1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2015-2022 Intel Corporation
3 */
4
5 #include <rte_common.h>
6 #include <rte_cycles.h>
7 #include <rte_dev.h>
8 #include <rte_malloc.h>
9 #include <rte_memzone.h>
10 #include <rte_pci.h>
11 #include <rte_bus_pci.h>
12 #include <rte_atomic.h>
13 #include <rte_prefetch.h>
14
15 #include "qat_logs.h"
16 #include "qat_device.h"
17 #include "qat_qp.h"
18 #include "qat_sym.h"
19 #include "qat_asym.h"
20 #include "qat_comp.h"
21
22 #define QAT_CQ_MAX_DEQ_RETRIES 10
23
24 #define ADF_MAX_DESC 4096
25 #define ADF_MIN_DESC 128
26
27 struct qat_qp_hw_spec_funcs*
28 qat_qp_hw_spec[QAT_N_GENS];
29
30 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
31 uint32_t queue_size_bytes);
32 static void qat_queue_delete(struct qat_queue *queue);
33 static int qat_queue_create(struct qat_pci_device *qat_dev,
34 struct qat_queue *queue, struct qat_qp_config *, uint8_t dir);
35 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
36 uint32_t *queue_size_for_csr);
37 static int adf_configure_queues(struct qat_qp *queue,
38 enum qat_device_gen qat_dev_gen);
39 static int adf_queue_arb_enable(struct qat_pci_device *qat_dev,
40 struct qat_queue *txq, void *base_addr, rte_spinlock_t *lock);
41 static int adf_queue_arb_disable(enum qat_device_gen qat_dev_gen,
42 struct qat_queue *txq, void *base_addr, rte_spinlock_t *lock);
43 static int qat_qp_build_ring_base(struct qat_pci_device *qat_dev,
44 void *io_addr, struct qat_queue *queue);
45 static const struct rte_memzone *queue_dma_zone_reserve(const char *queue_name,
46 uint32_t queue_size, int socket_id);
47 static int qat_qp_csr_setup(struct qat_pci_device *qat_dev, void *io_addr,
48 struct qat_qp *qp);
49
50 int
qat_qp_setup(struct qat_pci_device * qat_dev,struct qat_qp ** qp_addr,uint16_t queue_pair_id,struct qat_qp_config * qat_qp_conf)51 qat_qp_setup(struct qat_pci_device *qat_dev,
52 struct qat_qp **qp_addr,
53 uint16_t queue_pair_id,
54 struct qat_qp_config *qat_qp_conf)
55 {
56 struct qat_qp *qp = NULL;
57 struct rte_pci_device *pci_dev =
58 qat_pci_devs[qat_dev->qat_dev_id].pci_dev;
59 char op_cookie_pool_name[RTE_RING_NAMESIZE];
60 struct qat_dev_hw_spec_funcs *ops_hw =
61 qat_dev_hw_spec[qat_dev->qat_dev_gen];
62 void *io_addr;
63 uint32_t i;
64
65 QAT_LOG(DEBUG, "Setup qp %u on qat pci device %d gen %d",
66 queue_pair_id, qat_dev->qat_dev_id, qat_dev->qat_dev_gen);
67
68 if ((qat_qp_conf->nb_descriptors > ADF_MAX_DESC) ||
69 (qat_qp_conf->nb_descriptors < ADF_MIN_DESC)) {
70 QAT_LOG(ERR, "Can't create qp for %u descriptors",
71 qat_qp_conf->nb_descriptors);
72 return -EINVAL;
73 }
74
75 if (ops_hw->qat_dev_get_transport_bar == NULL) {
76 QAT_LOG(ERR,
77 "QAT Internal Error: qat_dev_get_transport_bar not set for gen %d",
78 qat_dev->qat_dev_gen);
79 goto create_err;
80 }
81
82 io_addr = ops_hw->qat_dev_get_transport_bar(pci_dev)->addr;
83 if (io_addr == NULL) {
84 QAT_LOG(ERR, "Could not find VF config space "
85 "(UIO driver attached?).");
86 return -EINVAL;
87 }
88
89 /* Allocate the queue pair data structure. */
90 qp = rte_zmalloc_socket("qat PMD qp metadata",
91 sizeof(*qp), RTE_CACHE_LINE_SIZE,
92 qat_qp_conf->socket_id);
93 if (qp == NULL) {
94 QAT_LOG(ERR, "Failed to alloc mem for qp struct");
95 return -ENOMEM;
96 }
97 qp->nb_descriptors = qat_qp_conf->nb_descriptors;
98 qp->op_cookies = rte_zmalloc_socket("qat PMD op cookie pointer",
99 qat_qp_conf->nb_descriptors * sizeof(*qp->op_cookies),
