1 //===- SPIRVToLLVM.cpp - SPIR-V to LLVM Patterns --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements patterns to convert SPIR-V dialect to LLVM dialect.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "mlir/Conversion/SPIRVToLLVM/SPIRVToLLVM.h"
14 #include "mlir/Conversion/LLVMCommon/Pattern.h"
15 #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
16 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
17 #include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
18 #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
19 #include "mlir/Dialect/SPIRV/Utils/LayoutUtils.h"
20 #include "mlir/IR/BuiltinOps.h"
21 #include "mlir/IR/PatternMatch.h"
22 #include "mlir/Support/LogicalResult.h"
23 #include "mlir/Transforms/DialectConversion.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/FormatVariadic.h"
26
27 #define DEBUG_TYPE "spirv-to-llvm-pattern"
28
29 using namespace mlir;
30
31 //===----------------------------------------------------------------------===//
32 // Utility functions
33 //===----------------------------------------------------------------------===//
34
35 /// Returns true if the given type is a signed integer or vector type.
isSignedIntegerOrVector(Type type)36 static bool isSignedIntegerOrVector(Type type) {
37 if (type.isSignedInteger())
38 return true;
39 if (auto vecType = type.dyn_cast<VectorType>())
40 return vecType.getElementType().isSignedInteger();
41 return false;
42 }
43
44 /// Returns true if the given type is an unsigned integer or vector type
isUnsignedIntegerOrVector(Type type)45 static bool isUnsignedIntegerOrVector(Type type) {
46 if (type.isUnsignedInteger())
47 return true;
48 if (auto vecType = type.dyn_cast<VectorType>())
49 return vecType.getElementType().isUnsignedInteger();
50 return false;
51 }
52
53 /// Returns the bit width of integer, float or vector of float or integer values
getBitWidth(Type type)54 static unsigned getBitWidth(Type type) {
55 assert((type.isIntOrFloat() || type.isa<VectorType>()) &&
56 "bitwidth is not supported for this type");
57 if (type.isIntOrFloat())
58 return type.getIntOrFloatBitWidth();
59 auto vecType = type.dyn_cast<VectorType>();
60 auto elementType = vecType.getElementType();
61 assert(elementType.isIntOrFloat() &&
62 "only integers and floats have a bitwidth");
63 return elementType.getIntOrFloatBitWidth();
64 }
65
66 /// Returns the bit width of LLVMType integer or vector.
getLLVMTypeBitWidth(Type type)67 static unsigned getLLVMTypeBitWidth(Type type) {
68 return (LLVM::isCompatibleVectorType(type) ? LLVM::getVectorElementType(type)
69 : type)
70 .cast<IntegerType>()
71 .getWidth();
72 }
73
74 /// Creates `IntegerAttribute` with all bits set for given type
minusOneIntegerAttribute(Type type,Builder builder)75 static IntegerAttr minusOneIntegerAttribute(Type type, Builder builder) {
76 if (auto vecType = type.dyn_cast<VectorType>()) {
77 auto integerType = vecType.getElementType().cast<IntegerType>();
78 return builder.getIntegerAttr(integerType, -1);
79 }
80 auto integerType = type.cast<IntegerType>();
81 return builder.getIntegerAttr(integerType, -1);
82 }
83
84 /// Creates `llvm.mlir.constant` with all bits set for the given type.
createConstantAllBitsSet(Location loc,Type srcType,Type dstType,PatternRewriter & rewriter)85 static Value createConstantAllBitsSet(Location loc, Type srcType, Type dstType,
86 PatternRewriter &rewriter) {
87 if (srcType.isa<VectorType>()) {
88 return rewriter.create<LLVM::ConstantOp>(
89 loc, dstType,
90 SplatElementsAttr::get(srcType.cast<ShapedType>(),
91 minusOneIntegerAttribute(srcType, rewriter)));
92 }
93 return rewriter.create<LLVM::ConstantOp>(
94 loc, dstType, minusOneIntegerAttribute(srcType, rewriter));
95 }
96
97 /// Creates `llvm.mlir.constant` with a floating-point scalar or vector value.
createFPConstant(Location loc,Type srcType,Type dstType,PatternRewriter & rewriter,double value)98 static Value createFPConstant(Location loc, Type srcType, Type dstType,
99 PatternRewriter &rewriter, double value) {
100 if (auto vecType = srcType.dyn_cast<VectorType>()) {
101 auto floatType = vecType.getElementType().cast<FloatType>();
102 return rewriter.create<LLVM::ConstantOp>(
103 loc, dstType,
104 SplatElementsAttr::get(vecType,
105 rewriter.getFloatAttr(floatType, value)));
106 }
107 auto floatType = srcType.cast<FloatType>();
108 return rewriter.create<LLVM::ConstantOp>(
109 loc, dstType, rewriter.getFloatAttr(floatType, value));
110 }
111
112 /// Utility function for bitfield ops:
113 /// - `BitFieldInsert`
114 /// - `BitFieldSExtract`
115 /// - `BitFieldUExtract`
116 /// Truncates or extends the value. If the bitwidth of the value is the same as
117 /// `llvmType` bitwidth, the value remains unchanged.
optionallyTruncateOrExtend(Location loc,Value value,Type llvmType,PatternRewriter & rewriter)118 static Value optionallyTruncateOrExtend(Location loc, Value value,
119 Type llvmType,
120 PatternRewriter &rewriter) {
121 auto srcType = value.getType();
122 unsigned targetBitWidth = getLLVMTypeBitWidth(llvmType);
123 unsigned valueBitWidth = LLVM::isCompatibleType(srcType)
124 ? getLLVMTypeBitWidth(srcType)
125 : getBitWidth(srcType);
126
127 if (valueBitWidth < targetBitWidth)
128 return rewriter.create<LLVM::ZExtOp>(loc, llvmType, value);
129 // If the bit widths of `Count` and `Offset` are greater than the bit width
130 // of the target type, they are truncated. Truncation is safe since `Count`
131 // and `Offset` must be no more than 64 for op behaviour to be defined. Hence,
132 // both values can be expressed in 8 bits.
133 if (valueBitWidth > targetBitWidth)
134 return rewriter.create<LLVM::TruncOp>(loc, llvmType, value);
135 return value;
136 }
137
138 /// Broadcasts the value to vector with `numElements` number of elements.
broadcast(Location loc,Value toBroadcast,unsigned numElements,LLVMTypeConverter & typeConverter,ConversionPatternRewriter & rewriter)139 static Value broadcast(Location loc, Value toBroadcast, unsigned numElements,
140 LLVMTypeConverter &typeConverter,
141 ConversionPatternRewriter &rewriter) {
142 auto vectorType = VectorType::get(numElements, toBroadcast.getType());
143 auto llvmVectorType = typeConverter.convertType(vectorType);
144 auto llvmI32Type = typeConverter.convertType(rewriter.getIntegerType(32));
145 Value broadcasted = rewriter.create<LLVM::UndefOp>(loc, llvmVectorType);
146 for (unsigned i = 0; i < numElements; ++i) {
147 auto index = rewriter.create<LLVM::ConstantOp>(
148 loc, llvmI32Type, rewriter.getI32IntegerAttr(i));
149 broadcasted = rewriter.create<LLVM::InsertElementOp>(
150 loc, llvmVectorType, broadcasted, toBroadcast, index);
151 }
152 return broadcasted;
153 }
154
155 /// Broadcasts the value. If `srcType` is a scalar, the value remains unchanged.
optionallyBroadcast(Location loc,Value value,Type srcType,LLVMTypeConverter & typeConverter,ConversionPatternRewriter & rewriter)156 static Value optionallyBroadcast(Location loc, Value value, Type srcType,
157 LLVMTypeConverter &typeConverter,
158 ConversionPatternRewriter &rewriter) {
159 if (auto vectorType = srcType.dyn_cast<VectorType>()) {
160 unsigned numElements = vectorType.getNumElements();
161 return broadcast(loc, value, numElements, typeConverter, rewriter);
162 }
163 return value;
164 }
165
166 /// Utility function for bitfield ops: `BitFieldInsert`, `BitFieldSExtract` and
167 /// `BitFieldUExtract`.
168 /// Broadcast `Offset` and `Count` to match the type of `Base`. If `Base` is of
169 /// a vector type, construct a vector that has:
170 /// - same number of elements as `Base`
171 /// - each element has the type that is the same as the type of `Offset` or
172 /// `Count`
173 /// - each element has the same value as `Offset` or `Count`
174 /// Then cast `Offset` and `Count` if their bit width is different
175 /// from `Base` bit width.
processCountOrOffset(Location loc,Value value,Type srcType,Type dstType,LLVMTypeConverter & converter,ConversionPatternRewriter & rewriter)176 static Value processCountOrOffset(Location loc, Value value, Type srcType,
177 Type dstType, LLVMTypeConverter &converter,
178 ConversionPatternRewriter &rewriter) {
179 Value broadcasted =
180 optionallyBroadcast(loc, value, srcType, converter, rewriter);
181 return optionallyTruncateOrExtend(loc, broadcasted, dstType, rewriter);
182 }
183
184 /// Converts SPIR-V struct with a regular (according to `VulkanLayoutUtils`)
185 /// offset to LLVM struct. Otherwise, the conversion is not supported.
