1 /* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0)
2 *
3 * Copyright 2008-2016 Freescale Semiconductor Inc.
4 * Copyright 2017,2019 NXP
5 *
6 */
7
8 #include "qman.h"
9 #include <rte_branch_prediction.h>
10 #include <rte_dpaa_bus.h>
11 #include <rte_eventdev.h>
12 #include <rte_byteorder.h>
13
14 #include <dpaa_bits.h>
15
16 /* Compilation constants */
17 #define DQRR_MAXFILL 15
18 #define EQCR_ITHRESH 4 /* if EQCR congests, interrupt threshold */
19 #define IRQNAME "QMan portal %d"
20 #define MAX_IRQNAME 16 /* big enough for "QMan portal %d" */
21 /* maximum number of DQRR entries to process in qman_poll() */
22 #define FSL_QMAN_POLL_LIMIT 8
23
24 /* Lock/unlock frame queues, subject to the "LOCKED" flag. This is about
25 * inter-processor locking only. Note, FQLOCK() is always called either under a
26 * local_irq_save() or from interrupt context - hence there's no need for irq
27 * protection (and indeed, attempting to nest irq-protection doesn't work, as
28 * the "irq en/disable" machinery isn't recursive...).
29 */
30 #define FQLOCK(fq) \
31 do { \
32 struct qman_fq *__fq478 = (fq); \
33 if (fq_isset(__fq478, QMAN_FQ_FLAG_LOCKED)) \
34 spin_lock(&__fq478->fqlock); \
35 } while (0)
36 #define FQUNLOCK(fq) \
37 do { \
38 struct qman_fq *__fq478 = (fq); \
39 if (fq_isset(__fq478, QMAN_FQ_FLAG_LOCKED)) \
40 spin_unlock(&__fq478->fqlock); \
41 } while (0)
42
43 static qman_cb_free_mbuf qman_free_mbuf_cb;
44
fq_set(struct qman_fq * fq,u32 mask)45 static inline void fq_set(struct qman_fq *fq, u32 mask)
46 {
47 dpaa_set_bits(mask, &fq->flags);
48 }
49
fq_clear(struct qman_fq * fq,u32 mask)50 static inline void fq_clear(struct qman_fq *fq, u32 mask)
51 {
52 dpaa_clear_bits(mask, &fq->flags);
53 }
54
fq_isset(struct qman_fq * fq,u32 mask)55 static inline int fq_isset(struct qman_fq *fq, u32 mask)
56 {
57 return fq->flags & mask;
58 }
59
fq_isclear(struct qman_fq * fq,u32 mask)60 static inline int fq_isclear(struct qman_fq *fq, u32 mask)
61 {
62 return !(fq->flags & mask);
63 }
64
65 struct qman_portal {
66 struct qm_portal p;
67 /* PORTAL_BITS_*** - dynamic, strictly internal */
68 unsigned long bits;
69 /* interrupt sources processed by portal_isr(), configurable */
70 unsigned long irq_sources;
71 u32 use_eqcr_ci_stashing;
72 u32 slowpoll; /* only used when interrupts are off */
73 /* only 1 volatile dequeue at a time */
74 struct qman_fq *vdqcr_owned;
75 u32 sdqcr;
76 int dqrr_disable_ref;
77 /* A portal-specific handler for DCP ERNs. If this is NULL, the global
78 * handler is called instead.
79 */
80 qman_cb_dc_ern cb_dc_ern;
81 /* When the cpu-affine portal is activated, this is non-NULL */
82 const struct qm_portal_config *config;
83 struct dpa_rbtree retire_table;
84 char irqname[MAX_IRQNAME];
85 /* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */
86 struct qman_cgrs *cgrs;
87 /* linked-list of CSCN handlers. */
88 struct list_head cgr_cbs;
89 /* list lock */
90 spinlock_t cgr_lock;
91 /* track if memory was allocated by the driver */
92 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
93 /* Keep a shadow copy of the DQRR on LE systems as the SW needs to
94 * do byte swaps of DQRR read only memory. First entry must be aligned
95 * to 2 ** 10 to ensure DQRR index calculations based shadow copy
96 * address (6 bits for address shift + 4 bits for the DQRR size).
97 */
98 struct qm_dqrr_entry shadow_dqrr[QM_DQRR_SIZE]
99 __rte_aligned(1024);
100 #endif
101 };
102
103 /* Global handler for DCP ERNs. Used when the portal receiving the message does
104 * not have a portal-specific handler.
105 */
106 static qman_cb_dc_ern cb_dc_ern;
107
108 static cpumask_t affine_mask;
109 static DEFINE_SPINLOCK(affine_mask_lock);
110 static u16 affine_channels[NR_CPUS];
111 static RTE_DEFINE_PER_LCORE(struct qman_portal, qman_affine_portal);
112
get_affine_portal(void)113 static inline struct qman_portal *get_affine_portal(void)
114 {
115 return &RTE_PER_LCORE(qman_affine_portal);
116 }
117
118 /* This gives a FQID->FQ lookup to cover the fact that we can't directly demux
119 * retirement notifications (the fact they are sometimes h/w-consumed means that
120 * contextB isn't always a s/w demux - and as we can't know which case it is
121 * when looking at the notification, we have to use the slow lookup for all of
122 * them). NB, it's possible to have multiple FQ objects refer to the same FQID
123 * (though at most one of them should be the consumer), so this table isn't for
124 * all FQs - FQs are added when retirement commands are issued, and removed when
125 * they complete, which also massively reduces the size of this table.
126 */
127 IMPLEMENT_DPAA_RBTREE(fqtree, struct qman_fq, node, fqid);
128 /*
129 * This is what everything can wait on, even if it migrates to a different cpu
130 * to the one whose affine portal it is waiting on.
131 */
132 static DECLARE_WAIT_QUEUE_HEAD(affine_queue);
133
table_push_fq(struct qman_portal * p,struct qman_fq * fq)134 static inline int table_push_fq(struct qman_portal *p, struct qman_fq *fq)
135 {
136 int ret = fqtree_push(&p->retire_table, fq);
137
138 if (ret)
139 pr_err("ERROR: double FQ-retirement %d\n", fq->fqid);
140 return ret;
141 }
142
table_del_fq(struct qman_portal * p,struct qman_fq * fq)143 static inline void table_del_fq(struct qman_portal *p, struct qman_fq *fq)
144 {
145 fqtree_del(&p->retire_table, fq);
146 }
147
table_find_fq(struct qman_portal * p,u32 fqid)148 static inline struct qman_fq *table_find_fq(struct qman_portal *p, u32 fqid)
149 {
150 return fqtree_find(&p->retire_table, fqid);
151 }
152
153 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
154 static void **qman_fq_lookup_table;
155 static size_t qman_fq_lookup_table_size;
156
qman_setup_fq_lookup_table(size_t num_entries)157 int qman_setup_fq_lookup_table(size_t num_entries)
158 {
159 num_entries++;
160 /* Allocate 1 more entry since the first entry is not used */
161 qman_fq_lookup_table = vmalloc((num_entries * sizeof(void *)));
162 if (!qman_fq_lookup_table) {
163 pr_err("QMan: Could not allocate fq lookup table\n");
164 return -ENOMEM;
165 }
166 memset(qman_fq_lookup_table, 0, num_entries * sizeof(void *));
167 qman_fq_lookup_table_size = num_entries;
168 pr_debug("QMan: Allocated lookup table at %p, entry count %lu\n",
169 qman_fq_lookup_table,
170 (unsigned long)qman_fq_lookup_table_size);
171 return 0;
172 }
173
qman_set_fq_lookup_table(void ** fq_table)174 void qman_set_fq_lookup_table(void **fq_table)
175 {
176 qman_fq_lookup_table = fq_table;
177 }
178
179 /* global structure that maintains fq object mapping */
180 static DEFINE_SPINLOCK(fq_hash_table_lock);
181
find_empty_fq_table_entry(u32 * entry,struct qman_fq * fq)182 static int find_empty_fq_table_entry(u32 *entry, struct qman_fq *fq)
183 {
184 u32 i;
185
186 spin_lock(&fq_hash_table_lock);
187 /* Can't use index zero because this has special meaning
188 * in context_b field.
189 */
190 for (i = 1; i < qman_fq_lookup_table_size; i++) {
191 if (qman_fq_lookup_table[i] == NULL) {
192 *entry = i;
193 qman_fq_lookup_table[i] = fq;
194 spin_unlock(&fq_hash_table_lock);
195 return 0;
196 }
197 }
198 spin_unlock(&fq_hash_table_lock);
199 return -ENOMEM;
200 }
201
clear_fq_table_entry(u32 entry)202 static void clear_fq_table_entry(u32 entry)
203 {
204 spin_lock(&fq_hash_table_lock);
205 DPAA_BUG_ON(entry >= qman_fq_lookup_table_size);
206 qman_fq_lookup_table[entry] = NULL;
207 spin_unlock(&fq_hash_table_lock);
208 }
209
get_fq_table_entry(u32 entry)210 static inline struct qman_fq *get_fq_table_entry(u32 entry)
211 {
212 DPAA_BUG_ON(entry >= qman_fq_lookup_table_size);
213 return qman_fq_lookup_table[entry];
214 }
215 #endif
216
cpu_to_hw_fqd(struct qm_fqd * fqd)217 static inline void cpu_to_hw_fqd(struct qm_fqd *fqd)
218 {
219 /* Byteswap the FQD to HW format */
220 fqd->fq_ctrl = cpu_to_be16(fqd->fq_ctrl);
221 fqd->dest_wq = cpu_to_be16(fqd->dest_wq);
222 fqd->ics_cred = cpu_to_be16(fqd->ics_cred);
223 fqd->context_b = cpu_to_be32(fqd->context_b);
224 fqd->context_a.opaque = cpu_to_be64(fqd->context_a.opaque);
225 fqd->opaque_td = cpu_to_be16(fqd->opaque_td);
226 }
227
hw_fqd_to_cpu(struct qm_fqd * fqd)228 static inline void hw_fqd_to_cpu(struct qm_fqd *fqd)
229 {
230 /* Byteswap the FQD to CPU format */
231 fqd->fq_ctrl = be16_to_cpu(fqd->fq_ctrl);
232 fqd->dest_wq = be16_to_cpu(fqd->dest_wq);
233 fqd->ics_cred = be16_to_cpu(fqd->ics_cred);
234 fqd->context_b = be32_to_cpu(fqd->context_b);
235 fqd->context_a.opaque = be64_to_cpu(fqd->context_a.opaque);
236 }
237
cpu_to_hw_fd(struct qm_fd * fd)238 static inline void cpu_to_hw_fd(struct qm_fd *fd)
239 {
240 fd->addr = cpu_to_be40(fd->addr);
241 fd->status = cpu_to_be32(fd->status);
242 fd->opaque = cpu_to_be32(fd->opaque);
243 }
244
hw_fd_to_cpu(struct qm_fd * fd)245 static inline void hw_fd_to_cpu(struct qm_fd *fd)
246 {
247 fd->addr = be40_to_cpu(fd->addr);
248 fd->status = be32_to_cpu(fd->status);
249 fd->opaque = be32_to_cpu(fd->opaque);
250 }
251
252 /* In the case that slow- and fast-path handling are both done by qman_poll()
253 * (ie. because there is no interrupt handling), we ought to balance how often
254 * we do the fast-path poll versus the slow-path poll. We'll use two decrementer
255 * sources, so we call the fast poll 'n' times before calling the slow poll
256 * once. The idle decrementer constant is used when the last slow-poll detected
257 * no work to do, and the busy decrementer constant when the last slow-poll had
258 * work to do.
259 */
260 #define SLOW_POLL_IDLE 1000
261 #define SLOW_POLL_BUSY 10
262 static u32 __poll_portal_slow(struct qman_portal *p, u32 is);
263 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
264 unsigned int poll_limit);
265
266 /* Portal interrupt handler */
portal_isr(__always_unused int irq,void * ptr)267 static irqreturn_t portal_isr(__always_unused int irq, void *ptr)
268 {
269 struct qman_portal *p = ptr;
270 /*
271 * The CSCI/CCSCI source is cleared inside __poll_portal_slow(), because
272 * it could race against a Query Congestion State command also given
273 * as part of the handling of this interrupt source. We mustn't
274 * clear it a second time in this top-level function.
275 */
276 u32 clear = QM_DQAVAIL_MASK | (p->irq_sources &
277 ~(QM_PIRQ_CSCI | QM_PIRQ_CCSCI));
278 u32 is = qm_isr_status_read(&p->p) & p->irq_sources;
279 /* DQRR-handling if it's interrupt-driven */
280 if (is & QM_PIRQ_DQRI)
281 __poll_portal_fast(p, FSL_QMAN_POLL_LIMIT);
282 /* Handling of anything else that's interrupt-driven */
283 clear |= __poll_portal_slow(p, is);
284 qm_isr_status_clear(&p->p, clear);
285 return IRQ_HANDLED;
286 }
287
288 /* This inner version is used privately by qman_create_affine_portal(), as well
289 * as by the exported qman_stop_dequeues().
290 */
qman_stop_dequeues_ex(struct qman_portal * p)291 static inline void qman_stop_dequeues_ex(struct qman_portal *p)
292 {
293 if (!(p->dqrr_disable_ref++))
294 qm_dqrr_set_maxfill(&p->p, 0);
295 }
296
drain_mr_fqrni(struct qm_portal * p)297 static int drain_mr_fqrni(struct qm_portal *p)
298 {
299 const struct qm_mr_entry *msg;
300 loop:
301 msg = qm_mr_current(p);
302 if (!msg) {
303 /*
304 * if MR was full and h/w had other FQRNI entries to produce, we
305 * need to allow it time to produce those entries once the
306 * existing entries are consumed. A worst-case situation
307 * (fully-loaded system) means h/w sequencers may have to do 3-4
308 * other things before servicing the portal's MR pump, each of
309 * which (if slow) may take ~50 qman cycles (which is ~200
310 * processor cycles). So rounding up and then multiplying this
311 * worst-case estimate by a factor of 10, just to be
312 * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume
313 * one entry at a time, so h/w has an opportunity to produce new
314 * entries well before the ring has been fully consumed, so
315 * we're being *really* paranoid here.
316 */
317 u64 now, then = mfatb();
318
319 do {
320 now = mfatb();
321 } while ((then + 10000) > now);
322 msg = qm_mr_current(p);
323 if (!msg)
324 return 0;
325 }
326 if ((msg->ern.verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) {
327 /* We aren't draining anything but FQRNIs */
328 pr_err("Found verb 0x%x in MR\n", msg->ern.verb);
329 return -1;
330 }
331 qm_mr_next(p);
332 qm_mr_cci_consume(p, 1);
333 goto loop;
334 }
335
qm_eqcr_init(struct qm_portal * portal,enum qm_eqcr_pmode pmode,unsigned int eq_stash_thresh,int eq_stash_prio)336 static inline int qm_eqcr_init(struct qm_portal *portal,
337 enum qm_eqcr_pmode pmode,
338 unsigned int eq_stash_thresh,
339 int eq_stash_prio)
340 {
341 /* This use of 'register', as well as all other occurrences, is because
342 * it has been observed to generate much faster code with gcc than is
343 * otherwise the case.
