1 /*
2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
67 */
68 /*
69 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74
75 #include <machine/reg.h>
76 #include <machine/psl.h>
77 #include <stdatomic.h>
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/ioctl.h>
82 #include <sys/proc_internal.h>
83 #include <sys/proc.h>
84 #include <sys/kauth.h>
85 #include <sys/tty.h>
86 #include <sys/time.h>
87 #include <sys/resource.h>
88 #include <sys/kernel.h>
89 #include <sys/wait.h>
90 #include <sys/file_internal.h>
91 #include <sys/vnode_internal.h>
92 #include <sys/syslog.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/ptrace.h>
96 #include <sys/proc_info.h>
97 #include <sys/reason.h>
98 #include <sys/_types/_timeval64.h>
99 #include <sys/user.h>
100 #include <sys/aio_kern.h>
101 #include <sys/sysproto.h>
102 #include <sys/signalvar.h>
103 #include <sys/kdebug.h>
104 #include <sys/kdebug_triage.h>
105 #include <sys/acct.h> /* acct_process */
106 #include <sys/codesign.h>
107 #include <sys/event.h> /* kevent_proc_copy_uptrs */
108 #include <sys/sdt.h>
109 #include <sys/bsdtask_info.h> /* bsd_getthreadname */
110 #include <sys/spawn.h>
111 #include <sys/ubc.h>
112 #include <sys/code_signing.h>
113
114 #include <security/audit/audit.h>
115 #include <bsm/audit_kevents.h>
116
117 #include <mach/mach_types.h>
118 #include <mach/task.h>
119 #include <mach/thread_act.h>
120
121 #include <kern/exc_resource.h>
122 #include <kern/kern_types.h>
123 #include <kern/kalloc.h>
124 #include <kern/task.h>
125 #include <corpses/task_corpse.h>
126 #include <kern/thread.h>
127 #include <kern/thread_call.h>
128 #include <kern/sched_prim.h>
129 #include <kern/assert.h>
130 #include <kern/locks.h>
131 #include <kern/policy_internal.h>
132 #include <kern/exc_guard.h>
133 #include <kern/backtrace.h>
134 #include <vm/vm_map_xnu.h>
135
136 #include <vm/vm_protos.h>
137 #include <os/log.h>
138 #include <os/system_event_log.h>
139
140 #include <pexpert/pexpert.h>
141
142 #include <kdp/kdp_dyld.h>
143
144 #if SYSV_SHM
145 #include <sys/shm_internal.h> /* shmexit */
146 #endif /* SYSV_SHM */
147 #if CONFIG_PERSONAS
148 #include <sys/persona.h>
149 #endif /* CONFIG_PERSONAS */
150 #if CONFIG_MEMORYSTATUS
151 #include <sys/kern_memorystatus.h>
152 #endif /* CONFIG_MEMORYSTATUS */
153 #if CONFIG_DTRACE
154 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
155 void dtrace_proc_exit(proc_t p);
156 #include <sys/dtrace_ptss.h>
157 #endif /* CONFIG_DTRACE */
158 #if CONFIG_MACF
159 #include <security/mac_framework.h>
160 #include <security/mac_mach_internal.h>
161 #include <sys/syscall.h>
162 #endif /* CONFIG_MACF */
163
164 #ifdef CONFIG_EXCLAVES
165 void
166 task_add_conclave_crash_info(task_t task, void *crash_info_ptr);
167 #endif /* CONFIG_EXCLAVES */
168
169 #if CONFIG_MEMORYSTATUS
170 static void proc_memorystatus_remove(proc_t p);
171 #endif /* CONFIG_MEMORYSTATUS */
172 void proc_prepareexit(proc_t p, int rv, boolean_t perf_notify);
173 void gather_populate_corpse_crashinfo(proc_t p, task_t corpse_task,
174 mach_exception_data_type_t code, mach_exception_data_type_t subcode,
175 uint64_t *udata_buffer, int num_udata, void *reason, exception_type_t etype);
176 mach_exception_data_type_t proc_encode_exit_exception_code(proc_t p);
177 exception_type_t get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info);
178 __private_extern__ void munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p);
179 __private_extern__ void munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p);
180 static void populate_corpse_crashinfo(proc_t p, task_t corpse_task,
181 struct rusage_superset *rup, mach_exception_data_type_t code,
182 mach_exception_data_type_t subcode, uint64_t *udata_buffer,
183 int num_udata, os_reason_t reason, exception_type_t etype);
184 static void proc_update_corpse_exception_codes(proc_t p, mach_exception_data_type_t *code, mach_exception_data_type_t *subcode);
185 extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg, char *buffer, uint32_t buffersize, int32_t *retval);
186 extern void proc_piduniqidentifierinfo(proc_t p, struct proc_uniqidentifierinfo *p_uniqidinfo);
187 extern void task_coalition_ids(task_t task, uint64_t ids[COALITION_NUM_TYPES]);
188 extern uint64_t get_task_phys_footprint_limit(task_t);
189 int proc_list_uptrs(void *p, uint64_t *udata_buffer, int size);
190 extern uint64_t task_corpse_get_crashed_thread_id(task_t corpse_task);
191
192 extern unsigned int exception_log_max_pid;
193
194 extern void IOUserServerRecordExitReason(task_t task, os_reason_t reason);
195
196 /*
197 * Flags for `reap_child_locked`.
198 */
199 __options_decl(reap_flags_t, uint32_t, {
200 /*
201 * Parent is exiting, so the kernel is responsible for reaping children.
202 */
203 REAP_DEAD_PARENT = 0x01,
204 /*
205 * Childr process was re-parented to initproc.
206 */
207 REAP_REPARENTED_TO_INIT = 0x02,
208 /*
209 * `proc_list_lock` is held on entry.
210 */
211 REAP_LOCKED = 0x04,
212 /*
213 * Drop the `proc_list_lock` on return. Note that the `proc_list_lock` will
214 * be dropped internally by the function regardless.
215 */
216 REAP_DROP_LOCK = 0x08,
217 });
218 static void reap_child_locked(proc_t parent, proc_t child, reap_flags_t flags);
219
220 static KALLOC_TYPE_DEFINE(zombie_zone, struct rusage_superset, KT_DEFAULT);
221
222 /*
223 * Things which should have prototypes in headers, but don't
224 */
225 void proc_exit(proc_t p);
226 int wait1continue(int result);
227 int waitidcontinue(int result);
228 kern_return_t sys_perf_notify(thread_t thread, int pid);
229 kern_return_t task_exception_notify(exception_type_t exception,
230 mach_exception_data_type_t code, mach_exception_data_type_t subcode, bool fatal);
231 void delay(int);
232
233 #if DEVELOPMENT || DEBUG
234 static LCK_GRP_DECLARE(proc_exit_lpexit_spin_lock_grp, "proc_exit_lpexit_spin");
235 static LCK_MTX_DECLARE(proc_exit_lpexit_spin_lock, &proc_exit_lpexit_spin_lock_grp);
236 static pid_t proc_exit_lpexit_spin_pid = -1; /* wakeup point */
237 static int proc_exit_lpexit_spin_pos = -1; /* point to block */
238 static int proc_exit_lpexit_spinning = 0;
239 enum {
240 PELS_POS_START = 0, /* beginning of proc_exit */
241 PELS_POS_PRE_TASK_DETACH, /* before task/proc detach */
242 PELS_POS_POST_TASK_DETACH, /* after task/proc detach */
243 PELS_POS_END, /* end of proc_exit */
244 PELS_NPOS /* # valid values */
245 };
246
247 /* Panic if matching processes (delimited by ',') exit on error. */
248 static TUNABLE_STR(panic_on_eexit_pcomms, 128, "panic_on_error_exit", "");
249
250 static int
251 proc_exit_lpexit_spin_pid_sysctl SYSCTL_HANDLER_ARGS
252 {
253 #pragma unused(oidp, arg1, arg2)
254 pid_t new_value;
255 int changed;
256 int error;
257
258 if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin", NULL, 0)) {
259 return ENOENT;
260 }
261
262 error = sysctl_io_number(req, proc_exit_lpexit_spin_pid,
263 sizeof(proc_exit_lpexit_spin_pid), &new_value, &changed);
264 if (error == 0 && changed != 0) {
265 if (new_value < -1) {
266 return EINVAL;
267 }
268 lck_mtx_lock(&proc_exit_lpexit_spin_lock);
269 proc_exit_lpexit_spin_pid = new_value;
270 wakeup(&proc_exit_lpexit_spin_pid);
271 proc_exit_lpexit_spinning = 0;
272 lck_mtx_unlock(&proc_exit_lpexit_spin_lock);
273 }
274 return error;
275 }
276
277 static int
278 proc_exit_lpexit_spin_pos_sysctl SYSCTL_HANDLER_ARGS
279 {
280 #pragma unused(oidp, arg1, arg2)
281 int new_value;
282 int changed;
283 int error;
284
285 if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin", NULL, 0)) {
286 return ENOENT;
287 }
288
289 error = sysctl_io_number(req, proc_exit_lpexit_spin_pos,
290 sizeof(proc_exit_lpexit_spin_pos), &new_value, &changed);
291 if (error == 0 && changed != 0) {
292 if (new_value < -1 || new_value >= PELS_NPOS) {
293 return EINVAL;
294 }
295 lck_mtx_lock(&proc_exit_lpexit_spin_lock);
296 proc_exit_lpexit_spin_pos = new_value;
297 wakeup(&proc_exit_lpexit_spin_pid);
298 proc_exit_lpexit_spinning = 0;
299 lck_mtx_unlock(&proc_exit_lpexit_spin_lock);
300 }
301 return error;
302 }
303
304 static int
305 proc_exit_lpexit_spinning_sysctl SYSCTL_HANDLER_ARGS
306 {
307 #pragma unused(oidp, arg1, arg2)
308 int new_value;
309 int changed;
310 int error;
311
312 if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin", NULL, 0)) {
313 return ENOENT;
314 }
315
316 error = sysctl_io_number(req, proc_exit_lpexit_spinning,
317 sizeof(proc_exit_lpexit_spinning), &new_value, &changed);
318 if (error == 0 && changed != 0) {
319 return EINVAL;
320 }
321 return error;
322 }
323
324 SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spin_pid,
325 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
326 NULL, sizeof(pid_t),
327 proc_exit_lpexit_spin_pid_sysctl, "I", "PID to hold in proc_exit");
328
329 SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spin_pos,
330 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
331 NULL, sizeof(int),
332 proc_exit_lpexit_spin_pos_sysctl, "I", "position to hold in proc_exit");
333
334 SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spinning,
335 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
336 NULL, sizeof(int),
337 proc_exit_lpexit_spinning_sysctl, "I", "is a thread at requested pid/pos");
338
339 static inline void
proc_exit_lpexit_check(pid_t pid,int pos)340 proc_exit_lpexit_check(pid_t pid, int pos)
341 {
342 if (proc_exit_lpexit_spin_pid == pid) {
343 bool slept = false;
344 lck_mtx_lock(&proc_exit_lpexit_spin_lock);
345 while (proc_exit_lpexit_spin_pid == pid &&
346 proc_exit_lpexit_spin_pos == pos) {
347 if (!slept) {
348 os_log(OS_LOG_DEFAULT,
349 "proc_exit_lpexit_check: Process[%d] waiting during proc_exit at pos %d as requested", pid, pos);
350 slept = true;
351 }
352 proc_exit_lpexit_spinning = 1;
353 msleep(&proc_exit_lpexit_spin_pid, &proc_exit_lpexit_spin_lock,
354 PWAIT, "proc_exit_lpexit_check", NULL);
355 proc_exit_lpexit_spinning = 0;
356 }
357 lck_mtx_unlock(&proc_exit_lpexit_spin_lock);
358 if (slept) {
359 os_log(OS_LOG_DEFAULT,
360 "proc_exit_lpexit_check: Process[%d] driving on from pos %d", pid, pos);
361 }
362 }
363 }
364 #endif /* DEVELOPMENT || DEBUG */
365
366 /*
367 * NOTE: Source and target may *NOT* overlap!
368 * XXX Should share code with bsd/dev/ppc/unix_signal.c
369 */
370 void
siginfo_user_to_user32(user_siginfo_t * in,user32_siginfo_t * out)371 siginfo_user_to_user32(user_siginfo_t *in, user32_siginfo_t *out)
372 {
373 out->si_signo = in->si_signo;
374 out->si_errno = in->si_errno;
375 out->si_code = in->si_code;
376 out->si_pid = in->si_pid;
377 out->si_uid = in->si_uid;
378 out->si_status = in->si_status;
379 out->si_addr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_addr);
380 /* following cast works for sival_int because of padding */
381 out->si_value.sival_ptr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_value.sival_ptr);
382 out->si_band = (user32_long_t)in->si_band; /* range reduction */
383 }
384
385 void
siginfo_user_to_user64(user_siginfo_t * in,user64_siginfo_t * out)386 siginfo_user_to_user64(user_siginfo_t *in, user64_siginfo_t *out)
387 {
388 out->si_signo = in->si_signo;
389 out->si_errno = in->si_errno;
390 out->si_code = in->si_code;
391 out->si_pid = in->si_pid;
392 out->si_uid = in->si_uid;
393 out->si_status = in->si_status;
394 out->si_addr = in->si_addr;
395 /* following cast works for sival_int because of padding */
396 out->si_value.sival_ptr = in->si_value.sival_ptr;
397 out->si_band = in->si_band; /* range reduction */
398 }
399
400 static int
copyoutsiginfo(user_siginfo_t * native,boolean_t is64,user_addr_t uaddr)401 copyoutsiginfo(user_siginfo_t *native, boolean_t is64, user_addr_t uaddr)
402 {
403 if (is64) {
404 user64_siginfo_t sinfo64;
405
406 bzero(&sinfo64, sizeof(sinfo64));
407 siginfo_user_to_user64(native, &sinfo64);
408 return copyout(&sinfo64, uaddr, sizeof(sinfo64));
409 } else {
410 user32_siginfo_t sinfo32;
411
412 bzero(&sinfo32, sizeof(sinfo32));
413 siginfo_user_to_user32(native, &sinfo32);
414 return copyout(&sinfo32, uaddr, sizeof(sinfo32));
415 }
416 }
417
418 void
gather_populate_corpse_crashinfo(proc_t p,task_t corpse_task,mach_exception_data_type_t code,mach_exception_data_type_t subcode,uint64_t * udata_buffer,int num_udata,void * reason,exception_type_t etype)419 gather_populate_corpse_crashinfo(proc_t p, task_t corpse_task,
420 mach_exception_data_type_t code, mach_exception_data_type_t subcode,
421 uint64_t *udata_buffer, int num_udata, void *reason, exception_type_t etype)
422 {
423 struct rusage_superset rup;
424
425 gather_rusage_info(p, &rup.ri, RUSAGE_INFO_CURRENT);
426 rup.ri.ri_phys_footprint = 0;
427 populate_corpse_crashinfo(p, corpse_task, &rup, code, subcode,
428 udata_buffer, num_udata, reason, etype);
429 }
430
431 static void
proc_update_corpse_exception_codes(proc_t p,mach_exception_data_type_t * code,mach_exception_data_type_t * subcode)432 proc_update_corpse_exception_codes(proc_t p, mach_exception_data_type_t *code, mach_exception_data_type_t *subcode)
433 {
434 mach_exception_data_type_t code_update = *code;
435 mach_exception_data_type_t subcode_update = *subcode;
436 if (p->p_exit_reason == OS_REASON_NULL) {
437 return;
438 }
439
440 switch (p->p_exit_reason->osr_namespace) {
441 case OS_REASON_JETSAM:
442 if (p->p_exit_reason->osr_code == JETSAM_REASON_MEMORY_PERPROCESSLIMIT) {
443 /* Update the code with EXC_RESOURCE code for high memory watermark */
444 EXC_RESOURCE_ENCODE_TYPE(code_update, RESOURCE_TYPE_MEMORY);
445 EXC_RESOURCE_ENCODE_FLAVOR(code_update, FLAVOR_HIGH_WATERMARK);
446 EXC_RESOURCE_HWM_ENCODE_LIMIT(code_update, ((get_task_phys_footprint_limit(proc_task(p))) >> 20));
447 subcode_update = 0;
448 break;
449 }
450
451 break;
452 default:
453 break;
454 }
455
456 *code = code_update;
457 *subcode = subcode_update;
458 return;
459 }
460
461 mach_exception_data_type_t
proc_encode_exit_exception_code(proc_t p)462 proc_encode_exit_exception_code(proc_t p)
463 {
464 uint64_t subcode = 0;
465
466 if (p->p_exit_reason == OS_REASON_NULL) {
467 return 0;
468 }
469
470 /* Embed first 32 bits of osr_namespace and osr_code in exception code */
471 ENCODE_OSR_NAMESPACE_TO_MACH_EXCEPTION_CODE(subcode, p->p_exit_reason->osr_namespace);
472 ENCODE_OSR_CODE_TO_MACH_EXCEPTION_CODE(subcode, p->p_exit_reason->osr_code);
473 return (mach_exception_data_type_t)subcode;
474 }
475
476 static void
populate_corpse_crashinfo(proc_t p,task_t corpse_task,struct rusage_superset * rup,mach_exception_data_type_t code,mach_exception_data_type_t subcode,uint64_t * udata_buffer,int num_udata,os_reason_t reason,exception_type_t etype)477 populate_corpse_crashinfo(proc_t p, task_t corpse_task, struct rusage_superset *rup,
478 mach_exception_data_type_t code, mach_exception_data_type_t subcode,
479 uint64_t *udata_buffer, int num_udata, os_reason_t reason, exception_type_t etype)
480 {
481 mach_vm_address_t uaddr = 0;
482 mach_exception_data_type_t exc_codes[EXCEPTION_CODE_MAX];
483 exc_codes[0] = code;
484 exc_codes[1] = subcode;
485 cpu_type_t cputype;
486 struct proc_uniqidentifierinfo p_uniqidinfo;
487 struct proc_workqueueinfo pwqinfo;
488 int retval = 0;
489 uint64_t crashed_threadid = task_corpse_get_crashed_thread_id(corpse_task);
490 boolean_t is_corpse_fork;
491 uint32_t csflags;
492 unsigned int pflags = 0;
493 uint64_t max_footprint_mb;
494 uint64_t max_footprint;
495
496 uint64_t ledger_internal;
497 uint64_t ledger_internal_compressed;
498 uint64_t ledger_iokit_mapped;
499 uint64_t ledger_alternate_accounting;
500 uint64_t ledger_alternate_accounting_compressed;
501 uint64_t ledger_purgeable_nonvolatile;
502 uint64_t ledger_purgeable_nonvolatile_compressed;
503 uint64_t ledger_page_table;
504 uint64_t ledger_phys_footprint;
505 uint64_t ledger_phys_footprint_lifetime_max;
506 uint64_t ledger_network_nonvolatile;
507 uint64_t ledger_network_nonvolatile_compressed;
508 uint64_t ledger_wired_mem;
509 uint64_t ledger_tagged_footprint;
510 uint64_t ledger_tagged_footprint_compressed;
511 uint64_t ledger_media_footprint;
512 uint64_t ledger_media_footprint_compressed;
513 uint64_t ledger_graphics_footprint;
514 uint64_t ledger_graphics_footprint_compressed;
515 uint64_t ledger_neural_footprint;
516 uint64_t ledger_neural_footprint_compressed;
517
518 void *crash_info_ptr = task_get_corpseinfo(corpse_task);
519
520 #if CONFIG_MEMORYSTATUS
521 int memstat_dirty_flags = 0;
522 #endif
523
524 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_EXCEPTION_CODES, sizeof(exc_codes), &uaddr)) {
525 kcdata_memcpy(crash_info_ptr, uaddr, exc_codes, sizeof(exc_codes));
526 }
527
528 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PID, sizeof(pid_t), &uaddr)) {
529 pid_t pid = proc_getpid(p);
530 kcdata_memcpy(crash_info_ptr, uaddr, &pid, sizeof(pid));
531 }
532
533 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PPID, sizeof(p->p_ppid), &uaddr)) {
534 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_ppid, sizeof(p->p_ppid));
535 }
536
537 /* Don't include the crashed thread ID if there's an exit reason that indicates it's irrelevant */
538 if ((p->p_exit_reason == OS_REASON_NULL) || !(p->p_exit_reason->osr_flags & OS_REASON_FLAG_NO_CRASHED_TID)) {
539 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CRASHED_THREADID, sizeof(uint64_t), &uaddr)) {
540 kcdata_memcpy(crash_info_ptr, uaddr, &crashed_threadid, sizeof(uint64_t));
541 }
542 }
543
544 static_assert(sizeof(struct proc_uniqidentifierinfo) == sizeof(struct crashinfo_proc_uniqidentifierinfo));
545 if (KERN_SUCCESS ==
546 kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_BSDINFOWITHUNIQID, sizeof(struct proc_uniqidentifierinfo), &uaddr)) {