186 static Optional<Type>
convertStructTypeWithOffset(spirv::StructType type,LLVMTypeConverter & converter)187 convertStructTypeWithOffset(spirv::StructType type,
188 LLVMTypeConverter &converter) {
189 if (type != VulkanLayoutUtils::decorateType(type))
190 return llvm::None;
191
192 auto elementsVector = llvm::to_vector<8>(
193 llvm::map_range(type.getElementTypes(), [&](Type elementType) {
194 return converter.convertType(elementType);
195 }));
196 return LLVM::LLVMStructType::getLiteral(type.getContext(), elementsVector,
197 /*isPacked=*/false);
198 }
199
200 /// Converts SPIR-V struct with no offset to packed LLVM struct.
convertStructTypePacked(spirv::StructType type,LLVMTypeConverter & converter)201 static Type convertStructTypePacked(spirv::StructType type,
202 LLVMTypeConverter &converter) {
203 auto elementsVector = llvm::to_vector<8>(
204 llvm::map_range(type.getElementTypes(), [&](Type elementType) {
205 return converter.convertType(elementType);
206 }));
207 return LLVM::LLVMStructType::getLiteral(type.getContext(), elementsVector,
208 /*isPacked=*/true);
209 }
210
211 /// Creates LLVM dialect constant with the given value.
createI32ConstantOf(Location loc,PatternRewriter & rewriter,unsigned value)212 static Value createI32ConstantOf(Location loc, PatternRewriter &rewriter,
213 unsigned value) {
214 return rewriter.create<LLVM::ConstantOp>(
215 loc, IntegerType::get(rewriter.getContext(), 32),
216 rewriter.getIntegerAttr(rewriter.getI32Type(), value));
217 }
218
219 /// Utility for `spv.Load` and `spv.Store` conversion.
replaceWithLoadOrStore(Operation * op,ValueRange operands,ConversionPatternRewriter & rewriter,LLVMTypeConverter & typeConverter,unsigned alignment,bool isVolatile,bool isNonTemporal)220 static LogicalResult replaceWithLoadOrStore(Operation *op, ValueRange operands,
221 ConversionPatternRewriter &rewriter,
222 LLVMTypeConverter &typeConverter,
223 unsigned alignment, bool isVolatile,
224 bool isNonTemporal) {
225 if (auto loadOp = dyn_cast<spirv::LoadOp>(op)) {
226 auto dstType = typeConverter.convertType(loadOp.getType());
227 if (!dstType)
228 return failure();
229 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(
230 loadOp, dstType, spirv::LoadOpAdaptor(operands).ptr(), alignment,
231 isVolatile, isNonTemporal);
232 return success();
233 }
234 auto storeOp = cast<spirv::StoreOp>(op);
235 spirv::StoreOpAdaptor adaptor(operands);
236 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.value(),
237 adaptor.ptr(), alignment,
238 isVolatile, isNonTemporal);
239 return success();
240 }
241
242 //===----------------------------------------------------------------------===//
243 // Type conversion
244 //===----------------------------------------------------------------------===//
245
246 /// Converts SPIR-V array type to LLVM array. Natural stride (according to
247 /// `VulkanLayoutUtils`) is also mapped to LLVM array. This has to be respected
248 /// when converting ops that manipulate array types.
convertArrayType(spirv::ArrayType type,TypeConverter & converter)249 static Optional<Type> convertArrayType(spirv::ArrayType type,
250 TypeConverter &converter) {
251 unsigned stride = type.getArrayStride();
252 Type elementType = type.getElementType();
253 auto sizeInBytes = elementType.cast<spirv::SPIRVType>().getSizeInBytes();
254 if (stride != 0 && !(sizeInBytes && *sizeInBytes == stride))
255 return llvm::None;
256
257 auto llvmElementType = converter.convertType(elementType);
258 unsigned numElements = type.getNumElements();
259 return LLVM::LLVMArrayType::get(llvmElementType, numElements);
260 }
261
262 /// Converts SPIR-V pointer type to LLVM pointer. Pointer's storage class is not
263 /// modelled at the moment.
convertPointerType(spirv::PointerType type,TypeConverter & converter)264 static Type convertPointerType(spirv::PointerType type,
265 TypeConverter &converter) {
266 auto pointeeType = converter.convertType(type.getPointeeType());
267 return LLVM::LLVMPointerType::get(pointeeType);
268 }
269
270 /// Converts SPIR-V runtime array to LLVM array. Since LLVM allows indexing over
271 /// the bounds, the runtime array is converted to a 0-sized LLVM array. There is
272 /// no modelling of array stride at the moment.
convertRuntimeArrayType(spirv::RuntimeArrayType type,TypeConverter & converter)273 static Optional<Type> convertRuntimeArrayType(spirv::RuntimeArrayType type,
274 TypeConverter &converter) {
275 if (type.getArrayStride() != 0)
276 return llvm::None;
277 auto elementType = converter.convertType(type.getElementType());
278 return LLVM::LLVMArrayType::get(elementType, 0);
279 }
280
281 /// Converts SPIR-V struct to LLVM struct. There is no support of structs with
282 /// member decorations. Also, only natural offset is supported.
convertStructType(spirv::StructType type,LLVMTypeConverter & converter)283 static Optional<Type> convertStructType(spirv::StructType type,
284 LLVMTypeConverter &converter) {
285 SmallVector<spirv::StructType::MemberDecorationInfo, 4> memberDecorations;
286 type.getMemberDecorations(memberDecorations);
287 if (!memberDecorations.empty())
288 return llvm::None;
289 if (type.hasOffset())
290 return convertStructTypeWithOffset(type, converter);
291 return convertStructTypePacked(type, converter);
292 }
293
294 //===----------------------------------------------------------------------===//
295 // Operation conversion
296 //===----------------------------------------------------------------------===//
297
298 namespace {
299
300 class AccessChainPattern : public SPIRVToLLVMConversion<spirv::AccessChainOp> {
301 public:
302 using SPIRVToLLVMConversion<spirv::AccessChainOp>::SPIRVToLLVMConversion;
303
304 LogicalResult
matchAndRewrite(spirv::AccessChainOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const305 matchAndRewrite(spirv::AccessChainOp op, OpAdaptor adaptor,
306 ConversionPatternRewriter &rewriter) const override {
307 auto dstType = typeConverter.convertType(op.component_ptr().getType());
308 if (!dstType)
309 return failure();
310 // To use GEP we need to add a first 0 index to go through the pointer.
311 auto indices = llvm::to_vector<4>(adaptor.indices());
312 Type indexType = op.indices().front().getType();
313 auto llvmIndexType = typeConverter.convertType(indexType);
314 if (!llvmIndexType)
315 return failure();
316 Value zero = rewriter.create<LLVM::ConstantOp>(
317 op.getLoc(), llvmIndexType, rewriter.getIntegerAttr(indexType, 0));
318 indices.insert(indices.begin(), zero);
319 rewriter.replaceOpWithNewOp<LLVM::GEPOp>(op, dstType, adaptor.base_ptr(),
320 indices);
321 return success();
322 }
323 };
324
325 class AddressOfPattern : public SPIRVToLLVMConversion<spirv::AddressOfOp> {
326 public:
327 using SPIRVToLLVMConversion<spirv::AddressOfOp>::SPIRVToLLVMConversion;
328
329 LogicalResult
matchAndRewrite(spirv::AddressOfOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const330 matchAndRewrite(spirv::AddressOfOp op, OpAdaptor adaptor,
331 ConversionPatternRewriter &rewriter) const override {
332 auto dstType = typeConverter.convertType(op.pointer().getType());
333 if (!dstType)
334 return failure();
335 rewriter.replaceOpWithNewOp<LLVM::AddressOfOp>(op, dstType, op.variable());
336 return success();
337 }
338 };
339
340 class BitFieldInsertPattern
341 : public SPIRVToLLVMConversion<spirv::BitFieldInsertOp> {
342 public:
343 using SPIRVToLLVMConversion<spirv::BitFieldInsertOp>::SPIRVToLLVMConversion;
344
345 LogicalResult
matchAndRewrite(spirv::BitFieldInsertOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const346 matchAndRewrite(spirv::BitFieldInsertOp op, OpAdaptor adaptor,
347 ConversionPatternRewriter &rewriter) const override {
348 auto srcType = op.getType();
349 auto dstType = typeConverter.convertType(srcType);
350 if (!dstType)
351 return failure();
352 Location loc = op.getLoc();
353
354 // Process `Offset` and `Count`: broadcast and extend/truncate if needed.
355 Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType,
356 typeConverter, rewriter);
357 Value count = processCountOrOffset(loc, op.count(), srcType, dstType,
358 typeConverter, rewriter);
359
360 // Create a mask with bits set outside [Offset, Offset + Count - 1].
361 Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter);
362 Value maskShiftedByCount =
363 rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count);
364 Value negated = rewriter.create<LLVM::XOrOp>(loc, dstType,
365 maskShiftedByCount, minusOne);
366 Value maskShiftedByCountAndOffset =
367 rewriter.create<LLVM::ShlOp>(loc, dstType, negated, offset);
368 Value mask = rewriter.create<LLVM::XOrOp>(
369 loc, dstType, maskShiftedByCountAndOffset, minusOne);
370
371 // Extract unchanged bits from the `Base` that are outside of
372 // [Offset, Offset + Count - 1]. Then `or` with shifted `Insert`.
373 Value baseAndMask =
374 rewriter.create<LLVM::AndOp>(loc, dstType, op.base(), mask);
375 Value insertShiftedByOffset =
376 rewriter.create<LLVM::ShlOp>(loc, dstType, op.insert(), offset);
377 rewriter.replaceOpWithNewOp<LLVM::OrOp>(op, dstType, baseAndMask,
378 insertShiftedByOffset);
379 return success();
380 }
381 };
382
383 /// Converts SPIR-V ConstantOp with scalar or vector type.
384 class ConstantScalarAndVectorPattern
385 : public SPIRVToLLVMConversion<spirv::ConstantOp> {
386 public:
387 using SPIRVToLLVMConversion<spirv::ConstantOp>::SPIRVToLLVMConversion;
388
389 LogicalResult
matchAndRewrite(spirv::ConstantOp constOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const390 matchAndRewrite(spirv::ConstantOp constOp, OpAdaptor adaptor,
391 ConversionPatternRewriter &rewriter) const override {
392 auto srcType = constOp.getType();
393 if (!srcType.isa<VectorType>() && !srcType.isIntOrFloat())
394 return failure();
395
396 auto dstType = typeConverter.convertType(srcType);
397 if (!dstType)
398 return failure();
399
400 // SPIR-V constant can be a signed/unsigned integer, which has to be
401 // casted to signless integer when converting to LLVM dialect. Removing the
402 // sign bit may have unexpected behaviour. However, it is better to handle
403 // it case-by-case, given that the purpose of the conversion is not to
404 // cover all possible corner cases.
