1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/ADT/SetVector.h"
10 #include "llvm/ADT/SmallBitVector.h"
11 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
12 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
13 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
14 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/LowLevelType.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/RegisterBankInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/DivisionByConstantInfo.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <tuple>
35
36 #define DEBUG_TYPE "gi-combiner"
37
38 using namespace llvm;
39 using namespace MIPatternMatch;
40
41 // Option to allow testing of the combiner while no targets know about indexed
42 // addressing.
43 static cl::opt<bool>
44 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
45 cl::desc("Force all indexed operations to be "
46 "legal for the GlobalISel combiner"));
47
CombinerHelper(GISelChangeObserver & Observer,MachineIRBuilder & B,GISelKnownBits * KB,MachineDominatorTree * MDT,const LegalizerInfo * LI)48 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
49 MachineIRBuilder &B, GISelKnownBits *KB,
50 MachineDominatorTree *MDT,
51 const LegalizerInfo *LI)
52 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
53 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
54 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
55 (void)this->KB;
56 }
57
getTargetLowering() const58 const TargetLowering &CombinerHelper::getTargetLowering() const {
59 return *Builder.getMF().getSubtarget().getTargetLowering();
60 }
61
62 /// \returns The little endian in-memory byte position of byte \p I in a
63 /// \p ByteWidth bytes wide type.
64 ///
65 /// E.g. Given a 4-byte type x, x[0] -> byte 0
littleEndianByteAt(const unsigned ByteWidth,const unsigned I)66 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
67 assert(I < ByteWidth && "I must be in [0, ByteWidth)");
68 return I;
69 }
70
71 /// Determines the LogBase2 value for a non-null input value using the
72 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
buildLogBase2(Register V,MachineIRBuilder & MIB)73 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) {
74 auto &MRI = *MIB.getMRI();
75 LLT Ty = MRI.getType(V);
76 auto Ctlz = MIB.buildCTLZ(Ty, V);
77 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1);
78 return MIB.buildSub(Ty, Base, Ctlz).getReg(0);
79 }
80
81 /// \returns The big endian in-memory byte position of byte \p I in a
82 /// \p ByteWidth bytes wide type.
83 ///
84 /// E.g. Given a 4-byte type x, x[0] -> byte 3
bigEndianByteAt(const unsigned ByteWidth,const unsigned I)85 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
86 assert(I < ByteWidth && "I must be in [0, ByteWidth)");
87 return ByteWidth - I - 1;
88 }
89
90 /// Given a map from byte offsets in memory to indices in a load/store,
91 /// determine if that map corresponds to a little or big endian byte pattern.
92 ///
93 /// \param MemOffset2Idx maps memory offsets to address offsets.
94 /// \param LowestIdx is the lowest index in \p MemOffset2Idx.
95 ///
96 /// \returns true if the map corresponds to a big endian byte pattern, false
97 /// if it corresponds to a little endian byte pattern, and None otherwise.
98 ///
99 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
100 /// are as follows:
101 ///
102 /// AddrOffset Little endian Big endian
103 /// 0 0 3
104 /// 1 1 2
105 /// 2 2 1
106 /// 3 3 0
107 static Optional<bool>
isBigEndian(const SmallDenseMap<int64_t,int64_t,8> & MemOffset2Idx,int64_t LowestIdx)108 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
109 int64_t LowestIdx) {
110 // Need at least two byte positions to decide on endianness.
111 unsigned Width = MemOffset2Idx.size();
112 if (Width < 2)
113 return None;
114 bool BigEndian = true, LittleEndian = true;
115 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
116 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
117 if (MemOffsetAndIdx == MemOffset2Idx.end())
118 return None;
119 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
120 assert(Idx >= 0 && "Expected non-negative byte offset?");
121 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
122 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
123 if (!BigEndian && !LittleEndian)
124 return None;
125 }
126
127 assert((BigEndian != LittleEndian) &&
128 "Pattern cannot be both big and little endian!");
129 return BigEndian;
130 }
131
isPreLegalize() const132 bool CombinerHelper::isPreLegalize() const { return !LI; }
133
isLegal(const LegalityQuery & Query) const134 bool CombinerHelper::isLegal(const LegalityQuery &Query) const {
135 assert(LI && "Must have LegalizerInfo to query isLegal!");
136 return LI->getAction(Query).Action == LegalizeActions::Legal;
137 }
138
isLegalOrBeforeLegalizer(const LegalityQuery & Query) const139 bool CombinerHelper::isLegalOrBeforeLegalizer(
140 const LegalityQuery &Query) const {
141 return isPreLegalize() || isLegal(Query);
142 }
143
isConstantLegalOrBeforeLegalizer(const LLT Ty) const144 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const {
145 if (!Ty.isVector())
146 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}});
147 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs.
148 if (isPreLegalize())
149 return true;
150 LLT EltTy = Ty.getElementType();
151 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) &&
152 isLegal({TargetOpcode::G_CONSTANT, {EltTy}});
153 }
154
replaceRegWith(MachineRegisterInfo & MRI,Register FromReg,Register ToReg) const155 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
156 Register ToReg) const {
157 Observer.changingAllUsesOfReg(MRI, FromReg);
158
159 if (MRI.constrainRegAttrs(ToReg, FromReg))
160 MRI.replaceRegWith(FromReg, ToReg);
161 else
162 Builder.buildCopy(ToReg, FromReg);
163
164 Observer.finishedChangingAllUsesOfReg();
165 }
166
replaceRegOpWith(MachineRegisterInfo & MRI,MachineOperand & FromRegOp,Register ToReg) const167 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
168 MachineOperand &FromRegOp,
169 Register ToReg) const {
170 assert(FromRegOp.getParent() && "Expected an operand in an MI");
171 Observer.changingInstr(*FromRegOp.getParent());
172
173 FromRegOp.setReg(ToReg);
174
175 Observer.changedInstr(*FromRegOp.getParent());
176 }
177
replaceOpcodeWith(MachineInstr & FromMI,unsigned ToOpcode) const178 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI,
179 unsigned ToOpcode) const {
180 Observer.changingInstr(FromMI);
181
182 FromMI.setDesc(Builder.getTII().get(ToOpcode));
183
184 Observer.changedInstr(FromMI);
185 }
186
getRegBank(Register Reg) const187 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
188 return RBI->getRegBank(Reg, MRI, *TRI);
189 }
190
setRegBank(Register Reg,const RegisterBank * RegBank)191 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) {
192 if (RegBank)
193 MRI.setRegBank(Reg, *RegBank);
194 }
195
tryCombineCopy(MachineInstr & MI)196 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
197 if (matchCombineCopy(MI)) {
198 applyCombineCopy(MI);
199 return true;
200 }
201 return false;
202 }
matchCombineCopy(MachineInstr & MI)203 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
204 if (MI.getOpcode() != TargetOpcode::COPY)
205 return false;
206 Register DstReg = MI.getOperand(0).getReg();
207 Register SrcReg = MI.getOperand(1).getReg();
208 return canReplaceReg(DstReg, SrcReg, MRI);
209 }
applyCombineCopy(MachineInstr & MI)210 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
211 Register DstReg = MI.getOperand(0).getReg();
212 Register SrcReg = MI.getOperand(1).getReg();
213 MI.eraseFromParent();
214 replaceRegWith(MRI, DstReg, SrcReg);
215 }
216
tryCombineConcatVectors(MachineInstr & MI)217 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
218 bool IsUndef = false;
219 SmallVector<Register, 4> Ops;
220 if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
221 applyCombineConcatVectors(MI, IsUndef, Ops);
222 return true;
223 }
224 return false;
225 }
226
matchCombineConcatVectors(MachineInstr & MI,bool & IsUndef,SmallVectorImpl<Register> & Ops)227 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
228 SmallVectorImpl<Register> &Ops) {
229 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
230 "Invalid instruction");
231 IsUndef = true;
232 MachineInstr *Undef = nullptr;
233
234 // Walk over all the operands of concat vectors and check if they are
235 // build_vector themselves or undef.
236 // Then collect their operands in Ops.
237 for (const MachineOperand &MO : MI.uses()) {
238 Register Reg = MO.getReg();
239 MachineInstr *Def = MRI.getVRegDef(Reg);
240 assert(Def && "Operand not defined");
241 switch (Def->getOpcode()) {
242 case TargetOpcode::G_BUILD_VECTOR:
243 IsUndef = false;
244 // Remember the operands of the build_vector to fold
245 // them into the yet-to-build flattened concat vectors.
246 for (const MachineOperand &BuildVecMO : Def->uses())
247 Ops.push_back(BuildVecMO.getReg());
248 break;
249 case TargetOpcode::G_IMPLICIT_DEF: {
250 LLT OpType = MRI.getType(Reg);
251 // Keep one undef value for all the undef operands.
252 if (!Undef) {
253 Builder.setInsertPt(*MI.getParent(), MI);
254 Undef = Builder.buildUndef(OpType.getScalarType());
255 }
256 assert(MRI.getType(Undef->getOperand(0).getReg()) ==
257 OpType.getScalarType() &&
258 "All undefs should have the same type");
259 // Break the undef vector in as many scalar elements as needed
260 // for the flattening.
261 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
262 EltIdx != EltEnd; ++EltIdx)
263 Ops.push_back(Undef->getOperand(0).getReg());
264 break;
265 }
266 default:
267 return false;
268 }
269 }
270 return true;
271 }
applyCombineConcatVectors(MachineInstr & MI,bool IsUndef,const ArrayRef<Register> Ops)272 void CombinerHelper::applyCombineConcatVectors(
273 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
274 // We determined that the concat_vectors can be flatten.
275 // Generate the flattened build_vector.
276 Register DstReg = MI.getOperand(0).getReg();
277 Builder.setInsertPt(*MI.getParent(), MI);
278 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
279
280 // Note: IsUndef is sort of redundant. We could have determine it by
281 // checking that at all Ops are undef. Alternatively, we could have
282 // generate a build_vector of undefs and rely on another combine to
283 // clean that up. For now, given we already gather this information
284 // in tryCombineConcatVectors, just save compile time and issue the
285 // right thing.
286 if (IsUndef)
287 Builder.buildUndef(NewDstReg);
288 else
289 Builder.buildBuildVector(NewDstReg, Ops);
290 MI.eraseFromParent();
291 replaceRegWith(MRI, DstReg, NewDstReg);
292 }
293
tryCombineShuffleVector(MachineInstr & MI)294 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
295 SmallVector<Register, 4> Ops;
296 if (matchCombineShuffleVector(MI, Ops)) {
297 applyCombineShuffleVector(MI, Ops);
298 return true;
299 }
300 return false;
301 }
302
matchCombineShuffleVector(MachineInstr & MI,SmallVectorImpl<Register> & Ops)303 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
304 SmallVectorImpl<Register> &Ops) {
305 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
306 "Invalid instruction kind");
307 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
308 Register Src1 = MI.getOperand(1).getReg();
309 LLT SrcType = MRI.getType(Src1);
310 // As bizarre as it may look, shuffle vector can actually produce
311 // scalar! This is because at the IR level a <1 x ty> shuffle
312 // vector is perfectly valid.
313 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
314 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
315
316 // If the resulting vector is smaller than the size of the source
317 // vectors being concatenated, we won't be able to replace the
318 // shuffle vector into a concat_vectors.
319 //
320 // Note: We may still be able to produce a concat_vectors fed by
321 // extract_vector_elt and so on. It is less clear that would
322 // be better though, so don't bother for now.
323 //
324 // If the destination is a scalar, the size of the sources doesn't
325 // matter. we will lower the shuffle to a plain copy. This will
326 // work only if the source and destination have the same size. But
327 // that's covered by the next condition.
328 //
329 // TODO: If the size between the source and destination don't match
330 // we could still emit an extract vector element in that case.
331 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
332 return false;
333
334 // Check that the shuffle mask can be broken evenly between the
335 // different sources.
336 if (DstNumElts % SrcNumElts != 0)
337 return false;
338
339 // Mask length is a multiple of the source vector length.
340 // Check if the shuffle is some kind of concatenation of the input
341 // vectors.
342 unsigned NumConcat = DstNumElts / SrcNumElts;
343 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
344 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
345 for (unsigned i = 0; i != DstNumElts; ++i) {
346 int Idx = Mask[i];
347 // Undef value.
348 if (Idx < 0)
349 continue;
350 // Ensure the indices in each SrcType sized piece are sequential and that
351 // the same source is used for the whole piece.
352 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
353 (ConcatSrcs[i / SrcNumElts] >= 0 &&
354 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
355 return false;
356 // Remember which source this index came from.
357 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
358 }
359
360 // The shuffle is concatenating multiple vectors together.
361 // Collect the different operands for that.
362 Register UndefReg;
363 Register Src2 = MI.getOperand(2).getReg();
364 for (auto Src : ConcatSrcs) {
365 if (Src < 0) {
366 if (!UndefReg) {
367 Builder.setInsertPt(*MI.getParent(), MI);
368 UndefReg = Builder.buildUndef(SrcType).getReg(0);
369 }
370 Ops.push_back(UndefReg);
371 } else if (Src == 0)
372 Ops.push_back(Src1);
373 else
374 Ops.push_back(Src2);
375 }
376 return true;
377 }
378
applyCombineShuffleVector(MachineInstr & MI,const ArrayRef<Register> Ops)379 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
380 const ArrayRef<Register> Ops) {
381 Register DstReg = MI.getOperand(0).getReg();
382 Builder.setInsertPt(*MI.getParent(), MI);
383 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
384
385 if (Ops.size() == 1)
386 Builder.buildCopy(NewDstReg, Ops[0]);
387 else
388 Builder.buildMerge(NewDstReg, Ops);
389
390 MI.eraseFromParent();
391 replaceRegWith(MRI, DstReg, NewDstReg);
392 }
393
394 namespace {
395
396 /// Select a preference between two uses. CurrentUse is the current preference
397 /// while *ForCandidate is attributes of the candidate under consideration.
ChoosePreferredUse(PreferredTuple & CurrentUse,const LLT TyForCandidate,unsigned OpcodeForCandidate,MachineInstr * MIForCandidate)398 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
399 const LLT TyForCandidate,
400 unsigned OpcodeForCandidate,
401 MachineInstr *MIForCandidate) {
402 if (!CurrentUse.Ty.isValid()) {
403 if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
404 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
405 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
406 return CurrentUse;
407 }
408
409 // We permit the extend to hoist through basic blocks but this is only
410 // sensible if the target has extending loads. If you end up lowering back
411 // into a load and extend during the legalizer then the end result is
412 // hoisting the extend up to the load.
413
414 // Prefer defined extensions to undefined extensions as these are more
415 // likely to reduce the number of instructions.
416 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
417 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
418 return CurrentUse;
419 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
420 OpcodeForCandidate != TargetOpcode::G_ANYEXT)
421 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
422
423 // Prefer sign extensions to zero extensions as sign-extensions tend to be
424 // more expensive.
425 if (CurrentUse.Ty == TyForCandidate) {
426 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
427 OpcodeForCandidate == TargetOpcode::G_ZEXT)
428 return CurrentUse;
429 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
430 OpcodeForCandidate == TargetOpcode::G_SEXT)
431 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
432 }
433
434 // This is potentially target specific. We've chosen the largest type
435 // because G_TRUNC is usually free. One potential catch with this is that
436 // some targets have a reduced number of larger registers than smaller
437 // registers and this choice potentially increases the live-range for the
438 // larger value.
439 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
440 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
441 }
442 return CurrentUse;
443 }
444
445 /// Find a suitable place to insert some instructions and insert them. This
446 /// function accounts for special cases like inserting before a PHI node.
447 /// The current strategy for inserting before PHI's is to duplicate the
448 /// instructions for each predecessor. However, while that's ok for G_TRUNC
449 /// on most targets since it generally requires no code, other targets/cases may
450 /// want to try harder to find a dominating block.
InsertInsnsWithoutSideEffectsBeforeUse(MachineIRBuilder & Builder,MachineInstr & DefMI,MachineOperand & UseMO,std::function<void (MachineBasicBlock *,MachineBasicBlock::iterator,MachineOperand & UseMO)> Inserter)451 static void InsertInsnsWithoutSideEffectsBeforeUse(
452 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
453 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
454 MachineOperand &UseMO)>
455 Inserter) {
456 MachineInstr &UseMI = *UseMO.getParent();
457
458 MachineBasicBlock *InsertBB = UseMI.getParent();
459
460 // If the use is a PHI then we want the predecessor block instead.
461 if (UseMI.isPHI()) {
462 MachineOperand *PredBB = std::next(&UseMO);
463 InsertBB = PredBB->getMBB();
464 }
465
466 // If the block is the same block as the def then we want to insert just after
467 // the def instead of at the start of the block.
468 if (InsertBB == DefMI.getParent()) {
469 MachineBasicBlock::iterator InsertPt = &DefMI;
470 Inserter(InsertBB, std::next(InsertPt), UseMO);
471 return;
472 }
473
474 // Otherwise we want the start of the BB
475 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
476 }
477 } // end anonymous namespace
478
tryCombineExtendingLoads(MachineInstr & MI)479 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
480 PreferredTuple Preferred;
481 if (matchCombineExtendingLoads(MI, Preferred)) {
482 applyCombineExtendingLoads(MI, Preferred);
483 return true;
484 }
485 return false;
486 }
487
matchCombineExtendingLoads(MachineInstr & MI,PreferredTuple & Preferred)488 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
489 PreferredTuple &Preferred) {
490 // We match the loads and follow the uses to the extend instead of matching
491 // the extends and following the def to the load. This is because the load
492 // must remain in the same position for correctness (unless we also add code
493 // to find a safe place to sink it) whereas the extend is freely movable.
494 // It also prevents us from duplicating the load for the volatile case or just
495 // for performance.
496 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
497 if (!LoadMI)
498 return false;
499
500 Register LoadReg = LoadMI->getDstReg();
501
502 LLT LoadValueTy = MRI.getType(LoadReg);
503 if (!LoadValueTy.isScalar())
504 return false;
505
506 // Most architectures are going to legalize <s8 loads into at least a 1 byte
507 // load, and the MMOs can only describe memory accesses in multiples of bytes.
508 // If we try to perform extload combining on those, we can end up with
509 // %a(s8) = extload %ptr (load 1 byte from %ptr)
510 // ... which is an illegal extload instruction.
511 if (LoadValueTy.getSizeInBits() < 8)
512 return false;
513
514 // For non power-of-2 types, they will very likely be legalized into multiple
515 // loads. Don't bother trying to match them into extending loads.
516 if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
517 return false;
518
519 // Find the preferred type aside from the any-extends (unless it's the only
520 // one) and non-extending ops. We'll emit an extending load to that type and
521 // and emit a variant of (extend (trunc X)) for the others according to the
522 // relative type sizes. At the same time, pick an extend to use based on the
523 // extend involved in the chosen type.
524 unsigned PreferredOpcode =
525 isa<GLoad>(&MI)
526 ? TargetOpcode::G_ANYEXT
527 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
528 Preferred = {LLT(), PreferredOpcode, nullptr};
529 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
530 if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
531 UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
532 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
533 const auto &MMO = LoadMI->getMMO();
534 // For atomics, only form anyextending loads.
535 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
536 continue;
537 // Check for legality.
538 if (LI) {
539 LegalityQuery::MemDesc MMDesc(MMO);
540 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
541 LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
542 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}})
543 .Action != LegalizeActions::Legal)
544 continue;
545 }
546 Preferred = ChoosePreferredUse(Preferred,
547 MRI.getType(UseMI.getOperand(0).getReg()),
548 UseMI.getOpcode(), &UseMI);
549 }
550 }
551
552 // There were no extends
553 if (!Preferred.MI)
554 return false;
555 // It should be impossible to chose an extend without selecting a different
556 // type since by definition the result of an extend is larger.
557 assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
558
559 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
560 return true;
561 }
562
applyCombineExtendingLoads(MachineInstr & MI,PreferredTuple & Preferred)563 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
564 PreferredTuple &Preferred) {
565 // Rewrite the load to the chosen extending load.
566 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
567
568 // Inserter to insert a truncate back to the original type at a given point
569 // with some basic CSE to limit truncate duplication to one per BB.
570 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
571 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
572 MachineBasicBlock::iterator InsertBefore,
573 MachineOperand &UseMO) {
574 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
575 if (PreviouslyEmitted) {
576 Observer.changingInstr(*UseMO.getParent());
577 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
578 Observer.changedInstr(*UseMO.getParent());
579 return;
580 }
581
582 Builder.setInsertPt(*InsertIntoBB, InsertBefore);
583 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
584 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
585 EmittedInsns[InsertIntoBB] = NewMI;
586 replaceRegOpWith(MRI, UseMO, NewDstReg);
587 };
588
589 Observer.changingInstr(MI);
590 MI.setDesc(
591 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
592 ? TargetOpcode::G_SEXTLOAD
593 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
594 ? TargetOpcode::G_ZEXTLOAD
595 : TargetOpcode::G_LOAD));
596
597 // Rewrite all the uses to fix up the types.
598 auto &LoadValue = MI.getOperand(0);
599 SmallVector<MachineOperand *, 4> Uses;
600 for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
601 Uses.push_back(&UseMO);
602
603 for (auto *UseMO : Uses) {
604 MachineInstr *UseMI = UseMO->getParent();
605
606 // If the extend is compatible with the preferred extend then we should fix
607 // up the type and extend so that it uses the preferred use.
608 if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
609 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
610 Register UseDstReg = UseMI->getOperand(0).getReg();
611 MachineOperand &UseSrcMO = UseMI->getOperand(1);
612 const LLT UseDstTy = MRI.getType(UseDstReg);
613 if (UseDstReg != ChosenDstReg) {
614 if (Preferred.Ty == UseDstTy) {
615 // If the use has the same type as the preferred use, then merge
616 // the vregs and erase the extend. For example:
617 // %1:_(s8) = G_LOAD ...
618 // %2:_(s32) = G_SEXT %1(s8)
619 // %3:_(s32) = G_ANYEXT %1(s8)
620 // ... = ... %3(s32)
621 // rewrites to:
622 // %2:_(s32) = G_SEXTLOAD ...
623 // ... = ... %2(s32)
624 replaceRegWith(MRI, UseDstReg, ChosenDstReg);
625 Observer.erasingInstr(*UseMO->getParent());
626 UseMO->getParent()->eraseFromParent();
627 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
628 // If the preferred size is smaller, then keep the extend but extend
629 // from the result of the extending load. For example:
630 // %1:_(s8) = G_LOAD ...
631 // %2:_(s32) = G_SEXT %1(s8)
632 // %3:_(s64) = G_ANYEXT %1(s8)
633 // ... = ... %3(s64)
634 /// rewrites to:
635 // %2:_(s32) = G_SEXTLOAD ...
636 // %3:_(s64) = G_ANYEXT %2:_(s32)
637 // ... = ... %3(s64)
638 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
639 } else {
640 // If the preferred size is large, then insert a truncate. For
641 // example:
642 // %1:_(s8) = G_LOAD ...
643 // %2:_(s64) = G_SEXT %1(s8)
644 // %3:_(s32) = G_ZEXT %1(s8)
645 // ... = ... %3(s32)
646 /// rewrites to:
647 // %2:_(s64) = G_SEXTLOAD ...
648 // %4:_(s8) = G_TRUNC %2:_(s32)
649 // %3:_(s64) = G_ZEXT %2:_(s8)
650 // ... = ... %3(s64)
651 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
652 InsertTruncAt);
653 }
654 continue;
655 }
656 // The use is (one of) the uses of the preferred use we chose earlier.
657 // We're going to update the load to def this value later so just erase
658 // the old extend.
659 Observer.erasingInstr(*UseMO->getParent());
660 UseMO->getParent()->eraseFromParent();
661 continue;
662 }
663
664 // The use isn't an extend. Truncate back to the type we originally loaded.
665 // This is free on many targets.
666 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
667 }
668
669 MI.getOperand(0).setReg(ChosenDstReg);
670 Observer.changedInstr(MI);
671 }
672
matchCombineLoadWithAndMask(MachineInstr & MI,BuildFnTy & MatchInfo)673 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI,
674 BuildFnTy &MatchInfo) {
675 assert(MI.getOpcode() == TargetOpcode::G_AND);
676
677 // If we have the following code:
678 // %mask = G_CONSTANT 255
679 // %ld = G_LOAD %ptr, (load s16)
680 // %and = G_AND %ld, %mask
681 //
682 // Try to fold it into
683 // %ld = G_ZEXTLOAD %ptr, (load s8)
684
685 Register Dst = MI.getOperand(0).getReg();
686 if (MRI.getType(Dst).isVector())
687 return false;
688
689 auto MaybeMask =
690 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
691 if (!MaybeMask)
692 return false;
693
694 APInt MaskVal = MaybeMask->Value;
695
696 if (!MaskVal.isMask())
697 return false;
698
699 Register SrcReg = MI.getOperand(1).getReg();
700 // Don't use getOpcodeDef() here since intermediate instructions may have
701 // multiple users.