547 proc_piduniqidentifierinfo(p, &p_uniqidinfo);
548 kcdata_memcpy(crash_info_ptr, uaddr, &p_uniqidinfo, sizeof(struct proc_uniqidentifierinfo));
549 }
550
551 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_RUSAGE_INFO, sizeof(rusage_info_current), &uaddr)) {
552 kcdata_memcpy(crash_info_ptr, uaddr, &rup->ri, sizeof(rusage_info_current));
553 }
554
555 csflags = (uint32_t)proc_getcsflags(p);
556 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_CSFLAGS, sizeof(csflags), &uaddr)) {
557 kcdata_memcpy(crash_info_ptr, uaddr, &csflags, sizeof(csflags));
558 }
559
560 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_NAME, sizeof(p->p_comm), &uaddr)) {
561 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_comm, sizeof(p->p_comm));
562 }
563
564 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_STARTTIME, sizeof(p->p_start), &uaddr)) {
565 struct timeval64 t64;
566 t64.tv_sec = (int64_t)p->p_start.tv_sec;
567 t64.tv_usec = (int64_t)p->p_start.tv_usec;
568 kcdata_memcpy(crash_info_ptr, uaddr, &t64, sizeof(t64));
569 }
570
571 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_USERSTACK, sizeof(p->user_stack), &uaddr)) {
572 kcdata_memcpy(crash_info_ptr, uaddr, &p->user_stack, sizeof(p->user_stack));
573 }
574
575 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_ARGSLEN, sizeof(p->p_argslen), &uaddr)) {
576 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_argslen, sizeof(p->p_argslen));
577 }
578
579 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_ARGC, sizeof(p->p_argc), &uaddr)) {
580 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_argc, sizeof(p->p_argc));
581 }
582
583 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_PATH, MAXPATHLEN, &uaddr)) {
584 char *buf = zalloc_flags(ZV_NAMEI, Z_WAITOK | Z_ZERO);
585 proc_pidpathinfo_internal(p, 0, buf, MAXPATHLEN, &retval);
586 kcdata_memcpy(crash_info_ptr, uaddr, buf, MAXPATHLEN);
587 zfree(ZV_NAMEI, buf);
588 }
589
590 pflags = p->p_flag & (P_LP64 | P_SUGID | P_TRANSLATED);
591 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_FLAGS, sizeof(pflags), &uaddr)) {
592 kcdata_memcpy(crash_info_ptr, uaddr, &pflags, sizeof(pflags));
593 }
594
595 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_UID, sizeof(p->p_uid), &uaddr)) {
596 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_uid, sizeof(p->p_uid));
597 }
598
599 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_GID, sizeof(p->p_gid), &uaddr)) {
600 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_gid, sizeof(p->p_gid));
601 }
602
603 cputype = cpu_type() & ~CPU_ARCH_MASK;
604 if (IS_64BIT_PROCESS(p)) {
605 cputype |= CPU_ARCH_ABI64;
606 } else if (proc_is64bit_data(p)) {
607 cputype |= CPU_ARCH_ABI64_32;
608 }
609
610 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CPUTYPE, sizeof(cpu_type_t), &uaddr)) {
611 kcdata_memcpy(crash_info_ptr, uaddr, &cputype, sizeof(cpu_type_t));
612 }
613
614 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_CPUTYPE, sizeof(cpu_type_t), &uaddr)) {
615 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_cputype, sizeof(cpu_type_t));
616 }
617
618 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_MEMORY_LIMIT, sizeof(max_footprint_mb), &uaddr)) {
619 max_footprint = get_task_phys_footprint_limit(proc_task(p));
620 max_footprint_mb = max_footprint >> 20;
621 kcdata_memcpy(crash_info_ptr, uaddr, &max_footprint_mb, sizeof(max_footprint_mb));
622 }
623
624 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT_LIFETIME_MAX, sizeof(ledger_phys_footprint_lifetime_max), &uaddr)) {
625 ledger_phys_footprint_lifetime_max = get_task_phys_footprint_lifetime_max(proc_task(p));
626 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_phys_footprint_lifetime_max, sizeof(ledger_phys_footprint_lifetime_max));
627 }
628
629 // In the forking case, the current ledger info is copied into the corpse while the original task is suspended for consistency
630 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_INTERNAL, sizeof(ledger_internal), &uaddr)) {
631 ledger_internal = get_task_internal(corpse_task);
632 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_internal, sizeof(ledger_internal));
633 }
634
635 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_INTERNAL_COMPRESSED, sizeof(ledger_internal_compressed), &uaddr)) {
636 ledger_internal_compressed = get_task_internal_compressed(corpse_task);
637 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_internal_compressed, sizeof(ledger_internal_compressed));
638 }
639
640 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_IOKIT_MAPPED, sizeof(ledger_iokit_mapped), &uaddr)) {
641 ledger_iokit_mapped = get_task_iokit_mapped(corpse_task);
642 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_iokit_mapped, sizeof(ledger_iokit_mapped));
643 }
644
645 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING, sizeof(ledger_alternate_accounting), &uaddr)) {
646 ledger_alternate_accounting = get_task_alternate_accounting(corpse_task);
647 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_alternate_accounting, sizeof(ledger_alternate_accounting));
648 }
649
650 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING_COMPRESSED, sizeof(ledger_alternate_accounting_compressed), &uaddr)) {
651 ledger_alternate_accounting_compressed = get_task_alternate_accounting_compressed(corpse_task);
652 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_alternate_accounting_compressed, sizeof(ledger_alternate_accounting_compressed));
653 }
654
655 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE, sizeof(ledger_purgeable_nonvolatile), &uaddr)) {
656 ledger_purgeable_nonvolatile = get_task_purgeable_nonvolatile(corpse_task);
657 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_purgeable_nonvolatile, sizeof(ledger_purgeable_nonvolatile));
658 }
659
660 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE_COMPRESSED, sizeof(ledger_purgeable_nonvolatile_compressed), &uaddr)) {
661 ledger_purgeable_nonvolatile_compressed = get_task_purgeable_nonvolatile_compressed(corpse_task);
662 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_purgeable_nonvolatile_compressed, sizeof(ledger_purgeable_nonvolatile_compressed));
663 }
664
665 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PAGE_TABLE, sizeof(ledger_page_table), &uaddr)) {
666 ledger_page_table = get_task_page_table(corpse_task);
667 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_page_table, sizeof(ledger_page_table));
668 }
669
670 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT, sizeof(ledger_phys_footprint), &uaddr)) {
671 ledger_phys_footprint = get_task_phys_footprint(corpse_task);
672 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_phys_footprint, sizeof(ledger_phys_footprint));
673 }
674
675 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE, sizeof(ledger_network_nonvolatile), &uaddr)) {
676 ledger_network_nonvolatile = get_task_network_nonvolatile(corpse_task);
677 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_network_nonvolatile, sizeof(ledger_network_nonvolatile));
678 }
679
680 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE_COMPRESSED, sizeof(ledger_network_nonvolatile_compressed), &uaddr)) {
681 ledger_network_nonvolatile_compressed = get_task_network_nonvolatile_compressed(corpse_task);
682 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_network_nonvolatile_compressed, sizeof(ledger_network_nonvolatile_compressed));
683 }
684
685 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_WIRED_MEM, sizeof(ledger_wired_mem), &uaddr)) {
686 ledger_wired_mem = get_task_wired_mem(corpse_task);
687 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_wired_mem, sizeof(ledger_wired_mem));
688 }
689
690 bzero(&pwqinfo, sizeof(struct proc_workqueueinfo));
691 retval = fill_procworkqueue(p, &pwqinfo);
692 if (retval == 0) {
693 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_WORKQUEUEINFO, sizeof(struct proc_workqueueinfo), &uaddr)) {
694 kcdata_memcpy(crash_info_ptr, uaddr, &pwqinfo, sizeof(struct proc_workqueueinfo));
695 }
696 }
697
698 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_RESPONSIBLE_PID, sizeof(p->p_responsible_pid), &uaddr)) {
699 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_responsible_pid, sizeof(p->p_responsible_pid));
700 }
701
702 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_PERSONA_ID, sizeof(uid_t), &uaddr)) {
703 uid_t persona_id = proc_persona_id(p);
704 kcdata_memcpy(crash_info_ptr, uaddr, &persona_id, sizeof(persona_id));
705 }
706
707 #if CONFIG_COALITIONS
708 if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(crash_info_ptr, TASK_CRASHINFO_COALITION_ID, sizeof(uint64_t), COALITION_NUM_TYPES, &uaddr)) {
709 uint64_t coalition_ids[COALITION_NUM_TYPES];
710 task_coalition_ids(proc_task(p), coalition_ids);
711 kcdata_memcpy(crash_info_ptr, uaddr, coalition_ids, sizeof(coalition_ids));
712 }
713 #endif /* CONFIG_COALITIONS */
714
715 #if CONFIG_MEMORYSTATUS
716 memstat_dirty_flags = memorystatus_dirty_get(p, FALSE);
717 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_DIRTY_FLAGS, sizeof(memstat_dirty_flags), &uaddr)) {
718 kcdata_memcpy(crash_info_ptr, uaddr, &memstat_dirty_flags, sizeof(memstat_dirty_flags));
719 }
720 #endif
721
722 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_MEMORY_LIMIT_INCREASE, sizeof(p->p_memlimit_increase), &uaddr)) {
723 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_memlimit_increase, sizeof(p->p_memlimit_increase));
724 }
725
726 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT, sizeof(ledger_tagged_footprint), &uaddr)) {
727 ledger_tagged_footprint = get_task_tagged_footprint(corpse_task);
728 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_tagged_footprint, sizeof(ledger_tagged_footprint));
729 }
730
731 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT_COMPRESSED, sizeof(ledger_tagged_footprint_compressed), &uaddr)) {
732 ledger_tagged_footprint_compressed = get_task_tagged_footprint_compressed(corpse_task);
733 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_tagged_footprint_compressed, sizeof(ledger_tagged_footprint_compressed));
734 }
735
736 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT, sizeof(ledger_media_footprint), &uaddr)) {
737 ledger_media_footprint = get_task_media_footprint(corpse_task);
738 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_media_footprint, sizeof(ledger_media_footprint));
739 }
740
741 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT_COMPRESSED, sizeof(ledger_media_footprint_compressed), &uaddr)) {
742 ledger_media_footprint_compressed = get_task_media_footprint_compressed(corpse_task);
743 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_media_footprint_compressed, sizeof(ledger_media_footprint_compressed));
744 }
745
746 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT, sizeof(ledger_graphics_footprint), &uaddr)) {
747 ledger_graphics_footprint = get_task_graphics_footprint(corpse_task);
748 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_graphics_footprint, sizeof(ledger_graphics_footprint));
749 }
750
751 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT_COMPRESSED, sizeof(ledger_graphics_footprint_compressed), &uaddr)) {
752 ledger_graphics_footprint_compressed = get_task_graphics_footprint_compressed(corpse_task);
753 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_graphics_footprint_compressed, sizeof(ledger_graphics_footprint_compressed));
754 }
755
756 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT, sizeof(ledger_neural_footprint), &uaddr)) {
757 ledger_neural_footprint = get_task_neural_footprint(corpse_task);
758 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_neural_footprint, sizeof(ledger_neural_footprint));
759 }
760
761 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT_COMPRESSED, sizeof(ledger_neural_footprint_compressed), &uaddr)) {
762 ledger_neural_footprint_compressed = get_task_neural_footprint_compressed(corpse_task);
763 kcdata_memcpy(crash_info_ptr, uaddr, &ledger_neural_footprint_compressed, sizeof(ledger_neural_footprint_compressed));
764 }
765
766 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_MEMORYSTATUS_EFFECTIVE_PRIORITY, sizeof(p->p_memstat_effectivepriority), &uaddr)) {
767 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_memstat_effectivepriority, sizeof(p->p_memstat_effectivepriority));
768 }
769
770 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_KERNEL_TRIAGE_INFO_V1, sizeof(struct kernel_triage_info_v1), &uaddr)) {
771 char triage_strings[KDBG_TRIAGE_MAX_STRINGS][KDBG_TRIAGE_MAX_STRLEN];
772 ktriage_extract(thread_tid(current_thread()), triage_strings, KDBG_TRIAGE_MAX_STRINGS * KDBG_TRIAGE_MAX_STRLEN);
773 kcdata_memcpy(crash_info_ptr, uaddr, (void*) triage_strings, sizeof(struct kernel_triage_info_v1));
774 }
775
776 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_TASK_IS_CORPSE_FORK, sizeof(is_corpse_fork), &uaddr)) {
777 is_corpse_fork = is_corpsefork(corpse_task);
778 kcdata_memcpy(crash_info_ptr, uaddr, &is_corpse_fork, sizeof(is_corpse_fork));
779 }
780
781 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_EXCEPTION_TYPE, sizeof(etype), &uaddr)) {
782 kcdata_memcpy(crash_info_ptr, uaddr, &etype, sizeof(etype));
783 }
784
785 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CRASH_COUNT, sizeof(int), &uaddr)) {
786 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_crash_count, sizeof(int));
787 }
788
789 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_THROTTLE_TIMEOUT, sizeof(int), &uaddr)) {
790 kcdata_memcpy(crash_info_ptr, uaddr, &p->p_throttle_timeout, sizeof(int));
791 }
792
793 char signing_id[MAX_CRASHINFO_SIGNING_ID_LEN] = {};
794 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_SIGNING_ID, sizeof(signing_id), &uaddr)) {
795 const char * id = cs_identity_get(p);
796 if (id) {
797 strlcpy(signing_id, id, sizeof(signing_id));
798 }
799 kcdata_memcpy(crash_info_ptr, uaddr, &signing_id, sizeof(signing_id));
800 }
801 char team_id[MAX_CRASHINFO_TEAM_ID_LEN] = {};
802 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_TEAM_ID, sizeof(team_id), &uaddr)) {
803 const char * id = csproc_get_teamid(p);
804 if (id) {
805 strlcpy(team_id, id, sizeof(team_id));
806 }
807 kcdata_memcpy(crash_info_ptr, uaddr, &team_id, sizeof(team_id));
808 }
809
810 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_VALIDATION_CATEGORY, sizeof(uint32_t), &uaddr)) {
811 uint32_t category = 0;
812 if (csproc_get_validation_category(p, &category) != KERN_SUCCESS) {
813 category = CS_VALIDATION_CATEGORY_INVALID;
814 }
815 kcdata_memcpy(crash_info_ptr, uaddr, &category, sizeof(category));
816 }
817
818 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_TRUST_LEVEL, sizeof(uint32_t), &uaddr)) {
819 uint32_t trust = 0;
820 kern_return_t ret = get_trust_level_kdp(get_task_pmap(corpse_task), &trust);
821 if (ret != KERN_SUCCESS) {
822 trust = KCDATA_INVALID_CS_TRUST_LEVEL;
823 }
824 kcdata_memcpy(crash_info_ptr, uaddr, &trust, sizeof(trust));
825 }
826
827 uint64_t jit_start_addr = 0;
828 uint64_t jit_end_addr = 0;
829 kern_return_t ret = get_jit_address_range_kdp(get_task_pmap(corpse_task), (uintptr_t*)&jit_start_addr, (uintptr_t*)&jit_end_addr);
830 if (KERN_SUCCESS == ret) {
831 struct crashinfo_jit_address_range range = {};
832 range.start_address = jit_start_addr;
833 range.end_address = jit_end_addr;
834 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_JIT_ADDRESS_RANGE, sizeof(struct crashinfo_jit_address_range), &uaddr)) {
835 kcdata_memcpy(crash_info_ptr, uaddr, &range, sizeof(range));
836 }
837 }
838
839 if (p->p_exit_reason != OS_REASON_NULL && reason == OS_REASON_NULL) {
840 reason = p->p_exit_reason;
841 }
842 if (reason != OS_REASON_NULL) {
843 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, EXIT_REASON_SNAPSHOT, sizeof(struct exit_reason_snapshot), &uaddr)) {
844 struct exit_reason_snapshot ers = {
845 .ers_namespace = reason->osr_namespace,
846 .ers_code = reason->osr_code,
847 .ers_flags = reason->osr_flags
848 };
849
850 kcdata_memcpy(crash_info_ptr, uaddr, &ers, sizeof(ers));
851 }
852
853 if (reason->osr_kcd_buf != 0) {
854 uint32_t reason_buf_size = (uint32_t)kcdata_memory_get_used_bytes(&reason->osr_kcd_descriptor);
855 assert(reason_buf_size != 0);
856
857 if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, KCDATA_TYPE_NESTED_KCDATA, reason_buf_size, &uaddr)) {
858 kcdata_memcpy(crash_info_ptr, uaddr, reason->osr_kcd_buf, reason_buf_size);
859 }
860 }
861 }
862
863 if (num_udata > 0) {
864 if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(crash_info_ptr, TASK_CRASHINFO_UDATA_PTRS,
865 sizeof(uint64_t), num_udata, &uaddr)) {
866 kcdata_memcpy(crash_info_ptr, uaddr, udata_buffer, sizeof(uint64_t) * num_udata);
867 }
868 }
869
870 #if CONFIG_EXCLAVES
871 task_add_conclave_crash_info(corpse_task, crash_info_ptr);
872 #endif /* CONFIG_EXCLAVES */
873 }
874
875 exception_type_t
get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info)876 get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info)
877 {
878 kcdata_iter_t iter = kcdata_iter((void *)corpse_info->kcd_addr_begin,
879 corpse_info->kcd_length);
880 __assert_only uint32_t type = kcdata_iter_type(iter);
881 assert(type == KCDATA_BUFFER_BEGIN_CRASHINFO);
882
883 iter = kcdata_iter_find_type(iter, TASK_CRASHINFO_EXCEPTION_TYPE);
884 exception_type_t *etype = kcdata_iter_payload(iter);
885 return *etype;
886 }
887
888 /*
889 * Collect information required for generating lightwight corpse for current
890 * task, which can be terminating.
