1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1994, Sean Eric Fagan
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Sean Eric Fagan.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/ktr.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/syscallsubr.h>
44 #include <sys/sysent.h>
45 #include <sys/sysproto.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/ptrace.h>
50 #include <sys/rwlock.h>
51 #include <sys/sx.h>
52 #include <sys/malloc.h>
53 #include <sys/signalvar.h>
54
55 #include <machine/reg.h>
56
57 #include <security/audit/audit.h>
58
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_extern.h>
62 #include <vm/vm_map.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_param.h>
67
68 #ifdef COMPAT_FREEBSD32
69 #include <sys/procfs.h>
70 #endif
71
72 /*
73 * Functions implemented using PROC_ACTION():
74 *
75 * proc_read_regs(proc, regs)
76 * Get the current user-visible register set from the process
77 * and copy it into the regs structure (<machine/reg.h>).
78 * The process is stopped at the time read_regs is called.
79 *
80 * proc_write_regs(proc, regs)
81 * Update the current register set from the passed in regs
82 * structure. Take care to avoid clobbering special CPU
83 * registers or privileged bits in the PSL.
84 * Depending on the architecture this may have fix-up work to do,
85 * especially if the IAR or PCW are modified.
86 * The process is stopped at the time write_regs is called.
87 *
88 * proc_read_fpregs, proc_write_fpregs
89 * deal with the floating point register set, otherwise as above.
90 *
91 * proc_read_dbregs, proc_write_dbregs
92 * deal with the processor debug register set, otherwise as above.
93 *
94 * proc_sstep(proc)
95 * Arrange for the process to trap after executing a single instruction.
96 */
97
98 #define PROC_ACTION(action) do { \
99 int error; \
100 \
101 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \
102 if ((td->td_proc->p_flag & P_INMEM) == 0) \
103 error = EIO; \
104 else \
105 error = (action); \
106 return (error); \
107 } while(0)
108
109 int
proc_read_regs(struct thread * td,struct reg * regs)110 proc_read_regs(struct thread *td, struct reg *regs)
111 {
112
113 PROC_ACTION(fill_regs(td, regs));
114 }
115
116 int
proc_write_regs(struct thread * td,struct reg * regs)117 proc_write_regs(struct thread *td, struct reg *regs)
118 {
119
120 PROC_ACTION(set_regs(td, regs));
121 }
122
123 int
proc_read_dbregs(struct thread * td,struct dbreg * dbregs)124 proc_read_dbregs(struct thread *td, struct dbreg *dbregs)
125 {
126
127 PROC_ACTION(fill_dbregs(td, dbregs));
128 }
129
130 int
proc_write_dbregs(struct thread * td,struct dbreg * dbregs)131 proc_write_dbregs(struct thread *td, struct dbreg *dbregs)
132 {
133
134 PROC_ACTION(set_dbregs(td, dbregs));
135 }
136
137 /*
138 * Ptrace doesn't support fpregs at all, and there are no security holes
139 * or translations for fpregs, so we can just copy them.
140 */
141 int
proc_read_fpregs(struct thread * td,struct fpreg * fpregs)142 proc_read_fpregs(struct thread *td, struct fpreg *fpregs)
143 {
144
145 PROC_ACTION(fill_fpregs(td, fpregs));
146 }
147
148 int
proc_write_fpregs(struct thread * td,struct fpreg * fpregs)149 proc_write_fpregs(struct thread *td, struct fpreg *fpregs)
150 {
151
152 PROC_ACTION(set_fpregs(td, fpregs));
153 }
154
155 #ifdef COMPAT_FREEBSD32
156 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */
157 int
proc_read_regs32(struct thread * td,struct reg32 * regs32)158 proc_read_regs32(struct thread *td, struct reg32 *regs32)
159 {
160
161 PROC_ACTION(fill_regs32(td, regs32));
162 }
163
164 int
proc_write_regs32(struct thread * td,struct reg32 * regs32)165 proc_write_regs32(struct thread *td, struct reg32 *regs32)
166 {
167
168 PROC_ACTION(set_regs32(td, regs32));
169 }
170
171 int
proc_read_dbregs32(struct thread * td,struct dbreg32 * dbregs32)172 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
173 {
174
175 PROC_ACTION(fill_dbregs32(td, dbregs32));
176 }
177
178 int
proc_write_dbregs32(struct thread * td,struct dbreg32 * dbregs32)179 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
180 {
181
182 PROC_ACTION(set_dbregs32(td, dbregs32));
183 }
184
185 int
proc_read_fpregs32(struct thread * td,struct fpreg32 * fpregs32)186 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
187 {
188
189 PROC_ACTION(fill_fpregs32(td, fpregs32));
190 }
191
192 int
proc_write_fpregs32(struct thread * td,struct fpreg32 * fpregs32)193 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
194 {
195
196 PROC_ACTION(set_fpregs32(td, fpregs32));
197 }
198 #endif
199
200 int
proc_sstep(struct thread * td)201 proc_sstep(struct thread *td)
202 {
203
204 PROC_ACTION(ptrace_single_step(td));
205 }
206
207 int
proc_rwmem(struct proc * p,struct uio * uio)208 proc_rwmem(struct proc *p, struct uio *uio)
209 {
210 vm_map_t map;
211 vm_offset_t pageno; /* page number */
212 vm_prot_t reqprot;
213 int error, fault_flags, page_offset, writing;
214
215 /*
216 * Assert that someone has locked this vmspace. (Should be
217 * curthread but we can't assert that.) This keeps the process
218 * from exiting out from under us until this operation completes.
