1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2003 Peter Wemm
11 * All rights reserved.
12 * Copyright (c) 2005-2010 Alan L. Cox <[email protected]>
13 * All rights reserved.
14 *
15 * This code is derived from software contributed to Berkeley by
16 * the Systems Programming Group of the University of Utah Computer
17 * Science Department and William Jolitz of UUNET Technologies Inc.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgement:
29 * This product includes software developed by the University of
30 * California, Berkeley and its contributors.
31 * 4. Neither the name of the University nor the names of its contributors
32 * may be used to endorse or promote products derived from this software
33 * without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 *
47 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
48 */
49 /*-
50 * Copyright (c) 2003 Networks Associates Technology, Inc.
51 * Copyright (c) 2014-2020 The FreeBSD Foundation
52 * All rights reserved.
53 *
54 * This software was developed for the FreeBSD Project by Jake Burkholder,
55 * Safeport Network Services, and Network Associates Laboratories, the
56 * Security Research Division of Network Associates, Inc. under
57 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
58 * CHATS research program.
59 *
60 * Portions of this software were developed by
61 * Konstantin Belousov <[email protected]> under sponsorship from
62 * the FreeBSD Foundation.
63 *
64 * Redistribution and use in source and binary forms, with or without
65 * modification, are permitted provided that the following conditions
66 * are met:
67 * 1. Redistributions of source code must retain the above copyright
68 * notice, this list of conditions and the following disclaimer.
69 * 2. Redistributions in binary form must reproduce the above copyright
70 * notice, this list of conditions and the following disclaimer in the
71 * documentation and/or other materials provided with the distribution.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * SUCH DAMAGE.
84 */
85
86 #define AMD64_NPT_AWARE
87
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90
91 /*
92 * Manages physical address maps.
93 *
94 * Since the information managed by this module is
95 * also stored by the logical address mapping module,
96 * this module may throw away valid virtual-to-physical
97 * mappings at almost any time. However, invalidations
98 * of virtual-to-physical mappings must be done as
99 * requested.
100 *
101 * In order to cope with hardware architectures which
102 * make virtual-to-physical map invalidates expensive,
103 * this module may delay invalidate or reduced protection
104 * operations until such time as they are actually
105 * necessary. This module is given full information as
106 * to which processors are currently using which maps,
107 * and to when physical maps must be made correct.
108 */
109
110 #include "opt_ddb.h"
111 #include "opt_pmap.h"
112 #include "opt_vm.h"
113
114 #include <sys/param.h>
115 #include <sys/bitstring.h>
116 #include <sys/bus.h>
117 #include <sys/systm.h>
118 #include <sys/kernel.h>
119 #include <sys/ktr.h>
120 #include <sys/lock.h>
121 #include <sys/malloc.h>
122 #include <sys/mman.h>
123 #include <sys/mutex.h>
124 #include <sys/proc.h>
125 #include <sys/rangeset.h>
126 #include <sys/rwlock.h>
127 #include <sys/sbuf.h>
128 #include <sys/smr.h>
129 #include <sys/sx.h>
130 #include <sys/turnstile.h>
131 #include <sys/vmem.h>
132 #include <sys/vmmeter.h>
133 #include <sys/sched.h>
134 #include <sys/sysctl.h>
135 #include <sys/smp.h>
136 #ifdef DDB
137 #include <sys/kdb.h>
138 #include <ddb/ddb.h>
139 #endif
140
141 #include <vm/vm.h>
142 #include <vm/vm_param.h>
143 #include <vm/vm_kern.h>
144 #include <vm/vm_page.h>
145 #include <vm/vm_map.h>
146 #include <vm/vm_object.h>
147 #include <vm/vm_extern.h>
148 #include <vm/vm_pageout.h>
149 #include <vm/vm_pager.h>
150 #include <vm/vm_phys.h>
151 #include <vm/vm_radix.h>
152 #include <vm/vm_reserv.h>
153 #include <vm/vm_dumpset.h>
154 #include <vm/uma.h>
155
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/intr_machdep.h>
162 #include <machine/md_var.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170
171 #ifdef NUMA
172 #define PMAP_MEMDOM MAXMEMDOM
173 #else
174 #define PMAP_MEMDOM 1
175 #endif
176
177 static __inline boolean_t
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180
181 return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183
184 static __inline boolean_t
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187
188 return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 pt_entry_t mask;
195
196 switch (pmap->pm_type) {
197 case PT_X86:
198 case PT_RVI:
199 mask = X86_PG_V;
200 break;
201 case PT_EPT:
202 if (pmap_emulate_ad_bits(pmap))
203 mask = EPT_PG_EMUL_V;
204 else
205 mask = EPT_PG_READ;
206 break;
207 default:
208 panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 }
210
211 return (mask);
212 }
213
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 pt_entry_t mask;
218
219 switch (pmap->pm_type) {
220 case PT_X86:
221 case PT_RVI:
222 mask = X86_PG_RW;
223 break;
224 case PT_EPT:
225 if (pmap_emulate_ad_bits(pmap))
226 mask = EPT_PG_EMUL_RW;
227 else
228 mask = EPT_PG_WRITE;
229 break;
230 default:
231 panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 }
233
234 return (mask);
235 }
236
237 static pt_entry_t pg_g;
238
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 pt_entry_t mask;
243
244 switch (pmap->pm_type) {
245 case PT_X86:
246 mask = pg_g;
247 break;
248 case PT_RVI:
249 case PT_EPT:
250 mask = 0;
251 break;
252 default:
253 panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 }
255
256 return (mask);
257 }
258
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 pt_entry_t mask;
263
264 switch (pmap->pm_type) {
265 case PT_X86:
266 case PT_RVI:
267 mask = X86_PG_A;
268 break;
269 case PT_EPT:
270 if (pmap_emulate_ad_bits(pmap))
271 mask = EPT_PG_READ;
272 else
273 mask = EPT_PG_A;
274 break;
275 default:
276 panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 }
278
279 return (mask);
280 }
281
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 pt_entry_t mask;
286
287 switch (pmap->pm_type) {
288 case PT_X86:
289 case PT_RVI:
290 mask = X86_PG_M;
291 break;
292 case PT_EPT:
293 if (pmap_emulate_ad_bits(pmap))
294 mask = EPT_PG_WRITE;
295 else
296 mask = EPT_PG_M;
297 break;
298 default:
299 panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 }
301
302 return (mask);
303 }
304
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308
309 return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311
312 #if !defined(DIAGNOSTIC)
313 #ifdef __GNUC_GNU_INLINE__
314 #define PMAP_INLINE __attribute__((__gnu_inline__)) inline
315 #else
316 #define PMAP_INLINE extern inline
317 #endif
318 #else
319 #define PMAP_INLINE
320 #endif
321
322 #ifdef PV_STATS
323 #define PV_STAT(x) do { x ; } while (0)
324 #else
325 #define PV_STAT(x) do { } while (0)
326 #endif
327
328 #undef pa_index
329 #ifdef NUMA
330 #define pa_index(pa) ({ \
331 KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end, \
332 ("address %lx beyond the last segment", (pa))); \
333 (pa) >> PDRSHIFT; \
334 })
335 #define pa_to_pmdp(pa) (&pv_table[pa_index(pa)])
336 #define pa_to_pvh(pa) (&(pa_to_pmdp(pa)->pv_page))
337 #define PHYS_TO_PV_LIST_LOCK(pa) ({ \
338 struct rwlock *_lock; \
339 if (__predict_false((pa) > pmap_last_pa)) \
340 _lock = &pv_dummy_large.pv_lock; \
341 else \
342 _lock = &(pa_to_pmdp(pa)->pv_lock); \
343 _lock; \
344 })
345 #else
346 #define pa_index(pa) ((pa) >> PDRSHIFT)
347 #define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
348
349 #define NPV_LIST_LOCKS MAXCPU
350
351 #define PHYS_TO_PV_LIST_LOCK(pa) \
352 (&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
353 #endif
354
355 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
356 struct rwlock **_lockp = (lockp); \
357 struct rwlock *_new_lock; \
358 \
359 _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
360 if (_new_lock != *_lockp) { \
361 if (*_lockp != NULL) \
362 rw_wunlock(*_lockp); \
363 *_lockp = _new_lock; \
364 rw_wlock(*_lockp); \
365 } \
366 } while (0)
367
368 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
369 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
370
371 #define RELEASE_PV_LIST_LOCK(lockp) do { \
372 struct rwlock **_lockp = (lockp); \
373 \
374 if (*_lockp != NULL) { \
375 rw_wunlock(*_lockp); \
376 *_lockp = NULL; \
377 } \
378 } while (0)
379
380 #define VM_PAGE_TO_PV_LIST_LOCK(m) \
381 PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
382
383 struct pmap kernel_pmap_store;
384
385 vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
386 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
387
388 int nkpt;
389 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
390 "Number of kernel page table pages allocated on bootup");
391
392 static int ndmpdp;
393 vm_paddr_t dmaplimit;
394 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
395 pt_entry_t pg_nx;
396
397 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
398 "VM/pmap parameters");
399
400 static int pg_ps_enabled = 1;
401 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
402 &pg_ps_enabled, 0, "Are large page mappings enabled?");
403
404 int __read_frequently la57 = 0;
405 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
406 &la57, 0,
407 "5-level paging for host is enabled");
408
409 static bool
pmap_is_la57(pmap_t pmap)410 pmap_is_la57(pmap_t pmap)
411 {
412 if (pmap->pm_type == PT_X86)
413 return (la57);
414 return (false); /* XXXKIB handle EPT */
415 }
416
417 #define PAT_INDEX_SIZE 8
418 static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
419
420 static u_int64_t KPTphys; /* phys addr of kernel level 1 */
421 static u_int64_t KPDphys; /* phys addr of kernel level 2 */
422 u_int64_t KPDPphys; /* phys addr of kernel level 3 */
423 u_int64_t KPML4phys; /* phys addr of kernel level 4 */
424 u_int64_t KPML5phys; /* phys addr of kernel level 5,
425 if supported */
426
427 static pml4_entry_t *kernel_pml4;
428 static u_int64_t DMPDphys; /* phys addr of direct mapped level 2 */
429 static u_int64_t DMPDPphys; /* phys addr of direct mapped level 3 */
430 static int ndmpdpphys; /* number of DMPDPphys pages */
431
432 static vm_paddr_t KERNend; /* phys addr of end of bootstrap data */
433
434 /*
435 * pmap_mapdev support pre initialization (i.e. console)
436 */
437 #define PMAP_PREINIT_MAPPING_COUNT 8
438 static struct pmap_preinit_mapping {
439 vm_paddr_t pa;
440 vm_offset_t va;
441 vm_size_t sz;
442 int mode;
443 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
444 static int pmap_initialized;
445
446 /*
447 * Data for the pv entry allocation mechanism.