405 if (isSignedIntegerOrVector(srcType) ||
406 isUnsignedIntegerOrVector(srcType)) {
407 auto signlessType = rewriter.getIntegerType(getBitWidth(srcType));
408
409 if (srcType.isa<VectorType>()) {
410 auto dstElementsAttr = constOp.value().cast<DenseIntElementsAttr>();
411 rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
412 constOp, dstType,
413 dstElementsAttr.mapValues(
414 signlessType, [&](const APInt &value) { return value; }));
415 return success();
416 }
417 auto srcAttr = constOp.value().cast<IntegerAttr>();
418 auto dstAttr = rewriter.getIntegerAttr(signlessType, srcAttr.getValue());
419 rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(constOp, dstType, dstAttr);
420 return success();
421 }
422 rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
423 constOp, dstType, adaptor.getOperands(), constOp->getAttrs());
424 return success();
425 }
426 };
427
428 class BitFieldSExtractPattern
429 : public SPIRVToLLVMConversion<spirv::BitFieldSExtractOp> {
430 public:
431 using SPIRVToLLVMConversion<spirv::BitFieldSExtractOp>::SPIRVToLLVMConversion;
432
433 LogicalResult
matchAndRewrite(spirv::BitFieldSExtractOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const434 matchAndRewrite(spirv::BitFieldSExtractOp op, OpAdaptor adaptor,
435 ConversionPatternRewriter &rewriter) const override {
436 auto srcType = op.getType();
437 auto dstType = typeConverter.convertType(srcType);
438 if (!dstType)
439 return failure();
440 Location loc = op.getLoc();
441
442 // Process `Offset` and `Count`: broadcast and extend/truncate if needed.
443 Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType,
444 typeConverter, rewriter);
445 Value count = processCountOrOffset(loc, op.count(), srcType, dstType,
446 typeConverter, rewriter);
447
448 // Create a constant that holds the size of the `Base`.
449 IntegerType integerType;
450 if (auto vecType = srcType.dyn_cast<VectorType>())
451 integerType = vecType.getElementType().cast<IntegerType>();
452 else
453 integerType = srcType.cast<IntegerType>();
454
455 auto baseSize = rewriter.getIntegerAttr(integerType, getBitWidth(srcType));
456 Value size =
457 srcType.isa<VectorType>()
458 ? rewriter.create<LLVM::ConstantOp>(
459 loc, dstType,
460 SplatElementsAttr::get(srcType.cast<ShapedType>(), baseSize))
461 : rewriter.create<LLVM::ConstantOp>(loc, dstType, baseSize);
462
463 // Shift `Base` left by [sizeof(Base) - (Count + Offset)], so that the bit
464 // at Offset + Count - 1 is the most significant bit now.
465 Value countPlusOffset =
466 rewriter.create<LLVM::AddOp>(loc, dstType, count, offset);
467 Value amountToShiftLeft =
468 rewriter.create<LLVM::SubOp>(loc, dstType, size, countPlusOffset);
469 Value baseShiftedLeft = rewriter.create<LLVM::ShlOp>(
470 loc, dstType, op.base(), amountToShiftLeft);
471
472 // Shift the result right, filling the bits with the sign bit.
473 Value amountToShiftRight =
474 rewriter.create<LLVM::AddOp>(loc, dstType, offset, amountToShiftLeft);
475 rewriter.replaceOpWithNewOp<LLVM::AShrOp>(op, dstType, baseShiftedLeft,
476 amountToShiftRight);
477 return success();
478 }
479 };
480
481 class BitFieldUExtractPattern
482 : public SPIRVToLLVMConversion<spirv::BitFieldUExtractOp> {
483 public:
484 using SPIRVToLLVMConversion<spirv::BitFieldUExtractOp>::SPIRVToLLVMConversion;
485
486 LogicalResult
matchAndRewrite(spirv::BitFieldUExtractOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const487 matchAndRewrite(spirv::BitFieldUExtractOp op, OpAdaptor adaptor,
488 ConversionPatternRewriter &rewriter) const override {
489 auto srcType = op.getType();
490 auto dstType = typeConverter.convertType(srcType);
491 if (!dstType)
492 return failure();
493 Location loc = op.getLoc();
494
495 // Process `Offset` and `Count`: broadcast and extend/truncate if needed.
496 Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType,
497 typeConverter, rewriter);
498 Value count = processCountOrOffset(loc, op.count(), srcType, dstType,
499 typeConverter, rewriter);
500
501 // Create a mask with bits set at [0, Count - 1].
502 Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter);
503 Value maskShiftedByCount =
504 rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count);
505 Value mask = rewriter.create<LLVM::XOrOp>(loc, dstType, maskShiftedByCount,
506 minusOne);
507
508 // Shift `Base` by `Offset` and apply the mask on it.
509 Value shiftedBase =
510 rewriter.create<LLVM::LShrOp>(loc, dstType, op.base(), offset);
511 rewriter.replaceOpWithNewOp<LLVM::AndOp>(op, dstType, shiftedBase, mask);
512 return success();
513 }
514 };
515
516 class BranchConversionPattern : public SPIRVToLLVMConversion<spirv::BranchOp> {
517 public:
518 using SPIRVToLLVMConversion<spirv::BranchOp>::SPIRVToLLVMConversion;
519
520 LogicalResult
matchAndRewrite(spirv::BranchOp branchOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const521 matchAndRewrite(spirv::BranchOp branchOp, OpAdaptor adaptor,
522 ConversionPatternRewriter &rewriter) const override {
523 rewriter.replaceOpWithNewOp<LLVM::BrOp>(branchOp, adaptor.getOperands(),
524 branchOp.getTarget());
525 return success();
526 }
527 };
528
529 class BranchConditionalConversionPattern
530 : public SPIRVToLLVMConversion<spirv::BranchConditionalOp> {
531 public:
532 using SPIRVToLLVMConversion<
533 spirv::BranchConditionalOp>::SPIRVToLLVMConversion;
534
535 LogicalResult
matchAndRewrite(spirv::BranchConditionalOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const536 matchAndRewrite(spirv::BranchConditionalOp op, OpAdaptor adaptor,
537 ConversionPatternRewriter &rewriter) const override {
538 // If branch weights exist, map them to 32-bit integer vector.
539 ElementsAttr branchWeights = nullptr;
540 if (auto weights = op.branch_weights()) {
541 VectorType weightType = VectorType::get(2, rewriter.getI32Type());
542 branchWeights = DenseElementsAttr::get(weightType, weights->getValue());
543 }
544
545 rewriter.replaceOpWithNewOp<LLVM::CondBrOp>(
546 op, op.condition(), op.getTrueBlockArguments(),
547 op.getFalseBlockArguments(), branchWeights, op.getTrueBlock(),
548 op.getFalseBlock());
549 return success();
550 }
551 };
552
553 /// Converts `spv.CompositeExtract` to `llvm.extractvalue` if the container type
554 /// is an aggregate type (struct or array). Otherwise, converts to
555 /// `llvm.extractelement` that operates on vectors.
556 class CompositeExtractPattern
557 : public SPIRVToLLVMConversion<spirv::CompositeExtractOp> {
558 public:
559 using SPIRVToLLVMConversion<spirv::CompositeExtractOp>::SPIRVToLLVMConversion;
560
561 LogicalResult
matchAndRewrite(spirv::CompositeExtractOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const562 matchAndRewrite(spirv::CompositeExtractOp op, OpAdaptor adaptor,
563 ConversionPatternRewriter &rewriter) const override {
564 auto dstType = this->typeConverter.convertType(op.getType());
565 if (!dstType)
566 return failure();
567
568 Type containerType = op.composite().getType();
569 if (containerType.isa<VectorType>()) {
570 Location loc = op.getLoc();
571 IntegerAttr value = op.indices()[0].cast<IntegerAttr>();
572 Value index = createI32ConstantOf(loc, rewriter, value.getInt());
573 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
574 op, dstType, adaptor.composite(), index);
575 return success();
576 }
577 rewriter.replaceOpWithNewOp<LLVM::ExtractValueOp>(
578 op, dstType, adaptor.composite(), op.indices());
579 return success();
580 }
581 };
582
583 /// Converts `spv.CompositeInsert` to `llvm.insertvalue` if the container type
584 /// is an aggregate type (struct or array). Otherwise, converts to
585 /// `llvm.insertelement` that operates on vectors.
586 class CompositeInsertPattern
587 : public SPIRVToLLVMConversion<spirv::CompositeInsertOp> {
588 public:
589 using SPIRVToLLVMConversion<spirv::CompositeInsertOp>::SPIRVToLLVMConversion;
590
591 LogicalResult
matchAndRewrite(spirv::CompositeInsertOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const592 matchAndRewrite(spirv::CompositeInsertOp op, OpAdaptor adaptor,
593 ConversionPatternRewriter &rewriter) const override {
594 auto dstType = this->typeConverter.convertType(op.getType());
595 if (!dstType)
596 return failure();
597
598 Type containerType = op.composite().getType();
599 if (containerType.isa<VectorType>()) {
600 Location loc = op.getLoc();
601 IntegerAttr value = op.indices()[0].cast<IntegerAttr>();
602 Value index = createI32ConstantOf(loc, rewriter, value.getInt());
603 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
604 op, dstType, adaptor.composite(), adaptor.object(), index);
605 return success();
606 }
607 rewriter.replaceOpWithNewOp<LLVM::InsertValueOp>(
608 op, dstType, adaptor.composite(), adaptor.object(), op.indices());
609 return success();
610 }
611 };
612
613 /// Converts SPIR-V operations that have straightforward LLVM equivalent
614 /// into LLVM dialect operations.