702 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg));
703 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()))
704 return false;
705
706 Register LoadReg = LoadMI->getDstReg();
707 LLT RegTy = MRI.getType(LoadReg);
708 Register PtrReg = LoadMI->getPointerReg();
709 unsigned RegSize = RegTy.getSizeInBits();
710 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits();
711 unsigned MaskSizeBits = MaskVal.countTrailingOnes();
712
713 // The mask may not be larger than the in-memory type, as it might cover sign
714 // extended bits
715 if (MaskSizeBits > LoadSizeBits)
716 return false;
717
718 // If the mask covers the whole destination register, there's nothing to
719 // extend
720 if (MaskSizeBits >= RegSize)
721 return false;
722
723 // Most targets cannot deal with loads of size < 8 and need to re-legalize to
724 // at least byte loads. Avoid creating such loads here
725 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits))
726 return false;
727
728 const MachineMemOperand &MMO = LoadMI->getMMO();
729 LegalityQuery::MemDesc MemDesc(MMO);
730
731 // Don't modify the memory access size if this is atomic/volatile, but we can
732 // still adjust the opcode to indicate the high bit behavior.
733 if (LoadMI->isSimple())
734 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits);
735 else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize)
736 return false;
737
738 // TODO: Could check if it's legal with the reduced or original memory size.
739 if (!isLegalOrBeforeLegalizer(
740 {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}}))
741 return false;
742
743 MatchInfo = [=](MachineIRBuilder &B) {
744 B.setInstrAndDebugLoc(*LoadMI);
745 auto &MF = B.getMF();
746 auto PtrInfo = MMO.getPointerInfo();
747 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy);
748 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO);
749 LoadMI->eraseFromParent();
750 };
751 return true;
752 }
753
isPredecessor(const MachineInstr & DefMI,const MachineInstr & UseMI)754 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
755 const MachineInstr &UseMI) {
756 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
757 "shouldn't consider debug uses");
758 assert(DefMI.getParent() == UseMI.getParent());
759 if (&DefMI == &UseMI)
760 return true;
761 const MachineBasicBlock &MBB = *DefMI.getParent();
762 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
763 return &MI == &DefMI || &MI == &UseMI;
764 });
765 if (DefOrUse == MBB.end())
766 llvm_unreachable("Block must contain both DefMI and UseMI!");
767 return &*DefOrUse == &DefMI;
768 }
769
dominates(const MachineInstr & DefMI,const MachineInstr & UseMI)770 bool CombinerHelper::dominates(const MachineInstr &DefMI,
771 const MachineInstr &UseMI) {
772 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
773 "shouldn't consider debug uses");
774 if (MDT)
775 return MDT->dominates(&DefMI, &UseMI);
776 else if (DefMI.getParent() != UseMI.getParent())
777 return false;
778
779 return isPredecessor(DefMI, UseMI);
780 }
781
matchSextTruncSextLoad(MachineInstr & MI)782 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
783 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
784 Register SrcReg = MI.getOperand(1).getReg();
785 Register LoadUser = SrcReg;
786
787 if (MRI.getType(SrcReg).isVector())
788 return false;
789
790 Register TruncSrc;
791 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
792 LoadUser = TruncSrc;
793
794 uint64_t SizeInBits = MI.getOperand(2).getImm();
795 // If the source is a G_SEXTLOAD from the same bit width, then we don't
796 // need any extend at all, just a truncate.
797 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
798 // If truncating more than the original extended value, abort.
799 auto LoadSizeBits = LoadMI->getMemSizeInBits();
800 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
801 return false;
802 if (LoadSizeBits == SizeInBits)
803 return true;
804 }
805 return false;
806 }
807
applySextTruncSextLoad(MachineInstr & MI)808 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
809 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
810 Builder.setInstrAndDebugLoc(MI);
811 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
812 MI.eraseFromParent();
813 }
814
matchSextInRegOfLoad(MachineInstr & MI,std::tuple<Register,unsigned> & MatchInfo)815 bool CombinerHelper::matchSextInRegOfLoad(
816 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
817 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
818
819 Register DstReg = MI.getOperand(0).getReg();
820 LLT RegTy = MRI.getType(DstReg);
821
822 // Only supports scalars for now.
823 if (RegTy.isVector())
824 return false;
825
826 Register SrcReg = MI.getOperand(1).getReg();
827 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
828 if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg))
829 return false;
830
831 uint64_t MemBits = LoadDef->getMemSizeInBits();
832
833 // If the sign extend extends from a narrower width than the load's width,
834 // then we can narrow the load width when we combine to a G_SEXTLOAD.
835 // Avoid widening the load at all.
836 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits);
837
838 // Don't generate G_SEXTLOADs with a < 1 byte width.
839 if (NewSizeBits < 8)
840 return false;
841 // Don't bother creating a non-power-2 sextload, it will likely be broken up
842 // anyway for most targets.
843 if (!isPowerOf2_32(NewSizeBits))
844 return false;
845
846 const MachineMemOperand &MMO = LoadDef->getMMO();
847 LegalityQuery::MemDesc MMDesc(MMO);
848
849 // Don't modify the memory access size if this is atomic/volatile, but we can
850 // still adjust the opcode to indicate the high bit behavior.
851 if (LoadDef->isSimple())
852 MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
853 else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits())
854 return false;
855
856 // TODO: Could check if it's legal with the reduced or original memory size.
857 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
858 {MRI.getType(LoadDef->getDstReg()),
859 MRI.getType(LoadDef->getPointerReg())},
860 {MMDesc}}))
861 return false;
862
863 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
864 return true;
865 }
866
applySextInRegOfLoad(MachineInstr & MI,std::tuple<Register,unsigned> & MatchInfo)867 void CombinerHelper::applySextInRegOfLoad(
868 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
869 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
870 Register LoadReg;
871 unsigned ScalarSizeBits;
872 std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
873 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
874
875 // If we have the following:
876 // %ld = G_LOAD %ptr, (load 2)
877 // %ext = G_SEXT_INREG %ld, 8
878 // ==>
879 // %ld = G_SEXTLOAD %ptr (load 1)
880
881 auto &MMO = LoadDef->getMMO();
882 Builder.setInstrAndDebugLoc(*LoadDef);
883 auto &MF = Builder.getMF();
884 auto PtrInfo = MMO.getPointerInfo();
885 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
886 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
887 LoadDef->getPointerReg(), *NewMMO);
888 MI.eraseFromParent();
889 }
890
findPostIndexCandidate(MachineInstr & MI,Register & Addr,Register & Base,Register & Offset)891 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
892 Register &Base, Register &Offset) {
893 auto &MF = *MI.getParent()->getParent();
894 const auto &TLI = *MF.getSubtarget().getTargetLowering();
895
896 #ifndef NDEBUG
897 unsigned Opcode = MI.getOpcode();
898 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
899 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
900 #endif
901
902 Base = MI.getOperand(1).getReg();
903 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
904 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
905 return false;
906
907 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
908 // FIXME: The following use traversal needs a bail out for patholigical cases.
909 for (auto &Use : MRI.use_nodbg_instructions(Base)) {
910 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
911 continue;
912
913 Offset = Use.getOperand(2).getReg();
914 if (!ForceLegalIndexing &&
915 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
916 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: "
917 << Use);
918 continue;
919 }
920
921 // Make sure the offset calculation is before the potentially indexed op.
922 // FIXME: we really care about dependency here. The offset calculation might
923 // be movable.
924 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
925 if (!OffsetDef || !dominates(*OffsetDef, MI)) {
926 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: "
927 << Use);
928 continue;
929 }
930
931 // FIXME: check whether all uses of Base are load/store with foldable
932 // addressing modes. If so, using the normal addr-modes is better than
933 // forming an indexed one.
934
935 bool MemOpDominatesAddrUses = true;
936 for (auto &PtrAddUse :
937 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
938 if (!dominates(MI, PtrAddUse)) {
939 MemOpDominatesAddrUses = false;
940 break;
941 }
942 }
943
944 if (!MemOpDominatesAddrUses) {
945 LLVM_DEBUG(
946 dbgs() << " Ignoring candidate as memop does not dominate uses: "
947 << Use);
948 continue;
949 }
950
951 LLVM_DEBUG(dbgs() << " Found match: " << Use);
952 Addr = Use.getOperand(0).getReg();
953 return true;
954 }
955
956 return false;
957 }
958
findPreIndexCandidate(MachineInstr & MI,Register & Addr,Register & Base,Register & Offset)959 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
960 Register &Base, Register &Offset) {
961 auto &MF = *MI.getParent()->getParent();
962 const auto &TLI = *MF.getSubtarget().getTargetLowering();
963
964 #ifndef NDEBUG
965 unsigned Opcode = MI.getOpcode();
966 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
967 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
968 #endif
969
970 Addr = MI.getOperand(1).getReg();
971 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
972 if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
973 return false;
974
975 Base = AddrDef->getOperand(1).getReg();
976 Offset = AddrDef->getOperand(2).getReg();
977
978 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
979
980 if (!ForceLegalIndexing &&
981 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
982 LLVM_DEBUG(dbgs() << " Skipping, not legal for target");
983 return false;
984 }
985
986 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
987 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
988 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway.");
989 return false;
990 }
991
992 if (MI.getOpcode() == TargetOpcode::G_STORE) {
993 // Would require a copy.
994 if (Base == MI.getOperand(0).getReg()) {
995 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway.");
996 return false;
997 }
998
999 // We're expecting one use of Addr in MI, but it could also be the
1000 // value stored, which isn't actually dominated by the instruction.
1001 if (MI.getOperand(0).getReg() == Addr) {
1002 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses");
1003 return false;
1004 }
1005 }
1006
1007 // FIXME: check whether all uses of the base pointer are constant PtrAdds.
1008 // That might allow us to end base's liveness here by adjusting the constant.
1009
1010 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
1011 if (!dominates(MI, UseMI)) {
1012 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses.");
1013 return false;
1014 }
1015 }
1016
1017 return true;
1018 }
1019
tryCombineIndexedLoadStore(MachineInstr & MI)1020 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
1021 IndexedLoadStoreMatchInfo MatchInfo;
1022 if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
1023 applyCombineIndexedLoadStore(MI, MatchInfo);
1024 return true;
1025 }
1026 return false;
1027 }
1028
matchCombineIndexedLoadStore(MachineInstr & MI,IndexedLoadStoreMatchInfo & MatchInfo)1029 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1030 unsigned Opcode = MI.getOpcode();
1031 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
1032 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
1033 return false;
1034
1035 // For now, no targets actually support these opcodes so don't waste time
1036 // running these unless we're forced to for testing.
1037 if (!ForceLegalIndexing)
1038 return false;
1039
1040 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
1041 MatchInfo.Offset);
1042 if (!MatchInfo.IsPre &&
1043 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
1044 MatchInfo.Offset))
1045 return false;
1046
1047 return true;
1048 }
1049
applyCombineIndexedLoadStore(MachineInstr & MI,IndexedLoadStoreMatchInfo & MatchInfo)1050 void CombinerHelper::applyCombineIndexedLoadStore(
1051 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1052 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
1053 MachineIRBuilder MIRBuilder(MI);
1054 unsigned Opcode = MI.getOpcode();
1055 bool IsStore = Opcode == TargetOpcode::G_STORE;
1056 unsigned NewOpcode;
1057 switch (Opcode) {
1058 case TargetOpcode::G_LOAD:
1059 NewOpcode = TargetOpcode::G_INDEXED_LOAD;
1060 break;
1061 case TargetOpcode::G_SEXTLOAD:
1062 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
1063 break;
1064 case TargetOpcode::G_ZEXTLOAD:
1065 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
1066 break;
1067 case TargetOpcode::G_STORE:
1068 NewOpcode = TargetOpcode::G_INDEXED_STORE;
1069 break;
1070 default:
1071 llvm_unreachable("Unknown load/store opcode");
1072 }
1073
1074 auto MIB = MIRBuilder.buildInstr(NewOpcode);
1075 if (IsStore) {
1076 MIB.addDef(MatchInfo.Addr);
1077 MIB.addUse(MI.getOperand(0).getReg());
1078 } else {
1079 MIB.addDef(MI.getOperand(0).getReg());
1080 MIB.addDef(MatchInfo.Addr);
1081 }
1082
1083 MIB.addUse(MatchInfo.Base);
1084 MIB.addUse(MatchInfo.Offset);
1085 MIB.addImm(MatchInfo.IsPre);
1086 MI.eraseFromParent();
1087 AddrDef.eraseFromParent();
1088
1089 LLVM_DEBUG(dbgs() << " Combinined to indexed operation");
1090 }
1091
matchCombineDivRem(MachineInstr & MI,MachineInstr * & OtherMI)1092 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
1093 MachineInstr *&OtherMI) {
1094 unsigned Opcode = MI.getOpcode();
1095 bool IsDiv, IsSigned;
1096
1097 switch (Opcode) {
1098 default:
1099 llvm_unreachable("Unexpected opcode!");
1100 case TargetOpcode::G_SDIV:
1101 case TargetOpcode::G_UDIV: {
1102 IsDiv = true;
1103 IsSigned = Opcode == TargetOpcode::G_SDIV;
1104 break;
1105 }
1106 case TargetOpcode::G_SREM:
1107 case TargetOpcode::G_UREM: {
1108 IsDiv = false;
1109 IsSigned = Opcode == TargetOpcode::G_SREM;
1110 break;
1111 }
1112 }
1113
1114 Register Src1 = MI.getOperand(1).getReg();
1115 unsigned DivOpcode, RemOpcode, DivremOpcode;
1116 if (IsSigned) {
1117 DivOpcode = TargetOpcode::G_SDIV;
1118 RemOpcode = TargetOpcode::G_SREM;
1119 DivremOpcode = TargetOpcode::G_SDIVREM;
1120 } else {
1121 DivOpcode = TargetOpcode::G_UDIV;
1122 RemOpcode = TargetOpcode::G_UREM;
1123 DivremOpcode = TargetOpcode::G_UDIVREM;
1124 }
1125
1126 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
1127 return false;
1128
1129 // Combine:
1130 // %div:_ = G_[SU]DIV %src1:_, %src2:_
1131 // %rem:_ = G_[SU]REM %src1:_, %src2:_
1132 // into:
1133 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1134
1135 // Combine:
1136 // %rem:_ = G_[SU]REM %src1:_, %src2:_
1137 // %div:_ = G_[SU]DIV %src1:_, %src2:_
1138 // into:
1139 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1140
1141 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
1142 if (MI.getParent() == UseMI.getParent() &&
1143 ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
1144 (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
1145 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) &&
1146 matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) {
1147 OtherMI = &UseMI;
1148 return true;
1149 }
1150 }
1151
1152 return false;
1153 }
1154
applyCombineDivRem(MachineInstr & MI,MachineInstr * & OtherMI)1155 void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
1156 MachineInstr *&OtherMI) {
1157 unsigned Opcode = MI.getOpcode();
1158 assert(OtherMI && "OtherMI shouldn't be empty.");
1159
1160 Register DestDivReg, DestRemReg;
1161 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
1162 DestDivReg = MI.getOperand(0).getReg();
1163 DestRemReg = OtherMI->getOperand(0).getReg();
1164 } else {
1165 DestDivReg = OtherMI->getOperand(0).getReg();
1166 DestRemReg = MI.getOperand(0).getReg();
1167 }
1168
1169 bool IsSigned =
1170 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
1171
1172 // Check which instruction is first in the block so we don't break def-use
1173 // deps by "moving" the instruction incorrectly.
1174 if (dominates(MI, *OtherMI))
1175 Builder.setInstrAndDebugLoc(MI);
1176 else
1177 Builder.setInstrAndDebugLoc(*OtherMI);
1178
1179 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
1180 : TargetOpcode::G_UDIVREM,
1181 {DestDivReg, DestRemReg},
1182 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
1183 MI.eraseFromParent();
1184 OtherMI->eraseFromParent();
1185 }
1186
matchOptBrCondByInvertingCond(MachineInstr & MI,MachineInstr * & BrCond)1187 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
1188 MachineInstr *&BrCond) {
1189 assert(MI.getOpcode() == TargetOpcode::G_BR);
1190
1191 // Try to match the following:
1192 // bb1:
1193 // G_BRCOND %c1, %bb2
1194 // G_BR %bb3
1195 // bb2:
1196 // ...
1197 // bb3:
1198
1199 // The above pattern does not have a fall through to the successor bb2, always
1200 // resulting in a branch no matter which path is taken. Here we try to find
1201 // and replace that pattern with conditional branch to bb3 and otherwise
1202 // fallthrough to bb2. This is generally better for branch predictors.
1203
1204 MachineBasicBlock *MBB = MI.getParent();
1205 MachineBasicBlock::iterator BrIt(MI);
1206 if (BrIt == MBB->begin())
1207 return false;
1208 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
1209
1210 BrCond = &*std::prev(BrIt);
1211 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
1212 return false;
1213
1214 // Check that the next block is the conditional branch target. Also make sure
1215 // that it isn't the same as the G_BR's target (otherwise, this will loop.)
1216 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
1217 return BrCondTarget != MI.getOperand(0).getMBB() &&
1218 MBB->isLayoutSuccessor(BrCondTarget);
1219 }
1220
applyOptBrCondByInvertingCond(MachineInstr & MI,MachineInstr * & BrCond)1221 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
1222 MachineInstr *&BrCond) {
1223 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
1224 Builder.setInstrAndDebugLoc(*BrCond);
1225 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
1226 // FIXME: Does int/fp matter for this? If so, we might need to restrict
1227 // this to i1 only since we might not know for sure what kind of
1228 // compare generated the condition value.
1229 auto True = Builder.buildConstant(
1230 Ty, getICmpTrueVal(getTargetLowering(), false, false));
1231 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
1232
1233 auto *FallthroughBB = BrCond->getOperand(1).getMBB();
1234 Observer.changingInstr(MI);
1235 MI.getOperand(0).setMBB(FallthroughBB);
1236 Observer.changedInstr(MI);
1237
1238 // Change the conditional branch to use the inverted condition and
1239 // new target block.
1240 Observer.changingInstr(*BrCond);
1241 BrCond->getOperand(0).setReg(Xor.getReg(0));
1242 BrCond->getOperand(1).setMBB(BrTarget);
1243 Observer.changedInstr(*BrCond);
1244 }
1245
getTypeForLLT(LLT Ty,LLVMContext & C)1246 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
1247 if (Ty.isVector())
1248 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1249 Ty.getNumElements());
1250 return IntegerType::get(C, Ty.getSizeInBits());
1251 }
1252
tryEmitMemcpyInline(MachineInstr & MI)1253 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
1254 MachineIRBuilder HelperBuilder(MI);
1255 GISelObserverWrapper DummyObserver;
1256 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1257 return Helper.lowerMemcpyInline(MI) ==
1258 LegalizerHelper::LegalizeResult::Legalized;
1259 }
1260
tryCombineMemCpyFamily(MachineInstr & MI,unsigned MaxLen)1261 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1262 MachineIRBuilder HelperBuilder(MI);
1263 GISelObserverWrapper DummyObserver;
1264 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1265 return Helper.lowerMemCpyFamily(MI, MaxLen) ==
1266 LegalizerHelper::LegalizeResult::Legalized;
1267 }
1268
constantFoldFpUnary(unsigned Opcode,LLT DstTy,const Register Op,const MachineRegisterInfo & MRI)1269 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
1270 const Register Op,
1271 const MachineRegisterInfo &MRI) {
1272 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
1273 if (!MaybeCst)
1274 return None;
1275
1276 APFloat V = MaybeCst->getValueAPF();
1277 switch (Opcode) {
1278 default:
1279 llvm_unreachable("Unexpected opcode!");
1280 case TargetOpcode::G_FNEG: {
1281 V.changeSign();
1282 return V;
1283 }
1284 case TargetOpcode::G_FABS: {
1285 V.clearSign();
1286 return V;
1287 }
1288 case TargetOpcode::G_FPTRUNC:
1289 break;
1290 case TargetOpcode::G_FSQRT: {
1291 bool Unused;
1292 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1293 V = APFloat(sqrt(V.convertToDouble()));
1294 break;
1295 }
1296 case TargetOpcode::G_FLOG2: {
1297 bool Unused;
1298 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1299 V = APFloat(log2(V.convertToDouble()));
1300 break;
1301 }
1302 }
1303 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1304 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
1305 // and `G_FLOG2` reach here.
1306 bool Unused;
1307 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
1308 return V;
1309 }
1310
matchCombineConstantFoldFpUnary(MachineInstr & MI,Optional<APFloat> & Cst)1311 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
1312 Optional<APFloat> &Cst) {
1313 Register DstReg = MI.getOperand(0).getReg();
1314 Register SrcReg = MI.getOperand(1).getReg();
1315 LLT DstTy = MRI.getType(DstReg);
1316 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
1317 return Cst.has_value();
1318 }
1319
applyCombineConstantFoldFpUnary(MachineInstr & MI,Optional<APFloat> & Cst)1320 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
1321 Optional<APFloat> &Cst) {
1322 assert(Cst && "Optional is unexpectedly empty!");
1323 Builder.setInstrAndDebugLoc(MI);
1324 MachineFunction &MF = Builder.getMF();
1325 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
1326 Register DstReg = MI.getOperand(0).getReg();
1327 Builder.buildFConstant(DstReg, *FPVal);
1328 MI.eraseFromParent();
1329 }
1330
matchPtrAddImmedChain(MachineInstr & MI,PtrAddChain & MatchInfo)1331 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1332 PtrAddChain &MatchInfo) {
1333 // We're trying to match the following pattern:
1334 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1335 // %root = G_PTR_ADD %t1, G_CONSTANT imm2
1336 // -->
1337 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1338
1339 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1340 return false;
1341
1342 Register Add2 = MI.getOperand(1).getReg();
1343 Register Imm1 = MI.getOperand(2).getReg();
1344 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1345 if (!MaybeImmVal)
1346 return false;
1347
1348 MachineInstr *Add2Def = MRI.getVRegDef(Add2);
1349 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1350 return false;
1351
1352 Register Base = Add2Def->getOperand(1).getReg();
1353 Register Imm2 = Add2Def->getOperand(2).getReg();
1354 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1355 if (!MaybeImm2Val)
1356 return false;
1357
1358 // Check if the new combined immediate forms an illegal addressing mode.
1359 // Do not combine if it was legal before but would get illegal.
1360 // To do so, we need to find a load/store user of the pointer to get
1361 // the access type.
1362 Type *AccessTy = nullptr;
1363 auto &MF = *MI.getMF();
1364 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
1365 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
1366 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
1367 MF.getFunction().getContext());
1368 break;
1369 }
1370 }
1371 TargetLoweringBase::AddrMode AMNew;
1372 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
1373 AMNew.BaseOffs = CombinedImm.getSExtValue();
1374 if (AccessTy) {
1375 AMNew.HasBaseReg = true;
1376 TargetLoweringBase::AddrMode AMOld;
1377 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue();
1378 AMOld.HasBaseReg = true;
1379 unsigned AS = MRI.getType(Add2).getAddressSpace();
1380 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1381 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
1382 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
1383 return false;
1384 }
1385
1386 // Pass the combined immediate to the apply function.
1387 MatchInfo.Imm = AMNew.BaseOffs;
1388 MatchInfo.Base = Base;
1389 MatchInfo.Bank = getRegBank(Imm2);
1390 return true;
1391 }
1392
applyPtrAddImmedChain(MachineInstr & MI,PtrAddChain & MatchInfo)1393 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1394 PtrAddChain &MatchInfo) {
1395 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1396 MachineIRBuilder MIB(MI);
1397 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1398 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1399 setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
1400 Observer.changingInstr(MI);
1401 MI.getOperand(1).setReg(MatchInfo.Base);
1402 MI.getOperand(2).setReg(NewOffset.getReg(0));
1403 Observer.changedInstr(MI);
1404 }
1405
matchShiftImmedChain(MachineInstr & MI,RegisterImmPair & MatchInfo)1406 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1407 RegisterImmPair &MatchInfo) {
1408 // We're trying to match the following pattern with any of
1409 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1410 // %t1 = SHIFT %base, G_CONSTANT imm1
1411 // %root = SHIFT %t1, G_CONSTANT imm2
1412 // -->
1413 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1414
1415 unsigned Opcode = MI.getOpcode();
1416 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1417 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1418 Opcode == TargetOpcode::G_USHLSAT) &&
1419 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1420
1421 Register Shl2 = MI.getOperand(1).getReg();
1422 Register Imm1 = MI.getOperand(2).getReg();
1423 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1424 if (!MaybeImmVal)
1425 return false;
1426
1427 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1428 if (Shl2Def->getOpcode() != Opcode)
1429 return false;
1430
1431 Register Base = Shl2Def->getOperand(1).getReg();
1432 Register Imm2 = Shl2Def->getOperand(2).getReg();
1433 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1434 if (!MaybeImm2Val)
1435 return false;
1436
1437 // Pass the combined immediate to the apply function.
