(shinfo, 1);
1005
1006 *buf_len = (uint16_t)RTE_PTR_DIFF(shinfo, buf_addr);
1007 return shinfo;
1008 }
1009
1010 /**
1011 * Attach an external buffer to a mbuf.
1012 *
1013 * User-managed anonymous buffer can be attached to an mbuf. When attaching
1014 * it, corresponding free callback function and its argument should be
1015 * provided via shinfo. This callback function will be called once all the
1016 * mbufs are detached from the buffer (refcnt becomes zero).
1017 *
1018 * The headroom length of the attaching mbuf will be set to zero and this
1019 * can be properly adjusted after attachment. For example, ``rte_pktmbuf_adj()``
1020 * or ``rte_pktmbuf_reset_headroom()`` might be used.
1021 *
1022 * Similarly, the packet length is initialized to 0. If the buffer contains
1023 * data, the user has to adjust ``data_len`` and the ``pkt_len`` field of
1024 * the mbuf accordingly.
1025 *
1026 * More mbufs can be attached to the same external buffer by
1027 * ``rte_pktmbuf_attach()`` once the external buffer has been attached by
1028 * this API.
1029 *
1030 * Detachment can be done by either ``rte_pktmbuf_detach_extbuf()`` or
1031 * ``rte_pktmbuf_detach()``.
1032 *
1033 * Memory for shared data must be provided and user must initialize all of
1034 * the content properly, especially free callback and refcnt. The pointer
1035 * of shared data will be stored in m->shinfo.
1036 * ``rte_pktmbuf_ext_shinfo_init_helper`` can help to simply spare a few
1037 * bytes at the end of buffer for the shared data, store free callback and
1038 * its argument and set the refcnt to 1. The following is an example:
1039 *
1040 * struct rte_mbuf_ext_shared_info *shinfo =
1041 * rte_pktmbuf_ext_shinfo_init_helper(buf_addr, &buf_len,
1042 * free_cb, fcb_arg);
1043 * rte_pktmbuf_attach_extbuf(m, buf_addr, buf_iova, buf_len, shinfo);
1044 * rte_pktmbuf_reset_headroom(m);
1045 * rte_pktmbuf_adj(m, data_len);
1046 *
1047 * Attaching an external buffer is quite similar to mbuf indirection in
1048 * replacing buffer addresses and length of a mbuf, but a few differences:
1049 * - When an indirect mbuf is attached, refcnt of the direct mbuf would be
1050 * 2 as long as the direct mbuf itself isn't freed after the attachment.
1051 * In such cases, the buffer area of a direct mbuf must be read-only. But
1052 * external buffer has its own refcnt and it starts from 1. Unless
1053 * multiple mbufs are attached to a mbuf having an external buffer, the
1054 * external buffer is writable.
1055 * - There's no need to allocate buffer from a mempool. Any buffer can be
1056 * attached with appropriate free callback and its IO address.
1057 * - Smaller metadata is required to maintain shared data such as refcnt.
1058 *
1059 * @param m
1060 * The pointer to the mbuf.
1061 * @param buf_addr
1062 * The pointer to the external buffer.
1063 * @param buf_iova
1064 * IO address of the external buffer.
1065 * @param buf_len
1066 * The size of the external buffer.
1067 * @param shinfo
1068 * User-provided memory for shared data of the external buffer.
1069 */
1070 static inline void
rte_pktmbuf_attach_extbuf(struct rte_mbuf * m,void * buf_addr,rte_iova_t buf_iova,uint16_t buf_len,struct rte_mbuf_ext_shared_info * shinfo)1071 rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr,
1072 rte_iova_t buf_iova, uint16_t buf_len,
1073 struct rte_mbuf_ext_shared_info *shinfo)
1074 {
1075 /* mbuf should not be read-only */
1076 RTE_ASSERT(RTE_MBUF_DIRECT(m) && rte_mbuf_refcnt_read(m) == 1);
1077 RTE_ASSERT(shinfo->free_cb != NULL);
1078
1079 m->buf_addr = buf_addr;
1080 m->buf_iova = buf_iova;
1081 m->buf_len = buf_len;
1082
1083 m->data_len = 0;
1084 m->data_off = 0;
1085
1086 m->ol_flags |= EXT_ATTACHED_MBUF;
1087 m->shinfo = shinfo;
1088 }
1089
1090 /**
1091 * Detach the external buffer attached to a mbuf, same as
1092 * ``rte_pktmbuf_detach()``
1093 *
1094 * @param m
1095 * The mbuf having external buffer.
1096 */
1097 #define rte_pktmbuf_detach_extbuf(m) rte_pktmbuf_detach(m)
1098
1099 /**
1100 * Copy dynamic fields from msrc to mdst.
