1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2016 6WIND S.A.
4  */
5 
6 #ifndef _RTE_MEMPOOL_H_
7 #define _RTE_MEMPOOL_H_
8 
9 /**
10  * @file
11  * RTE Mempool.
12  *
13  * A memory pool is an allocator of fixed-size object. It is
14  * identified by its name, and uses a ring to store free objects. It
15  * provides some other optional services, like a per-core object
16  * cache, and an alignment helper to ensure that objects are padded
17  * to spread them equally on all RAM channels, ranks, and so on.
18  *
19  * Objects owned by a mempool should never be added in another
20  * mempool. When an object is freed using rte_mempool_put() or
21  * equivalent, the object data is not modified; the user can save some
22  * meta-data in the object data and retrieve them when allocating a
23  * new object.
24  *
25  * Note: the mempool implementation is not preemptible. An lcore must not be
26  * interrupted by another task that uses the same mempool (because it uses a
27  * ring which is not preemptible). Also, usual mempool functions like
28  * rte_mempool_get() or rte_mempool_put() are designed to be called from an EAL
29  * thread due to the internal per-lcore cache. Due to the lack of caching,
30  * rte_mempool_get() or rte_mempool_put() performance will suffer when called
31  * by unregistered non-EAL threads. Instead, unregistered non-EAL threads
32  * should call rte_mempool_generic_get() or rte_mempool_generic_put() with a
33  * user cache created with rte_mempool_cache_create().
34  */
35 
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <stdint.h>
39 #include <errno.h>
40 #include <inttypes.h>
41 #include <sys/queue.h>
42 
43 #include <rte_config.h>
44 #include <rte_spinlock.h>
45 #include <rte_log.h>
46 #include <rte_debug.h>
47 #include <rte_lcore.h>
48 #include <rte_memory.h>
49 #include <rte_branch_prediction.h>
50 #include <rte_ring.h>
51 #include <rte_memcpy.h>
52 #include <rte_common.h>
53 
54 #include "rte_mempool_trace_fp.h"
55 
56 #ifdef __cplusplus
57 extern "C" {
58 #endif
59 
60 #define RTE_MEMPOOL_HEADER_COOKIE1  0xbadbadbadadd2e55ULL /**< Header cookie. */
61 #define RTE_MEMPOOL_HEADER_COOKIE2  0xf2eef2eedadd2e55ULL /**< Header cookie. */
62 #define RTE_MEMPOOL_TRAILER_COOKIE  0xadd2e55badbadbadULL /**< Trailer cookie.*/
63 
64 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
65 /**
66  * A structure that stores the mempool statistics (per-lcore).
67  */
68 struct rte_mempool_debug_stats {
69 	uint64_t put_bulk;         /**< Number of puts. */
70 	uint64_t put_objs;         /**< Number of objects successfully put. */
71 	uint64_t get_success_bulk; /**< Successful allocation number. */
72 	uint64_t get_success_objs; /**< Objects successfully allocated. */
73 	uint64_t get_fail_bulk;    /**< Failed allocation number. */
74 	uint64_t get_fail_objs;    /**< Objects that failed to be allocated. */
75 	/** Successful allocation number of contiguous blocks. */
76 	uint64_t get_success_blks;
77 	/** Failed allocation number of contiguous blocks. */
78 	uint64_t get_fail_blks;
79 } __rte_cache_aligned;
80 #endif
81 
82 /**
83  * A structure that stores a per-core object cache.
84  */
85 struct rte_mempool_cache {
86 	uint32_t size;	      /**< Size of the cache */
87 	uint32_t flushthresh; /**< Threshold before we flush excess elements */
88 	uint32_t len;	      /**< Current cache count */
89 	/*
90 	 * Cache is allocated to this size to allow it to overflow in certain
91 	 * cases to avoid needless emptying of cache.
92 	 */
93 	void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 3]; /**< Cache objects */
94 } __rte_cache_aligned;
95 
96 /**
97  * A structure that stores the size of mempool elements.
98  */
99 struct rte_mempool_objsz {
100 	uint32_t elt_size;     /**< Size of an element. */
101 	uint32_t header_size;  /**< Size of header (before elt). */
102 	uint32_t trailer_size; /**< Size of trailer (after elt). */
103 	uint32_t total_size;
104 	/**< Total size of an object (header + elt + trailer). */
105 };
106 
107 /**< Maximum length of a memory pool's name. */
108 #define RTE_MEMPOOL_NAMESIZE (RTE_RING_NAMESIZE - \
109 			      sizeof(RTE_MEMPOOL_MZ_PREFIX) + 1)
110 #define RTE_MEMPOOL_MZ_PREFIX "MP_"
111 
112 /* "MP_<name>" */
113 #define	RTE_MEMPOOL_MZ_FORMAT	RTE_MEMPOOL_MZ_PREFIX "%s"
114 
115 #define	MEMPOOL_PG_SHIFT_MAX	(sizeof(uintptr_t) * CHAR_BIT - 1)
116 
117 /** Mempool over one chunk of physically continuous memory */
118 #define	MEMPOOL_PG_NUM_DEFAULT	1
119 
120 #ifndef RTE_MEMPOOL_ALIGN
121 /**
122  * Alignment of elements inside mempool.
123  */
124 #define RTE_MEMPOOL_ALIGN	RTE_CACHE_LINE_SIZE
125 #endif
126 
127 #define RTE_MEMPOOL_ALIGN_MASK	(RTE_MEMPOOL_ALIGN - 1)
128 
129 /**
130  * Mempool object header structure
131  *
132  * Each object stored in mempools are prefixed by this header structure,
133  * it allows to retrieve the mempool pointer from the object and to
134  * iterate on all objects attached to a mempool. When debug is enabled,
135  * a cookie is also added in this structure preventing corruptions and
136  * double-frees.
137  */
138 struct rte_mempool_objhdr {
139 	STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */
140 	struct rte_mempool *mp;          /**< The mempool owning the object. */
141 	rte_iova_t iova;                 /**< IO address of the object. */
142 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
143 	uint64_t cookie;                 /**< Debug cookie. */
144 #endif
145 };
146 
147 /**
148  * A list of object headers type
149  */
150 STAILQ_HEAD(rte_mempool_objhdr_list, rte_mempool_objhdr);
151 
152 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
153 
154 /**
155  * Mempool object trailer structure
156  *
157  * In debug mode, each object stored in mempools are suffixed by this
158  * trailer structure containing a cookie preventing memory corruptions.
159  */
160 struct rte_mempool_objtlr {
161 	uint64_t cookie;                 /**< Debug cookie. */
162 };
163 
164 #endif
165 
166 /**
167  * A list of memory where objects are stored
168  */
169 STAILQ_HEAD(rte_mempool_memhdr_list, rte_mempool_memhdr);
170 
171 /**
172  * Callback used to free a memory chunk
173  */
174 typedef void (rte_mempool_memchunk_free_cb_t)(struct rte_mempool_memhdr *memhdr,
175 	void *opaque);
176 
177 /**
178  * Mempool objects memory header structure
179  *
180  * The memory chunks where objects are stored. Each chunk is virtually
181  * and physically contiguous.
182  */
183 struct rte_mempool_memhdr {
184 	STAILQ_ENTRY(rte_mempool_memhdr) next; /**< Next in list. */
185 	struct rte_mempool *mp;  /**< The mempool owning the chunk */
186 	void *addr;              /**< Virtual address of the chunk */
187 	rte_iova_t iova;         /**< IO address of the chunk */
188 	size_t len;              /**< length of the chunk */
189 	rte_mempool_memchunk_free_cb_t *free_cb; /**< Free callback */
190 	void *opaque;            /**< Argument passed to the free callback */
191 };
192 
193 /**
194  * Additional information about the mempool
195  *
196  * The structure is cache-line aligned to avoid ABI breakages in
197  * a number of cases when something small is added.
198  */
199 struct rte_mempool_info {
200 	/** Number of objects in the contiguous block */
201 	unsigned int contig_block_size;
202 } __rte_cache_aligned;
203 
204 /**
205  * The RTE mempool structure.