100 RTE_CACHE_LINE_SIZE, qat_qp_conf->socket_id);
101 if (qp->op_cookies == NULL) {
102 QAT_LOG(ERR, "Failed to alloc mem for cookie");
103 rte_free(qp);
104 return -ENOMEM;
105 }
106
107 qp->mmap_bar_addr = io_addr;
108 qp->enqueued = qp->dequeued = 0;
109
110 if (qat_queue_create(qat_dev, &(qp->tx_q), qat_qp_conf,
111 ADF_RING_DIR_TX) != 0) {
112 QAT_LOG(ERR, "Tx queue create failed "
113 "queue_pair_id=%u", queue_pair_id);
114 goto create_err;
115 }
116
117 qp->max_inflights = ADF_MAX_INFLIGHTS(qp->tx_q.queue_size,
118 ADF_BYTES_TO_MSG_SIZE(qp->tx_q.msg_size));
119
120 if (qp->max_inflights < 2) {
121 QAT_LOG(ERR, "Invalid num inflights");
122 qat_queue_delete(&(qp->tx_q));
123 goto create_err;
124 }
125
126 if (qat_queue_create(qat_dev, &(qp->rx_q), qat_qp_conf,
127 ADF_RING_DIR_RX) != 0) {
128 QAT_LOG(ERR, "Rx queue create failed "
129 "queue_pair_id=%hu", queue_pair_id);
130 qat_queue_delete(&(qp->tx_q));
131 goto create_err;
132 }
133
134 snprintf(op_cookie_pool_name, RTE_RING_NAMESIZE,
135 "%s%d_cookies_%s_qp%hu",
136 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
137 qat_qp_conf->service_str, queue_pair_id);
138
139 QAT_LOG(DEBUG, "cookiepool: %s", op_cookie_pool_name);
140 qp->op_cookie_pool = rte_mempool_lookup(op_cookie_pool_name);
141 if (qp->op_cookie_pool == NULL)
142 qp->op_cookie_pool = rte_mempool_create(op_cookie_pool_name,
143 qp->nb_descriptors,
144 qat_qp_conf->cookie_size, 64, 0,
145 NULL, NULL, NULL, NULL,
146 pci_dev->device.numa_node,
147 0);
148 if (!qp->op_cookie_pool) {
149 QAT_LOG(ERR, "QAT PMD Cannot create"
150 " op mempool");
151 qat_queue_delete(&(qp->tx_q));
152 qat_queue_delete(&(qp->rx_q));
153 goto create_err;
154 }
155
156 for (i = 0; i < qp->nb_descriptors; i++) {
157 if (rte_mempool_get(qp->op_cookie_pool, &qp->op_cookies[i])) {
158 QAT_LOG(ERR, "QAT PMD Cannot get op_cookie");
159 goto create_err;
160 }
161 memset(qp->op_cookies[i], 0, qat_qp_conf->cookie_size);
162 }
163
164 qp->qat_dev_gen = qat_dev->qat_dev_gen;
165 qp->service_type = qat_qp_conf->hw->service_type;
166 qp->qat_dev = qat_dev;
167
168 QAT_LOG(DEBUG, "QP setup complete: id: %d, cookiepool: %s",
169 queue_pair_id, op_cookie_pool_name);
170
171 qat_qp_csr_setup(qat_dev, io_addr, qp);
172
173 *qp_addr = qp;
174 return 0;
175
176 create_err:
177 if (qp) {
178 rte_mempool_free(qp->op_cookie_pool);
179
180 rte_free(qp->op_cookies);
181
182 rte_free(qp);
183 }
184
185 return -EFAULT;
186 }
187
188 static int
qat_queue_create(struct qat_pci_device * qat_dev,struct qat_queue * queue,struct qat_qp_config * qp_conf,uint8_t dir)189 qat_queue_create(struct qat_pci_device *qat_dev, struct qat_queue *queue,
190 struct qat_qp_config *qp_conf, uint8_t dir)
191 {
192 const struct rte_memzone *qp_mz;
193 struct rte_pci_device *pci_dev =
194 qat_pci_devs[qat_dev->qat_dev_id].pci_dev;
195 int ret = 0;
196 uint16_t desc_size = (dir == ADF_RING_DIR_TX ?
197 qp_conf->hw->tx_msg_size : qp_conf->hw->rx_msg_size);
198 uint32_t queue_size_bytes = (qp_conf->nb_descriptors)*(desc_size);
199
200 queue->hw_bundle_number = qp_conf->hw->hw_bundle_num;
201 queue->hw_queue_number = (dir == ADF_RING_DIR_TX ?
202 qp_conf->hw->tx_ring_num : qp_conf->hw->rx_ring_num);
203
204 if (desc_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) {
205 QAT_LOG(ERR, "Invalid descriptor size %d", desc_size);
206 return -EINVAL;
207 }
208
209 /*
210 * Allocate a memzone for the queue - create a unique name.