1101 *
1102 * @param mdst
1103 * The destination mbuf.
1104 * @param msrc
1105 * The source mbuf.
1106 */
1107 static inline void
rte_mbuf_dynfield_copy(struct rte_mbuf * mdst,const struct rte_mbuf * msrc)1108 rte_mbuf_dynfield_copy(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1109 {
1110 memcpy(&mdst->dynfield1, msrc->dynfield1, sizeof(mdst->dynfield1));
1111 }
1112
1113 /* internal */
1114 static inline void
__rte_pktmbuf_copy_hdr(struct rte_mbuf * mdst,const struct rte_mbuf * msrc)1115 __rte_pktmbuf_copy_hdr(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1116 {
1117 mdst->port = msrc->port;
1118 mdst->vlan_tci = msrc->vlan_tci;
1119 mdst->vlan_tci_outer = msrc->vlan_tci_outer;
1120 mdst->tx_offload = msrc->tx_offload;
1121 mdst->hash = msrc->hash;
1122 mdst->packet_type = msrc->packet_type;
1123 rte_mbuf_dynfield_copy(mdst, msrc);
1124 }
1125
1126 /**
1127 * Attach packet mbuf to another packet mbuf.
1128 *
1129 * If the mbuf we are attaching to isn't a direct buffer and is attached to
1130 * an external buffer, the mbuf being attached will be attached to the
1131 * external buffer instead of mbuf indirection.
1132 *
1133 * Otherwise, the mbuf will be indirectly attached. After attachment we
1134 * refer the mbuf we attached as 'indirect', while mbuf we attached to as
1135 * 'direct'. The direct mbuf's reference counter is incremented.
1136 *
1137 * Right now, not supported:
1138 * - attachment for already indirect mbuf (e.g. - mi has to be direct).
1139 * - mbuf we trying to attach (mi) is used by someone else
1140 * e.g. it's reference counter is greater then 1.
1141 *
1142 * @param mi
1143 * The indirect packet mbuf.
1144 * @param m
1145 * The packet mbuf we're attaching to.
1146 */
rte_pktmbuf_attach(struct rte_mbuf * mi,struct rte_mbuf * m)1147 static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
1148 {
1149 RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
1150 rte_mbuf_refcnt_read(mi) == 1);
1151
1152 if (RTE_MBUF_HAS_EXTBUF(m)) {
1153 rte_mbuf_ext_refcnt_update(m->shinfo, 1);
1154 mi->ol_flags = m->ol_flags;
1155 mi->shinfo = m->shinfo;
1156 } else {
1157 /* if m is not direct, get the mbuf that embeds the data */
1158 rte_mbuf_refcnt_update(rte_mbuf_from_indirect(m), 1);
1159 mi->priv_size = m->priv_size;
1160 mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
1161 }
1162
1163 __rte_pktmbuf_copy_hdr(mi, m);
1164
1165 mi->data_off = m->data_off;
1166 mi->data_len = m->data_len;
1167 mi->buf_iova = m->buf_iova;
1168 mi->buf_addr = m->buf_addr;
1169 mi->buf_len = m->buf_len;
1170
1171 mi->next = NULL;
1172 mi->pkt_len = mi->data_len;
1173 mi->nb_segs = 1;
1174
1175 __rte_mbuf_sanity_check(mi, 1);
1176 __rte_mbuf_sanity_check(m, 0);
1177 }
1178
1179 /**
1180 * @internal used by rte_pktmbuf_detach().
1181 *
1182 * Decrement the reference counter of the external buffer. When the
1183 * reference counter becomes 0, the buffer is freed by pre-registered
1184 * callback.
1185 */
1186 static inline void
__rte_pktmbuf_free_extbuf(struct rte_mbuf * m)1187 __rte_pktmbuf_free_extbuf(struct rte_mbuf *m)
1188 {
1189 RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
1190 RTE_ASSERT(m->shinfo != NULL);
1191
1192 if (rte_mbuf_ext_refcnt_update(m->shinfo, -1) == 0)
1193 m->shinfo->free_cb(m->buf_addr, m->shinfo->fcb_opaque);
1194 }
1195
1196 /**
1197 * @internal used by rte_pktmbuf_detach().
1198 *
1199 * Decrement the direct mbuf's reference counter. When the reference
1200 * counter becomes 0, the direct mbuf is freed.
1201 */
1202 static inline void
__rte_pktmbuf_free_direct(struct rte_mbuf * m)1203 __rte_pktmbuf_free_direct(struct rte_mbuf *m)
1204 {
1205 struct rte_mbuf *md;
1206
1207 RTE_ASSERT(RTE_MBUF_CLONED(m));
1208
1209 md = rte_mbuf_from_indirect(m);
1210
1211 if (rte_mbuf_refcnt_update(md, -1) == 0) {
1212 md->next = NULL;
1213 md->nb_segs = 1;
1214 rte_mbuf_refcnt_set(md, 1);
1215 rte_mbuf_raw_free(md);
1216 }
1217 }
1218
1219 /**
1220 * Detach a packet mbuf from external buffer or direct buffer.