1438 MatchInfo.Imm =
1439 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
1440 MatchInfo.Reg = Base;
1441
1442 // There is no simple replacement for a saturating unsigned left shift that
1443 // exceeds the scalar size.
1444 if (Opcode == TargetOpcode::G_USHLSAT &&
1445 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1446 return false;
1447
1448 return true;
1449 }
1450
applyShiftImmedChain(MachineInstr & MI,RegisterImmPair & MatchInfo)1451 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1452 RegisterImmPair &MatchInfo) {
1453 unsigned Opcode = MI.getOpcode();
1454 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1455 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1456 Opcode == TargetOpcode::G_USHLSAT) &&
1457 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1458
1459 Builder.setInstrAndDebugLoc(MI);
1460 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1461 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1462 auto Imm = MatchInfo.Imm;
1463
1464 if (Imm >= ScalarSizeInBits) {
1465 // Any logical shift that exceeds scalar size will produce zero.
1466 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1467 Builder.buildConstant(MI.getOperand(0), 0);
1468 MI.eraseFromParent();
1469 return;
1470 }
1471 // Arithmetic shift and saturating signed left shift have no effect beyond
1472 // scalar size.
1473 Imm = ScalarSizeInBits - 1;
1474 }
1475
1476 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1477 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1478 Observer.changingInstr(MI);
1479 MI.getOperand(1).setReg(MatchInfo.Reg);
1480 MI.getOperand(2).setReg(NewImm);
1481 Observer.changedInstr(MI);
1482 }
1483
matchShiftOfShiftedLogic(MachineInstr & MI,ShiftOfShiftedLogic & MatchInfo)1484 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1485 ShiftOfShiftedLogic &MatchInfo) {
1486 // We're trying to match the following pattern with any of
1487 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1488 // with any of G_AND/G_OR/G_XOR logic instructions.
1489 // %t1 = SHIFT %X, G_CONSTANT C0
1490 // %t2 = LOGIC %t1, %Y
1491 // %root = SHIFT %t2, G_CONSTANT C1
1492 // -->
1493 // %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1494 // %t4 = SHIFT %Y, G_CONSTANT C1
1495 // %root = LOGIC %t3, %t4
1496 unsigned ShiftOpcode = MI.getOpcode();
1497 assert((ShiftOpcode == TargetOpcode::G_SHL ||
1498 ShiftOpcode == TargetOpcode::G_ASHR ||
1499 ShiftOpcode == TargetOpcode::G_LSHR ||
1500 ShiftOpcode == TargetOpcode::G_USHLSAT ||
1501 ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
1502 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1503
1504 // Match a one-use bitwise logic op.
1505 Register LogicDest = MI.getOperand(1).getReg();
1506 if (!MRI.hasOneNonDBGUse(LogicDest))
1507 return false;
1508
1509 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1510 unsigned LogicOpcode = LogicMI->getOpcode();
1511 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1512 LogicOpcode != TargetOpcode::G_XOR)
1513 return false;
1514
1515 // Find a matching one-use shift by constant.
1516 const Register C1 = MI.getOperand(2).getReg();
1517 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI);
1518 if (!MaybeImmVal)
1519 return false;
1520
1521 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1522
1523 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1524 // Shift should match previous one and should be a one-use.
1525 if (MI->getOpcode() != ShiftOpcode ||
1526 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1527 return false;
1528
1529 // Must be a constant.
1530 auto MaybeImmVal =
1531 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1532 if (!MaybeImmVal)
1533 return false;
1534
1535 ShiftVal = MaybeImmVal->Value.getSExtValue();
1536 return true;
1537 };
1538
1539 // Logic ops are commutative, so check each operand for a match.
1540 Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1541 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1542 Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1543 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1544 uint64_t C0Val;
1545
1546 if (matchFirstShift(LogicMIOp1, C0Val)) {
1547 MatchInfo.LogicNonShiftReg = LogicMIReg2;
1548 MatchInfo.Shift2 = LogicMIOp1;
1549 } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1550 MatchInfo.LogicNonShiftReg = LogicMIReg1;
1551 MatchInfo.Shift2 = LogicMIOp2;
1552 } else
1553 return false;
1554
1555 MatchInfo.ValSum = C0Val + C1Val;
1556
1557 // The fold is not valid if the sum of the shift values exceeds bitwidth.
1558 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1559 return false;
1560
1561 MatchInfo.Logic = LogicMI;
1562 return true;
1563 }
1564
applyShiftOfShiftedLogic(MachineInstr & MI,ShiftOfShiftedLogic & MatchInfo)1565 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1566 ShiftOfShiftedLogic &MatchInfo) {
1567 unsigned Opcode = MI.getOpcode();
1568 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1569 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
1570 Opcode == TargetOpcode::G_SSHLSAT) &&
1571 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1572
1573 LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1574 LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1575 Builder.setInstrAndDebugLoc(MI);
1576
1577 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1578
1579 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1580 Register Shift1 =
1581 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1582
1583 Register Shift2Const = MI.getOperand(2).getReg();
1584 Register Shift2 = Builder
1585 .buildInstr(Opcode, {DestType},
1586 {MatchInfo.LogicNonShiftReg, Shift2Const})
1587 .getReg(0);
1588
1589 Register Dest = MI.getOperand(0).getReg();
1590 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1591
1592 // These were one use so it's safe to remove them.
1593 MatchInfo.Shift2->eraseFromParent();
1594 MatchInfo.Logic->eraseFromParent();
1595
1596 MI.eraseFromParent();
1597 }
1598
matchCombineMulToShl(MachineInstr & MI,unsigned & ShiftVal)1599 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1600 unsigned &ShiftVal) {
1601 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1602 auto MaybeImmVal =
1603 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1604 if (!MaybeImmVal)
1605 return false;
1606
1607 ShiftVal = MaybeImmVal->Value.exactLogBase2();
1608 return (static_cast<int32_t>(ShiftVal) != -1);
1609 }
1610
applyCombineMulToShl(MachineInstr & MI,unsigned & ShiftVal)1611 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1612 unsigned &ShiftVal) {
1613 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1614 MachineIRBuilder MIB(MI);
1615 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1616 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1617 Observer.changingInstr(MI);
1618 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
1619 MI.getOperand(2).setReg(ShiftCst.getReg(0));
1620 Observer.changedInstr(MI);
1621 }
1622
1623 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
matchCombineShlOfExtend(MachineInstr & MI,RegisterImmPair & MatchData)1624 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
1625 RegisterImmPair &MatchData) {
1626 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
1627
1628 Register LHS = MI.getOperand(1).getReg();
1629
1630 Register ExtSrc;
1631 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
1632 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
1633 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
1634 return false;
1635
1636 // TODO: Should handle vector splat.
1637 Register RHS = MI.getOperand(2).getReg();
1638 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1639 if (!MaybeShiftAmtVal)
1640 return false;
1641
1642 if (LI) {
1643 LLT SrcTy = MRI.getType(ExtSrc);
1644
1645 // We only really care about the legality with the shifted value. We can
1646 // pick any type the constant shift amount, so ask the target what to
1647 // use. Otherwise we would have to guess and hope it is reported as legal.
1648 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
1649 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
1650 return false;
1651 }
1652
1653 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
1654 MatchData.Reg = ExtSrc;
1655 MatchData.Imm = ShiftAmt;
1656
1657 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
1658 return MinLeadingZeros >= ShiftAmt;
1659 }
1660
applyCombineShlOfExtend(MachineInstr & MI,const RegisterImmPair & MatchData)1661 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
1662 const RegisterImmPair &MatchData) {
1663 Register ExtSrcReg = MatchData.Reg;
1664 int64_t ShiftAmtVal = MatchData.Imm;
1665
1666 LLT ExtSrcTy = MRI.getType(ExtSrcReg);
1667 Builder.setInstrAndDebugLoc(MI);
1668 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
1669 auto NarrowShift =
1670 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
1671 Builder.buildZExt(MI.getOperand(0), NarrowShift);
1672 MI.eraseFromParent();
1673 }
1674
matchCombineMergeUnmerge(MachineInstr & MI,Register & MatchInfo)1675 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
1676 Register &MatchInfo) {
1677 GMerge &Merge = cast<GMerge>(MI);
1678 SmallVector<Register, 16> MergedValues;
1679 for (unsigned I = 0; I < Merge.getNumSources(); ++I)
1680 MergedValues.emplace_back(Merge.getSourceReg(I));
1681
1682 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
1683 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
1684 return false;
1685
1686 for (unsigned I = 0; I < MergedValues.size(); ++I)
1687 if (MergedValues[I] != Unmerge->getReg(I))
1688 return false;
1689
1690 MatchInfo = Unmerge->getSourceReg();
1691 return true;
1692 }
1693
peekThroughBitcast(Register Reg,const MachineRegisterInfo & MRI)1694 static Register peekThroughBitcast(Register Reg,
1695 const MachineRegisterInfo &MRI) {
1696 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
1697 ;
1698
1699 return Reg;
1700 }
1701
matchCombineUnmergeMergeToPlainValues(MachineInstr & MI,SmallVectorImpl<Register> & Operands)1702 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
1703 MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1704 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1705 "Expected an unmerge");
1706 auto &Unmerge = cast<GUnmerge>(MI);
1707 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
1708
1709 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI);
1710 if (!SrcInstr)
1711 return false;
1712
1713 // Check the source type of the merge.
1714 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
1715 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
1716 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
1717 if (SrcMergeTy != Dst0Ty && !SameSize)
1718 return false;
1719 // They are the same now (modulo a bitcast).
1720 // We can collect all the src registers.
1721 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
1722 Operands.push_back(SrcInstr->getSourceReg(Idx));
1723 return true;
1724 }
1725
applyCombineUnmergeMergeToPlainValues(MachineInstr & MI,SmallVectorImpl<Register> & Operands)1726 void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
1727 MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1728 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1729 "Expected an unmerge");
1730 assert((MI.getNumOperands() - 1 == Operands.size()) &&
1731 "Not enough operands to replace all defs");
1732 unsigned NumElems = MI.getNumOperands() - 1;
1733
1734 LLT SrcTy = MRI.getType(Operands[0]);
1735 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1736 bool CanReuseInputDirectly = DstTy == SrcTy;
1737 Builder.setInstrAndDebugLoc(MI);
1738 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1739 Register DstReg = MI.getOperand(Idx).getReg();
1740 Register SrcReg = Operands[Idx];
1741 if (CanReuseInputDirectly)
1742 replaceRegWith(MRI, DstReg, SrcReg);
1743 else
1744 Builder.buildCast(DstReg, SrcReg);
1745 }
1746 MI.eraseFromParent();
1747 }
1748
matchCombineUnmergeConstant(MachineInstr & MI,SmallVectorImpl<APInt> & Csts)1749 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
1750 SmallVectorImpl<APInt> &Csts) {
1751 unsigned SrcIdx = MI.getNumOperands() - 1;
1752 Register SrcReg = MI.getOperand(SrcIdx).getReg();
1753 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
1754 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
1755 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
1756 return false;
1757 // Break down the big constant in smaller ones.
1758 const MachineOperand &CstVal = SrcInstr->getOperand(1);
1759 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
1760 ? CstVal.getCImm()->getValue()
1761 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
1762
1763 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
1764 unsigned ShiftAmt = Dst0Ty.getSizeInBits();
1765 // Unmerge a constant.
1766 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
1767 Csts.emplace_back(Val.trunc(ShiftAmt));
1768 Val = Val.lshr(ShiftAmt);
1769 }
1770
1771 return true;
1772 }
1773
applyCombineUnmergeConstant(MachineInstr & MI,SmallVectorImpl<APInt> & Csts)1774 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
1775 SmallVectorImpl<APInt> &Csts) {
1776 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1777 "Expected an unmerge");
1778 assert((MI.getNumOperands() - 1 == Csts.size()) &&
1779 "Not enough operands to replace all defs");
1780 unsigned NumElems = MI.getNumOperands() - 1;
1781 Builder.setInstrAndDebugLoc(MI);
1782 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1783 Register DstReg = MI.getOperand(Idx).getReg();
1784 Builder.buildConstant(DstReg, Csts[Idx]);
1785 }
1786
1787 MI.eraseFromParent();
1788 }
1789
matchCombineUnmergeUndef(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)1790 bool CombinerHelper::matchCombineUnmergeUndef(
1791 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
1792 unsigned SrcIdx = MI.getNumOperands() - 1;
1793 Register SrcReg = MI.getOperand(SrcIdx).getReg();
1794 MatchInfo = [&MI](MachineIRBuilder &B) {
1795 unsigned NumElems = MI.getNumOperands() - 1;
1796 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1797 Register DstReg = MI.getOperand(Idx).getReg();
1798 B.buildUndef(DstReg);
1799 }
1800 };
1801 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg));
1802 }
1803
matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr & MI)1804 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1805 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1806 "Expected an unmerge");
1807 // Check that all the lanes are dead except the first one.
1808 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1809 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
1810 return false;
1811 }
1812 return true;
1813 }
1814
applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr & MI)1815 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1816 Builder.setInstrAndDebugLoc(MI);
1817 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1818 // Truncating a vector is going to truncate every single lane,
1819 // whereas we want the full lowbits.
1820 // Do the operation on a scalar instead.
1821 LLT SrcTy = MRI.getType(SrcReg);
1822 if (SrcTy.isVector())
1823 SrcReg =
1824 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
1825
1826 Register Dst0Reg = MI.getOperand(0).getReg();
1827 LLT Dst0Ty = MRI.getType(Dst0Reg);
1828 if (Dst0Ty.isVector()) {
1829 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
1830 Builder.buildCast(Dst0Reg, MIB);
1831 } else
1832 Builder.buildTrunc(Dst0Reg, SrcReg);
1833 MI.eraseFromParent();
1834 }
1835
matchCombineUnmergeZExtToZExt(MachineInstr & MI)1836 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
1837 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1838 "Expected an unmerge");
1839 Register Dst0Reg = MI.getOperand(0).getReg();
1840 LLT Dst0Ty = MRI.getType(Dst0Reg);
1841 // G_ZEXT on vector applies to each lane, so it will
1842 // affect all destinations. Therefore we won't be able
1843 // to simplify the unmerge to just the first definition.
1844 if (Dst0Ty.isVector())
1845 return false;
1846 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1847 LLT SrcTy = MRI.getType(SrcReg);
1848 if (SrcTy.isVector())
1849 return false;
1850
1851 Register ZExtSrcReg;
1852 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
1853 return false;
1854
1855 // Finally we can replace the first definition with
1856 // a zext of the source if the definition is big enough to hold
1857 // all of ZExtSrc bits.
1858 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1859 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
1860 }
1861
applyCombineUnmergeZExtToZExt(MachineInstr & MI)1862 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
1863 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1864 "Expected an unmerge");
1865
1866 Register Dst0Reg = MI.getOperand(0).getReg();
1867
1868 MachineInstr *ZExtInstr =
1869 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
1870 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
1871 "Expecting a G_ZEXT");
1872
1873 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
1874 LLT Dst0Ty = MRI.getType(Dst0Reg);
1875 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1876
1877 Builder.setInstrAndDebugLoc(MI);
1878
1879 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
1880 Builder.buildZExt(Dst0Reg, ZExtSrcReg);
1881 } else {
1882 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
1883 "ZExt src doesn't fit in destination");
1884 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
1885 }
1886
1887 Register ZeroReg;
1888 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1889 if (!ZeroReg)
1890 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
1891 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
1892 }
1893 MI.eraseFromParent();
1894 }
1895
matchCombineShiftToUnmerge(MachineInstr & MI,unsigned TargetShiftSize,unsigned & ShiftVal)1896 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
1897 unsigned TargetShiftSize,
1898 unsigned &ShiftVal) {
1899 assert((MI.getOpcode() == TargetOpcode::G_SHL ||
1900 MI.getOpcode() == TargetOpcode::G_LSHR ||
1901 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
1902
1903 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1904 if (Ty.isVector()) // TODO:
1905 return false;
1906
1907 // Don't narrow further than the requested size.
1908 unsigned Size = Ty.getSizeInBits();
1909 if (Size <= TargetShiftSize)
1910 return false;
1911
1912 auto MaybeImmVal =
1913 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1914 if (!MaybeImmVal)
1915 return false;
1916
1917 ShiftVal = MaybeImmVal->Value.getSExtValue();
1918 return ShiftVal >= Size / 2 && ShiftVal < Size;
1919 }
1920
applyCombineShiftToUnmerge(MachineInstr & MI,const unsigned & ShiftVal)1921 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
1922 const unsigned &ShiftVal) {
1923 Register DstReg = MI.getOperand(0).getReg();
1924 Register SrcReg = MI.getOperand(1).getReg();
1925 LLT Ty = MRI.getType(SrcReg);
1926 unsigned Size = Ty.getSizeInBits();
1927 unsigned HalfSize = Size / 2;
1928 assert(ShiftVal >= HalfSize);
1929
1930 LLT HalfTy = LLT::scalar(HalfSize);
1931
1932 Builder.setInstr(MI);
1933 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
1934 unsigned NarrowShiftAmt = ShiftVal - HalfSize;
1935
1936 if (MI.getOpcode() == TargetOpcode::G_LSHR) {
1937 Register Narrowed = Unmerge.getReg(1);
1938
1939 // dst = G_LSHR s64:x, C for C >= 32
1940 // =>
1941 // lo, hi = G_UNMERGE_VALUES x
1942 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
1943
1944 if (NarrowShiftAmt != 0) {
1945 Narrowed = Builder.buildLShr(HalfTy, Narrowed,
1946 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
1947 }
1948
1949 auto Zero = Builder.buildConstant(HalfTy, 0);
1950 Builder.buildMerge(DstReg, { Narrowed, Zero });
1951 } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
1952 Register Narrowed = Unmerge.getReg(0);
1953 // dst = G_SHL s64:x, C for C >= 32
1954 // =>
1955 // lo, hi = G_UNMERGE_VALUES x
1956 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
1957 if (NarrowShiftAmt != 0) {
1958 Narrowed = Builder.buildShl(HalfTy, Narrowed,
1959 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
1960 }
1961
1962 auto Zero = Builder.buildConstant(HalfTy, 0);
1963 Builder.buildMerge(DstReg, { Zero, Narrowed });
1964 } else {
1965 assert(MI.getOpcode() == TargetOpcode::G_ASHR);
1966 auto Hi = Builder.buildAShr(
1967 HalfTy, Unmerge.getReg(1),
1968 Builder.buildConstant(HalfTy, HalfSize - 1));
1969
1970 if (ShiftVal == HalfSize) {
1971 // (G_ASHR i64:x, 32) ->
1972 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
1973 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
1974 } else if (ShiftVal == Size - 1) {
1975 // Don't need a second shift.
1976 // (G_ASHR i64:x, 63) ->
1977 // %narrowed = (G_ASHR hi_32(x), 31)
1978 // G_MERGE_VALUES %narrowed, %narrowed
1979 Builder.buildMerge(DstReg, { Hi, Hi });
1980 } else {
1981 auto Lo = Builder.buildAShr(
1982 HalfTy, Unmerge.getReg(1),
1983 Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
1984
1985 // (G_ASHR i64:x, C) ->, for C >= 32
1986 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
1987 Builder.buildMerge(DstReg, { Lo, Hi });
1988 }
1989 }
1990
1991 MI.eraseFromParent();
1992 }
1993
tryCombineShiftToUnmerge(MachineInstr & MI,unsigned TargetShiftAmount)1994 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
1995 unsigned TargetShiftAmount) {
1996 unsigned ShiftAmt;
1997 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
1998 applyCombineShiftToUnmerge(MI, ShiftAmt);
1999 return true;
2000 }
2001
2002 return false;
2003 }
2004
matchCombineI2PToP2I(MachineInstr & MI,Register & Reg)2005 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2006 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2007 Register DstReg = MI.getOperand(0).getReg();
2008 LLT DstTy = MRI.getType(DstReg);
2009 Register SrcReg = MI.getOperand(1).getReg();
2010 return mi_match(SrcReg, MRI,
2011 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2012 }
2013
applyCombineI2PToP2I(MachineInstr & MI,Register & Reg)2014 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2015 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2016 Register DstReg = MI.getOperand(0).getReg();
2017 Builder.setInstr(MI);
2018 Builder.buildCopy(DstReg, Reg);
2019 MI.eraseFromParent();
2020 }
2021
matchCombineP2IToI2P(MachineInstr & MI,Register & Reg)2022 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2023 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2024 Register SrcReg = MI.getOperand(1).getReg();
2025 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
2026 }
2027
applyCombineP2IToI2P(MachineInstr & MI,Register & Reg)2028 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2029 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2030 Register DstReg = MI.getOperand(0).getReg();
2031 Builder.setInstr(MI);
2032 Builder.buildZExtOrTrunc(DstReg, Reg);
2033 MI.eraseFromParent();
2034 }
2035
matchCombineAddP2IToPtrAdd(MachineInstr & MI,std::pair<Register,bool> & PtrReg)2036 bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2037 MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2038 assert(MI.getOpcode() == TargetOpcode::G_ADD);
2039 Register LHS = MI.getOperand(1).getReg();
2040 Register RHS = MI.getOperand(2).getReg();
2041 LLT IntTy = MRI.getType(LHS);
2042
2043 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2044 // instruction.
2045 PtrReg.second = false;
2046 for (Register SrcReg : {LHS, RHS}) {
2047 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2048 // Don't handle cases where the integer is implicitly converted to the
2049 // pointer width.
2050 LLT PtrTy = MRI.getType(PtrReg.first);
2051 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2052 return true;
2053 }
2054
2055 PtrReg.second = true;
2056 }
2057
2058 return false;
2059 }
2060
applyCombineAddP2IToPtrAdd(MachineInstr & MI,std::pair<Register,bool> & PtrReg)2061 void CombinerHelper::applyCombineAddP2IToPtrAdd(
2062 MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2063 Register Dst = MI.getOperand(0).getReg();
2064 Register LHS = MI.getOperand(1).getReg();
2065 Register RHS = MI.getOperand(2).getReg();
2066
2067 const bool DoCommute = PtrReg.second;
2068 if (DoCommute)
2069 std::swap(LHS, RHS);
2070 LHS = PtrReg.first;
2071
2072 LLT PtrTy = MRI.getType(LHS);
2073
2074 Builder.setInstrAndDebugLoc(MI);
2075 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2076 Builder.buildPtrToInt(Dst, PtrAdd);
2077 MI.eraseFromParent();
2078 }
2079
matchCombineConstPtrAddToI2P(MachineInstr & MI,APInt & NewCst)2080 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2081 APInt &NewCst) {
2082 auto &PtrAdd = cast<GPtrAdd>(MI);
2083 Register LHS = PtrAdd.getBaseReg();
2084 Register RHS = PtrAdd.getOffsetReg();
2085 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2086
2087 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) {
2088 APInt Cst;
2089 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2090 auto DstTy = MRI.getType(PtrAdd.getReg(0));
2091 // G_INTTOPTR uses zero-extension
2092 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits());
2093 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits());
2094 return true;
2095 }
2096 }
2097
2098 return false;
2099 }
2100
applyCombineConstPtrAddToI2P(MachineInstr & MI,APInt & NewCst)2101 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2102 APInt &NewCst) {
2103 auto &PtrAdd = cast<GPtrAdd>(MI);
2104 Register Dst = PtrAdd.getReg(0);
2105
2106 Builder.setInstrAndDebugLoc(MI);
2107 Builder.buildConstant(Dst, NewCst);
2108 PtrAdd.eraseFromParent();
2109 }
2110
matchCombineAnyExtTrunc(MachineInstr & MI,Register & Reg)2111 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2112 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2113 Register DstReg = MI.getOperand(0).getReg();
2114 Register SrcReg = MI.getOperand(1).getReg();
2115 LLT DstTy = MRI.getType(DstReg);
2116 return mi_match(SrcReg, MRI,
2117 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2118 }
2119
matchCombineZextTrunc(MachineInstr & MI,Register & Reg)2120 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
2121 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
2122 Register DstReg = MI.getOperand(0).getReg();
2123 Register SrcReg = MI.getOperand(1).getReg();
2124 LLT DstTy = MRI.getType(DstReg);
2125 if (mi_match(SrcReg, MRI,
2126 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
2127 unsigned DstSize = DstTy.getScalarSizeInBits();
2128 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
2129 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
2130 }
2131 return false;
2132 }
2133
matchCombineExtOfExt(MachineInstr & MI,std::tuple<Register,unsigned> & MatchInfo)2134 bool CombinerHelper::matchCombineExtOfExt(
2135 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2136 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2137 MI.getOpcode() == TargetOpcode::G_SEXT ||
2138 MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2139 "Expected a G_[ASZ]EXT");
2140 Register SrcReg = MI.getOperand(1).getReg();
2141 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2142 // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2143 unsigned Opc = MI.getOpcode();
2144 unsigned SrcOpc = SrcMI->getOpcode();
2145 if (Opc == SrcOpc ||
2146 (Opc == TargetOpcode::G_ANYEXT &&
2147 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2148 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2149 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2150 return true;
2151 }
2152 return false;
2153 }
2154
applyCombineExtOfExt(MachineInstr & MI,std::tuple<Register,unsigned> & MatchInfo)2155 void CombinerHelper::applyCombineExtOfExt(
2156 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2157 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2158 MI.getOpcode() == TargetOpcode::G_SEXT ||
2159 MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2160 "Expected a G_[ASZ]EXT");
2161
2162 Register Reg = std::get<0>(MatchInfo);
2163 unsigned SrcExtOp = std::get<1>(MatchInfo);
2164
2165 // Combine exts with the same opcode.