891 */
892 kern_return_t
current_thread_collect_backtrace_info(kcdata_descriptor_t * new_desc,exception_type_t etype,mach_exception_data_t code,mach_msg_type_number_t codeCnt,void * reasonp)893 current_thread_collect_backtrace_info(
894 kcdata_descriptor_t *new_desc,
895 exception_type_t etype,
896 mach_exception_data_t code,
897 mach_msg_type_number_t codeCnt,
898 void *reasonp)
899 {
900 kcdata_descriptor_t kcdata;
901 kern_return_t kr;
902 int frame_count = 0, max_frames = 100;
903 mach_vm_address_t uuid_info_addr = 0;
904 uint32_t uuid_info_count = 0;
905 uint32_t btinfo_flag = 0;
906 mach_vm_address_t btinfo_flag_addr = 0, kaddr = 0;
907 natural_t alloc_size = BTINFO_ALLOCATION_SIZE;
908 mach_msg_type_number_t th_info_count = THREAD_IDENTIFIER_INFO_COUNT;
909 thread_identifier_info_data_t th_info;
910 char threadname[MAXTHREADNAMESIZE];
911 void *btdata_kernel = NULL;
912 typedef uintptr_t user_btframe_t __kernel_data_semantics;
913 user_btframe_t *btframes = NULL;
914 os_reason_t reason = (os_reason_t)reasonp;
915 struct backtrace_user_info info = BTUINFO_INIT;
916 struct rusage_superset rup;
917 uint32_t platform;
918
919 task_t task = current_task();
920 proc_t p = current_proc();
921
922 bool has_64bit_addr = task_get_64bit_addr(current_task());
923 bool has_64bit_data = task_get_64bit_data(current_task());
924
925 if (new_desc == NULL) {
926 return KERN_INVALID_ARGUMENT;
927 }
928
929 /* First, collect backtrace frames */
930 btframes = kalloc_data(max_frames * sizeof(btframes[0]), Z_WAITOK | Z_ZERO);
931 if (!btframes) {
932 return KERN_RESOURCE_SHORTAGE;
933 }
934
935 frame_count = backtrace_user(btframes, max_frames, NULL, &info);
936 if (info.btui_error || frame_count == 0) {
937 kfree_data(btframes, max_frames * sizeof(btframes[0]));
938 return KERN_FAILURE;
939 }
940
941 if ((info.btui_info & BTI_TRUNCATED) != 0) {
942 btinfo_flag |= TASK_BTINFO_FLAG_BT_TRUNCATED;
943 }
944
945 /* Captured in kcdata descriptor below */
946 btdata_kernel = kalloc_data(alloc_size, Z_WAITOK | Z_ZERO);
947 if (!btdata_kernel) {
948 kfree_data(btframes, max_frames * sizeof(btframes[0]));
949 return KERN_RESOURCE_SHORTAGE;
950 }
951
952 kcdata = task_btinfo_alloc_init((mach_vm_address_t)btdata_kernel, alloc_size);
953 if (!kcdata) {
954 kfree_data(btdata_kernel, alloc_size);
955 kfree_data(btframes, max_frames * sizeof(btframes[0]));
956 return KERN_RESOURCE_SHORTAGE;
957 }
958
959 /* First reserve space in kcdata blob for the btinfo flag fields */
960 if (KERN_SUCCESS != kcdata_get_memory_addr(kcdata, TASK_BTINFO_FLAGS,
961 sizeof(uint32_t), &btinfo_flag_addr)) {
962 kfree_data(btdata_kernel, alloc_size);
963 kfree_data(btframes, max_frames * sizeof(btframes[0]));
964 kcdata_memory_destroy(kcdata);
965 return KERN_RESOURCE_SHORTAGE;
966 }
967
968 if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata,
969 (has_64bit_addr ? TASK_BTINFO_BACKTRACE64 : TASK_BTINFO_BACKTRACE),
970 sizeof(uintptr_t), frame_count, &kaddr)) {
971 kcdata_memcpy(kcdata, kaddr, btframes, sizeof(uintptr_t) * frame_count);
972 }
973
974 #if __LP64__
975 /* We only support async stacks on 64-bit kernels */
976 frame_count = 0;
977
978 if (info.btui_async_frame_addr != 0) {
979 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_ASYNC_START_INDEX,
980 sizeof(uint32_t), &kaddr)) {
981 uint32_t idx = info.btui_async_start_index;
982 kcdata_memcpy(kcdata, kaddr, &idx, sizeof(uint32_t));
983 }
984 struct backtrace_control ctl = {
985 .btc_frame_addr = info.btui_async_frame_addr,
986 .btc_addr_offset = BTCTL_ASYNC_ADDR_OFFSET,
987 };
988
989 info = BTUINFO_INIT;
990 frame_count = backtrace_user(btframes, max_frames, &ctl, &info);
991 if (info.btui_error == 0 && frame_count > 0) {
992 if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata,
993 TASK_BTINFO_ASYNC_BACKTRACE64,
994 sizeof(uintptr_t), frame_count, &kaddr)) {
995 kcdata_memcpy(kcdata, kaddr, btframes, sizeof(uintptr_t) * frame_count);
996 }
997 }
998
999 if ((info.btui_info & BTI_TRUNCATED) != 0) {
1000 btinfo_flag |= TASK_BTINFO_FLAG_ASYNC_BT_TRUNCATED;
1001 }
1002 }
1003 #endif
1004
1005 /* Backtrace collection done, free the frames buffer */
1006 kfree_data(btframes, max_frames * sizeof(btframes[0]));
1007 btframes = NULL;
1008
1009 thread_set_exec_promotion(current_thread());
1010 /* Next, suspend the task briefly and collect image load infos */
1011 task_suspend_internal(task);
1012
1013 /* all_image_info struct is ABI, in agreement with address width */
1014 if (has_64bit_addr) {
1015 struct user64_dyld_all_image_infos task_image_infos = {};
1016 struct btinfo_sc_load_info64 sc_info;
1017 (void)copyin((user_addr_t)task_get_all_image_info_addr(task), &task_image_infos,
1018 sizeof(struct user64_dyld_all_image_infos));
1019 uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount;
1020 uuid_info_addr = task_image_infos.uuidArray;
1021
1022 sc_info.sharedCacheSlide = task_image_infos.sharedCacheSlide;
1023 sc_info.sharedCacheBaseAddress = task_image_infos.sharedCacheBaseAddress;
1024 memcpy(&sc_info.sharedCacheUUID, &task_image_infos.sharedCacheUUID,
1025 sizeof(task_image_infos.sharedCacheUUID));
1026
1027 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata,
1028 TASK_BTINFO_SC_LOADINFO64, sizeof(sc_info), &kaddr)) {
1029 kcdata_memcpy(kcdata, kaddr, &sc_info, sizeof(sc_info));
1030 }
1031 } else {
1032 struct user32_dyld_all_image_infos task_image_infos = {};
1033 struct btinfo_sc_load_info sc_info;
1034 (void)copyin((user_addr_t)task_get_all_image_info_addr(task), &task_image_infos,
1035 sizeof(struct user32_dyld_all_image_infos));
1036 uuid_info_count = task_image_infos.uuidArrayCount;
1037 uuid_info_addr = task_image_infos.uuidArray;
1038
1039 sc_info.sharedCacheSlide = task_image_infos.sharedCacheSlide;
1040 sc_info.sharedCacheBaseAddress = task_image_infos.sharedCacheBaseAddress;
1041 memcpy(&sc_info.sharedCacheUUID, &task_image_infos.sharedCacheUUID,
1042 sizeof(task_image_infos.sharedCacheUUID));
1043
1044 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata,
1045 TASK_BTINFO_SC_LOADINFO, sizeof(sc_info), &kaddr)) {
1046 kcdata_memcpy(kcdata, kaddr, &sc_info, sizeof(sc_info));
1047 }
1048 }
1049
1050 if (!uuid_info_addr) {
1051 /*
1052 * Can happen when we catch dyld in the middle of updating
1053 * this data structure, or copyin of all_image_info struct failed.
1054 */
1055 task_resume_internal(task);
1056 thread_clear_exec_promotion(current_thread());
1057 kfree_data(btdata_kernel, alloc_size);
1058 kcdata_memory_destroy(kcdata);
1059 return KERN_MEMORY_ERROR;
1060 }
1061
1062 if (uuid_info_count > 0) {
1063 uint32_t uuid_info_size = (uint32_t)(has_64bit_addr ?
1064 sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info));
1065
1066 if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata,
1067 (has_64bit_addr ? TASK_BTINFO_DYLD_LOADINFO64 : TASK_BTINFO_DYLD_LOADINFO),
1068 uuid_info_size, uuid_info_count, &kaddr)) {
1069 if (copyin((user_addr_t)uuid_info_addr, (void *)kaddr, uuid_info_size * uuid_info_count)) {
1070 task_resume_internal(task);
1071 thread_clear_exec_promotion(current_thread());
1072 kfree_data(btdata_kernel, alloc_size);
1073 kcdata_memory_destroy(kcdata);
1074 return KERN_MEMORY_ERROR;
1075 }
1076 }
1077 }
1078
1079 task_resume_internal(task);
1080 thread_clear_exec_promotion(current_thread());
1081
1082 /* Next, collect all other information */
1083 thread_flavor_t tsflavor;
1084 mach_msg_type_number_t tscount;
1085
1086 #if defined(__x86_64__) || defined(__i386__)
1087 tsflavor = x86_THREAD_STATE; /* unified */
1088 tscount = x86_THREAD_STATE_COUNT;
1089 #else
1090 tsflavor = ARM_THREAD_STATE; /* unified */
1091 tscount = ARM_UNIFIED_THREAD_STATE_COUNT;
1092 #endif
1093
1094 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_STATE,
1095 sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount, &kaddr)) {
1096 struct btinfo_thread_state_data_t *bt_thread_state = (struct btinfo_thread_state_data_t *)kaddr;
1097 bt_thread_state->flavor = tsflavor;
1098 bt_thread_state->count = tscount;
1099 /* variable-sized tstate array follows */
1100
1101 kr = thread_getstatus_to_user(current_thread(), bt_thread_state->flavor,
1102 (thread_state_t)&bt_thread_state->tstate, &bt_thread_state->count, TSSF_FLAGS_NONE);
1103 if (kr != KERN_SUCCESS) {
1104 bzero((void *)kaddr, sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount);
1105 if (kr == KERN_TERMINATED) {
1106 btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED;
1107 }
1108 }
1109 }
1110
1111 #if defined(__x86_64__) || defined(__i386__)
1112 tsflavor = x86_EXCEPTION_STATE; /* unified */
1113 tscount = x86_EXCEPTION_STATE_COUNT;
1114 #else
1115 #if defined(__arm64__)
1116 if (has_64bit_data) {
1117 tsflavor = ARM_EXCEPTION_STATE64;
1118 tscount = ARM_EXCEPTION_STATE64_COUNT;
1119 } else
1120 #endif /* defined(__arm64__) */
1121 {
1122 tsflavor = ARM_EXCEPTION_STATE;
1123 tscount = ARM_EXCEPTION_STATE_COUNT;
1124 }
1125 #endif /* defined(__x86_64__) || defined(__i386__) */
1126
1127 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_EXCEPTION_STATE,
1128 sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount, &kaddr)) {
1129 struct btinfo_thread_state_data_t *bt_thread_state = (struct btinfo_thread_state_data_t *)kaddr;
1130 bt_thread_state->flavor = tsflavor;
1131 bt_thread_state->count = tscount;
1132 /* variable-sized tstate array follows */
1133
1134 kr = thread_getstatus_to_user(current_thread(), bt_thread_state->flavor,
1135 (thread_state_t)&bt_thread_state->tstate, &bt_thread_state->count, TSSF_FLAGS_NONE);
1136 if (kr != KERN_SUCCESS) {
1137 bzero((void *)kaddr, sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount);
1138 if (kr == KERN_TERMINATED) {
1139 btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED;
1140 }
1141 }
1142 }
1143
1144 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PID, sizeof(pid_t), &kaddr)) {
1145 pid_t pid = proc_getpid(p);
1146 kcdata_memcpy(kcdata, kaddr, &pid, sizeof(pid));
1147 }
1148
1149 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PPID, sizeof(p->p_ppid), &kaddr)) {
1150 kcdata_memcpy(kcdata, kaddr, &p->p_ppid, sizeof(p->p_ppid));
1151 }
1152
1153 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PROC_NAME, sizeof(p->p_comm), &kaddr)) {
1154 kcdata_memcpy(kcdata, kaddr, &p->p_comm, sizeof(p->p_comm));
1155 }
1156
1157 #if CONFIG_COALITIONS
1158 if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata, TASK_BTINFO_COALITION_ID, sizeof(uint64_t), COALITION_NUM_TYPES, &kaddr)) {
1159 uint64_t coalition_ids[COALITION_NUM_TYPES];
1160 task_coalition_ids(proc_task(p), coalition_ids);
1161 kcdata_memcpy(kcdata, kaddr, coalition_ids, sizeof(coalition_ids));
1162 }
1163 #endif /* CONFIG_COALITIONS */
1164
1165 /* V0 is sufficient for ReportCrash */
1166 gather_rusage_info(current_proc(), &rup.ri, RUSAGE_INFO_V0);
1167 rup.ri.ri_phys_footprint = 0;
1168 /* Soft crash, proc did not exit */
1169 rup.ri.ri_proc_exit_abstime = 0;
1170 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_RUSAGE_INFO, sizeof(struct rusage_info_v0), &kaddr)) {
1171 kcdata_memcpy(kcdata, kaddr, &rup.ri, sizeof(struct rusage_info_v0));
1172 }
1173
1174 platform = proc_platform(current_proc());
1175 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PLATFORM, sizeof(platform), &kaddr)) {
1176 kcdata_memcpy(kcdata, kaddr, &platform, sizeof(platform));
1177 }
1178
1179 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PROC_PATH, MAXPATHLEN, &kaddr)) {
1180 char *buf = zalloc_flags(ZV_NAMEI, Z_WAITOK | Z_ZERO);
1181 proc_pidpathinfo_internal(p, 0, buf, MAXPATHLEN, NULL);
1182 kcdata_memcpy(kcdata, kaddr, buf, MAXPATHLEN);
1183 zfree(ZV_NAMEI, buf);
1184 }
1185
1186 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_UID, sizeof(p->p_uid), &kaddr)) {
1187 kcdata_memcpy(kcdata, kaddr, &p->p_uid, sizeof(p->p_uid));
1188 }
1189
1190 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_GID, sizeof(p->p_gid), &kaddr)) {
1191 kcdata_memcpy(kcdata, kaddr, &p->p_gid, sizeof(p->p_gid));
1192 }
1193
1194 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PROC_FLAGS, sizeof(unsigned int), &kaddr)) {
1195 unsigned int pflags = p->p_flag & (P_LP64 | P_SUGID | P_TRANSLATED);
1196 kcdata_memcpy(kcdata, kaddr, &pflags, sizeof(pflags));
1197 }
1198
1199 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_CPUTYPE, sizeof(cpu_type_t), &kaddr)) {
1200 cpu_type_t cputype = cpu_type() & ~CPU_ARCH_MASK;
1201 if (has_64bit_addr) {
1202 cputype |= CPU_ARCH_ABI64;
1203 } else if (has_64bit_data) {
1204 cputype |= CPU_ARCH_ABI64_32;
1205 }
1206 kcdata_memcpy(kcdata, kaddr, &cputype, sizeof(cpu_type_t));
1207 }
1208
1209 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_EXCEPTION_TYPE, sizeof(etype), &kaddr)) {
1210 kcdata_memcpy(kcdata, kaddr, &etype, sizeof(etype));
1211 }
1212
1213 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_CRASH_COUNT, sizeof(int), &kaddr)) {
1214 kcdata_memcpy(kcdata, kaddr, &p->p_crash_count, sizeof(int));
1215 }
1216
1217 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THROTTLE_TIMEOUT, sizeof(int), &kaddr)) {
1218 kcdata_memcpy(kcdata, kaddr, &p->p_throttle_timeout, sizeof(int));
1219 }
1220
1221 assert(codeCnt <= EXCEPTION_CODE_MAX);
1222
1223 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_EXCEPTION_CODES,
1224 sizeof(mach_exception_code_t) * codeCnt, &kaddr)) {
1225 kcdata_memcpy(kcdata, kaddr, code, sizeof(mach_exception_code_t) * codeCnt);
1226 }
1227
1228 if (reason != OS_REASON_NULL) {
1229 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, EXIT_REASON_SNAPSHOT, sizeof(struct exit_reason_snapshot), &kaddr)) {
1230 struct exit_reason_snapshot ers = {
1231 .ers_namespace = reason->osr_namespace,
1232 .ers_code = reason->osr_code,
1233 .ers_flags = reason->osr_flags
1234 };
1235
1236 kcdata_memcpy(kcdata, kaddr, &ers, sizeof(ers));
1237 }
1238
1239 if (reason->osr_kcd_buf != 0) {
1240 uint32_t reason_buf_size = (uint32_t)kcdata_memory_get_used_bytes(&reason->osr_kcd_descriptor);
1241 assert(reason_buf_size != 0);
1242
1243 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, KCDATA_TYPE_NESTED_KCDATA, reason_buf_size, &kaddr)) {
1244 kcdata_memcpy(kcdata, kaddr, reason->osr_kcd_buf, reason_buf_size);
1245 }
1246 }
1247 }
1248
1249 threadname[0] = '\0';
1250 if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_NAME,
1251 sizeof(threadname), &kaddr)) {
1252 bsd_getthreadname(get_bsdthread_info(current_thread()), threadname);
1253 kcdata_memcpy(kcdata, kaddr, threadname, sizeof(threadname));
1254 }
1255
1256 kr = thread_info(current_thread(), THREAD_IDENTIFIER_INFO, (thread_info_t)&th_info, &th_info_count);
1257 if (kr == KERN_TERMINATED) {
1258 btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED;
1259 }
1260
1261
1262 kern_return_t last_kr = kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_ID,
1263 sizeof(uint64_t), &kaddr);
1264
1265 /*
1266 * If the last kcdata_get_memory_addr() failed (unlikely), signal to exception
1267 * handler (ReportCrash) that lw corpse collection ran out of space and the
1268 * result is incomplete.