206  */
207 struct rte_mempool {
208 	/*
209 	 * Note: this field kept the RTE_MEMZONE_NAMESIZE size due to ABI
210 	 * compatibility requirements, it could be changed to
211 	 * RTE_MEMPOOL_NAMESIZE next time the ABI changes
212 	 */
213 	char name[RTE_MEMZONE_NAMESIZE]; /**< Name of mempool. */
214 	RTE_STD_C11
215 	union {
216 		void *pool_data;         /**< Ring or pool to store objects. */
217 		uint64_t pool_id;        /**< External mempool identifier. */
218 	};
219 	void *pool_config;               /**< optional args for ops alloc. */
220 	const struct rte_memzone *mz;    /**< Memzone where pool is alloc'd. */
221 	unsigned int flags;              /**< Flags of the mempool. */
222 	int socket_id;                   /**< Socket id passed at create. */
223 	uint32_t size;                   /**< Max size of the mempool. */
224 	uint32_t cache_size;
225 	/**< Size of per-lcore default local cache. */
226 
227 	uint32_t elt_size;               /**< Size of an element. */
228 	uint32_t header_size;            /**< Size of header (before elt). */
229 	uint32_t trailer_size;           /**< Size of trailer (after elt). */
230 
231 	unsigned private_data_size;      /**< Size of private data. */
232 	/**
233 	 * Index into rte_mempool_ops_table array of mempool ops
234 	 * structs, which contain callback function pointers.
235 	 * We're using an index here rather than pointers to the callbacks
236 	 * to facilitate any secondary processes that may want to use
237 	 * this mempool.
238 	 */
239 	int32_t ops_index;
240 
241 	struct rte_mempool_cache *local_cache; /**< Per-lcore local cache */
242 
243 	uint32_t populated_size;         /**< Number of populated objects. */
244 	struct rte_mempool_objhdr_list elt_list; /**< List of objects in pool */
245 	uint32_t nb_mem_chunks;          /**< Number of memory chunks */
246 	struct rte_mempool_memhdr_list mem_list; /**< List of memory chunks */
247 
248 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
249 	/** Per-lcore statistics. */
250 	struct rte_mempool_debug_stats stats[RTE_MAX_LCORE];
251 #endif
252 }  __rte_cache_aligned;
253 
254 #define MEMPOOL_F_NO_SPREAD      0x0001
255 		/**< Spreading among memory channels not required. */
256 #define MEMPOOL_F_NO_CACHE_ALIGN 0x0002 /**< Do not align objs on cache lines.*/
257 #define MEMPOOL_F_SP_PUT         0x0004 /**< Default put is "single-producer".*/
258 #define MEMPOOL_F_SC_GET         0x0008 /**< Default get is "single-consumer".*/
259 #define MEMPOOL_F_POOL_CREATED   0x0010 /**< Internal: pool is created. */
260 #define MEMPOOL_F_NO_IOVA_CONTIG 0x0020 /**< Don't need IOVA contiguous objs. */
261 
262 /**
263  * @internal When debug is enabled, store some statistics.
264  *
265  * @param mp
266  *   Pointer to the memory pool.
267  * @param name
268  *   Name of the statistics field to increment in the memory pool.
269  * @param n
270  *   Number to add to the object-oriented statistics.
271  */
272 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
273 #define __MEMPOOL_STAT_ADD(mp, name, n) do {                    \
274 		unsigned __lcore_id = rte_lcore_id();           \
275 		if (__lcore_id < RTE_MAX_LCORE) {               \
276 			mp->stats[__lcore_id].name##_objs += n;	\
277 			mp->stats[__lcore_id].name##_bulk += 1;	\
278 		}                                               \
279 	} while(0)
280 #define __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, name, n) do {                    \
281 		unsigned int __lcore_id = rte_lcore_id();       \
282 		if (__lcore_id < RTE_MAX_LCORE) {               \
283 			mp->stats[__lcore_id].name##_blks += n;	\
284 			mp->stats[__lcore_id].name##_bulk += 1;	\
285 		}                                               \
286 	} while (0)
287 #else
288 #define __MEMPOOL_STAT_ADD(mp, name, n) do {} while(0)
289 #define __MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, name, n) do {} while (0)
290 #endif
291 
292 /**
293  * Calculate the size of the mempool header.
294  *
295  * @param mp
296  *   Pointer to the memory pool.
297  * @param cs
298  *   Size of the per-lcore cache.
299  */
300 #define MEMPOOL_HEADER_SIZE(mp, cs) \
301 	(sizeof(*(mp)) + (((cs) == 0) ? 0 : \
302 	(sizeof(struct rte_mempool_cache) * RTE_MAX_LCORE)))
303 
304 /* return the header of a mempool object (internal) */
__mempool_get_header(void * obj)305 static inline struct rte_mempool_objhdr *__mempool_get_header(void *obj)
306 {
307 	return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj,
308 		sizeof(struct rte_mempool_objhdr));
309 }
310 
311 /**
312  * Return a pointer to the mempool owning this object.
313  *
314  * @param obj
315  *   An object that is owned by a pool. If this is not the case,
316  *   the behavior is undefined.
317  * @return
318  *   A pointer to the mempool structure.
319  */
rte_mempool_from_obj(void * obj)320 static inline struct rte_mempool *rte_mempool_from_obj(void *obj)
321 {
322 	struct rte_mempool_objhdr *hdr = __mempool_get_header(obj);
323 	return hdr->mp;
324 }
325 
326 /* return the trailer of a mempool object (internal) */
__mempool_get_trailer(void * obj)327 static inline struct rte_mempool_objtlr *__mempool_get_trailer(void *obj)
328 {
329 	struct rte_mempool *mp = rte_mempool_from_obj(obj);
330 	return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size);
331 }
332 
333 /**
334  * @internal Check and update cookies or panic.
335  *
336  * @param mp
337  *   Pointer to the memory pool.
338  * @param obj_table_const
339  *   Pointer to a table of void * pointers (objects).
340  * @param n
341  *   Index of object in object table.
342  * @param free
343  *   - 0: object is supposed to be allocated, mark it as free
344  *   - 1: object is supposed to be free, mark it as allocated
345  *   - 2: just check that cookie is valid (free or allocated)
346  */
347 void rte_mempool_check_cookies(const struct rte_mempool *mp,
348 	void * const *obj_table_const, unsigned n, int free);
349 
350 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
351 #define __mempool_check_cookies(mp, obj_table_const, n, free) \
352 	rte_mempool_check_cookies(mp, obj_table_const, n, free)
353 #else
354 #define __mempool_check_cookies(mp, obj_table_const, n, free) do {} while(0)
355 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
356 
357 /**
358  * @internal Check contiguous object blocks and update cookies or panic.
359  *
360  * @param mp
361  *   Pointer to the memory pool.
362  * @param first_obj_table_const
363  *   Pointer to a table of void * pointers (first object of the contiguous
364  *   object blocks).
365  * @param n
366  *   Number of contiguous object blocks.
367  * @param free
368  *   - 0: object is supposed to be allocated, mark it as free
369  *   - 1: object is supposed to be free, mark it as allocated
370  *   - 2: just check that cookie is valid (free or allocated)
371  */
372 void rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
373 	void * const *first_obj_table_const, unsigned int n, int free);
374 
375 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
376 #define __mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
377 					      free) \
378 	rte_mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
379 						free)
380 #else
381 #define __mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
382 					      free) \
383 	do {} while (0)
384 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
385 
386 #define RTE_MEMPOOL_OPS_NAMESIZE 32 /**< Max length of ops struct name. */
387 
388 /**
389  * Prototype for implementation specific data provisioning function.
390  *
391  * The function should provide the implementation specific memory for
392  * use by the other mempool ops functions in a given mempool ops struct.
393  * E.g. the default ops provides an instance of the rte_ring for this purpose.
394  * it will most likely point to a different type of data structure, and
395  * will be transparent to the application programmer.
396  * This function should set mp->pool_data.
397  */
398 typedef int (*rte_mempool_alloc_t)(struct rte_mempool *mp);
399 
400 /**
401  * Free the opaque private data pointed to by mp->pool_data pointer.
402  */
403 typedef void (*rte_mempool_free_t)(struct rte_mempool *mp);
404 
405 /**
406  * Enqueue an object into the external pool.
407  */
408 typedef int (*rte_mempool_enqueue_t)(struct rte_mempool *mp,
409 		void * const *obj_table, unsigned int n);
410 
411 /**
412  * Dequeue an object from the external pool.
413  */
414 typedef int (*rte_mempool_dequeue_t)(struct rte_mempool *mp,
415 		void **obj_table, unsigned int n);
416 
417 /**
418  * Dequeue a number of contiguous object blocks from the external pool.
419  */
420 typedef int (*rte_mempool_dequeue_contig_blocks_t)(struct rte_mempool *mp,
421 		 void **first_obj_table, unsigned int n);
422 
423 /**
424  * Return the number of available objects in the external pool.
425  */
426 typedef unsigned (*rte_mempool_get_count)(const struct rte_mempool *mp);
427 
428 /**
429  * Calculate memory size required to store given number of objects.