615 template <typename SPIRVOp, typename LLVMOp>
616 class DirectConversionPattern : public SPIRVToLLVMConversion<SPIRVOp> {
617 public:
618 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
619
620 LogicalResult
matchAndRewrite(SPIRVOp operation,typename SPIRVOp::Adaptor adaptor,ConversionPatternRewriter & rewriter) const621 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
622 ConversionPatternRewriter &rewriter) const override {
623 auto dstType = this->typeConverter.convertType(operation.getType());
624 if (!dstType)
625 return failure();
626 rewriter.template replaceOpWithNewOp<LLVMOp>(
627 operation, dstType, adaptor.getOperands(), operation->getAttrs());
628 return success();
629 }
630 };
631
632 /// Converts `spv.ExecutionMode` into a global struct constant that holds
633 /// execution mode information.
634 class ExecutionModePattern
635 : public SPIRVToLLVMConversion<spirv::ExecutionModeOp> {
636 public:
637 using SPIRVToLLVMConversion<spirv::ExecutionModeOp>::SPIRVToLLVMConversion;
638
639 LogicalResult
matchAndRewrite(spirv::ExecutionModeOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const640 matchAndRewrite(spirv::ExecutionModeOp op, OpAdaptor adaptor,
641 ConversionPatternRewriter &rewriter) const override {
642 // First, create the global struct's name that would be associated with
643 // this entry point's execution mode. We set it to be:
644 // __spv__{SPIR-V module name}_{function name}_execution_mode_info_{mode}
645 ModuleOp module = op->getParentOfType<ModuleOp>();
646 IntegerAttr executionModeAttr = op.execution_modeAttr();
647 std::string moduleName;
648 if (module.getName().has_value())
649 moduleName = "_" + module.getName().value().str();
650 else
651 moduleName = "";
652 std::string executionModeInfoName =
653 llvm::formatv("__spv_{0}_{1}_execution_mode_info_{2}", moduleName,
654 op.fn().str(), executionModeAttr.getValue());
655
656 MLIRContext *context = rewriter.getContext();
657 OpBuilder::InsertionGuard guard(rewriter);
658 rewriter.setInsertionPointToStart(module.getBody());
659
660 // Create a struct type, corresponding to the C struct below.
661 // struct {
662 // int32_t executionMode;
663 // int32_t values[]; // optional values
664 // };
665 auto llvmI32Type = IntegerType::get(context, 32);
666 SmallVector<Type, 2> fields;
667 fields.push_back(llvmI32Type);
668 ArrayAttr values = op.values();
669 if (!values.empty()) {
670 auto arrayType = LLVM::LLVMArrayType::get(llvmI32Type, values.size());
671 fields.push_back(arrayType);
672 }
673 auto structType = LLVM::LLVMStructType::getLiteral(context, fields);
674
675 // Create `llvm.mlir.global` with initializer region containing one block.
676 auto global = rewriter.create<LLVM::GlobalOp>(
677 UnknownLoc::get(context), structType, /*isConstant=*/true,
678 LLVM::Linkage::External, executionModeInfoName, Attribute(),
679 /*alignment=*/0);
680 Location loc = global.getLoc();
681 Region ®ion = global.getInitializerRegion();
682 Block *block = rewriter.createBlock(®ion);
683
684 // Initialize the struct and set the execution mode value.
685 rewriter.setInsertionPoint(block, block->begin());
686 Value structValue = rewriter.create<LLVM::UndefOp>(loc, structType);
687 Value executionMode =
688 rewriter.create<LLVM::ConstantOp>(loc, llvmI32Type, executionModeAttr);
689 structValue = rewriter.create<LLVM::InsertValueOp>(
690 loc, structType, structValue, executionMode,
691 ArrayAttr::get(context,
692 {rewriter.getIntegerAttr(rewriter.getI32Type(), 0)}));
693
694 // Insert extra operands if they exist into execution mode info struct.
695 for (unsigned i = 0, e = values.size(); i < e; ++i) {
696 auto attr = values.getValue()[i];
697 Value entry = rewriter.create<LLVM::ConstantOp>(loc, llvmI32Type, attr);
698 structValue = rewriter.create<LLVM::InsertValueOp>(
699 loc, structType, structValue, entry,
700 ArrayAttr::get(context,
701 {rewriter.getIntegerAttr(rewriter.getI32Type(), 1),
702 rewriter.getIntegerAttr(rewriter.getI32Type(), i)}));
703 }
704 rewriter.create<LLVM::ReturnOp>(loc, ArrayRef<Value>({structValue}));
705 rewriter.eraseOp(op);
706 return success();
707 }
708 };
709
710 /// Converts `spv.GlobalVariable` to `llvm.mlir.global`. Note that SPIR-V global
711 /// returns a pointer, whereas in LLVM dialect the global holds an actual value.
712 /// This difference is handled by `spv.mlir.addressof` and
713 /// `llvm.mlir.addressof`ops that both return a pointer.
714 class GlobalVariablePattern
715 : public SPIRVToLLVMConversion<spirv::GlobalVariableOp> {
716 public:
717 using SPIRVToLLVMConversion<spirv::GlobalVariableOp>::SPIRVToLLVMConversion;
718
719 LogicalResult
matchAndRewrite(spirv::GlobalVariableOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const720 matchAndRewrite(spirv::GlobalVariableOp op, OpAdaptor adaptor,
721 ConversionPatternRewriter &rewriter) const override {
722 // Currently, there is no support of initialization with a constant value in
723 // SPIR-V dialect. Specialization constants are not considered as well.
724 if (op.initializer())
725 return failure();
726
727 auto srcType = op.type().cast<spirv::PointerType>();
728 auto dstType = typeConverter.convertType(srcType.getPointeeType());
729 if (!dstType)
730 return failure();
731
732 // Limit conversion to the current invocation only or `StorageBuffer`
733 // required by SPIR-V runner.
734 // This is okay because multiple invocations are not supported yet.
735 auto storageClass = srcType.getStorageClass();
736 switch (storageClass) {
737 case spirv::StorageClass::Input:
738 case spirv::StorageClass::Private:
739 case spirv::StorageClass::Output:
740 case spirv::StorageClass::StorageBuffer:
741 case spirv::StorageClass::UniformConstant:
742 break;
743 default:
744 return failure();
745 }
746
747 // LLVM dialect spec: "If the global value is a constant, storing into it is
748 // not allowed.". This corresponds to SPIR-V 'Input' and 'UniformConstant'
749 // storage class that is read-only.
750 bool isConstant = (storageClass == spirv::StorageClass::Input) ||
751 (storageClass == spirv::StorageClass::UniformConstant);
752 // SPIR-V spec: "By default, functions and global variables are private to a
753 // module and cannot be accessed by other modules. However, a module may be
754 // written to export or import functions and global (module scope)
755 // variables.". Therefore, map 'Private' storage class to private linkage,
756 // 'Input' and 'Output' to external linkage.
757 auto linkage = storageClass == spirv::StorageClass::Private
758 ? LLVM::Linkage::Private
759 : LLVM::Linkage::External;
760 auto newGlobalOp = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
761 op, dstType, isConstant, linkage, op.sym_name(), Attribute(),
762 /*alignment=*/0);
763
764 // Attach location attribute if applicable
765 if (op.locationAttr())
766 newGlobalOp->setAttr(op.locationAttrName(), op.locationAttr());
767
768 return success();
769 }
770 };
771
772 /// Converts SPIR-V cast ops that do not have straightforward LLVM
773 /// equivalent in LLVM dialect.
774 template <typename SPIRVOp, typename LLVMExtOp, typename LLVMTruncOp>
775 class IndirectCastPattern : public SPIRVToLLVMConversion<SPIRVOp> {
776 public:
777 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
778
779 LogicalResult
matchAndRewrite(SPIRVOp operation,typename SPIRVOp::Adaptor adaptor,ConversionPatternRewriter & rewriter) const780 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
781 ConversionPatternRewriter &rewriter) const override {
782
783 Type fromType = operation.operand().getType();
784 Type toType = operation.getType();
785
786 auto dstType = this->typeConverter.convertType(toType);
787 if (!dstType)
788 return failure();
789
790 if (getBitWidth(fromType) < getBitWidth(toType)) {
791 rewriter.template replaceOpWithNewOp<LLVMExtOp>(operation, dstType,
792 adaptor.getOperands());
793 return success();
794 }
795 if (getBitWidth(fromType) > getBitWidth(toType)) {
796 rewriter.template replaceOpWithNewOp<LLVMTruncOp>(operation, dstType,
797 adaptor.getOperands());
798 return success();
799 }
800 return failure();
801 }
802 };
803
804 class FunctionCallPattern
805 : public SPIRVToLLVMConversion<spirv::FunctionCallOp> {
806 public:
807 using SPIRVToLLVMConversion<spirv::FunctionCallOp>::SPIRVToLLVMConversion;
808
809 LogicalResult
matchAndRewrite(spirv::FunctionCallOp callOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const810 matchAndRewrite(spirv::FunctionCallOp callOp, OpAdaptor adaptor,
811 ConversionPatternRewriter &rewriter) const override {
812 if (callOp.getNumResults() == 0) {
813 rewriter.replaceOpWithNewOp<LLVM::CallOp>(
814 callOp, llvm::None, adaptor.getOperands(), callOp->getAttrs());
815 return success();
816 }
817
818 // Function returns a single result.