448 * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
449 */
450 #ifdef NUMA
451 static __inline int
pc_to_domain(struct pv_chunk * pc)452 pc_to_domain(struct pv_chunk *pc)
453 {
454
455 return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
456 }
457 #else
458 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)459 pc_to_domain(struct pv_chunk *pc __unused)
460 {
461
462 return (0);
463 }
464 #endif
465
466 struct pv_chunks_list {
467 struct mtx pvc_lock;
468 TAILQ_HEAD(pch, pv_chunk) pvc_list;
469 int active_reclaims;
470 } __aligned(CACHE_LINE_SIZE);
471
472 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
473
474 #ifdef NUMA
475 struct pmap_large_md_page {
476 struct rwlock pv_lock;
477 struct md_page pv_page;
478 u_long pv_invl_gen;
479 };
480 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
481 #define pv_dummy pv_dummy_large.pv_page
482 __read_mostly static struct pmap_large_md_page *pv_table;
483 __read_mostly vm_paddr_t pmap_last_pa;
484 #else
485 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
486 static u_long pv_invl_gen[NPV_LIST_LOCKS];
487 static struct md_page *pv_table;
488 static struct md_page pv_dummy;
489 #endif
490
491 /*
492 * All those kernel PT submaps that BSD is so fond of
493 */
494 pt_entry_t *CMAP1 = NULL;
495 caddr_t CADDR1 = 0;
496 static vm_offset_t qframe = 0;
497 static struct mtx qframe_mtx;
498
499 static int pmap_flags = PMAP_PDE_SUPERPAGE; /* flags for x86 pmaps */
500
501 static vmem_t *large_vmem;
502 static u_int lm_ents;
503 #define PMAP_ADDRESS_IN_LARGEMAP(va) ((va) >= LARGEMAP_MIN_ADDRESS && \
504 (va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
505
506 int pmap_pcid_enabled = 1;
507 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
508 &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
509 int invpcid_works = 0;
510 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
511 "Is the invpcid instruction available ?");
512
513 int __read_frequently pti = 0;
514 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
515 &pti, 0,
516 "Page Table Isolation enabled");
517 static vm_object_t pti_obj;
518 static pml4_entry_t *pti_pml4;
519 static vm_pindex_t pti_pg_idx;
520 static bool pti_finalized;
521
522 struct pmap_pkru_range {
523 struct rs_el pkru_rs_el;
524 u_int pkru_keyidx;
525 int pkru_flags;
526 };
527
528 static uma_zone_t pmap_pkru_ranges_zone;
529 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
530 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
531 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
532 static void *pkru_dup_range(void *ctx, void *data);
533 static void pkru_free_range(void *ctx, void *node);
534 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
535 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
536 static void pmap_pkru_deassign_all(pmap_t pmap);
537
538 static int
pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)539 pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)
540 {
541 int i;
542 uint64_t res;
543
544 res = 0;
545 CPU_FOREACH(i) {
546 res += cpuid_to_pcpu[i]->pc_pm_save_cnt;
547 }
548 return (sysctl_handle_64(oidp, &res, 0, req));
549 }
550 SYSCTL_PROC(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLTYPE_U64 | CTLFLAG_RD |
551 CTLFLAG_MPSAFE, NULL, 0, pmap_pcid_save_cnt_proc, "QU",
552 "Count of saved TLB context on switch");
553
554 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
555 LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
556 static struct mtx invl_gen_mtx;
557 /* Fake lock object to satisfy turnstiles interface. */
558 static struct lock_object invl_gen_ts = {
559 .lo_name = "invlts",
560 };
561 static struct pmap_invl_gen pmap_invl_gen_head = {
562 .gen = 1,
563 .next = NULL,
564 };
565 static u_long pmap_invl_gen = 1;
566 static int pmap_invl_waiters;
567 static struct callout pmap_invl_callout;
568 static bool pmap_invl_callout_inited;
569
570 #define PMAP_ASSERT_NOT_IN_DI() \
571 KASSERT(pmap_not_in_di(), ("DI already started"))
572
573 static bool
pmap_di_locked(void)574 pmap_di_locked(void)
575 {
576 int tun;
577
578 if ((cpu_feature2 & CPUID2_CX16) == 0)
579 return (true);
580 tun = 0;
581 TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
582 return (tun != 0);
583 }
584
585 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)586 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
587 {
588 int locked;
589
590 locked = pmap_di_locked();
591 return (sysctl_handle_int(oidp, &locked, 0, req));
592 }
593 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
594 CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
595 "Locked delayed invalidation");
596
597 static bool pmap_not_in_di_l(void);
598 static bool pmap_not_in_di_u(void);
599 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
600 {
601
602 return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
603 }
604
605 static bool
pmap_not_in_di_l(void)606 pmap_not_in_di_l(void)
607 {
608 struct pmap_invl_gen *invl_gen;
609
610 invl_gen = &curthread->td_md.md_invl_gen;
611 return (invl_gen->gen == 0);
612 }
613
614 static void
pmap_thread_init_invl_gen_l(struct thread * td)615 pmap_thread_init_invl_gen_l(struct thread *td)
616 {
617 struct pmap_invl_gen *invl_gen;
618
619 invl_gen = &td->td_md.md_invl_gen;
620 invl_gen->gen = 0;
621 }
622
623 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)624 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
625 {
626 struct turnstile *ts;
627
628 ts = turnstile_trywait(&invl_gen_ts);
629 if (*m_gen > atomic_load_long(invl_gen))
630 turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
631 else
632 turnstile_cancel(ts);
633 }
634
635 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)636 pmap_delayed_invl_finish_unblock(u_long new_gen)
637 {
638 struct turnstile *ts;
639
640 turnstile_chain_lock(&invl_gen_ts);
641 ts = turnstile_lookup(&invl_gen_ts);
642 if (new_gen != 0)
643 pmap_invl_gen = new_gen;
644 if (ts != NULL) {
645 turnstile_broadcast(ts, TS_SHARED_QUEUE);
646 turnstile_unpend(ts);
647 }
648 turnstile_chain_unlock(&invl_gen_ts);
649 }
650
651 /*
652 * Start a new Delayed Invalidation (DI) block of code, executed by
653 * the current thread. Within a DI block, the current thread may
654 * destroy both the page table and PV list entries for a mapping and
655 * then release the corresponding PV list lock before ensuring that
656 * the mapping is flushed from the TLBs of any processors with the
657 * pmap active.