430  *
431  * If mempool objects are not required to be IOVA-contiguous
432  * (the flag MEMPOOL_F_NO_IOVA_CONTIG is set), min_chunk_size defines
433  * virtually contiguous chunk size. Otherwise, if mempool objects must
434  * be IOVA-contiguous (the flag MEMPOOL_F_NO_IOVA_CONTIG is clear),
435  * min_chunk_size defines IOVA-contiguous chunk size.
436  *
437  * @param[in] mp
438  *   Pointer to the memory pool.
439  * @param[in] obj_num
440  *   Number of objects.
441  * @param[in] pg_shift
442  *   LOG2 of the physical pages size. If set to 0, ignore page boundaries.
443  * @param[out] min_chunk_size
444  *   Location for minimum size of the memory chunk which may be used to
445  *   store memory pool objects.
446  * @param[out] align
447  *   Location for required memory chunk alignment.
448  * @return
449  *   Required memory size.
450  */
451 typedef ssize_t (*rte_mempool_calc_mem_size_t)(const struct rte_mempool *mp,
452 		uint32_t obj_num,  uint32_t pg_shift,
453 		size_t *min_chunk_size, size_t *align);
454 
455 /**
456  * @internal Helper to calculate memory size required to store given
457  * number of objects.
458  *
459  * This function is internal to mempool library and mempool drivers.
460  *
461  * If page boundaries may be ignored, it is just a product of total
462  * object size including header and trailer and number of objects.
463  * Otherwise, it is a number of pages required to store given number of
464  * objects without crossing page boundary.
465  *
466  * Note that if object size is bigger than page size, then it assumes
467  * that pages are grouped in subsets of physically continuous pages big
468  * enough to store at least one object.
469  *
470  * Minimum size of memory chunk is the total element size.
471  * Required memory chunk alignment is the cache line size.
472  *
473  * @param[in] mp
474  *   A pointer to the mempool structure.
475  * @param[in] obj_num
476  *   Number of objects to be added in mempool.
477  * @param[in] pg_shift
478  *   LOG2 of the physical pages size. If set to 0, ignore page boundaries.
479  * @param[in] chunk_reserve
480  *   Amount of memory that must be reserved at the beginning of each page,
481  *   or at the beginning of the memory area if pg_shift is 0.
482  * @param[out] min_chunk_size
483  *   Location for minimum size of the memory chunk which may be used to
484  *   store memory pool objects.
485  * @param[out] align
486  *   Location for required memory chunk alignment.
487  * @return
488  *   Required memory size.
489  */
490 ssize_t rte_mempool_op_calc_mem_size_helper(const struct rte_mempool *mp,
491 		uint32_t obj_num, uint32_t pg_shift, size_t chunk_reserve,
492 		size_t *min_chunk_size, size_t *align);
493 
494 /**
495  * Default way to calculate memory size required to store given number of
496  * objects.
497  *
498  * Equivalent to rte_mempool_op_calc_mem_size_helper(mp, obj_num, pg_shift,
499  * 0, min_chunk_size, align).
500  */
501 ssize_t rte_mempool_op_calc_mem_size_default(const struct rte_mempool *mp,
502 		uint32_t obj_num, uint32_t pg_shift,
503 		size_t *min_chunk_size, size_t *align);
504 
505 /**
506  * Function to be called for each populated object.
507  *
508  * @param[in] mp
509  *   A pointer to the mempool structure.
510  * @param[in] opaque
511  *   An opaque pointer passed to iterator.
512  * @param[in] vaddr
513  *   Object virtual address.
514  * @param[in] iova
515  *   Input/output virtual address of the object or RTE_BAD_IOVA.
516  */
517 typedef void (rte_mempool_populate_obj_cb_t)(struct rte_mempool *mp,
518 		void *opaque, void *vaddr, rte_iova_t iova);
519 
520 /**
521  * Populate memory pool objects using provided memory chunk.
522  *
523  * Populated objects should be enqueued to the pool, e.g. using
524  * rte_mempool_ops_enqueue_bulk().
525  *
526  * If the given IO address is unknown (iova = RTE_BAD_IOVA),
527  * the chunk doesn't need to be physically contiguous (only virtually),
528  * and allocated objects may span two pages.
529  *
530  * @param[in] mp
531  *   A pointer to the mempool structure.
532  * @param[in] max_objs
533  *   Maximum number of objects to be populated.
534  * @param[in] vaddr
535  *   The virtual address of memory that should be used to store objects.
536  * @param[in] iova
537  *   The IO address
538  * @param[in] len
539  *   The length of memory in bytes.
540  * @param[in] obj_cb
541  *   Callback function to be executed for each populated object.
542  * @param[in] obj_cb_arg
543  *   An opaque pointer passed to the callback function.
544  * @return
545  *   The number of objects added on success.
546  *   On error, no objects are populated and a negative errno is returned.
547  */
548 typedef int (*rte_mempool_populate_t)(struct rte_mempool *mp,
549 		unsigned int max_objs,
550 		void *vaddr, rte_iova_t iova, size_t len,
551 		rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
552 
553 /**
554  * Align objects on addresses multiple of total_elt_sz.
555  */
556 #define RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ 0x0001
557 
558 /**
559  * @internal Helper to populate memory pool object using provided memory
560  * chunk: just slice objects one by one, taking care of not
561  * crossing page boundaries.
562  *
563  * If RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ is set in flags, the addresses
564  * of object headers will be aligned on a multiple of total_elt_sz.
565  * This feature is used by octeontx hardware.
566  *
567  * This function is internal to mempool library and mempool drivers.
568  *
569  * @param[in] mp
570  *   A pointer to the mempool structure.
571  * @param[in] flags
572  *   Logical OR of following flags:
573  *   - RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ: align objects on addresses
574  *     multiple of total_elt_sz.
575  * @param[in] max_objs
576  *   Maximum number of objects to be added in mempool.
577  * @param[in] vaddr
578  *   The virtual address of memory that should be used to store objects.
579  * @param[in] iova
580  *   The IO address corresponding to vaddr, or RTE_BAD_IOVA.
581  * @param[in] len
582  *   The length of memory in bytes.
583  * @param[in] obj_cb
584  *   Callback function to be executed for each populated object.
585  * @param[in] obj_cb_arg
586  *   An opaque pointer passed to the callback function.
587  * @return
588  *   The number of objects added in mempool.
589  */
590 int rte_mempool_op_populate_helper(struct rte_mempool *mp,
591 		unsigned int flags, unsigned int max_objs,
592 		void *vaddr, rte_iova_t iova, size_t len,
593 		rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
594 
595 /**
596  * Default way to populate memory pool object using provided memory chunk.
597  *
598  * Equivalent to rte_mempool_op_populate_helper(mp, 0, max_objs, vaddr, iova,
599  * len, obj_cb, obj_cb_arg).
600  */
601 int rte_mempool_op_populate_default(struct rte_mempool *mp,
602 		unsigned int max_objs,
603 		void *vaddr, rte_iova_t iova, size_t len,
604 		rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
605 
606 /**
607  * Get some additional information about a mempool.
608  */
609 typedef int (*rte_mempool_get_info_t)(const struct rte_mempool *mp,
610 		struct rte_mempool_info *info);
611 
612 
613 /** Structure defining mempool operations structure */
614 struct rte_mempool_ops {
615 	char name[RTE_MEMPOOL_OPS_NAMESIZE]; /**< Name of mempool ops struct. */
616 	rte_mempool_alloc_t alloc;       /**< Allocate private data. */
617 	rte_mempool_free_t free;         /**< Free the external pool. */
618 	rte_mempool_enqueue_t enqueue;   /**< Enqueue an object. */
619 	rte_mempool_dequeue_t dequeue;   /**< Dequeue an object. */
620 	rte_mempool_get_count get_count; /**< Get qty of available objs. */
621 	/**
622 	 * Optional callback to calculate memory size required to
623 	 * store specified number of objects.
624 	 */
625 	rte_mempool_calc_mem_size_t calc_mem_size;
626 	/**
627 	 * Optional callback to populate mempool objects using
628 	 * provided memory chunk.
629 	 */
630 	rte_mempool_populate_t populate;
631 	/**
632 	 * Get mempool info
633 	 */
634 	rte_mempool_get_info_t get_info;
635 	/**
636 	 * Dequeue a number of contiguous object blocks.
637 	 */
638 	rte_mempool_dequeue_contig_blocks_t dequeue_contig_blocks;
639 } __rte_cache_aligned;
640 
641 #define RTE_MEMPOOL_MAX_OPS_IDX 16  /**< Max registered ops structs */
642 
643 /**
644  * Structure storing the table of registered ops structs, each of which contain
645  * the function pointers for the mempool ops functions.
