1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017-2018 Intel Corporation
3 */
4
5 #include <fcntl.h>
6 #include <inttypes.h>
7 #include <limits.h>
8 #include <stdint.h>
9 #include <errno.h>
10 #include <string.h>
11 #include <unistd.h>
12
13 #include <rte_common.h>
14 #include <rte_eal_paging.h>
15 #include <rte_errno.h>
16 #include <rte_log.h>
17 #include <rte_memory.h>
18 #include <rte_spinlock.h>
19 #include <rte_tailq.h>
20
21 #include "eal_filesystem.h"
22 #include "eal_private.h"
23
24 #include "rte_fbarray.h"
25
26 #define MASK_SHIFT 6ULL
27 #define MASK_ALIGN (1ULL << MASK_SHIFT)
28 #define MASK_LEN_TO_IDX(x) ((x) >> MASK_SHIFT)
29 #define MASK_LEN_TO_MOD(x) ((x) - RTE_ALIGN_FLOOR(x, MASK_ALIGN))
30 #define MASK_GET_IDX(idx, mod) ((idx << MASK_SHIFT) + mod)
31
32 /*
33 * We use this to keep track of created/attached memory areas to prevent user
34 * errors in API usage.
35 */
36 struct mem_area {
37 TAILQ_ENTRY(mem_area) next;
38 void *addr;
39 size_t len;
40 int fd;
41 };
42 TAILQ_HEAD(mem_area_head, mem_area);
43 /* local per-process tailq */
44 static struct mem_area_head mem_area_tailq =
45 TAILQ_HEAD_INITIALIZER(mem_area_tailq);
46 static rte_spinlock_t mem_area_lock = RTE_SPINLOCK_INITIALIZER;
47
48 /*
49 * This is a mask that is always stored at the end of array, to provide fast
50 * way of finding free/used spots without looping through each element.
51 */
52
53 struct used_mask {
54 unsigned int n_masks;
55 uint64_t data[];
56 };
57
58 static size_t
calc_mask_size(unsigned int len)59 calc_mask_size(unsigned int len)
60 {
61 /* mask must be multiple of MASK_ALIGN, even though length of array
62 * itself may not be aligned on that boundary.
63 */
64 len = RTE_ALIGN_CEIL(len, MASK_ALIGN);
65 return sizeof(struct used_mask) +
66 sizeof(uint64_t) * MASK_LEN_TO_IDX(len);
67 }
68
69 static size_t
calc_data_size(size_t page_sz,unsigned int elt_sz,unsigned int len)70 calc_data_size(size_t page_sz, unsigned int elt_sz, unsigned int len)
71 {
72 size_t data_sz = elt_sz * len;
73 size_t msk_sz = calc_mask_size(len);
74 return RTE_ALIGN_CEIL(data_sz + msk_sz, page_sz);
75 }
76
77 static struct used_mask *
get_used_mask(void * data,unsigned int elt_sz,unsigned int len)78 get_used_mask(void *data, unsigned int elt_sz, unsigned int len)
79 {
80 return (struct used_mask *) RTE_PTR_ADD(data, elt_sz * len);
81 }
82
83 static int
resize_and_map(int fd,void * addr,size_t len)84 resize_and_map(int fd, void *addr, size_t len)
85 {
86 char path[PATH_MAX];
87 void *map_addr;
88
89 if (eal_file_truncate(fd, len)) {
90 RTE_LOG(ERR, EAL, "Cannot truncate %s\n", path);
91 return -1;
92 }
93
94 map_addr = rte_mem_map(addr, len, RTE_PROT_READ | RTE_PROT_WRITE,
95 RTE_MAP_SHARED | RTE_MAP_FORCE_ADDRESS, fd, 0);
96 if (map_addr != addr) {
97 return -1;
98 }
99 return 0;
100 }
101
102 static int
overlap(const struct mem_area * ma,const void * start,size_t len)103 overlap(const struct mem_area *ma, const void *start, size_t len)
104 {
105 const void *end = RTE_PTR_ADD(start, len);
106 const void *ma_start = ma->addr;
107 const void *ma_end = RTE_PTR_ADD(ma->addr, ma->len);
108
109 /* start overlap? */
110 if (start >= ma_start && start < ma_end)
111 return 1;
112 /* end overlap? */
113 if (end >= ma_start && end < ma_end)
114 return 1;
115 return 0;
116 }
117
118 static int
find_next_n(const struct rte_fbarray * arr,unsigned int start,unsigned int n,bool used)119 find_next_n(const struct rte_fbarray *arr, unsigned int start, unsigned int n,
120 bool used)
121 {
122 const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
123 arr->len);
124 unsigned int msk_idx, lookahead_idx, first, first_mod;
125 unsigned int last, last_mod;
126 uint64_t last_msk, ignore_msk;
127
128 /*
129 * mask only has granularity of MASK_ALIGN, but start may not be aligned
130 * on that boundary, so construct a special mask to exclude anything we
131 * don't want to see to avoid confusing ctz.
132 */
133 first = MASK_LEN_TO_IDX(start);
134 first_mod = MASK_LEN_TO_MOD(start);
135 ignore_msk = ~((1ULL << first_mod) - 1);
136
137 /* array length may not be aligned, so calculate ignore mask for last
138 * mask index.
139 */
140 last = MASK_LEN_TO_IDX(arr->len);
141 last_mod = MASK_LEN_TO_MOD(arr->len);
142 last_msk = ~(-1ULL << last_mod);
143
144 for (msk_idx = first; msk_idx < msk->n_masks; msk_idx++) {
145 uint64_t cur_msk, lookahead_msk;
146 unsigned int run_start, clz, left;
147 bool found = false;
148 /*
149 * The process of getting n consecutive bits for arbitrary n is
150 * a bit involved, but here it is in a nutshell:
151 *
152 * 1. let n be the number of consecutive bits we're looking for
153 * 2. check if n can fit in one mask, and if so, do n-1
154 * rshift-ands to see if there is an appropriate run inside
155 * our current mask
156 * 2a. if we found a run, bail out early
157 * 2b. if we didn't find a run, proceed
158 * 3. invert the mask and count leading zeroes (that is, count
159 * how many consecutive set bits we had starting from the
160 * end of current mask) as k
161 * 3a. if k is 0, continue to next mask
162 * 3b. if k is not 0, we have a potential run
163 * 4. to satisfy our requirements, next mask must have n-k
164 * consecutive set bits right at the start, so we will do
165 * (n-k-1) rshift-ands and check if first bit is set.
166 *
167 * Step 4 will need to be repeated if (n-k) > MASK_ALIGN until
168 * we either run out of masks, lose the run, or find what we
169 * were looking for.