1269 */
1270 if (last_kr != KERN_SUCCESS) {
1271 btinfo_flag |= TASK_BTINFO_FLAG_KCDATA_INCOMPLETE;
1272 }
1273
1274 if (KERN_SUCCESS == kr && KERN_SUCCESS == last_kr) {
1275 kcdata_memcpy(kcdata, kaddr, &th_info.thread_id, sizeof(uint64_t));
1276 }
1277
1278 /* Lastly, copy the flags to the address we reserved at the beginning. */
1279 kcdata_memcpy(kcdata, btinfo_flag_addr, &btinfo_flag, sizeof(uint32_t));
1280
1281 *new_desc = kcdata;
1282
1283 return KERN_SUCCESS;
1284 }
1285
1286 /*
1287 * We only parse exit reason kcdata blobs for critical process before they die
1288 * and we're going to panic or for opt-in, limited diagnostic tools.
1289 *
1290 * Meant to be called immediately before panicking or limited diagnostic
1291 * scenarios.
1292 */
1293 char *
exit_reason_get_string_desc(os_reason_t exit_reason)1294 exit_reason_get_string_desc(os_reason_t exit_reason)
1295 {
1296 kcdata_iter_t iter;
1297
1298 if (exit_reason == OS_REASON_NULL || exit_reason->osr_kcd_buf == NULL ||
1299 exit_reason->osr_bufsize == 0) {
1300 return NULL;
1301 }
1302
1303 iter = kcdata_iter(exit_reason->osr_kcd_buf, exit_reason->osr_bufsize);
1304 if (!kcdata_iter_valid(iter)) {
1305 #if DEBUG || DEVELOPMENT
1306 printf("exit reason has invalid exit reason buffer\n");
1307 #endif
1308 return NULL;
1309 }
1310
1311 if (kcdata_iter_type(iter) != KCDATA_BUFFER_BEGIN_OS_REASON) {
1312 #if DEBUG || DEVELOPMENT
1313 printf("exit reason buffer type mismatch, expected %d got %d\n",
1314 KCDATA_BUFFER_BEGIN_OS_REASON, kcdata_iter_type(iter));
1315 #endif
1316 return NULL;
1317 }
1318
1319 iter = kcdata_iter_find_type(iter, EXIT_REASON_USER_DESC);
1320 if (!kcdata_iter_valid(iter)) {
1321 return NULL;
1322 }
1323
1324 return (char *)kcdata_iter_payload(iter);
1325 }
1326
1327 static int initproc_spawned = 0;
1328
1329 static int
sysctl_initproc_spawned(struct sysctl_oid * oidp,__unused void * arg1,__unused int arg2,struct sysctl_req * req)1330 sysctl_initproc_spawned(struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
1331 {
1332 if (req->newptr != 0 && (proc_getpid(req->p) != 1 || initproc_spawned != 0)) {
1333 // Can only ever be set by launchd, and only once at boot
1334 return EPERM;
1335 }
1336 return sysctl_handle_int(oidp, &initproc_spawned, 0, req);
1337 }
1338
1339 SYSCTL_PROC(_kern, OID_AUTO, initproc_spawned,
1340 CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_INT | CTLFLAG_LOCKED, 0, 0,
1341 sysctl_initproc_spawned, "I", "Boolean indicator that launchd has reached main");
1342
1343 #if DEVELOPMENT || DEBUG
1344
1345 /* disable user faults */
1346 static TUNABLE(bool, bootarg_disable_user_faults, "-disable_user_faults", false);
1347 #endif /* DEVELOPMENT || DEBUG */
1348
1349 #define OS_REASON_IFLAG_USER_FAULT 0x1
1350
1351 #define OS_REASON_TOTAL_USER_FAULTS_PER_PROC 5
1352
1353 static int
abort_with_payload_internal(proc_t p,uint32_t reason_namespace,uint64_t reason_code,user_addr_t payload,uint32_t payload_size,user_addr_t reason_string,uint64_t reason_flags,uint32_t internal_flags)1354 abort_with_payload_internal(proc_t p,
1355 uint32_t reason_namespace, uint64_t reason_code,
1356 user_addr_t payload, uint32_t payload_size,
1357 user_addr_t reason_string, uint64_t reason_flags,
1358 uint32_t internal_flags)
1359 {
1360 os_reason_t exit_reason = OS_REASON_NULL;
1361 kern_return_t kr = KERN_SUCCESS;
1362
1363 if (internal_flags & OS_REASON_IFLAG_USER_FAULT) {
1364 uint32_t old_value = atomic_load_explicit(&p->p_user_faults,
1365 memory_order_relaxed);
1366
1367 #if DEVELOPMENT || DEBUG
1368 if (bootarg_disable_user_faults) {
1369 return EQFULL;
1370 }
1371 #endif /* DEVELOPMENT || DEBUG */
1372
1373 for (;;) {
1374 if (old_value >= OS_REASON_TOTAL_USER_FAULTS_PER_PROC) {
1375 return EQFULL;
1376 }
1377 // this reloads the value in old_value
1378 if (atomic_compare_exchange_strong_explicit(&p->p_user_faults,
1379 &old_value, old_value + 1, memory_order_relaxed,
1380 memory_order_relaxed)) {
1381 break;
1382 }
1383 }
1384 }
1385
1386 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1387 proc_getpid(p), reason_namespace,
1388 reason_code, 0, 0);
1389
1390 exit_reason = build_userspace_exit_reason(reason_namespace, reason_code,
1391 payload, payload_size, reason_string, reason_flags | OS_REASON_FLAG_ABORT);
1392
1393 if (internal_flags & OS_REASON_IFLAG_USER_FAULT) {
1394 mach_exception_code_t code = 0;
1395
1396 EXC_GUARD_ENCODE_TYPE(code, GUARD_TYPE_USER); /* simulated EXC_GUARD */
1397 EXC_GUARD_ENCODE_FLAVOR(code, 0);
1398 EXC_GUARD_ENCODE_TARGET(code, reason_namespace);
1399
1400 if (exit_reason == OS_REASON_NULL) {
1401 kr = KERN_RESOURCE_SHORTAGE;
1402 } else {
1403 kr = task_violated_guard(code, reason_code, exit_reason, TRUE);
1404 }
1405 os_reason_free(exit_reason);
1406 } else {
1407 /*
1408 * We use SIGABRT (rather than calling exit directly from here) so that
1409 * the debugger can catch abort_with_{reason,payload} calls.
1410 */
1411 psignal_try_thread_with_reason(p, current_thread(), SIGABRT, exit_reason);
1412 }
1413
1414 switch (kr) {
1415 case KERN_SUCCESS:
1416 return 0;
1417 case KERN_NOT_SUPPORTED:
1418 return ENOTSUP;
1419 case KERN_INVALID_ARGUMENT:
1420 return EINVAL;
1421 case KERN_RESOURCE_SHORTAGE:
1422 default:
1423 return EBUSY;
1424 }
1425 }
1426
1427 int
abort_with_payload(struct proc * cur_proc,struct abort_with_payload_args * args,__unused void * retval)1428 abort_with_payload(struct proc *cur_proc, struct abort_with_payload_args *args,
1429 __unused void *retval)
1430 {
1431 abort_with_payload_internal(cur_proc, args->reason_namespace,
1432 args->reason_code, args->payload, args->payload_size,
1433 args->reason_string, args->reason_flags, 0);
1434
1435 return 0;
1436 }
1437
1438 int
os_fault_with_payload(struct proc * cur_proc,struct os_fault_with_payload_args * args,__unused int * retval)1439 os_fault_with_payload(struct proc *cur_proc,
1440 struct os_fault_with_payload_args *args, __unused int *retval)
1441 {
1442 return abort_with_payload_internal(cur_proc, args->reason_namespace,
1443 args->reason_code, args->payload, args->payload_size,
1444 args->reason_string, args->reason_flags, OS_REASON_IFLAG_USER_FAULT);
1445 }
1446
1447
1448 /*
1449 * exit --
1450 * Death of process.
1451 */
1452 __attribute__((noreturn))
1453 void
exit(proc_t p,struct exit_args * uap,int * retval)1454 exit(proc_t p, struct exit_args *uap, int *retval)
1455 {
1456 p->p_xhighbits = ((uint32_t)(uap->rval) & 0xFF000000) >> 24;
1457 exit1(p, W_EXITCODE((uint32_t)uap->rval, 0), retval);
1458
1459 thread_exception_return();
1460 /* NOTREACHED */
1461 while (TRUE) {
1462 thread_block(THREAD_CONTINUE_NULL);
1463 }
1464 /* NOTREACHED */
1465 }
1466
1467 /*
1468 * Exit: deallocate address space and other resources, change proc state
1469 * to zombie, and unlink proc from allproc and parent's lists. Save exit
1470 * status and rusage for wait(). Check for child processes and orphan them.
1471 */
1472 int
exit1(proc_t p,int rv,int * retval)1473 exit1(proc_t p, int rv, int *retval)
1474 {
1475 return exit1_internal(p, rv, retval, FALSE, TRUE, 0);
1476 }
1477
1478 int
exit1_internal(proc_t p,int rv,int * retval,boolean_t thread_can_terminate,boolean_t perf_notify,int jetsam_flags)1479 exit1_internal(proc_t p, int rv, int *retval, boolean_t thread_can_terminate, boolean_t perf_notify,
1480 int jetsam_flags)
1481 {
1482 return exit_with_reason(p, rv, retval, thread_can_terminate, perf_notify, jetsam_flags, OS_REASON_NULL);
1483 }
1484
1485 /*
1486 * NOTE: exit_with_reason drops a reference on the passed exit_reason
1487 */
1488 int
exit_with_reason(proc_t p,int rv,int * retval,boolean_t thread_can_terminate,boolean_t perf_notify,int jetsam_flags,struct os_reason * exit_reason)1489 exit_with_reason(proc_t p, int rv, int *retval, boolean_t thread_can_terminate, boolean_t perf_notify,
1490 int jetsam_flags, struct os_reason *exit_reason)
1491 {
1492 thread_t self = current_thread();
1493 struct task *task = proc_task(p);
1494 struct uthread *ut;
1495 int error = 0;
1496 bool proc_exiting = false;
1497
1498 #if DEVELOPMENT || DEBUG
1499 /*
1500 * Debug boot-arg: panic here if matching process is exiting with non-zero code.
1501 * Example usage: panic_on_error_exit=launchd,logd,watchdogd
1502 */
1503 if (rv && strnstr(panic_on_eexit_pcomms, p->p_comm, sizeof(panic_on_eexit_pcomms))) {
1504 panic("%s: Process %s with pid %d exited on error with code 0x%x.",
1505 __FUNCTION__, p->p_comm, proc_getpid(p), rv);
1506 }
1507 #endif
1508
1509 /*
1510 * If a thread in this task has already
1511 * called exit(), then halt any others
1512 * right here.
1513 */
1514
1515 ut = get_bsdthread_info(self);
1516 (void)retval;
1517
1518 /*
1519 * The parameter list of audit_syscall_exit() was augmented to
1520 * take the Darwin syscall number as the first parameter,
1521 * which is currently required by mac_audit_postselect().
1522 */
1523
1524 /*
1525 * The BSM token contains two components: an exit status as passed
1526 * to exit(), and a return value to indicate what sort of exit it
1527 * was. The exit status is WEXITSTATUS(rv), but it's not clear
1528 * what the return value is.
1529 */
1530 AUDIT_ARG(exit, WEXITSTATUS(rv), 0);
1531 /*
1532 * TODO: what to audit here when jetsam calls exit and the uthread,
1533 * 'ut' does not belong to the proc, 'p'.
1534 */
1535 AUDIT_SYSCALL_EXIT(SYS_exit, p, ut, 0); /* Exit is always successfull */
1536
1537 DTRACE_PROC1(exit, int, CLD_EXITED);
1538
1539 /* mark process is going to exit and pull out of DBG/disk throttle */
1540 /* TODO: This should be done after becoming exit thread */
1541 proc_set_task_policy(proc_task(p), TASK_POLICY_ATTRIBUTE,
1542 TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE);
1543
1544 proc_lock(p);
1545 error = proc_transstart(p, 1, (jetsam_flags ? 1 : 0));
1546 if (error == EDEADLK) {
1547 /*
1548 * If proc_transstart() returns EDEADLK, then another thread
1549 * is either exec'ing or exiting. Return an error and allow
1550 * the other thread to continue.
1551 */
1552 proc_unlock(p);
1553 os_reason_free(exit_reason);
1554 if (current_proc() == p) {
1555 if (p->exit_thread == self) {
1556 panic("exit_thread failed to exit");
1557 }
1558
1559 if (thread_can_terminate) {
1560 thread_exception_return();
1561 }
1562 }
1563
1564 return error;
1565 }
1566
1567 proc_exiting = !!(p->p_lflag & P_LEXIT);
1568
1569 while (proc_exiting || p->exit_thread != self) {
1570 if (proc_exiting || sig_try_locked(p) <= 0) {
1571 proc_transend(p, 1);
1572 os_reason_free(exit_reason);
1573
1574 if (get_threadtask(self) != task) {
1575 proc_unlock(p);
1576 return 0;
1577 }
1578 proc_unlock(p);
1579
1580 thread_terminate(self);
1581 if (!thread_can_terminate) {
1582 return 0;
1583 }
1584
1585 thread_exception_return();
1586 /* NOTREACHED */
1587 }
1588 sig_lock_to_exit(p);
1589 }
1590
1591 if (exit_reason != OS_REASON_NULL) {
1592 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_COMMIT) | DBG_FUNC_NONE,
1593 proc_getpid(p), exit_reason->osr_namespace,
1594 exit_reason->osr_code, 0, 0);
1595 }
1596
1597 assert(p->p_exit_reason == OS_REASON_NULL);
1598 p->p_exit_reason = exit_reason;
1599
1600 p->p_lflag |= P_LEXIT;
1601 p->p_xstat = rv;
1602 p->p_lflag |= jetsam_flags;
1603
1604 proc_transend(p, 1);
1605 proc_unlock(p);
1606
1607 proc_prepareexit(p, rv, perf_notify);
1608
1609 /* Last thread to terminate will call proc_exit() */
1610 task_terminate_internal(task);
1611
1612 return 0;
1613 }
1614
1615 #if CONFIG_MEMORYSTATUS
1616 /*
1617 * Remove this process from jetsam bands for freezing or exiting. Note this will block, if the process
1618 * is currently being frozen.
1619 * The proc_list_lock is held by the caller.
1620 * NB: If the process should be ineligible for future freezing or jetsaming the caller should first set
1621 * the p_refcount P_REF_DEAD bit.
1622 */
1623 static void
proc_memorystatus_remove(proc_t p)1624 proc_memorystatus_remove(proc_t p)
1625 {
1626 LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
1627 while (memorystatus_remove(p) == EAGAIN) {
1628 os_log(OS_LOG_DEFAULT, "memorystatus_remove: Process[%d] tried to exit while being frozen. Blocking exit until freeze completes.", proc_getpid(p));
1629 msleep(&p->p_memstat_state, &proc_list_mlock, PWAIT, "proc_memorystatus_remove", NULL);
1630 }
1631 }
1632 #endif
1633
1634 #if DEVELOPMENT
1635 boolean_t crash_behavior_test_mode = FALSE;
1636 boolean_t crash_behavior_test_would_panic = FALSE;
1637 SYSCTL_UINT(_kern, OID_AUTO, crash_behavior_test_mode, CTLFLAG_RW, &crash_behavior_test_mode, 0, "");
1638 SYSCTL_UINT(_kern, OID_AUTO, crash_behavior_test_would_panic, CTLFLAG_RW, &crash_behavior_test_would_panic, 0, "");
1639 #endif /* DEVELOPMENT */
1640
1641 static bool
_proc_is_crashing_signal(int sig)1642 _proc_is_crashing_signal(int sig)
1643 {
1644 bool result = false;
1645 switch (sig) {
1646 case SIGILL:
1647 case SIGABRT:
1648 case SIGFPE:
1649 case SIGBUS:
1650 case SIGSEGV:
1651 case SIGSYS:
1652 /*
1653 * If SIGTRAP is the terminating signal, then we can safely assume the
1654 * process crashed. (On iOS, SIGTRAP will be the terminating signal when
1655 * a process calls __builtin_trap(), which will abort.)