211 */
212 snprintf(queue->memz_name, sizeof(queue->memz_name),
213 "%s_%d_%s_%s_%d_%d",
214 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
215 qp_conf->service_str, "qp_mem",
216 queue->hw_bundle_number, queue->hw_queue_number);
217 qp_mz = queue_dma_zone_reserve(queue->memz_name, queue_size_bytes,
218 pci_dev->device.numa_node);
219 if (qp_mz == NULL) {
220 QAT_LOG(ERR, "Failed to allocate ring memzone");
221 return -ENOMEM;
222 }
223
224 queue->base_addr = (char *)qp_mz->addr;
225 queue->base_phys_addr = qp_mz->iova;
226 if (qat_qp_check_queue_alignment(queue->base_phys_addr,
227 queue_size_bytes)) {
228 QAT_LOG(ERR, "Invalid alignment on queue create "
229 " 0x%"PRIx64"\n",
230 queue->base_phys_addr);
231 ret = -EFAULT;
232 goto queue_create_err;
233 }
234
235 if (adf_verify_queue_size(desc_size, qp_conf->nb_descriptors,
236 &(queue->queue_size)) != 0) {
237 QAT_LOG(ERR, "Invalid num inflights");
238 ret = -EINVAL;
239 goto queue_create_err;
240 }
241
242 queue->modulo_mask = (1 << ADF_RING_SIZE_MODULO(queue->queue_size)) - 1;
243 queue->head = 0;
244 queue->tail = 0;
245 queue->msg_size = desc_size;
246
247 /* For fast calculation of cookie index, relies on msg_size being 2^n */
248 queue->trailz = __builtin_ctz(desc_size);
249
250 /*
251 * Write an unused pattern to the queue memory.
252 */
253 memset(queue->base_addr, 0x7F, queue_size_bytes);
254
255 QAT_LOG(DEBUG, "RING: Name:%s, size in CSR: %u, in bytes %u,"
256 " nb msgs %u, msg_size %u, modulo mask %u",
257 queue->memz_name,
258 queue->queue_size, queue_size_bytes,
259 qp_conf->nb_descriptors, desc_size,
260 queue->modulo_mask);
261
262 return 0;
263
264 queue_create_err:
265 rte_memzone_free(qp_mz);
266 return ret;
267 }
268
269 static const struct rte_memzone *
queue_dma_zone_reserve(const char * queue_name,uint32_t queue_size,int socket_id)270 queue_dma_zone_reserve(const char *queue_name, uint32_t queue_size,
271 int socket_id)
272 {
273 const struct rte_memzone *mz;
274
275 mz = rte_memzone_lookup(queue_name);
276 if (mz != 0) {
277 if (((size_t)queue_size <= mz->len) &&
278 ((socket_id == SOCKET_ID_ANY) ||
279 (socket_id == mz->socket_id))) {
280 QAT_LOG(DEBUG, "re-use memzone already "
281 "allocated for %s", queue_name);
282 return mz;
283 }
284
285 QAT_LOG(ERR, "Incompatible memzone already "
286 "allocated %s, size %u, socket %d. "
287 "Requested size %u, socket %u",
288 queue_name, (uint32_t)mz->len,
289 mz->socket_id, queue_size, socket_id);
290 return NULL;
291 }
292
293 QAT_LOG(DEBUG, "Allocate memzone for %s, size %u on socket %u",
294 queue_name, queue_size, socket_id);
295 return rte_memzone_reserve_aligned(queue_name, queue_size,
296 socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
297 }
298
299 int
qat_qp_release(enum qat_device_gen qat_dev_gen,struct qat_qp ** qp_addr)300 qat_qp_release(enum qat_device_gen qat_dev_gen, struct qat_qp **qp_addr)
301 {
302 int ret;
303 struct qat_qp *qp = *qp_addr;
304 uint32_t i;
305
306 if (qp == NULL) {
307 QAT_LOG(DEBUG, "qp already freed");
308 return 0;
309 }
310
311 QAT_LOG(DEBUG, "Free qp on qat_pci device %d",
312 qp->qat_dev->qat_dev_id);
313
314 /* Don't free memory if there are still responses to be processed */
315 if ((qp->enqueued - qp->dequeued) == 0) {
316 qat_queue_delete(&(qp->tx_q));
317 qat_queue_delete(&(qp->rx_q));
318 } else {
319 return -EAGAIN;
320 }
321
322 ret = adf_queue_arb_disable(qat_dev_gen, &(qp->tx_q),
323 qp->mmap_bar_addr, &qp->qat_dev->arb_csr_lock);
324 if (ret)
325 return ret;
326
327 for (i = 0; i < qp->nb_descriptors; i++)
328 rte_mempool_put(qp->op_cookie_pool, qp->op_cookies[i]);
329
330 rte_mempool_free(qp->op_cookie_pool);
331
332 rte_free(qp->op_cookies);
333 rte_free(qp);
334 *qp_addr = NULL;
335 return 0;
336 }
337
338
339 static void
qat_queue_delete(struct qat_queue * queue)340 qat_queue_delete(struct qat_queue *queue)
341 {
342 const struct rte_memzone *mz;
343 int status = 0;
344
345 if (queue == NULL) {
346 QAT_LOG(DEBUG, "Invalid queue");
347 return;
348 }
349 QAT_LOG(DEBUG, "Free ring %d, memzone: %s",