170 */
171 cur_msk = msk->data[msk_idx];
172 left = n;
173
174 /* if we're looking for free spaces, invert the mask */
175 if (!used)
176 cur_msk = ~cur_msk;
177
178 /* combine current ignore mask with last index ignore mask */
179 if (msk_idx == last)
180 ignore_msk |= last_msk;
181
182 /* if we have an ignore mask, ignore once */
183 if (ignore_msk) {
184 cur_msk &= ignore_msk;
185 ignore_msk = 0;
186 }
187
188 /* if n can fit in within a single mask, do a search */
189 if (n <= MASK_ALIGN) {
190 uint64_t tmp_msk = cur_msk;
191 unsigned int s_idx;
192 for (s_idx = 0; s_idx < n - 1; s_idx++)
193 tmp_msk &= tmp_msk >> 1ULL;
194 /* we found what we were looking for */
195 if (tmp_msk != 0) {
196 run_start = __builtin_ctzll(tmp_msk);
197 return MASK_GET_IDX(msk_idx, run_start);
198 }
199 }
200
201 /*
202 * we didn't find our run within the mask, or n > MASK_ALIGN,
203 * so we're going for plan B.
204 */
205
206 /* count leading zeroes on inverted mask */
207 if (~cur_msk == 0)
208 clz = sizeof(cur_msk) * 8;
209 else
210 clz = __builtin_clzll(~cur_msk);
211
212 /* if there aren't any runs at the end either, just continue */
213 if (clz == 0)
214 continue;
215
216 /* we have a partial run at the end, so try looking ahead */
217 run_start = MASK_ALIGN - clz;
218 left -= clz;
219
220 for (lookahead_idx = msk_idx + 1; lookahead_idx < msk->n_masks;
221 lookahead_idx++) {
222 unsigned int s_idx, need;
223 lookahead_msk = msk->data[lookahead_idx];
224
225 /* if we're looking for free space, invert the mask */
226 if (!used)
227 lookahead_msk = ~lookahead_msk;
228
229 /* figure out how many consecutive bits we need here */
230 need = RTE_MIN(left, MASK_ALIGN);
231
232 for (s_idx = 0; s_idx < need - 1; s_idx++)
233 lookahead_msk &= lookahead_msk >> 1ULL;
234
235 /* if first bit is not set, we've lost the run */
236 if ((lookahead_msk & 1) == 0) {
237 /*
238 * we've scanned this far, so we know there are
239 * no runs in the space we've lookahead-scanned
240 * as well, so skip that on next iteration.
241 */
242 ignore_msk = ~((1ULL << need) - 1);
243 msk_idx = lookahead_idx;
244 break;
245 }
246
247 left -= need;
248
249 /* check if we've found what we were looking for */
250 if (left == 0) {
251 found = true;
252 break;
253 }
254 }
255
256 /* we didn't find anything, so continue */
257 if (!found)
258 continue;
259
260 return MASK_GET_IDX(msk_idx, run_start);
261 }
262 /* we didn't find anything */
263 rte_errno = used ? ENOENT : ENOSPC;
264 return -1;
265 }
266
267 static int
find_next(const struct rte_fbarray * arr,unsigned int start,bool used)268 find_next(const struct rte_fbarray *arr, unsigned int start, bool used)
269 {
270 const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
271 arr->len);
272 unsigned int idx, first, first_mod;
273 unsigned int last, last_mod;
274 uint64_t last_msk, ignore_msk;
275
276 /*
277 * mask only has granularity of MASK_ALIGN, but start may not be aligned
278 * on that boundary, so construct a special mask to exclude anything we
279 * don't want to see to avoid confusing ctz.
280 */
281 first = MASK_LEN_TO_IDX(start);
282 first_mod = MASK_LEN_TO_MOD(start);
283 ignore_msk = ~((1ULL << first_mod) - 1ULL);
284
285 /* array length may not be aligned, so calculate ignore mask for last
286 * mask index.
287 */
288 last = MASK_LEN_TO_IDX(arr->len);
289 last_mod = MASK_LEN_TO_MOD(arr->len);
290 last_msk = ~(-(1ULL) << last_mod);
291
292 for (idx = first; idx < msk->n_masks; idx++) {
293 uint64_t cur = msk->data[idx];
294 int found;
295
296 /* if we're looking for free entries, invert mask */
297 if (!used)
298 cur = ~cur;
299
300 if (idx == last)
301 cur &= last_msk;
302
303 /* ignore everything before start on first iteration */
304 if (idx == first)
305 cur &= ignore_msk;
306
307 /* check if we have any entries */
308 if (cur == 0)
309 continue;
310
311 /*
312 * find first set bit - that will correspond to whatever it is
313 * that we're looking for.
314 */
315 found = __builtin_ctzll(cur);
316 return MASK_GET_IDX(idx, found);
317 }
318 /* we didn't find anything */
319 rte_errno = used ? ENOENT : ENOSPC;
320 return -1;
321 }
322
323 static int
find_contig(const struct rte_fbarray * arr,unsigned int start,bool used)324 find_contig(const struct rte_fbarray *arr, unsigned int start, bool used)
325 {
326 const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
327 arr->len);
328 unsigned int idx, first, first_mod;
329 unsigned int last, last_mod;
330 uint64_t last_msk;
331 unsigned int need_len, result = 0;
332
333 /* array length may not be aligned, so calculate ignore mask for last
334 * mask index.
335 */
336 last = MASK_LEN_TO_IDX(arr->len);
337 last_mod = MASK_LEN_TO_MOD(arr->len);
338 last_msk = ~(-(1ULL) << last_mod);
339
340 first = MASK_LEN_TO_IDX(start);
341 first_mod = MASK_LEN_TO_MOD(start);
342 for (idx = first; idx < msk->n_masks; idx++, result += need_len) {
343 uint64_t cur = msk->data[idx];
344 unsigned int run_len;
345
346 need_len = MASK_ALIGN;
347
348 /* if we're looking for free entries, invert mask */
349 if (!used)
350 cur = ~cur;
351
352 /* if this is last mask, ignore everything after last bit */
353 if (idx == last)
354 cur &= last_msk;
355
356 /* ignore everything before start on first iteration */
357 if (idx == first) {
358 cur >>= first_mod;
359 /* at the start, we don't need the full mask len */
360 need_len -= first_mod;
361 }
362
363 /* we will be looking for zeroes, so invert the mask */
364 cur = ~cur;
365
366 /* if mask is zero, we have a complete run */
367 if (cur == 0)
368 continue;
369
370 /*
371 * see if current run ends before mask end.