1221 *
1222 * - decrement refcnt and free the external/direct buffer if refcnt
1223 * becomes zero.
1224 * - restore original mbuf address and length values.
1225 * - reset pktmbuf data and data_len to their default values.
1226 *
1227 * All other fields of the given packet mbuf will be left intact.
1228 *
1229 * If the packet mbuf was allocated from the pool with pinned
1230 * external buffers the rte_pktmbuf_detach does nothing with the
1231 * mbuf of this kind, because the pinned buffers are not supposed
1232 * to be detached.
1233 *
1234 * @param m
1235 * The indirect attached packet mbuf.
1236 */
rte_pktmbuf_detach(struct rte_mbuf * m)1237 static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
1238 {
1239 struct rte_mempool *mp = m->pool;
1240 uint32_t mbuf_size, buf_len;
1241 uint16_t priv_size;
1242
1243 if (RTE_MBUF_HAS_EXTBUF(m)) {
1244 /*
1245 * The mbuf has the external attached buffer,
1246 * we should check the type of the memory pool where
1247 * the mbuf was allocated from to detect the pinned
1248 * external buffer.
1249 */
1250 uint32_t flags = rte_pktmbuf_priv_flags(mp);
1251
1252 if (flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) {
1253 /*
1254 * The pinned external buffer should not be
1255 * detached from its backing mbuf, just exit.
1256 */
1257 return;
1258 }
1259 __rte_pktmbuf_free_extbuf(m);
1260 } else {
1261 __rte_pktmbuf_free_direct(m);
1262 }
1263 priv_size = rte_pktmbuf_priv_size(mp);
1264 mbuf_size = (uint32_t)(sizeof(struct rte_mbuf) + priv_size);
1265 buf_len = rte_pktmbuf_data_room_size(mp);
1266
1267 m->priv_size = priv_size;
1268 m->buf_addr = (char *)m + mbuf_size;
1269 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1270 m->buf_len = (uint16_t)buf_len;
1271 rte_pktmbuf_reset_headroom(m);
1272 m->data_len = 0;
1273 m->ol_flags = 0;
1274 }
1275
1276 /**
1277 * @internal Handle the packet mbufs with attached pinned external buffer
1278 * on the mbuf freeing:
1279 *
1280 * - return zero if reference counter in shinfo is one. It means there is
1281 * no more reference to this pinned buffer and mbuf can be returned to
1282 * the pool
1283 *
1284 * - otherwise (if reference counter is not one), decrement reference
1285 * counter and return non-zero value to prevent freeing the backing mbuf.
1286 *
1287 * Returns non zero if mbuf should not be freed.
1288 */
__rte_pktmbuf_pinned_extbuf_decref(struct rte_mbuf * m)1289 static inline int __rte_pktmbuf_pinned_extbuf_decref(struct rte_mbuf *m)
1290 {
1291 struct rte_mbuf_ext_shared_info *shinfo;
1292
1293 /* Clear flags, mbuf is being freed. */
1294 m->ol_flags = EXT_ATTACHED_MBUF;
1295 shinfo = m->shinfo;
1296
1297 /* Optimize for performance - do not dec/reinit */
1298 if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1))
1299 return 0;
1300
1301 /*
1302 * Direct usage of add primitive to avoid
1303 * duplication of comparing with one.
1304 */
1305 if (likely(__atomic_add_fetch(&shinfo->refcnt, (uint16_t)-1,
1306 __ATOMIC_ACQ_REL)))
1307 return 1;
1308
1309 /* Reinitialize counter before mbuf freeing. */
1310 rte_mbuf_ext_refcnt_set(shinfo, 1);
1311 return 0;
1312 }
1313
1314 /**
1315 * Decrease reference counter and unlink a mbuf segment
1316 *
1317 * This function does the same than a free, except that it does not
1318 * return the segment to its pool.
1319 * It decreases the reference counter, and if it reaches 0, it is
1320 * detached from its parent for an indirect mbuf.
1321 *
1322 * @param m
1323 * The mbuf to be unlinked
1324 * @return
1325 * - (m) if it is the last reference. It can be recycled or freed.
1326 * - (NULL) if the mbuf still has remaining references on it.