219 */
220 PROC_ASSERT_HELD(p);
221 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
222
223 /*
224 * The map we want...
225 */
226 map = &p->p_vmspace->vm_map;
227
228 /*
229 * If we are writing, then we request vm_fault() to create a private
230 * copy of each page. Since these copies will not be writeable by the
231 * process, we must explicity request that they be dirtied.
232 */
233 writing = uio->uio_rw == UIO_WRITE;
234 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ;
235 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL;
236
237 /*
238 * Only map in one page at a time. We don't have to, but it
239 * makes things easier. This way is trivial - right?
240 */
241 do {
242 vm_offset_t uva;
243 u_int len;
244 vm_page_t m;
245
246 uva = (vm_offset_t)uio->uio_offset;
247
248 /*
249 * Get the page number of this segment.
250 */
251 pageno = trunc_page(uva);
252 page_offset = uva - pageno;
253
254 /*
255 * How many bytes to copy
256 */
257 len = min(PAGE_SIZE - page_offset, uio->uio_resid);
258
259 /*
260 * Fault and hold the page on behalf of the process.
261 */
262 error = vm_fault(map, pageno, reqprot, fault_flags, &m);
263 if (error != KERN_SUCCESS) {
264 if (error == KERN_RESOURCE_SHORTAGE)
265 error = ENOMEM;
266 else
267 error = EFAULT;
268 break;
269 }
270
271 /*
272 * Now do the i/o move.
273 */
274 error = uiomove_fromphys(&m, page_offset, len, uio);
275
276 /* Make the I-cache coherent for breakpoints. */
277 if (writing && error == 0) {
278 vm_map_lock_read(map);
279 if (vm_map_check_protection(map, pageno, pageno +
280 PAGE_SIZE, VM_PROT_EXECUTE))
281 vm_sync_icache(map, uva, len);
282 vm_map_unlock_read(map);
283 }
284
285 /*
286 * Release the page.
287 */
288 vm_page_unwire(m, PQ_ACTIVE);
289
290 } while (error == 0 && uio->uio_resid > 0);
291
292 return (error);
293 }
294
295 static ssize_t
proc_iop(struct thread * td,struct proc * p,vm_offset_t va,void * buf,size_t len,enum uio_rw rw)296 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
297 size_t len, enum uio_rw rw)
298 {
299 struct iovec iov;
300 struct uio uio;
301 ssize_t slen;
302
303 MPASS(len < SSIZE_MAX);
304 slen = (ssize_t)len;
305
306 iov.iov_base = (caddr_t)buf;
307 iov.iov_len = len;
308 uio.uio_iov = &iov;
309 uio.uio_iovcnt = 1;
310 uio.uio_offset = va;
311 uio.uio_resid = slen;
312 uio.uio_segflg = UIO_SYSSPACE;
313 uio.uio_rw = rw;
314 uio.uio_td = td;
315 proc_rwmem(p, &uio);
316 if (uio.uio_resid == slen)
317 return (-1);
318 return (slen - uio.uio_resid);
319 }
320
321 ssize_t
proc_readmem(struct thread * td,struct proc * p,vm_offset_t va,void * buf,size_t len)322 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
323 size_t len)
324 {
325
326 return (proc_iop(td, p, va, buf, len, UIO_READ));
327 }
328
329 ssize_t
proc_writemem(struct thread * td,struct proc * p,vm_offset_t va,void * buf,size_t len)330 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
331 size_t len)
332 {
333
334 return (proc_iop(td, p, va, buf, len, UIO_WRITE));
335 }
336
337 static int
ptrace_vm_entry(struct thread * td,struct proc * p,struct ptrace_vm_entry * pve)338 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve)
339 {
340 struct vattr vattr;
341 vm_map_t map;
342 vm_map_entry_t entry;
343 vm_object_t obj, tobj, lobj;
344 struct vmspace *vm;
345 struct vnode *vp;
346 char *freepath, *fullpath;
347 u_int pathlen;
348 int error, index;
349
350 error = 0;
351 obj = NULL;
352
353 vm = vmspace_acquire_ref(p);
354 map = &vm->vm_map;
355 vm_map_lock_read(map);
356
357 do {
358 KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
359 ("Submap in map header"));
360 index = 0;
361 VM_MAP_ENTRY_FOREACH(entry, map) {
362 if (index >= pve->pve_entry &&
363 (entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
364 break;
365 index++;
366 }
367 if (index < pve->pve_entry) {
368 error = EINVAL;
369 break;
370 }
371 if (entry == &map->header) {
372 error = ENOENT;
373 break;
374 }
375
376 /* We got an entry. */
377 pve->pve_entry = index + 1;
378 pve->pve_timestamp = map->timestamp;
379 pve->pve_start = entry->start;
380 pve->pve_end = entry->end - 1;
381 pve->pve_offset = entry->offset;
382 pve->pve_prot = entry->protection;
383
384 /* Backing object's path needed? */
385 if (pve->pve_pathlen == 0)
386 break;
387
388 pathlen = pve->pve_pathlen;
389 pve->pve_pathlen = 0;
390
391 obj = entry->object.vm_object;
392 if (obj != NULL)
393 VM_OBJECT_RLOCK(obj);
394 } while (0);
395
396 vm_map_unlock_read(map);
397
398 pve->pve_fsid = VNOVAL;
399 pve->pve_fileid = VNOVAL;
400
401 if (error == 0 && obj != NULL) {