2166 if (MI.getOpcode() == SrcExtOp) {
2167 Observer.changingInstr(MI);
2168 MI.getOperand(1).setReg(Reg);
2169 Observer.changedInstr(MI);
2170 return;
2171 }
2172
2173 // Combine:
2174 // - anyext([sz]ext x) to [sz]ext x
2175 // - sext(zext x) to zext x
2176 if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2177 (MI.getOpcode() == TargetOpcode::G_SEXT &&
2178 SrcExtOp == TargetOpcode::G_ZEXT)) {
2179 Register DstReg = MI.getOperand(0).getReg();
2180 Builder.setInstrAndDebugLoc(MI);
2181 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2182 MI.eraseFromParent();
2183 }
2184 }
2185
applyCombineMulByNegativeOne(MachineInstr & MI)2186 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
2187 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
2188 Register DstReg = MI.getOperand(0).getReg();
2189 Register SrcReg = MI.getOperand(1).getReg();
2190 LLT DstTy = MRI.getType(DstReg);
2191
2192 Builder.setInstrAndDebugLoc(MI);
2193 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
2194 MI.getFlags());
2195 MI.eraseFromParent();
2196 }
2197
matchCombineFNegOfFNeg(MachineInstr & MI,Register & Reg)2198 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
2199 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG");
2200 Register SrcReg = MI.getOperand(1).getReg();
2201 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
2202 }
2203
matchCombineFAbsOfFAbs(MachineInstr & MI,Register & Src)2204 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
2205 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2206 Src = MI.getOperand(1).getReg();
2207 Register AbsSrc;
2208 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
2209 }
2210
matchCombineFAbsOfFNeg(MachineInstr & MI,BuildFnTy & MatchInfo)2211 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI,
2212 BuildFnTy &MatchInfo) {
2213 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2214 Register Src = MI.getOperand(1).getReg();
2215 Register NegSrc;
2216
2217 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc))))
2218 return false;
2219
2220 MatchInfo = [=, &MI](MachineIRBuilder &B) {
2221 Observer.changingInstr(MI);
2222 MI.getOperand(1).setReg(NegSrc);
2223 Observer.changedInstr(MI);
2224 };
2225 return true;
2226 }
2227
matchCombineTruncOfExt(MachineInstr & MI,std::pair<Register,unsigned> & MatchInfo)2228 bool CombinerHelper::matchCombineTruncOfExt(
2229 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2230 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2231 Register SrcReg = MI.getOperand(1).getReg();
2232 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2233 unsigned SrcOpc = SrcMI->getOpcode();
2234 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2235 SrcOpc == TargetOpcode::G_ZEXT) {
2236 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2237 return true;
2238 }
2239 return false;
2240 }
2241
applyCombineTruncOfExt(MachineInstr & MI,std::pair<Register,unsigned> & MatchInfo)2242 void CombinerHelper::applyCombineTruncOfExt(
2243 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2244 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2245 Register SrcReg = MatchInfo.first;
2246 unsigned SrcExtOp = MatchInfo.second;
2247 Register DstReg = MI.getOperand(0).getReg();
2248 LLT SrcTy = MRI.getType(SrcReg);
2249 LLT DstTy = MRI.getType(DstReg);
2250 if (SrcTy == DstTy) {
2251 MI.eraseFromParent();
2252 replaceRegWith(MRI, DstReg, SrcReg);
2253 return;
2254 }
2255 Builder.setInstrAndDebugLoc(MI);
2256 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2257 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2258 else
2259 Builder.buildTrunc(DstReg, SrcReg);
2260 MI.eraseFromParent();
2261 }
2262
matchCombineTruncOfShl(MachineInstr & MI,std::pair<Register,Register> & MatchInfo)2263 bool CombinerHelper::matchCombineTruncOfShl(
2264 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2265 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2266 Register DstReg = MI.getOperand(0).getReg();
2267 Register SrcReg = MI.getOperand(1).getReg();
2268 LLT DstTy = MRI.getType(DstReg);
2269 Register ShiftSrc;
2270 Register ShiftAmt;
2271
2272 if (MRI.hasOneNonDBGUse(SrcReg) &&
2273 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
2274 isLegalOrBeforeLegalizer(
2275 {TargetOpcode::G_SHL,
2276 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
2277 KnownBits Known = KB->getKnownBits(ShiftAmt);
2278 unsigned Size = DstTy.getSizeInBits();
2279 if (Known.countMaxActiveBits() <= Log2_32(Size)) {
2280 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
2281 return true;
2282 }
2283 }
2284 return false;
2285 }
2286
applyCombineTruncOfShl(MachineInstr & MI,std::pair<Register,Register> & MatchInfo)2287 void CombinerHelper::applyCombineTruncOfShl(
2288 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2289 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2290 Register DstReg = MI.getOperand(0).getReg();
2291 Register SrcReg = MI.getOperand(1).getReg();
2292 LLT DstTy = MRI.getType(DstReg);
2293 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2294
2295 Register ShiftSrc = MatchInfo.first;
2296 Register ShiftAmt = MatchInfo.second;
2297 Builder.setInstrAndDebugLoc(MI);
2298 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
2299 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
2300 MI.eraseFromParent();
2301 }
2302
matchAnyExplicitUseIsUndef(MachineInstr & MI)2303 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2304 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2305 return MO.isReg() &&
2306 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2307 });
2308 }
2309
matchAllExplicitUsesAreUndef(MachineInstr & MI)2310 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2311 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2312 return !MO.isReg() ||
2313 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2314 });
2315 }
2316
matchUndefShuffleVectorMask(MachineInstr & MI)2317 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2318 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
2319 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2320 return all_of(Mask, [](int Elt) { return Elt < 0; });
2321 }
2322
matchUndefStore(MachineInstr & MI)2323 bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2324 assert(MI.getOpcode() == TargetOpcode::G_STORE);
2325 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2326 MRI);
2327 }
2328
matchUndefSelectCmp(MachineInstr & MI)2329 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2330 assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2331 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2332 MRI);
2333 }
2334
matchConstantSelectCmp(MachineInstr & MI,unsigned & OpIdx)2335 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2336 GSelect &SelMI = cast<GSelect>(MI);
2337 auto Cst =
2338 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI);
2339 if (!Cst)
2340 return false;
2341 OpIdx = Cst->isZero() ? 3 : 2;
2342 return true;
2343 }
2344
eraseInst(MachineInstr & MI)2345 bool CombinerHelper::eraseInst(MachineInstr &MI) {
2346 MI.eraseFromParent();
2347 return true;
2348 }
2349
matchEqualDefs(const MachineOperand & MOP1,const MachineOperand & MOP2)2350 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2351 const MachineOperand &MOP2) {
2352 if (!MOP1.isReg() || !MOP2.isReg())
2353 return false;
2354 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
2355 if (!InstAndDef1)
2356 return false;
2357 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
2358 if (!InstAndDef2)
2359 return false;
2360 MachineInstr *I1 = InstAndDef1->MI;
2361 MachineInstr *I2 = InstAndDef2->MI;
2362
2363 // Handle a case like this:
2364 //
2365 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2366 //
2367 // Even though %0 and %1 are produced by the same instruction they are not
2368 // the same values.
2369 if (I1 == I2)
2370 return MOP1.getReg() == MOP2.getReg();
2371
2372 // If we have an instruction which loads or stores, we can't guarantee that
2373 // it is identical.
2374 //
2375 // For example, we may have
2376 //
2377 // %x1 = G_LOAD %addr (load N from @somewhere)
2378 // ...
2379 // call @foo
2380 // ...
2381 // %x2 = G_LOAD %addr (load N from @somewhere)
2382 // ...
2383 // %or = G_OR %x1, %x2
2384 //
2385 // It's possible that @foo will modify whatever lives at the address we're
2386 // loading from. To be safe, let's just assume that all loads and stores
2387 // are different (unless we have something which is guaranteed to not
2388 // change.)
2389 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad())
2390 return false;
2391
2392 // If both instructions are loads or stores, they are equal only if both
2393 // are dereferenceable invariant loads with the same number of bits.
2394 if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) {
2395 GLoadStore *LS1 = dyn_cast<GLoadStore>(I1);
2396 GLoadStore *LS2 = dyn_cast<GLoadStore>(I2);
2397 if (!LS1 || !LS2)
2398 return false;
2399
2400 if (!I2->isDereferenceableInvariantLoad() ||
2401 (LS1->getMemSizeInBits() != LS2->getMemSizeInBits()))
2402 return false;
2403 }
2404
2405 // Check for physical registers on the instructions first to avoid cases
2406 // like this:
2407 //
2408 // %a = COPY $physreg
2409 // ...
2410 // SOMETHING implicit-def $physreg
2411 // ...
2412 // %b = COPY $physreg
2413 //
2414 // These copies are not equivalent.
2415 if (any_of(I1->uses(), [](const MachineOperand &MO) {
2416 return MO.isReg() && MO.getReg().isPhysical();
2417 })) {
2418 // Check if we have a case like this:
2419 //
2420 // %a = COPY $physreg
2421 // %b = COPY %a
2422 //
2423 // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2424 // From that, we know that they must have the same value, since they must
2425 // have come from the same COPY.
2426 return I1->isIdenticalTo(*I2);
2427 }
2428
2429 // We don't have any physical registers, so we don't necessarily need the
2430 // same vreg defs.
2431 //
2432 // On the off-chance that there's some target instruction feeding into the
2433 // instruction, let's use produceSameValue instead of isIdenticalTo.
2434 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
2435 // Handle instructions with multiple defs that produce same values. Values
2436 // are same for operands with same index.
2437 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2438 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2439 // I1 and I2 are different instructions but produce same values,
2440 // %1 and %6 are same, %1 and %7 are not the same value.
2441 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) ==
2442 I2->findRegisterDefOperandIdx(InstAndDef2->Reg);
2443 }
2444 return false;
2445 }
2446
matchConstantOp(const MachineOperand & MOP,int64_t C)2447 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2448 if (!MOP.isReg())
2449 return false;
2450 auto *MI = MRI.getVRegDef(MOP.getReg());
2451 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI);
2452 return MaybeCst && MaybeCst->getBitWidth() <= 64 &&
2453 MaybeCst->getSExtValue() == C;
2454 }
2455
replaceSingleDefInstWithOperand(MachineInstr & MI,unsigned OpIdx)2456 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2457 unsigned OpIdx) {
2458 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2459 Register OldReg = MI.getOperand(0).getReg();
2460 Register Replacement = MI.getOperand(OpIdx).getReg();
2461 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2462 MI.eraseFromParent();
2463 replaceRegWith(MRI, OldReg, Replacement);
2464 return true;
2465 }
2466
replaceSingleDefInstWithReg(MachineInstr & MI,Register Replacement)2467 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2468 Register Replacement) {
2469 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2470 Register OldReg = MI.getOperand(0).getReg();
2471 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2472 MI.eraseFromParent();
2473 replaceRegWith(MRI, OldReg, Replacement);
2474 return true;
2475 }
2476
matchSelectSameVal(MachineInstr & MI)2477 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2478 assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2479 // Match (cond ? x : x)
2480 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2481 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2482 MRI);
2483 }
2484
matchBinOpSameVal(MachineInstr & MI)2485 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2486 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2487 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2488 MRI);
2489 }
2490
matchOperandIsZero(MachineInstr & MI,unsigned OpIdx)2491 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2492 return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2493 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2494 MRI);
2495 }
2496
matchOperandIsUndef(MachineInstr & MI,unsigned OpIdx)2497 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2498 MachineOperand &MO = MI.getOperand(OpIdx);
2499 return MO.isReg() &&
2500 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2501 }
2502
matchOperandIsKnownToBeAPowerOfTwo(MachineInstr & MI,unsigned OpIdx)2503 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2504 unsigned OpIdx) {
2505 MachineOperand &MO = MI.getOperand(OpIdx);
2506 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2507 }
2508
replaceInstWithFConstant(MachineInstr & MI,double C)2509 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2510 assert(MI.getNumDefs() == 1 && "Expected only one def?");
2511 Builder.setInstr(MI);
2512 Builder.buildFConstant(MI.getOperand(0), C);
2513 MI.eraseFromParent();
2514 return true;
2515 }
2516
replaceInstWithConstant(MachineInstr & MI,int64_t C)2517 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2518 assert(MI.getNumDefs() == 1 && "Expected only one def?");
2519 Builder.setInstr(MI);
2520 Builder.buildConstant(MI.getOperand(0), C);
2521 MI.eraseFromParent();
2522 return true;
2523 }
2524
replaceInstWithConstant(MachineInstr & MI,APInt C)2525 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
2526 assert(MI.getNumDefs() == 1 && "Expected only one def?");
2527 Builder.setInstr(MI);
2528 Builder.buildConstant(MI.getOperand(0), C);
2529 MI.eraseFromParent();
2530 return true;
2531 }
2532
replaceInstWithUndef(MachineInstr & MI)2533 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2534 assert(MI.getNumDefs() == 1 && "Expected only one def?");
2535 Builder.setInstr(MI);
2536 Builder.buildUndef(MI.getOperand(0));
2537 MI.eraseFromParent();
2538 return true;
2539 }
2540
matchSimplifyAddToSub(MachineInstr & MI,std::tuple<Register,Register> & MatchInfo)2541 bool CombinerHelper::matchSimplifyAddToSub(
2542 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2543 Register LHS = MI.getOperand(1).getReg();
2544 Register RHS = MI.getOperand(2).getReg();
2545 Register &NewLHS = std::get<0>(MatchInfo);
2546 Register &NewRHS = std::get<1>(MatchInfo);
2547
2548 // Helper lambda to check for opportunities for
2549 // ((0-A) + B) -> B - A
2550 // (A + (0-B)) -> A - B
2551 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2552 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2553 return false;
2554 NewLHS = MaybeNewLHS;
2555 return true;
2556 };
2557
2558 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2559 }
2560
matchCombineInsertVecElts(MachineInstr & MI,SmallVectorImpl<Register> & MatchInfo)2561 bool CombinerHelper::matchCombineInsertVecElts(
2562 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2563 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
2564 "Invalid opcode");
2565 Register DstReg = MI.getOperand(0).getReg();
2566 LLT DstTy = MRI.getType(DstReg);
2567 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
2568 unsigned NumElts = DstTy.getNumElements();
2569 // If this MI is part of a sequence of insert_vec_elts, then
2570 // don't do the combine in the middle of the sequence.
2571 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2572 TargetOpcode::G_INSERT_VECTOR_ELT)
2573 return false;
2574 MachineInstr *CurrInst = &MI;
2575 MachineInstr *TmpInst;
2576 int64_t IntImm;
2577 Register TmpReg;
2578 MatchInfo.resize(NumElts);
2579 while (mi_match(
2580 CurrInst->getOperand(0).getReg(), MRI,
2581 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2582 if (IntImm >= NumElts)
2583 return false;
2584 if (!MatchInfo[IntImm])
2585 MatchInfo[IntImm] = TmpReg;
2586 CurrInst = TmpInst;
2587 }
2588 // Variable index.
2589 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2590 return false;
2591 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2592 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2593 if (!MatchInfo[I - 1].isValid())
2594 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2595 }
2596 return true;
2597 }
2598 // If we didn't end in a G_IMPLICIT_DEF, bail out.
2599 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2600 }
2601
applyCombineInsertVecElts(MachineInstr & MI,SmallVectorImpl<Register> & MatchInfo)2602 void CombinerHelper::applyCombineInsertVecElts(
2603 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2604 Builder.setInstr(MI);
2605 Register UndefReg;
2606 auto GetUndef = [&]() {
2607 if (UndefReg)
2608 return UndefReg;
2609 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2610 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2611 return UndefReg;
2612 };
2613 for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2614 if (!MatchInfo[I])
2615 MatchInfo[I] = GetUndef();
2616 }
2617 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2618 MI.eraseFromParent();
2619 }
2620
applySimplifyAddToSub(MachineInstr & MI,std::tuple<Register,Register> & MatchInfo)2621 void CombinerHelper::applySimplifyAddToSub(
2622 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2623 Builder.setInstr(MI);
2624 Register SubLHS, SubRHS;
2625 std::tie(SubLHS, SubRHS) = MatchInfo;
2626 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2627 MI.eraseFromParent();
2628 }
2629
matchHoistLogicOpWithSameOpcodeHands(MachineInstr & MI,InstructionStepsMatchInfo & MatchInfo)2630 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2631 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2632 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2633 //
2634 // Creates the new hand + logic instruction (but does not insert them.)
2635 //
2636 // On success, MatchInfo is populated with the new instructions. These are
2637 // inserted in applyHoistLogicOpWithSameOpcodeHands.
2638 unsigned LogicOpcode = MI.getOpcode();
2639 assert(LogicOpcode == TargetOpcode::G_AND ||
2640 LogicOpcode == TargetOpcode::G_OR ||
2641 LogicOpcode == TargetOpcode::G_XOR);
2642 MachineIRBuilder MIB(MI);
2643 Register Dst = MI.getOperand(0).getReg();
2644 Register LHSReg = MI.getOperand(1).getReg();
2645 Register RHSReg = MI.getOperand(2).getReg();
2646
2647 // Don't recompute anything.
2648 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
2649 return false;
2650
2651 // Make sure we have (hand x, ...), (hand y, ...)
2652 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
2653 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
2654 if (!LeftHandInst || !RightHandInst)
2655 return false;
2656 unsigned HandOpcode = LeftHandInst->getOpcode();
2657 if (HandOpcode != RightHandInst->getOpcode())
2658 return false;
2659 if (!LeftHandInst->getOperand(1).isReg() ||
2660 !RightHandInst->getOperand(1).isReg())
2661 return false;
2662
2663 // Make sure the types match up, and if we're doing this post-legalization,
2664 // we end up with legal types.
2665 Register X = LeftHandInst->getOperand(1).getReg();
2666 Register Y = RightHandInst->getOperand(1).getReg();
2667 LLT XTy = MRI.getType(X);
2668 LLT YTy = MRI.getType(Y);
2669 if (XTy != YTy)
2670 return false;
2671 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
2672 return false;
2673
2674 // Optional extra source register.
2675 Register ExtraHandOpSrcReg;
2676 switch (HandOpcode) {
2677 default:
2678 return false;
2679 case TargetOpcode::G_ANYEXT:
2680 case TargetOpcode::G_SEXT:
2681 case TargetOpcode::G_ZEXT: {
2682 // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
2683 break;
2684 }
2685 case TargetOpcode::G_AND:
2686 case TargetOpcode::G_ASHR:
2687 case TargetOpcode::G_LSHR:
2688 case TargetOpcode::G_SHL: {
2689 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
2690 MachineOperand &ZOp = LeftHandInst->getOperand(2);
2691 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
2692 return false;
2693 ExtraHandOpSrcReg = ZOp.getReg();
2694 break;
2695 }
2696 }
2697
2698 // Record the steps to build the new instructions.
2699 //
2700 // Steps to build (logic x, y)
2701 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
2702 OperandBuildSteps LogicBuildSteps = {
2703 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
2704 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
2705 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
2706 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
2707
2708 // Steps to build hand (logic x, y), ...z
2709 OperandBuildSteps HandBuildSteps = {
2710 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
2711 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
2712 if (ExtraHandOpSrcReg.isValid())
2713 HandBuildSteps.push_back(
2714 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
2715 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
2716
2717 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
2718 return true;
2719 }
2720
applyBuildInstructionSteps(MachineInstr & MI,InstructionStepsMatchInfo & MatchInfo)2721 void CombinerHelper::applyBuildInstructionSteps(
2722 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2723 assert(MatchInfo.InstrsToBuild.size() &&
2724 "Expected at least one instr to build?");
2725 Builder.setInstr(MI);
2726 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
2727 assert(InstrToBuild.Opcode && "Expected a valid opcode?");
2728 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
2729 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
2730 for (auto &OperandFn : InstrToBuild.OperandFns)
2731 OperandFn(Instr);
2732 }
2733 MI.eraseFromParent();
2734 }
2735
matchAshrShlToSextInreg(MachineInstr & MI,std::tuple<Register,int64_t> & MatchInfo)2736 bool CombinerHelper::matchAshrShlToSextInreg(
2737 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2738 assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2739 int64_t ShlCst, AshrCst;
2740 Register Src;
2741 // FIXME: detect splat constant vectors.
2742 if (!mi_match(MI.getOperand(0).getReg(), MRI,
2743 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
2744 return false;
2745 if (ShlCst != AshrCst)
2746 return false;
2747 if (!isLegalOrBeforeLegalizer(
2748 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
2749 return false;
2750 MatchInfo = std::make_tuple(Src, ShlCst);
2751 return true;
2752 }
2753
applyAshShlToSextInreg(MachineInstr & MI,std::tuple<Register,int64_t> & MatchInfo)2754 void CombinerHelper::applyAshShlToSextInreg(
2755 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2756 assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2757 Register Src;
2758 int64_t ShiftAmt;
2759 std::tie(Src, ShiftAmt) = MatchInfo;
2760 unsigned Size = MRI.getType(Src).getScalarSizeInBits();
2761 Builder.setInstrAndDebugLoc(MI);
2762 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
2763 MI.eraseFromParent();
2764 }
2765
2766 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
matchOverlappingAnd(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)2767 bool CombinerHelper::matchOverlappingAnd(
2768 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
2769 assert(MI.getOpcode() == TargetOpcode::G_AND);
2770
2771 Register Dst = MI.getOperand(0).getReg();
2772 LLT Ty = MRI.getType(Dst);
2773
2774 Register R;
2775 int64_t C1;
2776 int64_t C2;
2777 if (!mi_match(
2778 Dst, MRI,
2779 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
2780 return false;
2781
2782 MatchInfo = [=](MachineIRBuilder &B) {
2783 if (C1 & C2) {
2784 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
2785 return;
2786 }
2787 auto Zero = B.buildConstant(Ty, 0);
2788 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
2789 };
2790 return true;
2791 }
2792
matchRedundantAnd(MachineInstr & MI,Register & Replacement)2793 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
2794 Register &Replacement) {
2795 // Given
2796 //
2797 // %y:_(sN) = G_SOMETHING
2798 // %x:_(sN) = G_SOMETHING
2799 // %res:_(sN) = G_AND %x, %y
2800 //
2801 // Eliminate the G_AND when it is known that x & y == x or x & y == y.
2802 //
2803 // Patterns like this can appear as a result of legalization. E.g.
2804 //
2805 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
2806 // %one:_(s32) = G_CONSTANT i32 1
2807 // %and:_(s32) = G_AND %cmp, %one
2808 //
2809 // In this case, G_ICMP only produces a single bit, so x & 1 == x.