1327 */
1328 static __rte_always_inline struct rte_mbuf *
rte_pktmbuf_prefree_seg(struct rte_mbuf * m)1329 rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1330 {
1331 __rte_mbuf_sanity_check(m, 0);
1332
1333 if (likely(rte_mbuf_refcnt_read(m) == 1)) {
1334
1335 if (!RTE_MBUF_DIRECT(m)) {
1336 rte_pktmbuf_detach(m);
1337 if (RTE_MBUF_HAS_EXTBUF(m) &&
1338 RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1339 __rte_pktmbuf_pinned_extbuf_decref(m))
1340 return NULL;
1341 }
1342
1343 if (m->next != NULL) {
1344 m->next = NULL;
1345 m->nb_segs = 1;
1346 }
1347
1348 return m;
1349
1350 } else if (__rte_mbuf_refcnt_update(m, -1) == 0) {
1351
1352 if (!RTE_MBUF_DIRECT(m)) {
1353 rte_pktmbuf_detach(m);
1354 if (RTE_MBUF_HAS_EXTBUF(m) &&
1355 RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1356 __rte_pktmbuf_pinned_extbuf_decref(m))
1357 return NULL;
1358 }
1359
1360 if (m->next != NULL) {
1361 m->next = NULL;
1362 m->nb_segs = 1;
1363 }
1364 rte_mbuf_refcnt_set(m, 1);
1365
1366 return m;
1367 }
1368 return NULL;
1369 }
1370
1371 /**
1372 * Free a segment of a packet mbuf into its original mempool.
1373 *
1374 * Free an mbuf, without parsing other segments in case of chained
1375 * buffers.
1376 *
1377 * @param m
1378 * The packet mbuf segment to be freed.
1379 */
1380 static __rte_always_inline void
rte_pktmbuf_free_seg(struct rte_mbuf * m)1381 rte_pktmbuf_free_seg(struct rte_mbuf *m)
1382 {
1383 m = rte_pktmbuf_prefree_seg(m);
1384 if (likely(m != NULL))
1385 rte_mbuf_raw_free(m);
1386 }
1387
1388 /**
1389 * Free a packet mbuf back into its original mempool.
1390 *
1391 * Free an mbuf, and all its segments in case of chained buffers. Each
1392 * segment is added back into its original mempool.
1393 *
1394 * @param m
1395 * The packet mbuf to be freed. If NULL, the function does nothing.
1396 */
rte_pktmbuf_free(struct rte_mbuf * m)1397 static inline void rte_pktmbuf_free(struct rte_mbuf *m)
1398 {
1399 struct rte_mbuf *m_next;
1400
1401 if (m != NULL)
1402 __rte_mbuf_sanity_check(m, 1);
1403
1404 while (m != NULL) {
1405 m_next = m->next;
1406 rte_pktmbuf_free_seg(m);
1407 m = m_next;
1408 }
1409 }
1410
1411 /**
1412 * Free a bulk of packet mbufs back into their original mempools.
1413 *
1414 * Free a bulk of mbufs, and all their segments in case of chained buffers.
1415 * Each segment is added back into its original mempool.
1416 *
1417 * @param mbufs
1418 * Array of pointers to packet mbufs.
1419 * The array may contain NULL pointers.
1420 * @param count
1421 * Array size.
1422 */
1423 __rte_experimental
1424 void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count);
1425
1426 /**
1427 * Create a "clone" of the given packet mbuf.
1428 *
1429 * Walks through all segments of the given packet mbuf, and for each of them:
1430 * - Creates a new packet mbuf from the given pool.
1431 * - Attaches newly created mbuf to the segment.
1432 * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
1433 * from the original packet mbuf.
1434 *
1435 * @param md
1436 * The packet mbuf to be cloned.
1437 * @param mp
1438 * The mempool from which the "clone" mbufs are allocated.
1439 * @return
1440 * - The pointer to the new "clone" mbuf on success.
1441 * - NULL if allocation fails.
1442 */
1443 struct rte_mbuf *
1444 rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp);
1445
1446 /**
1447 * Create a full copy of a given packet mbuf.
1448 *
1449 * Copies all the data from a given packet mbuf to a newly allocated
1450 * set of mbufs. The private data are is not copied.
1451 *
1452 * @param m
1453 * The packet mbuf to be copiedd.
1454 * @param mp
1455 * The mempool from which the "clone" mbufs are allocated.
1456 * @param offset
1457 * The number of bytes to skip before copying.
1458 * If the mbuf does not have that many bytes, it is an error
1459 * and NULL is returned.
1460 * @param length
1461 * The upper limit on bytes to copy. Passing UINT32_MAX
1462 * means all data (after offset).
1463 * @return
1464 * - The pointer to the new "clone" mbuf on success.
1465 * - NULL if allocation fails.
1466 */
1467 __rte_experimental
1468 struct rte_mbuf *
1469 rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
1470 uint32_t offset, uint32_t length);
1471
1472 /**
1473 * Adds given value to the refcnt of all packet mbuf segments.