402 lobj = obj;
403 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
404 if (tobj != obj)
405 VM_OBJECT_RLOCK(tobj);
406 if (lobj != obj)
407 VM_OBJECT_RUNLOCK(lobj);
408 lobj = tobj;
409 pve->pve_offset += tobj->backing_object_offset;
410 }
411 vp = vm_object_vnode(lobj);
412 if (vp != NULL)
413 vref(vp);
414 if (lobj != obj)
415 VM_OBJECT_RUNLOCK(lobj);
416 VM_OBJECT_RUNLOCK(obj);
417
418 if (vp != NULL) {
419 freepath = NULL;
420 fullpath = NULL;
421 vn_fullpath(vp, &fullpath, &freepath);
422 vn_lock(vp, LK_SHARED | LK_RETRY);
423 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) {
424 pve->pve_fileid = vattr.va_fileid;
425 pve->pve_fsid = vattr.va_fsid;
426 }
427 vput(vp);
428
429 if (fullpath != NULL) {
430 pve->pve_pathlen = strlen(fullpath) + 1;
431 if (pve->pve_pathlen <= pathlen) {
432 error = copyout(fullpath, pve->pve_path,
433 pve->pve_pathlen);
434 } else
435 error = ENAMETOOLONG;
436 }
437 if (freepath != NULL)
438 free(freepath, M_TEMP);
439 }
440 }
441 vmspace_free(vm);
442 if (error == 0)
443 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p",
444 p->p_pid, pve->pve_entry, pve->pve_start);
445
446 return (error);
447 }
448
449 /*
450 * Process debugging system call.
451 */
452 #ifndef _SYS_SYSPROTO_H_
453 struct ptrace_args {
454 int req;
455 pid_t pid;
456 caddr_t addr;
457 int data;
458 };
459 #endif
460
461 int
sys_ptrace(struct thread * td,struct ptrace_args * uap)462 sys_ptrace(struct thread *td, struct ptrace_args *uap)
463 {
464 /*
465 * XXX this obfuscation is to reduce stack usage, but the register
466 * structs may be too large to put on the stack anyway.
467 */
468 union {
469 struct ptrace_io_desc piod;
470 struct ptrace_lwpinfo pl;
471 struct ptrace_vm_entry pve;
472 struct dbreg dbreg;
473 struct fpreg fpreg;
474 struct reg reg;
475 char args[sizeof(td->td_sa.args)];
476 struct ptrace_sc_ret psr;
477 int ptevents;
478 } r;
479 void *addr;
480 int error = 0;
481
482 AUDIT_ARG_PID(uap->pid);
483 AUDIT_ARG_CMD(uap->req);
484 AUDIT_ARG_VALUE(uap->data);
485 addr = &r;
486 switch (uap->req) {
487 case PT_GET_EVENT_MASK:
488 case PT_LWPINFO:
489 case PT_GET_SC_ARGS:
490 case PT_GET_SC_RET:
491 break;
492 case PT_GETREGS:
493 bzero(&r.reg, sizeof(r.reg));
494 break;
495 case PT_GETFPREGS:
496 bzero(&r.fpreg, sizeof(r.fpreg));
497 break;
498 case PT_GETDBREGS:
499 bzero(&r.dbreg, sizeof(r.dbreg));
500 break;
501 case PT_SETREGS:
502 error = copyin(uap->addr, &r.reg, sizeof(r.reg));
503 break;
504 case PT_SETFPREGS:
505 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
506 break;
507 case PT_SETDBREGS:
508 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
509 break;
510 case PT_SET_EVENT_MASK:
511 if (uap->data != sizeof(r.ptevents))
512 error = EINVAL;
513 else
514 error = copyin(uap->addr, &r.ptevents, uap->data);
515 break;
516 case PT_IO:
517 error = copyin(uap->addr, &r.piod, sizeof(r.piod));
518 break;
519 case PT_VM_ENTRY:
520 error = copyin(uap->addr, &r.pve, sizeof(r.pve));
521 break;
522 default:
523 addr = uap->addr;
524 break;
525 }
526 if (error)
527 return (error);
528
529 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data);
530 if (error)
531 return (error);
532
533 switch (uap->req) {
534 case PT_VM_ENTRY:
535 error = copyout(&r.pve, uap->addr, sizeof(r.pve));
536 break;
537 case PT_IO:
538 error = copyout(&r.piod, uap->addr, sizeof(r.piod));
539 break;
540 case PT_GETREGS:
541 error = copyout(&r.reg, uap->addr, sizeof(r.reg));
542 break;
543 case PT_GETFPREGS:
544 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
545 break;
546 case PT_GETDBREGS:
547 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
548 break;
549 case PT_GET_EVENT_MASK:
550 /* NB: The size in uap->data is validated in kern_ptrace(). */
551 error = copyout(&r.ptevents, uap->addr, uap->data);
552 break;
553 case PT_LWPINFO:
554 /* NB: The size in uap->data is validated in kern_ptrace(). */
555 error = copyout(&r.pl, uap->addr, uap->data);
556 break;
557 case PT_GET_SC_ARGS:
558 error = copyout(r.args, uap->addr, MIN(uap->data,
559 sizeof(r.args)));
560 break;
561 case PT_GET_SC_RET:
562 error = copyout(&r.psr, uap->addr, MIN(uap->data,
563 sizeof(r.psr)));
564 break;
565 }
566
567 return (error);
568 }
569
570 #ifdef COMPAT_FREEBSD32
571 /*
572 * PROC_READ(regs, td2, addr);
573 * becomes either:
574 * proc_read_regs(td2, addr);
575 * or
576 * proc_read_regs32(td2, addr);
577 * .. except this is done at runtime. There is an additional
578 * complication in that PROC_WRITE disallows 32 bit consumers
579 * from writing to 64 bit address space targets.