350 queue->hw_queue_number, queue->memz_name);
351
352 mz = rte_memzone_lookup(queue->memz_name);
353 if (mz != NULL) {
354 /* Write an unused pattern to the queue memory. */
355 memset(queue->base_addr, 0x7F, queue->queue_size);
356 status = rte_memzone_free(mz);
357 if (status != 0)
358 QAT_LOG(ERR, "Error %d on freeing queue %s",
359 status, queue->memz_name);
360 } else {
361 QAT_LOG(DEBUG, "queue %s doesn't exist",
362 queue->memz_name);
363 }
364 }
365
366 static int __rte_unused
adf_queue_arb_enable(struct qat_pci_device * qat_dev,struct qat_queue * txq,void * base_addr,rte_spinlock_t * lock)367 adf_queue_arb_enable(struct qat_pci_device *qat_dev, struct qat_queue *txq,
368 void *base_addr, rte_spinlock_t *lock)
369 {
370 struct qat_qp_hw_spec_funcs *ops =
371 qat_qp_hw_spec[qat_dev->qat_dev_gen];
372
373 RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_adf_arb_enable,
374 -ENOTSUP);
375 ops->qat_qp_adf_arb_enable(txq, base_addr, lock);
376 return 0;
377 }
378
379 static int
adf_queue_arb_disable(enum qat_device_gen qat_dev_gen,struct qat_queue * txq,void * base_addr,rte_spinlock_t * lock)380 adf_queue_arb_disable(enum qat_device_gen qat_dev_gen, struct qat_queue *txq,
381 void *base_addr, rte_spinlock_t *lock)
382 {
383 struct qat_qp_hw_spec_funcs *ops =
384 qat_qp_hw_spec[qat_dev_gen];
385
386 RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_adf_arb_disable,
387 -ENOTSUP);
388 ops->qat_qp_adf_arb_disable(txq, base_addr, lock);
389 return 0;
390 }
391
392 static int __rte_unused
qat_qp_build_ring_base(struct qat_pci_device * qat_dev,void * io_addr,struct qat_queue * queue)393 qat_qp_build_ring_base(struct qat_pci_device *qat_dev, void *io_addr,
394 struct qat_queue *queue)
395 {
396 struct qat_qp_hw_spec_funcs *ops =
397 qat_qp_hw_spec[qat_dev->qat_dev_gen];
398
399 RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_build_ring_base,
400 -ENOTSUP);
401 ops->qat_qp_build_ring_base(io_addr, queue);
402 return 0;
403 }
404
405 int
qat_qps_per_service(struct qat_pci_device * qat_dev,enum qat_service_type service)406 qat_qps_per_service(struct qat_pci_device *qat_dev,
407 enum qat_service_type service)
408 {
409 struct qat_qp_hw_spec_funcs *ops =
410 qat_qp_hw_spec[qat_dev->qat_dev_gen];
411
412 RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_rings_per_service,
413 -ENOTSUP);
414 return ops->qat_qp_rings_per_service(qat_dev, service);
415 }
416
417 const struct qat_qp_hw_data *
qat_qp_get_hw_data(struct qat_pci_device * qat_dev,enum qat_service_type service,uint16_t qp_id)418 qat_qp_get_hw_data(struct qat_pci_device *qat_dev,
419 enum qat_service_type service, uint16_t qp_id)
420 {
421 struct qat_qp_hw_spec_funcs *ops =
422 qat_qp_hw_spec[qat_dev->qat_dev_gen];
423
424 RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_get_hw_data, NULL);
425 return ops->qat_qp_get_hw_data(qat_dev, service, qp_id);
426 }
427
428 int
qat_read_qp_config(struct qat_pci_device * qat_dev)429 qat_read_qp_config(struct qat_pci_device *qat_dev)
430 {
431 struct qat_dev_hw_spec_funcs *ops_hw =
432 qat_dev_hw_spec[qat_dev->qat_dev_gen];
433
434 RTE_FUNC_PTR_OR_ERR_RET(ops_hw->qat_dev_read_config,
435 -ENOTSUP);
436 return ops_hw->qat_dev_read_config(qat_dev);
437 }
438
439 static int __rte_unused
adf_configure_queues(struct qat_qp * qp,enum qat_device_gen qat_dev_gen)440 adf_configure_queues(struct qat_qp *qp, enum qat_device_gen qat_dev_gen)
441 {
442 struct qat_qp_hw_spec_funcs *ops =
443 qat_qp_hw_spec[qat_dev_gen];
444
445 RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_adf_configure_queues,
446 -ENOTSUP);
447 ops->qat_qp_adf_configure_queues(qp);
448 return 0;
449 }
450
451 static inline void
txq_write_tail(enum qat_device_gen qat_dev_gen,struct qat_qp * qp,struct qat_queue * q)452 txq_write_tail(enum qat_device_gen qat_dev_gen,
453 struct qat_qp *qp, struct qat_queue *q)
454 {
455 struct qat_qp_hw_spec_funcs *ops =
456 qat_qp_hw_spec[qat_dev_gen];
457
458 /*
459 * Pointer check should be done during
460 * initialization
461 */
462 ops->qat_qp_csr_write_tail(qp, q);