372 */
373 run_len = __builtin_ctzll(cur);
374
375 /* add however many zeroes we've had in the last run and quit */
376 if (run_len < need_len) {
377 result += run_len;
378 break;
379 }
380 }
381 return result;
382 }
383
384 static int
find_prev_n(const struct rte_fbarray * arr,unsigned int start,unsigned int n,bool used)385 find_prev_n(const struct rte_fbarray *arr, unsigned int start, unsigned int n,
386 bool used)
387 {
388 const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
389 arr->len);
390 unsigned int msk_idx, lookbehind_idx, first, first_mod;
391 uint64_t ignore_msk;
392
393 /*
394 * mask only has granularity of MASK_ALIGN, but start may not be aligned
395 * on that boundary, so construct a special mask to exclude anything we
396 * don't want to see to avoid confusing ctz.
397 */
398 first = MASK_LEN_TO_IDX(start);
399 first_mod = MASK_LEN_TO_MOD(start);
400 /* we're going backwards, so mask must start from the top */
401 ignore_msk = first_mod == MASK_ALIGN - 1 ?
402 -1ULL : /* prevent overflow */
403 ~(-1ULL << (first_mod + 1));
404
405 /* go backwards, include zero */
406 msk_idx = first;
407 do {
408 uint64_t cur_msk, lookbehind_msk;
409 unsigned int run_start, run_end, ctz, left;
410 bool found = false;
411 /*
412 * The process of getting n consecutive bits from the top for
413 * arbitrary n is a bit involved, but here it is in a nutshell:
414 *
415 * 1. let n be the number of consecutive bits we're looking for
416 * 2. check if n can fit in one mask, and if so, do n-1
417 * lshift-ands to see if there is an appropriate run inside
418 * our current mask
419 * 2a. if we found a run, bail out early
420 * 2b. if we didn't find a run, proceed
421 * 3. invert the mask and count trailing zeroes (that is, count
422 * how many consecutive set bits we had starting from the
423 * start of current mask) as k
424 * 3a. if k is 0, continue to next mask
425 * 3b. if k is not 0, we have a potential run
426 * 4. to satisfy our requirements, next mask must have n-k
427 * consecutive set bits at the end, so we will do (n-k-1)
428 * lshift-ands and check if last bit is set.
429 *
430 * Step 4 will need to be repeated if (n-k) > MASK_ALIGN until
431 * we either run out of masks, lose the run, or find what we
432 * were looking for.
433 */
434 cur_msk = msk->data[msk_idx];
435 left = n;
436
437 /* if we're looking for free spaces, invert the mask */
438 if (!used)
439 cur_msk = ~cur_msk;
440
441 /* if we have an ignore mask, ignore once */
442 if (ignore_msk) {
443 cur_msk &= ignore_msk;
444 ignore_msk = 0;
445 }
446
447 /* if n can fit in within a single mask, do a search */
448 if (n <= MASK_ALIGN) {
449 uint64_t tmp_msk = cur_msk;
450 unsigned int s_idx;
451 for (s_idx = 0; s_idx < n - 1; s_idx++)
452 tmp_msk &= tmp_msk << 1ULL;
453 /* we found what we were looking for */
454 if (tmp_msk != 0) {
455 /* clz will give us offset from end of mask, and
456 * we only get the end of our run, not start,
457 * so adjust result to point to where start
458 * would have been.
459 */
460 run_start = MASK_ALIGN -
461 __builtin_clzll(tmp_msk) - n;
462 return MASK_GET_IDX(msk_idx, run_start);
463 }
464 }
465
466 /*
467 * we didn't find our run within the mask, or n > MASK_ALIGN,
468 * so we're going for plan B.
469 */
470
471 /* count trailing zeroes on inverted mask */
472 if (~cur_msk == 0)
473 ctz = sizeof(cur_msk) * 8;
474 else
475 ctz = __builtin_ctzll(~cur_msk);
476
477 /* if there aren't any runs at the start either, just
478 * continue
479 */
480 if (ctz == 0)
481 continue;
482
483 /* we have a partial run at the start, so try looking behind */
484 run_end = MASK_GET_IDX(msk_idx, ctz);
485 left -= ctz;
486
487 /* go backwards, include zero */
488 lookbehind_idx = msk_idx - 1;
489
490 /* we can't lookbehind as we've run out of masks, so stop */
491 if (msk_idx == 0)
492 break;
493
494 do {
495 const uint64_t last_bit = 1ULL << (MASK_ALIGN - 1);
496 unsigned int s_idx, need;
497
498 lookbehind_msk = msk->data[lookbehind_idx];
499
500 /* if we're looking for free space, invert the mask */
501 if (!used)
502 lookbehind_msk = ~lookbehind_msk;
503
504 /* figure out how many consecutive bits we need here */
505 need = RTE_MIN(left, MASK_ALIGN);
506
507 for (s_idx = 0; s_idx < need - 1; s_idx++)
508 lookbehind_msk &= lookbehind_msk << 1ULL;
509
510 /* if last bit is not set, we've lost the run */
511 if ((lookbehind_msk & last_bit) == 0) {
512 /*
513 * we've scanned this far, so we know there are
514 * no runs in the space we've lookbehind-scanned
515 * as well, so skip that on next iteration.
516 */
517 ignore_msk = -1ULL << need;
518 msk_idx = lookbehind_idx;
519 break;
520 }
521
522 left -= need;
523
524 /* check if we've found what we were looking for */
525 if (left == 0) {
526 found = true;
527 break;
528 }
529 } while ((lookbehind_idx--) != 0); /* decrement after check to
530 * include zero
531 */
532
533 /* we didn't find anything, so continue */
534 if (!found)
535 continue;
536
537 /* we've found what we were looking for, but we only know where
538 * the run ended, so calculate start position.
539 */
540 return run_end - n;
541 } while (msk_idx-- != 0); /* decrement after check to include zero */
542 /* we didn't find anything */
543 rte_errno = used ? ENOENT : ENOSPC;
544 return -1;
545 }
546
547 static int
find_prev(const struct rte_fbarray * arr,unsigned int start,bool used)548 find_prev(const struct rte_fbarray *arr, unsigned int start, bool used)
549 {
550 const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
551 arr->len);
552 unsigned int idx, first, first_mod;
553 uint64_t ignore_msk;
554
555 /*
556 * mask only has granularity of MASK_ALIGN, but start may not be aligned
557 * on that boundary, so construct a special mask to exclude anything we
558 * don't want to see to avoid confusing clz.
559 */
560 first = MASK_LEN_TO_IDX(start);
561 first_mod = MASK_LEN_TO_MOD(start);
562 /* we're going backwards, so mask must start from the top */
563 ignore_msk = first_mod == MASK_ALIGN - 1 ?