580 */
581 #define PROC_READ(w, t, a) wrap32 ? \
582 proc_read_ ## w ## 32(t, a) : \
583 proc_read_ ## w (t, a)
584 #define PROC_WRITE(w, t, a) wrap32 ? \
585 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \
586 proc_write_ ## w (t, a)
587 #else
588 #define PROC_READ(w, t, a) proc_read_ ## w (t, a)
589 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a)
590 #endif
591
592 void
proc_set_traced(struct proc * p,bool stop)593 proc_set_traced(struct proc *p, bool stop)
594 {
595
596 sx_assert(&proctree_lock, SX_XLOCKED);
597 PROC_LOCK_ASSERT(p, MA_OWNED);
598 p->p_flag |= P_TRACED;
599 if (stop)
600 p->p_flag2 |= P2_PTRACE_FSTP;
601 p->p_ptevents = PTRACE_DEFAULT;
602 }
603
604 int
kern_ptrace(struct thread * td,int req,pid_t pid,void * addr,int data)605 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data)
606 {
607 struct iovec iov;
608 struct uio uio;
609 struct proc *curp, *p, *pp;
610 struct thread *td2 = NULL, *td3;
611 struct ptrace_io_desc *piod = NULL;
612 struct ptrace_lwpinfo *pl;
613 struct ptrace_sc_ret *psr;
614 int error, num, tmp;
615 int proctree_locked = 0;
616 lwpid_t tid = 0, *buf;
617 #ifdef COMPAT_FREEBSD32
618 int wrap32 = 0, safe = 0;
619 #endif
620
621 curp = td->td_proc;
622
623 /* Lock proctree before locking the process. */
624 switch (req) {
625 case PT_TRACE_ME:
626 case PT_ATTACH:
627 case PT_STEP:
628 case PT_CONTINUE:
629 case PT_TO_SCE:
630 case PT_TO_SCX:
631 case PT_SYSCALL:
632 case PT_FOLLOW_FORK:
633 case PT_LWP_EVENTS:
634 case PT_GET_EVENT_MASK:
635 case PT_SET_EVENT_MASK:
636 case PT_DETACH:
637 case PT_GET_SC_ARGS:
638 sx_xlock(&proctree_lock);
639 proctree_locked = 1;
640 break;
641 default:
642 break;
643 }
644
645 if (req == PT_TRACE_ME) {
646 p = td->td_proc;
647 PROC_LOCK(p);
648 } else {
649 if (pid <= PID_MAX) {
650 if ((p = pfind(pid)) == NULL) {
651 if (proctree_locked)
652 sx_xunlock(&proctree_lock);
653 return (ESRCH);
654 }
655 } else {
656 td2 = tdfind(pid, -1);
657 if (td2 == NULL) {
658 if (proctree_locked)
659 sx_xunlock(&proctree_lock);
660 return (ESRCH);
661 }
662 p = td2->td_proc;
663 tid = pid;
664 pid = p->p_pid;
665 }
666 }
667 AUDIT_ARG_PROCESS(p);
668
669 if ((p->p_flag & P_WEXIT) != 0) {
670 error = ESRCH;
671 goto fail;
672 }
673 if ((error = p_cansee(td, p)) != 0)
674 goto fail;
675
676 if ((error = p_candebug(td, p)) != 0)
677 goto fail;
678
679 /*
680 * System processes can't be debugged.
681 */
682 if ((p->p_flag & P_SYSTEM) != 0) {
683 error = EINVAL;
684 goto fail;
685 }
686
687 if (tid == 0) {
688 if ((p->p_flag & P_STOPPED_TRACE) != 0) {
689 KASSERT(p->p_xthread != NULL, ("NULL p_xthread"));
690 td2 = p->p_xthread;
691 } else {
692 td2 = FIRST_THREAD_IN_PROC(p);
693 }
694 tid = td2->td_tid;
695 }
696
697 #ifdef COMPAT_FREEBSD32
698 /*
699 * Test if we're a 32 bit client and what the target is.