463 }
464
465 static inline void
qat_qp_csr_write_head(enum qat_device_gen qat_dev_gen,struct qat_qp * qp,struct qat_queue * q,uint32_t new_head)466 qat_qp_csr_write_head(enum qat_device_gen qat_dev_gen, struct qat_qp *qp,
467 struct qat_queue *q, uint32_t new_head)
468 {
469 struct qat_qp_hw_spec_funcs *ops =
470 qat_qp_hw_spec[qat_dev_gen];
471
472 /*
473 * Pointer check should be done during
474 * initialization
475 */
476 ops->qat_qp_csr_write_head(qp, q, new_head);
477 }
478
479 static int
qat_qp_csr_setup(struct qat_pci_device * qat_dev,void * io_addr,struct qat_qp * qp)480 qat_qp_csr_setup(struct qat_pci_device *qat_dev,
481 void *io_addr, struct qat_qp *qp)
482 {
483 struct qat_qp_hw_spec_funcs *ops =
484 qat_qp_hw_spec[qat_dev->qat_dev_gen];
485
486 RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_csr_setup,
487 -ENOTSUP);
488 ops->qat_qp_csr_setup(qat_dev, io_addr, qp);
489 return 0;
490 }
491
492
493 static inline
rxq_free_desc(enum qat_device_gen qat_dev_gen,struct qat_qp * qp,struct qat_queue * q)494 void rxq_free_desc(enum qat_device_gen qat_dev_gen, struct qat_qp *qp,
495 struct qat_queue *q)
496 {
497 uint32_t old_head, new_head;
498 uint32_t max_head;
499
500 old_head = q->csr_head;
501 new_head = q->head;
502 max_head = qp->nb_descriptors * q->msg_size;
503
504 /* write out free descriptors */
505 void *cur_desc = (uint8_t *)q->base_addr + old_head;
506
507 if (new_head < old_head) {
508 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, max_head - old_head);
509 memset(q->base_addr, ADF_RING_EMPTY_SIG_BYTE, new_head);
510 } else {
511 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head - old_head);
512 }
513 q->nb_processed_responses = 0;
514 q->csr_head = new_head;
515
516 qat_qp_csr_write_head(qat_dev_gen, qp, q, new_head);
517 }
518
519 static int
qat_qp_check_queue_alignment(uint64_t phys_addr,uint32_t queue_size_bytes)520 qat_qp_check_queue_alignment(uint64_t phys_addr, uint32_t queue_size_bytes)
521 {
522 if (((queue_size_bytes - 1) & phys_addr) != 0)
523 return -EINVAL;
524 return 0;
525 }
526
527 static int
adf_verify_queue_size(uint32_t msg_size,uint32_t msg_num,uint32_t * p_queue_size_for_csr)528 adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
529 uint32_t *p_queue_size_for_csr)
530 {
531 uint8_t i = ADF_MIN_RING_SIZE;
532
533 for (; i <= ADF_MAX_RING_SIZE; i++)
534 if ((msg_size * msg_num) ==
535 (uint32_t)ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) {
536 *p_queue_size_for_csr = i;
537 return 0;
538 }
539 QAT_LOG(ERR, "Invalid ring size %d", msg_size * msg_num);
540 return -EINVAL;
541 }
542
543 static inline uint32_t
adf_modulo(uint32_t data,uint32_t modulo_mask)544 adf_modulo(uint32_t data, uint32_t modulo_mask)
545 {
546 return data & modulo_mask;
547 }
548
549 uint16_t
qat_enqueue_op_burst(void * qp,qat_op_build_request_t op_build_request,void ** ops,uint16_t nb_ops)550 qat_enqueue_op_burst(void *qp, qat_op_build_request_t op_build_request,
551 void **ops, uint16_t nb_ops)
552 {
553 register struct qat_queue *queue;
554 struct qat_qp *tmp_qp = (struct qat_qp *)qp;
555 register uint32_t nb_ops_sent = 0;
556 register int ret = -1;
557 uint16_t nb_ops_possible = nb_ops;
558 register uint8_t *base_addr;
559 register uint32_t tail;
560
561 if (unlikely(nb_ops == 0))
562 return 0;
563
564 /* read params used a lot in main loop into registers */
565 queue = &(tmp_qp->tx_q);
566 base_addr = (uint8_t *)queue->base_addr;
567 tail = queue->tail;
568
569 /* Find how many can actually fit on the ring */
570 {
571 /* dequeued can only be written by one thread, but it may not
572 * be this thread. As it's 4-byte aligned it will be read
573 * atomically here by any Intel CPU.
574 * enqueued can wrap before dequeued, but cannot
575 * lap it as var size of enq/deq (uint32_t) > var size of
576 * max_inflights (uint16_t). In reality inflights is never
577 * even as big as max uint16_t, as it's <= ADF_MAX_DESC.
578 * On wrapping, the calculation still returns the correct
579 * positive value as all three vars are unsigned.