2810 assert(MI.getOpcode() == TargetOpcode::G_AND);
2811 if (!KB)
2812 return false;
2813
2814 Register AndDst = MI.getOperand(0).getReg();
2815 LLT DstTy = MRI.getType(AndDst);
2816
2817 // FIXME: This should be removed once GISelKnownBits supports vectors.
2818 if (DstTy.isVector())
2819 return false;
2820
2821 Register LHS = MI.getOperand(1).getReg();
2822 Register RHS = MI.getOperand(2).getReg();
2823 KnownBits LHSBits = KB->getKnownBits(LHS);
2824 KnownBits RHSBits = KB->getKnownBits(RHS);
2825
2826 // Check that x & Mask == x.
2827 // x & 1 == x, always
2828 // x & 0 == x, only if x is also 0
2829 // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
2830 //
2831 // Check if we can replace AndDst with the LHS of the G_AND
2832 if (canReplaceReg(AndDst, LHS, MRI) &&
2833 (LHSBits.Zero | RHSBits.One).isAllOnes()) {
2834 Replacement = LHS;
2835 return true;
2836 }
2837
2838 // Check if we can replace AndDst with the RHS of the G_AND
2839 if (canReplaceReg(AndDst, RHS, MRI) &&
2840 (LHSBits.One | RHSBits.Zero).isAllOnes()) {
2841 Replacement = RHS;
2842 return true;
2843 }
2844
2845 return false;
2846 }
2847
matchRedundantOr(MachineInstr & MI,Register & Replacement)2848 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
2849 // Given
2850 //
2851 // %y:_(sN) = G_SOMETHING
2852 // %x:_(sN) = G_SOMETHING
2853 // %res:_(sN) = G_OR %x, %y
2854 //
2855 // Eliminate the G_OR when it is known that x | y == x or x | y == y.
2856 assert(MI.getOpcode() == TargetOpcode::G_OR);
2857 if (!KB)
2858 return false;
2859
2860 Register OrDst = MI.getOperand(0).getReg();
2861 LLT DstTy = MRI.getType(OrDst);
2862
2863 // FIXME: This should be removed once GISelKnownBits supports vectors.
2864 if (DstTy.isVector())
2865 return false;
2866
2867 Register LHS = MI.getOperand(1).getReg();
2868 Register RHS = MI.getOperand(2).getReg();
2869 KnownBits LHSBits = KB->getKnownBits(LHS);
2870 KnownBits RHSBits = KB->getKnownBits(RHS);
2871
2872 // Check that x | Mask == x.
2873 // x | 0 == x, always
2874 // x | 1 == x, only if x is also 1
2875 // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
2876 //
2877 // Check if we can replace OrDst with the LHS of the G_OR
2878 if (canReplaceReg(OrDst, LHS, MRI) &&
2879 (LHSBits.One | RHSBits.Zero).isAllOnes()) {
2880 Replacement = LHS;
2881 return true;
2882 }
2883
2884 // Check if we can replace OrDst with the RHS of the G_OR
2885 if (canReplaceReg(OrDst, RHS, MRI) &&
2886 (LHSBits.Zero | RHSBits.One).isAllOnes()) {
2887 Replacement = RHS;
2888 return true;
2889 }
2890
2891 return false;
2892 }
2893
matchRedundantSExtInReg(MachineInstr & MI)2894 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
2895 // If the input is already sign extended, just drop the extension.
2896 Register Src = MI.getOperand(1).getReg();
2897 unsigned ExtBits = MI.getOperand(2).getImm();
2898 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
2899 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
2900 }
2901
isConstValidTrue(const TargetLowering & TLI,unsigned ScalarSizeBits,int64_t Cst,bool IsVector,bool IsFP)2902 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
2903 int64_t Cst, bool IsVector, bool IsFP) {
2904 // For i1, Cst will always be -1 regardless of boolean contents.
2905 return (ScalarSizeBits == 1 && Cst == -1) ||
2906 isConstTrueVal(TLI, Cst, IsVector, IsFP);
2907 }
2908
matchNotCmp(MachineInstr & MI,SmallVectorImpl<Register> & RegsToNegate)2909 bool CombinerHelper::matchNotCmp(MachineInstr &MI,
2910 SmallVectorImpl<Register> &RegsToNegate) {
2911 assert(MI.getOpcode() == TargetOpcode::G_XOR);
2912 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2913 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
2914 Register XorSrc;
2915 Register CstReg;
2916 // We match xor(src, true) here.
2917 if (!mi_match(MI.getOperand(0).getReg(), MRI,
2918 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
2919 return false;
2920
2921 if (!MRI.hasOneNonDBGUse(XorSrc))
2922 return false;
2923
2924 // Check that XorSrc is the root of a tree of comparisons combined with ANDs
2925 // and ORs. The suffix of RegsToNegate starting from index I is used a work
2926 // list of tree nodes to visit.
2927 RegsToNegate.push_back(XorSrc);
2928 // Remember whether the comparisons are all integer or all floating point.
2929 bool IsInt = false;
2930 bool IsFP = false;
2931 for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
2932 Register Reg = RegsToNegate[I];
2933 if (!MRI.hasOneNonDBGUse(Reg))
2934 return false;
2935 MachineInstr *Def = MRI.getVRegDef(Reg);
2936 switch (Def->getOpcode()) {
2937 default:
2938 // Don't match if the tree contains anything other than ANDs, ORs and
2939 // comparisons.
2940 return false;
2941 case TargetOpcode::G_ICMP:
2942 if (IsFP)
2943 return false;
2944 IsInt = true;
2945 // When we apply the combine we will invert the predicate.
2946 break;
2947 case TargetOpcode::G_FCMP:
2948 if (IsInt)
2949 return false;
2950 IsFP = true;
2951 // When we apply the combine we will invert the predicate.
2952 break;
2953 case TargetOpcode::G_AND:
2954 case TargetOpcode::G_OR:
2955 // Implement De Morgan's laws:
2956 // ~(x & y) -> ~x | ~y
2957 // ~(x | y) -> ~x & ~y
2958 // When we apply the combine we will change the opcode and recursively
2959 // negate the operands.
2960 RegsToNegate.push_back(Def->getOperand(1).getReg());
2961 RegsToNegate.push_back(Def->getOperand(2).getReg());
2962 break;
2963 }
2964 }
2965
2966 // Now we know whether the comparisons are integer or floating point, check
2967 // the constant in the xor.
2968 int64_t Cst;
2969 if (Ty.isVector()) {
2970 MachineInstr *CstDef = MRI.getVRegDef(CstReg);
2971 auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI);
2972 if (!MaybeCst)
2973 return false;
2974 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
2975 return false;
2976 } else {
2977 if (!mi_match(CstReg, MRI, m_ICst(Cst)))
2978 return false;
2979 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
2980 return false;
2981 }
2982
2983 return true;
2984 }
2985
applyNotCmp(MachineInstr & MI,SmallVectorImpl<Register> & RegsToNegate)2986 void CombinerHelper::applyNotCmp(MachineInstr &MI,
2987 SmallVectorImpl<Register> &RegsToNegate) {
2988 for (Register Reg : RegsToNegate) {
2989 MachineInstr *Def = MRI.getVRegDef(Reg);
2990 Observer.changingInstr(*Def);
2991 // For each comparison, invert the opcode. For each AND and OR, change the
2992 // opcode.
2993 switch (Def->getOpcode()) {
2994 default:
2995 llvm_unreachable("Unexpected opcode");
2996 case TargetOpcode::G_ICMP:
2997 case TargetOpcode::G_FCMP: {
2998 MachineOperand &PredOp = Def->getOperand(1);
2999 CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3000 (CmpInst::Predicate)PredOp.getPredicate());
3001 PredOp.setPredicate(NewP);
3002 break;
3003 }
3004 case TargetOpcode::G_AND:
3005 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3006 break;
3007 case TargetOpcode::G_OR:
3008 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3009 break;
3010 }
3011 Observer.changedInstr(*Def);
3012 }
3013
3014 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3015 MI.eraseFromParent();
3016 }
3017
matchXorOfAndWithSameReg(MachineInstr & MI,std::pair<Register,Register> & MatchInfo)3018 bool CombinerHelper::matchXorOfAndWithSameReg(
3019 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3020 // Match (xor (and x, y), y) (or any of its commuted cases)
3021 assert(MI.getOpcode() == TargetOpcode::G_XOR);
3022 Register &X = MatchInfo.first;
3023 Register &Y = MatchInfo.second;
3024 Register AndReg = MI.getOperand(1).getReg();
3025 Register SharedReg = MI.getOperand(2).getReg();
3026
3027 // Find a G_AND on either side of the G_XOR.
3028 // Look for one of
3029 //
3030 // (xor (and x, y), SharedReg)
3031 // (xor SharedReg, (and x, y))
3032 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3033 std::swap(AndReg, SharedReg);
3034 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3035 return false;
3036 }
3037
3038 // Only do this if we'll eliminate the G_AND.
3039 if (!MRI.hasOneNonDBGUse(AndReg))
3040 return false;
3041
3042 // We can combine if SharedReg is the same as either the LHS or RHS of the
3043 // G_AND.
3044 if (Y != SharedReg)
3045 std::swap(X, Y);
3046 return Y == SharedReg;
3047 }
3048
applyXorOfAndWithSameReg(MachineInstr & MI,std::pair<Register,Register> & MatchInfo)3049 void CombinerHelper::applyXorOfAndWithSameReg(
3050 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3051 // Fold (xor (and x, y), y) -> (and (not x), y)
3052 Builder.setInstrAndDebugLoc(MI);
3053 Register X, Y;
3054 std::tie(X, Y) = MatchInfo;
3055 auto Not = Builder.buildNot(MRI.getType(X), X);
3056 Observer.changingInstr(MI);
3057 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3058 MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3059 MI.getOperand(2).setReg(Y);
3060 Observer.changedInstr(MI);
3061 }
3062
matchPtrAddZero(MachineInstr & MI)3063 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3064 auto &PtrAdd = cast<GPtrAdd>(MI);
3065 Register DstReg = PtrAdd.getReg(0);
3066 LLT Ty = MRI.getType(DstReg);
3067 const DataLayout &DL = Builder.getMF().getDataLayout();
3068
3069 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3070 return false;
3071
3072 if (Ty.isPointer()) {
3073 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI);
3074 return ConstVal && *ConstVal == 0;
3075 }
3076
3077 assert(Ty.isVector() && "Expecting a vector type");
3078 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
3079 return isBuildVectorAllZeros(*VecMI, MRI);
3080 }
3081
applyPtrAddZero(MachineInstr & MI)3082 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3083 auto &PtrAdd = cast<GPtrAdd>(MI);
3084 Builder.setInstrAndDebugLoc(PtrAdd);
3085 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
3086 PtrAdd.eraseFromParent();
3087 }
3088
3089 /// The second source operand is known to be a power of 2.
applySimplifyURemByPow2(MachineInstr & MI)3090 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3091 Register DstReg = MI.getOperand(0).getReg();
3092 Register Src0 = MI.getOperand(1).getReg();
3093 Register Pow2Src1 = MI.getOperand(2).getReg();
3094 LLT Ty = MRI.getType(DstReg);
3095 Builder.setInstrAndDebugLoc(MI);
3096
3097 // Fold (urem x, pow2) -> (and x, pow2-1)
3098 auto NegOne = Builder.buildConstant(Ty, -1);
3099 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3100 Builder.buildAnd(DstReg, Src0, Add);
3101 MI.eraseFromParent();
3102 }
3103
matchFoldBinOpIntoSelect(MachineInstr & MI,unsigned & SelectOpNo)3104 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI,
3105 unsigned &SelectOpNo) {
3106 Register LHS = MI.getOperand(1).getReg();
3107 Register RHS = MI.getOperand(2).getReg();
3108
3109 Register OtherOperandReg = RHS;
3110 SelectOpNo = 1;
3111 MachineInstr *Select = MRI.getVRegDef(LHS);
3112
3113 // Don't do this unless the old select is going away. We want to eliminate the
3114 // binary operator, not replace a binop with a select.
3115 if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3116 !MRI.hasOneNonDBGUse(LHS)) {
3117 OtherOperandReg = LHS;
3118 SelectOpNo = 2;
3119 Select = MRI.getVRegDef(RHS);
3120 if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3121 !MRI.hasOneNonDBGUse(RHS))
3122 return false;
3123 }
3124
3125 MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg());
3126 MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg());
3127
3128 if (!isConstantOrConstantVector(*SelectLHS, MRI,
3129 /*AllowFP*/ true,
3130 /*AllowOpaqueConstants*/ false))
3131 return false;
3132 if (!isConstantOrConstantVector(*SelectRHS, MRI,
3133 /*AllowFP*/ true,
3134 /*AllowOpaqueConstants*/ false))
3135 return false;
3136
3137 unsigned BinOpcode = MI.getOpcode();
3138
3139 // We know know one of the operands is a select of constants. Now verify that
3140 // the other binary operator operand is either a constant, or we can handle a
3141 // variable.
3142 bool CanFoldNonConst =
3143 (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) &&
3144 (isNullOrNullSplat(*SelectLHS, MRI) ||
3145 isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) &&
3146 (isNullOrNullSplat(*SelectRHS, MRI) ||
3147 isAllOnesOrAllOnesSplat(*SelectRHS, MRI));
3148 if (CanFoldNonConst)
3149 return true;
3150
3151 return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI,
3152 /*AllowFP*/ true,
3153 /*AllowOpaqueConstants*/ false);
3154 }
3155
3156 /// \p SelectOperand is the operand in binary operator \p MI that is the select
3157 /// to fold.
applyFoldBinOpIntoSelect(MachineInstr & MI,const unsigned & SelectOperand)3158 bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI,
3159 const unsigned &SelectOperand) {
3160 Builder.setInstrAndDebugLoc(MI);
3161
3162 Register Dst = MI.getOperand(0).getReg();
3163 Register LHS = MI.getOperand(1).getReg();
3164 Register RHS = MI.getOperand(2).getReg();
3165 MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg());
3166
3167 Register SelectCond = Select->getOperand(1).getReg();
3168 Register SelectTrue = Select->getOperand(2).getReg();
3169 Register SelectFalse = Select->getOperand(3).getReg();
3170
3171 LLT Ty = MRI.getType(Dst);
3172 unsigned BinOpcode = MI.getOpcode();
3173
3174 Register FoldTrue, FoldFalse;
3175
3176 // We have a select-of-constants followed by a binary operator with a
3177 // constant. Eliminate the binop by pulling the constant math into the select.
3178 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
3179 if (SelectOperand == 1) {
3180 // TODO: SelectionDAG verifies this actually constant folds before
3181 // committing to the combine.
3182
3183 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0);
3184 FoldFalse =
3185 Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0);
3186 } else {
3187 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0);
3188 FoldFalse =
3189 Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0);
3190 }
3191
3192 Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags());
3193 Observer.erasingInstr(*Select);
3194 Select->eraseFromParent();
3195 MI.eraseFromParent();
3196
3197 return true;
3198 }
3199
3200 Optional<SmallVector<Register, 8>>
findCandidatesForLoadOrCombine(const MachineInstr * Root) const3201 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3202 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
3203 // We want to detect if Root is part of a tree which represents a bunch
3204 // of loads being merged into a larger load. We'll try to recognize patterns
3205 // like, for example:
3206 //
3207 // Reg Reg
3208 // \ /
3209 // OR_1 Reg
3210 // \ /
3211 // OR_2
3212 // \ Reg
3213 // .. /
3214 // Root
3215 //
3216 // Reg Reg Reg Reg
3217 // \ / \ /
3218 // OR_1 OR_2
3219 // \ /
3220 // \ /
3221 // ...
3222 // Root
3223 //
3224 // Each "Reg" may have been produced by a load + some arithmetic. This
3225 // function will save each of them.
3226 SmallVector<Register, 8> RegsToVisit;
3227 SmallVector<const MachineInstr *, 7> Ors = {Root};
3228
3229 // In the "worst" case, we're dealing with a load for each byte. So, there
3230 // are at most #bytes - 1 ORs.
3231 const unsigned MaxIter =
3232 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3233 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3234 if (Ors.empty())
3235 break;
3236 const MachineInstr *Curr = Ors.pop_back_val();
3237 Register OrLHS = Curr->getOperand(1).getReg();
3238 Register OrRHS = Curr->getOperand(2).getReg();
3239
3240 // In the combine, we want to elimate the entire tree.
3241 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3242 return None;
3243
3244 // If it's a G_OR, save it and continue to walk. If it's not, then it's
3245 // something that may be a load + arithmetic.
3246 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3247 Ors.push_back(Or);
3248 else
3249 RegsToVisit.push_back(OrLHS);
3250 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3251 Ors.push_back(Or);
3252 else
3253 RegsToVisit.push_back(OrRHS);
3254 }
3255
3256 // We're going to try and merge each register into a wider power-of-2 type,
3257 // so we ought to have an even number of registers.
3258 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3259 return None;
3260 return RegsToVisit;
3261 }
3262
3263 /// Helper function for findLoadOffsetsForLoadOrCombine.
3264 ///
3265 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3266 /// and then moving that value into a specific byte offset.
3267 ///
3268 /// e.g. x[i] << 24
3269 ///
3270 /// \returns The load instruction and the byte offset it is moved into.
3271 static Optional<std::pair<GZExtLoad *, int64_t>>
matchLoadAndBytePosition(Register Reg,unsigned MemSizeInBits,const MachineRegisterInfo & MRI)3272 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3273 const MachineRegisterInfo &MRI) {
3274 assert(MRI.hasOneNonDBGUse(Reg) &&
3275 "Expected Reg to only have one non-debug use?");
3276 Register MaybeLoad;
3277 int64_t Shift;
3278 if (!mi_match(Reg, MRI,
3279 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3280 Shift = 0;
3281 MaybeLoad = Reg;
3282 }
3283
3284 if (Shift % MemSizeInBits != 0)
3285 return None;
3286
3287 // TODO: Handle other types of loads.
3288 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
3289 if (!Load)
3290 return None;
3291
3292 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
3293 return None;
3294
3295 return std::make_pair(Load, Shift / MemSizeInBits);
3296 }
3297
3298 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
findLoadOffsetsForLoadOrCombine(SmallDenseMap<int64_t,int64_t,8> & MemOffset2Idx,const SmallVector<Register,8> & RegsToVisit,const unsigned MemSizeInBits)3299 CombinerHelper::findLoadOffsetsForLoadOrCombine(
3300 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3301 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3302
3303 // Each load found for the pattern. There should be one for each RegsToVisit.
3304 SmallSetVector<const MachineInstr *, 8> Loads;
3305
3306 // The lowest index used in any load. (The lowest "i" for each x[i].)
3307 int64_t LowestIdx = INT64_MAX;
3308
3309 // The load which uses the lowest index.
3310 GZExtLoad *LowestIdxLoad = nullptr;
3311
3312 // Keeps track of the load indices we see. We shouldn't see any indices twice.
3313 SmallSet<int64_t, 8> SeenIdx;
3314
3315 // Ensure each load is in the same MBB.
3316 // TODO: Support multiple MachineBasicBlocks.
3317 MachineBasicBlock *MBB = nullptr;
3318 const MachineMemOperand *MMO = nullptr;
3319
3320 // Earliest instruction-order load in the pattern.
3321 GZExtLoad *EarliestLoad = nullptr;
3322
3323 // Latest instruction-order load in the pattern.
3324 GZExtLoad *LatestLoad = nullptr;
3325
3326 // Base pointer which every load should share.
3327 Register BasePtr;
3328
3329 // We want to find a load for each register. Each load should have some
3330 // appropriate bit twiddling arithmetic. During this loop, we will also keep
3331 // track of the load which uses the lowest index. Later, we will check if we
3332 // can use its pointer in the final, combined load.
3333 for (auto Reg : RegsToVisit) {
3334 // Find the load, and find the position that it will end up in (e.g. a
3335 // shifted) value.
3336 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3337 if (!LoadAndPos)
3338 return None;
3339 GZExtLoad *Load;
3340 int64_t DstPos;
3341 std::tie(Load, DstPos) = *LoadAndPos;
3342
3343 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3344 // it is difficult to check for stores/calls/etc between loads.
3345 MachineBasicBlock *LoadMBB = Load->getParent();
3346 if (!MBB)
3347 MBB = LoadMBB;
3348 if (LoadMBB != MBB)
3349 return None;
3350
3351 // Make sure that the MachineMemOperands of every seen load are compatible.
3352 auto &LoadMMO = Load->getMMO();
3353 if (!MMO)
3354 MMO = &LoadMMO;
3355 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
3356 return None;
3357
3358 // Find out what the base pointer and index for the load is.
3359 Register LoadPtr;
3360 int64_t Idx;
3361 if (!mi_match(Load->getOperand(1).getReg(), MRI,
3362 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3363 LoadPtr = Load->getOperand(1).getReg();
3364 Idx = 0;
3365 }
3366
3367 // Don't combine things like a[i], a[i] -> a bigger load.
3368 if (!SeenIdx.insert(Idx).second)
3369 return None;
3370
3371 // Every load must share the same base pointer; don't combine things like:
3372 //
3373 // a[i], b[i + 1] -> a bigger load.
3374 if (!BasePtr.isValid())
3375 BasePtr = LoadPtr;
3376 if (BasePtr != LoadPtr)
3377 return None;
3378
3379 if (Idx < LowestIdx) {
3380 LowestIdx = Idx;
3381 LowestIdxLoad = Load;
3382 }
3383
3384 // Keep track of the byte offset that this load ends up at. If we have seen
3385 // the byte offset, then stop here. We do not want to combine:
3386 //
3387 // a[i] << 16, a[i + k] << 16 -> a bigger load.
3388 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3389 return None;
3390 Loads.insert(Load);
3391
3392 // Keep track of the position of the earliest/latest loads in the pattern.
3393 // We will check that there are no load fold barriers between them later
3394 // on.
3395 //
3396 // FIXME: Is there a better way to check for load fold barriers?
3397 if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3398 EarliestLoad = Load;
3399 if (!LatestLoad || dominates(*LatestLoad, *Load))
3400 LatestLoad = Load;
3401 }
3402
3403 // We found a load for each register. Let's check if each load satisfies the
3404 // pattern.
3405 assert(Loads.size() == RegsToVisit.size() &&
3406 "Expected to find a load for each register?");
3407 assert(EarliestLoad != LatestLoad && EarliestLoad &&
3408 LatestLoad && "Expected at least two loads?");
3409
3410 // Check if there are any stores, calls, etc. between any of the loads. If
3411 // there are, then we can't safely perform the combine.
3412 //
3413 // MaxIter is chosen based off the (worst case) number of iterations it
3414 // typically takes to succeed in the LLVM test suite plus some padding.
3415 //
3416 // FIXME: Is there a better way to check for load fold barriers?
3417 const unsigned MaxIter = 20;
3418 unsigned Iter = 0;
3419 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
3420 LatestLoad->getIterator())) {
3421 if (Loads.count(&MI))
3422 continue;
3423 if (MI.isLoadFoldBarrier())
3424 return None;
3425 if (Iter++ == MaxIter)
3426 return None;
3427 }
3428
3429 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
3430 }
3431
matchLoadOrCombine(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)3432 bool CombinerHelper::matchLoadOrCombine(
3433 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3434 assert(MI.getOpcode() == TargetOpcode::G_OR);
3435 MachineFunction &MF = *MI.getMF();
3436 // Assuming a little-endian target, transform:
3437 // s8 *a = ...
3438 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3439 // =>
3440 // s32 val = *((i32)a)
3441 //
3442 // s8 *a = ...
3443 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3444 // =>
3445 // s32 val = BSWAP(*((s32)a))
3446 Register Dst = MI.getOperand(0).getReg();
3447 LLT Ty = MRI.getType(Dst);
3448 if (Ty.isVector())
3449 return false;
3450
3451 // We need to combine at least two loads into this type. Since the smallest
3452 // possible load is into a byte, we need at least a 16-bit wide type.
3453 const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3454 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3455 return false;
3456
3457 // Match a collection of non-OR instructions in the pattern.
3458 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3459 if (!RegsToVisit)
3460 return false;
3461
3462 // We have a collection of non-OR instructions. Figure out how wide each of
3463 // the small loads should be based off of the number of potential loads we
3464 // found.
3465 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3466 if (NarrowMemSizeInBits % 8 != 0)
3467 return false;
3468
3469 // Check if each register feeding into each OR is a load from the same
3470 // base pointer + some arithmetic.
3471 //
3472 // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3473 //
3474 // Also verify that each of these ends up putting a[i] into the same memory
3475 // offset as a load into a wide type would.