700 * Set the wrap controls accordingly.
701 */
702 if (SV_CURPROC_FLAG(SV_ILP32)) {
703 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32))
704 safe = 1;
705 wrap32 = 1;
706 }
707 #endif
708 /*
709 * Permissions check
710 */
711 switch (req) {
712 case PT_TRACE_ME:
713 /*
714 * Always legal, when there is a parent process which
715 * could trace us. Otherwise, reject.
716 */
717 if ((p->p_flag & P_TRACED) != 0) {
718 error = EBUSY;
719 goto fail;
720 }
721 if (p->p_pptr == initproc) {
722 error = EPERM;
723 goto fail;
724 }
725 break;
726
727 case PT_ATTACH:
728 /* Self */
729 if (p == td->td_proc) {
730 error = EINVAL;
731 goto fail;
732 }
733
734 /* Already traced */
735 if (p->p_flag & P_TRACED) {
736 error = EBUSY;
737 goto fail;
738 }
739
740 /* Can't trace an ancestor if you're being traced. */
741 if (curp->p_flag & P_TRACED) {
742 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) {
743 if (pp == p) {
744 error = EINVAL;
745 goto fail;
746 }
747 }
748 }
749
750 /* OK */
751 break;
752
753 case PT_CLEARSTEP:
754 /* Allow thread to clear single step for itself */
755 if (td->td_tid == tid)
756 break;
757
758 /* FALLTHROUGH */
759 default:
760 /* not being traced... */
761 if ((p->p_flag & P_TRACED) == 0) {
762 error = EPERM;
763 goto fail;
764 }
765
766 /* not being traced by YOU */
767 if (p->p_pptr != td->td_proc) {
768 error = EBUSY;
769 goto fail;
770 }
771
772 /* not currently stopped */
773 if ((p->p_flag & P_STOPPED_TRACE) == 0 ||
774 p->p_suspcount != p->p_numthreads ||
775 (p->p_flag & P_WAITED) == 0) {
776 error = EBUSY;
777 goto fail;
778 }
779
780 /* OK */
781 break;
782 }
783
784 /* Keep this process around until we finish this request. */
785 _PHOLD(p);
786
787 #ifdef FIX_SSTEP
788 /*
789 * Single step fixup ala procfs
790 */
791 FIX_SSTEP(td2);
792 #endif
793
794 /*
795 * Actually do the requests
796 */
797
798 td->td_retval[0] = 0;
799
800 switch (req) {
801 case PT_TRACE_ME:
802 /* set my trace flag and "owner" so it can read/write me */
803 proc_set_traced(p, false);
804 if (p->p_flag & P_PPWAIT)
805 p->p_flag |= P_PPTRACE;
806 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid);
807 break;
808
809 case PT_ATTACH:
810 /* security check done above */
811 /*
812 * It would be nice if the tracing relationship was separate
813 * from the parent relationship but that would require
814 * another set of links in the proc struct or for "wait"
815 * to scan the entire proc table. To make life easier,
816 * we just re-parent the process we're trying to trace.
817 * The old parent is remembered so we can put things back
818 * on a "detach".
819 */
820 proc_set_traced(p, true);
821 proc_reparent(p, td->td_proc, false);
822 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid,
823 p->p_oppid);
824
825 sx_xunlock(&proctree_lock);
826 proctree_locked = 0;
827 MPASS(p->p_xthread == NULL);
828 MPASS((p->p_flag & P_STOPPED_TRACE) == 0);
829
830 /*
831 * If already stopped due to a stop signal, clear the
832 * existing stop before triggering a traced SIGSTOP.