344 */
345 register struct qm_eqcr *eqcr = &portal->eqcr;
346 u32 cfg;
347 u8 pi;
348
349 eqcr->ring = portal->addr.ce + QM_CL_EQCR;
350 eqcr->ci = qm_in(EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
351 qm_cl_invalidate(EQCR_CI);
352 pi = qm_in(EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
353 eqcr->cursor = eqcr->ring + pi;
354 eqcr->vbit = (qm_in(EQCR_PI_CINH) & QM_EQCR_SIZE) ?
355 QM_EQCR_VERB_VBIT : 0;
356 eqcr->available = QM_EQCR_SIZE - 1 -
357 qm_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi);
358 eqcr->ithresh = qm_in(EQCR_ITR);
359 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
360 eqcr->busy = 0;
361 eqcr->pmode = pmode;
362 #endif
363 cfg = (qm_in(CFG) & 0x00ffffff) |
364 (eq_stash_thresh << 28) | /* QCSP_CFG: EST */
365 (eq_stash_prio << 26) | /* QCSP_CFG: EP */
366 ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */
367 qm_out(CFG, cfg);
368 return 0;
369 }
370
qm_eqcr_finish(struct qm_portal * portal)371 static inline void qm_eqcr_finish(struct qm_portal *portal)
372 {
373 register struct qm_eqcr *eqcr = &portal->eqcr;
374 u8 pi, ci;
375 u32 cfg;
376
377 /*
378 * Disable EQCI stashing because the QMan only
379 * presents the value it previously stashed to
380 * maintain coherency. Setting the stash threshold
381 * to 1 then 0 ensures that QMan has resyncronized
382 * its internal copy so that the portal is clean
383 * when it is reinitialized in the future
384 */
385 cfg = (qm_in(CFG) & 0x0fffffff) |
386 (1 << 28); /* QCSP_CFG: EST */
387 qm_out(CFG, cfg);
388 cfg &= 0x0fffffff; /* stash threshold = 0 */
389 qm_out(CFG, cfg);
390
391 pi = qm_in(EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
392 ci = qm_in(EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
393
394 /* Refresh EQCR CI cache value */
395 qm_cl_invalidate(EQCR_CI);
396 eqcr->ci = qm_cl_in(EQCR_CI) & (QM_EQCR_SIZE - 1);
397
398 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
399 DPAA_ASSERT(!eqcr->busy);
400 #endif
401 if (pi != EQCR_PTR2IDX(eqcr->cursor))
402 pr_crit("losing uncommitted EQCR entries\n");
403 if (ci != eqcr->ci)
404 pr_crit("missing existing EQCR completions\n");
405 if (eqcr->ci != EQCR_PTR2IDX(eqcr->cursor))
406 pr_crit("EQCR destroyed unquiesced\n");
407 }
408
qm_dqrr_init(struct qm_portal * portal,__maybe_unused const struct qm_portal_config * config,enum qm_dqrr_dmode dmode,__maybe_unused enum qm_dqrr_pmode pmode,enum qm_dqrr_cmode cmode,u8 max_fill)409 static inline int qm_dqrr_init(struct qm_portal *portal,
410 __maybe_unused const struct qm_portal_config *config,
411 enum qm_dqrr_dmode dmode,
412 __maybe_unused enum qm_dqrr_pmode pmode,
413 enum qm_dqrr_cmode cmode, u8 max_fill)
414 {
415 register struct qm_dqrr *dqrr = &portal->dqrr;
416 u32 cfg;
417
418 /* Make sure the DQRR will be idle when we enable */
419 qm_out(DQRR_SDQCR, 0);
420 qm_out(DQRR_VDQCR, 0);
421 qm_out(DQRR_PDQCR, 0);
422 dqrr->ring = portal->addr.ce + QM_CL_DQRR;
423 dqrr->pi = qm_in(DQRR_PI_CINH) & (QM_DQRR_SIZE - 1);
424 dqrr->ci = qm_in(DQRR_CI_CINH) & (QM_DQRR_SIZE - 1);
425 dqrr->cursor = dqrr->ring + dqrr->ci;
426 dqrr->fill = qm_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi);
427 dqrr->vbit = (qm_in(DQRR_PI_CINH) & QM_DQRR_SIZE) ?
428 QM_DQRR_VERB_VBIT : 0;
429 dqrr->ithresh = qm_in(DQRR_ITR);
430 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
431 dqrr->dmode = dmode;
432 dqrr->pmode = pmode;
433 dqrr->cmode = cmode;
434 #endif
435 /* Invalidate every ring entry before beginning */
436 for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++)
437 dccivac(qm_cl(dqrr->ring, cfg));
438 cfg = (qm_in(CFG) & 0xff000f00) |
439 ((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */
440 ((dmode & 1) << 18) | /* DP */
441 ((cmode & 3) << 16) | /* DCM */
442 0xa0 | /* RE+SE */
443 (0 ? 0x40 : 0) | /* Ignore RP */
444 (0 ? 0x10 : 0); /* Ignore SP */
445 qm_out(CFG, cfg);
446 qm_dqrr_set_maxfill(portal, max_fill);
447 return 0;
448 }
449
qm_dqrr_finish(struct qm_portal * portal)450 static inline void qm_dqrr_finish(struct qm_portal *portal)
451 {
452 __maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
453 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
454 if ((dqrr->cmode != qm_dqrr_cdc) &&
455 (dqrr->ci != DQRR_PTR2IDX(dqrr->cursor)))
456 pr_crit("Ignoring completed DQRR entries\n");
457 #endif
458 }
459
qm_mr_init(struct qm_portal * portal,__maybe_unused enum qm_mr_pmode pmode,enum qm_mr_cmode cmode)460 static inline int qm_mr_init(struct qm_portal *portal,
461 __maybe_unused enum qm_mr_pmode pmode,
462 enum qm_mr_cmode cmode)
463 {
464 register struct qm_mr *mr = &portal->mr;
465 u32 cfg;
466
467 mr->ring = portal->addr.ce + QM_CL_MR;
468 mr->pi = qm_in(MR_PI_CINH) & (QM_MR_SIZE - 1);
469 mr->ci = qm_in(MR_CI_CINH) & (QM_MR_SIZE - 1);
470 mr->cursor = mr->ring + mr->ci;
471 mr->fill = qm_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi);
472 mr->vbit = (qm_in(MR_PI_CINH) & QM_MR_SIZE) ? QM_MR_VERB_VBIT : 0;
473 mr->ithresh = qm_in(MR_ITR);
474 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
475 mr->pmode = pmode;
476 mr->cmode = cmode;
477 #endif
478 cfg = (qm_in(CFG) & 0xfffff0ff) |
479 ((cmode & 1) << 8); /* QCSP_CFG:MM */
480 qm_out(CFG, cfg);
481 return 0;
482 }
483
qm_mr_pvb_update(struct qm_portal * portal)484 static inline void qm_mr_pvb_update(struct qm_portal *portal)
485 {
486 register struct qm_mr *mr = &portal->mr;
487 const struct qm_mr_entry *res = qm_cl(mr->ring, mr->pi);
488
489 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
490 DPAA_ASSERT(mr->pmode == qm_mr_pvb);
491 #endif
492 /* when accessing 'verb', use __raw_readb() to ensure that compiler
493 * inlining doesn't try to optimise out "excess reads".
494 */
495 if ((__raw_readb(&res->ern.verb) & QM_MR_VERB_VBIT) == mr->vbit) {
496 mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1);
497 if (!mr->pi)
498 mr->vbit ^= QM_MR_VERB_VBIT;
499 mr->fill++;
500 res = MR_INC(res);
501 }
502 dcbit_ro(res);
503 }
504
505 struct qman_portal *
qman_init_portal(struct qman_portal * portal,const struct qm_portal_config * c,const struct qman_cgrs * cgrs)506 qman_init_portal(struct qman_portal *portal,
507 const struct qm_portal_config *c,
508 const struct qman_cgrs *cgrs)
509 {
510 struct qm_portal *p;
511 char buf[16];
512 int ret;
513 u32 isdr;
514
515 p = &portal->p;
516
517 if (!c)
518 c = portal->config;
519
520 if (dpaa_svr_family == SVR_LS1043A_FAMILY)
521 portal->use_eqcr_ci_stashing = 3;
522 else
523 portal->use_eqcr_ci_stashing =
524 ((qman_ip_rev >= QMAN_REV30) ? 1 : 0);
525
526 /*
527 * prep the low-level portal struct with the mapped addresses from the
528 * config, everything that follows depends on it and "config" is more
529 * for (de)reference
530 */
531 p->addr.ce = c->addr_virt[DPAA_PORTAL_CE];
532 p->addr.ci = c->addr_virt[DPAA_PORTAL_CI];
533 /*
534 * If CI-stashing is used, the current defaults use a threshold of 3,
535 * and stash with high-than-DQRR priority.
536 */
537 if (qm_eqcr_init(p, qm_eqcr_pvb,
538 portal->use_eqcr_ci_stashing, 1)) {
539 pr_err("Qman EQCR initialisation failed\n");
540 goto fail_eqcr;
541 }
542 if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb,
543 qm_dqrr_cdc, DQRR_MAXFILL)) {
544 pr_err("Qman DQRR initialisation failed\n");
545 goto fail_dqrr;
546 }
547 if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) {
548 pr_err("Qman MR initialisation failed\n");
549 goto fail_mr;
550 }
551 if (qm_mc_init(p)) {
552 pr_err("Qman MC initialisation failed\n");
553 goto fail_mc;
554 }
555
556 /* static interrupt-gating controls */
557 qm_dqrr_set_ithresh(p, 0);
558 qm_mr_set_ithresh(p, 0);
559 qm_isr_set_iperiod(p, 0);
560 portal->cgrs = kmalloc(2 * sizeof(*cgrs), GFP_KERNEL);
561 if (!portal->cgrs)
562 goto fail_cgrs;
563 /* initial snapshot is no-depletion */
564 qman_cgrs_init(&portal->cgrs[1]);
565 if (cgrs)
566 portal->cgrs[0] = *cgrs;
567 else
568 /* if the given mask is NULL, assume all CGRs can be seen */
569 qman_cgrs_fill(&portal->cgrs[0]);
570 INIT_LIST_HEAD(&portal->cgr_cbs);
571 spin_lock_init(&portal->cgr_lock);
572 portal->bits = 0;
573 portal->slowpoll = 0;
574 portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 |
575 QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS |
576 QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED;
577 portal->dqrr_disable_ref = 0;
578 portal->cb_dc_ern = NULL;
579 sprintf(buf, "qportal-%d", c->channel);
580 dpa_rbtree_init(&portal->retire_table);
581 isdr = 0xffffffff;
582 qm_isr_disable_write(p, isdr);
583 portal->irq_sources = 0;
584 qm_isr_enable_write(p, portal->irq_sources);
585 qm_isr_status_clear(p, 0xffffffff);
586 snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu);
587 if (request_irq(c->irq, portal_isr, 0, portal->irqname,
588 portal)) {
589 pr_err("request_irq() failed\n");
590 goto fail_irq;
591 }
592
593 /* Need EQCR to be empty before continuing */
594 isdr &= ~QM_PIRQ_EQCI;
595 qm_isr_disable_write(p, isdr);
596 ret = qm_eqcr_get_fill(p);
597 if (ret) {
598 pr_err("Qman EQCR unclean\n");
599 goto fail_eqcr_empty;
600 }
601 isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI);
602 qm_isr_disable_write(p, isdr);
603 if (qm_dqrr_current(p)) {
604 pr_err("Qman DQRR unclean\n");
605 qm_dqrr_cdc_consume_n(p, 0xffff);
606 }
607 if (qm_mr_current(p) && drain_mr_fqrni(p)) {
608 /* special handling, drain just in case it's a few FQRNIs */
609 if (drain_mr_fqrni(p))
610 goto fail_dqrr_mr_empty;
611 }
612 /* Success */
613 portal->config = c;
614 qm_isr_disable_write(p, 0);
615 qm_isr_uninhibit(p);
616 /* Write a sane SDQCR */
617 qm_dqrr_sdqcr_set(p, portal->sdqcr);
618 return portal;
619 fail_dqrr_mr_empty:
620 fail_eqcr_empty:
621 free_irq(c->irq, portal);
622 fail_irq:
623 kfree(portal->cgrs);
624 spin_lock_destroy(&portal->cgr_lock);
625 fail_cgrs:
626 qm_mc_finish(p);
627 fail_mc:
628 qm_mr_finish(p);
629 fail_mr:
630 qm_dqrr_finish(p);
631 fail_dqrr:
632 qm_eqcr_finish(p);
633 fail_eqcr:
634 return NULL;
635 }
636
637 #define MAX_GLOBAL_PORTALS 8
638 static struct qman_portal global_portals[MAX_GLOBAL_PORTALS];
639 static rte_atomic16_t global_portals_used[MAX_GLOBAL_PORTALS];
640
641 struct qman_portal *
qman_alloc_global_portal(struct qm_portal_config * q_pcfg)642 qman_alloc_global_portal(struct qm_portal_config *q_pcfg)
643 {
644 unsigned int i;
645
646 for (i = 0; i < MAX_GLOBAL_PORTALS; i++) {
647 if (rte_atomic16_test_and_set(&global_portals_used[i])) {
648 global_portals[i].config = q_pcfg;
649 return &global_portals[i];
650 }
651 }
652 pr_err("No portal available (%x)\n", MAX_GLOBAL_PORTALS);
653
654 return NULL;
655 }
656
657 int
qman_free_global_portal(struct qman_portal * portal)658 qman_free_global_portal(struct qman_portal *portal)
659 {
660 unsigned int i;
661
662 for (i = 0; i < MAX_GLOBAL_PORTALS; i++) {
663 if (&global_portals[i] == portal) {
664 rte_atomic16_clear(&global_portals_used[i]);
665 return 0;
666 }
667 }
668 return -1;
669 }
670
671 void
qman_portal_uninhibit_isr(struct qman_portal * portal)672 qman_portal_uninhibit_isr(struct qman_portal *portal)
673 {
674 qm_isr_uninhibit(&portal->p);
675 }
676
qman_create_affine_portal(const struct qm_portal_config * c,const struct qman_cgrs * cgrs)677 struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c,
678 const struct qman_cgrs *cgrs)
679 {
680 struct qman_portal *res;
681 struct qman_portal *portal = get_affine_portal();
682
683 /* A criteria for calling this function (from qman_driver.c) is that
684 * we're already affine to the cpu and won't schedule onto another cpu.
685 */
686 res = qman_init_portal(portal, c, cgrs);
687 if (res) {
688 spin_lock(&affine_mask_lock);
689 CPU_SET(c->cpu, &affine_mask);
690 affine_channels[c->cpu] =
691 c->channel;
692 spin_unlock(&affine_mask_lock);
693 }
694 return res;
695 }
696
697 static inline
qman_destroy_portal(struct qman_portal * qm)698 void qman_destroy_portal(struct qman_portal *qm)
699 {
700 const struct qm_portal_config *pcfg;
701
702 /* Stop dequeues on the portal */
703 qm_dqrr_sdqcr_set(&qm->p, 0);
704
705 /*
706 * NB we do this to "quiesce" EQCR. If we add enqueue-completions or
707 * something related to QM_PIRQ_EQCI, this may need fixing.