1656 */
1657 case SIGTRAP:
1658 result = true;
1659 }
1660
1661 return result;
1662 }
1663
1664 static bool
_proc_is_fatal_reason(os_reason_t reason)1665 _proc_is_fatal_reason(os_reason_t reason)
1666 {
1667 if ((reason->osr_flags & OS_REASON_FLAG_ABORT) != 0) {
1668 /* Abort is always fatal even if there is no crash report generated */
1669 return true;
1670 }
1671 if ((reason->osr_flags & OS_REASON_FLAG_NO_CRASH_REPORT) != 0) {
1672 /*
1673 * No crash report means this reason shouldn't be considered fatal
1674 * unless we are in test mode
1675 */
1676 #if DEVELOPMENT
1677 if (crash_behavior_test_mode) {
1678 return true;
1679 }
1680 #endif /* DEVELOPMENT */
1681 return false;
1682 }
1683 // By default all OS_REASON are fatal
1684 return true;
1685 }
1686
1687 static TUNABLE(bool, panic_on_crash_disabled, "panic_on_crash_disabled", false);
1688
1689 static bool
proc_should_trigger_panic(proc_t p,int rv)1690 proc_should_trigger_panic(proc_t p, int rv)
1691 {
1692 if (p == initproc) {
1693 /* Always panic for launchd */
1694 return true;
1695 }
1696
1697 if (panic_on_crash_disabled) {
1698 printf("panic-on-crash disabled via boot-arg\n");
1699 return false;
1700 }
1701
1702 if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_EXIT) != 0) {
1703 return true;
1704 }
1705
1706 if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_SPAWN_FAIL) != 0) {
1707 return true;
1708 }
1709
1710 if (p->p_posix_spawn_failed) {
1711 /* posix_spawn failures normally don't qualify for panics */
1712 return false;
1713 }
1714
1715 bool deadline_expired = (mach_continuous_time() > p->p_crash_behavior_deadline);
1716 if (p->p_crash_behavior_deadline != 0 && deadline_expired) {
1717 return false;
1718 }
1719
1720 if (WIFEXITED(rv)) {
1721 int code = WEXITSTATUS(rv);
1722
1723 if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_NON_ZERO_EXIT) != 0) {
1724 if (code == 0) {
1725 /* No panic if we exit 0 */
1726 return false;
1727 } else {
1728 /* Panic on non-zero exit */
1729 return true;
1730 }
1731 } else {
1732 /* No panic on normal exit if the process doesn't have the non-zero flag set */
1733 return false;
1734 }
1735 } else if (WIFSIGNALED(rv)) {
1736 int signal = WTERMSIG(rv);
1737 /* This is a crash (non-normal exit) */
1738 if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_CRASH) != 0) {
1739 os_reason_t reason = p->p_exit_reason;
1740 if (reason != OS_REASON_NULL) {
1741 if (!_proc_is_fatal_reason(reason)) {
1742 // Skip non-fatal terminate_with_reason
1743 return false;
1744 }
1745 if (reason->osr_namespace == OS_REASON_SIGNAL) {
1746 /*
1747 * OS_REASON_SIGNAL delivers as a SIGKILL with the actual signal
1748 * in osr_code, so we should check that signal here
1749 */
1750 return _proc_is_crashing_signal((int)reason->osr_code);
1751 } else {
1752 /*
1753 * This branch covers the case of terminate_with_reason which
1754 * delivers a SIGTERM which is still considered a crash even
1755 * thought the signal is not considered a crashing signal
1756 */
1757 return true;
1758 }
1759 }
1760 return _proc_is_crashing_signal(signal);
1761 } else {
1762 return false;
1763 }
1764 } else {
1765 /*
1766 * This branch implies that we didn't exit normally nor did we receive
1767 * a signal. This should be unreachable.
1768 */
1769 return true;
1770 }
1771 }
1772
1773 static void
proc_crash_coredump(proc_t p)1774 proc_crash_coredump(proc_t p)
1775 {
1776 (void)p;
1777 #if (DEVELOPMENT || DEBUG) && CONFIG_COREDUMP
1778 /*
1779 * For debugging purposes, generate a core file of initproc before
1780 * panicking. Leave at least 300 MB free on the root volume, and ignore
1781 * the process's corefile ulimit. fsync() the file to ensure it lands on disk
1782 * before the panic hits.
1783 */
1784
1785 int err;
1786 uint64_t coredump_start = mach_absolute_time();
1787 uint64_t coredump_end;
1788 clock_sec_t tv_sec;
1789 clock_usec_t tv_usec;
1790 uint32_t tv_msec;
1791
1792
1793 err = coredump(p, 300, COREDUMP_IGNORE_ULIMIT | COREDUMP_FULLFSYNC);
1794
1795 coredump_end = mach_absolute_time();
1796
1797 absolutetime_to_microtime(coredump_end - coredump_start, &tv_sec, &tv_usec);
1798
1799 tv_msec = tv_usec / 1000;
1800
1801 if (err != 0) {
1802 printf("Failed to generate core file for pid: %d: error %d, took %d.%03d seconds\n",
1803 proc_getpid(p), err, (uint32_t)tv_sec, tv_msec);
1804 } else {
1805 printf("Generated core file for pid: %d in %d.%03d seconds\n",
1806 proc_getpid(p), (uint32_t)tv_sec, tv_msec);
1807 }
1808 #endif /* (DEVELOPMENT || DEBUG) && CONFIG_COREDUMP */
1809 }
1810
1811 static void
proc_handle_critical_exit(proc_t p,int rv)1812 proc_handle_critical_exit(proc_t p, int rv)
1813 {
1814 if (!proc_should_trigger_panic(p, rv)) {
1815 // No panic, bail out
1816 return;
1817 }
1818
1819 #if DEVELOPMENT
1820 if (crash_behavior_test_mode) {
1821 crash_behavior_test_would_panic = TRUE;
1822 // Force test mode off after hitting a panic
1823 crash_behavior_test_mode = FALSE;
1824 return;
1825 }
1826 #endif /* DEVELOPMENT */
1827
1828 char *exit_reason_desc = exit_reason_get_string_desc(p->p_exit_reason);
1829
1830 if (p->p_exit_reason == OS_REASON_NULL) {
1831 printf("pid %d exited -- no exit reason available -- (signal %d, exit %d)\n",
1832 proc_getpid(p), WTERMSIG(rv), WEXITSTATUS(rv));
1833 } else {
1834 printf("pid %d exited -- exit reason namespace %d subcode 0x%llx, description %s\n", proc_getpid(p),
1835 p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code, exit_reason_desc ?
1836 exit_reason_desc : "none");
1837 }
1838
1839 const char *prefix_str;
1840 char prefix_str_buf[128];
1841
1842 if (p == initproc) {
1843 if (strnstr(p->p_name, "preinit", sizeof(p->p_name))) {
1844 prefix_str = "LTE preinit process exited";
1845 } else if (initproc_spawned) {
1846 prefix_str = "initproc exited";
1847 } else {
1848 prefix_str = "initproc failed to start";
1849 }
1850 } else {
1851 /* For processes that aren't launchd, just use the process name and pid */
1852 snprintf(prefix_str_buf, sizeof(prefix_str_buf), "%s[%d] exited", p->p_name, proc_getpid(p));
1853 prefix_str = prefix_str_buf;
1854 }
1855
1856 proc_crash_coredump(p);
1857
1858 sync(p, (void *)NULL, (int *)NULL);
1859 const uint64_t panic_options_mask = DEBUGGER_OPTION_INITPROC_PANIC | DEBUGGER_OPTION_USERSPACE_INITIATED_PANIC;
1860
1861 if (p->p_exit_reason == OS_REASON_NULL) {
1862 panic_with_options(0, NULL, panic_options_mask, "%s -- no exit reason available -- (signal %d, exit status %d %s)",
1863 prefix_str, WTERMSIG(rv), WEXITSTATUS(rv), ((proc_getcsflags(p) & CS_KILLED) ? "CS_KILLED" : ""));
1864 } else {
1865 panic_with_options(0, NULL, panic_options_mask, "%s %s -- exit reason namespace %d subcode 0x%llx description: %." LAUNCHD_PANIC_REASON_STRING_MAXLEN "s",
1866 ((proc_getcsflags(p) & CS_KILLED) ? "CS_KILLED" : ""),
1867 prefix_str, p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code,
1868 exit_reason_desc ? exit_reason_desc : "none");
1869 }
1870 }
1871
1872 void
proc_prepareexit(proc_t p,int rv,boolean_t perf_notify)1873 proc_prepareexit(proc_t p, int rv, boolean_t perf_notify)
1874 {
1875 mach_exception_data_type_t code = 0, subcode = 0;
1876 exception_type_t etype;
1877
1878 struct uthread *ut;
1879 thread_t self = current_thread();
1880 ut = get_bsdthread_info(self);
1881 struct rusage_superset *rup;
1882 int kr = 0;
1883 int create_corpse = FALSE;
1884 bool corpse_source = false;
1885 task_t task = proc_task(p);
1886
1887
1888 if (p->p_crash_behavior != 0 || p == initproc) {
1889 proc_handle_critical_exit(p, rv);
1890 }
1891
1892 if (task) {
1893 corpse_source = vm_map_is_corpse_source(get_task_map(task));
1894 }
1895
1896 /*
1897 * Generate a corefile/crashlog if:
1898 * The process doesn't have an exit reason that indicates no crash report should be created
1899 * AND any of the following are true:
1900 * - The process was terminated due to a fatal signal that generates a core
1901 * - The process was killed due to a code signing violation
1902 * - The process has an exit reason that indicates we should generate a crash report
1903 *
1904 * The first condition is necessary because abort_with_reason()/payload() use SIGABRT
1905 * (which normally triggers a core) but may indicate that no crash report should be created.
1906 */
1907 if (!(PROC_HAS_EXITREASON(p) && (PROC_EXITREASON_FLAGS(p) & OS_REASON_FLAG_NO_CRASH_REPORT)) &&
1908 (hassigprop(WTERMSIG(rv), SA_CORE) || ((proc_getcsflags(p) & CS_KILLED) != 0) ||
1909 (PROC_HAS_EXITREASON(p) && (PROC_EXITREASON_FLAGS(p) &
1910 OS_REASON_FLAG_GENERATE_CRASH_REPORT)))) {
1911 /*
1912 * Workaround for processes checking up on PT_DENY_ATTACH:
1913 * should be backed out post-Leopard (details in 5431025).
1914 */
1915 if ((SIGSEGV == WTERMSIG(rv)) &&
1916 (p->p_pptr->p_lflag & P_LNOATTACH)) {
1917 goto skipcheck;
1918 }
1919
1920 /*
1921 * Crash Reporter looks for the signal value, original exception
1922 * type, and low 20 bits of the original code in code[0]
1923 * (8, 4, and 20 bits respectively). code[1] is unmodified.
1924 */
1925 code = ((WTERMSIG(rv) & 0xff) << 24) |
1926 ((ut->uu_exception & 0x0f) << 20) |
1927 ((int)ut->uu_code & 0xfffff);
1928 subcode = ut->uu_subcode;
1929 etype = ut->uu_exception;
1930
1931 /* Defualt to EXC_CRASH if the exception is not an EXC_RESOURCE or EXC_GUARD */
1932 if (etype != EXC_RESOURCE || etype != EXC_GUARD) {
1933 etype = EXC_CRASH;
1934 }
1935
1936 #if (DEVELOPMENT || DEBUG)
1937 if (p->p_pid <= exception_log_max_pid) {
1938 const char *proc_name = proc_best_name(p);
1939 if (PROC_HAS_EXITREASON(p)) {
1940 record_system_event(SYSTEM_EVENT_TYPE_INFO, SYSTEM_EVENT_SUBSYSTEM_PROCESS, "process exit",
1941 "pid: %d -- process name: %s -- exit reason namespace: %d -- subcode: 0x%llx -- description: %s",
1942 proc_getpid(p), proc_name, p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code,
1943 exit_reason_get_string_desc(p->p_exit_reason));
1944 } else {
1945 record_system_event(SYSTEM_EVENT_TYPE_INFO, SYSTEM_EVENT_SUBSYSTEM_PROCESS, "process exit",
1946 "pid: %d -- process name: %s -- exit status %d",
1947 proc_getpid(p), proc_name, WEXITSTATUS(rv));
1948 }
1949 }
1950 #endif
1951 const bool fatal = false;
1952 kr = task_exception_notify(EXC_CRASH, code, subcode, fatal);
1953 /* Nobody handled EXC_CRASH?? remember to make corpse */
1954 if ((kr != 0 || corpse_source) && p == current_proc()) {
1955 /*
1956 * Do not create corpse when exit is called from jetsam thread.
1957 * Corpse creation code requires that proc_prepareexit is
1958 * called by the exiting proc and not the kernel_proc.
1959 */
1960 create_corpse = TRUE;
1961 }
1962
1963 /*
1964 * Revalidate the code signing of the text pages around current PC.
1965 * This is an attempt to detect and repair faults due to memory
1966 * corruption of text pages.
1967 *
1968 * The goal here is to fixup infrequent memory corruptions due to
1969 * things like aging RAM bit flips. So the approach is to only expect
1970 * to have to fixup one thing per crash. This also limits the amount
1971 * of extra work we cause in case this is a development kernel with an
1972 * active memory stomp happening.
1973 */
1974 uintptr_t bt[2];
1975 struct backtrace_user_info btinfo = BTUINFO_INIT;
1976 unsigned int frame_count = backtrace_user(bt, 2, NULL, &btinfo);
1977 int bt_err = btinfo.btui_error;
1978 if (bt_err == 0 && frame_count >= 1) {
1979 /*
1980 * First check at the page containing the current PC.
1981 * This passes if the page code signs -or- if we can't figure out
1982 * what is at that address. The latter action is so we continue checking
1983 * previous pages which may be corrupt and caused a wild branch.
1984 */
1985 kr = revalidate_text_page(task, bt[0]);
1986
1987 /* No corruption found, check the previous sequential page */
1988 if (kr == KERN_SUCCESS) {
1989 kr = revalidate_text_page(task, bt[0] - get_task_page_size(task));
1990 }
1991
1992 /* Still no corruption found, check the current function's caller */
1993 if (kr == KERN_SUCCESS) {
1994 if (frame_count > 1 &&
1995 atop(bt[0]) != atop(bt[1]) && /* don't recheck PC page */
1996 atop(bt[0]) - 1 != atop(bt[1])) { /* don't recheck page before */
1997 kr = revalidate_text_page(task, (vm_map_offset_t)bt[1]);
1998 }
1999 }
2000
2001 /*
2002 * Log that we found a corruption.
2003 */
2004 if (kr != KERN_SUCCESS) {
2005 os_log(OS_LOG_DEFAULT,
2006 "Text page corruption detected in dying process %d\n", proc_getpid(p));
2007 }
2008 }
2009 }
2010
2011 skipcheck:
2012 if (task_is_driver(task) && PROC_HAS_EXITREASON(p)) {
2013 IOUserServerRecordExitReason(task, p->p_exit_reason);
2014 }
2015
2016 /* Notify the perf server? */
2017 if (perf_notify) {
2018 (void)sys_perf_notify(self, proc_getpid(p));
2019 }
2020
2021
2022 /* stash the usage into corpse data if making_corpse == true */
2023 if (create_corpse == TRUE) {
2024 kr = task_mark_corpse(task);
2025 if (kr != KERN_SUCCESS) {
2026 if (kr == KERN_NO_SPACE) {
2027 printf("Process[%d] has no vm space for corpse info.\n", proc_getpid(p));
2028 } else if (kr == KERN_NOT_SUPPORTED) {
2029 printf("Process[%d] was destined to be corpse. But corpse is disabled by config.\n", proc_getpid(p));
2030 } else if (kr == KERN_TERMINATED) {
2031 printf("Process[%d] has been terminated before it could be converted to a corpse.\n", proc_getpid(p));
2032 } else {
2033 printf("Process[%d] crashed: %s. Too many corpses being created.\n", proc_getpid(p), p->p_comm);
2034 }
2035 create_corpse = FALSE;
2036 }
2037 }
2038
2039 if (corpse_source && !create_corpse) {
2040 /* vm_map was marked for corpse, but we decided to not create one, unmark the vmmap */
2041 vm_map_unset_corpse_source(get_task_map(task));
2042 }
2043
2044 if (!proc_is_shadow(p)) {
2045 /*
2046 * Before this process becomes a zombie, stash resource usage
2047 * stats in the proc for external observers to query
2048 * via proc_pid_rusage().
2049 *
2050 * If the zombie allocation fails, just punt the stats.
2051 */
2052 rup = zalloc(zombie_zone);
2053 gather_rusage_info(p, &rup->ri, RUSAGE_INFO_CURRENT);
2054 rup->ri.ri_phys_footprint = 0;
2055 rup->ri.ri_proc_exit_abstime = mach_absolute_time();
2056 /*
2057 * Make the rusage_info visible to external observers
2058 * only after it has been completely filled in.
2059 */
2060 p->p_ru = rup;
2061 }
2062
2063 if (create_corpse) {
2064 int est_knotes = 0, num_knotes = 0;
2065 uint64_t *buffer = NULL;
2066 uint32_t buf_size = 0;
2067
2068 /* Get all the udata pointers from kqueue */
2069 est_knotes = kevent_proc_copy_uptrs(p, NULL, 0);
2070 if (est_knotes > 0) {
2071 buf_size = (uint32_t)((est_knotes + 32) * sizeof(uint64_t));
2072 buffer = kalloc_data(buf_size, Z_WAITOK);
2073 if (buffer) {
2074 num_knotes = kevent_proc_copy_uptrs(p, buffer, buf_size);
2075 if (num_knotes > est_knotes + 32) {
2076 num_knotes = est_knotes + 32;
2077 }
2078 }
2079 }
2080
2081 /* Update the code, subcode based on exit reason */
2082 proc_update_corpse_exception_codes(p, &code, &subcode);
2083 populate_corpse_crashinfo(p, task, rup,
2084 code, subcode, buffer, num_knotes, NULL, etype);
2085 kfree_data(buffer, buf_size);
2086 }
2087 /*
2088 * Remove proc from allproc queue and from pidhash chain.
2089 * Need to do this before we do anything that can block.
2090 * Not doing causes things like mount() find this on allproc
2091 * in partially cleaned state.
2092 */
2093
2094 proc_list_lock();
2095
2096 #if CONFIG_MEMORYSTATUS
2097 proc_memorystatus_remove(p);
2098 #endif
2099
2100 LIST_REMOVE(p, p_list);
2101 LIST_INSERT_HEAD(&zombproc, p, p_list); /* Place onto zombproc. */
2102 /* will not be visible via proc_find */
2103 os_atomic_or(&p->p_refcount, P_REF_DEAD, relaxed);
2104
2105 proc_list_unlock();
2106
2107 /*
2108 * If parent is waiting for us to exit or exec,
2109 * P_LPPWAIT is set; we will wakeup the parent below.
2110 */
2111 proc_lock(p);
2112 p->p_lflag &= ~(P_LTRACED | P_LPPWAIT);
2113 p->p_sigignore = ~(sigcantmask);
2114
2115 /*
2116 * If a thread is already waiting for us in proc_exit,
2117 * P_LTERM is set, wakeup the thread.