1474 *
1475 * Walks through all segments of given packet mbuf and for each of them
1476 * invokes rte_mbuf_refcnt_update().
1477 *
1478 * @param m
1479 * The packet mbuf whose refcnt to be updated.
1480 * @param v
1481 * The value to add to the mbuf's segments refcnt.
1482 */
rte_pktmbuf_refcnt_update(struct rte_mbuf * m,int16_t v)1483 static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
1484 {
1485 __rte_mbuf_sanity_check(m, 1);
1486
1487 do {
1488 rte_mbuf_refcnt_update(m, v);
1489 } while ((m = m->next) != NULL);
1490 }
1491
1492 /**
1493 * Get the headroom in a packet mbuf.
1494 *
1495 * @param m
1496 * The packet mbuf.
1497 * @return
1498 * The length of the headroom.
1499 */
rte_pktmbuf_headroom(const struct rte_mbuf * m)1500 static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
1501 {
1502 __rte_mbuf_sanity_check(m, 0);
1503 return m->data_off;
1504 }
1505
1506 /**
1507 * Get the tailroom of a packet mbuf.
1508 *
1509 * @param m
1510 * The packet mbuf.
1511 * @return
1512 * The length of the tailroom.
1513 */
rte_pktmbuf_tailroom(const struct rte_mbuf * m)1514 static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
1515 {
1516 __rte_mbuf_sanity_check(m, 0);
1517 return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
1518 m->data_len);
1519 }
1520
1521 /**
1522 * Get the last segment of the packet.
1523 *
1524 * @param m
1525 * The packet mbuf.
1526 * @return
1527 * The last segment of the given mbuf.
1528 */
rte_pktmbuf_lastseg(struct rte_mbuf * m)1529 static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
1530 {
1531 __rte_mbuf_sanity_check(m, 1);
1532 while (m->next != NULL)
1533 m = m->next;
1534 return m;
1535 }
1536
1537 /**
1538 * A macro that returns the length of the packet.
1539 *
1540 * The value can be read or assigned.
1541 *
1542 * @param m
1543 * The packet mbuf.
1544 */
1545 #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
1546
1547 /**
1548 * A macro that returns the length of the segment.
1549 *
1550 * The value can be read or assigned.
1551 *
1552 * @param m
1553 * The packet mbuf.
1554 */
1555 #define rte_pktmbuf_data_len(m) ((m)->data_len)
1556
1557 /**
1558 * Prepend len bytes to an mbuf data area.
1559 *
1560 * Returns a pointer to the new
1561 * data start address. If there is not enough headroom in the first
1562 * segment, the function will return NULL, without modifying the mbuf.
1563 *
1564 * @param m
1565 * The pkt mbuf.
1566 * @param len
1567 * The amount of data to prepend (in bytes).
1568 * @return
1569 * A pointer to the start of the newly prepended data, or
1570 * NULL if there is not enough headroom space in the first segment
1571 */
rte_pktmbuf_prepend(struct rte_mbuf * m,uint16_t len)1572 static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
1573 uint16_t len)
1574 {
1575 __rte_mbuf_sanity_check(m, 1);
1576
1577 if (unlikely(len > rte_pktmbuf_headroom(m)))
1578 return NULL;
1579
1580 /* NB: elaborating the subtraction like this instead of using
1581 * -= allows us to ensure the result type is uint16_t
1582 * avoiding compiler warnings on gcc 8.1 at least */
1583 m->data_off = (uint16_t)(m->data_off - len);
1584 m->data_len = (uint16_t)(m->data_len + len);
1585 m->pkt_len = (m->pkt_len + len);
1586
1587 return (char *)m->buf_addr + m->data_off;
1588 }
1589
1590 /**
1591 * Append len bytes to an mbuf.
1592 *
1593 * Append len bytes to an mbuf and return a pointer to the start address
1594 * of the added data. If there is not enough tailroom in the last
1595 * segment, the function will return NULL, without modifying the mbuf.
1596 *
1597 * @param m
1598 * The packet mbuf.
1599 * @param len
1600 * The amount of data to append (in bytes).
1601 * @return
1602 * A pointer to the start of the newly appended data, or
1603 * NULL if there is not enough tailroom space in the last segment
1604 */
rte_pktmbuf_append(struct rte_mbuf * m,uint16_t len)1605 static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
1606 {
1607 void *tail;
1608 struct rte_mbuf *m_last;
1609
1610 __rte_mbuf_sanity_check(m, 1);
1611
1612 m_last = rte_pktmbuf_lastseg(m);
1613 if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
1614 return NULL;
1615
1616 tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
1617 m_last->data_len = (uint16_t)(m_last->data_len + len);
1618 m->pkt_len = (m->pkt_len + len);
1619 return (char*) tail;
1620 }
1621
1622 /**
1623 * Remove len bytes at the beginning of an mbuf.