708 * Also, due to the prefetching model used for CI updates in the enqueue
709 * path, this update will only invalidate the CI cacheline *after*
710 * working on it, so we need to call this twice to ensure a full update
711 * irrespective of where the enqueue processing was at when the teardown
712 * began.
713 */
714 qm_eqcr_cce_update(&qm->p);
715 qm_eqcr_cce_update(&qm->p);
716 pcfg = qm->config;
717
718 free_irq(pcfg->irq, qm);
719
720 kfree(qm->cgrs);
721 qm_mc_finish(&qm->p);
722 qm_mr_finish(&qm->p);
723 qm_dqrr_finish(&qm->p);
724 qm_eqcr_finish(&qm->p);
725
726 qm->config = NULL;
727
728 spin_lock_destroy(&qm->cgr_lock);
729 }
730
731 const struct qm_portal_config *
qman_destroy_affine_portal(struct qman_portal * qp)732 qman_destroy_affine_portal(struct qman_portal *qp)
733 {
734 /* We don't want to redirect if we're a slave, use "raw" */
735 struct qman_portal *qm;
736 const struct qm_portal_config *pcfg;
737 int cpu;
738
739 if (qp == NULL)
740 qm = get_affine_portal();
741 else
742 qm = qp;
743 pcfg = qm->config;
744 cpu = pcfg->cpu;
745
746 qman_destroy_portal(qm);
747
748 spin_lock(&affine_mask_lock);
749 CPU_CLR(cpu, &affine_mask);
750 spin_unlock(&affine_mask_lock);
751
752 qman_free_global_portal(qm);
753
754 return pcfg;
755 }
756
qman_get_portal_index(void)757 int qman_get_portal_index(void)
758 {
759 struct qman_portal *p = get_affine_portal();
760 return p->config->index;
761 }
762
763 /* Inline helper to reduce nesting in __poll_portal_slow() */
fq_state_change(struct qman_portal * p,struct qman_fq * fq,const struct qm_mr_entry * msg,u8 verb)764 static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq,
765 const struct qm_mr_entry *msg, u8 verb)
766 {
767 FQLOCK(fq);
768 switch (verb) {
769 case QM_MR_VERB_FQRL:
770 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL));
771 fq_clear(fq, QMAN_FQ_STATE_ORL);
772 table_del_fq(p, fq);
773 break;
774 case QM_MR_VERB_FQRN:
775 DPAA_ASSERT((fq->state == qman_fq_state_parked) ||
776 (fq->state == qman_fq_state_sched));
777 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING));
778 fq_clear(fq, QMAN_FQ_STATE_CHANGING);
779 if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY)
780 fq_set(fq, QMAN_FQ_STATE_NE);
781 if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT)
782 fq_set(fq, QMAN_FQ_STATE_ORL);
783 else
784 table_del_fq(p, fq);
785 fq->state = qman_fq_state_retired;
786 break;
787 case QM_MR_VERB_FQPN:
788 DPAA_ASSERT(fq->state == qman_fq_state_sched);
789 DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING));
790 fq->state = qman_fq_state_parked;
791 }
792 FQUNLOCK(fq);
793 }
794
795 void
qman_ern_register_cb(qman_cb_free_mbuf cb)796 qman_ern_register_cb(qman_cb_free_mbuf cb)
797 {
798 qman_free_mbuf_cb = cb;
799 }
800
801
802 void
qman_ern_poll_free(void)803 qman_ern_poll_free(void)
804 {
805 struct qman_portal *p = get_affine_portal();
806 u8 verb, num = 0;
807 const struct qm_mr_entry *msg;
808 const struct qm_fd *fd;
809 struct qm_mr_entry swapped_msg;
810
811 qm_mr_pvb_update(&p->p);
812 msg = qm_mr_current(&p->p);
813
814 while (msg != NULL) {
815 swapped_msg = *msg;
816 hw_fd_to_cpu(&swapped_msg.ern.fd);
817 verb = msg->ern.verb & QM_MR_VERB_TYPE_MASK;
818 fd = &swapped_msg.ern.fd;
819
820 if (unlikely(verb & 0x20)) {
821 printf("HW ERN notification, Nothing to do\n");
822 } else {
823 if ((fd->bpid & 0xff) != 0xff)
824 qman_free_mbuf_cb(fd);
825 }
826
827 num++;
828 qm_mr_next(&p->p);
829 qm_mr_pvb_update(&p->p);
830 msg = qm_mr_current(&p->p);
831 }
832
833 qm_mr_cci_consume(&p->p, num);
834 }
835
__poll_portal_slow(struct qman_portal * p,u32 is)836 static u32 __poll_portal_slow(struct qman_portal *p, u32 is)
837 {
838 const struct qm_mr_entry *msg;
839 struct qm_mr_entry swapped_msg;
840
841 if (is & QM_PIRQ_CSCI) {
842 struct qman_cgrs rr, c;
843 struct qm_mc_result *mcr;
844 struct qman_cgr *cgr;
845
846 spin_lock(&p->cgr_lock);
847 /*
848 * The CSCI bit must be cleared _before_ issuing the
849 * Query Congestion State command, to ensure that a long
850 * CGR State Change callback cannot miss an intervening
851 * state change.
852 */
853 qm_isr_status_clear(&p->p, QM_PIRQ_CSCI);
854 qm_mc_start(&p->p);
855 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION);
856 while (!(mcr = qm_mc_result(&p->p)))
857 cpu_relax();
858 /* mask out the ones I'm not interested in */
859 qman_cgrs_and(&rr, (const struct qman_cgrs *)
860 &mcr->querycongestion.state, &p->cgrs[0]);
861 /* check previous snapshot for delta, enter/exit congestion */
862 qman_cgrs_xor(&c, &rr, &p->cgrs[1]);
863 /* update snapshot */
864 qman_cgrs_cp(&p->cgrs[1], &rr);
865 /* Invoke callback */
866 list_for_each_entry(cgr, &p->cgr_cbs, node)
867 if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid))
868 cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid));
869 spin_unlock(&p->cgr_lock);
870 }
871
872 if (is & QM_PIRQ_EQRI) {
873 qm_eqcr_cce_update(&p->p);
874 qm_eqcr_set_ithresh(&p->p, 0);
875 wake_up(&affine_queue);
876 }
877
878 if (is & QM_PIRQ_MRI) {
879 struct qman_fq *fq;
880 u8 verb, num = 0;
881 mr_loop:
882 qm_mr_pvb_update(&p->p);
883 msg = qm_mr_current(&p->p);
884 if (!msg)
885 goto mr_done;
886 swapped_msg = *msg;
887 hw_fd_to_cpu(&swapped_msg.ern.fd);
888 verb = msg->ern.verb & QM_MR_VERB_TYPE_MASK;
889 /* The message is a software ERN iff the 0x20 bit is set */
890 if (verb & 0x20) {
891 switch (verb) {
892 case QM_MR_VERB_FQRNI:
893 /* nada, we drop FQRNIs on the floor */
894 break;
895 case QM_MR_VERB_FQRN:
896 case QM_MR_VERB_FQRL:
897 /* Lookup in the retirement table */
898 fq = table_find_fq(p,
899 be32_to_cpu(msg->fq.fqid));
900 DPAA_BUG_ON(!fq);
901 fq_state_change(p, fq, &swapped_msg, verb);
902 if (fq->cb.fqs)
903 fq->cb.fqs(p, fq, &swapped_msg);
904 break;
905 case QM_MR_VERB_FQPN:
906 /* Parked */
907 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
908 fq = get_fq_table_entry(msg->fq.contextB);
909 #else
910 fq = (void *)(uintptr_t)msg->fq.contextB;
911 #endif
912 fq_state_change(p, fq, msg, verb);
913 if (fq->cb.fqs)
914 fq->cb.fqs(p, fq, &swapped_msg);
915 break;
916 case QM_MR_VERB_DC_ERN:
917 /* DCP ERN */
918 if (p->cb_dc_ern)
919 p->cb_dc_ern(p, msg);
920 else if (cb_dc_ern)
921 cb_dc_ern(p, msg);
922 else {
923 static int warn_once;
924
925 if (!warn_once) {
926 pr_crit("Leaking DCP ERNs!\n");
927 warn_once = 1;
928 }
929 }
930 break;
931 default:
932 pr_crit("Invalid MR verb 0x%02x\n", verb);
933 }
934 } else {
935 /* Its a software ERN */
936 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
937 fq = get_fq_table_entry(be32_to_cpu(msg->ern.tag));
938 #else
939 fq = (void *)(uintptr_t)be32_to_cpu(msg->ern.tag);
940 #endif
941 fq->cb.ern(p, fq, &swapped_msg);
942 }
943 num++;
944 qm_mr_next(&p->p);
945 goto mr_loop;
946 mr_done:
947 qm_mr_cci_consume(&p->p, num);
948 }
949 /*
950 * QM_PIRQ_CSCI/CCSCI has already been cleared, as part of its specific
951 * processing. If that interrupt source has meanwhile been re-asserted,
952 * we mustn't clear it here (or in the top-level interrupt handler).
953 */
954 return is & (QM_PIRQ_EQCI | QM_PIRQ_EQRI | QM_PIRQ_MRI);
955 }
956
957 /*
958 * remove some slowish-path stuff from the "fast path" and make sure it isn't
959 * inlined.
960 */
clear_vdqcr(struct qman_portal * p,struct qman_fq * fq)961 static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq)
962 {
963 p->vdqcr_owned = NULL;
964 FQLOCK(fq);
965 fq_clear(fq, QMAN_FQ_STATE_VDQCR);
966 FQUNLOCK(fq);
967 wake_up(&affine_queue);
968 }
969
970 /*
971 * The only states that would conflict with other things if they ran at the
972 * same time on the same cpu are:
973 *
974 * (i) setting/clearing vdqcr_owned, and
975 * (ii) clearing the NE (Not Empty) flag.
976 *
977 * Both are safe. Because;
978 *
979 * (i) this clearing can only occur after qman_set_vdq() has set the
980 * vdqcr_owned field (which it does before setting VDQCR), and
981 * qman_volatile_dequeue() blocks interrupts and preemption while this is
982 * done so that we can't interfere.
983 * (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as
984 * with (i) that API prevents us from interfering until it's safe.
985 *
986 * The good thing is that qman_set_vdq() and qman_retire_fq() run far
987 * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett
988 * advantage comes from this function not having to "lock" anything at all.
989 *
990 * Note also that the callbacks are invoked at points which are safe against the
991 * above potential conflicts, but that this function itself is not re-entrant
992 * (this is because the function tracks one end of each FIFO in the portal and
993 * we do *not* want to lock that). So the consequence is that it is safe for
994 * user callbacks to call into any QMan API.
995 */
__poll_portal_fast(struct qman_portal * p,unsigned int poll_limit)996 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
997 unsigned int poll_limit)
998 {
999 const struct qm_dqrr_entry *dq;
1000 struct qman_fq *fq;
1001 enum qman_cb_dqrr_result res;
1002 unsigned int limit = 0;
1003 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1004 struct qm_dqrr_entry *shadow;
1005 #endif
1006 do {
1007 qm_dqrr_pvb_update(&p->p);
1008 dq = qm_dqrr_current(&p->p);
1009 if (unlikely(!dq))
1010 break;
1011 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1012 /* If running on an LE system the fields of the
1013 * dequeue entry must be swapper. Because the
1014 * QMan HW will ignore writes the DQRR entry is
1015 * copied and the index stored within the copy
1016 */
1017 shadow = &p->shadow_dqrr[DQRR_PTR2IDX(dq)];
1018 *shadow = *dq;
1019 dq = shadow;
1020 shadow->fqid = be32_to_cpu(shadow->fqid);
1021 shadow->seqnum = be16_to_cpu(shadow->seqnum);
1022 hw_fd_to_cpu(&shadow->fd);
1023 #endif
1024
1025 if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) {
1026 /*
1027 * VDQCR: don't trust context_b as the FQ may have
1028 * been configured for h/w consumption and we're
1029 * draining it post-retirement.
1030 */
1031 fq = p->vdqcr_owned;
1032 /*
1033 * We only set QMAN_FQ_STATE_NE when retiring, so we
1034 * only need to check for clearing it when doing
1035 * volatile dequeues. It's one less thing to check
1036 * in the critical path (SDQCR).
1037 */
1038 if (dq->stat & QM_DQRR_STAT_FQ_EMPTY)
1039 fq_clear(fq, QMAN_FQ_STATE_NE);
1040 /*
1041 * This is duplicated from the SDQCR code, but we
1042 * have stuff to do before *and* after this callback,
1043 * and we don't want multiple if()s in the critical
1044 * path (SDQCR).
1045 */
1046 res = fq->cb.dqrr(p, fq, dq);
1047 if (res == qman_cb_dqrr_stop)
1048 break;
1049 /* Check for VDQCR completion */
1050 if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED)
1051 clear_vdqcr(p, fq);
1052 } else {
1053 /* SDQCR: context_b points to the FQ */
1054 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1055 fq = get_fq_table_entry(dq->contextB);
1056 #else
1057 fq = (void *)(uintptr_t)dq->contextB;
1058 #endif
1059 /* Now let the callback do its stuff */
1060 res = fq->cb.dqrr(p, fq, dq);
1061 /*
1062 * The callback can request that we exit without
1063 * consuming this entry nor advancing;
1064 */
1065 if (res == qman_cb_dqrr_stop)
1066 break;
1067 }
1068 /* Interpret 'dq' from a driver perspective. */
1069 /*
1070 * Parking isn't possible unless HELDACTIVE was set. NB,
1071 * FORCEELIGIBLE implies HELDACTIVE, so we only need to
1072 * check for HELDACTIVE to cover both.
1073 */
1074 DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) ||
1075 (res != qman_cb_dqrr_park));
1076 /* just means "skip it, I'll consume it myself later on" */
1077 if (res != qman_cb_dqrr_defer)
1078 qm_dqrr_cdc_consume_1ptr(&p->p, dq,
1079 res == qman_cb_dqrr_park);
1080 /* Move forward */
1081 qm_dqrr_next(&p->p);
1082 /*
1083 * Entry processed and consumed, increment our counter. The
1084 * callback can request that we exit after consuming the
1085 * entry, and we also exit if we reach our processing limit,
1086 * so loop back only if neither of these conditions is met.
1087 */
1088 } while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop);
1089
1090 return limit;
1091 }
1092
qman_irqsource_add(u32 bits)1093 int qman_irqsource_add(u32 bits)
1094 {
1095 struct qman_portal *p = get_affine_portal();
1096
1097 bits = bits & QM_PIRQ_VISIBLE;
1098
1099 /* Clear any previously remaining interrupt conditions in
1100 * QCSP_ISR. This prevents raising a false interrupt when
1101 * interrupt conditions are enabled in QCSP_IER.