658 */
659 static void
pmap_delayed_invl_start_l(void)660 pmap_delayed_invl_start_l(void)
661 {
662 struct pmap_invl_gen *invl_gen;
663 u_long currgen;
664
665 invl_gen = &curthread->td_md.md_invl_gen;
666 PMAP_ASSERT_NOT_IN_DI();
667 mtx_lock(&invl_gen_mtx);
668 if (LIST_EMPTY(&pmap_invl_gen_tracker))
669 currgen = pmap_invl_gen;
670 else
671 currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
672 invl_gen->gen = currgen + 1;
673 LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
674 mtx_unlock(&invl_gen_mtx);
675 }
676
677 /*
678 * Finish the DI block, previously started by the current thread. All
679 * required TLB flushes for the pages marked by
680 * pmap_delayed_invl_page() must be finished before this function is
681 * called.
682 *
683 * This function works by bumping the global DI generation number to
684 * the generation number of the current thread's DI, unless there is a
685 * pending DI that started earlier. In the latter case, bumping the
686 * global DI generation number would incorrectly signal that the
687 * earlier DI had finished. Instead, this function bumps the earlier
688 * DI's generation number to match the generation number of the
689 * current thread's DI.
690 */
691 static void
pmap_delayed_invl_finish_l(void)692 pmap_delayed_invl_finish_l(void)
693 {
694 struct pmap_invl_gen *invl_gen, *next;
695
696 invl_gen = &curthread->td_md.md_invl_gen;
697 KASSERT(invl_gen->gen != 0, ("missed invl_start"));
698 mtx_lock(&invl_gen_mtx);
699 next = LIST_NEXT(invl_gen, link);
700 if (next == NULL)
701 pmap_delayed_invl_finish_unblock(invl_gen->gen);
702 else
703 next->gen = invl_gen->gen;
704 LIST_REMOVE(invl_gen, link);
705 mtx_unlock(&invl_gen_mtx);
706 invl_gen->gen = 0;
707 }
708
709 static bool
pmap_not_in_di_u(void)710 pmap_not_in_di_u(void)
711 {
712 struct pmap_invl_gen *invl_gen;
713
714 invl_gen = &curthread->td_md.md_invl_gen;
715 return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
716 }
717
718 static void
pmap_thread_init_invl_gen_u(struct thread * td)719 pmap_thread_init_invl_gen_u(struct thread *td)
720 {
721 struct pmap_invl_gen *invl_gen;
722
723 invl_gen = &td->td_md.md_invl_gen;
724 invl_gen->gen = 0;
725 invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
726 }
727
728 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)729 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
730 {
731 uint64_t new_high, new_low, old_high, old_low;
732 char res;
733
734 old_low = new_low = 0;
735 old_high = new_high = (uintptr_t)0;
736
737 __asm volatile("lock;cmpxchg16b\t%1"
738 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
739 : "b"(new_low), "c" (new_high)
740 : "memory", "cc");
741 if (res == 0) {
742 if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
743 return (false);
744 out->gen = old_low;
745 out->next = (void *)old_high;
746 } else {
747 out->gen = new_low;
748 out->next = (void *)new_high;
749 }
750 return (true);
751 }
752
753 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)754 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
755 struct pmap_invl_gen *new_val)
756 {
757 uint64_t new_high, new_low, old_high, old_low;
758 char res;
759
760 new_low = new_val->gen;
761 new_high = (uintptr_t)new_val->next;
762 old_low = old_val->gen;
763 old_high = (uintptr_t)old_val->next;
764
765 __asm volatile("lock;cmpxchg16b\t%1"
766 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
767 : "b"(new_low), "c" (new_high)
768 : "memory", "cc");
769 return (res);
770 }
771
772 #ifdef PV_STATS
773 static long invl_start_restart;
774 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_start_restart, CTLFLAG_RD,
775 &invl_start_restart, 0,
776 "");
777 static long invl_finish_restart;
778 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
779 &invl_finish_restart, 0,
780 "");
781 static int invl_max_qlen;
782 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
783 &invl_max_qlen, 0,
784 "");
785 #endif
786
787 #define di_delay locks_delay
788
789 static void
pmap_delayed_invl_start_u(void)790 pmap_delayed_invl_start_u(void)
791 {
792 struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
793 struct thread *td;
794 struct lock_delay_arg lda;
795 uintptr_t prevl;
796 u_char pri;
797 #ifdef PV_STATS
798 int i, ii;
799 #endif
800
801 td = curthread;
802 invl_gen = &td->td_md.md_invl_gen;
803 PMAP_ASSERT_NOT_IN_DI();
804 lock_delay_arg_init(&lda, &di_delay);
805 invl_gen->saved_pri = 0;
806 pri = td->td_base_pri;
807 if (pri > PVM) {
808 thread_lock(td);
809 pri = td->td_base_pri;
810 if (pri > PVM) {
811 invl_gen->saved_pri = pri;
812 sched_prio(td, PVM);
813 }
814 thread_unlock(td);
815 }
816 again:
817 PV_STAT(i = 0);
818 for (p = &pmap_invl_gen_head;; p = prev.next) {
819 PV_STAT(i++);
820 prevl = (uintptr_t)atomic_load_ptr(&p->next);
821 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
822 PV_STAT(atomic_add_long(&invl_start_restart, 1));
823 lock_delay(&lda);
824 goto again;
825 }
826 if (prevl == 0)
827 break;
828 prev.next = (void *)prevl;
829 }
830 #ifdef PV_STATS
831 if ((ii = invl_max_qlen) < i)
832 atomic_cmpset_int(&invl_max_qlen, ii, i);
833 #endif
834
835 if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
836 PV_STAT(atomic_add_long(&invl_start_restart, 1));
837 lock_delay(&lda);
838 goto again;
839 }
840
841 new_prev.gen = prev.gen;
842 new_prev.next = invl_gen;
843 invl_gen->gen = prev.gen + 1;
844
845 /* Formal fence between store to invl->gen and updating *p. */
846 atomic_thread_fence_rel();
847
848 /*
849 * After inserting an invl_gen element with invalid bit set,
850 * this thread blocks any other thread trying to enter the
851 * delayed invalidation block. Do not allow to remove us from
852 * the CPU, because it causes starvation for other threads.
853 */
854 critical_enter();
855
856 /*
857 * ABA for *p is not possible there, since p->gen can only
858 * increase. So if the *p thread finished its di, then
859 * started a new one and got inserted into the list at the
860 * same place, its gen will appear greater than the previously
861 * read gen.
862 */
863 if (!pmap_di_store_invl(p, &prev, &new_prev)) {
864 critical_exit();
865 PV_STAT(atomic_add_long(&invl_start_restart, 1));
866 lock_delay(&lda);
867 goto again;
868 }
869
870 /*
871 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
872 * invl_gen->next, allowing other threads to iterate past us.
873 * pmap_di_store_invl() provides fence between the generation
874 * write and the update of next.
875 */
876 invl_gen->next = NULL;
877 critical_exit();
878 }
879
880 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)881 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
882 struct pmap_invl_gen *p)
883 {
884 struct pmap_invl_gen prev, new_prev;
885 u_long mygen;
886
887 /*
888 * Load invl_gen->gen after setting invl_gen->next
889 * PMAP_INVL_GEN_NEXT_INVALID. This prevents larger
890 * generations to propagate to our invl_gen->gen. Lock prefix
891 * in atomic_set_ptr() worked as seq_cst fence.
892 */
893 mygen = atomic_load_long(&invl_gen->gen);
894
895 if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
896 return (false);
897
898 KASSERT(prev.gen < mygen,
899 ("invalid di gen sequence %lu %lu", prev.gen, mygen));
900 new_prev.gen = mygen;
901 new_prev.next = (void *)((uintptr_t)invl_gen->next &
902 ~PMAP_INVL_GEN_NEXT_INVALID);
903
904 /* Formal fence between load of prev and storing update to it. */
905 atomic_thread_fence_rel();
906
907 return (pmap_di_store_invl(p, &prev, &new_prev));
908 }
909
910 static void
pmap_delayed_invl_finish_u(void)911 pmap_delayed_invl_finish_u(void)
912 {
913 struct pmap_invl_gen *invl_gen, *p;
914 struct thread *td;
915 struct lock_delay_arg lda;
916 uintptr_t prevl;
917
918 td = curthread;
919 invl_gen = &td->td_md.md_invl_gen;
920 KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
921 KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
922 ("missed invl_start: INVALID"));
923 lock_delay_arg_init(&lda, &di_delay);
924
925 again:
926 for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
927 prevl = (uintptr_t)atomic_load_ptr(&p->next);
928 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
929 PV_STAT(atomic_add_long(&invl_finish_restart, 1));
930 lock_delay(&lda);
931 goto again;
932 }
933 if ((void *)prevl == invl_gen)
934 break;
935 }
936
937 /*
938 * It is legitimate to not find ourself on the list if a
939 * thread before us finished its DI and started it again.