580 */
581 uint32_t inflights =
582 tmp_qp->enqueued - tmp_qp->dequeued;
583
584 if ((inflights + nb_ops) > tmp_qp->max_inflights) {
585 nb_ops_possible = tmp_qp->max_inflights - inflights;
586 if (nb_ops_possible == 0)
587 return 0;
588 }
589 /* QAT has plenty of work queued already, so don't waste cycles
590 * enqueueing, wait til the application has gathered a bigger
591 * burst or some completed ops have been dequeued
592 */
593 if (tmp_qp->min_enq_burst_threshold && inflights >
594 QAT_QP_MIN_INFL_THRESHOLD && nb_ops_possible <
595 tmp_qp->min_enq_burst_threshold) {
596 tmp_qp->stats.threshold_hit_count++;
597 return 0;
598 }
599 }
600
601 #ifdef RTE_LIB_SECURITY
602 if (tmp_qp->service_type == QAT_SERVICE_SYMMETRIC)
603 qat_sym_preprocess_requests(ops, nb_ops_possible);
604 #endif
605
606 memset(tmp_qp->opaque, 0xff, sizeof(tmp_qp->opaque));
607
608 while (nb_ops_sent != nb_ops_possible) {
609 ret = op_build_request(*ops, base_addr + tail,
610 tmp_qp->op_cookies[tail >> queue->trailz],
611 tmp_qp->opaque, tmp_qp->qat_dev_gen);
612
613 if (ret != 0) {
614 tmp_qp->stats.enqueue_err_count++;
615 /* This message cannot be enqueued */
616 if (nb_ops_sent == 0)
617 return 0;
618 goto kick_tail;
619 }
620
621 tail = adf_modulo(tail + queue->msg_size, queue->modulo_mask);
622 ops++;
623 nb_ops_sent++;
624 }
625 kick_tail:
626 queue->tail = tail;
627 tmp_qp->enqueued += nb_ops_sent;
628 tmp_qp->stats.enqueued_count += nb_ops_sent;
629 txq_write_tail(tmp_qp->qat_dev_gen, tmp_qp, queue);
630 return nb_ops_sent;
631 }
632
633 /* Use this for compression only - but keep consistent with above common
634 * function as much as possible.
635 */
636 uint16_t
qat_enqueue_comp_op_burst(void * qp,void ** ops,uint16_t nb_ops)637 qat_enqueue_comp_op_burst(void *qp, void **ops, uint16_t nb_ops)
638 {
639 register struct qat_queue *queue;
640 struct qat_qp *tmp_qp = (struct qat_qp *)qp;
641 register uint32_t nb_ops_sent = 0;
642 register int nb_desc_to_build;
643 uint16_t nb_ops_possible = nb_ops;
644 register uint8_t *base_addr;
645 register uint32_t tail;
646
647 int descriptors_built, total_descriptors_built = 0;
648 int nb_remaining_descriptors;
649 int overflow = 0;
650
651 if (unlikely(nb_ops == 0))
652 return 0;
653
654 /* read params used a lot in main loop into registers */
655 queue = &(tmp_qp->tx_q);
656 base_addr = (uint8_t *)queue->base_addr;
657 tail = queue->tail;
658
659 /* Find how many can actually fit on the ring */
660 {
661 /* dequeued can only be written by one thread, but it may not
662 * be this thread. As it's 4-byte aligned it will be read
663 * atomically here by any Intel CPU.
664 * enqueued can wrap before dequeued, but cannot
665 * lap it as var size of enq/deq (uint32_t) > var size of
666 * max_inflights (uint16_t). In reality inflights is never
667 * even as big as max uint16_t, as it's <= ADF_MAX_DESC.
668 * On wrapping, the calculation still returns the correct
669 * positive value as all three vars are unsigned.
670 */
671 uint32_t inflights =
672 tmp_qp->enqueued - tmp_qp->dequeued;
673
674 /* Find how many can actually fit on the ring */
675 overflow = (inflights + nb_ops) - tmp_qp->max_inflights;
676 if (overflow > 0) {
677 nb_ops_possible = nb_ops - overflow;
678 if (nb_ops_possible == 0)
679 return 0;
680 }
681
682 /* QAT has plenty of work queued already, so don't waste cycles
683 * enqueueing, wait til the application has gathered a bigger
684 * burst or some completed ops have been dequeued
685 */
686 if (tmp_qp->min_enq_burst_threshold && inflights >
687 QAT_QP_MIN_INFL_THRESHOLD && nb_ops_possible <
688 tmp_qp->min_enq_burst_threshold) {
689 tmp_qp->stats.threshold_hit_count++;
690 return 0;
691 }
692 }
693
694 /* At this point nb_ops_possible is assuming a 1:1 mapping
695 * between ops and descriptors.
696 * Fewer may be sent if some ops have to be split.
697 * nb_ops_possible is <= burst size.
698 * Find out how many spaces are actually available on the qp in case
699 * more are needed.