1102 */
1103 qm_isr_status_clear(&p->p, bits);
1104 dpaa_set_bits(bits, &p->irq_sources);
1105 qm_isr_enable_write(&p->p, p->irq_sources);
1106
1107 return 0;
1108 }
1109
qman_fq_portal_irqsource_add(struct qman_portal * p,u32 bits)1110 int qman_fq_portal_irqsource_add(struct qman_portal *p, u32 bits)
1111 {
1112 bits = bits & QM_PIRQ_VISIBLE;
1113
1114 /* Clear any previously remaining interrupt conditions in
1115 * QCSP_ISR. This prevents raising a false interrupt when
1116 * interrupt conditions are enabled in QCSP_IER.
1117 */
1118 qm_isr_status_clear(&p->p, bits);
1119 dpaa_set_bits(bits, &p->irq_sources);
1120 qm_isr_enable_write(&p->p, p->irq_sources);
1121
1122 return 0;
1123 }
1124
qman_irqsource_remove(u32 bits)1125 int qman_irqsource_remove(u32 bits)
1126 {
1127 struct qman_portal *p = get_affine_portal();
1128 u32 ier;
1129
1130 /* Our interrupt handler only processes+clears status register bits that
1131 * are in p->irq_sources. As we're trimming that mask, if one of them
1132 * were to assert in the status register just before we remove it from
1133 * the enable register, there would be an interrupt-storm when we
1134 * release the IRQ lock. So we wait for the enable register update to
1135 * take effect in h/w (by reading it back) and then clear all other bits
1136 * in the status register. Ie. we clear them from ISR once it's certain
1137 * IER won't allow them to reassert.
1138 */
1139
1140 bits &= QM_PIRQ_VISIBLE;
1141 dpaa_clear_bits(bits, &p->irq_sources);
1142 qm_isr_enable_write(&p->p, p->irq_sources);
1143 ier = qm_isr_enable_read(&p->p);
1144 /* Using "~ier" (rather than "bits" or "~p->irq_sources") creates a
1145 * data-dependency, ie. to protect against re-ordering.
1146 */
1147 qm_isr_status_clear(&p->p, ~ier);
1148 return 0;
1149 }
1150
qman_fq_portal_irqsource_remove(struct qman_portal * p,u32 bits)1151 int qman_fq_portal_irqsource_remove(struct qman_portal *p, u32 bits)
1152 {
1153 u32 ier;
1154
1155 /* Our interrupt handler only processes+clears status register bits that
1156 * are in p->irq_sources. As we're trimming that mask, if one of them
1157 * were to assert in the status register just before we remove it from
1158 * the enable register, there would be an interrupt-storm when we
1159 * release the IRQ lock. So we wait for the enable register update to
1160 * take effect in h/w (by reading it back) and then clear all other bits
1161 * in the status register. Ie. we clear them from ISR once it's certain
1162 * IER won't allow them to reassert.
1163 */
1164
1165 bits &= QM_PIRQ_VISIBLE;
1166 dpaa_clear_bits(bits, &p->irq_sources);
1167 qm_isr_enable_write(&p->p, p->irq_sources);
1168 ier = qm_isr_enable_read(&p->p);
1169 /* Using "~ier" (rather than "bits" or "~p->irq_sources") creates a
1170 * data-dependency, ie. to protect against re-ordering.
1171 */
1172 qm_isr_status_clear(&p->p, ~ier);
1173 return 0;
1174 }
1175
qman_affine_channel(int cpu)1176 u16 qman_affine_channel(int cpu)
1177 {
1178 if (cpu < 0) {
1179 struct qman_portal *portal = get_affine_portal();
1180
1181 cpu = portal->config->cpu;
1182 }
1183 DPAA_BUG_ON(!CPU_ISSET(cpu, &affine_mask));
1184 return affine_channels[cpu];
1185 }
1186
qman_portal_poll_rx(unsigned int poll_limit,void ** bufs,struct qman_portal * p)1187 unsigned int qman_portal_poll_rx(unsigned int poll_limit,
1188 void **bufs,
1189 struct qman_portal *p)
1190 {
1191 struct qm_portal *portal = &p->p;
1192 register struct qm_dqrr *dqrr = &portal->dqrr;
1193 struct qm_dqrr_entry *dq[QM_DQRR_SIZE], *shadow[QM_DQRR_SIZE];
1194 struct qman_fq *fq;
1195 unsigned int limit = 0, rx_number = 0;
1196 uint32_t consume = 0;
1197
1198 do {
1199 qm_dqrr_pvb_update(&p->p);
1200 if (!dqrr->fill)
1201 break;
1202
1203 dq[rx_number] = dqrr->cursor;
1204 dqrr->cursor = DQRR_CARRYCLEAR(dqrr->cursor + 1);
1205 /* Prefetch the next DQRR entry */
1206 rte_prefetch0(dqrr->cursor);
1207
1208 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1209 /* If running on an LE system the fields of the
1210 * dequeue entry must be swapper. Because the
1211 * QMan HW will ignore writes the DQRR entry is
1212 * copied and the index stored within the copy
1213 */
1214 shadow[rx_number] =
1215 &p->shadow_dqrr[DQRR_PTR2IDX(dq[rx_number])];
1216 shadow[rx_number]->fd.opaque_addr =
1217 dq[rx_number]->fd.opaque_addr;
1218 shadow[rx_number]->fd.addr =
1219 be40_to_cpu(dq[rx_number]->fd.addr);
1220 shadow[rx_number]->fd.opaque =
1221 be32_to_cpu(dq[rx_number]->fd.opaque);
1222 #else
1223 shadow[rx_number] = dq[rx_number];
1224 #endif
1225
1226 /* SDQCR: context_b points to the FQ */
1227 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1228 fq = qman_fq_lookup_table[dq[rx_number]->contextB];
1229 #else
1230 fq = (void *)dq[rx_number]->contextB;
1231 #endif
1232 if (fq->cb.dqrr_prepare)
1233 fq->cb.dqrr_prepare(shadow[rx_number],
1234 &bufs[rx_number]);
1235
1236 consume |= (1 << (31 - DQRR_PTR2IDX(shadow[rx_number])));
1237 rx_number++;
1238 --dqrr->fill;
1239 } while (++limit < poll_limit);
1240
1241 if (rx_number)
1242 fq->cb.dqrr_dpdk_pull_cb(&fq, shadow, bufs, rx_number);
1243
1244 /* Consume all the DQRR enries together */
1245 qm_out(DQRR_DCAP, (1 << 8) | consume);
1246
1247 return rx_number;
1248 }
1249
qman_clear_irq(void)1250 void qman_clear_irq(void)
1251 {
1252 struct qman_portal *p = get_affine_portal();
1253 u32 clear = QM_DQAVAIL_MASK | (p->irq_sources &
1254 ~(QM_PIRQ_CSCI | QM_PIRQ_CCSCI));
1255 qm_isr_status_clear(&p->p, clear);
1256 }
1257
qman_portal_dequeue(struct rte_event ev[],unsigned int poll_limit,void ** bufs)1258 u32 qman_portal_dequeue(struct rte_event ev[], unsigned int poll_limit,
1259 void **bufs)
1260 {
1261 const struct qm_dqrr_entry *dq;
1262 struct qman_fq *fq;
1263 enum qman_cb_dqrr_result res;
1264 unsigned int limit = 0;
1265 struct qman_portal *p = get_affine_portal();
1266 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1267 struct qm_dqrr_entry *shadow;
1268 #endif
1269 unsigned int rx_number = 0;
1270
1271 do {
1272 qm_dqrr_pvb_update(&p->p);
1273 dq = qm_dqrr_current(&p->p);
1274 if (!dq)
1275 break;
1276 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1277 /*
1278 * If running on an LE system the fields of the
1279 * dequeue entry must be swapper. Because the
1280 * QMan HW will ignore writes the DQRR entry is
1281 * copied and the index stored within the copy
1282 */
1283 shadow = &p->shadow_dqrr[DQRR_PTR2IDX(dq)];
1284 *shadow = *dq;
1285 dq = shadow;
1286 shadow->fqid = be32_to_cpu(shadow->fqid);
1287 shadow->seqnum = be16_to_cpu(shadow->seqnum);
1288 hw_fd_to_cpu(&shadow->fd);
1289 #endif
1290
1291 /* SDQCR: context_b points to the FQ */
1292 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1293 fq = get_fq_table_entry(dq->contextB);
1294 #else
1295 fq = (void *)(uintptr_t)dq->contextB;
1296 #endif
1297 /* Now let the callback do its stuff */
1298 res = fq->cb.dqrr_dpdk_cb(&ev[rx_number], p, fq,
1299 dq, &bufs[rx_number]);
1300 rx_number++;
1301 /* Interpret 'dq' from a driver perspective. */
1302 /*
1303 * Parking isn't possible unless HELDACTIVE was set. NB,
1304 * FORCEELIGIBLE implies HELDACTIVE, so we only need to
1305 * check for HELDACTIVE to cover both.
1306 */
1307 DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) ||
1308 (res != qman_cb_dqrr_park));
1309 if (res != qman_cb_dqrr_defer)
1310 qm_dqrr_cdc_consume_1ptr(&p->p, dq,
1311 res == qman_cb_dqrr_park);
1312 /* Move forward */
1313 qm_dqrr_next(&p->p);
1314 /*
1315 * Entry processed and consumed, increment our counter. The
1316 * callback can request that we exit after consuming the
1317 * entry, and we also exit if we reach our processing limit,
1318 * so loop back only if neither of these conditions is met.
1319 */
1320 } while (++limit < poll_limit);
1321
1322 return limit;
1323 }
1324
qman_dequeue(struct qman_fq * fq)1325 struct qm_dqrr_entry *qman_dequeue(struct qman_fq *fq)
1326 {
1327 struct qman_portal *p = get_affine_portal();
1328 const struct qm_dqrr_entry *dq;
1329 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1330 struct qm_dqrr_entry *shadow;
1331 #endif
1332
1333 qm_dqrr_pvb_update(&p->p);
1334 dq = qm_dqrr_current(&p->p);
1335 if (!dq)
1336 return NULL;
1337
1338 if (!(dq->stat & QM_DQRR_STAT_FD_VALID)) {
1339 /* Invalid DQRR - put the portal and consume the DQRR.
1340 * Return NULL to user as no packet is seen.
1341 */
1342 qman_dqrr_consume(fq, (struct qm_dqrr_entry *)dq);
1343 return NULL;
1344 }
1345
1346 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1347 shadow = &p->shadow_dqrr[DQRR_PTR2IDX(dq)];
1348 *shadow = *dq;
1349 dq = shadow;
1350 shadow->fqid = be32_to_cpu(shadow->fqid);
1351 shadow->seqnum = be16_to_cpu(shadow->seqnum);
1352 hw_fd_to_cpu(&shadow->fd);
1353 #endif
1354
1355 if (dq->stat & QM_DQRR_STAT_FQ_EMPTY)
1356 fq_clear(fq, QMAN_FQ_STATE_NE);
1357
1358 return (struct qm_dqrr_entry *)dq;
1359 }
1360
qman_dqrr_consume(struct qman_fq * fq,struct qm_dqrr_entry * dq)1361 void qman_dqrr_consume(struct qman_fq *fq,
1362 struct qm_dqrr_entry *dq)
1363 {
1364 struct qman_portal *p = get_affine_portal();
1365
1366 if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED)
1367 clear_vdqcr(p, fq);
1368
1369 qm_dqrr_cdc_consume_1ptr(&p->p, dq, 0);
1370 qm_dqrr_next(&p->p);
1371 }
1372
qman_poll_dqrr(unsigned int limit)1373 int qman_poll_dqrr(unsigned int limit)
1374 {
1375 struct qman_portal *p = get_affine_portal();
1376 int ret;
1377
1378 ret = __poll_portal_fast(p, limit);
1379 return ret;
1380 }
1381
qman_poll(void)1382 void qman_poll(void)
1383 {
1384 struct qman_portal *p = get_affine_portal();
1385
1386 if ((~p->irq_sources) & QM_PIRQ_SLOW) {
1387 if (!(p->slowpoll--)) {
1388 u32 is = qm_isr_status_read(&p->p) & ~p->irq_sources;
1389 u32 active = __poll_portal_slow(p, is);
1390
1391 if (active) {
1392 qm_isr_status_clear(&p->p, active);
1393 p->slowpoll = SLOW_POLL_BUSY;
1394 } else
1395 p->slowpoll = SLOW_POLL_IDLE;
1396 }
1397 }
1398 if ((~p->irq_sources) & QM_PIRQ_DQRI)
1399 __poll_portal_fast(p, FSL_QMAN_POLL_LIMIT);
1400 }
1401
qman_stop_dequeues(void)1402 void qman_stop_dequeues(void)
1403 {
1404 struct qman_portal *p = get_affine_portal();
1405
1406 qman_stop_dequeues_ex(p);
1407 }
1408
qman_start_dequeues(void)1409 void qman_start_dequeues(void)
1410 {
1411 struct qman_portal *p = get_affine_portal();
1412
1413 DPAA_ASSERT(p->dqrr_disable_ref > 0);
1414 if (!(--p->dqrr_disable_ref))
1415 qm_dqrr_set_maxfill(&p->p, DQRR_MAXFILL);
1416 }
1417
qman_static_dequeue_add(u32 pools,struct qman_portal * qp)1418 void qman_static_dequeue_add(u32 pools, struct qman_portal *qp)
1419 {
1420 struct qman_portal *p = qp ? qp : get_affine_portal();
1421
1422 pools &= p->config->pools;
1423 p->sdqcr |= pools;
1424 qm_dqrr_sdqcr_set(&p->p, p->sdqcr);
1425 }
1426
qman_static_dequeue_del(u32 pools,struct qman_portal * qp)1427 void qman_static_dequeue_del(u32 pools, struct qman_portal *qp)
1428 {
1429 struct qman_portal *p = qp ? qp : get_affine_portal();
1430
1431 pools &= p->config->pools;
1432 p->sdqcr &= ~pools;
1433 qm_dqrr_sdqcr_set(&p->p, p->sdqcr);
1434 }
1435
qman_static_dequeue_get(struct qman_portal * qp)1436 u32 qman_static_dequeue_get(struct qman_portal *qp)
1437 {
1438 struct qman_portal *p = qp ? qp : get_affine_portal();
1439 return p->sdqcr;
1440 }
1441
qman_dca(const struct qm_dqrr_entry * dq,int park_request)1442 void qman_dca(const struct qm_dqrr_entry *dq, int park_request)
1443 {
1444 struct qman_portal *p = get_affine_portal();
1445
1446 qm_dqrr_cdc_consume_1ptr(&p->p, dq, park_request);
1447 }
1448
qman_dca_index(u8 index,int park_request)1449 void qman_dca_index(u8 index, int park_request)
1450 {
1451 struct qman_portal *p = get_affine_portal();
1452
1453 qm_dqrr_cdc_consume_1(&p->p, index, park_request);
1454 }
1455
1456 /* Frame queue API */
mcr_result_str(u8 result)1457 static const char *mcr_result_str(u8 result)
1458 {
1459 switch (result) {
1460 case QM_MCR_RESULT_NULL:
1461 return "QM_MCR_RESULT_NULL";
1462 case QM_MCR_RESULT_OK:
1463 return "QM_MCR_RESULT_OK";
1464 case QM_MCR_RESULT_ERR_FQID:
1465 return "QM_MCR_RESULT_ERR_FQID";
1466 case QM_MCR_RESULT_ERR_FQSTATE:
1467 return "QM_MCR_RESULT_ERR_FQSTATE";
1468 case QM_MCR_RESULT_ERR_NOTEMPTY:
1469 return "QM_MCR_RESULT_ERR_NOTEMPTY";
1470 case QM_MCR_RESULT_PENDING:
1471 return "QM_MCR_RESULT_PENDING";
1472 case QM_MCR_RESULT_ERR_BADCOMMAND:
1473 return "QM_MCR_RESULT_ERR_BADCOMMAND";
1474 }
1475 return "<unknown MCR result>";
1476 }
1477
qman_create_fq(u32 fqid,u32 flags,struct qman_fq * fq)1478 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq)
1479 {
1480 struct qm_fqd fqd;
1481 struct qm_mcr_queryfq_np np;
1482 struct qm_mc_command *mcc;
1483 struct qm_mc_result *mcr;
1484 struct qman_portal *p;
1485
1486 if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) {
1487 int ret = qman_alloc_fqid(&fqid);
1488
1489 if (ret)
1490 return ret;
1491 }
1492 spin_lock_init(&fq->fqlock);
1493 fq->fqid = fqid;
1494 fq->fqid_le = cpu_to_be32(fqid);
1495 fq->flags = flags;
1496 fq->state = qman_fq_state_oos;
1497 fq->cgr_groupid = 0;
1498 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1499 if (unlikely(find_empty_fq_table_entry(&fq->key, fq))) {
1500 pr_info("Find empty table entry failed\n");
1501 return -ENOMEM;
1502 }
1503 fq->qman_fq_lookup_table = qman_fq_lookup_table;
1504 #endif
1505 if (!(flags & QMAN_FQ_FLAG_AS_IS) || (flags & QMAN_FQ_FLAG_NO_MODIFY))
1506 return 0;
1507 /* Everything else is AS_IS support */
1508 p = get_affine_portal();
1509 mcc = qm_mc_start(&p->p);
1510 mcc->queryfq.fqid = cpu_to_be32(fqid);
1511 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
1512 while (!(mcr = qm_mc_result(&p->p)))
1513 cpu_relax();
1514 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYFQ);
1515 if (mcr->result != QM_MCR_RESULT_OK) {
1516 pr_err("QUERYFQ failed: %s\n", mcr_result_str(mcr->result));
1517 goto err;
1518 }
1519 fqd = mcr->queryfq.fqd;
1520 hw_fqd_to_cpu(&fqd);
1521 mcc = qm_mc_start(&p->p);
1522 mcc->queryfq_np.fqid = cpu_to_be32(fqid);
1523 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
1524 while (!(mcr = qm_mc_result(&p->p)))
1525 cpu_relax();
1526 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYFQ_NP);
1527 if (mcr->result != QM_MCR_RESULT_OK) {
1528 pr_err("QUERYFQ_NP failed: %s\n", mcr_result_str(mcr->result));
1529 goto err;
1530 }
1531 np = mcr->queryfq_np;
1532 /* Phew, have queryfq and queryfq_np results, stitch together
1533 * the FQ object from those.