940 */
941 if (__predict_false(p == NULL)) {
942 PV_STAT(atomic_add_long(&invl_finish_restart, 1));
943 lock_delay(&lda);
944 goto again;
945 }
946
947 critical_enter();
948 atomic_set_ptr((uintptr_t *)&invl_gen->next,
949 PMAP_INVL_GEN_NEXT_INVALID);
950 if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
951 atomic_clear_ptr((uintptr_t *)&invl_gen->next,
952 PMAP_INVL_GEN_NEXT_INVALID);
953 critical_exit();
954 PV_STAT(atomic_add_long(&invl_finish_restart, 1));
955 lock_delay(&lda);
956 goto again;
957 }
958 critical_exit();
959 if (atomic_load_int(&pmap_invl_waiters) > 0)
960 pmap_delayed_invl_finish_unblock(0);
961 if (invl_gen->saved_pri != 0) {
962 thread_lock(td);
963 sched_prio(td, invl_gen->saved_pri);
964 thread_unlock(td);
965 }
966 }
967
968 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)969 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
970 {
971 struct pmap_invl_gen *p, *pn;
972 struct thread *td;
973 uintptr_t nextl;
974 bool first;
975
976 for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
977 first = false) {
978 nextl = (uintptr_t)atomic_load_ptr(&p->next);
979 pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
980 td = first ? NULL : __containerof(p, struct thread,
981 td_md.md_invl_gen);
982 db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
983 (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
984 td != NULL ? td->td_tid : -1);
985 }
986 }
987 #endif
988
989 #ifdef PV_STATS
990 static long invl_wait;
991 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_wait, CTLFLAG_RD, &invl_wait, 0,
992 "Number of times DI invalidation blocked pmap_remove_all/write");
993 static long invl_wait_slow;
994 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD, &invl_wait_slow, 0,
995 "Number of slow invalidation waits for lockless DI");
996 #endif
997
998 #ifdef NUMA
999 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1000 pmap_delayed_invl_genp(vm_page_t m)
1001 {
1002 vm_paddr_t pa;
1003 u_long *gen;
1004
1005 pa = VM_PAGE_TO_PHYS(m);
1006 if (__predict_false((pa) > pmap_last_pa))
1007 gen = &pv_dummy_large.pv_invl_gen;
1008 else
1009 gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1010
1011 return (gen);
1012 }
1013 #else
1014 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1015 pmap_delayed_invl_genp(vm_page_t m)
1016 {
1017
1018 return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1019 }
1020 #endif
1021
1022 static void
pmap_delayed_invl_callout_func(void * arg __unused)1023 pmap_delayed_invl_callout_func(void *arg __unused)
1024 {
1025
1026 if (atomic_load_int(&pmap_invl_waiters) == 0)
1027 return;
1028 pmap_delayed_invl_finish_unblock(0);
1029 }
1030
1031 static void
pmap_delayed_invl_callout_init(void * arg __unused)1032 pmap_delayed_invl_callout_init(void *arg __unused)
1033 {
1034
1035 if (pmap_di_locked())
1036 return;
1037 callout_init(&pmap_invl_callout, 1);
1038 pmap_invl_callout_inited = true;
1039 }
1040 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1041 pmap_delayed_invl_callout_init, NULL);
1042
1043 /*
1044 * Ensure that all currently executing DI blocks, that need to flush
1045 * TLB for the given page m, actually flushed the TLB at the time the
1046 * function returned. If the page m has an empty PV list and we call
1047 * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1048 * valid mapping for the page m in either its page table or TLB.
1049 *
1050 * This function works by blocking until the global DI generation
1051 * number catches up with the generation number associated with the
1052 * given page m and its PV list. Since this function's callers
1053 * typically own an object lock and sometimes own a page lock, it
1054 * cannot sleep. Instead, it blocks on a turnstile to relinquish the
1055 * processor.
1056 */
1057 static void
pmap_delayed_invl_wait_l(vm_page_t m)1058 pmap_delayed_invl_wait_l(vm_page_t m)
1059 {
1060 u_long *m_gen;
1061 #ifdef PV_STATS
1062 bool accounted = false;
1063 #endif
1064
1065 m_gen = pmap_delayed_invl_genp(m);
1066 while (*m_gen > pmap_invl_gen) {
1067 #ifdef PV_STATS
1068 if (!accounted) {
1069 atomic_add_long(&invl_wait, 1);
1070 accounted = true;
1071 }
1072 #endif
1073 pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1074 }
1075 }
1076
1077 static void
pmap_delayed_invl_wait_u(vm_page_t m)1078 pmap_delayed_invl_wait_u(vm_page_t m)
1079 {
1080 u_long *m_gen;
1081 struct lock_delay_arg lda;
1082 bool fast;
1083
1084 fast = true;
1085 m_gen = pmap_delayed_invl_genp(m);
1086 lock_delay_arg_init(&lda, &di_delay);
1087 while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1088 if (fast || !pmap_invl_callout_inited) {
1089 PV_STAT(atomic_add_long(&invl_wait, 1));
1090 lock_delay(&lda);
1091 fast = false;
1092 } else {
1093 /*
1094 * The page's invalidation generation number
1095 * is still below the current thread's number.
1096 * Prepare to block so that we do not waste
1097 * CPU cycles or worse, suffer livelock.
1098 *
1099 * Since it is impossible to block without
1100 * racing with pmap_delayed_invl_finish_u(),
1101 * prepare for the race by incrementing
1102 * pmap_invl_waiters and arming a 1-tick
1103 * callout which will unblock us if we lose
1104 * the race.
1105 */
1106 atomic_add_int(&pmap_invl_waiters, 1);
1107
1108 /*
1109 * Re-check the current thread's invalidation
1110 * generation after incrementing
1111 * pmap_invl_waiters, so that there is no race
1112 * with pmap_delayed_invl_finish_u() setting
1113 * the page generation and checking
1114 * pmap_invl_waiters. The only race allowed
1115 * is for a missed unblock, which is handled
1116 * by the callout.
1117 */
1118 if (*m_gen >
1119 atomic_load_long(&pmap_invl_gen_head.gen)) {
1120 callout_reset(&pmap_invl_callout, 1,
1121 pmap_delayed_invl_callout_func, NULL);
1122 PV_STAT(atomic_add_long(&invl_wait_slow, 1));
1123 pmap_delayed_invl_wait_block(m_gen,
1124 &pmap_invl_gen_head.gen);
1125 }
1126 atomic_add_int(&pmap_invl_waiters, -1);
1127 }
1128 }
1129 }
1130
1131 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1132 {
1133
1134 return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1135 pmap_thread_init_invl_gen_u);
1136 }
1137
1138 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1139 {
1140
1141 return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1142 pmap_delayed_invl_start_u);
1143 }
1144
1145 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1146 {
1147
1148 return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1149 pmap_delayed_invl_finish_u);
1150 }
1151
1152 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1153 {
1154
1155 return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1156 pmap_delayed_invl_wait_u);
1157 }
1158
1159 /*
1160 * Mark the page m's PV list as participating in the current thread's
1161 * DI block. Any threads concurrently using m's PV list to remove or
1162 * restrict all mappings to m will wait for the current thread's DI
1163 * block to complete before proceeding.
1164 *
1165 * The function works by setting the DI generation number for m's PV
1166 * list to at least the DI generation number of the current thread.
1167 * This forces a caller of pmap_delayed_invl_wait() to block until
1168 * current thread calls pmap_delayed_invl_finish().
1169 */
1170 static void
pmap_delayed_invl_page(vm_page_t m)1171 pmap_delayed_invl_page(vm_page_t m)
1172 {
1173 u_long gen, *m_gen;
1174
1175 rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1176 gen = curthread->td_md.md_invl_gen.gen;
1177 if (gen == 0)
1178 return;
1179 m_gen = pmap_delayed_invl_genp(m);
1180 if (*m_gen < gen)
1181 *m_gen = gen;
1182 }
1183
1184 /*
1185 * Crashdump maps.