819 auto dstType = typeConverter.convertType(callOp.getType(0));
820 rewriter.replaceOpWithNewOp<LLVM::CallOp>(
821 callOp, dstType, adaptor.getOperands(), callOp->getAttrs());
822 return success();
823 }
824 };
825
826 /// Converts SPIR-V floating-point comparisons to llvm.fcmp "predicate"
827 template <typename SPIRVOp, LLVM::FCmpPredicate predicate>
828 class FComparePattern : public SPIRVToLLVMConversion<SPIRVOp> {
829 public:
830 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
831
832 LogicalResult
matchAndRewrite(SPIRVOp operation,typename SPIRVOp::Adaptor adaptor,ConversionPatternRewriter & rewriter) const833 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
834 ConversionPatternRewriter &rewriter) const override {
835
836 auto dstType = this->typeConverter.convertType(operation.getType());
837 if (!dstType)
838 return failure();
839
840 rewriter.template replaceOpWithNewOp<LLVM::FCmpOp>(
841 operation, dstType, predicate, operation.operand1(),
842 operation.operand2());
843 return success();
844 }
845 };
846
847 /// Converts SPIR-V integer comparisons to llvm.icmp "predicate"
848 template <typename SPIRVOp, LLVM::ICmpPredicate predicate>
849 class IComparePattern : public SPIRVToLLVMConversion<SPIRVOp> {
850 public:
851 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
852
853 LogicalResult
matchAndRewrite(SPIRVOp operation,typename SPIRVOp::Adaptor adaptor,ConversionPatternRewriter & rewriter) const854 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
855 ConversionPatternRewriter &rewriter) const override {
856
857 auto dstType = this->typeConverter.convertType(operation.getType());
858 if (!dstType)
859 return failure();
860
861 rewriter.template replaceOpWithNewOp<LLVM::ICmpOp>(
862 operation, dstType, predicate, operation.operand1(),
863 operation.operand2());
864 return success();
865 }
866 };
867
868 class InverseSqrtPattern
869 : public SPIRVToLLVMConversion<spirv::GLInverseSqrtOp> {
870 public:
871 using SPIRVToLLVMConversion<spirv::GLInverseSqrtOp>::SPIRVToLLVMConversion;
872
873 LogicalResult
matchAndRewrite(spirv::GLInverseSqrtOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const874 matchAndRewrite(spirv::GLInverseSqrtOp op, OpAdaptor adaptor,
875 ConversionPatternRewriter &rewriter) const override {
876 auto srcType = op.getType();
877 auto dstType = typeConverter.convertType(srcType);
878 if (!dstType)
879 return failure();
880
881 Location loc = op.getLoc();
882 Value one = createFPConstant(loc, srcType, dstType, rewriter, 1.0);
883 Value sqrt = rewriter.create<LLVM::SqrtOp>(loc, dstType, op.operand());
884 rewriter.replaceOpWithNewOp<LLVM::FDivOp>(op, dstType, one, sqrt);
885 return success();
886 }
887 };
888
889 /// Converts `spv.Load` and `spv.Store` to LLVM dialect.
890 template <typename SPIRVOp>
891 class LoadStorePattern : public SPIRVToLLVMConversion<SPIRVOp> {
892 public:
893 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
894
895 LogicalResult
matchAndRewrite(SPIRVOp op,typename SPIRVOp::Adaptor adaptor,ConversionPatternRewriter & rewriter) const896 matchAndRewrite(SPIRVOp op, typename SPIRVOp::Adaptor adaptor,
897 ConversionPatternRewriter &rewriter) const override {
898 if (!op.memory_access()) {
899 return replaceWithLoadOrStore(op, adaptor.getOperands(), rewriter,
900 this->typeConverter, /*alignment=*/0,
901 /*isVolatile=*/false,
902 /*isNonTemporal=*/false);
903 }
904 auto memoryAccess = *op.memory_access();
905 switch (memoryAccess) {
906 case spirv::MemoryAccess::Aligned:
907 case spirv::MemoryAccess::None:
908 case spirv::MemoryAccess::Nontemporal:
909 case spirv::MemoryAccess::Volatile: {
910 unsigned alignment =
911 memoryAccess == spirv::MemoryAccess::Aligned ? *op.alignment() : 0;
912 bool isNonTemporal = memoryAccess == spirv::MemoryAccess::Nontemporal;
913 bool isVolatile = memoryAccess == spirv::MemoryAccess::Volatile;
914 return replaceWithLoadOrStore(op, adaptor.getOperands(), rewriter,
915 this->typeConverter, alignment, isVolatile,
916 isNonTemporal);
917 }
918 default:
919 // There is no support of other memory access attributes.
920 return failure();
921 }
922 }
923 };
924
925 /// Converts `spv.Not` and `spv.LogicalNot` into LLVM dialect.
926 template <typename SPIRVOp>
927 class NotPattern : public SPIRVToLLVMConversion<SPIRVOp> {
928 public:
929 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
930
931 LogicalResult
matchAndRewrite(SPIRVOp notOp,typename SPIRVOp::Adaptor adaptor,ConversionPatternRewriter & rewriter) const932 matchAndRewrite(SPIRVOp notOp, typename SPIRVOp::Adaptor adaptor,
933 ConversionPatternRewriter &rewriter) const override {
934 auto srcType = notOp.getType();
935 auto dstType = this->typeConverter.convertType(srcType);
936 if (!dstType)
937 return failure();
938
939 Location loc = notOp.getLoc();
940 IntegerAttr minusOne = minusOneIntegerAttribute(srcType, rewriter);
941 auto mask = srcType.template isa<VectorType>()
942 ? rewriter.create<LLVM::ConstantOp>(
943 loc, dstType,
944 SplatElementsAttr::get(
945 srcType.template cast<VectorType>(), minusOne))
946 : rewriter.create<LLVM::ConstantOp>(loc, dstType, minusOne);
947 rewriter.template replaceOpWithNewOp<LLVM::XOrOp>(notOp, dstType,
948 notOp.operand(), mask);
949 return success();
950 }
951 };
952
953 /// A template pattern that erases the given `SPIRVOp`.
954 template <typename SPIRVOp>
955 class ErasePattern : public SPIRVToLLVMConversion<SPIRVOp> {
956 public:
957 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
958
959 LogicalResult
matchAndRewrite(SPIRVOp op,typename SPIRVOp::Adaptor adaptor,ConversionPatternRewriter & rewriter) const960 matchAndRewrite(SPIRVOp op, typename SPIRVOp::Adaptor adaptor,
961 ConversionPatternRewriter &rewriter) const override {
962 rewriter.eraseOp(op);
963 return success();
964 }
965 };
966
967 class ReturnPattern : public SPIRVToLLVMConversion<spirv::ReturnOp> {
968 public:
969 using SPIRVToLLVMConversion<spirv::ReturnOp>::SPIRVToLLVMConversion;
970
971 LogicalResult
matchAndRewrite(spirv::ReturnOp returnOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const972 matchAndRewrite(spirv::ReturnOp returnOp, OpAdaptor adaptor,
973 ConversionPatternRewriter &rewriter) const override {
974 rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnOp, ArrayRef<Type>(),
975 ArrayRef<Value>());
976 return success();
977 }
978 };
979
980 class ReturnValuePattern : public SPIRVToLLVMConversion<spirv::ReturnValueOp> {
981 public:
982 using SPIRVToLLVMConversion<spirv::ReturnValueOp>::SPIRVToLLVMConversion;
983
984 LogicalResult
matchAndRewrite(spirv::ReturnValueOp returnValueOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const985 matchAndRewrite(spirv::ReturnValueOp returnValueOp, OpAdaptor adaptor,
986 ConversionPatternRewriter &rewriter) const override {
987 rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnValueOp, ArrayRef<Type>(),
988 adaptor.getOperands());
989 return success();
990 }
991 };
992
993 /// Converts `spv.mlir.loop` to LLVM dialect. All blocks within selection should
994 /// be reachable for conversion to succeed. The structure of the loop in LLVM
995 /// dialect will be the following:
996 ///
997 /// +------------------------------------+
998 /// | <code before spv.mlir.loop> |
999 /// | llvm.br ^header |
1000 /// +------------------------------------+
1001 /// |
1002 /// +----------------+ |
1003 /// | | |
1004 /// | V V
1005 /// | +------------------------------------+
1006 /// | | ^header: |
1007 /// | | <header code> |
1008 /// | | llvm.cond_br %cond, ^body, ^exit |
1009 /// | +------------------------------------+
1010 /// | |
1011 /// | |----------------------+
1012 /// | | |
1013 /// | V |
1014 /// | +------------------------------------+ |
1015 /// | | ^body: | |
1016 /// | | <body code> | |
1017 /// | | llvm.br ^continue | |
1018 /// | +------------------------------------+ |
1019 /// | | |
1020 /// | V |
1021 /// | +------------------------------------+ |
1022 /// | | ^continue: | |
1023 /// | | <continue code> | |
1024 /// | | llvm.br ^header | |
1025 /// | +------------------------------------+ |
1026 /// | | |
1027 /// +---------------+ +----------------------+
1028 /// |
1029 /// V
1030 /// +------------------------------------+
1031 /// | ^exit: |
1032 /// | llvm.br ^remaining |
1033 /// +------------------------------------+
1034 /// |
1035 /// V
1036 /// +------------------------------------+
1037 /// | ^remaining: |
1038 /// | <code after spv.mlir.loop> |
1039 /// +------------------------------------+
1040 ///
1041 class LoopPattern : public SPIRVToLLVMConversion<spirv::LoopOp> {
1042 public:
1043 using SPIRVToLLVMConversion<spirv::LoopOp>::SPIRVToLLVMConversion;
1044
1045 LogicalResult
matchAndRewrite(spirv::LoopOp loopOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const1046 matchAndRewrite(spirv::LoopOp loopOp, OpAdaptor adaptor,
1047 ConversionPatternRewriter &rewriter) const override {
1048 // There is no support of loop control at the moment.
1049 if (loopOp.loop_control() != spirv::LoopControl::None)
1050 return failure();
1051
1052 Location loc = loopOp.getLoc();
1053
1054 // Split the current block after `spv.mlir.loop`. The remaining ops will be
1055 // used in `endBlock`.