1624 *
1625 * Returns a pointer to the start address of the new data area. If the
1626 * length is greater than the length of the first segment, then the
1627 * function will fail and return NULL, without modifying the mbuf.
1628 *
1629 * @param m
1630 * The packet mbuf.
1631 * @param len
1632 * The amount of data to remove (in bytes).
1633 * @return
1634 * A pointer to the new start of the data.
1635 */
rte_pktmbuf_adj(struct rte_mbuf * m,uint16_t len)1636 static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
1637 {
1638 __rte_mbuf_sanity_check(m, 1);
1639
1640 if (unlikely(len > m->data_len))
1641 return NULL;
1642
1643 /* NB: elaborating the addition like this instead of using
1644 * += allows us to ensure the result type is uint16_t
1645 * avoiding compiler warnings on gcc 8.1 at least */
1646 m->data_len = (uint16_t)(m->data_len - len);
1647 m->data_off = (uint16_t)(m->data_off + len);
1648 m->pkt_len = (m->pkt_len - len);
1649 return (char *)m->buf_addr + m->data_off;
1650 }
1651
1652 /**
1653 * Remove len bytes of data at the end of the mbuf.
1654 *
1655 * If the length is greater than the length of the last segment, the
1656 * function will fail and return -1 without modifying the mbuf.
1657 *
1658 * @param m
1659 * The packet mbuf.
1660 * @param len
1661 * The amount of data to remove (in bytes).
1662 * @return
1663 * - 0: On success.
1664 * - -1: On error.
1665 */
rte_pktmbuf_trim(struct rte_mbuf * m,uint16_t len)1666 static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
1667 {
1668 struct rte_mbuf *m_last;
1669
1670 __rte_mbuf_sanity_check(m, 1);
1671
1672 m_last = rte_pktmbuf_lastseg(m);
1673 if (unlikely(len > m_last->data_len))
1674 return -1;
1675
1676 m_last->data_len = (uint16_t)(m_last->data_len - len);
1677 m->pkt_len = (m->pkt_len - len);
1678 return 0;
1679 }
1680
1681 /**
1682 * Test if mbuf data is contiguous.
1683 *
1684 * @param m
1685 * The packet mbuf.
1686 * @return
1687 * - 1, if all data is contiguous (one segment).
1688 * - 0, if there is several segments.
1689 */
rte_pktmbuf_is_contiguous(const struct rte_mbuf * m)1690 static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
1691 {
1692 __rte_mbuf_sanity_check(m, 1);
1693 return m->nb_segs == 1;
1694 }
1695
1696 /**
1697 * @internal used by rte_pktmbuf_read().
1698 */
1699 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
1700 uint32_t len, void *buf);
1701
1702 /**
1703 * Read len data bytes in a mbuf at specified offset.
1704 *
1705 * If the data is contiguous, return the pointer in the mbuf data, else
1706 * copy the data in the buffer provided by the user and return its
1707 * pointer.
1708 *
1709 * @param m
1710 * The pointer to the mbuf.
1711 * @param off
1712 * The offset of the data in the mbuf.
1713 * @param len
1714 * The amount of bytes to read.
1715 * @param buf
1716 * The buffer where data is copied if it is not contiguous in mbuf
1717 * data. Its length should be at least equal to the len parameter.
1718 * @return
1719 * The pointer to the data, either in the mbuf if it is contiguous,
1720 * or in the user buffer. If mbuf is too small, NULL is returned.
1721 */
rte_pktmbuf_read(const struct rte_mbuf * m,uint32_t off,uint32_t len,void * buf)1722 static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
1723 uint32_t off, uint32_t len, void *buf)
1724 {
1725 if (likely(off + len <= rte_pktmbuf_data_len(m)))
1726 return rte_pktmbuf_mtod_offset(m, char *, off);
1727 else
1728 return __rte_pktmbuf_read(m, off, len, buf);
1729 }
1730
1731 /**
1732 * Chain an mbuf to another, thereby creating a segmented packet.
1733 *
1734 * Note: The implementation will do a linear walk over the segments to find
1735 * the tail entry. For cases when there are many segments, it's better to
1736 * chain the entries manually.
1737 *
1738 * @param head
1739 * The head of the mbuf chain (the first packet)
1740 * @param tail
1741 * The mbuf to put last in the chain
1742 *
1743 * @return
1744 * - 0, on success.