564 -1ULL : /* prevent overflow */
565 ~(-1ULL << (first_mod + 1));
566
567 /* go backwards, include zero */
568 idx = first;
569 do {
570 uint64_t cur = msk->data[idx];
571 int found;
572
573 /* if we're looking for free entries, invert mask */
574 if (!used)
575 cur = ~cur;
576
577 /* ignore everything before start on first iteration */
578 if (idx == first)
579 cur &= ignore_msk;
580
581 /* check if we have any entries */
582 if (cur == 0)
583 continue;
584
585 /*
586 * find last set bit - that will correspond to whatever it is
587 * that we're looking for. we're counting trailing zeroes, thus
588 * the value we get is counted from end of mask, so calculate
589 * position from start of mask.
590 */
591 found = MASK_ALIGN - __builtin_clzll(cur) - 1;
592
593 return MASK_GET_IDX(idx, found);
594 } while (idx-- != 0); /* decrement after check to include zero*/
595
596 /* we didn't find anything */
597 rte_errno = used ? ENOENT : ENOSPC;
598 return -1;
599 }
600
601 static int
find_rev_contig(const struct rte_fbarray * arr,unsigned int start,bool used)602 find_rev_contig(const struct rte_fbarray *arr, unsigned int start, bool used)
603 {
604 const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
605 arr->len);
606 unsigned int idx, first, first_mod;
607 unsigned int need_len, result = 0;
608
609 first = MASK_LEN_TO_IDX(start);
610 first_mod = MASK_LEN_TO_MOD(start);
611
612 /* go backwards, include zero */
613 idx = first;
614 do {
615 uint64_t cur = msk->data[idx];
616 unsigned int run_len;
617
618 need_len = MASK_ALIGN;
619
620 /* if we're looking for free entries, invert mask */
621 if (!used)
622 cur = ~cur;
623
624 /* ignore everything after start on first iteration */
625 if (idx == first) {
626 unsigned int end_len = MASK_ALIGN - first_mod - 1;
627 cur <<= end_len;
628 /* at the start, we don't need the full mask len */
629 need_len -= end_len;
630 }
631
632 /* we will be looking for zeroes, so invert the mask */
633 cur = ~cur;
634
635 /* if mask is zero, we have a complete run */
636 if (cur == 0)
637 goto endloop;
638
639 /*
640 * see where run ends, starting from the end.
641 */
642 run_len = __builtin_clzll(cur);
643
644 /* add however many zeroes we've had in the last run and quit */
645 if (run_len < need_len) {
646 result += run_len;
647 break;
648 }
649 endloop:
650 result += need_len;
651 } while (idx-- != 0); /* decrement after check to include zero */
652 return result;
653 }
654
655 static int
set_used(struct rte_fbarray * arr,unsigned int idx,bool used)656 set_used(struct rte_fbarray *arr, unsigned int idx, bool used)
657 {
658 struct used_mask *msk;
659 uint64_t msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
660 unsigned int msk_idx = MASK_LEN_TO_IDX(idx);
661 bool already_used;
662 int ret = -1;
663
664 if (arr == NULL || idx >= arr->len) {
665 rte_errno = EINVAL;
666 return -1;
667 }
668 msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
669 ret = 0;
670
671 /* prevent array from changing under us */
672 rte_rwlock_write_lock(&arr->rwlock);
673
674 already_used = (msk->data[msk_idx] & msk_bit) != 0;
675
676 /* nothing to be done */
677 if (used == already_used)
678 goto out;
679
680 if (used) {
681 msk->data[msk_idx] |= msk_bit;
682 arr->count++;
683 } else {
684 msk->data[msk_idx] &= ~msk_bit;
685 arr->count--;
686 }
687 out:
688 rte_rwlock_write_unlock(&arr->rwlock);
689
690 return ret;
691 }
692
693 static int
fully_validate(const char * name,unsigned int elt_sz,unsigned int len)694 fully_validate(const char *name, unsigned int elt_sz, unsigned int len)
695 {
696 if (name == NULL || elt_sz == 0 || len == 0 || len > INT_MAX) {
697 rte_errno = EINVAL;
698 return -1;
699 }
700
701 if (strnlen(name, RTE_FBARRAY_NAME_LEN) == RTE_FBARRAY_NAME_LEN) {
702 rte_errno = ENAMETOOLONG;
703 return -1;
704 }
705 return 0;
706 }
707
708 int
rte_fbarray_init(struct rte_fbarray * arr,const char * name,unsigned int len,unsigned int elt_sz)709 rte_fbarray_init(struct rte_fbarray *arr, const char *name, unsigned int len,
710 unsigned int elt_sz)
711 {
712 size_t page_sz, mmap_len;
713 char path[PATH_MAX];
714 struct used_mask *msk;
715 struct mem_area *ma = NULL;
716 void *data = NULL;
717 int fd = -1;
718 const struct internal_config *internal_conf =
719 eal_get_internal_configuration();
720
721 if (arr == NULL) {
722 rte_errno = EINVAL;
723 return -1;
724 }
725
726 if (fully_validate(name, elt_sz, len))
727 return -1;
728
729 /* allocate mem area before doing anything */
730 ma = malloc(sizeof(*ma));
731 if (ma == NULL) {
732 rte_errno = ENOMEM;
733 return -1;
734 }
735
736 page_sz = rte_mem_page_size();
737 if (page_sz == (size_t)-1) {
738 free(ma);
739 return -1;
740 }
741
742 /* calculate our memory limits */
743 mmap_len = calc_data_size(page_sz, elt_sz, len);
744
745 data = eal_get_virtual_area(NULL, &mmap_len, page_sz, 0, 0);
746 if (data == NULL) {
747 free(ma);
748 return -1;
749 }
750
751 rte_spinlock_lock(&mem_area_lock);
752
753 fd = -1;
754
755 if (internal_conf->no_shconf) {
756 /* remap virtual area as writable */
757 static const int flags = RTE_MAP_FORCE_ADDRESS |
758 RTE_MAP_PRIVATE | RTE_MAP_ANONYMOUS;
759 void *new_data = rte_mem_map(data, mmap_len,
760 RTE_PROT_READ | RTE_PROT_WRITE, flags, fd, 0);
761 if (new_data == NULL) {
762 RTE_LOG(DEBUG, EAL, "%s(): couldn't remap anonymous memory: %s\n",
763 __func__, rte_strerror(rte_errno));
764 goto fail;
765 }
766 } else {
767 eal_get_fbarray_path(path, sizeof(path), name);
768
769 /*
770 * Each fbarray is unique to process namespace, i.e. the
771 * filename depends on process prefix. Try to take out a lock
772 * and see if we succeed. If we don't, someone else is using it
773 * already.