3476 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3477 GZExtLoad *LowestIdxLoad, *LatestLoad;
3478 int64_t LowestIdx;
3479 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
3480 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3481 if (!MaybeLoadInfo)
3482 return false;
3483 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
3484
3485 // We have a bunch of loads being OR'd together. Using the addresses + offsets
3486 // we found before, check if this corresponds to a big or little endian byte
3487 // pattern. If it does, then we can represent it using a load + possibly a
3488 // BSWAP.
3489 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3490 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3491 if (!IsBigEndian)
3492 return false;
3493 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3494 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3495 return false;
3496
3497 // Make sure that the load from the lowest index produces offset 0 in the
3498 // final value.
3499 //
3500 // This ensures that we won't combine something like this:
3501 //
3502 // load x[i] -> byte 2
3503 // load x[i+1] -> byte 0 ---> wide_load x[i]
3504 // load x[i+2] -> byte 1
3505 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3506 const unsigned ZeroByteOffset =
3507 *IsBigEndian
3508 ? bigEndianByteAt(NumLoadsInTy, 0)
3509 : littleEndianByteAt(NumLoadsInTy, 0);
3510 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3511 if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3512 ZeroOffsetIdx->second != LowestIdx)
3513 return false;
3514
3515 // We wil reuse the pointer from the load which ends up at byte offset 0. It
3516 // may not use index 0.
3517 Register Ptr = LowestIdxLoad->getPointerReg();
3518 const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
3519 LegalityQuery::MemDesc MMDesc(MMO);
3520 MMDesc.MemoryTy = Ty;
3521 if (!isLegalOrBeforeLegalizer(
3522 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3523 return false;
3524 auto PtrInfo = MMO.getPointerInfo();
3525 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
3526
3527 // Load must be allowed and fast on the target.
3528 LLVMContext &C = MF.getFunction().getContext();
3529 auto &DL = MF.getDataLayout();
3530 bool Fast = false;
3531 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
3532 !Fast)
3533 return false;
3534
3535 MatchInfo = [=](MachineIRBuilder &MIB) {
3536 MIB.setInstrAndDebugLoc(*LatestLoad);
3537 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
3538 MIB.buildLoad(LoadDst, Ptr, *NewMMO);
3539 if (NeedsBSwap)
3540 MIB.buildBSwap(Dst, LoadDst);
3541 };
3542 return true;
3543 }
3544
3545 /// Check if the store \p Store is a truncstore that can be merged. That is,
3546 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty
3547 /// Register then it does not need to match and SrcVal is set to the source
3548 /// value found.
3549 /// On match, returns the start byte offset of the \p SrcVal that is being
3550 /// stored.
getTruncStoreByteOffset(GStore & Store,Register & SrcVal,MachineRegisterInfo & MRI)3551 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal,
3552 MachineRegisterInfo &MRI) {
3553 Register TruncVal;
3554 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal))))
3555 return None;
3556
3557 // The shift amount must be a constant multiple of the narrow type.
3558 // It is translated to the offset address in the wide source value "y".
3559 //
3560 // x = G_LSHR y, ShiftAmtC
3561 // s8 z = G_TRUNC x
3562 // store z, ...
3563 Register FoundSrcVal;
3564 int64_t ShiftAmt;
3565 if (!mi_match(TruncVal, MRI,
3566 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)),
3567 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) {
3568 if (!SrcVal.isValid() || TruncVal == SrcVal) {
3569 if (!SrcVal.isValid())
3570 SrcVal = TruncVal;
3571 return 0; // If it's the lowest index store.
3572 }
3573 return None;
3574 }
3575
3576 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits();
3577 if (ShiftAmt % NarrowBits!= 0)
3578 return None;
3579 const unsigned Offset = ShiftAmt / NarrowBits;
3580
3581 if (SrcVal.isValid() && FoundSrcVal != SrcVal)
3582 return None;
3583
3584 if (!SrcVal.isValid())
3585 SrcVal = FoundSrcVal;
3586 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal))
3587 return None;
3588 return Offset;
3589 }
3590
3591 /// Match a pattern where a wide type scalar value is stored by several narrow
3592 /// stores. Fold it into a single store or a BSWAP and a store if the targets
3593 /// supports it.
3594 ///
3595 /// Assuming little endian target:
3596 /// i8 *p = ...
3597 /// i32 val = ...
3598 /// p[0] = (val >> 0) & 0xFF;
3599 /// p[1] = (val >> 8) & 0xFF;
3600 /// p[2] = (val >> 16) & 0xFF;
3601 /// p[3] = (val >> 24) & 0xFF;
3602 /// =>
3603 /// *((i32)p) = val;
3604 ///
3605 /// i8 *p = ...
3606 /// i32 val = ...
3607 /// p[0] = (val >> 24) & 0xFF;
3608 /// p[1] = (val >> 16) & 0xFF;
3609 /// p[2] = (val >> 8) & 0xFF;
3610 /// p[3] = (val >> 0) & 0xFF;
3611 /// =>
3612 /// *((i32)p) = BSWAP(val);
matchTruncStoreMerge(MachineInstr & MI,MergeTruncStoresInfo & MatchInfo)3613 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI,
3614 MergeTruncStoresInfo &MatchInfo) {
3615 auto &StoreMI = cast<GStore>(MI);
3616 LLT MemTy = StoreMI.getMMO().getMemoryType();
3617
3618 // We only handle merging simple stores of 1-4 bytes.
3619 if (!MemTy.isScalar())
3620 return false;
3621 switch (MemTy.getSizeInBits()) {
3622 case 8:
3623 case 16:
3624 case 32:
3625 break;
3626 default:
3627 return false;
3628 }
3629 if (!StoreMI.isSimple())
3630 return false;
3631
3632 // We do a simple search for mergeable stores prior to this one.
3633 // Any potential alias hazard along the way terminates the search.
3634 SmallVector<GStore *> FoundStores;
3635
3636 // We're looking for:
3637 // 1) a (store(trunc(...)))
3638 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get
3639 // the partial value stored.
3640 // 3) where the offsets form either a little or big-endian sequence.
3641
3642 auto &LastStore = StoreMI;
3643
3644 // The single base pointer that all stores must use.
3645 Register BaseReg;
3646 int64_t LastOffset;
3647 if (!mi_match(LastStore.getPointerReg(), MRI,
3648 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) {
3649 BaseReg = LastStore.getPointerReg();
3650 LastOffset = 0;
3651 }
3652
3653 GStore *LowestIdxStore = &LastStore;
3654 int64_t LowestIdxOffset = LastOffset;
3655
3656 Register WideSrcVal;
3657 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI);
3658 if (!LowestShiftAmt)
3659 return false; // Didn't match a trunc.
3660 assert(WideSrcVal.isValid());
3661
3662 LLT WideStoreTy = MRI.getType(WideSrcVal);
3663 // The wide type might not be a multiple of the memory type, e.g. s48 and s32.
3664 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0)
3665 return false;
3666 const unsigned NumStoresRequired =
3667 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits();
3668
3669 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX);
3670 OffsetMap[*LowestShiftAmt] = LastOffset;
3671 FoundStores.emplace_back(&LastStore);
3672
3673 // Search the block up for more stores.
3674 // We use a search threshold of 10 instructions here because the combiner
3675 // works top-down within a block, and we don't want to search an unbounded
3676 // number of predecessor instructions trying to find matching stores.
3677 // If we moved this optimization into a separate pass then we could probably
3678 // use a more efficient search without having a hard-coded threshold.
3679 const int MaxInstsToCheck = 10;
3680 int NumInstsChecked = 0;
3681 for (auto II = ++LastStore.getReverseIterator();
3682 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck;
3683 ++II) {
3684 NumInstsChecked++;
3685 GStore *NewStore;
3686 if ((NewStore = dyn_cast<GStore>(&*II))) {
3687 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple())
3688 break;
3689 } else if (II->isLoadFoldBarrier() || II->mayLoad()) {
3690 break;
3691 } else {
3692 continue; // This is a safe instruction we can look past.
3693 }
3694
3695 Register NewBaseReg;
3696 int64_t MemOffset;
3697 // Check we're storing to the same base + some offset.
3698 if (!mi_match(NewStore->getPointerReg(), MRI,
3699 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) {
3700 NewBaseReg = NewStore->getPointerReg();
3701 MemOffset = 0;
3702 }
3703 if (BaseReg != NewBaseReg)
3704 break;
3705
3706 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI);
3707 if (!ShiftByteOffset)
3708 break;
3709 if (MemOffset < LowestIdxOffset) {
3710 LowestIdxOffset = MemOffset;
3711 LowestIdxStore = NewStore;
3712 }
3713
3714 // Map the offset in the store and the offset in the combined value, and
3715 // early return if it has been set before.
3716 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired ||
3717 OffsetMap[*ShiftByteOffset] != INT64_MAX)
3718 break;
3719 OffsetMap[*ShiftByteOffset] = MemOffset;
3720
3721 FoundStores.emplace_back(NewStore);
3722 // Reset counter since we've found a matching inst.
3723 NumInstsChecked = 0;
3724 if (FoundStores.size() == NumStoresRequired)
3725 break;
3726 }
3727
3728 if (FoundStores.size() != NumStoresRequired) {
3729 return false;
3730 }
3731
3732 const auto &DL = LastStore.getMF()->getDataLayout();
3733 auto &C = LastStore.getMF()->getFunction().getContext();
3734 // Check that a store of the wide type is both allowed and fast on the target
3735 bool Fast = false;
3736 bool Allowed = getTargetLowering().allowsMemoryAccess(
3737 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast);
3738 if (!Allowed || !Fast)
3739 return false;
3740
3741 // Check if the pieces of the value are going to the expected places in memory
3742 // to merge the stores.
3743 unsigned NarrowBits = MemTy.getScalarSizeInBits();
3744 auto checkOffsets = [&](bool MatchLittleEndian) {
3745 if (MatchLittleEndian) {
3746 for (unsigned i = 0; i != NumStoresRequired; ++i)
3747 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset)
3748 return false;
3749 } else { // MatchBigEndian by reversing loop counter.
3750 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired;
3751 ++i, --j)
3752 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset)
3753 return false;
3754 }
3755 return true;
3756 };
3757
3758 // Check if the offsets line up for the native data layout of this target.
3759 bool NeedBswap = false;
3760 bool NeedRotate = false;
3761 if (!checkOffsets(DL.isLittleEndian())) {
3762 // Special-case: check if byte offsets line up for the opposite endian.
3763 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian()))
3764 NeedBswap = true;
3765 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian()))
3766 NeedRotate = true;
3767 else
3768 return false;
3769 }
3770
3771 if (NeedBswap &&
3772 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}))
3773 return false;
3774 if (NeedRotate &&
3775 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}}))
3776 return false;
3777
3778 MatchInfo.NeedBSwap = NeedBswap;
3779 MatchInfo.NeedRotate = NeedRotate;
3780 MatchInfo.LowestIdxStore = LowestIdxStore;
3781 MatchInfo.WideSrcVal = WideSrcVal;
3782 MatchInfo.FoundStores = std::move(FoundStores);
3783 return true;
3784 }
3785
applyTruncStoreMerge(MachineInstr & MI,MergeTruncStoresInfo & MatchInfo)3786 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI,
3787 MergeTruncStoresInfo &MatchInfo) {
3788
3789 Builder.setInstrAndDebugLoc(MI);
3790 Register WideSrcVal = MatchInfo.WideSrcVal;
3791 LLT WideStoreTy = MRI.getType(WideSrcVal);
3792
3793 if (MatchInfo.NeedBSwap) {
3794 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0);
3795 } else if (MatchInfo.NeedRotate) {
3796 assert(WideStoreTy.getSizeInBits() % 2 == 0 &&
3797 "Unexpected type for rotate");
3798 auto RotAmt =
3799 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2);
3800 WideSrcVal =
3801 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0);
3802 }
3803
3804 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(),
3805 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(),
3806 MatchInfo.LowestIdxStore->getMMO().getAlign());
3807
3808 // Erase the old stores.
3809 for (auto *ST : MatchInfo.FoundStores)
3810 ST->eraseFromParent();
3811 }
3812
matchExtendThroughPhis(MachineInstr & MI,MachineInstr * & ExtMI)3813 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
3814 MachineInstr *&ExtMI) {
3815 assert(MI.getOpcode() == TargetOpcode::G_PHI);
3816
3817 Register DstReg = MI.getOperand(0).getReg();
3818
3819 // TODO: Extending a vector may be expensive, don't do this until heuristics
3820 // are better.
3821 if (MRI.getType(DstReg).isVector())
3822 return false;
3823
3824 // Try to match a phi, whose only use is an extend.
3825 if (!MRI.hasOneNonDBGUse(DstReg))
3826 return false;
3827 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
3828 switch (ExtMI->getOpcode()) {
3829 case TargetOpcode::G_ANYEXT:
3830 return true; // G_ANYEXT is usually free.
3831 case TargetOpcode::G_ZEXT:
3832 case TargetOpcode::G_SEXT:
3833 break;
3834 default:
3835 return false;
3836 }
3837
3838 // If the target is likely to fold this extend away, don't propagate.
3839 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
3840 return false;
3841
3842 // We don't want to propagate the extends unless there's a good chance that
3843 // they'll be optimized in some way.
3844 // Collect the unique incoming values.
3845 SmallPtrSet<MachineInstr *, 4> InSrcs;
3846 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
3847 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
3848 switch (DefMI->getOpcode()) {
3849 case TargetOpcode::G_LOAD:
3850 case TargetOpcode::G_TRUNC:
3851 case TargetOpcode::G_SEXT:
3852 case TargetOpcode::G_ZEXT:
3853 case TargetOpcode::G_ANYEXT:
3854 case TargetOpcode::G_CONSTANT:
3855 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
3856 // Don't try to propagate if there are too many places to create new
3857 // extends, chances are it'll increase code size.
3858 if (InSrcs.size() > 2)
3859 return false;
3860 break;
3861 default:
3862 return false;
3863 }
3864 }
3865 return true;
3866 }
3867
applyExtendThroughPhis(MachineInstr & MI,MachineInstr * & ExtMI)3868 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
3869 MachineInstr *&ExtMI) {
3870 assert(MI.getOpcode() == TargetOpcode::G_PHI);
3871 Register DstReg = ExtMI->getOperand(0).getReg();
3872 LLT ExtTy = MRI.getType(DstReg);
3873
3874 // Propagate the extension into the block of each incoming reg's block.
3875 // Use a SetVector here because PHIs can have duplicate edges, and we want
3876 // deterministic iteration order.
3877 SmallSetVector<MachineInstr *, 8> SrcMIs;
3878 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
3879 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
3880 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
3881 if (!SrcMIs.insert(SrcMI))
3882 continue;
3883
3884 // Build an extend after each src inst.
3885 auto *MBB = SrcMI->getParent();
3886 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
3887 if (InsertPt != MBB->end() && InsertPt->isPHI())
3888 InsertPt = MBB->getFirstNonPHI();
3889
3890 Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
3891 Builder.setDebugLoc(MI.getDebugLoc());
3892 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
3893 SrcMI->getOperand(0).getReg());
3894 OldToNewSrcMap[SrcMI] = NewExt;
3895 }
3896
3897 // Create a new phi with the extended inputs.
3898 Builder.setInstrAndDebugLoc(MI);
3899 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
3900 NewPhi.addDef(DstReg);
3901 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
3902 if (!MO.isReg()) {
3903 NewPhi.addMBB(MO.getMBB());
3904 continue;
3905 }
3906 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
3907 NewPhi.addUse(NewSrc->getOperand(0).getReg());
3908 }
3909 Builder.insertInstr(NewPhi);
3910 ExtMI->eraseFromParent();
3911 }
3912
matchExtractVecEltBuildVec(MachineInstr & MI,Register & Reg)3913 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
3914 Register &Reg) {
3915 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
3916 // If we have a constant index, look for a G_BUILD_VECTOR source
3917 // and find the source register that the index maps to.
3918 Register SrcVec = MI.getOperand(1).getReg();
3919 LLT SrcTy = MRI.getType(SrcVec);
3920 if (!isLegalOrBeforeLegalizer(
3921 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}}))
3922 return false;
3923
3924 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
3925 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
3926 return false;
3927
3928 unsigned VecIdx = Cst->Value.getZExtValue();
3929 MachineInstr *BuildVecMI =
3930 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI);
3931 if (!BuildVecMI) {
3932 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI);
3933 if (!BuildVecMI)
3934 return false;
3935 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg());
3936 if (!isLegalOrBeforeLegalizer(
3937 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}}))
3938 return false;
3939 }
3940
3941 EVT Ty(getMVTForLLT(SrcTy));
3942 if (!MRI.hasOneNonDBGUse(SrcVec) &&
3943 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
3944 return false;
3945
3946 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg();
3947 return true;
3948 }
3949
applyExtractVecEltBuildVec(MachineInstr & MI,Register & Reg)3950 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
3951 Register &Reg) {
3952 // Check the type of the register, since it may have come from a
3953 // G_BUILD_VECTOR_TRUNC.
3954 LLT ScalarTy = MRI.getType(Reg);
3955 Register DstReg = MI.getOperand(0).getReg();
3956 LLT DstTy = MRI.getType(DstReg);
3957
3958 Builder.setInstrAndDebugLoc(MI);
3959 if (ScalarTy != DstTy) {
3960 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
3961 Builder.buildTrunc(DstReg, Reg);
3962 MI.eraseFromParent();
3963 return;
3964 }
3965 replaceSingleDefInstWithReg(MI, Reg);
3966 }
3967
matchExtractAllEltsFromBuildVector(MachineInstr & MI,SmallVectorImpl<std::pair<Register,MachineInstr * >> & SrcDstPairs)3968 bool CombinerHelper::matchExtractAllEltsFromBuildVector(
3969 MachineInstr &MI,
3970 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
3971 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
3972 // This combine tries to find build_vector's which have every source element
3973 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
3974 // the masked load scalarization is run late in the pipeline. There's already
3975 // a combine for a similar pattern starting from the extract, but that
3976 // doesn't attempt to do it if there are multiple uses of the build_vector,
3977 // which in this case is true. Starting the combine from the build_vector
3978 // feels more natural than trying to find sibling nodes of extracts.
3979 // E.g.
3980 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
3981 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
3982 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
3983 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
3984 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
3985 // ==>
3986 // replace ext{1,2,3,4} with %s{1,2,3,4}
3987
3988 Register DstReg = MI.getOperand(0).getReg();
3989 LLT DstTy = MRI.getType(DstReg);
3990 unsigned NumElts = DstTy.getNumElements();
3991
3992 SmallBitVector ExtractedElts(NumElts);
3993 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) {
3994 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
3995 return false;
3996 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI);
3997 if (!Cst)
3998 return false;
3999 unsigned Idx = Cst->getZExtValue();
4000 if (Idx >= NumElts)
4001 return false; // Out of range.
4002 ExtractedElts.set(Idx);
4003 SrcDstPairs.emplace_back(
4004 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
4005 }
4006 // Match if every element was extracted.
4007 return ExtractedElts.all();
4008 }
4009
applyExtractAllEltsFromBuildVector(MachineInstr & MI,SmallVectorImpl<std::pair<Register,MachineInstr * >> & SrcDstPairs)4010 void CombinerHelper::applyExtractAllEltsFromBuildVector(
4011 MachineInstr &MI,
4012 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
4013 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4014 for (auto &Pair : SrcDstPairs) {
4015 auto *ExtMI = Pair.second;
4016 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
4017 ExtMI->eraseFromParent();
4018 }
4019 MI.eraseFromParent();
4020 }
4021
applyBuildFn(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4022 void CombinerHelper::applyBuildFn(
4023 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4024 Builder.setInstrAndDebugLoc(MI);
4025 MatchInfo(Builder);
4026 MI.eraseFromParent();
4027 }
4028
applyBuildFnNoErase(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4029 void CombinerHelper::applyBuildFnNoErase(
4030 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4031 Builder.setInstrAndDebugLoc(MI);
4032 MatchInfo(Builder);
4033 }
4034
matchOrShiftToFunnelShift(MachineInstr & MI,BuildFnTy & MatchInfo)4035 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI,
4036 BuildFnTy &MatchInfo) {
4037 assert(MI.getOpcode() == TargetOpcode::G_OR);
4038
4039 Register Dst = MI.getOperand(0).getReg();
4040 LLT Ty = MRI.getType(Dst);
4041 unsigned BitWidth = Ty.getScalarSizeInBits();
4042
4043 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt;
4044 unsigned FshOpc = 0;
4045
4046 // Match (or (shl ...), (lshr ...)).
4047 if (!mi_match(Dst, MRI,
4048 // m_GOr() handles the commuted version as well.
4049 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)),
4050 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)))))
4051 return false;
4052
4053 // Given constants C0 and C1 such that C0 + C1 is bit-width:
4054 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1)
4055 int64_t CstShlAmt, CstLShrAmt;
4056 if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) &&
4057 mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) &&
4058 CstShlAmt + CstLShrAmt == BitWidth) {
4059 FshOpc = TargetOpcode::G_FSHR;
4060 Amt = LShrAmt;
4061
4062 } else if (mi_match(LShrAmt, MRI,
4063 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4064 ShlAmt == Amt) {
4065 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt)
4066 FshOpc = TargetOpcode::G_FSHL;
4067
4068 } else if (mi_match(ShlAmt, MRI,
4069 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4070 LShrAmt == Amt) {
4071 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt)
4072 FshOpc = TargetOpcode::G_FSHR;
4073
4074 } else {
4075 return false;
4076 }
4077
4078 LLT AmtTy = MRI.getType(Amt);
4079 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}}))
4080 return false;
4081
4082 MatchInfo = [=](MachineIRBuilder &B) {
4083 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt});
4084 };
4085 return true;
4086 }
4087
4088 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
matchFunnelShiftToRotate(MachineInstr & MI)4089 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
4090 unsigned Opc = MI.getOpcode();
4091 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4092 Register X = MI.getOperand(1).getReg();
4093 Register Y = MI.getOperand(2).getReg();
4094 if (X != Y)
4095 return false;
4096 unsigned RotateOpc =
4097 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
4098 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
4099 }
4100
applyFunnelShiftToRotate(MachineInstr & MI)4101 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
4102 unsigned Opc = MI.getOpcode();
4103 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4104 bool IsFSHL = Opc == TargetOpcode::G_FSHL;
4105 Observer.changingInstr(MI);
4106 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
4107 : TargetOpcode::G_ROTR));
4108 MI.removeOperand(2);
4109 Observer.changedInstr(MI);
4110 }
4111
4112 // Fold (rot x, c) -> (rot x, c % BitSize)
matchRotateOutOfRange(MachineInstr & MI)4113 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
4114 assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4115 MI.getOpcode() == TargetOpcode::G_ROTR);
4116 unsigned Bitsize =
4117 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4118 Register AmtReg = MI.getOperand(2).getReg();
4119 bool OutOfRange = false;
4120 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
4121 if (auto *CI = dyn_cast<ConstantInt>(C))
4122 OutOfRange |= CI->getValue().uge(Bitsize);
4123 return true;
4124 };
4125 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
4126 }
4127
applyRotateOutOfRange(MachineInstr & MI)4128 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
4129 assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4130 MI.getOpcode() == TargetOpcode::G_ROTR);
4131 unsigned Bitsize =
4132 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4133 Builder.setInstrAndDebugLoc(MI);
4134 Register Amt = MI.getOperand(2).getReg();
4135 LLT AmtTy = MRI.getType(Amt);
4136 auto Bits = Builder.buildConstant(AmtTy, Bitsize);
4137 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
4138 Observer.changingInstr(MI);
4139 MI.getOperand(2).setReg(Amt);
4140 Observer.changedInstr(MI);
4141 }
4142
matchICmpToTrueFalseKnownBits(MachineInstr & MI,int64_t & MatchInfo)4143 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
4144 int64_t &MatchInfo) {
4145 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4146 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4147 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
4148 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
4149 Optional<bool> KnownVal;
4150 switch (Pred) {
4151 default:
4152 llvm_unreachable("Unexpected G_ICMP predicate?");
4153 case CmpInst::ICMP_EQ:
4154 KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
4155 break;
4156 case CmpInst::ICMP_NE:
4157 KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
4158 break;
4159 case CmpInst::ICMP_SGE:
4160 KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
4161 break;
4162 case CmpInst::ICMP_SGT:
4163 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
4164 break;
4165 case CmpInst::ICMP_SLE:
4166 KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
4167 break;
4168 case CmpInst::ICMP_SLT:
4169 KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
4170 break;
4171 case CmpInst::ICMP_UGE:
4172 KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
4173 break;
4174 case CmpInst::ICMP_UGT:
4175 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
4176 break;
4177 case CmpInst::ICMP_ULE:
4178 KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
4179 break;
4180 case CmpInst::ICMP_ULT:
4181 KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
4182 break;
4183 }
4184 if (!KnownVal)
4185 return false;
4186 MatchInfo =
4187 *KnownVal
4188 ? getICmpTrueVal(getTargetLowering(),
4189 /*IsVector = */
4190 MRI.getType(MI.getOperand(0).getReg()).isVector(),
4191 /* IsFP = */ false)
4192 : 0;
4193 return true;
4194 }
4195
matchICmpToLHSKnownBits(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4196 bool CombinerHelper::matchICmpToLHSKnownBits(
4197 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4198 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4199 // Given:
4200 //
4201 // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4202 // %cmp = G_ICMP ne %x, 0
4203 //
4204 // Or:
4205 //
4206 // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4207 // %cmp = G_ICMP eq %x, 1
4208 //
4209 // We can replace %cmp with %x assuming true is 1 on the target.