1745 * - -EOVERFLOW, if the chain segment limit exceeded
1746 */
rte_pktmbuf_chain(struct rte_mbuf * head,struct rte_mbuf * tail)1747 static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
1748 {
1749 struct rte_mbuf *cur_tail;
1750
1751 /* Check for number-of-segments-overflow */
1752 if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)
1753 return -EOVERFLOW;
1754
1755 /* Chain 'tail' onto the old tail */
1756 cur_tail = rte_pktmbuf_lastseg(head);
1757 cur_tail->next = tail;
1758
1759 /* accumulate number of segments and total length.
1760 * NB: elaborating the addition like this instead of using
1761 * -= allows us to ensure the result type is uint16_t
1762 * avoiding compiler warnings on gcc 8.1 at least */
1763 head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs);
1764 head->pkt_len += tail->pkt_len;
1765
1766 /* pkt_len is only set in the head */
1767 tail->pkt_len = tail->data_len;
1768
1769 return 0;
1770 }
1771
1772 /*
1773 * @warning
1774 * @b EXPERIMENTAL: This API may change without prior notice.
1775 *
1776 * For given input values generate raw tx_offload value.
1777 * Note that it is caller responsibility to make sure that input parameters
1778 * don't exceed maximum bit-field values.
1779 * @param il2
1780 * l2_len value.
1781 * @param il3
1782 * l3_len value.
1783 * @param il4
1784 * l4_len value.
1785 * @param tso
1786 * tso_segsz value.
1787 * @param ol3
1788 * outer_l3_len value.
1789 * @param ol2
1790 * outer_l2_len value.
1791 * @param unused
1792 * unused value.
1793 * @return
1794 * raw tx_offload value.
1795 */
1796 static __rte_always_inline uint64_t
rte_mbuf_tx_offload(uint64_t il2,uint64_t il3,uint64_t il4,uint64_t tso,uint64_t ol3,uint64_t ol2,uint64_t unused)1797 rte_mbuf_tx_offload(uint64_t il2, uint64_t il3, uint64_t il4, uint64_t tso,
1798 uint64_t ol3, uint64_t ol2, uint64_t unused)
1799 {
1800 return il2 << RTE_MBUF_L2_LEN_OFS |
1801 il3 << RTE_MBUF_L3_LEN_OFS |
1802 il4 << RTE_MBUF_L4_LEN_OFS |
1803 tso << RTE_MBUF_TSO_SEGSZ_OFS |
1804 ol3 << RTE_MBUF_OUTL3_LEN_OFS |
1805 ol2 << RTE_MBUF_OUTL2_LEN_OFS |
1806 unused << RTE_MBUF_TXOFLD_UNUSED_OFS;
1807 }
1808
1809 /**
1810 * Validate general requirements for Tx offload in mbuf.
1811 *
1812 * This function checks correctness and completeness of Tx offload settings.
1813 *
1814 * @param m
1815 * The packet mbuf to be validated.
1816 * @return
1817 * 0 if packet is valid
1818 */
1819 static inline int
rte_validate_tx_offload(const struct rte_mbuf * m)1820 rte_validate_tx_offload(const struct rte_mbuf *m)
1821 {
1822 uint64_t ol_flags = m->ol_flags;
1823
1824 /* Does packet set any of available offloads? */
1825 if (!(ol_flags & PKT_TX_OFFLOAD_MASK))
1826 return 0;
1827
1828 /* IP checksum can be counted only for IPv4 packet */
1829 if ((ol_flags & PKT_TX_IP_CKSUM) && (ol_flags & PKT_TX_IPV6))
1830 return -EINVAL;
1831
1832 /* IP type not set when required */
1833 if (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
1834 if (!(ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)))
1835 return -EINVAL;
1836
1837 /* Check requirements for TSO packet */
1838 if (ol_flags & PKT_TX_TCP_SEG)
1839 if ((m->tso_segsz == 0) ||
1840 ((ol_flags & PKT_TX_IPV4) &&
1841 !(ol_flags & PKT_TX_IP_CKSUM)))
1842 return -EINVAL;
1843
1844 /* PKT_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
1845 if ((ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
1846 !(ol_flags & PKT_TX_OUTER_IPV4))
1847 return -EINVAL;
1848
1849 return 0;
1850 }
1851
1852 /**
1853 * @internal used by rte_pktmbuf_linearize().
1854 */
1855 int __rte_pktmbuf_linearize(struct rte_mbuf *mbuf);
1856
1857 /**
1858 * Linearize data in mbuf.
1859 *
1860 * This function moves the mbuf data in the first segment if there is enough
1861 * tailroom. The subsequent segments are unchained and freed.
1862 *
1863 * @param mbuf
1864 * mbuf to linearize
1865 * @return
1866 * - 0, on success
1867 * - -1, on error
1868 */
1869 static inline int
rte_pktmbuf_linearize(struct rte_mbuf * mbuf)1870 rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
1871 {
1872 if (rte_pktmbuf_is_contiguous(mbuf))
1873 return 0;
1874 return __rte_pktmbuf_linearize(mbuf);
1875 }
1876
1877 /**
1878 * Dump an mbuf structure to a file.