833 */
834 if ((p->p_flag & P_STOPPED_SIG) != 0) {
835 PROC_SLOCK(p);
836 p->p_flag &= ~(P_STOPPED_SIG | P_WAITED);
837 thread_unsuspend(p);
838 PROC_SUNLOCK(p);
839 }
840
841 kern_psignal(p, SIGSTOP);
842 break;
843
844 case PT_CLEARSTEP:
845 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid,
846 p->p_pid);
847 error = ptrace_clear_single_step(td2);
848 break;
849
850 case PT_SETSTEP:
851 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid,
852 p->p_pid);
853 error = ptrace_single_step(td2);
854 break;
855
856 case PT_SUSPEND:
857 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid,
858 p->p_pid);
859 td2->td_dbgflags |= TDB_SUSPEND;
860 thread_lock(td2);
861 td2->td_flags |= TDF_NEEDSUSPCHK;
862 thread_unlock(td2);
863 break;
864
865 case PT_RESUME:
866 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid,
867 p->p_pid);
868 td2->td_dbgflags &= ~TDB_SUSPEND;
869 break;
870
871 case PT_FOLLOW_FORK:
872 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid,
873 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled",
874 data ? "enabled" : "disabled");
875 if (data)
876 p->p_ptevents |= PTRACE_FORK;
877 else
878 p->p_ptevents &= ~PTRACE_FORK;
879 break;
880
881 case PT_LWP_EVENTS:
882 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid,
883 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled",
884 data ? "enabled" : "disabled");
885 if (data)
886 p->p_ptevents |= PTRACE_LWP;
887 else
888 p->p_ptevents &= ~PTRACE_LWP;
889 break;
890
891 case PT_GET_EVENT_MASK:
892 if (data != sizeof(p->p_ptevents)) {
893 error = EINVAL;
894 break;
895 }
896 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid,
897 p->p_ptevents);
898 *(int *)addr = p->p_ptevents;
899 break;
900
901 case PT_SET_EVENT_MASK:
902 if (data != sizeof(p->p_ptevents)) {
903 error = EINVAL;
904 break;
905 }
906 tmp = *(int *)addr;
907 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX |
908 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) {
909 error = EINVAL;
910 break;
911 }
912 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x",
913 p->p_pid, p->p_ptevents, tmp);
914 p->p_ptevents = tmp;
915 break;
916
917 case PT_GET_SC_ARGS:
918 CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid);
919 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0
920 #ifdef COMPAT_FREEBSD32
921 || (wrap32 && !safe)
922 #endif
923 ) {
924 error = EINVAL;
925 break;
926 }
927 bzero(addr, sizeof(td2->td_sa.args));
928 bcopy(td2->td_sa.args, addr, td2->td_sa.callp->sy_narg *
929 sizeof(register_t));
930 break;
931
932 case PT_GET_SC_RET:
933 if ((td2->td_dbgflags & (TDB_SCX)) == 0
934 #ifdef COMPAT_FREEBSD32
935 || (wrap32 && !safe)
936 #endif
937 ) {
938 error = EINVAL;
939 break;
940 }
941 psr = addr;
942 bzero(psr, sizeof(*psr));
943 psr->sr_error = td2->td_errno;
944 if (psr->sr_error == 0) {
945 psr->sr_retval[0] = td2->td_retval[0];
946 psr->sr_retval[1] = td2->td_retval[1];
947 }
948 CTR4(KTR_PTRACE,
949 "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx",
950 p->p_pid, psr->sr_error, psr->sr_retval[0],
951 psr->sr_retval[1]);
952 break;
953
954 case PT_STEP:
955 case PT_CONTINUE:
956 case PT_TO_SCE:
957 case PT_TO_SCX:
958 case PT_SYSCALL:
959 case PT_DETACH:
960 /* Zero means do not send any signal */
961 if (data < 0 || data > _SIG_MAXSIG) {
962 error = EINVAL;
963 break;
964 }
965
966 switch (req) {
967 case PT_STEP:
968 CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d",
969 td2->td_tid, p->p_pid, data);
970 error = ptrace_single_step(td2);
971 if (error)
972 goto out;
973 break;
974 case PT_CONTINUE:
975 case PT_TO_SCE:
976 case PT_TO_SCX:
977 case PT_SYSCALL:
978 if (addr != (void *)1) {
979 error = ptrace_set_pc(td2,
980 (u_long)(uintfptr_t)addr);
981 if (error)
982 goto out;
983 }
984 switch (req) {
985 case PT_TO_SCE:
986 p->p_ptevents |= PTRACE_SCE;
987 CTR4(KTR_PTRACE,
988 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d",
989 p->p_pid, p->p_ptevents,
990 (u_long)(uintfptr_t)addr, data);
991 break;
992 case PT_TO_SCX:
993 p->p_ptevents |= PTRACE_SCX;
994 CTR4(KTR_PTRACE,
995 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d",
996 p->p_pid, p->p_ptevents,
997 (u_long)(uintfptr_t)addr, data);
998 break;
999 case PT_SYSCALL:
1000 p->p_ptevents |= PTRACE_SYSCALL;
1001 CTR4(KTR_PTRACE,
1002 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d",
1003 p->p_pid, p->p_ptevents,
1004 (u_long)(uintfptr_t)addr, data);
1005 break;
1006 case PT_CONTINUE:
1007 CTR3(KTR_PTRACE,
1008 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d",
1009 p->p_pid, (u_long)(uintfptr_t)addr, data);
1010 break;
1011 }
1012 break;
1013 case PT_DETACH:
1014 /*
1015 * Reset the process parent.
1016 *
1017 * NB: This clears P_TRACED before reparenting
1018 * a detached process back to its original
1019 * parent. Otherwise the debugee will be set
1020 * as an orphan of the debugger.