774 */
775 fd = eal_file_open(path, EAL_OPEN_CREATE | EAL_OPEN_READWRITE);
776 if (fd < 0) {
777 RTE_LOG(DEBUG, EAL, "%s(): couldn't open %s: %s\n",
778 __func__, path, rte_strerror(rte_errno));
779 goto fail;
780 } else if (eal_file_lock(
781 fd, EAL_FLOCK_EXCLUSIVE, EAL_FLOCK_RETURN)) {
782 RTE_LOG(DEBUG, EAL, "%s(): couldn't lock %s: %s\n",
783 __func__, path, rte_strerror(rte_errno));
784 rte_errno = EBUSY;
785 goto fail;
786 }
787
788 /* take out a non-exclusive lock, so that other processes could
789 * still attach to it, but no other process could reinitialize
790 * it.
791 */
792 if (eal_file_lock(fd, EAL_FLOCK_SHARED, EAL_FLOCK_RETURN))
793 goto fail;
794
795 if (resize_and_map(fd, data, mmap_len))
796 goto fail;
797 }
798 ma->addr = data;
799 ma->len = mmap_len;
800 ma->fd = fd;
801
802 /* do not close fd - keep it until detach/destroy */
803 TAILQ_INSERT_TAIL(&mem_area_tailq, ma, next);
804
805 /* initialize the data */
806 memset(data, 0, mmap_len);
807
808 /* populate data structure */
809 strlcpy(arr->name, name, sizeof(arr->name));
810 arr->data = data;
811 arr->len = len;
812 arr->elt_sz = elt_sz;
813 arr->count = 0;
814
815 msk = get_used_mask(data, elt_sz, len);
816 msk->n_masks = MASK_LEN_TO_IDX(RTE_ALIGN_CEIL(len, MASK_ALIGN));
817
818 rte_rwlock_init(&arr->rwlock);
819
820 rte_spinlock_unlock(&mem_area_lock);
821
822 return 0;
823 fail:
824 if (data)
825 rte_mem_unmap(data, mmap_len);
826 if (fd >= 0)
827 close(fd);
828 free(ma);
829
830 rte_spinlock_unlock(&mem_area_lock);
831 return -1;
832 }
833
834 int
rte_fbarray_attach(struct rte_fbarray * arr)835 rte_fbarray_attach(struct rte_fbarray *arr)
836 {
837 struct mem_area *ma = NULL, *tmp = NULL;
838 size_t page_sz, mmap_len;
839 char path[PATH_MAX];
840 void *data = NULL;
841 int fd = -1;
842
843 if (arr == NULL) {
844 rte_errno = EINVAL;
845 return -1;
846 }
847
848 /*
849 * we don't need to synchronize attach as two values we need (element
850 * size and array length) are constant for the duration of life of
851 * the array, so the parts we care about will not race.
852 */
853
854 if (fully_validate(arr->name, arr->elt_sz, arr->len))
855 return -1;
856
857 ma = malloc(sizeof(*ma));
858 if (ma == NULL) {
859 rte_errno = ENOMEM;
860 return -1;
861 }
862
863 page_sz = rte_mem_page_size();
864 if (page_sz == (size_t)-1) {
865 free(ma);
866 return -1;
867 }
868
869 mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
870
871 /* check the tailq - maybe user has already mapped this address space */
872 rte_spinlock_lock(&mem_area_lock);
873
874 TAILQ_FOREACH(tmp, &mem_area_tailq, next) {
875 if (overlap(tmp, arr->data, mmap_len)) {
876 rte_errno = EEXIST;
877 goto fail;
878 }
879 }
880
881 /* we know this memory area is unique, so proceed */
882
883 data = eal_get_virtual_area(arr->data, &mmap_len, page_sz, 0, 0);
884 if (data == NULL)
885 goto fail;
886
887 eal_get_fbarray_path(path, sizeof(path), arr->name);
888
889 fd = eal_file_open(path, EAL_OPEN_READWRITE);
890 if (fd < 0) {
891 goto fail;
892 }
893
894 /* lock the file, to let others know we're using it */
895 if (eal_file_lock(fd, EAL_FLOCK_SHARED, EAL_FLOCK_RETURN))
896 goto fail;
897
898 if (resize_and_map(fd, data, mmap_len))
899 goto fail;
900
901 /* store our new memory area */
902 ma->addr = data;
903 ma->fd = fd; /* keep fd until detach/destroy */
904 ma->len = mmap_len;
905
906 TAILQ_INSERT_TAIL(&mem_area_tailq, ma, next);
907
908 /* we're done */
909
910 rte_spinlock_unlock(&mem_area_lock);
911 return 0;
912 fail:
913 if (data)
914 rte_mem_unmap(data, mmap_len);
915 if (fd >= 0)
916 close(fd);
917 free(ma);
918 rte_spinlock_unlock(&mem_area_lock);
919 return -1;
920 }
921
922 int
rte_fbarray_detach(struct rte_fbarray * arr)923 rte_fbarray_detach(struct rte_fbarray *arr)
924 {
925 struct mem_area *tmp = NULL;
926 size_t mmap_len;
927 int ret = -1;
928
929 if (arr == NULL) {
930 rte_errno = EINVAL;
931 return -1;
932 }
933
934 /*
935 * we don't need to synchronize detach as two values we need (element
936 * size and total capacity) are constant for the duration of life of
937 * the array, so the parts we care about will not race. if the user is
938 * detaching while doing something else in the same process, we can't
939 * really do anything about it, things will blow up either way.
940 */
941
942 size_t page_sz = rte_mem_page_size();
943 if (page_sz == (size_t)-1)
944 return -1;
945
946 mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
947
948 /* does this area exist? */
949 rte_spinlock_lock(&mem_area_lock);
950
951 TAILQ_FOREACH(tmp, &mem_area_tailq, next) {
952 if (tmp->addr == arr->data && tmp->len == mmap_len)
953 break;
954 }
955 if (tmp == NULL) {
956 rte_errno = ENOENT;
957 ret = -1;
958 goto out;
959 }
960
961 rte_mem_unmap(arr->data, mmap_len);
962
963 /* area is unmapped, close fd and remove the tailq entry */
964 if (tmp->fd >= 0)
965 close(tmp->fd);
966 TAILQ_REMOVE(&mem_area_tailq, tmp, next);
967 free(tmp);
968
969 ret = 0;
970 out:
971 rte_spinlock_unlock(&mem_area_lock);
972 return ret;
973 }
974
975 int
rte_fbarray_destroy(struct rte_fbarray * arr)976 rte_fbarray_destroy(struct rte_fbarray *arr)
977 {
978 struct mem_area *tmp = NULL;
979 size_t mmap_len;
980 int fd, ret;
981 char path[PATH_MAX];
982 const struct internal_config *internal_conf =
983 eal_get_internal_configuration();
984
985 if (arr == NULL) {
986 rte_errno = EINVAL;
987 return -1;
988 }
989
990 /*
991 * we don't need to synchronize detach as two values we need (element
992 * size and total capacity) are constant for the duration of life of
993 * the array, so the parts we care about will not race. if the user is
994 * detaching while doing something else in the same process, we can't
995 * really do anything about it, things will blow up either way.