2118 */
2119 if (p->p_lflag & P_LTERM) {
2120 wakeup(&p->exit_thread);
2121 } else {
2122 p->p_lflag |= P_LTERM;
2123 }
2124
2125 /* If current proc is exiting, ignore signals on the exit thread */
2126 if (p == current_proc()) {
2127 ut->uu_siglist = 0;
2128 }
2129 proc_unlock(p);
2130 }
2131
2132 void
proc_exit(proc_t p)2133 proc_exit(proc_t p)
2134 {
2135 proc_t q;
2136 proc_t pp;
2137 struct task *task = proc_task(p);
2138 vnode_t tvp = NULLVP;
2139 struct pgrp * pg;
2140 struct session *sessp;
2141 struct uthread * uth;
2142 pid_t pid;
2143 int exitval;
2144 int knote_hint;
2145
2146 uth = current_uthread();
2147
2148 proc_lock(p);
2149 proc_transstart(p, 1, 0);
2150 if (!(p->p_lflag & P_LEXIT)) {
2151 /*
2152 * This can happen if a thread_terminate() occurs
2153 * in a single-threaded process.
2154 */
2155 p->p_lflag |= P_LEXIT;
2156 proc_transend(p, 1);
2157 proc_unlock(p);
2158 proc_prepareexit(p, 0, TRUE);
2159 (void) task_terminate_internal(task);
2160 proc_lock(p);
2161 } else if (!(p->p_lflag & P_LTERM)) {
2162 proc_transend(p, 1);
2163 /* Jetsam is in middle of calling proc_prepareexit, wait for it */
2164 p->p_lflag |= P_LTERM;
2165 msleep(&p->exit_thread, &p->p_mlock, PWAIT, "proc_prepareexit_wait", NULL);
2166 } else {
2167 proc_transend(p, 1);
2168 }
2169
2170 p->p_lflag |= P_LPEXIT;
2171
2172 /*
2173 * Other kernel threads may be in the middle of signalling this process.
2174 * Wait for those threads to wrap it up before making the process
2175 * disappear on them.
2176 */
2177 if ((p->p_lflag & P_LINSIGNAL) || (p->p_sigwaitcnt > 0)) {
2178 p->p_sigwaitcnt++;
2179 while ((p->p_lflag & P_LINSIGNAL) || (p->p_sigwaitcnt > 1)) {
2180 msleep(&p->p_sigmask, &p->p_mlock, PWAIT, "proc_sigdrain", NULL);
2181 }
2182 p->p_sigwaitcnt--;
2183 }
2184
2185 proc_unlock(p);
2186 pid = proc_getpid(p);
2187 exitval = p->p_xstat;
2188 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
2189 BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_START,
2190 pid, exitval, 0, 0, 0);
2191
2192 #if DEVELOPMENT || DEBUG
2193 proc_exit_lpexit_check(pid, PELS_POS_START);
2194 #endif
2195
2196 #if CONFIG_DTRACE
2197 dtrace_proc_exit(p);
2198 #endif
2199
2200 proc_refdrain(p);
2201 /* We now have unique ref to the proc */
2202
2203 /* if any pending cpu limits action, clear it */
2204 task_clear_cpuusage(proc_task(p), TRUE);
2205
2206 workq_mark_exiting(p);
2207
2208 /*
2209 * need to cancel async IO requests that can be cancelled and wait for those
2210 * already active. MAY BLOCK!
2211 */
2212 _aio_exit( p );
2213
2214 /*
2215 * Close open files and release open-file table.
2216 * This may block!
2217 */
2218 fdt_invalidate(p);
2219
2220 /*
2221 * Once all the knotes, kqueues & workloops are destroyed, get rid of the
2222 * workqueue.
2223 */
2224 workq_exit(p);
2225
2226 if (uth->uu_lowpri_window) {
2227 /*
2228 * task is marked as a low priority I/O type
2229 * and the I/O we issued while in flushing files on close
2230 * collided with normal I/O operations...
2231 * no need to throttle this thread since its going away
2232 * but we do need to update our bookeeping w/r to throttled threads
2233 */
2234 throttle_lowpri_io(0);
2235 }
2236
2237 if (p->p_lflag & P_LNSPACE_RESOLVER) {
2238 /*
2239 * The namespace resolver is exiting; there may be
2240 * outstanding materialization requests to clean up.
2241 */
2242 nspace_resolver_exited(p);
2243 }
2244
2245 #if SYSV_SHM
2246 /* Close ref SYSV Shared memory*/
2247 if (p->vm_shm) {
2248 shmexit(p);
2249 }
2250 #endif
2251 #if SYSV_SEM
2252 /* Release SYSV semaphores */
2253 semexit(p);
2254 #endif
2255
2256 #if PSYNCH
2257 pth_proc_hashdelete(p);
2258 #endif /* PSYNCH */
2259
2260 pg = proc_pgrp(p, &sessp);
2261 if (SESS_LEADER(p, sessp)) {
2262 if (sessp->s_ttyvp != NULLVP) {
2263 struct vnode *ttyvp;
2264 int ttyvid;
2265 int cttyflag = 0;
2266 struct vfs_context context;
2267 struct tty *tp;
2268 struct pgrp *tpgrp = PGRP_NULL;
2269
2270 /*
2271 * Controlling process.
2272 * Signal foreground pgrp,
2273 * drain controlling terminal
2274 * and revoke access to controlling terminal.
2275 */
2276
2277 proc_list_lock(); /* prevent any t_pgrp from changing */
2278 session_lock(sessp);
2279 if (sessp->s_ttyp && sessp->s_ttyp->t_session == sessp) {
2280 tpgrp = tty_pgrp_locked(sessp->s_ttyp);
2281 }
2282 proc_list_unlock();
2283
2284 if (tpgrp != PGRP_NULL) {
2285 session_unlock(sessp);
2286 pgsignal(tpgrp, SIGHUP, 1);
2287 pgrp_rele(tpgrp);
2288 session_lock(sessp);
2289 }
2290
2291 cttyflag = (os_atomic_andnot_orig(&sessp->s_refcount,
2292 S_CTTYREF, relaxed) & S_CTTYREF);
2293 ttyvp = sessp->s_ttyvp;
2294 ttyvid = sessp->s_ttyvid;
2295 tp = session_clear_tty_locked(sessp);
2296 if (ttyvp) {
2297 vnode_hold(ttyvp);
2298 }
2299 session_unlock(sessp);
2300
2301 if ((ttyvp != NULLVP) && (vnode_getwithvid(ttyvp, ttyvid) == 0)) {
2302 if (tp != TTY_NULL) {
2303 tty_lock(tp);
2304 (void) ttywait(tp);
2305 tty_unlock(tp);
2306 }
2307
2308 context.vc_thread = NULL;
2309 context.vc_ucred = kauth_cred_proc_ref(p);
2310 VNOP_REVOKE(ttyvp, REVOKEALL, &context);
2311 if (cttyflag) {
2312 /*
2313 * Release the extra usecount taken in cttyopen.
2314 * usecount should be released after VNOP_REVOKE is called.
2315 * This usecount was taken to ensure that
2316 * the VNOP_REVOKE results in a close to
2317 * the tty since cttyclose is a no-op.
2318 */
2319 vnode_rele(ttyvp);
2320 }
2321 vnode_put(ttyvp);
2322 kauth_cred_unref(&context.vc_ucred);
2323 vnode_drop(ttyvp);
2324 ttyvp = NULLVP;
2325 }
2326 if (ttyvp) {
2327 vnode_drop(ttyvp);
2328 }
2329 if (tp) {
2330 ttyfree(tp);
2331 }
2332 }
2333 session_lock(sessp);
2334 sessp->s_leader = NULL;
2335 session_unlock(sessp);
2336 }
2337
2338 if (!proc_is_shadow(p)) {
2339 fixjobc(p, pg, 0);
2340 }
2341 pgrp_rele(pg);
2342
2343 /*
2344 * Change RLIMIT_FSIZE for accounting/debugging.
2345 */
2346 proc_limitsetcur_fsize(p, RLIM_INFINITY);
2347
2348 (void)acct_process(p);
2349
2350 proc_list_lock();
2351
2352 if ((p->p_listflag & P_LIST_EXITCOUNT) == P_LIST_EXITCOUNT) {
2353 p->p_listflag &= ~P_LIST_EXITCOUNT;
2354 proc_shutdown_exitcount--;
2355 if (proc_shutdown_exitcount == 0) {
2356 wakeup(&proc_shutdown_exitcount);
2357 }
2358 }
2359
2360 /* wait till parentrefs are dropped and grant no more */
2361 proc_childdrainstart(p);
2362 while ((q = p->p_children.lh_first) != NULL) {
2363 if (q->p_stat == SZOMB) {
2364 if (p != q->p_pptr) {
2365 panic("parent child linkage broken");
2366 }
2367 /* check for sysctl zomb lookup */
2368 while ((q->p_listflag & P_LIST_WAITING) == P_LIST_WAITING) {
2369 msleep(&q->p_stat, &proc_list_mlock, PWAIT, "waitcoll", 0);
2370 }
2371 q->p_listflag |= P_LIST_WAITING;
2372 /*
2373 * This is a named reference and it is not granted
2374 * if the reap is already in progress. So we get
2375 * the reference here exclusively and their can be
2376 * no waiters. So there is no need for a wakeup
2377 * after we are done. Also the reap frees the structure
2378 * and the proc struct cannot be used for wakeups as well.
2379 * It is safe to use q here as this is system reap
2380 */
2381 reap_flags_t reparent_flags = (q->p_listflag & P_LIST_DEADPARENT) ?
2382 REAP_REPARENTED_TO_INIT : 0;
2383 reap_child_locked(p, q,
2384 REAP_DEAD_PARENT | REAP_LOCKED | reparent_flags);
2385 } else {
2386 /*
2387 * Traced processes are killed
2388 * since their existence means someone is messing up.
2389 */
2390 if (q->p_lflag & P_LTRACED) {
2391 struct proc *opp;
2392
2393 /*
2394 * Take a reference on the child process to
2395 * ensure it doesn't exit and disappear between
2396 * the time we drop the list_lock and attempt
2397 * to acquire its proc_lock.
2398 */
2399 if (proc_ref(q, true) != q) {
2400 continue;
2401 }
2402
2403 proc_list_unlock();
2404
2405 opp = proc_find(q->p_oppid);
2406 if (opp != PROC_NULL) {
2407 proc_list_lock();
2408 q->p_oppid = 0;
2409 proc_list_unlock();
2410 proc_reparentlocked(q, opp, 0, 0);
2411 proc_rele(opp);
2412 } else {
2413 /* original parent exited while traced */
2414 proc_list_lock();
2415 q->p_listflag |= P_LIST_DEADPARENT;
2416 q->p_oppid = 0;
2417 proc_list_unlock();
2418 proc_reparentlocked(q, initproc, 0, 0);
2419 }
2420
2421 proc_lock(q);
2422 q->p_lflag &= ~P_LTRACED;
2423
2424 if (q->sigwait_thread) {
2425 thread_t thread = q->sigwait_thread;
2426
2427 proc_unlock(q);
2428 /*
2429 * The sigwait_thread could be stopped at a
2430 * breakpoint. Wake it up to kill.
2431 * Need to do this as it could be a thread which is not
2432 * the first thread in the task. So any attempts to kill
2433 * the process would result into a deadlock on q->sigwait.
2434 */
2435 thread_resume(thread);
2436 clear_wait(thread, THREAD_INTERRUPTED);
2437 threadsignal(thread, SIGKILL, 0, TRUE);
2438 } else {
2439 proc_unlock(q);
2440 }
2441
2442 psignal(q, SIGKILL);
2443 proc_list_lock();
2444 proc_rele(q);
2445 } else {
2446 q->p_listflag |= P_LIST_DEADPARENT;
2447 proc_reparentlocked(q, initproc, 0, 1);
2448 }
2449 }
2450 }
2451
2452 proc_childdrainend(p);
2453 proc_list_unlock();
2454
2455 #if CONFIG_MACF
2456 if (!proc_is_shadow(p)) {
2457 /*
2458 * Notify MAC policies that proc is dead.
2459 * This should be replaced with proper label management
2460 * (rdar://problem/32126399).
2461 */
2462 mac_proc_notify_exit(p);
2463 }
2464 #endif
2465
2466 /*
2467 * Release reference to text vnode
2468 */
2469 tvp = p->p_textvp;
2470 p->p_textvp = NULL;
2471 if (tvp != NULLVP) {
2472 vnode_rele(tvp);
2473 }
2474
2475 /*
2476 * Save exit status and final rusage info, adding in child rusage
2477 * info and self times. If we were unable to allocate a zombie
2478 * structure, this information is lost.
2479 */
2480 if (p->p_ru != NULL) {
2481 calcru(p, &p->p_stats->p_ru.ru_utime, &p->p_stats->p_ru.ru_stime, NULL);
2482 p->p_ru->ru = p->p_stats->p_ru;
2483
2484 ruadd(&(p->p_ru->ru), &p->p_stats->p_cru);
2485 }
2486
2487 /*
2488 * Free up profiling buffers.
2489 */
2490 {
2491 struct uprof *p0 = &p->p_stats->p_prof, *p1, *pn;
2492
2493 p1 = p0->pr_next;
2494 p0->pr_next = NULL;
2495 p0->pr_scale = 0;
2496
2497 for (; p1 != NULL; p1 = pn) {
2498 pn = p1->pr_next;
2499 kfree_type(struct uprof, p1);
2500 }
2501 }
2502
2503 proc_free_realitimer(p);
2504
2505 /*
2506 * Other substructures are freed from wait().
2507 */
2508 zfree(proc_stats_zone, p->p_stats);
2509 p->p_stats = NULL;
2510
2511 if (p->p_subsystem_root_path) {
2512 zfree(ZV_NAMEI, p->p_subsystem_root_path);
2513 p->p_subsystem_root_path = NULL;
2514 }
2515
2516 proc_limitdrop(p);
2517
2518 #if DEVELOPMENT || DEBUG
2519 proc_exit_lpexit_check(pid, PELS_POS_PRE_TASK_DETACH);
2520 #endif
2521
2522 /*
2523 * Finish up by terminating the task
2524 * and halt this thread (only if a
2525 * member of the task exiting).
2526 */
2527 proc_set_task(p, TASK_NULL);
2528 set_bsdtask_info(task, NULL);
2529 clear_thread_ro_proc(get_machthread(uth));
2530
2531 #if DEVELOPMENT || DEBUG
2532 proc_exit_lpexit_check(pid, PELS_POS_POST_TASK_DETACH);
2533 #endif
2534
2535 knote_hint = NOTE_EXIT | (p->p_xstat & 0xffff);
2536 proc_knote(p, knote_hint);
2537
2538 /* mark the thread as the one that is doing proc_exit
2539 * no need to hold proc lock in uthread_free
2540 */
2541 uth->uu_flag |= UT_PROCEXIT;
2542 /*
2543 * Notify parent that we're gone.
2544 */
2545 pp = proc_parent(p);
2546 if (proc_is_shadow(p)) {
2547 /* kernel can reap this one, no need to move it to launchd */
2548 proc_list_lock();
2549 p->p_listflag |= P_LIST_DEADPARENT;
2550 proc_list_unlock();
2551 } else if (pp->p_flag & P_NOCLDWAIT) {
2552 if (p->p_ru != NULL) {
2553 proc_lock(pp);
2554 #if 3839178
2555 /*
2556 * If the parent is ignoring SIGCHLD, then POSIX requires
2557 * us to not add the resource usage to the parent process -
2558 * we are only going to hand it off to init to get reaped.
2559 * We should contest the standard in this case on the basis
2560 * of RLIMIT_CPU.
2561 */
2562 #else /* !3839178 */
2563 /*
2564 * Add child resource usage to parent before giving
2565 * zombie to init. If we were unable to allocate a
2566 * zombie structure, this information is lost.
2567 */
2568 ruadd(&pp->p_stats->p_cru, &p->p_ru->ru);
2569 #endif /* !3839178 */
2570 update_rusage_info_child(&pp->p_stats->ri_child, &p->p_ru->ri);
2571 proc_unlock(pp);
2572 }
2573
2574 /* kernel can reap this one, no need to move it to launchd */
2575 proc_list_lock();
2576 p->p_listflag |= P_LIST_DEADPARENT;
2577 proc_list_unlock();
2578 }
2579 if (!proc_is_shadow(p) &&
2580 ((p->p_listflag & P_LIST_DEADPARENT) == 0 || p->p_oppid)) {
2581 if (pp != initproc) {
2582 proc_lock(pp);
2583 pp->si_pid = proc_getpid(p);
2584 pp->p_xhighbits = p->p_xhighbits;
2585 p->p_xhighbits = 0;
2586 pp->si_status = p->p_xstat;
2587 pp->si_code = CLD_EXITED;
2588 /*
2589 * p_ucred usage is safe as it is an exiting process
2590 * and reference is dropped in reap
2591 */
2592 pp->si_uid = kauth_cred_getruid(proc_ucred_unsafe(p));
2593 proc_unlock(pp);
2594 }
2595 /* mark as a zombie */
2596 /* No need to take proc lock as all refs are drained and
2597 * no one except parent (reaping ) can look at this.
2598 * The write is to an int and is coherent. Also parent is
2599 * keyed off of list lock for reaping
2600 */
2601 DTRACE_PROC2(exited, proc_t, p, int, exitval);
2602 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
2603 BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_END,
2604 pid, exitval, 0, 0, 0);
2605 p->p_stat = SZOMB;
2606 /*
2607 * The current process can be reaped so, no one
2608 * can depend on this
2609 */
2610
2611 psignal(pp, SIGCHLD);
2612
2613 /* and now wakeup the parent */
2614 proc_list_lock();
2615 wakeup((caddr_t)pp);
2616 proc_list_unlock();
2617 } else {
2618 /* should be fine as parent proc would be initproc */
2619 /* mark as a zombie */
2620 /* No need to take proc lock as all refs are drained and
2621 * no one except parent (reaping ) can look at this.
2622 * The write is to an int and is coherent. Also parent is
2623 * keyed off of list lock for reaping
2624 */
2625 DTRACE_PROC2(exited, proc_t, p, int, exitval);
2626 proc_list_lock();
2627 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
2628 BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_END,
2629 pid, exitval, 0, 0, 0);
2630 /* check for sysctl zomb lookup */
2631 while ((p->p_listflag & P_LIST_WAITING) == P_LIST_WAITING) {
2632 msleep(&p->p_stat, &proc_list_mlock, PWAIT, "waitcoll", 0);
2633 }
2634 /* safe to use p as this is a system reap */
2635 p->p_stat = SZOMB;
2636 p->p_listflag |= P_LIST_WAITING;
2637
2638 /*
2639 * This is a named reference and it is not granted
2640 * if the reap is already in progress. So we get
2641 * the reference here exclusively and their can be
2642 * no waiters. So there is no need for a wakeup
2643 * after we are done. AlsO the reap frees the structure
2644 * and the proc struct cannot be used for wakeups as well.