700 */
701 nb_remaining_descriptors = nb_ops_possible
702 + ((overflow >= 0) ? 0 : overflow * (-1));
703 QAT_DP_LOG(DEBUG, "Nb ops requested %d, nb descriptors remaining %d",
704 nb_ops, nb_remaining_descriptors);
705
706 while (nb_ops_sent != nb_ops_possible &&
707 nb_remaining_descriptors > 0) {
708 struct qat_comp_op_cookie *cookie =
709 tmp_qp->op_cookies[tail >> queue->trailz];
710
711 descriptors_built = 0;
712
713 QAT_DP_LOG(DEBUG, "--- data length: %u",
714 ((struct rte_comp_op *)*ops)->src.length);
715
716 nb_desc_to_build = qat_comp_build_request(*ops,
717 base_addr + tail, cookie, tmp_qp->qat_dev_gen);
718 QAT_DP_LOG(DEBUG, "%d descriptors built, %d remaining, "
719 "%d ops sent, %d descriptors needed",
720 total_descriptors_built, nb_remaining_descriptors,
721 nb_ops_sent, nb_desc_to_build);
722
723 if (unlikely(nb_desc_to_build < 0)) {
724 /* this message cannot be enqueued */
725 tmp_qp->stats.enqueue_err_count++;
726 if (nb_ops_sent == 0)
727 return 0;
728 goto kick_tail;
729 } else if (unlikely(nb_desc_to_build > 1)) {
730 /* this op is too big and must be split - get more
731 * descriptors and retry
732 */
733
734 QAT_DP_LOG(DEBUG, "Build %d descriptors for this op",
735 nb_desc_to_build);
736
737 nb_remaining_descriptors -= nb_desc_to_build;
738 if (nb_remaining_descriptors >= 0) {
739 /* There are enough remaining descriptors
740 * so retry
741 */
742 int ret2 = qat_comp_build_multiple_requests(
743 *ops, tmp_qp, tail,
744 nb_desc_to_build);
745
746 if (unlikely(ret2 < 1)) {
747 QAT_DP_LOG(DEBUG,
748 "Failed to build (%d) descriptors, status %d",
749 nb_desc_to_build, ret2);
750
751 qat_comp_free_split_op_memzones(cookie,
752 nb_desc_to_build - 1);
753
754 tmp_qp->stats.enqueue_err_count++;
755
756 /* This message cannot be enqueued */
757 if (nb_ops_sent == 0)
758 return 0;
759 goto kick_tail;
760 } else {
761 descriptors_built = ret2;
762 total_descriptors_built +=
763 descriptors_built;
764 nb_remaining_descriptors -=
765 descriptors_built;
766 QAT_DP_LOG(DEBUG,
767 "Multiple descriptors (%d) built ok",
768 descriptors_built);
769 }
770 } else {
771 QAT_DP_LOG(ERR, "For the current op, number of requested descriptors (%d) "
772 "exceeds number of available descriptors (%d)",
773 nb_desc_to_build,
774 nb_remaining_descriptors +
775 nb_desc_to_build);
776
777 qat_comp_free_split_op_memzones(cookie,
778 nb_desc_to_build - 1);
779
780 /* Not enough extra descriptors */
781 if (nb_ops_sent == 0)
782 return 0;
783 goto kick_tail;
784 }
785 } else {
786 descriptors_built = 1;
787 total_descriptors_built++;
788 nb_remaining_descriptors--;
789 QAT_DP_LOG(DEBUG, "Single descriptor built ok");
790 }
791
792 tail = adf_modulo(tail + (queue->msg_size * descriptors_built),
793 queue->modulo_mask);
794 ops++;
795 nb_ops_sent++;
796 }
797
798 kick_tail:
799 queue->tail = tail;
800 tmp_qp->enqueued += total_descriptors_built;
801 tmp_qp->stats.enqueued_count += nb_ops_sent;
802 txq_write_tail(tmp_qp->qat_dev_gen, tmp_qp, queue);
803 return nb_ops_sent;
804 }
805
806 uint16_t
qat_dequeue_op_burst(void * qp,void ** ops,qat_op_dequeue_t qat_dequeue_process_response,uint16_t nb_ops)807 qat_dequeue_op_burst(void *qp, void **ops,
808 qat_op_dequeue_t qat_dequeue_process_response, uint16_t nb_ops)
809 {
810 struct qat_queue *rx_queue;
811 struct qat_qp *tmp_qp = (struct qat_qp *)qp;
812 uint32_t head;
813 uint32_t op_resp_counter = 0, fw_resp_counter = 0;
814 uint8_t *resp_msg;
815 int nb_fw_responses;
816
817 rx_queue = &(tmp_qp->rx_q);
818 head = rx_queue->head;
819 resp_msg = (uint8_t *)rx_queue->base_addr + rx_queue->head;
820
821 while (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG &&
822 op_resp_counter != nb_ops) {
823
824 nb_fw_responses = 1;
825
826 nb_fw_responses = qat_dequeue_process_response(
827 ops, resp_msg,
828 tmp_qp->op_cookies[head >> rx_queue->trailz],
829 &tmp_qp->stats.dequeue_err_count);
830
831 head = adf_modulo(head + rx_queue->msg_size,
832 rx_queue->modulo_mask);
833
834 resp_msg = (uint8_t *)rx_queue->base_addr + head;
835
836 if (nb_fw_responses) {
837 /* only move on to next op if one was ready to return
838 * to API
839 */
840 ops++;
841 op_resp_counter++;
842 }
843
844 /* A compression op may be broken up into multiple fw requests.
845 * Only count fw responses as complete once ALL the responses
846 * associated with an op have been processed, as the cookie
847 * data from the first response must be available until
848 * finished with all firmware responses.