1186 */
1187 static caddr_t crashdumpmap;
1188
1189 /*
1190 * Internal flags for pmap_enter()'s helper functions.
1191 */
1192 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
1193 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
1194
1195 /*
1196 * Internal flags for pmap_mapdev_internal() and
1197 * pmap_change_props_locked().
1198 */
1199 #define MAPDEV_FLUSHCACHE 0x00000001 /* Flush cache after mapping. */
1200 #define MAPDEV_SETATTR 0x00000002 /* Modify existing attrs. */
1201 #define MAPDEV_ASSERTVALID 0x00000004 /* Assert mapping validity. */
1202
1203 TAILQ_HEAD(pv_chunklist, pv_chunk);
1204
1205 static void free_pv_chunk(struct pv_chunk *pc);
1206 static void free_pv_chunk_batch(struct pv_chunklist *batch);
1207 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
1208 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1209 static int popcnt_pc_map_pq(uint64_t *map);
1210 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1211 static void reserve_pv_entries(pmap_t pmap, int needed,
1212 struct rwlock **lockp);
1213 static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1214 struct rwlock **lockp);
1215 static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1216 u_int flags, struct rwlock **lockp);
1217 #if VM_NRESERVLEVEL > 0
1218 static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1219 struct rwlock **lockp);
1220 #endif
1221 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1222 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1223 vm_offset_t va);
1224
1225 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1226 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1227 vm_prot_t prot, int mode, int flags);
1228 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1229 static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1230 vm_offset_t va, struct rwlock **lockp);
1231 static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1232 vm_offset_t va);
1233 static bool pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1234 vm_prot_t prot, struct rwlock **lockp);
1235 static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1236 u_int flags, vm_page_t m, struct rwlock **lockp);
1237 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1238 vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1239 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1240 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted);
1241 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1242 vm_offset_t eva);
1243 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1244 vm_offset_t eva);
1245 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1246 pd_entry_t pde);
1247 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1248 static vm_page_t pmap_large_map_getptp_unlocked(void);
1249 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1250 #if VM_NRESERVLEVEL > 0
1251 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1252 struct rwlock **lockp);
1253 #endif
1254 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1255 vm_prot_t prot);
1256 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1257 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1258 bool exec);
1259 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1260 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1261 static void pmap_pti_wire_pte(void *pte);
1262 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1263 struct spglist *free, struct rwlock **lockp);
1264 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1265 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1266 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1267 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1268 struct spglist *free);
1269 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1270 pd_entry_t *pde, struct spglist *free,
1271 struct rwlock **lockp);
1272 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1273 vm_page_t m, struct rwlock **lockp);
1274 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1275 pd_entry_t newpde);
1276 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1277
1278 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1279 struct rwlock **lockp);
1280 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1281 struct rwlock **lockp, vm_offset_t va);
1282 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1283 struct rwlock **lockp, vm_offset_t va);
1284 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1285 struct rwlock **lockp);
1286
1287 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1288 struct spglist *free);
1289 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1290
1291 /********************/
1292 /* Inline functions */
1293 /********************/
1294
1295 /*
1296 * Return a non-clipped indexes for a given VA, which are page table
1297 * pages indexes at the corresponding level.
1298 */
1299 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1300 pmap_pde_pindex(vm_offset_t va)
1301 {
1302 return (va >> PDRSHIFT);
1303 }
1304
1305 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1306 pmap_pdpe_pindex(vm_offset_t va)
1307 {
1308 return (NUPDE + (va >> PDPSHIFT));
1309 }
1310
1311 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1312 pmap_pml4e_pindex(vm_offset_t va)
1313 {
1314 return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1315 }
1316
1317 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1318 pmap_pml5e_pindex(vm_offset_t va)
1319 {
1320 return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1321 }
1322
1323 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1324 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1325 {
1326
1327 MPASS(pmap_is_la57(pmap));
1328 return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1329 }
1330
1331 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1332 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1333 {
1334
1335 MPASS(pmap_is_la57(pmap));
1336 return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1337 }
1338
1339 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1340 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1341 {
1342 pml4_entry_t *pml4e;
1343
1344 /* XXX MPASS(pmap_is_la57(pmap); */
1345 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1346 return (&pml4e[pmap_pml4e_index(va)]);
1347 }
1348
1349 /* Return a pointer to the PML4 slot that corresponds to a VA */
1350 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1351 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1352 {
1353 pml5_entry_t *pml5e;
1354 pml4_entry_t *pml4e;
1355 pt_entry_t PG_V;
1356
1357 if (pmap_is_la57(pmap)) {
1358 pml5e = pmap_pml5e(pmap, va);
1359 PG_V = pmap_valid_bit(pmap);
1360 if ((*pml5e & PG_V) == 0)
1361 return (NULL);
1362 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1363 } else {
1364 pml4e = pmap->pm_pmltop;
1365 }
1366 return (&pml4e[pmap_pml4e_index(va)]);
1367 }
1368
1369 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1370 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1371 {
1372 MPASS(!pmap_is_la57(pmap));
1373 return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1374 }
1375
1376 /* Return a pointer to the PDP slot that corresponds to a VA */
1377 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1378 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1379 {
1380 pdp_entry_t *pdpe;
1381
1382 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1383 return (&pdpe[pmap_pdpe_index(va)]);
1384 }
1385
1386 /* Return a pointer to the PDP slot that corresponds to a VA */
1387 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1388 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1389 {
1390 pml4_entry_t *pml4e;
1391 pt_entry_t PG_V;
1392
1393 PG_V = pmap_valid_bit(pmap);
1394 pml4e = pmap_pml4e(pmap, va);
1395 if (pml4e == NULL || (*pml4e & PG_V) == 0)
1396 return (NULL);
1397 return (pmap_pml4e_to_pdpe(pml4e, va));
1398 }
1399
1400 /* Return a pointer to the PD slot that corresponds to a VA */
1401 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1402 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1403 {
1404 pd_entry_t *pde;
1405
1406 KASSERT((*pdpe & PG_PS) == 0,
1407 ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1408 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1409 return (&pde[pmap_pde_index(va)]);
1410 }
1411
1412 /* Return a pointer to the PD slot that corresponds to a VA */
1413 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1414 pmap_pde(pmap_t pmap, vm_offset_t va)
1415 {
1416 pdp_entry_t *pdpe;
1417 pt_entry_t PG_V;
1418
1419 PG_V = pmap_valid_bit(pmap);
1420 pdpe = pmap_pdpe(pmap, va);
1421 if (pdpe == NULL || (*pdpe & PG_V) == 0)
1422 return (NULL);
1423 KASSERT((*pdpe & PG_PS) == 0,
1424 ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1425 return (pmap_pdpe_to_pde(pdpe, va));
1426 }
1427
1428 /* Return a pointer to the PT slot that corresponds to a VA */
1429 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1430 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1431 {
1432 pt_entry_t *pte;
1433
1434 KASSERT((*pde & PG_PS) == 0,
1435 ("%s: pde %#lx is a leaf", __func__, *pde));
1436 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1437 return (&pte[pmap_pte_index(va)]);
1438 }
1439
1440 /* Return a pointer to the PT slot that corresponds to a VA */
1441 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1442 pmap_pte(pmap_t pmap, vm_offset_t va)
1443 {
1444 pd_entry_t *pde;
1445 pt_entry_t PG_V;
1446
1447 PG_V = pmap_valid_bit(pmap);
1448 pde = pmap_pde(pmap, va);
1449 if (pde == NULL || (*pde & PG_V) == 0)
1450 return (NULL);
1451 if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
1452 return ((pt_entry_t *)pde);
1453 return (pmap_pde_to_pte(pde, va));
1454 }
1455
1456 static __inline void
pmap_resident_count_inc(pmap_t pmap,int count)1457 pmap_resident_count_inc(pmap_t pmap, int count)
1458 {
1459
1460 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1461 pmap->pm_stats.resident_count += count;
1462 }
1463
1464 static __inline void
pmap_resident_count_dec(pmap_t pmap,int count)1465 pmap_resident_count_dec(pmap_t pmap, int count)
1466 {
1467
1468 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1469 KASSERT(pmap->pm_stats.resident_count >= count,
1470 ("pmap %p resident count underflow %ld %d", pmap,
1471 pmap->pm_stats.resident_count, count));
1472 pmap->pm_stats.resident_count -= count;
1473 }
1474
1475 PMAP_INLINE pt_entry_t *
vtopte(vm_offset_t va)1476 vtopte(vm_offset_t va)
1477 {
1478 u_int64_t mask;
1479
1480 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1481
1482 if (la57) {
1483 mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
1484 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1);
1485 return (P5Tmap + ((va >> PAGE_SHIFT) & mask));
1486 } else {
1487 mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
1488 NPML4EPGSHIFT)) - 1);
1489 return (P4Tmap + ((va >> PAGE_SHIFT) & mask));
1490 }
1491 }
1492
1493 static __inline pd_entry_t *
vtopde(vm_offset_t va)1494 vtopde(vm_offset_t va)
1495 {
1496 u_int64_t mask;
1497
1498 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1499
1500 if (la57) {
1501 mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1502 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1);
1503 return (P5Dmap + ((va >> PDRSHIFT) & mask));
1504 } else {
1505 mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1506 NPML4EPGSHIFT)) - 1);
1507 return (P4Dmap + ((va >> PDRSHIFT) & mask));
1508 }
1509 }
1510
1511 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1512 allocpages(vm_paddr_t *firstaddr, int n)
1513 {
1514 u_int64_t ret;
1515
1516 ret = *firstaddr;
1517 bzero((void *)ret, n * PAGE_SIZE);
1518 *firstaddr += n * PAGE_SIZE;
1519 return (ret);
1520 }
1521
1522 CTASSERT(powerof2(NDMPML4E));
1523
1524 /* number of kernel PDP slots */
1525 #define NKPDPE(ptpgs) howmany(ptpgs, NPDEPG)
1526
1527 static void
nkpt_init(vm_paddr_t addr)1528 nkpt_init(vm_paddr_t addr)
1529 {
1530 int pt_pages;
1531
1532 #ifdef NKPT
1533 pt_pages = NKPT;
1534 #else
1535 pt_pages = howmany(addr, 1 << PDRSHIFT);
1536 pt_pages += NKPDPE(pt_pages);
1537
1538 /*
1539 * Add some slop beyond the bare minimum required for bootstrapping
1540 * the kernel.