996 */
997
998 size_t page_sz = rte_mem_page_size();
999 if (page_sz == (size_t)-1)
1000 return -1;
1001
1002 mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);
1003
1004 /* does this area exist? */
1005 rte_spinlock_lock(&mem_area_lock);
1006
1007 TAILQ_FOREACH(tmp, &mem_area_tailq, next) {
1008 if (tmp->addr == arr->data && tmp->len == mmap_len)
1009 break;
1010 }
1011 if (tmp == NULL) {
1012 rte_errno = ENOENT;
1013 ret = -1;
1014 goto out;
1015 }
1016 /* with no shconf, there were never any files to begin with */
1017 if (!internal_conf->no_shconf) {
1018 /*
1019 * attempt to get an exclusive lock on the file, to ensure it
1020 * has been detached by all other processes
1021 */
1022 fd = tmp->fd;
1023 if (eal_file_lock(fd, EAL_FLOCK_EXCLUSIVE, EAL_FLOCK_RETURN)) {
1024 RTE_LOG(DEBUG, EAL, "Cannot destroy fbarray - another process is using it\n");
1025 rte_errno = EBUSY;
1026 ret = -1;
1027 goto out;
1028 }
1029
1030 /* we're OK to destroy the file */
1031 eal_get_fbarray_path(path, sizeof(path), arr->name);
1032 if (unlink(path)) {
1033 RTE_LOG(DEBUG, EAL, "Cannot unlink fbarray: %s\n",
1034 strerror(errno));
1035 rte_errno = errno;
1036 /*
1037 * we're still holding an exclusive lock, so drop it to
1038 * shared.
1039 */
1040 eal_file_lock(fd, EAL_FLOCK_SHARED, EAL_FLOCK_RETURN);
1041
1042 ret = -1;
1043 goto out;
1044 }
1045 close(fd);
1046 }
1047 rte_mem_unmap(arr->data, mmap_len);
1048
1049 /* area is unmapped, remove the tailq entry */
1050 TAILQ_REMOVE(&mem_area_tailq, tmp, next);
1051 free(tmp);
1052 ret = 0;
1053
1054 /* reset the fbarray structure */
1055 memset(arr, 0, sizeof(*arr));
1056 out:
1057 rte_spinlock_unlock(&mem_area_lock);
1058 return ret;
1059 }
1060
1061 void *
rte_fbarray_get(const struct rte_fbarray * arr,unsigned int idx)1062 rte_fbarray_get(const struct rte_fbarray *arr, unsigned int idx)
1063 {
1064 void *ret = NULL;
1065 if (arr == NULL) {
1066 rte_errno = EINVAL;
1067 return NULL;
1068 }
1069
1070 if (idx >= arr->len) {
1071 rte_errno = EINVAL;
1072 return NULL;
1073 }
1074
1075 ret = RTE_PTR_ADD(arr->data, idx * arr->elt_sz);
1076
1077 return ret;
1078 }
1079
1080 int
rte_fbarray_set_used(struct rte_fbarray * arr,unsigned int idx)1081 rte_fbarray_set_used(struct rte_fbarray *arr, unsigned int idx)
1082 {
1083 return set_used(arr, idx, true);
1084 }
1085
1086 int
rte_fbarray_set_free(struct rte_fbarray * arr,unsigned int idx)1087 rte_fbarray_set_free(struct rte_fbarray *arr, unsigned int idx)
1088 {
1089 return set_used(arr, idx, false);
1090 }
1091
1092 int
rte_fbarray_is_used(struct rte_fbarray * arr,unsigned int idx)1093 rte_fbarray_is_used(struct rte_fbarray *arr, unsigned int idx)
1094 {
1095 struct used_mask *msk;
1096 int msk_idx;
1097 uint64_t msk_bit;
1098 int ret = -1;
1099
1100 if (arr == NULL || idx >= arr->len) {
1101 rte_errno = EINVAL;
1102 return -1;
1103 }
1104
1105 /* prevent array from changing under us */
1106 rte_rwlock_read_lock(&arr->rwlock);
1107
1108 msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
1109 msk_idx = MASK_LEN_TO_IDX(idx);
1110 msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
1111
1112 ret = (msk->data[msk_idx] & msk_bit) != 0;
1113
1114 rte_rwlock_read_unlock(&arr->rwlock);
1115
1116 return ret;
1117 }
1118
1119 static int
fbarray_find(struct rte_fbarray * arr,unsigned int start,bool next,bool used)1120 fbarray_find(struct rte_fbarray *arr, unsigned int start, bool next, bool used)
1121 {
1122 int ret = -1;
1123
1124 if (arr == NULL || start >= arr->len) {
1125 rte_errno = EINVAL;
1126 return -1;
1127 }
1128
1129 /* prevent array from changing under us */
1130 rte_rwlock_read_lock(&arr->rwlock);
1131
1132 /* cheap checks to prevent doing useless work */
1133 if (!used) {
1134 if (arr->len == arr->count) {
1135 rte_errno = ENOSPC;
1136 goto out;
1137 }
1138 if (arr->count == 0) {
1139 ret = start;
1140 goto out;
1141 }
1142 } else {
1143 if (arr->count == 0) {
1144 rte_errno = ENOENT;
1145 goto out;
1146 }
1147 if (arr->len == arr->count) {
1148 ret = start;
1149 goto out;
1150 }
1151 }
1152 if (next)
1153 ret = find_next(arr, start, used);
1154 else
1155 ret = find_prev(arr, start, used);
1156 out:
1157 rte_rwlock_read_unlock(&arr->rwlock);
1158 return ret;
1159 }
1160
1161 int
rte_fbarray_find_next_free(struct rte_fbarray * arr,unsigned int start)1162 rte_fbarray_find_next_free(struct rte_fbarray *arr, unsigned int start)
1163 {
1164 return fbarray_find(arr, start, true, false);
1165 }
1166
1167 int
rte_fbarray_find_next_used(struct rte_fbarray * arr,unsigned int start)1168 rte_fbarray_find_next_used(struct rte_fbarray *arr, unsigned int start)
1169 {
1170 return fbarray_find(arr, start, true, true);
1171 }
1172
1173 int
rte_fbarray_find_prev_free(struct rte_fbarray * arr,unsigned int start)1174 rte_fbarray_find_prev_free(struct rte_fbarray *arr, unsigned int start)