1056 Block *currentBlock = rewriter.getBlock();
1057 auto position = Block::iterator(loopOp);
1058 Block *endBlock = rewriter.splitBlock(currentBlock, position);
1059
1060 // Remove entry block and create a branch in the current block going to the
1061 // header block.
1062 Block *entryBlock = loopOp.getEntryBlock();
1063 assert(entryBlock->getOperations().size() == 1);
1064 auto brOp = dyn_cast<spirv::BranchOp>(entryBlock->getOperations().front());
1065 if (!brOp)
1066 return failure();
1067 Block *headerBlock = loopOp.getHeaderBlock();
1068 rewriter.setInsertionPointToEnd(currentBlock);
1069 rewriter.create<LLVM::BrOp>(loc, brOp.getBlockArguments(), headerBlock);
1070 rewriter.eraseBlock(entryBlock);
1071
1072 // Branch from merge block to end block.
1073 Block *mergeBlock = loopOp.getMergeBlock();
1074 Operation *terminator = mergeBlock->getTerminator();
1075 ValueRange terminatorOperands = terminator->getOperands();
1076 rewriter.setInsertionPointToEnd(mergeBlock);
1077 rewriter.create<LLVM::BrOp>(loc, terminatorOperands, endBlock);
1078
1079 rewriter.inlineRegionBefore(loopOp.body(), endBlock);
1080 rewriter.replaceOp(loopOp, endBlock->getArguments());
1081 return success();
1082 }
1083 };
1084
1085 /// Converts `spv.mlir.selection` with `spv.BranchConditional` in its header
1086 /// block. All blocks within selection should be reachable for conversion to
1087 /// succeed.
1088 class SelectionPattern : public SPIRVToLLVMConversion<spirv::SelectionOp> {
1089 public:
1090 using SPIRVToLLVMConversion<spirv::SelectionOp>::SPIRVToLLVMConversion;
1091
1092 LogicalResult
matchAndRewrite(spirv::SelectionOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const1093 matchAndRewrite(spirv::SelectionOp op, OpAdaptor adaptor,
1094 ConversionPatternRewriter &rewriter) const override {
1095 // There is no support for `Flatten` or `DontFlatten` selection control at
1096 // the moment. This are just compiler hints and can be performed during the
1097 // optimization passes.
1098 if (op.selection_control() != spirv::SelectionControl::None)
1099 return failure();
1100
1101 // `spv.mlir.selection` should have at least two blocks: one selection
1102 // header block and one merge block. If no blocks are present, or control
1103 // flow branches straight to merge block (two blocks are present), the op is
1104 // redundant and it is erased.
1105 if (op.body().getBlocks().size() <= 2) {
1106 rewriter.eraseOp(op);
1107 return success();
1108 }
1109
1110 Location loc = op.getLoc();
1111
1112 // Split the current block after `spv.mlir.selection`. The remaining ops
1113 // will be used in `continueBlock`.
1114 auto *currentBlock = rewriter.getInsertionBlock();
1115 rewriter.setInsertionPointAfter(op);
1116 auto position = rewriter.getInsertionPoint();
1117 auto *continueBlock = rewriter.splitBlock(currentBlock, position);
1118
1119 // Extract conditional branch information from the header block. By SPIR-V
1120 // dialect spec, it should contain `spv.BranchConditional` or `spv.Switch`
1121 // op. Note that `spv.Switch op` is not supported at the moment in the
1122 // SPIR-V dialect. Remove this block when finished.
1123 auto *headerBlock = op.getHeaderBlock();
1124 assert(headerBlock->getOperations().size() == 1);
1125 auto condBrOp = dyn_cast<spirv::BranchConditionalOp>(
1126 headerBlock->getOperations().front());
1127 if (!condBrOp)
1128 return failure();
1129 rewriter.eraseBlock(headerBlock);
1130
1131 // Branch from merge block to continue block.
1132 auto *mergeBlock = op.getMergeBlock();
1133 Operation *terminator = mergeBlock->getTerminator();
1134 ValueRange terminatorOperands = terminator->getOperands();
1135 rewriter.setInsertionPointToEnd(mergeBlock);
1136 rewriter.create<LLVM::BrOp>(loc, terminatorOperands, continueBlock);
1137
1138 // Link current block to `true` and `false` blocks within the selection.
1139 Block *trueBlock = condBrOp.getTrueBlock();
1140 Block *falseBlock = condBrOp.getFalseBlock();
1141 rewriter.setInsertionPointToEnd(currentBlock);
1142 rewriter.create<LLVM::CondBrOp>(loc, condBrOp.condition(), trueBlock,
1143 condBrOp.trueTargetOperands(), falseBlock,
1144 condBrOp.falseTargetOperands());
1145
1146 rewriter.inlineRegionBefore(op.body(), continueBlock);
1147 rewriter.replaceOp(op, continueBlock->getArguments());
1148 return success();
1149 }
1150 };
1151
1152 /// Converts SPIR-V shift ops to LLVM shift ops. Since LLVM dialect
1153 /// puts a restriction on `Shift` and `Base` to have the same bit width,
1154 /// `Shift` is zero or sign extended to match this specification. Cases when
1155 /// `Shift` bit width > `Base` bit width are considered to be illegal.
1156 template <typename SPIRVOp, typename LLVMOp>
1157 class ShiftPattern : public SPIRVToLLVMConversion<SPIRVOp> {
1158 public:
1159 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
1160
1161 LogicalResult
matchAndRewrite(SPIRVOp operation,typename SPIRVOp::Adaptor adaptor,ConversionPatternRewriter & rewriter) const1162 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
1163 ConversionPatternRewriter &rewriter) const override {
1164
1165 auto dstType = this->typeConverter.convertType(operation.getType());
1166 if (!dstType)
1167 return failure();
1168
1169 Type op1Type = operation.operand1().getType();
1170 Type op2Type = operation.operand2().getType();
1171
1172 if (op1Type == op2Type) {
1173 rewriter.template replaceOpWithNewOp<LLVMOp>(operation, dstType,
1174 adaptor.getOperands());
1175 return success();
1176 }
1177
1178 Location loc = operation.getLoc();
1179 Value extended;
1180 if (isUnsignedIntegerOrVector(op2Type)) {
1181 extended = rewriter.template create<LLVM::ZExtOp>(loc, dstType,
1182 adaptor.operand2());
1183 } else {
1184 extended = rewriter.template create<LLVM::SExtOp>(loc, dstType,
1185 adaptor.operand2());
1186 }
1187 Value result = rewriter.template create<LLVMOp>(
1188 loc, dstType, adaptor.operand1(), extended);
1189 rewriter.replaceOp(operation, result);
1190 return success();
1191 }
1192 };
1193
1194 class TanPattern : public SPIRVToLLVMConversion<spirv::GLTanOp> {
1195 public:
1196 using SPIRVToLLVMConversion<spirv::GLTanOp>::SPIRVToLLVMConversion;
1197
1198 LogicalResult
matchAndRewrite(spirv::GLTanOp tanOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const1199 matchAndRewrite(spirv::GLTanOp tanOp, OpAdaptor adaptor,
1200 ConversionPatternRewriter &rewriter) const override {
1201 auto dstType = typeConverter.convertType(tanOp.getType());
1202 if (!dstType)
1203 return failure();
1204
1205 Location loc = tanOp.getLoc();
1206 Value sin = rewriter.create<LLVM::SinOp>(loc, dstType, tanOp.operand());
1207 Value cos = rewriter.create<LLVM::CosOp>(loc, dstType, tanOp.operand());
1208 rewriter.replaceOpWithNewOp<LLVM::FDivOp>(tanOp, dstType, sin, cos);
1209 return success();
1210 }
1211 };
1212
1213 /// Convert `spv.Tanh` to
1214 ///
1215 /// exp(2x) - 1
1216 /// -----------
1217 /// exp(2x) + 1
1218 ///
1219 class TanhPattern : public SPIRVToLLVMConversion<spirv::GLTanhOp> {
1220 public:
1221 using SPIRVToLLVMConversion<spirv::GLTanhOp>::SPIRVToLLVMConversion;
1222
1223 LogicalResult
matchAndRewrite(spirv::GLTanhOp tanhOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const1224 matchAndRewrite(spirv::GLTanhOp tanhOp, OpAdaptor adaptor,
1225 ConversionPatternRewriter &rewriter) const override {
1226 auto srcType = tanhOp.getType();
1227 auto dstType = typeConverter.convertType(srcType);
1228 if (!dstType)
1229 return failure();
1230
1231 Location loc = tanhOp.getLoc();
1232 Value two = createFPConstant(loc, srcType, dstType, rewriter, 2.0);
1233 Value multiplied =
1234 rewriter.create<LLVM::FMulOp>(loc, dstType, two, tanhOp.operand());
1235 Value exponential = rewriter.create<LLVM::ExpOp>(loc, dstType, multiplied);
1236 Value one = createFPConstant(loc, srcType, dstType, rewriter, 1.0);
1237 Value numerator =
1238 rewriter.create<LLVM::FSubOp>(loc, dstType, exponential, one);
1239 Value denominator =
1240 rewriter.create<LLVM::FAddOp>(loc, dstType, exponential, one);
1241 rewriter.replaceOpWithNewOp<LLVM::FDivOp>(tanhOp, dstType, numerator,
1242 denominator);
1243 return success();
1244 }
1245 };
1246
1247 class VariablePattern : public SPIRVToLLVMConversion<spirv::VariableOp> {
1248 public:
1249 using SPIRVToLLVMConversion<spirv::VariableOp>::SPIRVToLLVMConversion;
1250
1251 LogicalResult
matchAndRewrite(spirv::VariableOp varOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const1252 matchAndRewrite(spirv::VariableOp varOp, OpAdaptor adaptor,
1253 ConversionPatternRewriter &rewriter) const override {
1254 auto srcType = varOp.getType();
1255 // Initialization is supported for scalars and vectors only.