2645 * It is safe to use p here as this is system reap
2646 */
2647 reap_child_locked(pp, p,
2648 REAP_DEAD_PARENT | REAP_LOCKED | REAP_DROP_LOCK);
2649 }
2650 if (uth->uu_lowpri_window) {
2651 /*
2652 * task is marked as a low priority I/O type and we've
2653 * somehow picked up another throttle during exit processing...
2654 * no need to throttle this thread since its going away
2655 * but we do need to update our bookeeping w/r to throttled threads
2656 */
2657 throttle_lowpri_io(0);
2658 }
2659
2660 proc_rele(pp);
2661 #if DEVELOPMENT || DEBUG
2662 proc_exit_lpexit_check(pid, PELS_POS_END);
2663 #endif
2664 }
2665
2666
2667 /*
2668 * reap_child_locked
2669 *
2670 * Finalize a child exit once its status has been saved.
2671 *
2672 * If ptrace has attached, detach it and return it to its real parent. Free any
2673 * remaining resources.
2674 *
2675 * Parameters:
2676 * - proc_t parent Parent of process being reaped
2677 * - proc_t child Process to reap
2678 * - reap_flags_t flags Control locking and re-parenting behavior
2679 */
2680 static void
reap_child_locked(proc_t parent,proc_t child,reap_flags_t flags)2681 reap_child_locked(proc_t parent, proc_t child, reap_flags_t flags)
2682 {
2683 struct pgrp *pg;
2684 boolean_t shadow_proc = proc_is_shadow(child);
2685
2686 if (flags & REAP_LOCKED) {
2687 proc_list_unlock();
2688 }
2689
2690 /*
2691 * Under ptrace, the child should now be re-parented back to its original
2692 * parent, unless that parent was initproc or it didn't come to initproc
2693 * through re-parenting.
2694 */
2695 bool child_ptraced = child->p_oppid != 0;
2696 if (!shadow_proc && child_ptraced) {
2697 int knote_hint;
2698 pid_t orig_ppid = 0;
2699 proc_t orig_parent = PROC_NULL;
2700
2701 proc_lock(child);
2702 orig_ppid = child->p_oppid;
2703 child->p_oppid = 0;
2704 knote_hint = NOTE_EXIT | (child->p_xstat & 0xffff);
2705 proc_unlock(child);
2706
2707 orig_parent = proc_find(orig_ppid);
2708 if (orig_parent) {
2709 /*
2710 * Only re-parent the process if its original parent was not
2711 * initproc and it did not come to initproc from re-parenting.
2712 */
2713 bool reparenting = orig_parent != initproc ||
2714 (flags & REAP_REPARENTED_TO_INIT) == 0;
2715 if (reparenting) {
2716 if (orig_parent != initproc) {
2717 /*
2718 * Internal fields should be safe to access here because the
2719 * child is exited and not reaped or re-parented yet.
2720 */
2721 proc_lock(orig_parent);
2722 orig_parent->si_pid = proc_getpid(child);
2723 orig_parent->si_status = child->p_xstat;
2724 orig_parent->si_code = CLD_CONTINUED;
2725 orig_parent->si_uid = kauth_cred_getruid(proc_ucred_unsafe(child));
2726 proc_unlock(orig_parent);
2727 }
2728 proc_reparentlocked(child, orig_parent, 1, 0);
2729
2730 /*
2731 * After re-parenting, re-send the child's NOTE_EXIT to the
2732 * original parent.
2733 */
2734 proc_knote(child, knote_hint);
2735 psignal(orig_parent, SIGCHLD);
2736
2737 proc_list_lock();
2738 wakeup((caddr_t)orig_parent);
2739 child->p_listflag &= ~P_LIST_WAITING;
2740 wakeup(&child->p_stat);
2741 proc_list_unlock();
2742
2743 proc_rele(orig_parent);
2744 if ((flags & REAP_LOCKED) && !(flags & REAP_DROP_LOCK)) {
2745 proc_list_lock();
2746 }
2747 return;
2748 } else {
2749 /*
2750 * Satisfy the knote lifecycle because ptraced processes don't
2751 * broadcast NOTE_EXIT during initial child termination.
2752 */
2753 proc_knote(child, knote_hint);
2754 proc_rele(orig_parent);
2755 }
2756 }
2757 }
2758
2759 #pragma clang diagnostic push
2760 #pragma clang diagnostic ignored "-Wdeprecated-declarations"
2761 proc_knote(child, NOTE_REAP);
2762 #pragma clang diagnostic pop
2763
2764 proc_knote_drain(child);
2765
2766 child->p_xstat = 0;
2767 if (!shadow_proc && child->p_ru) {
2768 /*
2769 * Roll up the rusage statistics to the parent, unless the parent is
2770 * ignoring SIGCHLD. POSIX requires the children's resources of such a
2771 * parent to not be included in the parent's usage (seems odd given
2772 * RLIMIT_CPU, though).
2773 */
2774 proc_lock(parent);
2775 bool rollup_child = (parent->p_flag & P_NOCLDWAIT) == 0;
2776 if (rollup_child) {
2777 ruadd(&parent->p_stats->p_cru, &child->p_ru->ru);
2778 }
2779 update_rusage_info_child(&parent->p_stats->ri_child, &child->p_ru->ri);
2780 proc_unlock(parent);
2781 zfree(zombie_zone, child->p_ru);
2782 child->p_ru = NULL;
2783 } else if (!shadow_proc) {
2784 printf("Warning : lost p_ru for %s\n", child->p_comm);
2785 } else {
2786 assert(child->p_ru == NULL);
2787 }
2788
2789 AUDIT_SESSION_PROCEXIT(child);
2790
2791 #if CONFIG_PERSONAS
2792 persona_proc_drop(child);
2793 #endif /* CONFIG_PERSONAS */
2794 /* proc_ucred_unsafe is safe, because child is not running */
2795 (void)chgproccnt(kauth_cred_getruid(proc_ucred_unsafe(child)), -1);
2796
2797 os_reason_free(child->p_exit_reason);
2798
2799 proc_list_lock();
2800
2801 pg = pgrp_leave_locked(child);
2802 LIST_REMOVE(child, p_list);
2803 parent->p_childrencnt--;
2804 LIST_REMOVE(child, p_sibling);
2805 bool no_more_children = (flags & REAP_DEAD_PARENT) &&
2806 LIST_EMPTY(&parent->p_children);
2807 if (no_more_children) {
2808 wakeup((caddr_t)parent);
2809 }
2810 child->p_listflag &= ~P_LIST_WAITING;
2811 wakeup(&child->p_stat);
2812
2813 /* Take it out of process hash */
2814 if (!shadow_proc) {
2815 phash_remove_locked(child);
2816 }
2817 proc_checkdeadrefs(child);
2818 nprocs--;
2819 if (flags & REAP_DEAD_PARENT) {
2820 child->p_listflag |= P_LIST_DEADPARENT;
2821 }
2822
2823 proc_list_unlock();
2824
2825 pgrp_rele(pg);
2826 fdt_destroy(child);
2827 lck_mtx_destroy(&child->p_mlock, &proc_mlock_grp);
2828 lck_mtx_destroy(&child->p_ucred_mlock, &proc_ucred_mlock_grp);
2829 #if CONFIG_AUDIT
2830 lck_mtx_destroy(&child->p_audit_mlock, &proc_ucred_mlock_grp);
2831 #endif /* CONFIG_AUDIT */
2832 #if CONFIG_DTRACE
2833 lck_mtx_destroy(&child->p_dtrace_sprlock, &proc_lck_grp);
2834 #endif
2835 lck_spin_destroy(&child->p_slock, &proc_slock_grp);
2836 proc_wait_release(child);
2837
2838 if ((flags & REAP_LOCKED) && (flags & REAP_DROP_LOCK) == 0) {
2839 proc_list_lock();
2840 }
2841 }
2842
2843 int
wait1continue(int result)2844 wait1continue(int result)
2845 {
2846 proc_t p;
2847 thread_t thread;
2848 uthread_t uth;
2849 struct _wait4_data *wait4_data;
2850 struct wait4_nocancel_args *uap;
2851 int *retval;
2852
2853 if (result) {
2854 return result;
2855 }
2856
2857 p = current_proc();
2858 thread = current_thread();
2859 uth = (struct uthread *)get_bsdthread_info(thread);
2860
2861 wait4_data = &uth->uu_save.uus_wait4_data;
2862 uap = wait4_data->args;
2863 retval = wait4_data->retval;
2864 return wait4_nocancel(p, uap, retval);
2865 }
2866
2867 int
wait4(proc_t q,struct wait4_args * uap,int32_t * retval)2868 wait4(proc_t q, struct wait4_args *uap, int32_t *retval)
2869 {
2870 __pthread_testcancel(1);
2871 return wait4_nocancel(q, (struct wait4_nocancel_args *)uap, retval);
2872 }
2873
2874 int
wait4_nocancel(proc_t q,struct wait4_nocancel_args * uap,int32_t * retval)2875 wait4_nocancel(proc_t q, struct wait4_nocancel_args *uap, int32_t *retval)
2876 {
2877 int nfound;
2878 int sibling_count;
2879 proc_t p;
2880 int status, error;
2881 uthread_t uth;
2882 struct _wait4_data *wait4_data;
2883
2884 AUDIT_ARG(pid, uap->pid);
2885
2886 if (uap->pid == 0) {
2887 uap->pid = -q->p_pgrpid;
2888 }
2889
2890 if (uap->pid == INT_MIN) {
2891 return EINVAL;
2892 }
2893
2894 loop:
2895 proc_list_lock();
2896 loop1:
2897 nfound = 0;
2898 sibling_count = 0;
2899
2900 PCHILDREN_FOREACH(q, p) {
2901 if (p->p_sibling.le_next != 0) {
2902 sibling_count++;
2903 }
2904 if (uap->pid != WAIT_ANY &&
2905 proc_getpid(p) != uap->pid &&
2906 p->p_pgrpid != -(uap->pid)) {
2907 continue;
2908 }
2909
2910 if (proc_is_shadow(p)) {
2911 continue;
2912 }
2913
2914 nfound++;
2915
2916 /* XXX This is racy because we don't get the lock!!!! */
2917
2918 if (p->p_listflag & P_LIST_WAITING) {
2919 /* we're not using a continuation here but we still need to stash
2920 * the args for stackshot. */
2921 uth = current_uthread();
2922 wait4_data = &uth->uu_save.uus_wait4_data;
2923 wait4_data->args = uap;
2924 thread_set_pending_block_hint(current_thread(), kThreadWaitOnProcess);
2925
2926 (void)msleep(&p->p_stat, &proc_list_mlock, PWAIT, "waitcoll", 0);
2927 goto loop1;
2928 }
2929 p->p_listflag |= P_LIST_WAITING; /* only allow single thread to wait() */
2930
2931
2932 if (p->p_stat == SZOMB) {
2933 reap_flags_t reap_flags = (p->p_listflag & P_LIST_DEADPARENT) ?
2934 REAP_REPARENTED_TO_INIT : 0;
2935
2936 proc_list_unlock();
2937 #if CONFIG_MACF
2938 if ((error = mac_proc_check_wait(q, p)) != 0) {
2939 goto out;
2940 }
2941 #endif
2942 retval[0] = proc_getpid(p);
2943 if (uap->status) {
2944 /* Legacy apps expect only 8 bits of status */
2945 status = 0xffff & p->p_xstat; /* convert to int */
2946 error = copyout((caddr_t)&status,
2947 uap->status,
2948 sizeof(status));
2949 if (error) {
2950 goto out;
2951 }
2952 }
2953 if (uap->rusage) {
2954 if (p->p_ru == NULL) {
2955 error = ENOMEM;
2956 } else {
2957 if (IS_64BIT_PROCESS(q)) {
2958 struct user64_rusage my_rusage = {};
2959 munge_user64_rusage(&p->p_ru->ru, &my_rusage);
2960 error = copyout((caddr_t)&my_rusage,
2961 uap->rusage,
2962 sizeof(my_rusage));
2963 } else {
2964 struct user32_rusage my_rusage = {};
2965 munge_user32_rusage(&p->p_ru->ru, &my_rusage);
2966 error = copyout((caddr_t)&my_rusage,
2967 uap->rusage,
2968 sizeof(my_rusage));
2969 }
2970 }
2971 /* information unavailable? */
2972 if (error) {
2973 goto out;
2974 }
2975 }
2976
2977 /* Conformance change for 6577252.
2978 * When SIGCHLD is blocked and wait() returns because the status
2979 * of a child process is available and there are no other
2980 * children processes, then any pending SIGCHLD signal is cleared.
2981 */
2982 if (sibling_count == 0) {
2983 int mask = sigmask(SIGCHLD);
2984 uth = current_uthread();
2985
2986 if ((uth->uu_sigmask & mask) != 0) {
2987 /* we are blocking SIGCHLD signals. clear any pending SIGCHLD.
2988 * This locking looks funny but it is protecting access to the
2989 * thread via p_uthlist.
2990 */
2991 proc_lock(q);
2992 uth->uu_siglist &= ~mask; /* clear pending signal */
2993 proc_unlock(q);
2994 }
2995 }
2996
2997 /* Clean up */
2998 (void)reap_child_locked(q, p, reap_flags);
2999
3000 return 0;
3001 }
3002 if (p->p_stat == SSTOP && (p->p_lflag & P_LWAITED) == 0 &&
3003 (p->p_lflag & P_LTRACED || uap->options & WUNTRACED)) {
3004 proc_list_unlock();
3005 #if CONFIG_MACF
3006 if ((error = mac_proc_check_wait(q, p)) != 0) {
3007 goto out;
3008 }
3009 #endif
3010 proc_lock(p);
3011 p->p_lflag |= P_LWAITED;
3012 proc_unlock(p);
3013 retval[0] = proc_getpid(p);
3014 if (uap->status) {
3015 status = W_STOPCODE(p->p_xstat);
3016 error = copyout((caddr_t)&status,
3017 uap->status,
3018 sizeof(status));
3019 } else {
3020 error = 0;
3021 }
3022 goto out;
3023 }
3024 /*
3025 * If we are waiting for continued processses, and this
3026 * process was continued
3027 */
3028 if ((uap->options & WCONTINUED) &&
3029 (p->p_flag & P_CONTINUED)) {
3030 proc_list_unlock();
3031 #if CONFIG_MACF
3032 if ((error = mac_proc_check_wait(q, p)) != 0) {
3033 goto out;
3034 }
3035 #endif
3036
3037 /* Prevent other process for waiting for this event */
3038 OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag);
3039 retval[0] = proc_getpid(p);
3040 if (uap->status) {
3041 status = W_STOPCODE(SIGCONT);
3042 error = copyout((caddr_t)&status,
3043 uap->status,
3044 sizeof(status));
3045 } else {
3046 error = 0;
3047 }
3048 goto out;
3049 }
3050 p->p_listflag &= ~P_LIST_WAITING;
3051 wakeup(&p->p_stat);
3052 }
3053 /* list lock is held when we get here any which way */
3054 if (nfound == 0) {
3055 proc_list_unlock();
3056 return ECHILD;
3057 }
3058
3059 if (uap->options & WNOHANG) {
3060 retval[0] = 0;
3061 proc_list_unlock();
3062 return 0;
3063 }
3064
3065 /* Save arguments for continuation. Backing storage is in uthread->uu_arg, and will not be deallocated */
3066 uth = current_uthread();
3067 wait4_data = &uth->uu_save.uus_wait4_data;
3068 wait4_data->args = uap;
3069 wait4_data->retval = retval;
3070
3071 thread_set_pending_block_hint(current_thread(), kThreadWaitOnProcess);
3072 if ((error = msleep0((caddr_t)q, &proc_list_mlock, PWAIT | PCATCH | PDROP, "wait", 0, wait1continue))) {
3073 return error;
3074 }
3075
3076 goto loop;
3077 out:
3078 proc_list_lock();
3079 p->p_listflag &= ~P_LIST_WAITING;
3080 wakeup(&p->p_stat);
3081 proc_list_unlock();
3082 return error;
3083 }
3084
3085 #if DEBUG
3086 #define ASSERT_LCK_MTX_OWNED(lock) \
3087 lck_mtx_assert(lock, LCK_MTX_ASSERT_OWNED)
3088 #else
3089 #define ASSERT_LCK_MTX_OWNED(lock) /* nothing */
3090 #endif
3091
3092 int
waitidcontinue(int result)3093 waitidcontinue(int result)
3094 {
3095 proc_t p;
3096 thread_t thread;
3097 uthread_t uth;
3098 struct _waitid_data *waitid_data;
3099 struct waitid_nocancel_args *uap;
3100 int *retval;
3101
3102 if (result) {
3103 return result;
3104 }
3105
3106 p = current_proc();
3107 thread = current_thread();
3108 uth = (struct uthread *)get_bsdthread_info(thread);
3109
3110 waitid_data = &uth->uu_save.uus_waitid_data;
3111 uap = waitid_data->args;
3112 retval = waitid_data->retval;
3113 return waitid_nocancel(p, uap, retval);
3114 }
3115
3116 /*
3117 * Description: Suspend the calling thread until one child of the process
3118 * containing the calling thread changes state.
3119 *
3120 * Parameters: uap->idtype one of P_PID, P_PGID, P_ALL
3121 * uap->id pid_t or gid_t or ignored
3122 * uap->infop Address of siginfo_t struct in
3123 * user space into which to return status
3124 * uap->options flag values
3125 *
3126 * Returns: 0 Success
3127 * !0 Error returning status to user space
3128 */
3129 int
waitid(proc_t q,struct waitid_args * uap,int32_t * retval)3130 waitid(proc_t q, struct waitid_args *uap, int32_t *retval)
3131 {
3132 __pthread_testcancel(1);
3133 return waitid_nocancel(q, (struct waitid_nocancel_args *)uap, retval);
3134 }
3135
3136 int
waitid_nocancel(proc_t q,struct waitid_nocancel_args * uap,__unused int32_t * retval)3137 waitid_nocancel(proc_t q, struct waitid_nocancel_args *uap,
3138 __unused int32_t *retval)
3139 {
3140 user_siginfo_t siginfo; /* siginfo data to return to caller */
3141 boolean_t caller64 = IS_64BIT_PROCESS(q);
3142 int nfound;
3143 proc_t p;
3144 int error;
3145 uthread_t uth;
3146 struct _waitid_data *waitid_data;
3147
3148 if (uap->options == 0 ||
3149 (uap->options & ~(WNOHANG | WNOWAIT | WCONTINUED | WSTOPPED | WEXITED))) {
3150 return EINVAL; /* bits set that aren't recognized */
3151 }
3152 switch (uap->idtype) {
3153 case P_PID: /* child with process ID equal to... */
3154 case P_PGID: /* child with process group ID equal to... */
3155 if (((int)uap->id) < 0) {
3156 return EINVAL;
3157 }
3158 break;
3159 case P_ALL: /* any child */
3160 break;
3161 }
3162
3163 loop:
3164 proc_list_lock();
3165 loop1:
3166 nfound = 0;
3167
3168 PCHILDREN_FOREACH(q, p) {
3169 switch (uap->idtype) {
3170 case P_PID: /* child with process ID equal to... */
3171 if (proc_getpid(p) != (pid_t)uap->id) {
3172 continue;
3173 }
3174 break;
3175 case P_PGID: /* child with process group ID equal to... */
3176 if (p->p_pgrpid != (pid_t)uap->id) {
3177 continue;
3178 }
3179 break;
3180 case P_ALL: /* any child */
3181 break;
3182 }
3183
3184 if (proc_is_shadow(p)) {
3185 continue;
3186 }
3187 /* XXX This is racy because we don't get the lock!!!! */
3188
3189 /*
3190 * Wait collision; go to sleep and restart; used to maintain
3191 * the single return for waited process guarantee.