1541 *
1542 * This is quite important when allocating KVA for kernel modules.
1543 * The modules are required to be linked in the negative 2GB of
1544 * the address space. If we run out of KVA in this region then
1545 * pmap_growkernel() will need to allocate page table pages to map
1546 * the entire 512GB of KVA space which is an unnecessary tax on
1547 * physical memory.
1548 *
1549 * Secondly, device memory mapped as part of setting up the low-
1550 * level console(s) is taken from KVA, starting at virtual_avail.
1551 * This is because cninit() is called after pmap_bootstrap() but
1552 * before vm_init() and pmap_init(). 20MB for a frame buffer is
1553 * not uncommon.
1554 */
1555 pt_pages += 32; /* 64MB additional slop. */
1556 #endif
1557 nkpt = pt_pages;
1558 }
1559
1560 /*
1561 * Returns the proper write/execute permission for a physical page that is
1562 * part of the initial boot allocations.
1563 *
1564 * If the page has kernel text, it is marked as read-only. If the page has
1565 * kernel read-only data, it is marked as read-only/not-executable. If the
1566 * page has only read-write data, it is marked as read-write/not-executable.
1567 * If the page is below/above the kernel range, it is marked as read-write.
1568 *
1569 * This function operates on 2M pages, since we map the kernel space that
1570 * way.
1571 */
1572 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1573 bootaddr_rwx(vm_paddr_t pa)
1574 {
1575
1576 /*
1577 * The kernel is loaded at a 2MB-aligned address, and memory below that
1578 * need not be executable. The .bss section is padded to a 2MB
1579 * boundary, so memory following the kernel need not be executable
1580 * either. Preloaded kernel modules have their mapping permissions
1581 * fixed up by the linker.
1582 */
1583 if (pa < trunc_2mpage(btext - KERNBASE) ||
1584 pa >= trunc_2mpage(_end - KERNBASE))
1585 return (X86_PG_RW | pg_nx);
1586
1587 /*
1588 * The linker should ensure that the read-only and read-write
1589 * portions don't share the same 2M page, so this shouldn't
1590 * impact read-only data. However, in any case, any page with
1591 * read-write data needs to be read-write.
1592 */
1593 if (pa >= trunc_2mpage(brwsection - KERNBASE))
1594 return (X86_PG_RW | pg_nx);
1595
1596 /*
1597 * Mark any 2M page containing kernel text as read-only. Mark
1598 * other pages with read-only data as read-only and not executable.
1599 * (It is likely a small portion of the read-only data section will
1600 * be marked as read-only, but executable. This should be acceptable
1601 * since the read-only protection will keep the data from changing.)
1602 * Note that fixups to the .text section will still work until we
1603 * set CR0.WP.
1604 */
1605 if (pa < round_2mpage(etext - KERNBASE))
1606 return (0);
1607 return (pg_nx);
1608 }
1609
1610 static void
create_pagetables(vm_paddr_t * firstaddr)1611 create_pagetables(vm_paddr_t *firstaddr)
1612 {
1613 int i, j, ndm1g, nkpdpe, nkdmpde;
1614 pd_entry_t *pd_p;
1615 pdp_entry_t *pdp_p;
1616 pml4_entry_t *p4_p;
1617 uint64_t DMPDkernphys;
1618
1619 /* Allocate page table pages for the direct map */
1620 ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1621 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
1622 ndmpdp = 4;
1623 ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1624 if (ndmpdpphys > NDMPML4E) {
1625 /*
1626 * Each NDMPML4E allows 512 GB, so limit to that,
1627 * and then readjust ndmpdp and ndmpdpphys.
1628 */
1629 printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1630 Maxmem = atop(NDMPML4E * NBPML4);
1631 ndmpdpphys = NDMPML4E;
1632 ndmpdp = NDMPML4E * NPDEPG;
1633 }
1634 DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1635 ndm1g = 0;
1636 if ((amd_feature & AMDID_PAGE1GB) != 0) {
1637 /*
1638 * Calculate the number of 1G pages that will fully fit in
1639 * Maxmem.
1640 */
1641 ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1642
1643 /*
1644 * Allocate 2M pages for the kernel. These will be used in
1645 * place of the first one or more 1G pages from ndm1g.
1646 */
1647 nkdmpde = howmany((vm_offset_t)(brwsection - KERNBASE), NBPDP);
1648 DMPDkernphys = allocpages(firstaddr, nkdmpde);
1649 }
1650 if (ndm1g < ndmpdp)
1651 DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1652 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1653
1654 /* Allocate pages */
1655 KPML4phys = allocpages(firstaddr, 1);
1656 KPDPphys = allocpages(firstaddr, NKPML4E);
1657
1658 /*
1659 * Allocate the initial number of kernel page table pages required to
1660 * bootstrap. We defer this until after all memory-size dependent
1661 * allocations are done (e.g. direct map), so that we don't have to
1662 * build in too much slop in our estimate.
1663 *
1664 * Note that when NKPML4E > 1, we have an empty page underneath
1665 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1666 * pages. (pmap_enter requires a PD page to exist for each KPML4E.)
1667 */
1668 nkpt_init(*firstaddr);
1669 nkpdpe = NKPDPE(nkpt);
1670
1671 KPTphys = allocpages(firstaddr, nkpt);
1672 KPDphys = allocpages(firstaddr, nkpdpe);
1673
1674 /*
1675 * Connect the zero-filled PT pages to their PD entries. This
1676 * implicitly maps the PT pages at their correct locations within
1677 * the PTmap.
1678 */
1679 pd_p = (pd_entry_t *)KPDphys;
1680 for (i = 0; i < nkpt; i++)
1681 pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1682
1683 /*
1684 * Map from physical address zero to the end of loader preallocated
1685 * memory using 2MB pages. This replaces some of the PD entries
1686 * created above.
1687 */
1688 for (i = 0; (i << PDRSHIFT) < KERNend; i++)
1689 /* Preset PG_M and PG_A because demotion expects it. */
1690 pd_p[i] = (i << PDRSHIFT) | X86_PG_V | PG_PS | pg_g |
1691 X86_PG_M | X86_PG_A | bootaddr_rwx(i << PDRSHIFT);
1692
1693 /*
1694 * Because we map the physical blocks in 2M pages, adjust firstaddr
1695 * to record the physical blocks we've actually mapped into kernel
1696 * virtual address space.