1256 auto pointerTo = srcType.cast<spirv::PointerType>().getPointeeType();
1257 auto init = varOp.initializer();
1258 if (init && !pointerTo.isIntOrFloat() && !pointerTo.isa<VectorType>())
1259 return failure();
1260
1261 auto dstType = typeConverter.convertType(srcType);
1262 if (!dstType)
1263 return failure();
1264
1265 Location loc = varOp.getLoc();
1266 Value size = createI32ConstantOf(loc, rewriter, 1);
1267 if (!init) {
1268 rewriter.replaceOpWithNewOp<LLVM::AllocaOp>(varOp, dstType, size);
1269 return success();
1270 }
1271 Value allocated = rewriter.create<LLVM::AllocaOp>(loc, dstType, size);
1272 rewriter.create<LLVM::StoreOp>(loc, adaptor.initializer(), allocated);
1273 rewriter.replaceOp(varOp, allocated);
1274 return success();
1275 }
1276 };
1277
1278 //===----------------------------------------------------------------------===//
1279 // FuncOp conversion
1280 //===----------------------------------------------------------------------===//
1281
1282 class FuncConversionPattern : public SPIRVToLLVMConversion<spirv::FuncOp> {
1283 public:
1284 using SPIRVToLLVMConversion<spirv::FuncOp>::SPIRVToLLVMConversion;
1285
1286 LogicalResult
matchAndRewrite(spirv::FuncOp funcOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const1287 matchAndRewrite(spirv::FuncOp funcOp, OpAdaptor adaptor,
1288 ConversionPatternRewriter &rewriter) const override {
1289
1290 // Convert function signature. At the moment LLVMType converter is enough
1291 // for currently supported types.
1292 auto funcType = funcOp.getFunctionType();
1293 TypeConverter::SignatureConversion signatureConverter(
1294 funcType.getNumInputs());
1295 auto llvmType = typeConverter.convertFunctionSignature(
1296 funcType, /*isVariadic=*/false, signatureConverter);
1297 if (!llvmType)
1298 return failure();
1299
1300 // Create a new `LLVMFuncOp`
1301 Location loc = funcOp.getLoc();
1302 StringRef name = funcOp.getName();
1303 auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(loc, name, llvmType);
1304
1305 // Convert SPIR-V Function Control to equivalent LLVM function attribute
1306 MLIRContext *context = funcOp.getContext();
1307 switch (funcOp.function_control()) {
1308 #define DISPATCH(functionControl, llvmAttr) \
1309 case functionControl: \
1310 newFuncOp->setAttr("passthrough", ArrayAttr::get(context, {llvmAttr})); \
1311 break;
1312
1313 DISPATCH(spirv::FunctionControl::Inline,
1314 StringAttr::get(context, "alwaysinline"));
1315 DISPATCH(spirv::FunctionControl::DontInline,
1316 StringAttr::get(context, "noinline"));
1317 DISPATCH(spirv::FunctionControl::Pure,
1318 StringAttr::get(context, "readonly"));
1319 DISPATCH(spirv::FunctionControl::Const,
1320 StringAttr::get(context, "readnone"));
1321
1322 #undef DISPATCH
1323
1324 // Default: if `spirv::FunctionControl::None`, then no attributes are
1325 // needed.
1326 default:
1327 break;
1328 }
1329
1330 rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
1331 newFuncOp.end());
1332 if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), typeConverter,
1333 &signatureConverter))) {
1334 return failure();
1335 }
1336 rewriter.eraseOp(funcOp);
1337 return success();
1338 }
1339 };
1340
1341 //===----------------------------------------------------------------------===//
1342 // ModuleOp conversion
1343 //===----------------------------------------------------------------------===//
1344
1345 class ModuleConversionPattern : public SPIRVToLLVMConversion<spirv::ModuleOp> {
1346 public:
1347 using SPIRVToLLVMConversion<spirv::ModuleOp>::SPIRVToLLVMConversion;
1348
1349 LogicalResult
matchAndRewrite(spirv::ModuleOp spvModuleOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const1350 matchAndRewrite(spirv::ModuleOp spvModuleOp, OpAdaptor adaptor,
1351 ConversionPatternRewriter &rewriter) const override {
1352
1353 auto newModuleOp =
1354 rewriter.create<ModuleOp>(spvModuleOp.getLoc(), spvModuleOp.getName());
1355 rewriter.inlineRegionBefore(spvModuleOp.getRegion(), newModuleOp.getBody());
1356
1357 // Remove the terminator block that was automatically added by builder
1358 rewriter.eraseBlock(&newModuleOp.getBodyRegion().back());
1359 rewriter.eraseOp(spvModuleOp);
1360 return success();
1361 }
1362 };
1363
1364 //===----------------------------------------------------------------------===//
1365 // VectorShuffleOp conversion
1366 //===----------------------------------------------------------------------===//
1367
1368 class VectorShufflePattern
1369 : public SPIRVToLLVMConversion<spirv::VectorShuffleOp> {
1370 public:
1371 using SPIRVToLLVMConversion<spirv::VectorShuffleOp>::SPIRVToLLVMConversion;
1372 LogicalResult
matchAndRewrite(spirv::VectorShuffleOp op,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const1373 matchAndRewrite(spirv::VectorShuffleOp op, OpAdaptor adaptor,
1374 ConversionPatternRewriter &rewriter) const override {
1375 Location loc = op.getLoc();
1376 auto components = adaptor.components();
1377 auto vector1 = adaptor.vector1();
1378 auto vector2 = adaptor.vector2();
1379 int vector1Size = vector1.getType().cast<VectorType>().getNumElements();
1380 int vector2Size = vector2.getType().cast<VectorType>().getNumElements();
1381 if (vector1Size == vector2Size) {
1382 rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(op, vector1, vector2,
1383 components);
1384 return success();
1385 }
1386
1387 auto dstType = typeConverter.convertType(op.getType());
1388 auto scalarType = dstType.cast<VectorType>().getElementType();
1389 auto componentsArray = components.getValue();
1390 auto *context = rewriter.getContext();
1391 auto llvmI32Type = IntegerType::get(context, 32);
1392 Value targetOp = rewriter.create<LLVM::UndefOp>(loc, dstType);
1393 for (unsigned i = 0; i < componentsArray.size(); i++) {
1394 if (componentsArray[i].isa<IntegerAttr>())
1395 op.emitError("unable to support non-constant component");
1396
1397 int indexVal = componentsArray[i].cast<IntegerAttr>().getInt();
1398 if (indexVal == -1)
1399 continue;
1400
1401 int offsetVal = 0;
1402 Value baseVector = vector1;
1403 if (indexVal >= vector1Size) {
1404 offsetVal = vector1Size;
1405 baseVector = vector2;
1406 }
1407
1408 Value dstIndex = rewriter.create<LLVM::ConstantOp>(
1409 loc, llvmI32Type, rewriter.getIntegerAttr(rewriter.getI32Type(), i));
1410 Value index = rewriter.create<LLVM::ConstantOp>(
1411 loc, llvmI32Type,
1412 rewriter.getIntegerAttr(rewriter.getI32Type(), indexVal - offsetVal));
1413
1414 auto extractOp = rewriter.create<LLVM::ExtractElementOp>(
1415 loc, scalarType, baseVector, index);
1416 targetOp = rewriter.create<LLVM::InsertElementOp>(loc, dstType, targetOp,
1417 extractOp, dstIndex);
1418 }
1419 rewriter.replaceOp(op, targetOp);
1420 return success();
1421 }
1422 };
1423 } // namespace
1424
1425 //===----------------------------------------------------------------------===//
1426 // Pattern population
1427 //===----------------------------------------------------------------------===//
1428
populateSPIRVToLLVMTypeConversion(LLVMTypeConverter & typeConverter)1429 void mlir::populateSPIRVToLLVMTypeConversion(LLVMTypeConverter &typeConverter) {
1430 typeConverter.addConversion([&](spirv::ArrayType type) {
1431 return convertArrayType(type, typeConverter);
1432 });
1433 typeConverter.addConversion([&](spirv::PointerType type) {
1434 return convertPointerType(type, typeConverter);
1435 });
1436 typeConverter.addConversion([&](spirv::RuntimeArrayType type) {
1437 return convertRuntimeArrayType(type, typeConverter);
1438 });
1439 typeConverter.addConversion([&](spirv::StructType type) {
1440 return convertStructType(type, typeConverter);
1441 });
1442 }
1443
populateSPIRVToLLVMConversionPatterns(LLVMTypeConverter & typeConverter,RewritePatternSet & patterns)1444 void mlir::populateSPIRVToLLVMConversionPatterns(
1445 LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
1446 patterns.add<
1447 // Arithmetic ops
1448 DirectConversionPattern<spirv::IAddOp, LLVM::AddOp>,
1449 DirectConversionPattern<spirv::IMulOp, LLVM::MulOp>,
1450 DirectConversionPattern<spirv::ISubOp, LLVM::SubOp>,