1879 *
1880 * Dump all fields for the given packet mbuf and all its associated
1881 * segments (in the case of a chained buffer).
1882 *
1883 * @param f
1884 * A pointer to a file for output
1885 * @param m
1886 * The packet mbuf.
1887 * @param dump_len
1888 * If dump_len != 0, also dump the "dump_len" first data bytes of
1889 * the packet.
1890 */
1891 void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
1892
1893 /**
1894 * Get the value of mbuf sched queue_id field.
1895 */
1896 static inline uint32_t
rte_mbuf_sched_queue_get(const struct rte_mbuf * m)1897 rte_mbuf_sched_queue_get(const struct rte_mbuf *m)
1898 {
1899 return m->hash.sched.queue_id;
1900 }
1901
1902 /**
1903 * Get the value of mbuf sched traffic_class field.
1904 */
1905 static inline uint8_t
rte_mbuf_sched_traffic_class_get(const struct rte_mbuf * m)1906 rte_mbuf_sched_traffic_class_get(const struct rte_mbuf *m)
1907 {
1908 return m->hash.sched.traffic_class;
1909 }
1910
1911 /**
1912 * Get the value of mbuf sched color field.
1913 */
1914 static inline uint8_t
rte_mbuf_sched_color_get(const struct rte_mbuf * m)1915 rte_mbuf_sched_color_get(const struct rte_mbuf *m)
1916 {
1917 return m->hash.sched.color;
1918 }
1919
1920 /**
1921 * Get the values of mbuf sched queue_id, traffic_class and color.
1922 *
1923 * @param m
1924 * Mbuf to read
1925 * @param queue_id
1926 * Returns the queue id
1927 * @param traffic_class
1928 * Returns the traffic class id
1929 * @param color
1930 * Returns the colour id
1931 */
1932 static inline void
rte_mbuf_sched_get(const struct rte_mbuf * m,uint32_t * queue_id,uint8_t * traffic_class,uint8_t * color)1933 rte_mbuf_sched_get(const struct rte_mbuf *m, uint32_t *queue_id,
1934 uint8_t *traffic_class,
1935 uint8_t *color)
1936 {
1937 struct rte_mbuf_sched sched = m->hash.sched;
1938
1939 *queue_id = sched.queue_id;
1940 *traffic_class = sched.traffic_class;
1941 *color = sched.color;
1942 }
1943
1944 /**
1945 * Set the mbuf sched queue_id to the defined value.
1946 */
1947 static inline void
rte_mbuf_sched_queue_set(struct rte_mbuf * m,uint32_t queue_id)1948 rte_mbuf_sched_queue_set(struct rte_mbuf *m, uint32_t queue_id)
1949 {
1950 m->hash.sched.queue_id = queue_id;
1951 }
1952
1953 /**
1954 * Set the mbuf sched traffic_class id to the defined value.
1955 */
1956 static inline void
rte_mbuf_sched_traffic_class_set(struct rte_mbuf * m,uint8_t traffic_class)1957 rte_mbuf_sched_traffic_class_set(struct rte_mbuf *m, uint8_t traffic_class)
1958 {
1959 m->hash.sched.traffic_class = traffic_class;
1960 }
1961
1962 /**
1963 * Set the mbuf sched color id to the defined value.
1964 */
1965 static inline void
rte_mbuf_sched_color_set(struct rte_mbuf * m,uint8_t color)1966 rte_mbuf_sched_color_set(struct rte_mbuf *m, uint8_t color)
1967 {
1968 m->hash.sched.color = color;
1969 }
1970
1971 /**
1972 * Set the mbuf sched queue_id, traffic_class and color.
1973 *
1974 * @param m
1975 * Mbuf to set
1976 * @param queue_id
1977 * Queue id value to be set
1978 * @param traffic_class
1979 * Traffic class id value to be set
1980 * @param color
1981 * Color id to be set
1982 */
1983 static inline void
rte_mbuf_sched_set(struct rte_mbuf * m,uint32_t queue_id,uint8_t traffic_class,uint8_t color)1984 rte_mbuf_sched_set(struct rte_mbuf *m, uint32_t queue_id,
1985 uint8_t traffic_class,
1986 uint8_t color)
1987 {
1988 m->hash.sched = (struct rte_mbuf_sched){
1989 .queue_id = queue_id,
1990 .traffic_class = traffic_class,
1991 .color = color,
1992 .reserved = 0,
1993 };
1994 }
1995
1996 #ifdef __cplusplus
1997 }
1998 #endif
1999
2000 #endif /* _RTE_MBUF_H_ */
2001