646  * Each process has its own storage for this ops struct array so that
647  * the mempools can be shared across primary and secondary processes.
648  * The indices used to access the array are valid across processes, whereas
649  * any function pointers stored directly in the mempool struct would not be.
650  * This results in us simply having "ops_index" in the mempool struct.
651  */
652 struct rte_mempool_ops_table {
653 	rte_spinlock_t sl;     /**< Spinlock for add/delete. */
654 	uint32_t num_ops;      /**< Number of used ops structs in the table. */
655 	/**
656 	 * Storage for all possible ops structs.
657 	 */
658 	struct rte_mempool_ops ops[RTE_MEMPOOL_MAX_OPS_IDX];
659 } __rte_cache_aligned;
660 
661 /** Array of registered ops structs. */
662 extern struct rte_mempool_ops_table rte_mempool_ops_table;
663 
664 /**
665  * @internal Get the mempool ops struct from its index.
666  *
667  * @param ops_index
668  *   The index of the ops struct in the ops struct table. It must be a valid
669  *   index: (0 <= idx < num_ops).
670  * @return
671  *   The pointer to the ops struct in the table.
672  */
673 static inline struct rte_mempool_ops *
rte_mempool_get_ops(int ops_index)674 rte_mempool_get_ops(int ops_index)
675 {
676 	RTE_VERIFY((ops_index >= 0) && (ops_index < RTE_MEMPOOL_MAX_OPS_IDX));
677 
678 	return &rte_mempool_ops_table.ops[ops_index];
679 }
680 
681 /**
682  * @internal Wrapper for mempool_ops alloc callback.
683  *
684  * @param mp
685  *   Pointer to the memory pool.
686  * @return
687  *   - 0: Success; successfully allocated mempool pool_data.
688  *   - <0: Error; code of alloc function.
689  */
690 int
691 rte_mempool_ops_alloc(struct rte_mempool *mp);
692 
693 /**
694  * @internal Wrapper for mempool_ops dequeue callback.
695  *
696  * @param mp
697  *   Pointer to the memory pool.
698  * @param obj_table
699  *   Pointer to a table of void * pointers (objects).
700  * @param n
701  *   Number of objects to get.
702  * @return
703  *   - 0: Success; got n objects.
704  *   - <0: Error; code of dequeue function.
705  */
706 static inline int
rte_mempool_ops_dequeue_bulk(struct rte_mempool * mp,void ** obj_table,unsigned n)707 rte_mempool_ops_dequeue_bulk(struct rte_mempool *mp,
708 		void **obj_table, unsigned n)
709 {
710 	struct rte_mempool_ops *ops;
711 
712 	rte_mempool_trace_ops_dequeue_bulk(mp, obj_table, n);
713 	ops = rte_mempool_get_ops(mp->ops_index);
714 	return ops->dequeue(mp, obj_table, n);
715 }
716 
717 /**
718  * @internal Wrapper for mempool_ops dequeue_contig_blocks callback.
719  *
720  * @param[in] mp
721  *   Pointer to the memory pool.
722  * @param[out] first_obj_table
723  *   Pointer to a table of void * pointers (first objects).
724  * @param[in] n
725  *   Number of blocks to get.
726  * @return
727  *   - 0: Success; got n objects.
728  *   - <0: Error; code of dequeue function.
729  */
730 static inline int
rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool * mp,void ** first_obj_table,unsigned int n)731 rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool *mp,
732 		void **first_obj_table, unsigned int n)
733 {
734 	struct rte_mempool_ops *ops;
735 
736 	ops = rte_mempool_get_ops(mp->ops_index);
737 	RTE_ASSERT(ops->dequeue_contig_blocks != NULL);
738 	rte_mempool_trace_ops_dequeue_contig_blocks(mp, first_obj_table, n);
739 	return ops->dequeue_contig_blocks(mp, first_obj_table, n);
740 }
741 
742 /**
743  * @internal wrapper for mempool_ops enqueue callback.
744  *
745  * @param mp
746  *   Pointer to the memory pool.
747  * @param obj_table
748  *   Pointer to a table of void * pointers (objects).
749  * @param n
750  *   Number of objects to put.
751  * @return
752  *   - 0: Success; n objects supplied.
753  *   - <0: Error; code of enqueue function.
754  */
755 static inline int
rte_mempool_ops_enqueue_bulk(struct rte_mempool * mp,void * const * obj_table,unsigned n)756 rte_mempool_ops_enqueue_bulk(struct rte_mempool *mp, void * const *obj_table,
757 		unsigned n)
758 {
759 	struct rte_mempool_ops *ops;
760 
761 	rte_mempool_trace_ops_enqueue_bulk(mp, obj_table, n);
762 	ops = rte_mempool_get_ops(mp->ops_index);
763 	return ops->enqueue(mp, obj_table, n);
764 }
765 
766 /**
767  * @internal wrapper for mempool_ops get_count callback.
768  *
769  * @param mp
770  *   Pointer to the memory pool.
771  * @return
772  *   The number of available objects in the external pool.
773  */
774 unsigned
775 rte_mempool_ops_get_count(const struct rte_mempool *mp);
776 
777 /**
778  * @internal wrapper for mempool_ops calc_mem_size callback.
779  * API to calculate size of memory required to store specified number of
780  * object.
781  *
782  * @param[in] mp
783  *   Pointer to the memory pool.
784  * @param[in] obj_num
785  *   Number of objects.
786  * @param[in] pg_shift
787  *   LOG2 of the physical pages size. If set to 0, ignore page boundaries.
788  * @param[out] min_chunk_size
789  *   Location for minimum size of the memory chunk which may be used to
790  *   store memory pool objects.
791  * @param[out] align
792  *   Location for required memory chunk alignment.
793  * @return
794  *   Required memory size aligned at page boundary.
795  */
796 ssize_t rte_mempool_ops_calc_mem_size(const struct rte_mempool *mp,
797 				      uint32_t obj_num, uint32_t pg_shift,
798 				      size_t *min_chunk_size, size_t *align);
799 
800 /**
801  * @internal wrapper for mempool_ops populate callback.
802  *
803  * Populate memory pool objects using provided memory chunk.
804  *
805  * @param[in] mp
806  *   A pointer to the mempool structure.
807  * @param[in] max_objs
808  *   Maximum number of objects to be populated.
809  * @param[in] vaddr
810  *   The virtual address of memory that should be used to store objects.
811  * @param[in] iova
812  *   The IO address
813  * @param[in] len
814  *   The length of memory in bytes.
815  * @param[in] obj_cb
816  *   Callback function to be executed for each populated object.
817  * @param[in] obj_cb_arg
818  *   An opaque pointer passed to the callback function.
819  * @return
820  *   The number of objects added on success.
821  *   On error, no objects are populated and a negative errno is returned.
822  */
823 int rte_mempool_ops_populate(struct rte_mempool *mp, unsigned int max_objs,
824 			     void *vaddr, rte_iova_t iova, size_t len,
825 			     rte_mempool_populate_obj_cb_t *obj_cb,
826 			     void *obj_cb_arg);
827 
828 /**
829  * Wrapper for mempool_ops get_info callback.
830  *
831  * @param[in] mp
832  *   Pointer to the memory pool.
833  * @param[out] info
834  *   Pointer to the rte_mempool_info structure
835  * @return
836  *   - 0: Success; The mempool driver supports retrieving supplementary
837  *        mempool information
838  *   - -ENOTSUP - doesn't support get_info ops (valid case).
839  */
840 int rte_mempool_ops_get_info(const struct rte_mempool *mp,
841 			 struct rte_mempool_info *info);
842 
843 /**
844  * @internal wrapper for mempool_ops free callback.
845  *
846  * @param mp
847  *   Pointer to the memory pool.
848  */
849 void
850 rte_mempool_ops_free(struct rte_mempool *mp);
851 
852 /**
853  * Set the ops of a mempool.
854  *
855  * This can only be done on a mempool that is not populated, i.e. just after
856  * a call to rte_mempool_create_empty().
857  *
858  * @param mp
859  *   Pointer to the memory pool.
860  * @param name
861  *   Name of the ops structure to use for this mempool.
862  * @param pool_config
863  *   Opaque data that can be passed by the application to the ops functions.
864  * @return
865  *   - 0: Success; the mempool is now using the requested ops functions.
866  *   - -EINVAL - Invalid ops struct name provided.
867  *   - -EEXIST - mempool already has an ops struct assigned.
868  */
869 int
870 rte_mempool_set_ops_byname(struct rte_mempool *mp, const char *name,
871 		void *pool_config);
872 
873 /**
874  * Register mempool operations.