1534 */
1535 fq->cgr_groupid = fqd.cgid;
1536 switch (np.state & QM_MCR_NP_STATE_MASK) {
1537 case QM_MCR_NP_STATE_OOS:
1538 break;
1539 case QM_MCR_NP_STATE_RETIRED:
1540 fq->state = qman_fq_state_retired;
1541 if (np.frm_cnt)
1542 fq_set(fq, QMAN_FQ_STATE_NE);
1543 break;
1544 case QM_MCR_NP_STATE_TEN_SCHED:
1545 case QM_MCR_NP_STATE_TRU_SCHED:
1546 case QM_MCR_NP_STATE_ACTIVE:
1547 fq->state = qman_fq_state_sched;
1548 if (np.state & QM_MCR_NP_STATE_R)
1549 fq_set(fq, QMAN_FQ_STATE_CHANGING);
1550 break;
1551 case QM_MCR_NP_STATE_PARKED:
1552 fq->state = qman_fq_state_parked;
1553 break;
1554 default:
1555 DPAA_ASSERT(NULL == "invalid FQ state");
1556 }
1557 if (fqd.fq_ctrl & QM_FQCTRL_CGE)
1558 fq->state |= QMAN_FQ_STATE_CGR_EN;
1559 return 0;
1560 err:
1561 if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID)
1562 qman_release_fqid(fqid);
1563 return -EIO;
1564 }
1565
qman_destroy_fq(struct qman_fq * fq,u32 flags __maybe_unused)1566 void qman_destroy_fq(struct qman_fq *fq, u32 flags __maybe_unused)
1567 {
1568 /*
1569 * We don't need to lock the FQ as it is a pre-condition that the FQ be
1570 * quiesced. Instead, run some checks.
1571 */
1572 switch (fq->state) {
1573 case qman_fq_state_parked:
1574 DPAA_ASSERT(flags & QMAN_FQ_DESTROY_PARKED);
1575 /* Fallthrough */
1576 case qman_fq_state_oos:
1577 if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID))
1578 qman_release_fqid(fq->fqid);
1579 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1580 clear_fq_table_entry(fq->key);
1581 #endif
1582 return;
1583 default:
1584 break;
1585 }
1586 DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!");
1587 }
1588
qman_fq_fqid(struct qman_fq * fq)1589 u32 qman_fq_fqid(struct qman_fq *fq)
1590 {
1591 return fq->fqid;
1592 }
1593
qman_fq_state(struct qman_fq * fq,enum qman_fq_state * state,u32 * flags)1594 void qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags)
1595 {
1596 if (state)
1597 *state = fq->state;
1598 if (flags)
1599 *flags = fq->flags;
1600 }
1601
qman_init_fq(struct qman_fq * fq,u32 flags,struct qm_mcc_initfq * opts)1602 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts)
1603 {
1604 struct qm_mc_command *mcc;
1605 struct qm_mc_result *mcr;
1606 struct qman_portal *p;
1607
1608 u8 res, myverb = (flags & QMAN_INITFQ_FLAG_SCHED) ?
1609 QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED;
1610
1611 if ((fq->state != qman_fq_state_oos) &&
1612 (fq->state != qman_fq_state_parked))
1613 return -EINVAL;
1614 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1615 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1616 return -EINVAL;
1617 #endif
1618 if (opts && (opts->we_mask & QM_INITFQ_WE_OAC)) {
1619 /* And can't be set at the same time as TDTHRESH */
1620 if (opts->we_mask & QM_INITFQ_WE_TDTHRESH)
1621 return -EINVAL;
1622 }
1623 /* Issue an INITFQ_[PARKED|SCHED] management command */
1624 p = get_affine_portal();
1625 FQLOCK(fq);
1626 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_CHANGING)) ||
1627 ((fq->state != qman_fq_state_oos) &&
1628 (fq->state != qman_fq_state_parked)))) {
1629 FQUNLOCK(fq);
1630 return -EBUSY;
1631 }
1632 mcc = qm_mc_start(&p->p);
1633 if (opts)
1634 mcc->initfq = *opts;
1635 mcc->initfq.fqid = cpu_to_be32(fq->fqid);
1636 mcc->initfq.count = 0;
1637 /*
1638 * If the FQ does *not* have the TO_DCPORTAL flag, context_b is set as a
1639 * demux pointer. Otherwise, the caller-provided value is allowed to
1640 * stand, don't overwrite it.
1641 */
1642 if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) {
1643 dma_addr_t phys_fq;
1644
1645 mcc->initfq.we_mask |= QM_INITFQ_WE_CONTEXTB;
1646 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1647 mcc->initfq.fqd.context_b = cpu_to_be32(fq->key);
1648 #else
1649 mcc->initfq.fqd.context_b = (u32)(uintptr_t)fq;
1650 #endif
1651 /*
1652 * and the physical address - NB, if the user wasn't trying to
1653 * set CONTEXTA, clear the stashing settings.
1654 */
1655 if (!(mcc->initfq.we_mask & QM_INITFQ_WE_CONTEXTA)) {
1656 mcc->initfq.we_mask |= QM_INITFQ_WE_CONTEXTA;
1657 memset(&mcc->initfq.fqd.context_a, 0,
1658 sizeof(mcc->initfq.fqd.context_a));
1659 } else {
1660 phys_fq = rte_mem_virt2iova(fq);
1661 qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq);
1662 }
1663 }
1664 if (flags & QMAN_INITFQ_FLAG_LOCAL) {
1665 mcc->initfq.fqd.dest.channel = p->config->channel;
1666 if (!(mcc->initfq.we_mask & QM_INITFQ_WE_DESTWQ)) {
1667 mcc->initfq.we_mask |= QM_INITFQ_WE_DESTWQ;
1668 mcc->initfq.fqd.dest.wq = 4;
1669 }
1670 }
1671 mcc->initfq.we_mask = cpu_to_be16(mcc->initfq.we_mask);
1672 cpu_to_hw_fqd(&mcc->initfq.fqd);
1673 qm_mc_commit(&p->p, myverb);
1674 while (!(mcr = qm_mc_result(&p->p)))
1675 cpu_relax();
1676 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1677 res = mcr->result;
1678 if (res != QM_MCR_RESULT_OK) {
1679 FQUNLOCK(fq);
1680 return -EIO;
1681 }
1682 if (opts) {
1683 if (opts->we_mask & QM_INITFQ_WE_FQCTRL) {
1684 if (opts->fqd.fq_ctrl & QM_FQCTRL_CGE)
1685 fq_set(fq, QMAN_FQ_STATE_CGR_EN);
1686 else
1687 fq_clear(fq, QMAN_FQ_STATE_CGR_EN);
1688 }
1689 if (opts->we_mask & QM_INITFQ_WE_CGID)
1690 fq->cgr_groupid = opts->fqd.cgid;
1691 }
1692 fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ?
1693 qman_fq_state_sched : qman_fq_state_parked;
1694 FQUNLOCK(fq);
1695 return 0;
1696 }
1697
qman_schedule_fq(struct qman_fq * fq)1698 int qman_schedule_fq(struct qman_fq *fq)
1699 {
1700 struct qm_mc_command *mcc;
1701 struct qm_mc_result *mcr;
1702 struct qman_portal *p;
1703
1704 int ret = 0;
1705 u8 res;
1706
1707 if (fq->state != qman_fq_state_parked)
1708 return -EINVAL;
1709 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1710 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1711 return -EINVAL;
1712 #endif
1713 /* Issue a ALTERFQ_SCHED management command */
1714 p = get_affine_portal();
1715
1716 FQLOCK(fq);
1717 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_CHANGING)) ||
1718 (fq->state != qman_fq_state_parked))) {
1719 ret = -EBUSY;
1720 goto out;
1721 }
1722 mcc = qm_mc_start(&p->p);
1723 mcc->alterfq.fqid = cpu_to_be32(fq->fqid);
1724 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED);
1725 while (!(mcr = qm_mc_result(&p->p)))
1726 cpu_relax();
1727 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED);
1728 res = mcr->result;
1729 if (res != QM_MCR_RESULT_OK) {
1730 ret = -EIO;
1731 goto out;
1732 }
1733 fq->state = qman_fq_state_sched;
1734 out:
1735 FQUNLOCK(fq);
1736
1737 return ret;
1738 }
1739
qman_retire_fq(struct qman_fq * fq,u32 * flags)1740 int qman_retire_fq(struct qman_fq *fq, u32 *flags)
1741 {
1742 struct qm_mc_command *mcc;
1743 struct qm_mc_result *mcr;
1744 struct qman_portal *p;
1745
1746 int rval;
1747 u8 res;
1748
1749 if ((fq->state != qman_fq_state_parked) &&
1750 (fq->state != qman_fq_state_sched))
1751 return -EINVAL;
1752 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1753 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1754 return -EINVAL;
1755 #endif
1756 p = get_affine_portal();
1757
1758 FQLOCK(fq);
1759 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_CHANGING)) ||
1760 (fq->state == qman_fq_state_retired) ||
1761 (fq->state == qman_fq_state_oos))) {
1762 rval = -EBUSY;
1763 goto out;
1764 }
1765 rval = table_push_fq(p, fq);
1766 if (rval)
1767 goto out;
1768 mcc = qm_mc_start(&p->p);
1769 mcc->alterfq.fqid = cpu_to_be32(fq->fqid);
1770 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
1771 while (!(mcr = qm_mc_result(&p->p)))
1772 cpu_relax();
1773 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE);
1774 res = mcr->result;
1775 /*
1776 * "Elegant" would be to treat OK/PENDING the same way; set CHANGING,
1777 * and defer the flags until FQRNI or FQRN (respectively) show up. But
1778 * "Friendly" is to process OK immediately, and not set CHANGING. We do
1779 * friendly, otherwise the caller doesn't necessarily have a fully
1780 * "retired" FQ on return even if the retirement was immediate. However
1781 * this does mean some code duplication between here and
1782 * fq_state_change().
1783 */
1784 if (likely(res == QM_MCR_RESULT_OK)) {
1785 rval = 0;
1786 /* Process 'fq' right away, we'll ignore FQRNI */
1787 if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY)
1788 fq_set(fq, QMAN_FQ_STATE_NE);
1789 if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)
1790 fq_set(fq, QMAN_FQ_STATE_ORL);
1791 else
1792 table_del_fq(p, fq);
1793 if (flags)
1794 *flags = fq->flags;
1795 fq->state = qman_fq_state_retired;
1796 if (fq->cb.fqs) {
1797 /*
1798 * Another issue with supporting "immediate" retirement
1799 * is that we're forced to drop FQRNIs, because by the
1800 * time they're seen it may already be "too late" (the
1801 * fq may have been OOS'd and free()'d already). But if
1802 * the upper layer wants a callback whether it's
1803 * immediate or not, we have to fake a "MR" entry to
1804 * look like an FQRNI...