1697 */
1698 if (*firstaddr < round_2mpage(KERNend))
1699 *firstaddr = round_2mpage(KERNend);
1700
1701 /* And connect up the PD to the PDP (leaving room for L4 pages) */
1702 pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1703 for (i = 0; i < nkpdpe; i++)
1704 pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1705
1706 /*
1707 * Now, set up the direct map region using 2MB and/or 1GB pages. If
1708 * the end of physical memory is not aligned to a 1GB page boundary,
1709 * then the residual physical memory is mapped with 2MB pages. Later,
1710 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1711 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1712 * that are partially used.
1713 */
1714 pd_p = (pd_entry_t *)DMPDphys;
1715 for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1716 pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1717 /* Preset PG_M and PG_A because demotion expects it. */
1718 pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1719 X86_PG_M | X86_PG_A | pg_nx;
1720 }
1721 pdp_p = (pdp_entry_t *)DMPDPphys;
1722 for (i = 0; i < ndm1g; i++) {
1723 pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1724 /* Preset PG_M and PG_A because demotion expects it. */
1725 pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1726 X86_PG_M | X86_PG_A | pg_nx;
1727 }
1728 for (j = 0; i < ndmpdp; i++, j++) {
1729 pdp_p[i] = DMPDphys + ptoa(j);
1730 pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1731 }
1732
1733 /*
1734 * Instead of using a 1G page for the memory containing the kernel,
1735 * use 2M pages with read-only and no-execute permissions. (If using 1G
1736 * pages, this will partially overwrite the PDPEs above.)
1737 */
1738 if (ndm1g) {
1739 pd_p = (pd_entry_t *)DMPDkernphys;
1740 for (i = 0; i < (NPDEPG * nkdmpde); i++)
1741 pd_p[i] = (i << PDRSHIFT) | X86_PG_V | PG_PS | pg_g |
1742 X86_PG_M | X86_PG_A | pg_nx |
1743 bootaddr_rwx(i << PDRSHIFT);
1744 for (i = 0; i < nkdmpde; i++)
1745 pdp_p[i] = (DMPDkernphys + ptoa(i)) | X86_PG_RW |
1746 X86_PG_V | pg_nx;
1747 }
1748
1749 /* And recursively map PML4 to itself in order to get PTmap */
1750 p4_p = (pml4_entry_t *)KPML4phys;
1751 p4_p[PML4PML4I] = KPML4phys;
1752 p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1753
1754 /* Connect the Direct Map slot(s) up to the PML4. */
1755 for (i = 0; i < ndmpdpphys; i++) {
1756 p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1757 p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1758 }
1759
1760 /* Connect the KVA slots up to the PML4 */
1761 for (i = 0; i < NKPML4E; i++) {
1762 p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1763 p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1764 }
1765
1766 kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1767 }
1768
1769 /*
1770 * Bootstrap the system enough to run with virtual memory.
1771 *
1772 * On amd64 this is called after mapping has already been enabled
1773 * and just syncs the pmap module with what has already been done.
1774 * [We can't call it easily with mapping off since the kernel is not
1775 * mapped with PA == VA, hence we would have to relocate every address
1776 * from the linked base (virtual) address "KERNBASE" to the actual
1777 * (physical) address starting relative to 0]
1778 */
1779 void
pmap_bootstrap(vm_paddr_t * firstaddr)1780 pmap_bootstrap(vm_paddr_t *firstaddr)
1781 {
1782 vm_offset_t va;
1783 pt_entry_t *pte, *pcpu_pte;
1784 struct region_descriptor r_gdt;
1785 uint64_t cr4, pcpu_phys;
1786 u_long res;
1787 int i;
1788
1789 KERNend = *firstaddr;
1790 res = atop(KERNend - (vm_paddr_t)kernphys);
1791
1792 if (!pti)
1793 pg_g = X86_PG_G;
1794
1795 /*
1796 * Create an initial set of page tables to run the kernel in.
1797 */
1798 create_pagetables(firstaddr);
1799
1800 pcpu_phys = allocpages(firstaddr, MAXCPU);
1801
1802 /*
1803 * Add a physical memory segment (vm_phys_seg) corresponding to the
1804 * preallocated kernel page table pages so that vm_page structures
1805 * representing these pages will be created. The vm_page structures
1806 * are required for promotion of the corresponding kernel virtual
1807 * addresses to superpage mappings.
1808 */
1809 vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1810
1811 /*
1812 * Account for the virtual addresses mapped by create_pagetables().
1813 */
1814 virtual_avail = (vm_offset_t)KERNBASE + round_2mpage(KERNend);
1815 virtual_end = VM_MAX_KERNEL_ADDRESS;
1816
1817 /*
1818 * Enable PG_G global pages, then switch to the kernel page
1819 * table from the bootstrap page table. After the switch, it
1820 * is possible to enable SMEP and SMAP since PG_U bits are
1821 * correct now.
1822 */
1823 cr4 = rcr4();
1824 cr4 |= CR4_PGE;
1825 load_cr4(cr4);
1826 load_cr3(KPML4phys);
1827 if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1828 cr4 |= CR4_SMEP;
1829 if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1830 cr4 |= CR4_SMAP;
1831 load_cr4(cr4);
1832
1833 /*
1834 * Initialize the kernel pmap (which is statically allocated).
1835 * Count bootstrap data as being resident in case any of this data is
1836 * later unmapped (using pmap_remove()) and freed.
1837 */
1838 PMAP_LOCK_INIT(kernel_pmap);
1839 kernel_pmap->pm_pmltop = kernel_pml4;
1840 kernel_pmap->pm_cr3 = KPML4phys;
1841 kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1842 CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */
1843 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1844 kernel_pmap->pm_stats.resident_count = res;
1845 kernel_pmap->pm_flags = pmap_flags;
1846
1847 /*
1848 * Initialize the TLB invalidations generation number lock.
1849 */
1850 mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
1851
1852 /*
1853 * Reserve some special page table entries/VA space for temporary
1854 * mapping of pages.
1855 */
1856 #define SYSMAP(c, p, v, n) \
1857 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1858
1859 va = virtual_avail;
1860 pte = vtopte(va);
1861
1862 /*
1863 * Crashdump maps. The first page is reused as CMAP1 for the
1864 * memory test.
1865 */
1866 SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
1867 CADDR1 = crashdumpmap;
1868
1869 SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
1870 virtual_avail = va;
1871
1872 for (i = 0; i < MAXCPU; i++) {
1873 pcpu_pte[i] = (pcpu_phys + ptoa(i)) | X86_PG_V | X86_PG_RW |
1874 pg_g | pg_nx | X86_PG_M | X86_PG_A;
1875 }
1876
1877 /*
1878 * Re-initialize PCPU area for BSP after switching.
1879 * Make hardware use gdt and common_tss from the new PCPU.
1880 */
1881 STAILQ_INIT(&cpuhead);
1882 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
1883 pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
1884 amd64_bsp_pcpu_init1(&__pcpu[0]);
1885 amd64_bsp_ist_init(&__pcpu[0]);
1886 __pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
1887 IOPERM_BITMAP_SIZE;
1888 memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
1889 sizeof(struct user_segment_descriptor));
1890 gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
1891 ssdtosyssd(&gdt_segs[GPROC0_SEL],
1892 (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
1893 r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
1894 r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
1895 lgdt(&r_gdt);
1896 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
1897 ltr(GSEL(GPROC0_SEL, SEL_KPL));
1898 __pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
1899 __pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
1900
1901 /*
1902 * Initialize the PAT MSR.
1903 * pmap_init_pat() clears and sets CR4_PGE, which, as a
1904 * side-effect, invalidates stale PG_G TLB entries that might
1905 * have been created in our pre-boot environment.
1906 */
1907 pmap_init_pat();
1908
1909 /* Initialize TLB Context Id. */
1910 if (pmap_pcid_enabled) {
1911 for (i = 0; i < MAXCPU; i++) {
1912 kernel_pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN;
1913 kernel_pmap->pm_pcids[i].pm_gen = 1;
1914 }
1915
1916 /*
1917 * PMAP_PCID_KERN + 1 is used for initialization of
1918 * proc0 pmap. The pmap' pcid state might be used by
1919 * EFIRT entry before first context switch, so it
1920 * needs to be valid.
1921 */
1922 PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
1923 PCPU_SET(pcid_gen, 1);
1924
1925 /*
1926 * pcpu area for APs is zeroed during AP startup.
1927 * pc_pcid_next and pc_pcid_gen are initialized by AP
1928 * during pcpu setup.