875  *
876  * @param ops
877  *   Pointer to an ops structure to register.
878  * @return
879  *   - >=0: Success; return the index of the ops struct in the table.
880  *   - -EINVAL - some missing callbacks while registering ops struct.
881  *   - -ENOSPC - the maximum number of ops structs has been reached.
882  */
883 int rte_mempool_register_ops(const struct rte_mempool_ops *ops);
884 
885 /**
886  * Macro to statically register the ops of a mempool handler.
887  * Note that the rte_mempool_register_ops fails silently here when
888  * more than RTE_MEMPOOL_MAX_OPS_IDX is registered.
889  */
890 #define MEMPOOL_REGISTER_OPS(ops)				\
891 	RTE_INIT(mp_hdlr_init_##ops)				\
892 	{							\
893 		rte_mempool_register_ops(&ops);			\
894 	}
895 
896 /**
897  * An object callback function for mempool.
898  *
899  * Used by rte_mempool_create() and rte_mempool_obj_iter().
900  */
901 typedef void (rte_mempool_obj_cb_t)(struct rte_mempool *mp,
902 		void *opaque, void *obj, unsigned obj_idx);
903 typedef rte_mempool_obj_cb_t rte_mempool_obj_ctor_t; /* compat */
904 
905 /**
906  * A memory callback function for mempool.
907  *
908  * Used by rte_mempool_mem_iter().
909  */
910 typedef void (rte_mempool_mem_cb_t)(struct rte_mempool *mp,
911 		void *opaque, struct rte_mempool_memhdr *memhdr,
912 		unsigned mem_idx);
913 
914 /**
915  * A mempool constructor callback function.
916  *
917  * Arguments are the mempool and the opaque pointer given by the user in
918  * rte_mempool_create().
919  */
920 typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
921 
922 /**
923  * Create a new mempool named *name* in memory.
924  *
925  * This function uses ``rte_memzone_reserve()`` to allocate memory. The
926  * pool contains n elements of elt_size. Its size is set to n.
927  *
928  * @param name
929  *   The name of the mempool.
930  * @param n
931  *   The number of elements in the mempool. The optimum size (in terms of
932  *   memory usage) for a mempool is when n is a power of two minus one:
933  *   n = (2^q - 1).
934  * @param elt_size
935  *   The size of each element.
936  * @param cache_size
937  *   If cache_size is non-zero, the rte_mempool library will try to
938  *   limit the accesses to the common lockless pool, by maintaining a
939  *   per-lcore object cache. This argument must be lower or equal to
940  *   RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose
941  *   cache_size to have "n modulo cache_size == 0": if this is
942  *   not the case, some elements will always stay in the pool and will
943  *   never be used. The access to the per-lcore table is of course
944  *   faster than the multi-producer/consumer pool. The cache can be
945  *   disabled if the cache_size argument is set to 0; it can be useful to
946  *   avoid losing objects in cache.
947  * @param private_data_size
948  *   The size of the private data appended after the mempool
949  *   structure. This is useful for storing some private data after the
950  *   mempool structure, as is done for rte_mbuf_pool for example.
951  * @param mp_init
952  *   A function pointer that is called for initialization of the pool,
953  *   before object initialization. The user can initialize the private
954  *   data in this function if needed. This parameter can be NULL if
955  *   not needed.
956  * @param mp_init_arg
957  *   An opaque pointer to data that can be used in the mempool
958  *   constructor function.
959  * @param obj_init
960  *   A function pointer that is called for each object at
961  *   initialization of the pool. The user can set some meta data in
962  *   objects if needed. This parameter can be NULL if not needed.
963  *   The obj_init() function takes the mempool pointer, the init_arg,
964  *   the object pointer and the object number as parameters.
965  * @param obj_init_arg
966  *   An opaque pointer to data that can be used as an argument for
967  *   each call to the object constructor function.
968  * @param socket_id
969  *   The *socket_id* argument is the socket identifier in the case of
970  *   NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
971  *   constraint for the reserved zone.
972  * @param flags
973  *   The *flags* arguments is an OR of following flags:
974  *   - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
975  *     between channels in RAM: the pool allocator will add padding
976  *     between objects depending on the hardware configuration. See
977  *     Memory alignment constraints for details. If this flag is set,
978  *     the allocator will just align them to a cache line.
979  *   - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
980  *     cache-aligned. This flag removes this constraint, and no
981  *     padding will be present between objects. This flag implies
982  *     MEMPOOL_F_NO_SPREAD.
983  *   - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
984  *     when using rte_mempool_put() or rte_mempool_put_bulk() is
985  *     "single-producer". Otherwise, it is "multi-producers".
986  *   - MEMPOOL_F_SC_GET: If this flag is set, the default behavior
987  *     when using rte_mempool_get() or rte_mempool_get_bulk() is
988  *     "single-consumer". Otherwise, it is "multi-consumers".
989  *   - MEMPOOL_F_NO_IOVA_CONTIG: If set, allocated objects won't
990  *     necessarily be contiguous in IO memory.
991  * @return
992  *   The pointer to the new allocated mempool, on success. NULL on error
993  *   with rte_errno set appropriately. Possible rte_errno values include:
994  *    - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
995  *    - E_RTE_SECONDARY - function was called from a secondary process instance
996  *    - EINVAL - cache size provided is too large
997  *    - ENOSPC - the maximum number of memzones has already been allocated
998  *    - EEXIST - a memzone with the same name already exists
999  *    - ENOMEM - no appropriate memory area found in which to create memzone
1000  */
1001 struct rte_mempool *
1002 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
1003 		   unsigned cache_size, unsigned private_data_size,
1004 		   rte_mempool_ctor_t *mp_init, void *mp_init_arg,
1005 		   rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
1006 		   int socket_id, unsigned flags);
1007 
1008 /**
1009  * Create an empty mempool
1010  *
1011  * The mempool is allocated and initialized, but it is not populated: no
1012  * memory is allocated for the mempool elements. The user has to call
1013  * rte_mempool_populate_*() to add memory chunks to the pool. Once
1014  * populated, the user may also want to initialize each object with
1015  * rte_mempool_obj_iter().
1016  *
1017  * @param name
1018  *   The name of the mempool.
1019  * @param n
1020  *   The maximum number of elements that can be added in the mempool.
1021  *   The optimum size (in terms of memory usage) for a mempool is when n
1022  *   is a power of two minus one: n = (2^q - 1).
1023  * @param elt_size
1024  *   The size of each element.
1025  * @param cache_size
1026  *   Size of the cache. See rte_mempool_create() for details.
1027  * @param private_data_size
1028  *   The size of the private data appended after the mempool
1029  *   structure. This is useful for storing some private data after the
1030  *   mempool structure, as is done for rte_mbuf_pool for example.
1031  * @param socket_id
1032  *   The *socket_id* argument is the socket identifier in the case of
1033  *   NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
1034  *   constraint for the reserved zone.
1035  * @param flags
1036  *   Flags controlling the behavior of the mempool. See
1037  *   rte_mempool_create() for details.
1038  * @return
1039  *   The pointer to the new allocated mempool, on success. NULL on error
1040  *   with rte_errno set appropriately. See rte_mempool_create() for details.
1041  */
1042 struct rte_mempool *
1043 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
1044 	unsigned cache_size, unsigned private_data_size,
1045 	int socket_id, unsigned flags);
1046 /**
1047  * Free a mempool
1048  *
1049  * Unlink the mempool from global list, free the memory chunks, and all
1050  * memory referenced by the mempool. The objects must not be used by
1051  * other cores as they will be freed.
1052  *
1053  * @param mp
1054  *   A pointer to the mempool structure.
1055  */
1056 void
1057 rte_mempool_free(struct rte_mempool *mp);
1058 
1059 /**
1060  * Add physically contiguous memory for objects in the pool at init
1061  *
1062  * Add a virtually and physically contiguous memory chunk in the pool
1063  * where objects can be instantiated.
1064  *
1065  * If the given IO address is unknown (iova = RTE_BAD_IOVA),
1066  * the chunk doesn't need to be physically contiguous (only virtually),
1067  * and allocated objects may span two pages.
1068  *
1069  * @param mp
1070  *   A pointer to the mempool structure.
1071  * @param vaddr
1072  *   The virtual address of memory that should be used to store objects.
1073  * @param iova
1074  *   The IO address
1075  * @param len
1076  *   The length of memory in bytes.
1077  * @param free_cb
1078  *   The callback used to free this chunk when destroying the mempool.
1079  * @param opaque
1080  *   An opaque argument passed to free_cb.
1081  * @return
1082  *   The number of objects added on success (strictly positive).