1805 */
1806 struct qm_mr_entry msg;
1807
1808 msg.ern.verb = QM_MR_VERB_FQRNI;
1809 msg.fq.fqs = mcr->alterfq.fqs;
1810 msg.fq.fqid = fq->fqid;
1811 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1812 msg.fq.contextB = fq->key;
1813 #else
1814 msg.fq.contextB = (u32)(uintptr_t)fq;
1815 #endif
1816 fq->cb.fqs(p, fq, &msg);
1817 }
1818 } else if (res == QM_MCR_RESULT_PENDING) {
1819 rval = 1;
1820 fq_set(fq, QMAN_FQ_STATE_CHANGING);
1821 } else {
1822 rval = -EIO;
1823 table_del_fq(p, fq);
1824 }
1825 out:
1826 FQUNLOCK(fq);
1827 return rval;
1828 }
1829
qman_oos_fq(struct qman_fq * fq)1830 int qman_oos_fq(struct qman_fq *fq)
1831 {
1832 struct qm_mc_command *mcc;
1833 struct qm_mc_result *mcr;
1834 struct qman_portal *p;
1835
1836 int ret = 0;
1837 u8 res;
1838
1839 if (fq->state != qman_fq_state_retired)
1840 return -EINVAL;
1841 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1842 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1843 return -EINVAL;
1844 #endif
1845 p = get_affine_portal();
1846 FQLOCK(fq);
1847 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS)) ||
1848 (fq->state != qman_fq_state_retired))) {
1849 ret = -EBUSY;
1850 goto out;
1851 }
1852 mcc = qm_mc_start(&p->p);
1853 mcc->alterfq.fqid = cpu_to_be32(fq->fqid);
1854 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
1855 while (!(mcr = qm_mc_result(&p->p)))
1856 cpu_relax();
1857 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS);
1858 res = mcr->result;
1859 if (res != QM_MCR_RESULT_OK) {
1860 ret = -EIO;
1861 goto out;
1862 }
1863 fq->state = qman_fq_state_oos;
1864 out:
1865 FQUNLOCK(fq);
1866 return ret;
1867 }
1868
qman_fq_flow_control(struct qman_fq * fq,int xon)1869 int qman_fq_flow_control(struct qman_fq *fq, int xon)
1870 {
1871 struct qm_mc_command *mcc;
1872 struct qm_mc_result *mcr;
1873 struct qman_portal *p;
1874
1875 int ret = 0;
1876 u8 res;
1877 u8 myverb;
1878
1879 if ((fq->state == qman_fq_state_oos) ||
1880 (fq->state == qman_fq_state_retired) ||
1881 (fq->state == qman_fq_state_parked))
1882 return -EINVAL;
1883
1884 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1885 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1886 return -EINVAL;
1887 #endif
1888 /* Issue a ALTER_FQXON or ALTER_FQXOFF management command */
1889 p = get_affine_portal();
1890 FQLOCK(fq);
1891 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_CHANGING)) ||
1892 (fq->state == qman_fq_state_parked) ||
1893 (fq->state == qman_fq_state_oos) ||
1894 (fq->state == qman_fq_state_retired))) {
1895 ret = -EBUSY;
1896 goto out;
1897 }
1898 mcc = qm_mc_start(&p->p);
1899 mcc->alterfq.fqid = fq->fqid;
1900 mcc->alterfq.count = 0;
1901 myverb = xon ? QM_MCC_VERB_ALTER_FQXON : QM_MCC_VERB_ALTER_FQXOFF;
1902
1903 qm_mc_commit(&p->p, myverb);
1904 while (!(mcr = qm_mc_result(&p->p)))
1905 cpu_relax();
1906 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1907
1908 res = mcr->result;
1909 if (res != QM_MCR_RESULT_OK) {
1910 ret = -EIO;
1911 goto out;
1912 }
1913 out:
1914 FQUNLOCK(fq);
1915 return ret;
1916 }
1917
qman_query_fq(struct qman_fq * fq,struct qm_fqd * fqd)1918 int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd)
1919 {
1920 struct qm_mc_command *mcc;
1921 struct qm_mc_result *mcr;
1922 struct qman_portal *p = get_affine_portal();
1923
1924 u8 res;
1925
1926 mcc = qm_mc_start(&p->p);
1927 mcc->queryfq.fqid = cpu_to_be32(fq->fqid);
1928 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
1929 while (!(mcr = qm_mc_result(&p->p)))
1930 cpu_relax();
1931 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
1932 res = mcr->result;
1933 if (res == QM_MCR_RESULT_OK)
1934 *fqd = mcr->queryfq.fqd;
1935 hw_fqd_to_cpu(fqd);
1936 if (res != QM_MCR_RESULT_OK)
1937 return -EIO;
1938 return 0;
1939 }
1940
qman_query_fq_has_pkts(struct qman_fq * fq)1941 int qman_query_fq_has_pkts(struct qman_fq *fq)
1942 {
1943 struct qm_mc_command *mcc;
1944 struct qm_mc_result *mcr;
1945 struct qman_portal *p = get_affine_portal();
1946
1947 int ret = 0;
1948 u8 res;
1949
1950 mcc = qm_mc_start(&p->p);
1951 mcc->queryfq.fqid = cpu_to_be32(fq->fqid);
1952 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
1953 while (!(mcr = qm_mc_result(&p->p)))
1954 cpu_relax();
1955 res = mcr->result;
1956 if (res == QM_MCR_RESULT_OK)
1957 ret = !!mcr->queryfq_np.frm_cnt;
1958 return ret;
1959 }
1960
qman_query_fq_np(struct qman_fq * fq,struct qm_mcr_queryfq_np * np)1961 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np)
1962 {
1963 struct qm_mc_command *mcc;
1964 struct qm_mc_result *mcr;
1965 struct qman_portal *p = get_affine_portal();
1966
1967 u8 res;
1968
1969 mcc = qm_mc_start(&p->p);
1970 mcc->queryfq.fqid = cpu_to_be32(fq->fqid);
1971 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
1972 while (!(mcr = qm_mc_result(&p->p)))
1973 cpu_relax();
1974 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
1975 res = mcr->result;
1976 if (res == QM_MCR_RESULT_OK) {
1977 *np = mcr->queryfq_np;
1978 np->fqd_link = be24_to_cpu(np->fqd_link);
1979 np->odp_seq = be16_to_cpu(np->odp_seq);
1980 np->orp_nesn = be16_to_cpu(np->orp_nesn);
1981 np->orp_ea_hseq = be16_to_cpu(np->orp_ea_hseq);
1982 np->orp_ea_tseq = be16_to_cpu(np->orp_ea_tseq);
1983 np->orp_ea_hptr = be24_to_cpu(np->orp_ea_hptr);
1984 np->orp_ea_tptr = be24_to_cpu(np->orp_ea_tptr);
1985 np->pfdr_hptr = be24_to_cpu(np->pfdr_hptr);
1986 np->pfdr_tptr = be24_to_cpu(np->pfdr_tptr);
1987 np->ics_surp = be16_to_cpu(np->ics_surp);
1988 np->byte_cnt = be32_to_cpu(np->byte_cnt);
1989 np->frm_cnt = be24_to_cpu(np->frm_cnt);
1990 np->ra1_sfdr = be16_to_cpu(np->ra1_sfdr);
1991 np->ra2_sfdr = be16_to_cpu(np->ra2_sfdr);
1992 np->od1_sfdr = be16_to_cpu(np->od1_sfdr);
1993 np->od2_sfdr = be16_to_cpu(np->od2_sfdr);
1994 np->od3_sfdr = be16_to_cpu(np->od3_sfdr);
1995 }
1996 if (res == QM_MCR_RESULT_ERR_FQID)
1997 return -ERANGE;
1998 else if (res != QM_MCR_RESULT_OK)
1999 return -EIO;
2000 return 0;
2001 }
2002
qman_query_fq_frm_cnt(struct qman_fq * fq,u32 * frm_cnt)2003 int qman_query_fq_frm_cnt(struct qman_fq *fq, u32 *frm_cnt)
2004 {
2005 struct qm_mc_command *mcc;
2006 struct qm_mc_result *mcr;
2007 struct qman_portal *p = get_affine_portal();
2008
2009 mcc = qm_mc_start(&p->p);
2010 mcc->queryfq.fqid = cpu_to_be32(fq->fqid);
2011 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2012 while (!(mcr = qm_mc_result(&p->p)))
2013 cpu_relax();
2014 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2015
2016 if (mcr->result == QM_MCR_RESULT_OK)
2017 *frm_cnt = be24_to_cpu(mcr->queryfq_np.frm_cnt);
2018 else if (mcr->result == QM_MCR_RESULT_ERR_FQID)
2019 return -ERANGE;
2020 else if (mcr->result != QM_MCR_RESULT_OK)
2021 return -EIO;
2022 return 0;
2023 }
2024
qman_query_wq(u8 query_dedicated,struct qm_mcr_querywq * wq)2025 int qman_query_wq(u8 query_dedicated, struct qm_mcr_querywq *wq)
2026 {
2027 struct qm_mc_command *mcc;
2028 struct qm_mc_result *mcr;
2029 struct qman_portal *p = get_affine_portal();
2030
2031 u8 res, myverb;
2032
2033 myverb = (query_dedicated) ? QM_MCR_VERB_QUERYWQ_DEDICATED :
2034 QM_MCR_VERB_QUERYWQ;
2035 mcc = qm_mc_start(&p->p);
2036 mcc->querywq.channel.id = cpu_to_be16(wq->channel.id);
2037 qm_mc_commit(&p->p, myverb);
2038 while (!(mcr = qm_mc_result(&p->p)))
2039 cpu_relax();
2040 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
2041 res = mcr->result;
2042 if (res == QM_MCR_RESULT_OK) {
2043 int i, array_len;
2044
2045 wq->channel.id = be16_to_cpu(mcr->querywq.channel.id);
2046 array_len = ARRAY_SIZE(mcr->querywq.wq_len);
2047 for (i = 0; i < array_len; i++)
2048 wq->wq_len[i] = be32_to_cpu(mcr->querywq.wq_len[i]);
2049 }
2050 if (res != QM_MCR_RESULT_OK) {
2051 pr_err("QUERYWQ failed: %s\n", mcr_result_str(res));
2052 return -EIO;
2053 }
2054 return 0;
2055 }
2056
qman_testwrite_cgr(struct qman_cgr * cgr,u64 i_bcnt,struct qm_mcr_cgrtestwrite * result)2057 int qman_testwrite_cgr(struct qman_cgr *cgr, u64 i_bcnt,
2058 struct qm_mcr_cgrtestwrite *result)
2059 {
2060 struct qm_mc_command *mcc;
2061 struct qm_mc_result *mcr;
2062 struct qman_portal *p = get_affine_portal();
2063
2064 u8 res;
2065
2066 mcc = qm_mc_start(&p->p);
2067 mcc->cgrtestwrite.cgid = cgr->cgrid;
2068 mcc->cgrtestwrite.i_bcnt_hi = (u8)(i_bcnt >> 32);
2069 mcc->cgrtestwrite.i_bcnt_lo = (u32)i_bcnt;
2070 qm_mc_commit(&p->p, QM_MCC_VERB_CGRTESTWRITE);
2071 while (!(mcr = qm_mc_result(&p->p)))
2072 cpu_relax();
2073 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_CGRTESTWRITE);
2074 res = mcr->result;
2075 if (res == QM_MCR_RESULT_OK)
2076 *result = mcr->cgrtestwrite;
2077 if (res != QM_MCR_RESULT_OK) {
2078 pr_err("CGR TEST WRITE failed: %s\n", mcr_result_str(res));
2079 return -EIO;
2080 }
2081 return 0;
2082 }
2083
qman_query_cgr(struct qman_cgr * cgr,struct qm_mcr_querycgr * cgrd)2084 int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *cgrd)
2085 {
2086 struct qm_mc_command *mcc;
2087 struct qm_mc_result *mcr;
2088 struct qman_portal *p = get_affine_portal();
2089 u8 res;
2090 unsigned int i;
2091
2092 mcc = qm_mc_start(&p->p);
2093 mcc->querycgr.cgid = cgr->cgrid;
2094 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR);
2095 while (!(mcr = qm_mc_result(&p->p)))
2096 cpu_relax();
2097 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR);
2098 res = mcr->result;
2099 if (res == QM_MCR_RESULT_OK)
2100 *cgrd = mcr->querycgr;
2101 if (res != QM_MCR_RESULT_OK) {
2102 pr_err("QUERY_CGR failed: %s\n", mcr_result_str(res));
2103 return -EIO;
2104 }
2105 cgrd->cgr.wr_parm_g.word =
2106 be32_to_cpu(cgrd->cgr.wr_parm_g.word);
2107 cgrd->cgr.wr_parm_y.word =
2108 be32_to_cpu(cgrd->cgr.wr_parm_y.word);
2109 cgrd->cgr.wr_parm_r.word =
2110 be32_to_cpu(cgrd->cgr.wr_parm_r.word);
2111 cgrd->cgr.cscn_targ = be32_to_cpu(cgrd->cgr.cscn_targ);
2112 cgrd->cgr.__cs_thres = be16_to_cpu(cgrd->cgr.__cs_thres);
2113 for (i = 0; i < ARRAY_SIZE(cgrd->cscn_targ_swp); i++)
2114 cgrd->cscn_targ_swp[i] =
2115 be32_to_cpu(cgrd->cscn_targ_swp[i]);
2116 return 0;
2117 }
2118
qman_query_congestion(struct qm_mcr_querycongestion * congestion)2119 int qman_query_congestion(struct qm_mcr_querycongestion *congestion)
2120 {
2121 struct qm_mc_result *mcr;
2122 struct qman_portal *p = get_affine_portal();
2123 u8 res;
2124 unsigned int i;
2125
2126 qm_mc_start(&p->p);
2127 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION);
2128 while (!(mcr = qm_mc_result(&p->p)))
2129 cpu_relax();
2130 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2131 QM_MCC_VERB_QUERYCONGESTION);
2132 res = mcr->result;
2133 if (res == QM_MCR_RESULT_OK)
2134 *congestion = mcr->querycongestion;
2135 if (res != QM_MCR_RESULT_OK) {
2136 pr_err("QUERY_CONGESTION failed: %s\n", mcr_result_str(res));
2137 return -EIO;
2138 }
2139 for (i = 0; i < ARRAY_SIZE(congestion->state.state); i++)
2140 congestion->state.state[i] =
2141 be32_to_cpu(congestion->state.state[i]);
2142 return 0;
2143 }
2144
qman_set_vdq(struct qman_fq * fq,u16 num,uint32_t vdqcr_flags)2145 int qman_set_vdq(struct qman_fq *fq, u16 num, uint32_t vdqcr_flags)
2146 {
2147 struct qman_portal *p = get_affine_portal();
2148 uint32_t vdqcr;
2149 int ret = -EBUSY;
2150
2151 vdqcr = vdqcr_flags;
2152 vdqcr |= QM_VDQCR_NUMFRAMES_SET(num);
2153
2154 if ((fq->state != qman_fq_state_parked) &&
2155 (fq->state != qman_fq_state_retired)) {
2156 ret = -EINVAL;
2157 goto out;
2158 }
2159 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR)) {
2160 ret = -EBUSY;
2161 goto out;
2162 }
2163 vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid;
2164
2165 if (!p->vdqcr_owned) {
2166 FQLOCK(fq);
2167 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2168 goto escape;
2169 fq_set(fq, QMAN_FQ_STATE_VDQCR);
2170 FQUNLOCK(fq);
2171 p->vdqcr_owned = fq;
2172 ret = 0;
2173 }
2174 escape:
2175 if (!ret)
2176 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2177
2178 out:
2179 return ret;
2180 }
2181
qman_volatile_dequeue(struct qman_fq * fq,u32 flags __maybe_unused,u32 vdqcr)2182 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags __maybe_unused,
2183 u32 vdqcr)
2184 {
2185 struct qman_portal *p;
2186 int ret = -EBUSY;
2187
2188 if ((fq->state != qman_fq_state_parked) &&
2189 (fq->state != qman_fq_state_retired))
2190 return -EINVAL;
2191 if (vdqcr & QM_VDQCR_FQID_MASK)
2192 return -EINVAL;
2193 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2194 return -EBUSY;
2195 vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid;
2196
2197 p = get_affine_portal();
2198
2199 if (!p->vdqcr_owned) {
2200 FQLOCK(fq);
2201 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2202 goto escape;
2203 fq_set(fq, QMAN_FQ_STATE_VDQCR);
2204 FQUNLOCK(fq);
2205 p->vdqcr_owned = fq;
2206 ret = 0;
2207 }
2208 escape:
2209 if (ret)
2210 return ret;
2211
2212 /* VDQCR is set */
2213 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2214 return 0;
2215 }
2216
update_eqcr_ci(struct qman_portal * p,u8 avail)2217 static noinline void update_eqcr_ci(struct qman_portal *p, u8 avail)
2218 {
2219 if (avail)
2220 qm_eqcr_cce_prefetch(&p->p);
2221 else
2222 qm_eqcr_cce_update(&p->p);
2223 }
2224
qman_eqcr_is_empty(void)2225 int qman_eqcr_is_empty(void)
2226 {
2227 struct qman_portal *p = get_affine_portal();
2228 u8 avail;
2229
2230 update_eqcr_ci(p, 0);
2231 avail = qm_eqcr_get_fill(&p->p);
2232 return (avail == 0);
2233 }
2234
qman_set_dc_ern(qman_cb_dc_ern handler,int affine)2235 void qman_set_dc_ern(qman_cb_dc_ern handler, int affine)
2236 {
2237 if (affine) {
2238 struct qman_portal *p = get_affine_portal();
2239
2240 p->cb_dc_ern = handler;
2241 } else
2242 cb_dc_ern = handler;
2243 }
2244
try_p_eq_start(struct qman_portal * p,struct qman_fq * fq,const struct qm_fd * fd,u32 flags)2245 static inline struct qm_eqcr_entry *try_p_eq_start(struct qman_portal *p,
2246 struct qman_fq *fq,
2247 const struct qm_fd *fd,
2248 u32 flags)
2249 {
2250 struct qm_eqcr_entry *eq;
2251 u8 avail;
2252
2253 if (p->use_eqcr_ci_stashing) {
2254 /*
2255 * The stashing case is easy, only update if we need to in
2256 * order to try and liberate ring entries.