1451 DirectConversionPattern<spirv::FAddOp, LLVM::FAddOp>,
1452 DirectConversionPattern<spirv::FDivOp, LLVM::FDivOp>,
1453 DirectConversionPattern<spirv::FMulOp, LLVM::FMulOp>,
1454 DirectConversionPattern<spirv::FNegateOp, LLVM::FNegOp>,
1455 DirectConversionPattern<spirv::FRemOp, LLVM::FRemOp>,
1456 DirectConversionPattern<spirv::FSubOp, LLVM::FSubOp>,
1457 DirectConversionPattern<spirv::SDivOp, LLVM::SDivOp>,
1458 DirectConversionPattern<spirv::SRemOp, LLVM::SRemOp>,
1459 DirectConversionPattern<spirv::UDivOp, LLVM::UDivOp>,
1460 DirectConversionPattern<spirv::UModOp, LLVM::URemOp>,
1461
1462 // Bitwise ops
1463 BitFieldInsertPattern, BitFieldUExtractPattern, BitFieldSExtractPattern,
1464 DirectConversionPattern<spirv::BitCountOp, LLVM::CtPopOp>,
1465 DirectConversionPattern<spirv::BitReverseOp, LLVM::BitReverseOp>,
1466 DirectConversionPattern<spirv::BitwiseAndOp, LLVM::AndOp>,
1467 DirectConversionPattern<spirv::BitwiseOrOp, LLVM::OrOp>,
1468 DirectConversionPattern<spirv::BitwiseXorOp, LLVM::XOrOp>,
1469 NotPattern<spirv::NotOp>,
1470
1471 // Cast ops
1472 DirectConversionPattern<spirv::BitcastOp, LLVM::BitcastOp>,
1473 DirectConversionPattern<spirv::ConvertFToSOp, LLVM::FPToSIOp>,
1474 DirectConversionPattern<spirv::ConvertFToUOp, LLVM::FPToUIOp>,
1475 DirectConversionPattern<spirv::ConvertSToFOp, LLVM::SIToFPOp>,
1476 DirectConversionPattern<spirv::ConvertUToFOp, LLVM::UIToFPOp>,
1477 IndirectCastPattern<spirv::FConvertOp, LLVM::FPExtOp, LLVM::FPTruncOp>,
1478 IndirectCastPattern<spirv::SConvertOp, LLVM::SExtOp, LLVM::TruncOp>,
1479 IndirectCastPattern<spirv::UConvertOp, LLVM::ZExtOp, LLVM::TruncOp>,
1480
1481 // Comparison ops
1482 IComparePattern<spirv::IEqualOp, LLVM::ICmpPredicate::eq>,
1483 IComparePattern<spirv::INotEqualOp, LLVM::ICmpPredicate::ne>,
1484 FComparePattern<spirv::FOrdEqualOp, LLVM::FCmpPredicate::oeq>,
1485 FComparePattern<spirv::FOrdGreaterThanOp, LLVM::FCmpPredicate::ogt>,
1486 FComparePattern<spirv::FOrdGreaterThanEqualOp, LLVM::FCmpPredicate::oge>,
1487 FComparePattern<spirv::FOrdLessThanEqualOp, LLVM::FCmpPredicate::ole>,
1488 FComparePattern<spirv::FOrdLessThanOp, LLVM::FCmpPredicate::olt>,
1489 FComparePattern<spirv::FOrdNotEqualOp, LLVM::FCmpPredicate::one>,
1490 FComparePattern<spirv::FUnordEqualOp, LLVM::FCmpPredicate::ueq>,
1491 FComparePattern<spirv::FUnordGreaterThanOp, LLVM::FCmpPredicate::ugt>,
1492 FComparePattern<spirv::FUnordGreaterThanEqualOp,
1493 LLVM::FCmpPredicate::uge>,
1494 FComparePattern<spirv::FUnordLessThanEqualOp, LLVM::FCmpPredicate::ule>,
1495 FComparePattern<spirv::FUnordLessThanOp, LLVM::FCmpPredicate::ult>,
1496 FComparePattern<spirv::FUnordNotEqualOp, LLVM::FCmpPredicate::une>,
1497 IComparePattern<spirv::SGreaterThanOp, LLVM::ICmpPredicate::sgt>,
1498 IComparePattern<spirv::SGreaterThanEqualOp, LLVM::ICmpPredicate::sge>,
1499 IComparePattern<spirv::SLessThanEqualOp, LLVM::ICmpPredicate::sle>,
1500 IComparePattern<spirv::SLessThanOp, LLVM::ICmpPredicate::slt>,
1501 IComparePattern<spirv::UGreaterThanOp, LLVM::ICmpPredicate::ugt>,
1502 IComparePattern<spirv::UGreaterThanEqualOp, LLVM::ICmpPredicate::uge>,
1503 IComparePattern<spirv::ULessThanEqualOp, LLVM::ICmpPredicate::ule>,
1504 IComparePattern<spirv::ULessThanOp, LLVM::ICmpPredicate::ult>,
1505
1506 // Constant op
1507 ConstantScalarAndVectorPattern,
1508
1509 // Control Flow ops
1510 BranchConversionPattern, BranchConditionalConversionPattern,
1511 FunctionCallPattern, LoopPattern, SelectionPattern,
1512 ErasePattern<spirv::MergeOp>,
1513
1514 // Entry points and execution mode are handled separately.
1515 ErasePattern<spirv::EntryPointOp>, ExecutionModePattern,
1516
1517 // GLSL extended instruction set ops
1518 DirectConversionPattern<spirv::GLCeilOp, LLVM::FCeilOp>,
1519 DirectConversionPattern<spirv::GLCosOp, LLVM::CosOp>,
1520 DirectConversionPattern<spirv::GLExpOp, LLVM::ExpOp>,
1521 DirectConversionPattern<spirv::GLFAbsOp, LLVM::FAbsOp>,
1522 DirectConversionPattern<spirv::GLFloorOp, LLVM::FFloorOp>,
1523 DirectConversionPattern<spirv::GLFMaxOp, LLVM::MaxNumOp>,
1524 DirectConversionPattern<spirv::GLFMinOp, LLVM::MinNumOp>,
1525 DirectConversionPattern<spirv::GLLogOp, LLVM::LogOp>,
1526 DirectConversionPattern<spirv::GLSinOp, LLVM::SinOp>,
1527 DirectConversionPattern<spirv::GLSMaxOp, LLVM::SMaxOp>,
1528 DirectConversionPattern<spirv::GLSMinOp, LLVM::SMinOp>,
1529 DirectConversionPattern<spirv::GLSqrtOp, LLVM::SqrtOp>,
1530 InverseSqrtPattern, TanPattern, TanhPattern,
1531
1532 // Logical ops
1533 DirectConversionPattern<spirv::LogicalAndOp, LLVM::AndOp>,
1534 DirectConversionPattern<spirv::LogicalOrOp, LLVM::OrOp>,
1535 IComparePattern<spirv::LogicalEqualOp, LLVM::ICmpPredicate::eq>,
1536 IComparePattern<spirv::LogicalNotEqualOp, LLVM::ICmpPredicate::ne>,
1537 NotPattern<spirv::LogicalNotOp>,
1538
1539 // Memory ops
1540 AccessChainPattern, AddressOfPattern, GlobalVariablePattern,
1541 LoadStorePattern<spirv::LoadOp>, LoadStorePattern<spirv::StoreOp>,
1542 VariablePattern,
1543
1544 // Miscellaneous ops
1545 CompositeExtractPattern, CompositeInsertPattern,
1546 DirectConversionPattern<spirv::SelectOp, LLVM::SelectOp>,
1547 DirectConversionPattern<spirv::UndefOp, LLVM::UndefOp>,
1548 VectorShufflePattern,
1549
1550 // Shift ops
1551 ShiftPattern<spirv::ShiftRightArithmeticOp, LLVM::AShrOp>,
1552 ShiftPattern<spirv::ShiftRightLogicalOp, LLVM::LShrOp>,
1553 ShiftPattern<spirv::ShiftLeftLogicalOp, LLVM::ShlOp>,
1554
1555 // Return ops
1556 ReturnPattern, ReturnValuePattern>(patterns.getContext(), typeConverter);
1557 }
1558
populateSPIRVToLLVMFunctionConversionPatterns(LLVMTypeConverter & typeConverter,RewritePatternSet & patterns)1559 void mlir::populateSPIRVToLLVMFunctionConversionPatterns(
1560 LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
1561 patterns.add<FuncConversionPattern>(patterns.getContext(), typeConverter);
1562 }
1563
populateSPIRVToLLVMModuleConversionPatterns(LLVMTypeConverter & typeConverter,RewritePatternSet & patterns)1564 void mlir::populateSPIRVToLLVMModuleConversionPatterns(
1565 LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
1566 patterns.add<ModuleConversionPattern>(patterns.getContext(), typeConverter);
1567 }
1568
1569 //===----------------------------------------------------------------------===//
1570 // Pre-conversion hooks
1571 //===----------------------------------------------------------------------===//
1572
1573 /// Hook for descriptor set and binding number encoding.
1574 static constexpr StringRef kBinding = "binding";
1575 static constexpr StringRef kDescriptorSet = "descriptor_set";
encodeBindAttribute(ModuleOp module)1576 void mlir::encodeBindAttribute(ModuleOp module) {
1577 auto spvModules = module.getOps<spirv::ModuleOp>();
1578 for (auto spvModule : spvModules) {
1579 spvModule.walk([&](spirv::GlobalVariableOp op) {
1580 IntegerAttr descriptorSet =
1581 op->getAttrOfType<IntegerAttr>(kDescriptorSet);
1582 IntegerAttr binding = op->getAttrOfType<IntegerAttr>(kBinding);
1583 // For every global variable in the module, get the ones with descriptor
1584 // set and binding numbers.
1585 if (descriptorSet && binding) {
1586 // Encode these numbers into the variable's symbolic name. If the
1587 // SPIR-V module has a name, add it at the beginning.
1588 auto moduleAndName =
1589 spvModule.getName().has_value()
1590 ? spvModule.getName().value().str() + "_" + op.sym_name().str()
1591 : op.sym_name().str();
1592 std::string name =
1593 llvm::formatv("{0}_descriptor_set{1}_binding{2}", moduleAndName,
1594 std::to_string(descriptorSet.getInt()),
1595 std::to_string(binding.getInt()));
1596 auto nameAttr = StringAttr::get(op->getContext(), name);
1597
1598 // Replace all symbol uses and set the new symbol name. Finally, remove
1599 // descriptor set and binding attributes.
1600 if (failed(SymbolTable::replaceAllSymbolUses(op, nameAttr, spvModule)))
1601 op.emitError("unable to replace all symbol uses for ") << name;
1602 SymbolTable::setSymbolName(op, nameAttr);
1603 op->removeAttr(kDescriptorSet);
1604 op->removeAttr(kBinding);
1605 }
1606 });
1607 }
1608 }
1609