3192 */
3193 if (p->p_listflag & P_LIST_WAITING) {
3194 (void) msleep(&p->p_stat, &proc_list_mlock,
3195 PWAIT, "waitidcoll", 0);
3196 goto loop1;
3197 }
3198 p->p_listflag |= P_LIST_WAITING; /* mark busy */
3199
3200 nfound++;
3201
3202 bzero(&siginfo, sizeof(siginfo));
3203
3204 switch (p->p_stat) {
3205 case SZOMB: /* Exited */
3206 if (!(uap->options & WEXITED)) {
3207 break;
3208 }
3209 proc_list_unlock();
3210 #if CONFIG_MACF
3211 if ((error = mac_proc_check_wait(q, p)) != 0) {
3212 goto out;
3213 }
3214 #endif
3215 siginfo.si_signo = SIGCHLD;
3216 siginfo.si_pid = proc_getpid(p);
3217
3218 /* If the child terminated abnormally due to a signal, the signum
3219 * needs to be preserved in the exit status.
3220 */
3221 if (WIFSIGNALED(p->p_xstat)) {
3222 siginfo.si_code = WCOREDUMP(p->p_xstat) ?
3223 CLD_DUMPED : CLD_KILLED;
3224 siginfo.si_status = WTERMSIG(p->p_xstat);
3225 } else {
3226 siginfo.si_code = CLD_EXITED;
3227 siginfo.si_status = WEXITSTATUS(p->p_xstat) & 0x00FFFFFF;
3228 }
3229 siginfo.si_status |= (((uint32_t)(p->p_xhighbits) << 24) & 0xFF000000);
3230 p->p_xhighbits = 0;
3231
3232 if ((error = copyoutsiginfo(&siginfo,
3233 caller64, uap->infop)) != 0) {
3234 goto out;
3235 }
3236
3237 /* Prevent other process for waiting for this event? */
3238 if (!(uap->options & WNOWAIT)) {
3239 reap_child_locked(q, p, 0);
3240 return 0;
3241 }
3242 goto out;
3243
3244 case SSTOP: /* Stopped */
3245 /*
3246 * If we are not interested in stopped processes, then
3247 * ignore this one.
3248 */
3249 if (!(uap->options & WSTOPPED)) {
3250 break;
3251 }
3252
3253 /*
3254 * If someone has already waited it, we lost a race
3255 * to be the one to return status.
3256 */
3257 if ((p->p_lflag & P_LWAITED) != 0) {
3258 break;
3259 }
3260 proc_list_unlock();
3261 #if CONFIG_MACF
3262 if ((error = mac_proc_check_wait(q, p)) != 0) {
3263 goto out;
3264 }
3265 #endif
3266 siginfo.si_signo = SIGCHLD;
3267 siginfo.si_pid = proc_getpid(p);
3268 siginfo.si_status = p->p_xstat; /* signal number */
3269 siginfo.si_code = CLD_STOPPED;
3270
3271 if ((error = copyoutsiginfo(&siginfo,
3272 caller64, uap->infop)) != 0) {
3273 goto out;
3274 }
3275
3276 /* Prevent other process for waiting for this event? */
3277 if (!(uap->options & WNOWAIT)) {
3278 proc_lock(p);
3279 p->p_lflag |= P_LWAITED;
3280 proc_unlock(p);
3281 }
3282 goto out;
3283
3284 default: /* All other states => Continued */
3285 if (!(uap->options & WCONTINUED)) {
3286 break;
3287 }
3288
3289 /*
3290 * If the flag isn't set, then this process has not
3291 * been stopped and continued, or the status has
3292 * already been reaped by another caller of waitid().
3293 */
3294 if ((p->p_flag & P_CONTINUED) == 0) {
3295 break;
3296 }
3297 proc_list_unlock();
3298 #if CONFIG_MACF
3299 if ((error = mac_proc_check_wait(q, p)) != 0) {
3300 goto out;
3301 }
3302 #endif
3303 siginfo.si_signo = SIGCHLD;
3304 siginfo.si_code = CLD_CONTINUED;
3305 proc_lock(p);
3306 siginfo.si_pid = p->p_contproc;
3307 siginfo.si_status = p->p_xstat;
3308 proc_unlock(p);
3309
3310 if ((error = copyoutsiginfo(&siginfo,
3311 caller64, uap->infop)) != 0) {
3312 goto out;
3313 }
3314
3315 /* Prevent other process for waiting for this event? */
3316 if (!(uap->options & WNOWAIT)) {
3317 OSBitAndAtomic(~((uint32_t)P_CONTINUED),
3318 &p->p_flag);
3319 }
3320 goto out;
3321 }
3322 ASSERT_LCK_MTX_OWNED(&proc_list_mlock);
3323
3324 /* Not a process we are interested in; go on to next child */
3325
3326 p->p_listflag &= ~P_LIST_WAITING;
3327 wakeup(&p->p_stat);
3328 }
3329 ASSERT_LCK_MTX_OWNED(&proc_list_mlock);
3330
3331 /* No child processes that could possibly satisfy the request? */
3332
3333 if (nfound == 0) {
3334 proc_list_unlock();
3335 return ECHILD;
3336 }
3337
3338 if (uap->options & WNOHANG) {
3339 proc_list_unlock();
3340 #if CONFIG_MACF
3341 if ((error = mac_proc_check_wait(q, p)) != 0) {
3342 return error;
3343 }
3344 #endif
3345 /*
3346 * The state of the siginfo structure in this case
3347 * is undefined. Some implementations bzero it, some
3348 * (like here) leave it untouched for efficiency.
3349 *
3350 * Thus the most portable check for "no matching pid with
3351 * WNOHANG" is to store a zero into si_pid before
3352 * invocation, then check for a non-zero value afterwards.
3353 */
3354 return 0;
3355 }
3356
3357 /* Save arguments for continuation. Backing storage is in uthread->uu_arg, and will not be deallocated */
3358 uth = current_uthread();
3359 waitid_data = &uth->uu_save.uus_waitid_data;
3360 waitid_data->args = uap;
3361 waitid_data->retval = retval;
3362
3363 if ((error = msleep0(q, &proc_list_mlock,
3364 PWAIT | PCATCH | PDROP, "waitid", 0, waitidcontinue)) != 0) {
3365 return error;
3366 }
3367
3368 goto loop;
3369 out:
3370 proc_list_lock();
3371 p->p_listflag &= ~P_LIST_WAITING;
3372 wakeup(&p->p_stat);
3373 proc_list_unlock();
3374 return error;
3375 }
3376
3377 /*
3378 * make process 'parent' the new parent of process 'child'.
3379 */
3380 void
proc_reparentlocked(proc_t child,proc_t parent,int signallable,int locked)3381 proc_reparentlocked(proc_t child, proc_t parent, int signallable, int locked)
3382 {
3383 proc_t oldparent = PROC_NULL;
3384
3385 if (child->p_pptr == parent) {
3386 return;
3387 }
3388
3389 if (locked == 0) {
3390 proc_list_lock();
3391 }
3392
3393 oldparent = child->p_pptr;
3394 #if __PROC_INTERNAL_DEBUG
3395 if (oldparent == PROC_NULL) {
3396 panic("proc_reparent: process %p does not have a parent", child);
3397 }
3398 #endif
3399
3400 LIST_REMOVE(child, p_sibling);
3401 #if __PROC_INTERNAL_DEBUG
3402 if (oldparent->p_childrencnt == 0) {
3403 panic("process children count already 0");
3404 }
3405 #endif
3406 oldparent->p_childrencnt--;
3407 #if __PROC_INTERNAL_DEBUG
3408 if (oldparent->p_childrencnt < 0) {
3409 panic("process children count -ve");
3410 }
3411 #endif
3412 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
3413 parent->p_childrencnt++;
3414 child->p_pptr = parent;
3415 child->p_ppid = proc_getpid(parent);
3416
3417 proc_list_unlock();
3418
3419 if ((signallable != 0) && (initproc == parent) && (child->p_stat == SZOMB)) {
3420 psignal(initproc, SIGCHLD);
3421 }
3422 if (locked == 1) {
3423 proc_list_lock();
3424 }
3425 }
3426
3427 /*
3428 * Exit: deallocate address space and other resources, change proc state
3429 * to zombie, and unlink proc from allproc and parent's lists. Save exit
3430 * status and rusage for wait(). Check for child processes and orphan them.
3431 */
3432
3433
3434 /*
3435 * munge_rusage
3436 * LP64 support - long is 64 bits if we are dealing with a 64 bit user
3437 * process. We munge the kernel version of rusage into the
3438 * 64 bit version.
3439 */
3440 __private_extern__ void
munge_user64_rusage(struct rusage * a_rusage_p,struct user64_rusage * a_user_rusage_p)3441 munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p)
3442 {
3443 /* Zero-out struct so that padding is cleared */
3444 bzero(a_user_rusage_p, sizeof(struct user64_rusage));
3445
3446 /* timeval changes size, so utime and stime need special handling */
3447 a_user_rusage_p->ru_utime.tv_sec = a_rusage_p->ru_utime.tv_sec;
3448 a_user_rusage_p->ru_utime.tv_usec = a_rusage_p->ru_utime.tv_usec;
3449 a_user_rusage_p->ru_stime.tv_sec = a_rusage_p->ru_stime.tv_sec;
3450 a_user_rusage_p->ru_stime.tv_usec = a_rusage_p->ru_stime.tv_usec;
3451 /*
3452 * everything else can be a direct assign, since there is no loss
3453 * of precision implied boing 32->64.
3454 */
3455 a_user_rusage_p->ru_maxrss = a_rusage_p->ru_maxrss;
3456 a_user_rusage_p->ru_ixrss = a_rusage_p->ru_ixrss;
3457 a_user_rusage_p->ru_idrss = a_rusage_p->ru_idrss;
3458 a_user_rusage_p->ru_isrss = a_rusage_p->ru_isrss;
3459 a_user_rusage_p->ru_minflt = a_rusage_p->ru_minflt;
3460 a_user_rusage_p->ru_majflt = a_rusage_p->ru_majflt;
3461 a_user_rusage_p->ru_nswap = a_rusage_p->ru_nswap;
3462 a_user_rusage_p->ru_inblock = a_rusage_p->ru_inblock;
3463 a_user_rusage_p->ru_oublock = a_rusage_p->ru_oublock;
3464 a_user_rusage_p->ru_msgsnd = a_rusage_p->ru_msgsnd;
3465 a_user_rusage_p->ru_msgrcv = a_rusage_p->ru_msgrcv;
3466 a_user_rusage_p->ru_nsignals = a_rusage_p->ru_nsignals;
3467 a_user_rusage_p->ru_nvcsw = a_rusage_p->ru_nvcsw;
3468 a_user_rusage_p->ru_nivcsw = a_rusage_p->ru_nivcsw;
3469 }
3470
3471 /* For a 64-bit kernel and 32-bit userspace, munging may be needed */
3472 __private_extern__ void
munge_user32_rusage(struct rusage * a_rusage_p,struct user32_rusage * a_user_rusage_p)3473 munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p)
3474 {
3475 bzero(a_user_rusage_p, sizeof(struct user32_rusage));
3476
3477 /* timeval changes size, so utime and stime need special handling */
3478 a_user_rusage_p->ru_utime.tv_sec = (user32_time_t)a_rusage_p->ru_utime.tv_sec;
3479 a_user_rusage_p->ru_utime.tv_usec = a_rusage_p->ru_utime.tv_usec;
3480 a_user_rusage_p->ru_stime.tv_sec = (user32_time_t)a_rusage_p->ru_stime.tv_sec;
3481 a_user_rusage_p->ru_stime.tv_usec = a_rusage_p->ru_stime.tv_usec;
3482 /*
3483 * everything else can be a direct assign. We currently ignore
3484 * the loss of precision
3485 */
3486 a_user_rusage_p->ru_maxrss = (user32_long_t)a_rusage_p->ru_maxrss;
3487 a_user_rusage_p->ru_ixrss = (user32_long_t)a_rusage_p->ru_ixrss;
3488 a_user_rusage_p->ru_idrss = (user32_long_t)a_rusage_p->ru_idrss;
3489 a_user_rusage_p->ru_isrss = (user32_long_t)a_rusage_p->ru_isrss;
3490 a_user_rusage_p->ru_minflt = (user32_long_t)a_rusage_p->ru_minflt;
3491 a_user_rusage_p->ru_majflt = (user32_long_t)a_rusage_p->ru_majflt;
3492 a_user_rusage_p->ru_nswap = (user32_long_t)a_rusage_p->ru_nswap;
3493 a_user_rusage_p->ru_inblock = (user32_long_t)a_rusage_p->ru_inblock;
3494 a_user_rusage_p->ru_oublock = (user32_long_t)a_rusage_p->ru_oublock;
3495 a_user_rusage_p->ru_msgsnd = (user32_long_t)a_rusage_p->ru_msgsnd;
3496 a_user_rusage_p->ru_msgrcv = (user32_long_t)a_rusage_p->ru_msgrcv;
3497 a_user_rusage_p->ru_nsignals = (user32_long_t)a_rusage_p->ru_nsignals;
3498 a_user_rusage_p->ru_nvcsw = (user32_long_t)a_rusage_p->ru_nvcsw;
3499 a_user_rusage_p->ru_nivcsw = (user32_long_t)a_rusage_p->ru_nivcsw;
3500 }
3501
3502 void
kdp_wait4_find_process(thread_t thread,__unused event64_t wait_event,thread_waitinfo_t * waitinfo)3503 kdp_wait4_find_process(thread_t thread, __unused event64_t wait_event, thread_waitinfo_t *waitinfo)
3504 {
3505 assert(thread != NULL);
3506 assert(waitinfo != NULL);
3507
3508 struct uthread *ut = get_bsdthread_info(thread);
3509 waitinfo->context = 0;
3510 // ensure wmesg is consistent with a thread waiting in wait4
3511 assert(!strcmp(ut->uu_wmesg, "waitcoll") || !strcmp(ut->uu_wmesg, "wait"));
3512 struct wait4_nocancel_args *args = ut->uu_save.uus_wait4_data.args;
3513 // May not actually contain a pid; this is just the argument to wait4.
3514 // See man wait4 for other valid wait4 arguments.
3515 waitinfo->owner = args->pid;
3516 }
3517
3518 static int
exit_with_exception_internal(struct proc * p,exception_info_t exception,uint32_t flags)3519 exit_with_exception_internal(
3520 struct proc *p,
3521 exception_info_t exception,
3522 uint32_t flags)
3523 {
3524 os_reason_t reason = OS_REASON_NULL;
3525 struct uthread *ut = NULL;
3526
3527 if (p == PROC_NULL) {
3528 panic("exception type %d without a valid proc",
3529 exception.os_reason);
3530 }
3531
3532 if (!(flags & PX_DEBUG_NO_HONOR)
3533 && address_space_debugged(p) == KERN_SUCCESS) {
3534 return 0;
3535 }
3536
3537 if ((flags & PX_KTRIAGE)) {
3538 /* Leave a ktriage record */
3539 ktriage_record(
3540 thread_tid(current_thread()),
3541 KDBG_TRIAGE_EVENTID(
3542 exception.kt_info.kt_subsys,
3543 KDBG_TRIAGE_RESERVED,
3544 exception.kt_info.kt_error),
3545 0);
3546 }
3547
3548 if ((flags & PX_PSIGNAL)) {
3549 int signal = (exception.signal > 0) ? exception.signal : SIGKILL;
3550
3551 printf("[%s%s] sending signal %d to process\n", proc_best_name(p),
3552 (signal == SIGKILL) ? ": killed" : "", signal);
3553 psignal(p, signal);
3554 return 0;
3555 } else {
3556 assert(exception.exception_type > 0);
3557
3558 reason = os_reason_create(
3559 exception.os_reason,
3560 (uint64_t)exception.mx_code);
3561 assert(reason != OS_REASON_NULL);
3562 reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
3563
3564 if (!(flags & PX_NO_EXCEPTION_UTHREAD)) {
3565 ut = get_bsdthread_info(current_thread());
3566 ut->uu_exception = exception.exception_type;
3567 ut->uu_code = exception.mx_code;
3568 ut->uu_subcode = exception.mx_subcode;
3569 }
3570
3571 printf("[%s: killed] sending signal %d and force exiting process\n",
3572 proc_best_name(p), SIGKILL);
3573 return exit_with_reason(p, W_EXITCODE(0, SIGKILL), NULL,
3574 FALSE, FALSE, 0, reason);
3575 }
3576 }
3577
3578 /*
3579 * Use a separate function call for mach and exclave exceptions so that we
3580 * see the exception's origin show up clearly in the backtrace on dev kernels.
3581 */
3582
3583 int
exit_with_mach_exception(struct proc * p,exception_info_t exception,uint32_t flags)3584 exit_with_mach_exception(
3585 struct proc *p,
3586 exception_info_t exception,
3587 uint32_t flags)
3588 {
3589 return exit_with_exception_internal(p, exception, flags);
3590 }
3591
3592
3593 #if CONFIG_EXCLAVES
3594 int
exit_with_exclave_exception(struct proc * p,exception_info_t exception,uint32_t flags)3595 exit_with_exclave_exception(
3596 struct proc *p,
3597 exception_info_t exception,
3598 uint32_t flags)
3599 {
3600 return exit_with_exception_internal(p, exception, flags);
3601 }
3602 #endif /* CONFIG_EXCLAVES */
3603