2257 */
2258 eq = qm_eqcr_start_stash(&p->p);
2259 } else {
2260 /*
2261 * The non-stashing case is harder, need to prefetch ahead of
2262 * time.
2263 */
2264 avail = qm_eqcr_get_avail(&p->p);
2265 if (avail < 2)
2266 update_eqcr_ci(p, avail);
2267 eq = qm_eqcr_start_no_stash(&p->p);
2268 }
2269
2270 if (unlikely(!eq))
2271 return NULL;
2272
2273 if (flags & QMAN_ENQUEUE_FLAG_DCA)
2274 eq->dca = QM_EQCR_DCA_ENABLE |
2275 ((flags & QMAN_ENQUEUE_FLAG_DCA_PARK) ?
2276 QM_EQCR_DCA_PARK : 0) |
2277 ((flags >> 8) & QM_EQCR_DCA_IDXMASK);
2278 eq->fqid = cpu_to_be32(fq->fqid);
2279 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
2280 eq->tag = cpu_to_be32(fq->key);
2281 #else
2282 eq->tag = cpu_to_be32((u32)(uintptr_t)fq);
2283 #endif
2284 eq->fd = *fd;
2285 cpu_to_hw_fd(&eq->fd);
2286 return eq;
2287 }
2288
qman_enqueue(struct qman_fq * fq,const struct qm_fd * fd,u32 flags)2289 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags)
2290 {
2291 struct qman_portal *p = get_affine_portal();
2292 struct qm_eqcr_entry *eq;
2293
2294 eq = try_p_eq_start(p, fq, fd, flags);
2295 if (!eq)
2296 return -EBUSY;
2297 /* Note: QM_EQCR_VERB_INTERRUPT == QMAN_ENQUEUE_FLAG_WAIT_SYNC */
2298 qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE |
2299 (flags & (QM_EQCR_VERB_COLOUR_MASK | QM_EQCR_VERB_INTERRUPT)));
2300 /* Factor the below out, it's used from qman_enqueue_orp() too */
2301 return 0;
2302 }
2303
qman_enqueue_multi(struct qman_fq * fq,const struct qm_fd * fd,u32 * flags,int frames_to_send)2304 int qman_enqueue_multi(struct qman_fq *fq,
2305 const struct qm_fd *fd, u32 *flags,
2306 int frames_to_send)
2307 {
2308 struct qman_portal *p = get_affine_portal();
2309 struct qm_portal *portal = &p->p;
2310
2311 register struct qm_eqcr *eqcr = &portal->eqcr;
2312 struct qm_eqcr_entry *eq = eqcr->cursor, *prev_eq;
2313
2314 u8 i = 0, diff, old_ci, sent = 0;
2315
2316 /* Update the available entries if no entry is free */
2317 if (!eqcr->available) {
2318 old_ci = eqcr->ci;
2319 eqcr->ci = qm_cl_in(EQCR_CI) & (QM_EQCR_SIZE - 1);
2320 diff = qm_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
2321 eqcr->available += diff;
2322 if (!diff)
2323 return 0;
2324 }
2325
2326 /* try to send as many frames as possible */
2327 while (eqcr->available && frames_to_send--) {
2328 eq->fqid = fq->fqid_le;
2329 eq->fd.opaque_addr = fd->opaque_addr;
2330 eq->fd.addr = cpu_to_be40(fd->addr);
2331 eq->fd.status = cpu_to_be32(fd->status);
2332 eq->fd.opaque = cpu_to_be32(fd->opaque);
2333 if (flags && (flags[i] & QMAN_ENQUEUE_FLAG_DCA)) {
2334 eq->dca = QM_EQCR_DCA_ENABLE |
2335 ((flags[i] >> 8) & QM_EQCR_DCA_IDXMASK);
2336 }
2337 i++;
2338 eq = (void *)((unsigned long)(eq + 1) &
2339 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2340 eqcr->available--;
2341 sent++;
2342 fd++;
2343 }
2344 lwsync();
2345
2346 /* In order for flushes to complete faster, all lines are recorded in
2347 * 32 bit word.
2348 */
2349 eq = eqcr->cursor;
2350 for (i = 0; i < sent; i++) {
2351 eq->__dont_write_directly__verb =
2352 QM_EQCR_VERB_CMD_ENQUEUE | eqcr->vbit;
2353 prev_eq = eq;
2354 eq = (void *)((unsigned long)(eq + 1) &
2355 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2356 if (unlikely((prev_eq + 1) != eq))
2357 eqcr->vbit ^= QM_EQCR_VERB_VBIT;
2358 }
2359
2360 /* We need to flush all the lines but without load/store operations
2361 * between them
2362 */
2363 eq = eqcr->cursor;
2364 for (i = 0; i < sent; i++) {
2365 dcbf(eq);
2366 eq = (void *)((unsigned long)(eq + 1) &
2367 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2368 }
2369 /* Update cursor for the next call */
2370 eqcr->cursor = eq;
2371 return sent;
2372 }
2373
2374 int
qman_enqueue_multi_fq(struct qman_fq * fq[],const struct qm_fd * fd,u32 * flags,int frames_to_send)2375 qman_enqueue_multi_fq(struct qman_fq *fq[], const struct qm_fd *fd,
2376 u32 *flags, int frames_to_send)
2377 {
2378 struct qman_portal *p = get_affine_portal();
2379 struct qm_portal *portal = &p->p;
2380
2381 register struct qm_eqcr *eqcr = &portal->eqcr;
2382 struct qm_eqcr_entry *eq = eqcr->cursor, *prev_eq;
2383
2384 u8 i = 0, diff, old_ci, sent = 0;
2385
2386 /* Update the available entries if no entry is free */
2387 if (!eqcr->available) {
2388 old_ci = eqcr->ci;
2389 eqcr->ci = qm_cl_in(EQCR_CI) & (QM_EQCR_SIZE - 1);
2390 diff = qm_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
2391 eqcr->available += diff;
2392 if (!diff)
2393 return 0;
2394 }
2395
2396 /* try to send as many frames as possible */
2397 while (eqcr->available && frames_to_send--) {
2398 eq->fqid = fq[sent]->fqid_le;
2399 eq->fd.opaque_addr = fd->opaque_addr;
2400 eq->fd.addr = cpu_to_be40(fd->addr);
2401 eq->fd.status = cpu_to_be32(fd->status);
2402 eq->fd.opaque = cpu_to_be32(fd->opaque);
2403 if (flags && (flags[i] & QMAN_ENQUEUE_FLAG_DCA)) {
2404 eq->dca = QM_EQCR_DCA_ENABLE |
2405 ((flags[i] >> 8) & QM_EQCR_DCA_IDXMASK);
2406 }
2407 i++;
2408
2409 eq = (void *)((unsigned long)(eq + 1) &
2410 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2411 eqcr->available--;
2412 sent++;
2413 fd++;
2414 }
2415 lwsync();
2416
2417 /* In order for flushes to complete faster, all lines are recorded in
2418 * 32 bit word.
2419 */
2420 eq = eqcr->cursor;
2421 for (i = 0; i < sent; i++) {
2422 eq->__dont_write_directly__verb =
2423 QM_EQCR_VERB_CMD_ENQUEUE | eqcr->vbit;
2424 prev_eq = eq;
2425 eq = (void *)((unsigned long)(eq + 1) &
2426 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2427 if (unlikely((prev_eq + 1) != eq))
2428 eqcr->vbit ^= QM_EQCR_VERB_VBIT;
2429 }
2430
2431 /* We need to flush all the lines but without load/store operations
2432 * between them
2433 */
2434 eq = eqcr->cursor;
2435 for (i = 0; i < sent; i++) {
2436 dcbf(eq);
2437 eq = (void *)((unsigned long)(eq + 1) &
2438 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2439 }
2440 /* Update cursor for the next call */
2441 eqcr->cursor = eq;
2442 return sent;
2443 }
2444
qman_enqueue_orp(struct qman_fq * fq,const struct qm_fd * fd,u32 flags,struct qman_fq * orp,u16 orp_seqnum)2445 int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags,
2446 struct qman_fq *orp, u16 orp_seqnum)
2447 {
2448 struct qman_portal *p = get_affine_portal();
2449 struct qm_eqcr_entry *eq;
2450
2451 eq = try_p_eq_start(p, fq, fd, flags);
2452 if (!eq)
2453 return -EBUSY;
2454 /* Process ORP-specifics here */
2455 if (flags & QMAN_ENQUEUE_FLAG_NLIS)
2456 orp_seqnum |= QM_EQCR_SEQNUM_NLIS;
2457 else {
2458 orp_seqnum &= ~QM_EQCR_SEQNUM_NLIS;
2459 if (flags & QMAN_ENQUEUE_FLAG_NESN)
2460 orp_seqnum |= QM_EQCR_SEQNUM_NESN;
2461 else
2462 /* No need to check 4 QMAN_ENQUEUE_FLAG_HOLE */
2463 orp_seqnum &= ~QM_EQCR_SEQNUM_NESN;
2464 }
2465 eq->seqnum = cpu_to_be16(orp_seqnum);
2466 eq->orp = cpu_to_be32(orp->fqid);
2467 /* Note: QM_EQCR_VERB_INTERRUPT == QMAN_ENQUEUE_FLAG_WAIT_SYNC */
2468 qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_ORP |
2469 ((flags & (QMAN_ENQUEUE_FLAG_HOLE | QMAN_ENQUEUE_FLAG_NESN)) ?
2470 0 : QM_EQCR_VERB_CMD_ENQUEUE) |
2471 (flags & (QM_EQCR_VERB_COLOUR_MASK | QM_EQCR_VERB_INTERRUPT)));
2472
2473 return 0;
2474 }
2475
qman_modify_cgr(struct qman_cgr * cgr,u32 flags,struct qm_mcc_initcgr * opts)2476 int qman_modify_cgr(struct qman_cgr *cgr, u32 flags,
2477 struct qm_mcc_initcgr *opts)
2478 {
2479 struct qm_mc_command *mcc;
2480 struct qm_mc_result *mcr;
2481 struct qman_portal *p = get_affine_portal();
2482
2483 u8 res;
2484 u8 verb = QM_MCC_VERB_MODIFYCGR;
2485
2486 mcc = qm_mc_start(&p->p);
2487 if (opts)
2488 mcc->initcgr = *opts;
2489 mcc->initcgr.we_mask = cpu_to_be16(mcc->initcgr.we_mask);
2490 mcc->initcgr.cgr.wr_parm_g.word =
2491 cpu_to_be32(mcc->initcgr.cgr.wr_parm_g.word);
2492 mcc->initcgr.cgr.wr_parm_y.word =
2493 cpu_to_be32(mcc->initcgr.cgr.wr_parm_y.word);
2494 mcc->initcgr.cgr.wr_parm_r.word =
2495 cpu_to_be32(mcc->initcgr.cgr.wr_parm_r.word);
2496 mcc->initcgr.cgr.cscn_targ = cpu_to_be32(mcc->initcgr.cgr.cscn_targ);
2497 mcc->initcgr.cgr.__cs_thres = cpu_to_be16(mcc->initcgr.cgr.__cs_thres);
2498
2499 mcc->initcgr.cgid = cgr->cgrid;
2500 if (flags & QMAN_CGR_FLAG_USE_INIT)
2501 verb = QM_MCC_VERB_INITCGR;
2502 qm_mc_commit(&p->p, verb);
2503 while (!(mcr = qm_mc_result(&p->p)))
2504 cpu_relax();
2505
2506 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb);
2507 res = mcr->result;
2508 return (res == QM_MCR_RESULT_OK) ? 0 : -EIO;
2509 }
2510
2511 #define TARG_MASK(n) (0x80000000 >> (n->config->channel - \
2512 QM_CHANNEL_SWPORTAL0))
2513 #define TARG_DCP_MASK(n) (0x80000000 >> (10 + n))
2514 #define PORTAL_IDX(n) (n->config->channel - QM_CHANNEL_SWPORTAL0)
2515
qman_create_cgr(struct qman_cgr * cgr,u32 flags,struct qm_mcc_initcgr * opts)2516 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
2517 struct qm_mcc_initcgr *opts)
2518 {
2519 struct qm_mcr_querycgr cgr_state;
2520 struct qm_mcc_initcgr local_opts;
2521 int ret;
2522 struct qman_portal *p;
2523
2524 /* We have to check that the provided CGRID is within the limits of the
2525 * data-structures, for obvious reasons. However we'll let h/w take
2526 * care of determining whether it's within the limits of what exists on
2527 * the SoC.