1175 {
1176 return fbarray_find(arr, start, false, false);
1177 }
1178
1179 int
rte_fbarray_find_prev_used(struct rte_fbarray * arr,unsigned int start)1180 rte_fbarray_find_prev_used(struct rte_fbarray *arr, unsigned int start)
1181 {
1182 return fbarray_find(arr, start, false, true);
1183 }
1184
1185 static int
fbarray_find_n(struct rte_fbarray * arr,unsigned int start,unsigned int n,bool next,bool used)1186 fbarray_find_n(struct rte_fbarray *arr, unsigned int start, unsigned int n,
1187 bool next, bool used)
1188 {
1189 int ret = -1;
1190
1191 if (arr == NULL || start >= arr->len || n > arr->len || n == 0) {
1192 rte_errno = EINVAL;
1193 return -1;
1194 }
1195 if (next && (arr->len - start) < n) {
1196 rte_errno = used ? ENOENT : ENOSPC;
1197 return -1;
1198 }
1199 if (!next && start < (n - 1)) {
1200 rte_errno = used ? ENOENT : ENOSPC;
1201 return -1;
1202 }
1203
1204 /* prevent array from changing under us */
1205 rte_rwlock_read_lock(&arr->rwlock);
1206
1207 /* cheap checks to prevent doing useless work */
1208 if (!used) {
1209 if (arr->len == arr->count || arr->len - arr->count < n) {
1210 rte_errno = ENOSPC;
1211 goto out;
1212 }
1213 if (arr->count == 0) {
1214 ret = next ? start : start - n + 1;
1215 goto out;
1216 }
1217 } else {
1218 if (arr->count < n) {
1219 rte_errno = ENOENT;
1220 goto out;
1221 }
1222 if (arr->count == arr->len) {
1223 ret = next ? start : start - n + 1;
1224 goto out;
1225 }
1226 }
1227
1228 if (next)
1229 ret = find_next_n(arr, start, n, used);
1230 else
1231 ret = find_prev_n(arr, start, n, used);
1232 out:
1233 rte_rwlock_read_unlock(&arr->rwlock);
1234 return ret;
1235 }
1236
1237 int
rte_fbarray_find_next_n_free(struct rte_fbarray * arr,unsigned int start,unsigned int n)1238 rte_fbarray_find_next_n_free(struct rte_fbarray *arr, unsigned int start,
1239 unsigned int n)
1240 {
1241 return fbarray_find_n(arr, start, n, true, false);
1242 }
1243
1244 int
rte_fbarray_find_next_n_used(struct rte_fbarray * arr,unsigned int start,unsigned int n)1245 rte_fbarray_find_next_n_used(struct rte_fbarray *arr, unsigned int start,
1246 unsigned int n)
1247 {
1248 return fbarray_find_n(arr, start, n, true, true);
1249 }
1250
1251 int
rte_fbarray_find_prev_n_free(struct rte_fbarray * arr,unsigned int start,unsigned int n)1252 rte_fbarray_find_prev_n_free(struct rte_fbarray *arr, unsigned int start,
1253 unsigned int n)
1254 {
1255 return fbarray_find_n(arr, start, n, false, false);
1256 }
1257
1258 int
rte_fbarray_find_prev_n_used(struct rte_fbarray * arr,unsigned int start,unsigned int n)1259 rte_fbarray_find_prev_n_used(struct rte_fbarray *arr, unsigned int start,
1260 unsigned int n)
1261 {
1262 return fbarray_find_n(arr, start, n, false, true);
1263 }
1264
1265 static int
fbarray_find_contig(struct rte_fbarray * arr,unsigned int start,bool next,bool used)1266 fbarray_find_contig(struct rte_fbarray *arr, unsigned int start, bool next,
1267 bool used)
1268 {
1269 int ret = -1;
1270
1271 if (arr == NULL || start >= arr->len) {
1272 rte_errno = EINVAL;
1273 return -1;
1274 }
1275
1276 /* prevent array from changing under us */
1277 rte_rwlock_read_lock(&arr->rwlock);
1278
1279 /* cheap checks to prevent doing useless work */
1280 if (used) {
1281 if (arr->count == 0) {
1282 ret = 0;
1283 goto out;
1284 }
1285 if (next && arr->count == arr->len) {
1286 ret = arr->len - start;
1287 goto out;
1288 }
1289 if (!next && arr->count == arr->len) {
1290 ret = start + 1;
1291 goto out;
1292 }
1293 } else {
1294 if (arr->len == arr->count) {
1295 ret = 0;
1296 goto out;
1297 }
1298 if (next && arr->count == 0) {
1299 ret = arr->len - start;
1300 goto out;
1301 }
1302 if (!next && arr->count == 0) {
1303 ret = start + 1;
1304 goto out;
1305 }
1306 }
1307
1308 if (next)
1309 ret = find_contig(arr, start, used);
1310 else
1311 ret = find_rev_contig(arr, start, used);
1312 out:
1313 rte_rwlock_read_unlock(&arr->rwlock);
1314 return ret;
1315 }
1316
1317 static int
fbarray_find_biggest(struct rte_fbarray * arr,unsigned int start,bool used,bool rev)1318 fbarray_find_biggest(struct rte_fbarray *arr, unsigned int start, bool used,
1319 bool rev)
1320 {
1321 int cur_idx, next_idx, cur_len, biggest_idx, biggest_len;
1322 /* don't stack if conditions, use function pointers instead */
1323 int (*find_func)(struct rte_fbarray *, unsigned int);
1324 int (*find_contig_func)(struct rte_fbarray *, unsigned int);
1325
1326 if (arr == NULL || start >= arr->len) {
1327 rte_errno = EINVAL;
1328 return -1;
1329 }
1330 /* the other API calls already do their fair share of cheap checks, so
1331 * no need to do them here.
1332 */
1333
1334 /* the API's called are thread-safe, but something may still happen
1335 * between the API calls, so lock the fbarray. all other API's are
1336 * read-locking the fbarray, so read lock here is OK.