4210 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4211 if (!CmpInst::isEquality(Pred))
4212 return false;
4213 Register Dst = MI.getOperand(0).getReg();
4214 LLT DstTy = MRI.getType(Dst);
4215 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
4216 /* IsFP = */ false) != 1)
4217 return false;
4218 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
4219 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
4220 return false;
4221 Register LHS = MI.getOperand(2).getReg();
4222 auto KnownLHS = KB->getKnownBits(LHS);
4223 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
4224 return false;
4225 // Make sure replacing Dst with the LHS is a legal operation.
4226 LLT LHSTy = MRI.getType(LHS);
4227 unsigned LHSSize = LHSTy.getSizeInBits();
4228 unsigned DstSize = DstTy.getSizeInBits();
4229 unsigned Op = TargetOpcode::COPY;
4230 if (DstSize != LHSSize)
4231 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
4232 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
4233 return false;
4234 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
4235 return true;
4236 }
4237
4238 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0
matchAndOrDisjointMask(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4239 bool CombinerHelper::matchAndOrDisjointMask(
4240 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4241 assert(MI.getOpcode() == TargetOpcode::G_AND);
4242
4243 // Ignore vector types to simplify matching the two constants.
4244 // TODO: do this for vectors and scalars via a demanded bits analysis.
4245 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
4246 if (Ty.isVector())
4247 return false;
4248
4249 Register Src;
4250 Register AndMaskReg;
4251 int64_t AndMaskBits;
4252 int64_t OrMaskBits;
4253 if (!mi_match(MI, MRI,
4254 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)),
4255 m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg)))))
4256 return false;
4257
4258 // Check if OrMask could turn on any bits in Src.
4259 if (AndMaskBits & OrMaskBits)
4260 return false;
4261
4262 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4263 Observer.changingInstr(MI);
4264 // Canonicalize the result to have the constant on the RHS.
4265 if (MI.getOperand(1).getReg() == AndMaskReg)
4266 MI.getOperand(2).setReg(AndMaskReg);
4267 MI.getOperand(1).setReg(Src);
4268 Observer.changedInstr(MI);
4269 };
4270 return true;
4271 }
4272
4273 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
matchBitfieldExtractFromSExtInReg(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4274 bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
4275 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4276 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
4277 Register Dst = MI.getOperand(0).getReg();
4278 Register Src = MI.getOperand(1).getReg();
4279 LLT Ty = MRI.getType(Src);
4280 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4281 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
4282 return false;
4283 int64_t Width = MI.getOperand(2).getImm();
4284 Register ShiftSrc;
4285 int64_t ShiftImm;
4286 if (!mi_match(
4287 Src, MRI,
4288 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
4289 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
4290 return false;
4291 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
4292 return false;
4293
4294 MatchInfo = [=](MachineIRBuilder &B) {
4295 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
4296 auto Cst2 = B.buildConstant(ExtractTy, Width);
4297 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
4298 };
4299 return true;
4300 }
4301
4302 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
matchBitfieldExtractFromAnd(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4303 bool CombinerHelper::matchBitfieldExtractFromAnd(
4304 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4305 assert(MI.getOpcode() == TargetOpcode::G_AND);
4306 Register Dst = MI.getOperand(0).getReg();
4307 LLT Ty = MRI.getType(Dst);
4308 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4309 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
4310 TargetOpcode::G_UBFX, Ty, ExtractTy))
4311 return false;
4312
4313 int64_t AndImm, LSBImm;
4314 Register ShiftSrc;
4315 const unsigned Size = Ty.getScalarSizeInBits();
4316 if (!mi_match(MI.getOperand(0).getReg(), MRI,
4317 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
4318 m_ICst(AndImm))))
4319 return false;
4320
4321 // The mask is a mask of the low bits iff imm & (imm+1) == 0.
4322 auto MaybeMask = static_cast<uint64_t>(AndImm);
4323 if (MaybeMask & (MaybeMask + 1))
4324 return false;
4325
4326 // LSB must fit within the register.
4327 if (static_cast<uint64_t>(LSBImm) >= Size)
4328 return false;
4329
4330 uint64_t Width = APInt(Size, AndImm).countTrailingOnes();
4331 MatchInfo = [=](MachineIRBuilder &B) {
4332 auto WidthCst = B.buildConstant(ExtractTy, Width);
4333 auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
4334 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
4335 };
4336 return true;
4337 }
4338
matchBitfieldExtractFromShr(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4339 bool CombinerHelper::matchBitfieldExtractFromShr(
4340 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4341 const unsigned Opcode = MI.getOpcode();
4342 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR);
4343
4344 const Register Dst = MI.getOperand(0).getReg();
4345
4346 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
4347 ? TargetOpcode::G_SBFX
4348 : TargetOpcode::G_UBFX;
4349
4350 // Check if the type we would use for the extract is legal
4351 LLT Ty = MRI.getType(Dst);
4352 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4353 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
4354 return false;
4355
4356 Register ShlSrc;
4357 int64_t ShrAmt;
4358 int64_t ShlAmt;
4359 const unsigned Size = Ty.getScalarSizeInBits();
4360
4361 // Try to match shr (shl x, c1), c2
4362 if (!mi_match(Dst, MRI,
4363 m_BinOp(Opcode,
4364 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
4365 m_ICst(ShrAmt))))
4366 return false;
4367
4368 // Make sure that the shift sizes can fit a bitfield extract
4369 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
4370 return false;
4371
4372 // Skip this combine if the G_SEXT_INREG combine could handle it
4373 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
4374 return false;
4375
4376 // Calculate start position and width of the extract
4377 const int64_t Pos = ShrAmt - ShlAmt;
4378 const int64_t Width = Size - ShrAmt;
4379
4380 MatchInfo = [=](MachineIRBuilder &B) {
4381 auto WidthCst = B.buildConstant(ExtractTy, Width);
4382 auto PosCst = B.buildConstant(ExtractTy, Pos);
4383 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
4384 };
4385 return true;
4386 }
4387
matchBitfieldExtractFromShrAnd(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4388 bool CombinerHelper::matchBitfieldExtractFromShrAnd(
4389 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4390 const unsigned Opcode = MI.getOpcode();
4391 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR);
4392
4393 const Register Dst = MI.getOperand(0).getReg();
4394 LLT Ty = MRI.getType(Dst);
4395 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4396 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
4397 TargetOpcode::G_UBFX, Ty, ExtractTy))
4398 return false;
4399
4400 // Try to match shr (and x, c1), c2
4401 Register AndSrc;
4402 int64_t ShrAmt;
4403 int64_t SMask;
4404 if (!mi_match(Dst, MRI,
4405 m_BinOp(Opcode,
4406 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))),
4407 m_ICst(ShrAmt))))
4408 return false;
4409
4410 const unsigned Size = Ty.getScalarSizeInBits();
4411 if (ShrAmt < 0 || ShrAmt >= Size)
4412 return false;
4413
4414 // If the shift subsumes the mask, emit the 0 directly.
4415 if (0 == (SMask >> ShrAmt)) {
4416 MatchInfo = [=](MachineIRBuilder &B) {
4417 B.buildConstant(Dst, 0);
4418 };
4419 return true;
4420 }
4421
4422 // Check that ubfx can do the extraction, with no holes in the mask.
4423 uint64_t UMask = SMask;
4424 UMask |= maskTrailingOnes<uint64_t>(ShrAmt);
4425 UMask &= maskTrailingOnes<uint64_t>(Size);
4426 if (!isMask_64(UMask))
4427 return false;
4428
4429 // Calculate start position and width of the extract.
4430 const int64_t Pos = ShrAmt;
4431 const int64_t Width = countTrailingOnes(UMask) - ShrAmt;
4432
4433 // It's preferable to keep the shift, rather than form G_SBFX.
4434 // TODO: remove the G_AND via demanded bits analysis.
4435 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size)
4436 return false;
4437
4438 MatchInfo = [=](MachineIRBuilder &B) {
4439 auto WidthCst = B.buildConstant(ExtractTy, Width);
4440 auto PosCst = B.buildConstant(ExtractTy, Pos);
4441 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst});
4442 };
4443 return true;
4444 }
4445
reassociationCanBreakAddressingModePattern(MachineInstr & PtrAdd)4446 bool CombinerHelper::reassociationCanBreakAddressingModePattern(
4447 MachineInstr &PtrAdd) {
4448 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD);
4449
4450 Register Src1Reg = PtrAdd.getOperand(1).getReg();
4451 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI);
4452 if (!Src1Def)
4453 return false;
4454
4455 Register Src2Reg = PtrAdd.getOperand(2).getReg();
4456
4457 if (MRI.hasOneNonDBGUse(Src1Reg))
4458 return false;
4459
4460 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI);
4461 if (!C1)
4462 return false;
4463 auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4464 if (!C2)
4465 return false;
4466
4467 const APInt &C1APIntVal = *C1;
4468 const APInt &C2APIntVal = *C2;
4469 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
4470
4471 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) {
4472 // This combine may end up running before ptrtoint/inttoptr combines
4473 // manage to eliminate redundant conversions, so try to look through them.
4474 MachineInstr *ConvUseMI = &UseMI;
4475 unsigned ConvUseOpc = ConvUseMI->getOpcode();
4476 while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
4477 ConvUseOpc == TargetOpcode::G_PTRTOINT) {
4478 Register DefReg = ConvUseMI->getOperand(0).getReg();
4479 if (!MRI.hasOneNonDBGUse(DefReg))
4480 break;
4481 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
4482 ConvUseOpc = ConvUseMI->getOpcode();
4483 }
4484 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD ||
4485 ConvUseOpc == TargetOpcode::G_STORE;
4486 if (!LoadStore)
4487 continue;
4488 // Is x[offset2] already not a legal addressing mode? If so then
4489 // reassociating the constants breaks nothing (we test offset2 because
4490 // that's the one we hope to fold into the load or store).
4491 TargetLoweringBase::AddrMode AM;
4492 AM.HasBaseReg = true;
4493 AM.BaseOffs = C2APIntVal.getSExtValue();
4494 unsigned AS =
4495 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace();
4496 Type *AccessTy =
4497 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()),
4498 PtrAdd.getMF()->getFunction().getContext());
4499 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
4500 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4501 AccessTy, AS))
4502 continue;
4503
4504 // Would x[offset1+offset2] still be a legal addressing mode?
4505 AM.BaseOffs = CombinedValue;
4506 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4507 AccessTy, AS))
4508 return true;
4509 }
4510
4511 return false;
4512 }
4513
matchReassocConstantInnerRHS(GPtrAdd & MI,MachineInstr * RHS,BuildFnTy & MatchInfo)4514 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI,
4515 MachineInstr *RHS,
4516 BuildFnTy &MatchInfo) {
4517 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4518 Register Src1Reg = MI.getOperand(1).getReg();
4519 if (RHS->getOpcode() != TargetOpcode::G_ADD)
4520 return false;
4521 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
4522 if (!C2)
4523 return false;
4524
4525 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4526 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
4527
4528 auto NewBase =
4529 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
4530 Observer.changingInstr(MI);
4531 MI.getOperand(1).setReg(NewBase.getReg(0));
4532 MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
4533 Observer.changedInstr(MI);
4534 };
4535 return !reassociationCanBreakAddressingModePattern(MI);
4536 }
4537
matchReassocConstantInnerLHS(GPtrAdd & MI,MachineInstr * LHS,MachineInstr * RHS,BuildFnTy & MatchInfo)4538 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI,
4539 MachineInstr *LHS,
4540 MachineInstr *RHS,
4541 BuildFnTy &MatchInfo) {
4542 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C)
4543 // if and only if (G_PTR_ADD X, C) has one use.
4544 Register LHSBase;
4545 Optional<ValueAndVReg> LHSCstOff;
4546 if (!mi_match(MI.getBaseReg(), MRI,
4547 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff)))))
4548 return false;
4549
4550 auto *LHSPtrAdd = cast<GPtrAdd>(LHS);
4551 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4552 // When we change LHSPtrAdd's offset register we might cause it to use a reg
4553 // before its def. Sink the instruction so the outer PTR_ADD to ensure this
4554 // doesn't happen.
4555 LHSPtrAdd->moveBefore(&MI);
4556 Register RHSReg = MI.getOffsetReg();
4557 Observer.changingInstr(MI);
4558 MI.getOperand(2).setReg(LHSCstOff->VReg);
4559 Observer.changedInstr(MI);
4560 Observer.changingInstr(*LHSPtrAdd);
4561 LHSPtrAdd->getOperand(2).setReg(RHSReg);
4562 Observer.changedInstr(*LHSPtrAdd);
4563 };
4564 return !reassociationCanBreakAddressingModePattern(MI);
4565 }
4566
matchReassocFoldConstantsInSubTree(GPtrAdd & MI,MachineInstr * LHS,MachineInstr * RHS,BuildFnTy & MatchInfo)4567 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI,
4568 MachineInstr *LHS,
4569 MachineInstr *RHS,
4570 BuildFnTy &MatchInfo) {
4571 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4572 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS);
4573 if (!LHSPtrAdd)
4574 return false;
4575
4576 Register Src2Reg = MI.getOperand(2).getReg();
4577 Register LHSSrc1 = LHSPtrAdd->getBaseReg();
4578 Register LHSSrc2 = LHSPtrAdd->getOffsetReg();
4579 auto C1 = getIConstantVRegVal(LHSSrc2, MRI);
4580 if (!C1)
4581 return false;
4582 auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4583 if (!C2)
4584 return false;
4585
4586 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4587 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
4588 Observer.changingInstr(MI);
4589 MI.getOperand(1).setReg(LHSSrc1);
4590 MI.getOperand(2).setReg(NewCst.getReg(0));
4591 Observer.changedInstr(MI);
4592 };
4593 return !reassociationCanBreakAddressingModePattern(MI);
4594 }
4595
matchReassocPtrAdd(MachineInstr & MI,BuildFnTy & MatchInfo)4596 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI,
4597 BuildFnTy &MatchInfo) {
4598 auto &PtrAdd = cast<GPtrAdd>(MI);
4599 // We're trying to match a few pointer computation patterns here for
4600 // re-association opportunities.
4601 // 1) Isolating a constant operand to be on the RHS, e.g.:
4602 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4603 //
4604 // 2) Folding two constants in each sub-tree as long as such folding
4605 // doesn't break a legal addressing mode.
4606 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4607 //
4608 // 3) Move a constant from the LHS of an inner op to the RHS of the outer.
4609 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C)
4610 // iif (G_PTR_ADD X, C) has one use.
4611 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg());
4612 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg());
4613
4614 // Try to match example 2.
4615 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo))
4616 return true;
4617
4618 // Try to match example 3.
4619 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo))
4620 return true;
4621
4622 // Try to match example 1.
4623 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo))
4624 return true;
4625
4626 return false;
4627 }
4628
matchConstantFold(MachineInstr & MI,APInt & MatchInfo)4629 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) {
4630 Register Op1 = MI.getOperand(1).getReg();
4631 Register Op2 = MI.getOperand(2).getReg();
4632 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
4633 if (!MaybeCst)
4634 return false;
4635 MatchInfo = *MaybeCst;
4636 return true;
4637 }
4638
matchNarrowBinopFeedingAnd(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4639 bool CombinerHelper::matchNarrowBinopFeedingAnd(
4640 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4641 // Look for a binop feeding into an AND with a mask:
4642 //
4643 // %add = G_ADD %lhs, %rhs
4644 // %and = G_AND %add, 000...11111111
4645 //
4646 // Check if it's possible to perform the binop at a narrower width and zext
4647 // back to the original width like so:
4648 //
4649 // %narrow_lhs = G_TRUNC %lhs
4650 // %narrow_rhs = G_TRUNC %rhs
4651 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
4652 // %new_add = G_ZEXT %narrow_add
4653 // %and = G_AND %new_add, 000...11111111
4654 //
4655 // This can allow later combines to eliminate the G_AND if it turns out
4656 // that the mask is irrelevant.
4657 assert(MI.getOpcode() == TargetOpcode::G_AND);
4658 Register Dst = MI.getOperand(0).getReg();
4659 Register AndLHS = MI.getOperand(1).getReg();
4660 Register AndRHS = MI.getOperand(2).getReg();
4661 LLT WideTy = MRI.getType(Dst);
4662
4663 // If the potential binop has more than one use, then it's possible that one
4664 // of those uses will need its full width.
4665 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
4666 return false;
4667
4668 // Check if the LHS feeding the AND is impacted by the high bits that we're
4669 // masking out.
4670 //
4671 // e.g. for 64-bit x, y:
4672 //
4673 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
4674 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
4675 if (!LHSInst)
4676 return false;
4677 unsigned LHSOpc = LHSInst->getOpcode();
4678 switch (LHSOpc) {
4679 default:
4680 return false;
4681 case TargetOpcode::G_ADD:
4682 case TargetOpcode::G_SUB:
4683 case TargetOpcode::G_MUL:
4684 case TargetOpcode::G_AND:
4685 case TargetOpcode::G_OR:
4686 case TargetOpcode::G_XOR:
4687 break;
4688 }
4689
4690 // Find the mask on the RHS.
4691 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI);
4692 if (!Cst)
4693 return false;
4694 auto Mask = Cst->Value;
4695 if (!Mask.isMask())
4696 return false;
4697
4698 // No point in combining if there's nothing to truncate.
4699 unsigned NarrowWidth = Mask.countTrailingOnes();
4700 if (NarrowWidth == WideTy.getSizeInBits())
4701 return false;
4702 LLT NarrowTy = LLT::scalar(NarrowWidth);
4703
4704 // Check if adding the zext + truncates could be harmful.
4705 auto &MF = *MI.getMF();
4706 const auto &TLI = getTargetLowering();
4707 LLVMContext &Ctx = MF.getFunction().getContext();
4708 auto &DL = MF.getDataLayout();
4709 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) ||
4710 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx))
4711 return false;
4712 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
4713 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
4714 return false;
4715 Register BinOpLHS = LHSInst->getOperand(1).getReg();
4716 Register BinOpRHS = LHSInst->getOperand(2).getReg();
4717 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4718 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
4719 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
4720 auto NarrowBinOp =
4721 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
4722 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
4723 Observer.changingInstr(MI);
4724 MI.getOperand(1).setReg(Ext.getReg(0));
4725 Observer.changedInstr(MI);
4726 };
4727 return true;
4728 }
4729
matchMulOBy2(MachineInstr & MI,BuildFnTy & MatchInfo)4730 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) {
4731 unsigned Opc = MI.getOpcode();
4732 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO);
4733
4734 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2)))
4735 return false;
4736
4737 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4738 Observer.changingInstr(MI);
4739 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO
4740 : TargetOpcode::G_SADDO;
4741 MI.setDesc(Builder.getTII().get(NewOpc));
4742 MI.getOperand(3).setReg(MI.getOperand(2).getReg());
4743 Observer.changedInstr(MI);
4744 };
4745 return true;
4746 }
4747
matchMulOBy0(MachineInstr & MI,BuildFnTy & MatchInfo)4748 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4749 // (G_*MULO x, 0) -> 0 + no carry out
4750 assert(MI.getOpcode() == TargetOpcode::G_UMULO ||
4751 MI.getOpcode() == TargetOpcode::G_SMULO);
4752 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4753 return false;
4754 Register Dst = MI.getOperand(0).getReg();
4755 Register Carry = MI.getOperand(1).getReg();
4756 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) ||
4757 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4758 return false;
4759 MatchInfo = [=](MachineIRBuilder &B) {
4760 B.buildConstant(Dst, 0);
4761 B.buildConstant(Carry, 0);
4762 };
4763 return true;
4764 }
4765
matchAddOBy0(MachineInstr & MI,BuildFnTy & MatchInfo)4766 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4767 // (G_*ADDO x, 0) -> x + no carry out
4768 assert(MI.getOpcode() == TargetOpcode::G_UADDO ||
4769 MI.getOpcode() == TargetOpcode::G_SADDO);
4770 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4771 return false;
4772 Register Carry = MI.getOperand(1).getReg();
4773 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4774 return false;
4775 Register Dst = MI.getOperand(0).getReg();
4776 Register LHS = MI.getOperand(2).getReg();
4777 MatchInfo = [=](MachineIRBuilder &B) {
4778 B.buildCopy(Dst, LHS);
4779 B.buildConstant(Carry, 0);
4780 };
4781 return true;
4782 }
4783
buildUDivUsingMul(MachineInstr & MI)4784 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) {
4785 assert(MI.getOpcode() == TargetOpcode::G_UDIV);
4786 auto &UDiv = cast<GenericMachineInstr>(MI);
4787 Register Dst = UDiv.getReg(0);
4788 Register LHS = UDiv.getReg(1);
4789 Register RHS = UDiv.getReg(2);
4790 LLT Ty = MRI.getType(Dst);
4791 LLT ScalarTy = Ty.getScalarType();
4792 const unsigned EltBits = ScalarTy.getScalarSizeInBits();
4793 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4794 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
4795 auto &MIB = Builder;
4796 MIB.setInstrAndDebugLoc(MI);
4797
4798 bool UseNPQ = false;
4799 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4800
4801 auto BuildUDIVPattern = [&](const Constant *C) {
4802 auto *CI = cast<ConstantInt>(C);
4803 const APInt &Divisor = CI->getValue();
4804 UnsignedDivisionByConstantInfo magics =
4805 UnsignedDivisionByConstantInfo::get(Divisor);
4806 unsigned PreShift = 0, PostShift = 0;
4807
4808 // If the divisor is even, we can avoid using the expensive fixup by
4809 // shifting the divided value upfront.
4810 if (magics.IsAdd && !Divisor[0]) {
4811 PreShift = Divisor.countTrailingZeros();
4812 // Get magic number for the shifted divisor.
4813 magics =
4814 UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
4815 assert(!magics.IsAdd && "Should use cheap fixup now");
4816 }
4817
4818 unsigned SelNPQ;
4819 if (!magics.IsAdd || Divisor.isOneValue()) {
4820 assert(magics.ShiftAmount < Divisor.getBitWidth() &&
4821 "We shouldn't generate an undefined shift!");
4822 PostShift = magics.ShiftAmount;
4823 SelNPQ = false;
4824 } else {
4825 PostShift = magics.ShiftAmount - 1;
4826 SelNPQ = true;
4827 }
4828
4829 PreShifts.push_back(
4830 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0));
4831 MagicFactors.push_back(MIB.buildConstant(ScalarTy, magics.Magic).getReg(0));
4832 NPQFactors.push_back(
4833 MIB.buildConstant(ScalarTy,
4834 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4835 : APInt::getZero(EltBits))
4836 .getReg(0));
4837 PostShifts.push_back(
4838 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0));
4839 UseNPQ |= SelNPQ;
4840 return true;
4841 };
4842
4843 // Collect the shifts/magic values from each element.
4844 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern);
4845 (void)Matched;
4846 assert(Matched && "Expected unary predicate match to succeed");
4847
4848 Register PreShift, PostShift, MagicFactor, NPQFactor;
4849 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI);
4850 if (RHSDef) {
4851 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0);
4852 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0);
4853 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0);
4854 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0);
4855 } else {
4856 assert(MRI.getType(RHS).isScalar() &&
4857 "Non-build_vector operation should have been a scalar");
4858 PreShift = PreShifts[0];
4859 MagicFactor = MagicFactors[0];
4860 PostShift = PostShifts[0];
4861 }
4862
4863 Register Q = LHS;
4864 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0);
4865
4866 // Multiply the numerator (operand 0) by the magic value.