2528 */
2529 if (cgr->cgrid >= __CGR_NUM)
2530 return -EINVAL;
2531
2532 p = get_affine_portal();
2533
2534 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2535 cgr->chan = p->config->channel;
2536 spin_lock(&p->cgr_lock);
2537
2538 /* if no opts specified, just add it to the list */
2539 if (!opts)
2540 goto add_list;
2541
2542 ret = qman_query_cgr(cgr, &cgr_state);
2543 if (ret)
2544 goto release_lock;
2545 if (opts)
2546 local_opts = *opts;
2547 if ((qman_ip_rev & 0xFF00) >= QMAN_REV30)
2548 local_opts.cgr.cscn_targ_upd_ctrl =
2549 QM_CGR_TARG_UDP_CTRL_WRITE_BIT | PORTAL_IDX(p);
2550 else
2551 /* Overwrite TARG */
2552 local_opts.cgr.cscn_targ = cgr_state.cgr.cscn_targ |
2553 TARG_MASK(p);
2554 local_opts.we_mask |= QM_CGR_WE_CSCN_TARG;
2555
2556 /* send init if flags indicate so */
2557 if (opts && (flags & QMAN_CGR_FLAG_USE_INIT))
2558 ret = qman_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT, &local_opts);
2559 else
2560 ret = qman_modify_cgr(cgr, 0, &local_opts);
2561 if (ret)
2562 goto release_lock;
2563 add_list:
2564 list_add(&cgr->node, &p->cgr_cbs);
2565
2566 /* Determine if newly added object requires its callback to be called */
2567 ret = qman_query_cgr(cgr, &cgr_state);
2568 if (ret) {
2569 /* we can't go back, so proceed and return success, but screen
2570 * and wail to the log file.
2571 */
2572 pr_crit("CGR HW state partially modified\n");
2573 ret = 0;
2574 goto release_lock;
2575 }
2576 if (cgr->cb && cgr_state.cgr.cscn_en && qman_cgrs_get(&p->cgrs[1],
2577 cgr->cgrid))
2578 cgr->cb(p, cgr, 1);
2579 release_lock:
2580 spin_unlock(&p->cgr_lock);
2581 return ret;
2582 }
2583
qman_create_cgr_to_dcp(struct qman_cgr * cgr,u32 flags,u16 dcp_portal,struct qm_mcc_initcgr * opts)2584 int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal,
2585 struct qm_mcc_initcgr *opts)
2586 {
2587 struct qm_mcc_initcgr local_opts;
2588 struct qm_mcr_querycgr cgr_state;
2589 int ret;
2590
2591 if ((qman_ip_rev & 0xFF00) < QMAN_REV30) {
2592 pr_warn("QMan version doesn't support CSCN => DCP portal\n");
2593 return -EINVAL;
2594 }
2595 /* We have to check that the provided CGRID is within the limits of the
2596 * data-structures, for obvious reasons. However we'll let h/w take
2597 * care of determining whether it's within the limits of what exists on
2598 * the SoC.
2599 */
2600 if (cgr->cgrid >= __CGR_NUM)
2601 return -EINVAL;
2602
2603 ret = qman_query_cgr(cgr, &cgr_state);
2604 if (ret)
2605 return ret;
2606
2607 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2608 if (opts)
2609 local_opts = *opts;
2610
2611 if ((qman_ip_rev & 0xFF00) >= QMAN_REV30)
2612 local_opts.cgr.cscn_targ_upd_ctrl =
2613 QM_CGR_TARG_UDP_CTRL_WRITE_BIT |
2614 QM_CGR_TARG_UDP_CTRL_DCP | dcp_portal;
2615 else
2616 local_opts.cgr.cscn_targ = cgr_state.cgr.cscn_targ |
2617 TARG_DCP_MASK(dcp_portal);
2618 local_opts.we_mask |= QM_CGR_WE_CSCN_TARG;
2619
2620 /* send init if flags indicate so */
2621 if (opts && (flags & QMAN_CGR_FLAG_USE_INIT))
2622 ret = qman_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT,
2623 &local_opts);
2624 else
2625 ret = qman_modify_cgr(cgr, 0, &local_opts);
2626
2627 return ret;
2628 }
2629
qman_delete_cgr(struct qman_cgr * cgr)2630 int qman_delete_cgr(struct qman_cgr *cgr)
2631 {
2632 struct qm_mcr_querycgr cgr_state;
2633 struct qm_mcc_initcgr local_opts;
2634 int ret = 0;
2635 struct qman_cgr *i;
2636 struct qman_portal *p = get_affine_portal();
2637
2638 if (cgr->chan != p->config->channel) {
2639 pr_crit("Attempting to delete cgr from different portal than"
2640 " it was create: create 0x%x, delete 0x%x\n",
2641 cgr->chan, p->config->channel);
2642 ret = -EINVAL;
2643 goto put_portal;
2644 }
2645 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2646 spin_lock(&p->cgr_lock);
2647 list_del(&cgr->node);
2648 /*
2649 * If there are no other CGR objects for this CGRID in the list,
2650 * update CSCN_TARG accordingly
2651 */
2652 list_for_each_entry(i, &p->cgr_cbs, node)
2653 if ((i->cgrid == cgr->cgrid) && i->cb)
2654 goto release_lock;
2655 ret = qman_query_cgr(cgr, &cgr_state);
2656 if (ret) {
2657 /* add back to the list */
2658 list_add(&cgr->node, &p->cgr_cbs);
2659 goto release_lock;
2660 }
2661 /* Overwrite TARG */
2662 local_opts.we_mask = QM_CGR_WE_CSCN_TARG;
2663 if ((qman_ip_rev & 0xFF00) >= QMAN_REV30)
2664 local_opts.cgr.cscn_targ_upd_ctrl = PORTAL_IDX(p);
2665 else
2666 local_opts.cgr.cscn_targ = cgr_state.cgr.cscn_targ &
2667 ~(TARG_MASK(p));
2668 ret = qman_modify_cgr(cgr, 0, &local_opts);
2669 if (ret)
2670 /* add back to the list */
2671 list_add(&cgr->node, &p->cgr_cbs);
2672 release_lock:
2673 spin_unlock(&p->cgr_lock);
2674 put_portal:
2675 return ret;
2676 }
2677
qman_shutdown_fq(u32 fqid)2678 int qman_shutdown_fq(u32 fqid)
2679 {
2680 struct qman_portal *p;
2681 struct qm_portal *low_p;
2682 struct qm_mc_command *mcc;
2683 struct qm_mc_result *mcr;
2684 u8 state;
2685 int orl_empty, fq_empty, drain = 0;
2686 u32 result;
2687 u32 channel, wq;
2688 u16 dest_wq;
2689
2690 p = get_affine_portal();
2691 low_p = &p->p;
2692
2693 /* Determine the state of the FQID */
2694 mcc = qm_mc_start(low_p);
2695 mcc->queryfq_np.fqid = cpu_to_be32(fqid);
2696 qm_mc_commit(low_p, QM_MCC_VERB_QUERYFQ_NP);
2697 while (!(mcr = qm_mc_result(low_p)))
2698 cpu_relax();
2699 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2700 state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK;
2701 if (state == QM_MCR_NP_STATE_OOS)
2702 return 0; /* Already OOS, no need to do anymore checks */
2703
2704 /* Query which channel the FQ is using */
2705 mcc = qm_mc_start(low_p);
2706 mcc->queryfq.fqid = cpu_to_be32(fqid);
2707 qm_mc_commit(low_p, QM_MCC_VERB_QUERYFQ);
2708 while (!(mcr = qm_mc_result(low_p)))
2709 cpu_relax();
2710 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2711
2712 /* Need to store these since the MCR gets reused */
2713 dest_wq = be16_to_cpu(mcr->queryfq.fqd.dest_wq);
2714 channel = dest_wq & 0x7;
2715 wq = dest_wq >> 3;
2716
2717 switch (state) {
2718 case QM_MCR_NP_STATE_TEN_SCHED:
2719 case QM_MCR_NP_STATE_TRU_SCHED:
2720 case QM_MCR_NP_STATE_ACTIVE:
2721 case QM_MCR_NP_STATE_PARKED:
2722 orl_empty = 0;
2723 mcc = qm_mc_start(low_p);
2724 mcc->alterfq.fqid = cpu_to_be32(fqid);
2725 qm_mc_commit(low_p, QM_MCC_VERB_ALTER_RETIRE);
2726 while (!(mcr = qm_mc_result(low_p)))
2727 cpu_relax();
2728 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2729 QM_MCR_VERB_ALTER_RETIRE);
2730 result = mcr->result; /* Make a copy as we reuse MCR below */
2731
2732 if (result == QM_MCR_RESULT_PENDING) {
2733 /* Need to wait for the FQRN in the message ring, which
2734 * will only occur once the FQ has been drained. In
2735 * order for the FQ to drain the portal needs to be set
2736 * to dequeue from the channel the FQ is scheduled on
2737 */
2738 const struct qm_mr_entry *msg;
2739 const struct qm_dqrr_entry *dqrr = NULL;
2740 int found_fqrn = 0;
2741 __maybe_unused u16 dequeue_wq = 0;
2742
2743 /* Flag that we need to drain FQ */
2744 drain = 1;
2745
2746 if (channel >= qm_channel_pool1 &&
2747 channel < (u16)(qm_channel_pool1 + 15)) {
2748 /* Pool channel, enable the bit in the portal */
2749 dequeue_wq = (channel -
2750 qm_channel_pool1 + 1) << 4 | wq;
2751 } else if (channel < qm_channel_pool1) {
2752 /* Dedicated channel */
2753 dequeue_wq = wq;
2754 } else {
2755 pr_info("Cannot recover FQ 0x%x,"
2756 " it is scheduled on channel 0x%x",
2757 fqid, channel);
2758 return -EBUSY;
2759 }
2760 /* Set the sdqcr to drain this channel */
2761 if (channel < qm_channel_pool1)
2762 qm_dqrr_sdqcr_set(low_p,
2763 QM_SDQCR_TYPE_ACTIVE |
2764 QM_SDQCR_CHANNELS_DEDICATED);
2765 else
2766 qm_dqrr_sdqcr_set(low_p,
2767 QM_SDQCR_TYPE_ACTIVE |
2768 QM_SDQCR_CHANNELS_POOL_CONV
2769 (channel));
2770 while (!found_fqrn) {
2771 /* Keep draining DQRR while checking the MR*/
2772 qm_dqrr_pvb_update(low_p);
2773 dqrr = qm_dqrr_current(low_p);
2774 while (dqrr) {
2775 qm_dqrr_cdc_consume_1ptr(
2776 low_p, dqrr, 0);
2777 qm_dqrr_pvb_update(low_p);
2778 qm_dqrr_next(low_p);
2779 dqrr = qm_dqrr_current(low_p);
2780 }
2781 /* Process message ring too */
2782 qm_mr_pvb_update(low_p);
2783 msg = qm_mr_current(low_p);
2784 while (msg) {
2785 if ((msg->ern.verb &
2786 QM_MR_VERB_TYPE_MASK)
2787 == QM_MR_VERB_FQRN)
2788 found_fqrn = 1;
2789 qm_mr_next(low_p);
2790 qm_mr_cci_consume_to_current(low_p);
2791 qm_mr_pvb_update(low_p);
2792 msg = qm_mr_current(low_p);
2793 }
2794 cpu_relax();
2795 }
2796 }
2797 if (result != QM_MCR_RESULT_OK &&
2798 result != QM_MCR_RESULT_PENDING) {
2799 /* error */
2800 pr_err("qman_retire_fq failed on FQ 0x%x,"
2801 " result=0x%x\n", fqid, result);
2802 return -1;
2803 }
2804 if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) {
2805 /* ORL had no entries, no need to wait until the
2806 * ERNs come in.
2807 */
2808 orl_empty = 1;
2809 }
2810 /* Retirement succeeded, check to see if FQ needs
2811 * to be drained.
2812 */
2813 if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) {
2814 /* FQ is Not Empty, drain using volatile DQ commands */
2815 fq_empty = 0;
2816 do {
2817 const struct qm_dqrr_entry *dqrr = NULL;
2818 u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3);
2819
2820 qm_dqrr_vdqcr_set(low_p, vdqcr);
2821
2822 /* Wait for a dequeue to occur */
2823 while (dqrr == NULL) {
2824 qm_dqrr_pvb_update(low_p);
2825 dqrr = qm_dqrr_current(low_p);
2826 if (!dqrr)
2827 cpu_relax();
2828 }
2829 /* Process the dequeues, making sure to
2830 * empty the ring completely.
2831 */
2832 while (dqrr) {
2833 if (dqrr->fqid == fqid &&
2834 dqrr->stat & QM_DQRR_STAT_FQ_EMPTY)
2835 fq_empty = 1;
2836 qm_dqrr_cdc_consume_1ptr(low_p,
2837 dqrr, 0);
2838 qm_dqrr_pvb_update(low_p);
2839 qm_dqrr_next(low_p);
2840 dqrr = qm_dqrr_current(low_p);
2841 }
2842 } while (fq_empty == 0);
2843 }
2844 qm_dqrr_sdqcr_set(low_p, 0);
2845
2846 /* Wait for the ORL to have been completely drained */
2847 while (orl_empty == 0) {
2848 const struct qm_mr_entry *msg;
2849
2850 qm_mr_pvb_update(low_p);
2851 msg = qm_mr_current(low_p);
2852 while (msg) {
2853 if ((msg->ern.verb & QM_MR_VERB_TYPE_MASK) ==
2854 QM_MR_VERB_FQRL)
2855 orl_empty = 1;
2856 qm_mr_next(low_p);
2857 qm_mr_cci_consume_to_current(low_p);
2858 qm_mr_pvb_update(low_p);
2859 msg = qm_mr_current(low_p);
2860 }
2861 cpu_relax();
2862 }
2863 mcc = qm_mc_start(low_p);
2864 mcc->alterfq.fqid = cpu_to_be32(fqid);
2865 qm_mc_commit(low_p, QM_MCC_VERB_ALTER_OOS);
2866 while (!(mcr = qm_mc_result(low_p)))
2867 cpu_relax();
2868 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2869 QM_MCR_VERB_ALTER_OOS);
2870 if (mcr->result != QM_MCR_RESULT_OK) {
2871 pr_err(
2872 "OOS after drain Failed on FQID 0x%x, result 0x%x\n",
2873 fqid, mcr->result);
2874 return -1;
2875 }
2876 return 0;
2877
2878 case QM_MCR_NP_STATE_RETIRED:
2879 /* Send OOS Command */
2880 mcc = qm_mc_start(low_p);
2881 mcc->alterfq.fqid = cpu_to_be32(fqid);
2882 qm_mc_commit(low_p, QM_MCC_VERB_ALTER_OOS);
2883 while (!(mcr = qm_mc_result(low_p)))
2884 cpu_relax();
2885 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2886 QM_MCR_VERB_ALTER_OOS);
2887 if (mcr->result) {
2888 pr_err("OOS Failed on FQID 0x%x\n", fqid);
2889 return -1;
2890 }
2891 return 0;
2892
2893 }
2894 return -1;
2895 }
2896