1021 */
1022 p->p_flag &= ~(P_TRACED | P_WAITED);
1023 if (p->p_oppid != p->p_pptr->p_pid) {
1024 PROC_LOCK(p->p_pptr);
1025 sigqueue_take(p->p_ksi);
1026 PROC_UNLOCK(p->p_pptr);
1027
1028 pp = proc_realparent(p);
1029 proc_reparent(p, pp, false);
1030 if (pp == initproc)
1031 p->p_sigparent = SIGCHLD;
1032 CTR3(KTR_PTRACE,
1033 "PT_DETACH: pid %d reparented to pid %d, sig %d",
1034 p->p_pid, pp->p_pid, data);
1035 } else
1036 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d",
1037 p->p_pid, data);
1038 p->p_ptevents = 0;
1039 FOREACH_THREAD_IN_PROC(p, td3) {
1040 if ((td3->td_dbgflags & TDB_FSTP) != 0) {
1041 sigqueue_delete(&td3->td_sigqueue,
1042 SIGSTOP);
1043 }
1044 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP |
1045 TDB_SUSPEND);
1046 }
1047
1048 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) {
1049 sigqueue_delete(&p->p_sigqueue, SIGSTOP);
1050 p->p_flag2 &= ~P2_PTRACE_FSTP;
1051 }
1052
1053 /* should we send SIGCHLD? */
1054 /* childproc_continued(p); */
1055 break;
1056 }
1057
1058 sx_xunlock(&proctree_lock);
1059 proctree_locked = 0;
1060
1061 sendsig:
1062 MPASS(proctree_locked == 0);
1063
1064 /*
1065 * Clear the pending event for the thread that just
1066 * reported its event (p_xthread). This may not be
1067 * the thread passed to PT_CONTINUE, PT_STEP, etc. if
1068 * the debugger is resuming a different thread.
1069 *
1070 * Deliver any pending signal via the reporting thread.
1071 */
1072 MPASS(p->p_xthread != NULL);
1073 p->p_xthread->td_dbgflags &= ~TDB_XSIG;
1074 p->p_xthread->td_xsig = data;
1075 p->p_xthread = NULL;
1076 p->p_xsig = data;
1077
1078 /*
1079 * P_WKILLED is insurance that a PT_KILL/SIGKILL
1080 * always works immediately, even if another thread is
1081 * unsuspended first and attempts to handle a
1082 * different signal or if the POSIX.1b style signal
1083 * queue cannot accommodate any new signals.
1084 */
1085 if (data == SIGKILL)
1086 proc_wkilled(p);
1087
1088 /*
1089 * Unsuspend all threads. To leave a thread
1090 * suspended, use PT_SUSPEND to suspend it before
1091 * continuing the process.
1092 */
1093 PROC_SLOCK(p);
1094 p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED);
1095 thread_unsuspend(p);
1096 PROC_SUNLOCK(p);
1097 break;
1098
1099 case PT_WRITE_I:
1100 case PT_WRITE_D:
1101 td2->td_dbgflags |= TDB_USERWR;
1102 PROC_UNLOCK(p);
1103 error = 0;
1104 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data,
1105 sizeof(int)) != sizeof(int))
1106 error = ENOMEM;
1107 else
1108 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x",
1109 p->p_pid, addr, data);
1110 PROC_LOCK(p);
1111 break;
1112
1113 case PT_READ_I:
1114 case PT_READ_D:
1115 PROC_UNLOCK(p);
1116 error = tmp = 0;
1117 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp,
1118 sizeof(int)) != sizeof(int))
1119 error = ENOMEM;
1120 else
1121 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x",
1122 p->p_pid, addr, tmp);
1123 td->td_retval[0] = tmp;
1124 PROC_LOCK(p);
1125 break;
1126
1127 case PT_IO:
1128 piod = addr;
1129 iov.iov_base = piod->piod_addr;
1130 iov.iov_len = piod->piod_len;
1131 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
1132 uio.uio_resid = piod->piod_len;
1133 uio.uio_iov = &iov;
1134 uio.uio_iovcnt = 1;
1135 uio.uio_segflg = UIO_USERSPACE;
1136 uio.uio_td = td;
1137 switch (piod->piod_op) {
1138 case PIOD_READ_D:
1139 case PIOD_READ_I:
1140 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)",
1141 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1142 uio.uio_rw = UIO_READ;
1143 break;
1144 case PIOD_WRITE_D:
1145 case PIOD_WRITE_I:
1146 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)",
1147 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1148 td2->td_dbgflags |= TDB_USERWR;
1149 uio.uio_rw = UIO_WRITE;
1150 break;
1151 default:
1152 error = EINVAL;
1153 goto out;
1154 }
1155 PROC_UNLOCK(p);
1156 error = proc_rwmem(p, &uio);
1157 piod->piod_len -= uio.uio_resid;
1158 PROC_LOCK(p);
1159 break;
1160
1161 case PT_KILL:
1162 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid);
1163 data = SIGKILL;
1164 goto sendsig; /* in PT_CONTINUE above */
1165
1166 case PT_SETREGS:
1167 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid,
1168 p->p_pid);
1169 td2->td_dbgflags |= TDB_USERWR;
1170 error = PROC_WRITE(regs, td2, addr);
1171 break;
1172
1173 case PT_GETREGS:
1174 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid,
1175 p->p_pid);
1176 error = PROC_READ(regs, td2, addr);
1177 break;
1178
1179 case PT_SETFPREGS:
1180 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid,
1181 p->p_pid);
1182 td2->td_dbgflags |= TDB_USERWR;
1183 error = PROC_WRITE(fpregs, td2, addr);
1184 break;
1185
1186 case PT_GETFPREGS:
1187 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid,
1188 p->p_pid);
1189 error = PROC_READ(fpregs, td2, addr);
1190 break;
1191
1192 case PT_SETDBREGS:
1193 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid,
1194 p->p_pid);
1195 td2->td_dbgflags |= TDB_USERWR;
1196 error = PROC_WRITE(dbregs, td2, addr);
1197 break;
1198
1199 case PT_GETDBREGS:
1200 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid,
1201 p->p_pid);
1202 error = PROC_READ(dbregs, td2, addr);
1203 break;
1204
1205 case PT_LWPINFO:
1206 if (data <= 0 || data > sizeof(*pl)) {
1207 error = EINVAL;
1208 break;
1209 }
1210 pl = addr;
1211 bzero(pl, sizeof(*pl));
1212 pl->pl_lwpid = td2->td_tid;
1213 pl->pl_event = PL_EVENT_NONE;
1214 pl->pl_flags = 0;
1215 if (td2->td_dbgflags & TDB_XSIG) {
1216 pl->pl_event = PL_EVENT_SIGNAL;
1217 if (td2->td_si.si_signo != 0 &&
1218 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo)
1219 + sizeof(pl->pl_siginfo)){
1220 pl->pl_flags |= PL_FLAG_SI;
1221 pl->pl_siginfo = td2->td_si;
1222 }
1223 }
1224 if (td2->td_dbgflags & TDB_SCE)
1225 pl->pl_flags |= PL_FLAG_SCE;
1226 else if (td2->td_dbgflags & TDB_SCX)
1227 pl->pl_flags |= PL_FLAG_SCX;
1228 if (td2->td_dbgflags & TDB_EXEC)
1229 pl->pl_flags |= PL_FLAG_EXEC;
1230 if (td2->td_dbgflags & TDB_FORK) {
1231 pl->pl_flags |= PL_FLAG_FORKED;
1232 pl->pl_child_pid = td2->td_dbg_forked;
1233 if (td2->td_dbgflags & TDB_VFORK)
1234 pl->pl_flags |= PL_FLAG_VFORKED;
1235 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) ==
1236 TDB_VFORK)
1237 pl->pl_flags |= PL_FLAG_VFORK_DONE;
1238 if (td2->td_dbgflags & TDB_CHILD)
1239 pl->pl_flags |= PL_FLAG_CHILD;
1240 if (td2->td_dbgflags & TDB_BORN)
1241 pl->pl_flags |= PL_FLAG_BORN;
1242 if (td2->td_dbgflags & TDB_EXIT)
1243 pl->pl_flags |= PL_FLAG_EXITED;
1244 pl->pl_sigmask = td2->td_sigmask;
1245 pl->pl_siglist = td2->td_siglist;
1246 strcpy(pl->pl_tdname, td2->td_name);
1247 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) {
1248 pl->pl_syscall_code = td2->td_sa.code;
1249 pl->pl_syscall_narg = td2->td_sa.callp->sy_narg;
1250 } else {
1251 pl->pl_syscall_code = 0;
1252 pl->pl_syscall_narg = 0;
1253 }
1254 CTR6(KTR_PTRACE,
1255 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d",
1256 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags,
1257 pl->pl_child_pid, pl->pl_syscall_code);
1258 break;
1259
1260 case PT_GETNUMLWPS:
1261 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid,
1262 p->p_numthreads);
1263 td->td_retval[0] = p->p_numthreads;
1264 break;
1265
1266 case PT_GETLWPLIST:
1267 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d",
1268 p->p_pid, data, p->p_numthreads);
1269 if (data <= 0) {
1270 error = EINVAL;
1271 break;
1272 }
1273 num = imin(p->p_numthreads, data);
1274 PROC_UNLOCK(p);
1275 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK);
1276 tmp = 0;
1277 PROC_LOCK(p);
1278 FOREACH_THREAD_IN_PROC(p, td2) {
1279 if (tmp >= num)
1280 break;
1281 buf[tmp++] = td2->td_tid;
1282 }
1283 PROC_UNLOCK(p);
1284 error = copyout(buf, addr, tmp * sizeof(lwpid_t));
1285 free(buf, M_TEMP);
1286 if (!error)
1287 td->td_retval[0] = tmp;
1288 PROC_LOCK(p);
1289 break;
1290
1291 case PT_VM_TIMESTAMP:
1292 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d",
1293 p->p_pid, p->p_vmspace->vm_map.timestamp);
1294 td->td_retval[0] = p->p_vmspace->vm_map.timestamp;
1295 break;
1296
1297 case PT_VM_ENTRY:
1298 PROC_UNLOCK(p);
1299 error = ptrace_vm_entry(td, p, addr);
1300 PROC_LOCK(p);
1301 break;
1302
1303 default:
1304 #ifdef __HAVE_PTRACE_MACHDEP
1305 if (req >= PT_FIRSTMACH) {
1306 PROC_UNLOCK(p);
1307 error = cpu_ptrace(td2, req, addr, data);
1308 PROC_LOCK(p);
1309 } else
1310 #endif
1311 /* Unknown request. */
1312 error = EINVAL;
1313 break;
1314 }
1315
1316 out:
1317 /* Drop our hold on this process now that the request has completed. */
1318 _PRELE(p);
1319 fail:
1320 PROC_UNLOCK(p);
1321 if (proctree_locked)
1322 sx_xunlock(&proctree_lock);
1323 return (error);
1324 }
1325 #undef PROC_READ
1326 #undef PROC_WRITE
1327