849 */
850 fw_resp_counter += nb_fw_responses;
851
852 rx_queue->nb_processed_responses++;
853 }
854
855 tmp_qp->dequeued += fw_resp_counter;
856 tmp_qp->stats.dequeued_count += op_resp_counter;
857
858 rx_queue->head = head;
859 if (rx_queue->nb_processed_responses > QAT_CSR_HEAD_WRITE_THRESH)
860 rxq_free_desc(tmp_qp->qat_dev_gen, tmp_qp, rx_queue);
861
862 QAT_DP_LOG(DEBUG, "Dequeue burst return: %u, QAT responses: %u",
863 op_resp_counter, fw_resp_counter);
864
865 return op_resp_counter;
866 }
867
868 /* This is almost same as dequeue_op_burst, without the atomic, without stats
869 * and without the op. Dequeues one response.
870 */
871 static uint8_t
qat_cq_dequeue_response(struct qat_qp * qp,void * out_data)872 qat_cq_dequeue_response(struct qat_qp *qp, void *out_data)
873 {
874 uint8_t result = 0;
875 uint8_t retries = 0;
876 struct qat_queue *queue = &(qp->rx_q);
877 struct icp_qat_fw_comn_resp *resp_msg = (struct icp_qat_fw_comn_resp *)
878 ((uint8_t *)queue->base_addr + queue->head);
879
880 while (retries++ < QAT_CQ_MAX_DEQ_RETRIES &&
881 *(uint32_t *)resp_msg == ADF_RING_EMPTY_SIG) {
882 /* loop waiting for response until we reach the timeout */
883 rte_delay_ms(20);
884 }
885
886 if (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG) {
887 /* response received */
888 result = 1;
889
890 /* check status flag */
891 if (ICP_QAT_FW_COMN_RESP_CRYPTO_STAT_GET(
892 resp_msg->comn_hdr.comn_status) ==
893 ICP_QAT_FW_COMN_STATUS_FLAG_OK) {
894 /* success */
895 memcpy(out_data, resp_msg, queue->msg_size);
896 } else {
897 memset(out_data, 0, queue->msg_size);
898 }
899
900 queue->head = adf_modulo(queue->head + queue->msg_size,
901 queue->modulo_mask);
902 rxq_free_desc(qp->qat_dev_gen, qp, queue);
903 }
904
905 return result;
906 }
907
908 /* Sends a NULL message and extracts QAT fw version from the response.
909 * Used to determine detailed capabilities based on the fw version number.
910 * This assumes that there are no inflight messages, i.e. assumes there's space
911 * on the qp, one message is sent and only one response collected.
912 * Returns fw version number or 0 for unknown version or a negative error code.
913 */
914 int
qat_cq_get_fw_version(struct qat_qp * qp)915 qat_cq_get_fw_version(struct qat_qp *qp)
916 {
917 struct qat_queue *queue = &(qp->tx_q);
918 uint8_t *base_addr = (uint8_t *)queue->base_addr;
919 struct icp_qat_fw_comn_req null_msg;
920 struct icp_qat_fw_comn_resp response;
921
922 /* prepare the NULL request */
923 memset(&null_msg, 0, sizeof(null_msg));
924 null_msg.comn_hdr.hdr_flags =
925 ICP_QAT_FW_COMN_HDR_FLAGS_BUILD(ICP_QAT_FW_COMN_REQ_FLAG_SET);
926 null_msg.comn_hdr.service_type = ICP_QAT_FW_COMN_REQ_NULL;
927 null_msg.comn_hdr.service_cmd_id = ICP_QAT_FW_NULL_REQ_SERV_ID;
928
929 #if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
930 QAT_DP_HEXDUMP_LOG(DEBUG, "NULL request", &null_msg, sizeof(null_msg));
931 #endif
932
933 /* send the NULL request */
934 memcpy(base_addr + queue->tail, &null_msg, sizeof(null_msg));
935 queue->tail = adf_modulo(queue->tail + queue->msg_size,
936 queue->modulo_mask);
937 txq_write_tail(qp->qat_dev_gen, qp, queue);
938
939 /* receive a response */
940 if (qat_cq_dequeue_response(qp, &response)) {
941
942 #if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
943 QAT_DP_HEXDUMP_LOG(DEBUG, "NULL response:", &response,
944 sizeof(response));
945 #endif
946 /* if LW0 bit 24 is set - then the fw version was returned */
947 if (QAT_FIELD_GET(response.comn_hdr.hdr_flags,
948 ICP_QAT_FW_COMN_NULL_VERSION_FLAG_BITPOS,
949 ICP_QAT_FW_COMN_NULL_VERSION_FLAG_MASK))
950 return response.resrvd[0]; /* return LW4 */
951 else
952 return 0; /* not set - we don't know fw version */
953 }
954
955 QAT_LOG(ERR, "No response received");
956 return -EINVAL;
957 }
958
959 __rte_weak int
qat_comp_process_response(void ** op __rte_unused,uint8_t * resp __rte_unused,void * op_cookie __rte_unused,uint64_t * dequeue_err_count __rte_unused)960 qat_comp_process_response(void **op __rte_unused, uint8_t *resp __rte_unused,
961 void *op_cookie __rte_unused,
962 uint64_t *dequeue_err_count __rte_unused)
963 {
964 return 0;
965 }
966