1083  *   On error, the chunk is not added in the memory list of the
1084  *   mempool the following code is returned:
1085  *     (0): not enough room in chunk for one object.
1086  *     (-ENOSPC): mempool is already populated.
1087  *     (-ENOMEM): allocation failure.
1088  */
1089 int rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
1090 	rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
1091 	void *opaque);
1092 
1093 /**
1094  * Add virtually contiguous memory for objects in the pool at init
1095  *
1096  * Add a virtually contiguous memory chunk in the pool where objects can
1097  * be instantiated.
1098  *
1099  * @param mp
1100  *   A pointer to the mempool structure.
1101  * @param addr
1102  *   The virtual address of memory that should be used to store objects.
1103  * @param len
1104  *   The length of memory in bytes.
1105  * @param pg_sz
1106  *   The size of memory pages in this virtual area.
1107  * @param free_cb
1108  *   The callback used to free this chunk when destroying the mempool.
1109  * @param opaque
1110  *   An opaque argument passed to free_cb.
1111  * @return
1112  *   The number of objects added on success (strictly positive).
1113  *   On error, the chunk is not added in the memory list of the
1114  *   mempool the following code is returned:
1115  *     (0): not enough room in chunk for one object.
1116  *     (-ENOSPC): mempool is already populated.
1117  *     (-ENOMEM): allocation failure.
1118  */
1119 int
1120 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
1121 	size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
1122 	void *opaque);
1123 
1124 /**
1125  * Add memory for objects in the pool at init
1126  *
1127  * This is the default function used by rte_mempool_create() to populate
1128  * the mempool. It adds memory allocated using rte_memzone_reserve().
1129  *
1130  * @param mp
1131  *   A pointer to the mempool structure.
1132  * @return
1133  *   The number of objects added on success.
1134  *   On error, the chunk is not added in the memory list of the
1135  *   mempool and a negative errno is returned.
1136  */
1137 int rte_mempool_populate_default(struct rte_mempool *mp);
1138 
1139 /**
1140  * Add memory from anonymous mapping for objects in the pool at init
1141  *
1142  * This function mmap an anonymous memory zone that is locked in
1143  * memory to store the objects of the mempool.
1144  *
1145  * @param mp
1146  *   A pointer to the mempool structure.
1147  * @return
1148  *   The number of objects added on success.
1149  *   On error, 0 is returned, rte_errno is set, and the chunk is not added in
1150  *   the memory list of the mempool.
1151  */
1152 int rte_mempool_populate_anon(struct rte_mempool *mp);
1153 
1154 /**
1155  * Call a function for each mempool element
1156  *
1157  * Iterate across all objects attached to a rte_mempool and call the
1158  * callback function on it.
1159  *
1160  * @param mp
1161  *   A pointer to an initialized mempool.
1162  * @param obj_cb
1163  *   A function pointer that is called for each object.
1164  * @param obj_cb_arg
1165  *   An opaque pointer passed to the callback function.
1166  * @return
1167  *   Number of objects iterated.
1168  */
1169 uint32_t rte_mempool_obj_iter(struct rte_mempool *mp,
1170 	rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg);
1171 
1172 /**
1173  * Call a function for each mempool memory chunk
1174  *
1175  * Iterate across all memory chunks attached to a rte_mempool and call
1176  * the callback function on it.
1177  *
1178  * @param mp
1179  *   A pointer to an initialized mempool.
1180  * @param mem_cb
1181  *   A function pointer that is called for each memory chunk.
1182  * @param mem_cb_arg
1183  *   An opaque pointer passed to the callback function.
1184  * @return
1185  *   Number of memory chunks iterated.
1186  */
1187 uint32_t rte_mempool_mem_iter(struct rte_mempool *mp,
1188 	rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg);
1189 
1190 /**
1191  * Dump the status of the mempool to a file.
1192  *
1193  * @param f
1194  *   A pointer to a file for output
1195  * @param mp
1196  *   A pointer to the mempool structure.
1197  */
1198 void rte_mempool_dump(FILE *f, struct rte_mempool *mp);
1199 
1200 /**
1201  * Create a user-owned mempool cache.
1202  *
1203  * This can be used by unregistered non-EAL threads to enable caching when they
1204  * interact with a mempool.
1205  *
1206  * @param size
1207  *   The size of the mempool cache. See rte_mempool_create()'s cache_size
1208  *   parameter description for more information. The same limits and
1209  *   considerations apply here too.
1210  * @param socket_id
1211  *   The socket identifier in the case of NUMA. The value can be
1212  *   SOCKET_ID_ANY if there is no NUMA constraint for the reserved zone.
1213  */
1214 struct rte_mempool_cache *
1215 rte_mempool_cache_create(uint32_t size, int socket_id);
1216 
1217 /**
1218  * Free a user-owned mempool cache.
1219  *
1220  * @param cache
1221  *   A pointer to the mempool cache.
1222  */
1223 void
1224 rte_mempool_cache_free(struct rte_mempool_cache *cache);
1225 
1226 /**
1227  * Get a pointer to the per-lcore default mempool cache.
1228  *
1229  * @param mp
1230  *   A pointer to the mempool structure.
1231  * @param lcore_id
1232  *   The logical core id.
1233  * @return
1234  *   A pointer to the mempool cache or NULL if disabled or unregistered non-EAL
1235  *   thread.
1236  */
1237 static __rte_always_inline struct rte_mempool_cache *
rte_mempool_default_cache(struct rte_mempool * mp,unsigned lcore_id)1238 rte_mempool_default_cache(struct rte_mempool *mp, unsigned lcore_id)
1239 {
1240 	if (mp->cache_size == 0)
1241 		return NULL;
1242 
1243 	if (lcore_id >= RTE_MAX_LCORE)
1244 		return NULL;
1245 
1246 	rte_mempool_trace_default_cache(mp, lcore_id,
1247 		&mp->local_cache[lcore_id]);
1248 	return &mp->local_cache[lcore_id];
1249 }
1250 
1251 /**
1252  * Flush a user-owned mempool cache to the specified mempool.
1253  *
1254  * @param cache
1255  *   A pointer to the mempool cache.
1256  * @param mp
1257  *   A pointer to the mempool.
1258  */
1259 static __rte_always_inline void
rte_mempool_cache_flush(struct rte_mempool_cache * cache,struct rte_mempool * mp)1260 rte_mempool_cache_flush(struct rte_mempool_cache *cache,
1261 			struct rte_mempool *mp)
1262 {
1263 	if (cache == NULL)
1264 		cache = rte_mempool_default_cache(mp, rte_lcore_id());
1265 	if (cache == NULL || cache->len == 0)
1266 		return;
1267 	rte_mempool_trace_cache_flush(cache, mp);
1268 	rte_mempool_ops_enqueue_bulk(mp, cache->objs, cache->len);
1269 	cache->len = 0;
1270 }
1271 
1272 /**
1273  * @internal Put several objects back in the mempool; used internally.
1274  * @param mp
1275  *   A pointer to the mempool structure.
1276  * @param obj_table
1277  *   A pointer to a table of void * pointers (objects).
1278  * @param n
1279  *   The number of objects to store back in the mempool, must be strictly
1280  *   positive.
1281  * @param cache
1282  *   A pointer to a mempool cache structure. May be NULL if not needed.
1283  */
1284 static __rte_always_inline void
__mempool_generic_put(struct rte_mempool * mp,void * const * obj_table,unsigned int n,struct rte_mempool_cache * cache)1285 __mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
1286 		      unsigned int n, struct rte_mempool_cache *cache)
1287 {
1288 	void **cache_objs;
1289 
1290 	/* increment stat now, adding in mempool always success */
1291 	__MEMPOOL_STAT_ADD(mp, put, n);
1292 
1293 	/* No cache provided or if put would overflow mem allocated for cache */
1294 	if (unlikely(cache == NULL || n > RTE_MEMPOOL_CACHE_MAX_SIZE))
1295 		goto ring_enqueue;
1296 
1297 	cache_objs = &cache->objs[cache->len];
1298 
1299 	/*
1300 	 * The cache follows the following algorithm
1301 	 *   1. Add the objects to the cache
1302 	 *   2. Anything greater than the cache min value (if it crosses the
1303 	 *   cache flush threshold) is flushed to the ring.