4867 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0);
4868
4869 if (UseNPQ) {
4870 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0);
4871
4872 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4873 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero.
4874 if (Ty.isVector())
4875 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0);
4876 else
4877 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0);
4878
4879 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0);
4880 }
4881
4882 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0);
4883 auto One = MIB.buildConstant(Ty, 1);
4884 auto IsOne = MIB.buildICmp(
4885 CmpInst::Predicate::ICMP_EQ,
4886 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One);
4887 return MIB.buildSelect(Ty, IsOne, LHS, Q);
4888 }
4889
matchUDivByConst(MachineInstr & MI)4890 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) {
4891 assert(MI.getOpcode() == TargetOpcode::G_UDIV);
4892 Register Dst = MI.getOperand(0).getReg();
4893 Register RHS = MI.getOperand(2).getReg();
4894 LLT DstTy = MRI.getType(Dst);
4895 auto *RHSDef = MRI.getVRegDef(RHS);
4896 if (!isConstantOrConstantVector(*RHSDef, MRI))
4897 return false;
4898
4899 auto &MF = *MI.getMF();
4900 AttributeList Attr = MF.getFunction().getAttributes();
4901 const auto &TLI = getTargetLowering();
4902 LLVMContext &Ctx = MF.getFunction().getContext();
4903 auto &DL = MF.getDataLayout();
4904 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
4905 return false;
4906
4907 // Don't do this for minsize because the instruction sequence is usually
4908 // larger.
4909 if (MF.getFunction().hasMinSize())
4910 return false;
4911
4912 // Don't do this if the types are not going to be legal.
4913 if (LI) {
4914 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}}))
4915 return false;
4916 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}}))
4917 return false;
4918 if (!isLegalOrBeforeLegalizer(
4919 {TargetOpcode::G_ICMP,
4920 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1),
4921 DstTy}}))
4922 return false;
4923 }
4924
4925 auto CheckEltValue = [&](const Constant *C) {
4926 if (auto *CI = dyn_cast_or_null<ConstantInt>(C))
4927 return !CI->isZero();
4928 return false;
4929 };
4930 return matchUnaryPredicate(MRI, RHS, CheckEltValue);
4931 }
4932
applyUDivByConst(MachineInstr & MI)4933 void CombinerHelper::applyUDivByConst(MachineInstr &MI) {
4934 auto *NewMI = buildUDivUsingMul(MI);
4935 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
4936 }
4937
matchUMulHToLShr(MachineInstr & MI)4938 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) {
4939 assert(MI.getOpcode() == TargetOpcode::G_UMULH);
4940 Register RHS = MI.getOperand(2).getReg();
4941 Register Dst = MI.getOperand(0).getReg();
4942 LLT Ty = MRI.getType(Dst);
4943 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4944 auto MatchPow2ExceptOne = [&](const Constant *C) {
4945 if (auto *CI = dyn_cast<ConstantInt>(C))
4946 return CI->getValue().isPowerOf2() && !CI->getValue().isOne();
4947 return false;
4948 };
4949 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false))
4950 return false;
4951 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}});
4952 }
4953
applyUMulHToLShr(MachineInstr & MI)4954 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) {
4955 Register LHS = MI.getOperand(1).getReg();
4956 Register RHS = MI.getOperand(2).getReg();
4957 Register Dst = MI.getOperand(0).getReg();
4958 LLT Ty = MRI.getType(Dst);
4959 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4960 unsigned NumEltBits = Ty.getScalarSizeInBits();
4961
4962 Builder.setInstrAndDebugLoc(MI);
4963 auto LogBase2 = buildLogBase2(RHS, Builder);
4964 auto ShiftAmt =
4965 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2);
4966 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt);
4967 Builder.buildLShr(Dst, LHS, Trunc);
4968 MI.eraseFromParent();
4969 }
4970
matchRedundantNegOperands(MachineInstr & MI,BuildFnTy & MatchInfo)4971 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI,
4972 BuildFnTy &MatchInfo) {
4973 unsigned Opc = MI.getOpcode();
4974 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB ||
4975 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
4976 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA);
4977
4978 Register Dst = MI.getOperand(0).getReg();
4979 Register X = MI.getOperand(1).getReg();
4980 Register Y = MI.getOperand(2).getReg();
4981 LLT Type = MRI.getType(Dst);
4982
4983 // fold (fadd x, fneg(y)) -> (fsub x, y)
4984 // fold (fadd fneg(y), x) -> (fsub x, y)
4985 // G_ADD is commutative so both cases are checked by m_GFAdd
4986 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
4987 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) {
4988 Opc = TargetOpcode::G_FSUB;
4989 }
4990 /// fold (fsub x, fneg(y)) -> (fadd x, y)
4991 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
4992 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) {
4993 Opc = TargetOpcode::G_FADD;
4994 }
4995 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y)
4996 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y)
4997 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z)
4998 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z)
4999 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
5000 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) &&
5001 mi_match(X, MRI, m_GFNeg(m_Reg(X))) &&
5002 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) {
5003 // no opcode change
5004 } else
5005 return false;
5006
5007 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5008 Observer.changingInstr(MI);
5009 MI.setDesc(B.getTII().get(Opc));
5010 MI.getOperand(1).setReg(X);
5011 MI.getOperand(2).setReg(Y);
5012 Observer.changedInstr(MI);
5013 };
5014 return true;
5015 }
5016
5017 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either
5018 /// due to global flags or MachineInstr flags.
isContractableFMul(MachineInstr & MI,bool AllowFusionGlobally)5019 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) {
5020 if (MI.getOpcode() != TargetOpcode::G_FMUL)
5021 return false;
5022 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract);
5023 }
5024
hasMoreUses(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo & MRI)5025 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1,
5026 const MachineRegisterInfo &MRI) {
5027 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()),
5028 MRI.use_instr_nodbg_end()) >
5029 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()),
5030 MRI.use_instr_nodbg_end());
5031 }
5032
canCombineFMadOrFMA(MachineInstr & MI,bool & AllowFusionGlobally,bool & HasFMAD,bool & Aggressive,bool CanReassociate)5033 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI,
5034 bool &AllowFusionGlobally,
5035 bool &HasFMAD, bool &Aggressive,
5036 bool CanReassociate) {
5037
5038 auto *MF = MI.getMF();
5039 const auto &TLI = *MF->getSubtarget().getTargetLowering();
5040 const TargetOptions &Options = MF->getTarget().Options;
5041 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5042
5043 if (CanReassociate &&
5044 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc)))
5045 return false;
5046
5047 // Floating-point multiply-add with intermediate rounding.
5048 HasFMAD = (LI && TLI.isFMADLegal(MI, DstType));
5049 // Floating-point multiply-add without intermediate rounding.
5050 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) &&
5051 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}});
5052 // No valid opcode, do not combine.
5053 if (!HasFMAD && !HasFMA)
5054 return false;
5055
5056 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast ||
5057 Options.UnsafeFPMath || HasFMAD;
5058 // If the addition is not contractable, do not combine.
5059 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract))
5060 return false;
5061
5062 Aggressive = TLI.enableAggressiveFMAFusion(DstType);
5063 return true;
5064 }
5065
matchCombineFAddFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5066 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA(
5067 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5068 assert(MI.getOpcode() == TargetOpcode::G_FADD);
5069
5070 bool AllowFusionGlobally, HasFMAD, Aggressive;
5071 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5072 return false;
5073
5074 Register Op1 = MI.getOperand(1).getReg();
5075 Register Op2 = MI.getOperand(2).getReg();
5076 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5077 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5078 unsigned PreferredFusedOpcode =
5079 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5080
5081 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5082 // prefer to fold the multiply with fewer uses.
5083 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5084 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5085 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5086 std::swap(LHS, RHS);
5087 }
5088
5089 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5090 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5091 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) {
5092 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5093 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5094 {LHS.MI->getOperand(1).getReg(),
5095 LHS.MI->getOperand(2).getReg(), RHS.Reg});
5096 };
5097 return true;
5098 }
5099
5100 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5101 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5102 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) {
5103 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5104 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5105 {RHS.MI->getOperand(1).getReg(),
5106 RHS.MI->getOperand(2).getReg(), LHS.Reg});
5107 };
5108 return true;
5109 }
5110
5111 return false;
5112 }
5113
matchCombineFAddFpExtFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5114 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA(
5115 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5116 assert(MI.getOpcode() == TargetOpcode::G_FADD);
5117
5118 bool AllowFusionGlobally, HasFMAD, Aggressive;
5119 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5120 return false;
5121
5122 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5123 Register Op1 = MI.getOperand(1).getReg();
5124 Register Op2 = MI.getOperand(2).getReg();
5125 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5126 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5127 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5128
5129 unsigned PreferredFusedOpcode =
5130 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5131
5132 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5133 // prefer to fold the multiply with fewer uses.
5134 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5135 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5136 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5137 std::swap(LHS, RHS);
5138 }
5139
5140 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
5141 MachineInstr *FpExtSrc;
5142 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5143 isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5144 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5145 MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5146 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5147 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5148 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5149 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5150 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg});
5151 };
5152 return true;
5153 }
5154
5155 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z)
5156 // Note: Commutes FADD operands.
5157 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5158 isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5159 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5160 MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5161 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5162 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5163 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5164 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5165 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg});
5166 };
5167 return true;
5168 }
5169
5170 return false;
5171 }
5172
matchCombineFAddFMAFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5173 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA(
5174 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5175 assert(MI.getOpcode() == TargetOpcode::G_FADD);
5176
5177 bool AllowFusionGlobally, HasFMAD, Aggressive;
5178 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true))
5179 return false;
5180
5181 Register Op1 = MI.getOperand(1).getReg();
5182 Register Op2 = MI.getOperand(2).getReg();
5183 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5184 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5185 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5186
5187 unsigned PreferredFusedOpcode =
5188 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5189
5190 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5191 // prefer to fold the multiply with fewer uses.
5192 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5193 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5194 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5195 std::swap(LHS, RHS);
5196 }
5197
5198 MachineInstr *FMA = nullptr;
5199 Register Z;
5200 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z))
5201 if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5202 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() ==
5203 TargetOpcode::G_FMUL) &&
5204 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) &&
5205 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) {
5206 FMA = LHS.MI;
5207 Z = RHS.Reg;
5208 }
5209 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z))
5210 else if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5211 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() ==
5212 TargetOpcode::G_FMUL) &&
5213 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) &&
5214 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) {
5215 Z = LHS.Reg;
5216 FMA = RHS.MI;
5217 }
5218
5219 if (FMA) {
5220 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg());
5221 Register X = FMA->getOperand(1).getReg();
5222 Register Y = FMA->getOperand(2).getReg();
5223 Register U = FMulMI->getOperand(1).getReg();
5224 Register V = FMulMI->getOperand(2).getReg();
5225
5226 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5227 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy);
5228 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z});
5229 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5230 {X, Y, InnerFMA});
5231 };
5232 return true;
5233 }
5234
5235 return false;
5236 }
5237
matchCombineFAddFpExtFMulToFMadOrFMAAggressive(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5238 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
5239 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5240 assert(MI.getOpcode() == TargetOpcode::G_FADD);
5241
5242 bool AllowFusionGlobally, HasFMAD, Aggressive;
5243 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5244 return false;
5245
5246 if (!Aggressive)
5247 return false;
5248
5249 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5250 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5251 Register Op1 = MI.getOperand(1).getReg();
5252 Register Op2 = MI.getOperand(2).getReg();
5253 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5254 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5255
5256 unsigned PreferredFusedOpcode =
5257 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5258
5259 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5260 // prefer to fold the multiply with fewer uses.
5261 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5262 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5263 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5264 std::swap(LHS, RHS);
5265 }
5266
5267 // Builds: (fma x, y, (fma (fpext u), (fpext v), z))
5268 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X,
5269 Register Y, MachineIRBuilder &B) {
5270 Register FpExtU = B.buildFPExt(DstType, U).getReg(0);
5271 Register FpExtV = B.buildFPExt(DstType, V).getReg(0);
5272 Register InnerFMA =
5273 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z})
5274 .getReg(0);
5275 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5276 {X, Y, InnerFMA});
5277 };
5278
5279 MachineInstr *FMulMI, *FMAMI;
5280 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
5281 // -> (fma x, y, (fma (fpext u), (fpext v), z))
5282 if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5283 mi_match(LHS.MI->getOperand(3).getReg(), MRI,
5284 m_GFPExt(m_MInstr(FMulMI))) &&
5285 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5286 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5287 MRI.getType(FMulMI->getOperand(0).getReg()))) {
5288 MatchInfo = [=](MachineIRBuilder &B) {
5289 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5290 FMulMI->getOperand(2).getReg(), RHS.Reg,
5291 LHS.MI->getOperand(1).getReg(),
5292 LHS.MI->getOperand(2).getReg(), B);
5293 };
5294 return true;
5295 }
5296
5297 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
5298 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5299 // FIXME: This turns two single-precision and one double-precision
5300 // operation into two double-precision operations, which might not be
5301 // interesting for all targets, especially GPUs.
5302 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5303 FMAMI->getOpcode() == PreferredFusedOpcode) {
5304 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5305 if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5306 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5307 MRI.getType(FMAMI->getOperand(0).getReg()))) {
5308 MatchInfo = [=](MachineIRBuilder &B) {
5309 Register X = FMAMI->getOperand(1).getReg();
5310 Register Y = FMAMI->getOperand(2).getReg();
5311 X = B.buildFPExt(DstType, X).getReg(0);
5312 Y = B.buildFPExt(DstType, Y).getReg(0);
5313 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5314 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B);
5315 };
5316
5317 return true;
5318 }
5319 }
5320
5321 // fold (fadd z, (fma x, y, (fpext (fmul u, v)))
5322 // -> (fma x, y, (fma (fpext u), (fpext v), z))
5323 if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5324 mi_match(RHS.MI->getOperand(3).getReg(), MRI,
5325 m_GFPExt(m_MInstr(FMulMI))) &&
5326 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5327 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5328 MRI.getType(FMulMI->getOperand(0).getReg()))) {
5329 MatchInfo = [=](MachineIRBuilder &B) {
5330 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5331 FMulMI->getOperand(2).getReg(), LHS.Reg,
5332 RHS.MI->getOperand(1).getReg(),
5333 RHS.MI->getOperand(2).getReg(), B);
5334 };
5335 return true;
5336 }
5337
5338 // fold (fadd z, (fpext (fma x, y, (fmul u, v)))
5339 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5340 // FIXME: This turns two single-precision and one double-precision
5341 // operation into two double-precision operations, which might not be
5342 // interesting for all targets, especially GPUs.
5343 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5344 FMAMI->getOpcode() == PreferredFusedOpcode) {
5345 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5346 if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5347 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5348 MRI.getType(FMAMI->getOperand(0).getReg()))) {
5349 MatchInfo = [=](MachineIRBuilder &B) {
5350 Register X = FMAMI->getOperand(1).getReg();
5351 Register Y = FMAMI->getOperand(2).getReg();
5352 X = B.buildFPExt(DstType, X).getReg(0);
5353 Y = B.buildFPExt(DstType, Y).getReg(0);
5354 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5355 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B);
5356 };
5357 return true;
5358 }
5359 }
5360
5361 return false;
5362 }
5363
matchCombineFSubFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5364 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA(
5365 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5366 assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5367
5368 bool AllowFusionGlobally, HasFMAD, Aggressive;
5369 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5370 return false;
5371
5372 Register Op1 = MI.getOperand(1).getReg();
5373 Register Op2 = MI.getOperand(2).getReg();
5374 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5375 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5376 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5377
5378 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5379 // prefer to fold the multiply with fewer uses.
5380 int FirstMulHasFewerUses = true;
5381 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5382 isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5383 hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5384 FirstMulHasFewerUses = false;
5385
5386 unsigned PreferredFusedOpcode =
5387 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5388
5389 // fold (fsub (fmul x, y), z) -> (fma x, y, -z)
5390 if (FirstMulHasFewerUses &&
5391 (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5392 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) {
5393 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5394 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0);
5395 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5396 {LHS.MI->getOperand(1).getReg(),
5397 LHS.MI->getOperand(2).getReg(), NegZ});
5398 };
5399 return true;
5400 }
5401 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x)
5402 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5403 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) {
5404 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5405 Register NegY =
5406 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0);
5407 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5408 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg});
5409 };
5410 return true;
5411 }
5412
5413 return false;
5414 }
5415
matchCombineFSubFNegFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5416 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA(
5417 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5418 assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5419
5420 bool AllowFusionGlobally, HasFMAD, Aggressive;
5421 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5422 return false;
5423
5424 Register LHSReg = MI.getOperand(1).getReg();
5425 Register RHSReg = MI.getOperand(2).getReg();
5426 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5427
5428 unsigned PreferredFusedOpcode =
5429 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5430
5431 MachineInstr *FMulMI;
5432 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z))
5433 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5434 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) &&
5435 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5436 isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5437 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5438 Register NegX =
5439 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5440 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
5441 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5442 {NegX, FMulMI->getOperand(2).getReg(), NegZ});
5443 };
5444 return true;
5445 }
5446
5447 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
5448 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5449 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) &&
5450 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5451 isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5452 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5453 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5454 {FMulMI->getOperand(1).getReg(),
5455 FMulMI->getOperand(2).getReg(), LHSReg});
5456 };
5457 return true;
5458 }
5459
5460 return false;
5461 }
5462
matchCombineFSubFpExtFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5463 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA(
5464 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5465 assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5466
5467 bool AllowFusionGlobally, HasFMAD, Aggressive;
5468 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5469 return false;
5470
5471 Register LHSReg = MI.getOperand(1).getReg();
5472 Register RHSReg = MI.getOperand(2).getReg();
5473 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5474
5475 unsigned PreferredFusedOpcode =
5476 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5477
5478 MachineInstr *FMulMI;
5479 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z))
5480 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
5481 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5482 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) {
5483 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5484 Register FpExtX =
5485 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5486 Register FpExtY =
5487 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
5488 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
5489 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5490 {FpExtX, FpExtY, NegZ});
5491 };
5492 return true;
5493 }
5494
5495 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x)
5496 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
5497 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5498 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) {
5499 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5500 Register FpExtY =
5501 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5502 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0);
5503 Register FpExtZ =
5504 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
5505 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5506 {NegY, FpExtZ, LHSReg});
5507 };
5508 return true;
5509 }
5510
5511 return false;
5512 }
5513
matchCombineFSubFpExtFNegFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5514 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA(
5515 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5516 assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5517
5518 bool AllowFusionGlobally, HasFMAD, Aggressive;
5519 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5520 return false;
5521
5522 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5523 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5524 Register LHSReg = MI.getOperand(1).getReg();
5525 Register RHSReg = MI.getOperand(2).getReg();
5526
5527 unsigned PreferredFusedOpcode =
5528 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5529
5530 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z,
5531 MachineIRBuilder &B) {
5532 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0);
5533 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0);
5534 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z});
5535 };
5536
5537 MachineInstr *FMulMI;
5538 // fold (fsub (fpext (fneg (fmul x, y))), z) ->
5539 // (fneg (fma (fpext x), (fpext y), z))
5540 // fold (fsub (fneg (fpext (fmul x, y))), z) ->
5541 // (fneg (fma (fpext x), (fpext y), z))
5542 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
5543 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
5544 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5545 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
5546 MRI.getType(FMulMI->getOperand(0).getReg()))) {
5547 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5548 Register FMAReg = MRI.createGenericVirtualRegister(DstTy);
5549 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(),
5550 FMulMI->getOperand(2).getReg(), RHSReg, B);
5551 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg);
5552 };
5553 return true;
5554 }
5555
5556 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
5557 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
5558 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
5559 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
5560 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5561 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
5562 MRI.getType(FMulMI->getOperand(0).getReg()))) {
5563 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5564 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(),
5565 FMulMI->getOperand(2).getReg(), LHSReg, B);
5566 };
5567 return true;
5568 }
5569
5570 return false;
5571 }
5572
matchSelectToLogical(MachineInstr & MI,BuildFnTy & MatchInfo)5573 bool CombinerHelper::matchSelectToLogical(MachineInstr &MI,
5574 BuildFnTy &MatchInfo) {
5575 GSelect &Sel = cast<GSelect>(MI);
5576 Register DstReg = Sel.getReg(0);
5577 Register Cond = Sel.getCondReg();
5578 Register TrueReg = Sel.getTrueReg();
5579 Register FalseReg = Sel.getFalseReg();
5580
5581 auto *TrueDef = getDefIgnoringCopies(TrueReg, MRI);
5582 auto *FalseDef = getDefIgnoringCopies(FalseReg, MRI);
5583
5584 const LLT CondTy = MRI.getType(Cond);
5585 const LLT OpTy = MRI.getType(TrueReg);
5586 if (CondTy != OpTy || OpTy.getScalarSizeInBits() != 1)
5587 return false;
5588
5589 // We have a boolean select.
5590
5591 // select Cond, Cond, F --> or Cond, F
5592 // select Cond, 1, F --> or Cond, F
5593 auto MaybeCstTrue = isConstantOrConstantSplatVector(*TrueDef, MRI);
5594 if (Cond == TrueReg || (MaybeCstTrue && MaybeCstTrue->isOne())) {
5595 MatchInfo = [=](MachineIRBuilder &MIB) {
5596 MIB.buildOr(DstReg, Cond, FalseReg);
5597 };
5598 return true;
5599 }
5600
5601 // select Cond, T, Cond --> and Cond, T
5602 // select Cond, T, 0 --> and Cond, T
5603 auto MaybeCstFalse = isConstantOrConstantSplatVector(*FalseDef, MRI);
5604 if (Cond == FalseReg || (MaybeCstFalse && MaybeCstFalse->isZero())) {
5605 MatchInfo = [=](MachineIRBuilder &MIB) {
5606 MIB.buildAnd(DstReg, Cond, TrueReg);
5607 };
5608 return true;
5609 }
5610
5611 // select Cond, T, 1 --> or (not Cond), T
5612 if (MaybeCstFalse && MaybeCstFalse->isOne()) {
5613 MatchInfo = [=](MachineIRBuilder &MIB) {
5614 MIB.buildOr(DstReg, MIB.buildNot(OpTy, Cond), TrueReg);
5615 };
5616 return true;
5617 }
5618
5619 // select Cond, 0, F --> and (not Cond), F
5620 if (MaybeCstTrue && MaybeCstTrue->isZero()) {
5621 MatchInfo = [=](MachineIRBuilder &MIB) {
5622 MIB.buildAnd(DstReg, MIB.buildNot(OpTy, Cond), FalseReg);
5623 };
5624 return true;
5625 }
5626 return false;
5627 }
5628
matchCombineFMinMaxNaN(MachineInstr & MI,unsigned & IdxToPropagate)5629 bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI,
5630 unsigned &IdxToPropagate) {
5631 bool PropagateNaN;
5632 switch (MI.getOpcode()) {
5633 default:
5634 return false;
5635 case TargetOpcode::G_FMINNUM:
5636 case TargetOpcode::G_FMAXNUM:
5637 PropagateNaN = false;
5638 break;
5639 case TargetOpcode::G_FMINIMUM:
5640 case TargetOpcode::G_FMAXIMUM:
5641 PropagateNaN = true;
5642 break;
5643 }
5644
5645 auto MatchNaN = [&](unsigned Idx) {
5646 Register MaybeNaNReg = MI.getOperand(Idx).getReg();
5647 const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI);
5648 if (!MaybeCst || !MaybeCst->getValueAPF().isNaN())
5649 return false;
5650 IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1);
5651 return true;
5652 };
5653
5654 return MatchNaN(1) || MatchNaN(2);
5655 }
5656
matchAddSubSameReg(MachineInstr & MI,Register & Src)5657 bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) {
5658 assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD");
5659 Register LHS = MI.getOperand(1).getReg();
5660 Register RHS = MI.getOperand(2).getReg();
5661
5662 // Helper lambda to check for opportunities for
5663 // A + (B - A) -> B
5664 // (B - A) + A -> B
5665 auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) {
5666 Register Reg;
5667 return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) &&
5668 Reg == MaybeSameReg;
5669 };
5670 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
5671 }
5672
tryCombine(MachineInstr & MI)5673 bool CombinerHelper::tryCombine(MachineInstr &MI) {
5674 if (tryCombineCopy(MI))
5675 return true;
5676 if (tryCombineExtendingLoads(MI))
5677 return true;
5678 if (tryCombineIndexedLoadStore(MI))
5679 return true;
5680 return false;
5681 }
5682