1337 */
1338 rte_rwlock_read_lock(&arr->rwlock);
1339
1340 /* pick out appropriate functions */
1341 if (used) {
1342 if (rev) {
1343 find_func = rte_fbarray_find_prev_used;
1344 find_contig_func = rte_fbarray_find_rev_contig_used;
1345 } else {
1346 find_func = rte_fbarray_find_next_used;
1347 find_contig_func = rte_fbarray_find_contig_used;
1348 }
1349 } else {
1350 if (rev) {
1351 find_func = rte_fbarray_find_prev_free;
1352 find_contig_func = rte_fbarray_find_rev_contig_free;
1353 } else {
1354 find_func = rte_fbarray_find_next_free;
1355 find_contig_func = rte_fbarray_find_contig_free;
1356 }
1357 }
1358
1359 cur_idx = start;
1360 biggest_idx = -1; /* default is error */
1361 biggest_len = 0;
1362 for (;;) {
1363 cur_idx = find_func(arr, cur_idx);
1364
1365 /* block found, check its length */
1366 if (cur_idx >= 0) {
1367 cur_len = find_contig_func(arr, cur_idx);
1368 /* decide where we go next */
1369 next_idx = rev ? cur_idx - cur_len : cur_idx + cur_len;
1370 /* move current index to start of chunk */
1371 cur_idx = rev ? next_idx + 1 : cur_idx;
1372
1373 if (cur_len > biggest_len) {
1374 biggest_idx = cur_idx;
1375 biggest_len = cur_len;
1376 }
1377 cur_idx = next_idx;
1378 /* in reverse mode, next_idx may be -1 if chunk started
1379 * at array beginning. this means there's no more work
1380 * to do.
1381 */
1382 if (cur_idx < 0)
1383 break;
1384 } else {
1385 /* nothing more to find, stop. however, a failed API
1386 * call has set rte_errno, which we want to ignore, as
1387 * reaching the end of fbarray is not an error.
1388 */
1389 rte_errno = 0;
1390 break;
1391 }
1392 }
1393 /* if we didn't find anything at all, set rte_errno */
1394 if (biggest_idx < 0)
1395 rte_errno = used ? ENOENT : ENOSPC;
1396
1397 rte_rwlock_read_unlock(&arr->rwlock);
1398 return biggest_idx;
1399 }
1400
1401 int
rte_fbarray_find_biggest_free(struct rte_fbarray * arr,unsigned int start)1402 rte_fbarray_find_biggest_free(struct rte_fbarray *arr, unsigned int start)
1403 {
1404 return fbarray_find_biggest(arr, start, false, false);
1405 }
1406
1407 int
rte_fbarray_find_biggest_used(struct rte_fbarray * arr,unsigned int start)1408 rte_fbarray_find_biggest_used(struct rte_fbarray *arr, unsigned int start)
1409 {
1410 return fbarray_find_biggest(arr, start, true, false);
1411 }
1412
1413 int
rte_fbarray_find_rev_biggest_free(struct rte_fbarray * arr,unsigned int start)1414 rte_fbarray_find_rev_biggest_free(struct rte_fbarray *arr, unsigned int start)
1415 {
1416 return fbarray_find_biggest(arr, start, false, true);
1417 }
1418
1419 int
rte_fbarray_find_rev_biggest_used(struct rte_fbarray * arr,unsigned int start)1420 rte_fbarray_find_rev_biggest_used(struct rte_fbarray *arr, unsigned int start)
1421 {
1422 return fbarray_find_biggest(arr, start, true, true);
1423 }
1424
1425
1426 int
rte_fbarray_find_contig_free(struct rte_fbarray * arr,unsigned int start)1427 rte_fbarray_find_contig_free(struct rte_fbarray *arr, unsigned int start)
1428 {
1429 return fbarray_find_contig(arr, start, true, false);
1430 }
1431
1432 int
rte_fbarray_find_contig_used(struct rte_fbarray * arr,unsigned int start)1433 rte_fbarray_find_contig_used(struct rte_fbarray *arr, unsigned int start)
1434 {
1435 return fbarray_find_contig(arr, start, true, true);
1436 }
1437
1438 int
rte_fbarray_find_rev_contig_free(struct rte_fbarray * arr,unsigned int start)1439 rte_fbarray_find_rev_contig_free(struct rte_fbarray *arr, unsigned int start)
1440 {
1441 return fbarray_find_contig(arr, start, false, false);
1442 }
1443
1444 int
rte_fbarray_find_rev_contig_used(struct rte_fbarray * arr,unsigned int start)1445 rte_fbarray_find_rev_contig_used(struct rte_fbarray *arr, unsigned int start)
1446 {
1447 return fbarray_find_contig(arr, start, false, true);
1448 }
1449
1450 int
rte_fbarray_find_idx(const struct rte_fbarray * arr,const void * elt)1451 rte_fbarray_find_idx(const struct rte_fbarray *arr, const void *elt)
1452 {
1453 void *end;
1454 int ret = -1;
1455
1456 /*
1457 * no need to synchronize as it doesn't matter if underlying data
1458 * changes - we're doing pointer arithmetic here.
1459 */
1460
1461 if (arr == NULL || elt == NULL) {
1462 rte_errno = EINVAL;
1463 return -1;
1464 }
1465 end = RTE_PTR_ADD(arr->data, arr->elt_sz * arr->len);
1466 if (elt < arr->data || elt >= end) {
1467 rte_errno = EINVAL;
1468 return -1;
1469 }
1470
1471 ret = RTE_PTR_DIFF(elt, arr->data) / arr->elt_sz;
1472
1473 return ret;
1474 }
1475
1476 void
rte_fbarray_dump_metadata(struct rte_fbarray * arr,FILE * f)1477 rte_fbarray_dump_metadata(struct rte_fbarray *arr, FILE *f)
1478 {
1479 struct used_mask *msk;
1480 unsigned int i;
1481
1482 if (arr == NULL || f == NULL) {
1483 rte_errno = EINVAL;
1484 return;
1485 }
1486
1487 if (fully_validate(arr->name, arr->elt_sz, arr->len)) {
1488 fprintf(f, "Invalid file-backed array\n");
1489 goto out;
1490 }
1491
1492 /* prevent array from changing under us */
1493 rte_rwlock_read_lock(&arr->rwlock);
1494
1495 fprintf(f, "File-backed array: %s\n", arr->name);
1496 fprintf(f, "size: %i occupied: %i elt_sz: %i\n",
1497 arr->len, arr->count, arr->elt_sz);
1498
1499 msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
1500
1501 for (i = 0; i < msk->n_masks; i++)
1502 fprintf(f, "msk idx %i: 0x%016" PRIx64 "\n", i, msk->data[i]);
1503 out:
1504 rte_rwlock_read_unlock(&arr->rwlock);
1505 }
1506