1304 	 */
1305 
1306 	/* Add elements back into the cache */
1307 	rte_memcpy(&cache_objs[0], obj_table, sizeof(void *) * n);
1308 
1309 	cache->len += n;
1310 
1311 	if (cache->len >= cache->flushthresh) {
1312 		rte_mempool_ops_enqueue_bulk(mp, &cache->objs[cache->size],
1313 				cache->len - cache->size);
1314 		cache->len = cache->size;
1315 	}
1316 
1317 	return;
1318 
1319 ring_enqueue:
1320 
1321 	/* push remaining objects in ring */
1322 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1323 	if (rte_mempool_ops_enqueue_bulk(mp, obj_table, n) < 0)
1324 		rte_panic("cannot put objects in mempool\n");
1325 #else
1326 	rte_mempool_ops_enqueue_bulk(mp, obj_table, n);
1327 #endif
1328 }
1329 
1330 
1331 /**
1332  * Put several objects back in the mempool.
1333  *
1334  * @param mp
1335  *   A pointer to the mempool structure.
1336  * @param obj_table
1337  *   A pointer to a table of void * pointers (objects).
1338  * @param n
1339  *   The number of objects to add in the mempool from the obj_table.
1340  * @param cache
1341  *   A pointer to a mempool cache structure. May be NULL if not needed.
1342  */
1343 static __rte_always_inline void
rte_mempool_generic_put(struct rte_mempool * mp,void * const * obj_table,unsigned int n,struct rte_mempool_cache * cache)1344 rte_mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
1345 			unsigned int n, struct rte_mempool_cache *cache)
1346 {
1347 	rte_mempool_trace_generic_put(mp, obj_table, n, cache);
1348 	__mempool_check_cookies(mp, obj_table, n, 0);
1349 	__mempool_generic_put(mp, obj_table, n, cache);
1350 }
1351 
1352 /**
1353  * Put several objects back in the mempool.
1354  *
1355  * This function calls the multi-producer or the single-producer
1356  * version depending on the default behavior that was specified at
1357  * mempool creation time (see flags).
1358  *
1359  * @param mp
1360  *   A pointer to the mempool structure.
1361  * @param obj_table
1362  *   A pointer to a table of void * pointers (objects).
1363  * @param n
1364  *   The number of objects to add in the mempool from obj_table.
1365  */
1366 static __rte_always_inline void
rte_mempool_put_bulk(struct rte_mempool * mp,void * const * obj_table,unsigned int n)1367 rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
1368 		     unsigned int n)
1369 {
1370 	struct rte_mempool_cache *cache;
1371 	cache = rte_mempool_default_cache(mp, rte_lcore_id());
1372 	rte_mempool_trace_put_bulk(mp, obj_table, n, cache);
1373 	rte_mempool_generic_put(mp, obj_table, n, cache);
1374 }
1375 
1376 /**
1377  * Put one object back in the mempool.
1378  *
1379  * This function calls the multi-producer or the single-producer
1380  * version depending on the default behavior that was specified at
1381  * mempool creation time (see flags).
1382  *
1383  * @param mp
1384  *   A pointer to the mempool structure.
1385  * @param obj
1386  *   A pointer to the object to be added.
1387  */
1388 static __rte_always_inline void
rte_mempool_put(struct rte_mempool * mp,void * obj)1389 rte_mempool_put(struct rte_mempool *mp, void *obj)
1390 {
1391 	rte_mempool_put_bulk(mp, &obj, 1);
1392 }
1393 
1394 /**
1395  * @internal Get several objects from the mempool; used internally.
1396  * @param mp
1397  *   A pointer to the mempool structure.
1398  * @param obj_table
1399  *   A pointer to a table of void * pointers (objects).
1400  * @param n
1401  *   The number of objects to get, must be strictly positive.
1402  * @param cache
1403  *   A pointer to a mempool cache structure. May be NULL if not needed.
1404  * @return
1405  *   - >=0: Success; number of objects supplied.
1406  *   - <0: Error; code of ring dequeue function.
1407  */
1408 static __rte_always_inline int
__mempool_generic_get(struct rte_mempool * mp,void ** obj_table,unsigned int n,struct rte_mempool_cache * cache)1409 __mempool_generic_get(struct rte_mempool *mp, void **obj_table,
1410 		      unsigned int n, struct rte_mempool_cache *cache)
1411 {
1412 	int ret;
1413 	uint32_t index, len;
1414 	void **cache_objs;
1415 
1416 	/* No cache provided or cannot be satisfied from cache */
1417 	if (unlikely(cache == NULL || n >= cache->size))
1418 		goto ring_dequeue;
1419 
1420 	cache_objs = cache->objs;
1421 
1422 	/* Can this be satisfied from the cache? */
1423 	if (cache->len < n) {
1424 		/* No. Backfill the cache first, and then fill from it */
1425 		uint32_t req = n + (cache->size - cache->len);
1426 
1427 		/* How many do we require i.e. number to fill the cache + the request */
1428 		ret = rte_mempool_ops_dequeue_bulk(mp,
1429 			&cache->objs[cache->len], req);
1430 		if (unlikely(ret < 0)) {
1431 			/*
1432 			 * In the off chance that we are buffer constrained,
1433 			 * where we are not able to allocate cache + n, go to
1434 			 * the ring directly. If that fails, we are truly out of
1435 			 * buffers.
1436 			 */
1437 			goto ring_dequeue;
1438 		}
1439 
1440 		cache->len += req;
1441 	}
1442 
1443 	/* Now fill in the response ... */
1444 	for (index = 0, len = cache->len - 1; index < n; ++index, len--, obj_table++)
1445 		*obj_table = cache_objs[len];
1446 
1447 	cache->len -= n;
1448 
1449 	__MEMPOOL_STAT_ADD(mp, get_success, n);
1450 
1451 	return 0;
1452 
1453 ring_dequeue:
1454 
1455 	/* get remaining objects from ring */
1456 	ret = rte_mempool_ops_dequeue_bulk(mp, obj_table, n);
1457 
1458 	if (ret < 0)
1459 		__MEMPOOL_STAT_ADD(mp, get_fail, n);
1460 	else
1461 		__MEMPOOL_STAT_ADD(mp, get_success, n);
1462 
1463 	return ret;
1464 }
1465 
1466 /**
1467  * Get several objects from the mempool.
1468  *
1469  * If cache is enabled, objects will be retrieved first from cache,
1470  * subsequently from the common pool. Note that it can return -ENOENT when
1471  * the local cache and common pool are empty, even if cache from other
1472  * lcores are full.
1473  *
1474  * @param mp
1475  *   A pointer to the mempool structure.
1476  * @param obj_table
1477  *   A pointer to a table of void * pointers (objects) that will be filled.
1478  * @param n
1479  *   The number of objects to get from mempool to obj_table.
1480  * @param cache
1481  *   A pointer to a mempool cache structure. May be NULL if not needed.
1482  * @return
1483  *   - 0: Success; objects taken.
1484  *   - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1485  */
1486 static __rte_always_inline int
rte_mempool_generic_get(struct rte_mempool * mp,void ** obj_table,unsigned int n,struct rte_mempool_cache * cache)1487 rte_mempool_generic_get(struct rte_mempool *mp, void **obj_table,
1488 			unsigned int n, struct rte_mempool_cache *cache)
1489 {
1490 	int ret;
1491 	ret = __mempool_generic_get(mp, obj_table, n, cache);
1492 	if (ret == 0)
1493 		__mempool_check_cookies(mp, obj_table, n, 1);
1494 	rte_mempool_trace_generic_get(mp, obj_table, n, cache);
1495 	return ret;
1496 }
1497 
1498 /**
1499  * Get several objects from the mempool.
1500  *
1501  * This function calls the multi-consumers or the single-consumer
1502  * version, depending on the default behaviour that was specified at
1503  * mempool creation time (see flags).
1504  *
1505  * If cache is enabled, objects will be retrieved first from cache,
1506  * subsequently from the common pool. Note that it can return -ENOENT when
1507  * the local cache and common pool are empty, even if cache from other
1508  * lcores are full.
1509  *
1510  * @param mp
1511  *   A pointer to the mempool structure.
1512  * @param obj_table
1513  *   A pointer to a table of void * pointers (objects) that will be filled.
1514  * @param n
1515  *   The number of objects to get from the mempool to obj_table.
1516  * @return
1517  *   - 0: Success; objects taken
1518  *   - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1519  */
1520 static __rte_always_inline int
rte_mempool_get_bulk(struct rte_mempool * mp,void ** obj_table,unsigned int n)1521 rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned int n)
1522 {
1523 	struct rte_mempool_cache *cache;
1524 	cache = rte_mempool_default_cache(mp, rte_lcore_id());
1525 	rte_mempool_trace_get_bulk(mp, obj_table, n, cache);
1526 	return rte_mempool_generic_get(mp, obj_table, n, cache);
1527 }
1528 
1529 /**
1530  * Get one object from the mempool.
1531  *
1532  * This function calls the multi-consumers or the single-consumer
1533  * version, depending on the default behavior that was specified at
1534  * mempool creation (see flags).
1535  *
1536  * If cache is enabled, objects will be retrieved first from cache,
1537  * subsequently from the common pool. Note that it can return -ENOENT when
1538  * the local cache and common pool are empty, even if cache from other
1539  * lcores are full.
1540  *
1541  * @param mp
1542  *   A pointer to the mempool structure.
1543  * @param obj_p
1544  *   A pointer to a void * pointer (object) that will be filled.
1545  * @return
1546  *   - 0: Success; objects taken.
1547  *   - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1548  */
1549 static __rte_always_inline int
rte_mempool_get(struct rte_mempool * mp,void ** obj_p)1550 rte_mempool_get(struct rte_mempool *mp, void **obj_p)
1551 {
1552 	return rte_mempool_get_bulk(mp, obj_p, 1);
1553 }
1554 
1555 /**
1556  * Get a contiguous blocks of objects from the mempool.
1557  *
1558  * If cache is enabled, consider to flush it first, to reuse objects
1559  * as soon as possible.
1560  *
1561  * The application should check that the driver supports the operation
1562  * by calling rte_mempool_ops_get_info() and checking that `contig_block_size`
1563  * is not zero.
1564  *
1565  * @param mp
1566  *   A pointer to the mempool structure.
1567  * @param first_obj_table
1568  *   A pointer to a pointer to the first object in each block.
1569  * @param n
1570  *   The number of blocks to get from mempool.
1571  * @return
1572  *   - 0: Success; blocks taken.
1573  *   - -ENOBUFS: Not enough entries in the mempool; no object is retrieved.
1574  *   - -EOPNOTSUPP: The mempool driver does not support block dequeue
1575  */
1576 static __rte_always_inline int
rte_mempool_get_contig_blocks(struct rte_mempool * mp,void ** first_obj_table,unsigned int n)1577 rte_mempool_get_contig_blocks(struct rte_mempool *mp,
1578 			      void **first_obj_table, unsigned int n)
1579 {
1580 	int ret;
1581 
1582 	ret = rte_mempool_ops_dequeue_contig_blocks(mp, first_obj_table, n);
1583 	if (ret == 0) {
1584 		__MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, get_success, n);
1585 		__mempool_contig_blocks_check_cookies(mp, first_obj_table, n,
1586 						      1);
1587 	} else {
1588 		__MEMPOOL_CONTIG_BLOCKS_STAT_ADD(mp, get_fail, n);
1589 	}
1590 
1591 	rte_mempool_trace_get_contig_blocks(mp, first_obj_table, n);
1592 	return ret;
1593 }
1594 
1595 /**
1596  * Return the number of entries in the mempool.
1597  *
1598  * When cache is enabled, this function has to browse the length of
1599  * all lcores, so it should not be used in a data path, but only for
1600  * debug purposes. User-owned mempool caches are not accounted for.
1601  *
1602  * @param mp
1603  *   A pointer to the mempool structure.
1604  * @return
1605  *   The number of entries in the mempool.
1606  */
1607 unsigned int rte_mempool_avail_count(const struct rte_mempool *mp);
1608 
1609 /**
1610  * Return the number of elements which have been allocated from the mempool
1611  *
1612  * When cache is enabled, this function has to browse the length of
1613  * all lcores, so it should not be used in a data path, but only for
1614  * debug purposes.
1615  *
1616  * @param mp
1617  *   A pointer to the mempool structure.
1618  * @return
1619  *   The number of free entries in the mempool.
1620  */
1621 unsigned int
1622 rte_mempool_in_use_count(const struct rte_mempool *mp);
1623 
1624 /**
1625  * Test if the mempool is full.
1626  *
1627  * When cache is enabled, this function has to browse the length of all
1628  * lcores, so it should not be used in a data path, but only for debug
1629  * purposes. User-owned mempool caches are not accounted for.
1630  *
1631  * @param mp
1632  *   A pointer to the mempool structure.
1633  * @return
1634  *   - 1: The mempool is full.
1635  *   - 0: The mempool is not full.
1636  */
1637 static inline int
rte_mempool_full(const struct rte_mempool * mp)1638 rte_mempool_full(const struct rte_mempool *mp)
1639 {
1640 	return rte_mempool_avail_count(mp) == mp->size;
1641 }
1642 
1643 /**
1644  * Test if the mempool is empty.
1645  *
1646  * When cache is enabled, this function has to browse the length of all
1647  * lcores, so it should not be used in a data path, but only for debug
1648  * purposes. User-owned mempool caches are not accounted for.
1649  *
1650  * @param mp
1651  *   A pointer to the mempool structure.
1652  * @return
1653  *   - 1: The mempool is empty.
1654  *   - 0: The mempool is not empty.
1655  */
1656 static inline int
rte_mempool_empty(const struct rte_mempool * mp)1657 rte_mempool_empty(const struct rte_mempool *mp)
1658 {
1659 	return rte_mempool_avail_count(mp) == 0;
1660 }
1661 
1662 /**
1663  * Return the IO address of elt, which is an element of the pool mp.
1664  *
1665  * @param elt
1666  *   A pointer (virtual address) to the element of the pool.
1667  * @return
1668  *   The IO address of the elt element.
1669  *   If the mempool was created with MEMPOOL_F_NO_IOVA_CONTIG, the
1670  *   returned value is RTE_BAD_IOVA.
1671  */
1672 static inline rte_iova_t
rte_mempool_virt2iova(const void * elt)1673 rte_mempool_virt2iova(const void *elt)
1674 {
1675 	const struct rte_mempool_objhdr *hdr;
1676 	hdr = (const struct rte_mempool_objhdr *)RTE_PTR_SUB(elt,
1677 		sizeof(*hdr));
1678 	return hdr->iova;
1679 }
1680 
1681 /**
1682  * Check the consistency of mempool objects.
1683  *
1684  * Verify the coherency of fields in the mempool structure. Also check
1685  * that the cookies of mempool objects (even the ones that are not
1686  * present in pool) have a correct value. If not, a panic will occur.
1687  *
1688  * @param mp
1689  *   A pointer to the mempool structure.
1690  */
1691 void rte_mempool_audit(struct rte_mempool *mp);
1692 
1693 /**
1694  * Return a pointer to the private data in an mempool structure.
1695  *
1696  * @param mp
1697  *   A pointer to the mempool structure.
1698  * @return
1699  *   A pointer to the private data.
1700  */
rte_mempool_get_priv(struct rte_mempool * mp)1701 static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
1702 {
1703 	return (char *)mp +
1704 		MEMPOOL_HEADER_SIZE(mp, mp->cache_size);
1705 }
1706 
1707 /**
1708  * Dump the status of all mempools on the console
1709  *
1710  * @param f
1711  *   A pointer to a file for output
1712  */
1713 void rte_mempool_list_dump(FILE *f);
1714 
1715 /**
1716  * Search a mempool from its name
1717  *
1718  * @param name
1719  *   The name of the mempool.
1720  * @return
1721  *   The pointer to the mempool matching the name, or NULL if not found.
1722  *   NULL on error
1723  *   with rte_errno set appropriately. Possible rte_errno values include:
1724  *    - ENOENT - required entry not available to return.
1725  *
1726  */
1727 struct rte_mempool *rte_mempool_lookup(const char *name);
1728 
1729 /**
1730  * Get the header, trailer and total size of a mempool element.
1731  *
1732  * Given a desired size of the mempool element and mempool flags,
1733  * calculates header, trailer, body and total sizes of the mempool object.
1734  *
1735  * @param elt_size
1736  *   The size of each element, without header and trailer.
1737  * @param flags
1738  *   The flags used for the mempool creation.
1739  *   Consult rte_mempool_create() for more information about possible values.
1740  *   The size of each element.
1741  * @param sz
1742  *   The calculated detailed size the mempool object. May be NULL.
1743  * @return
1744  *   Total size of the mempool object.
1745  */
1746 uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
1747 	struct rte_mempool_objsz *sz);
1748 
1749 /**
1750  * Walk list of all memory pools
1751  *
1752  * @param func
1753  *   Iterator function
1754  * @param arg
1755  *   Argument passed to iterator
1756  */
1757 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *arg),
1758 		      void *arg);
1759 
1760 /**
1761  * @internal Get page size used for mempool object allocation.
1762  * This function is internal to mempool library and mempool drivers.
1763  */
1764 int
1765 rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz);
1766 
1767 #ifdef __cplusplus
1768 }
1769 #endif
1770 
1771 #endif /* _RTE_MEMPOOL_H_ */
1772