1929 */
1930 load_cr4(rcr4() | CR4_PCIDE);
1931 }
1932 }
1933
1934 /*
1935 * Setup the PAT MSR.
1936 */
1937 void
pmap_init_pat(void)1938 pmap_init_pat(void)
1939 {
1940 uint64_t pat_msr;
1941 u_long cr0, cr4;
1942 int i;
1943
1944 /* Bail if this CPU doesn't implement PAT. */
1945 if ((cpu_feature & CPUID_PAT) == 0)
1946 panic("no PAT??");
1947
1948 /* Set default PAT index table. */
1949 for (i = 0; i < PAT_INDEX_SIZE; i++)
1950 pat_index[i] = -1;
1951 pat_index[PAT_WRITE_BACK] = 0;
1952 pat_index[PAT_WRITE_THROUGH] = 1;
1953 pat_index[PAT_UNCACHEABLE] = 3;
1954 pat_index[PAT_WRITE_COMBINING] = 6;
1955 pat_index[PAT_WRITE_PROTECTED] = 5;
1956 pat_index[PAT_UNCACHED] = 2;
1957
1958 /*
1959 * Initialize default PAT entries.
1960 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
1961 * Program 5 and 6 as WP and WC.
1962 *
1963 * Leave 4 and 7 as WB and UC. Note that a recursive page table
1964 * mapping for a 2M page uses a PAT value with the bit 3 set due
1965 * to its overload with PG_PS.
1966 */
1967 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
1968 PAT_VALUE(1, PAT_WRITE_THROUGH) |
1969 PAT_VALUE(2, PAT_UNCACHED) |
1970 PAT_VALUE(3, PAT_UNCACHEABLE) |
1971 PAT_VALUE(4, PAT_WRITE_BACK) |
1972 PAT_VALUE(5, PAT_WRITE_PROTECTED) |
1973 PAT_VALUE(6, PAT_WRITE_COMBINING) |
1974 PAT_VALUE(7, PAT_UNCACHEABLE);
1975
1976 /* Disable PGE. */
1977 cr4 = rcr4();
1978 load_cr4(cr4 & ~CR4_PGE);
1979
1980 /* Disable caches (CD = 1, NW = 0). */
1981 cr0 = rcr0();
1982 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1983
1984 /* Flushes caches and TLBs. */
1985 wbinvd();
1986 invltlb();
1987
1988 /* Update PAT and index table. */
1989 wrmsr(MSR_PAT, pat_msr);
1990
1991 /* Flush caches and TLBs again. */
1992 wbinvd();
1993 invltlb();
1994
1995 /* Restore caches and PGE. */
1996 load_cr0(cr0);
1997 load_cr4(cr4);
1998 }
1999
2000 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2001 la57_trampoline_gdt[], la57_trampoline_end[];
2002
2003 static void
pmap_bootstrap_la57(void * arg __unused)2004 pmap_bootstrap_la57(void *arg __unused)
2005 {
2006 char *v_code;
2007 pml5_entry_t *v_pml5;
2008 pml4_entry_t *v_pml4;
2009 pdp_entry_t *v_pdp;
2010 pd_entry_t *v_pd;
2011 pt_entry_t *v_pt;
2012 vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2013 void (*la57_tramp)(uint64_t pml5);
2014 struct region_descriptor r_gdt;
2015
2016 if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2017 return;
2018 if (!TUNABLE_INT_FETCH("vm.pmap.la57", &la57))
2019 la57 = 1;
2020 if (!la57)
2021 return;
2022
2023 r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2024 r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2025
2026 m_code = vm_page_alloc_contig(NULL, 0,
2027 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2028 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2029 if ((m_code->flags & PG_ZERO) == 0)
2030 pmap_zero_page(m_code);
2031 v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2032 m_pml5 = vm_page_alloc_contig(NULL, 0,
2033 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2034 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2035 if ((m_pml5->flags & PG_ZERO) == 0)
2036 pmap_zero_page(m_pml5);
2037 KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2038 v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2039 m_pml4 = vm_page_alloc_contig(NULL, 0,
2040 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2041 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2042 if ((m_pml4->flags & PG_ZERO) == 0)
2043 pmap_zero_page(m_pml4);
2044 v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2045 m_pdp = vm_page_alloc_contig(NULL, 0,
2046 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2047 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2048 if ((m_pdp->flags & PG_ZERO) == 0)
2049 pmap_zero_page(m_pdp);
2050 v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2051 m_pd = vm_page_alloc_contig(NULL, 0,
2052 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2053 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2054 if ((m_pd->flags & PG_ZERO) == 0)
2055 pmap_zero_page(m_pd);
2056 v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2057 m_pt = vm_page_alloc_contig(NULL, 0,
2058 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2059 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2060 if ((m_pt->flags & PG_ZERO) == 0)
2061 pmap_zero_page(m_pt);
2062 v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2063
2064 /*
2065 * Map m_code 1:1, it appears below 4G in KVA due to physical
2066 * address being below 4G. Since kernel KVA is in upper half,
2067 * the pml4e should be zero and free for temporary use.
2068 */
2069 kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2070 VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2071 X86_PG_M;
2072 v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2073 VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2074 X86_PG_M;
2075 v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2076 VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2077 X86_PG_M;
2078 v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2079 VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2080 X86_PG_M;
2081
2082 /*
2083 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2084 * entering all existing kernel mappings into level 5 table.
2085 */
2086 v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2087 X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
2088
2089 /*
2090 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2091 */
2092 v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2093 VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2094 X86_PG_M;
2095 v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2096 VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2097 X86_PG_M;
2098
2099 /*
2100 * Copy and call the 48->57 trampoline, hope we return there, alive.
2101 */
2102 bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2103 *(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2104 la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2105 la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2106 la57_tramp(KPML5phys);
2107
2108 /*
2109 * gdt was necessary reset, switch back to our gdt.
2110 */
2111 lgdt(&r_gdt);
2112 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2113 load_ds(_udatasel);
2114 load_es(_udatasel);
2115 load_fs(_ufssel);
2116 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2117 (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2118 ltr(GSEL(GPROC0_SEL, SEL_KPL));
2119
2120 /*
2121 * Now unmap the trampoline, and free the pages.
2122 * Clear pml5 entry used for 1:1 trampoline mapping.
2123 */
2124 pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2125 invlpg((vm_offset_t)v_code);
2126 vm_page_free(m_code);
2127 vm_page_free(m_pdp);
2128 vm_page_free(m_pd);
2129 vm_page_free(m_pt);
2130
2131 /*
2132 * Recursively map PML5 to itself in order to get PTmap and
2133 * PDmap.
2134 */
2135 v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2136
2137 kernel_pmap->pm_cr3 = KPML5phys;
2138 kernel_pmap->pm_pmltop = v_pml5;
2139 }
2140 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2141
2142 /*
2143 * Initialize a vm_page's machine-dependent fields.
2144 */
2145 void
pmap_page_init(vm_page_t m)2146 pmap_page_init(vm_page_t m)
2147 {
2148
2149 TAILQ_INIT(&m->md.pv_list);
2150 m->md.pat_mode = PAT_WRITE_BACK;
2151 }
2152
2153 static int pmap_allow_2m_x_ept;
2154 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2155 &pmap_allow_2m_x_ept, 0,
2156 "Allow executable superpage mappings in EPT");
2157
2158 void
pmap_allow_2m_x_ept_recalculate(void)2159 pmap_allow_2m_x_ept_recalculate(void)
2160 {
2161 /*
2162 * SKL002, SKL012S. Since the EPT format is only used by
2163 * Intel CPUs, the vendor check is merely a formality.
2164 */
2165 if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2166 (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2167 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2168 (CPUID_TO_MODEL(cpu_id) == 0x26 || /* Atoms */
2169 CPUID_TO_MODEL(cpu_id) == 0x27 ||
2170 CPUID_TO_MODEL(cpu_id) == 0x35 ||
2171 CPUID_TO_MODEL(cpu_id) == 0x36 ||
2172 CPUID_TO_MODEL(cpu_id) == 0x37 ||
2173 CPUID_TO_MODEL(cpu_id) == 0x86 ||
2174 CPUID_TO_MODEL(cpu_id) == 0x1c ||
2175 CPUID_TO_MODEL(cpu_id) == 0x4a ||
2176 CPUID_TO_MODEL(cpu_id) == 0x4c ||
2177 CPUID_TO_MODEL(cpu_id) == 0x4d ||
2178 CPUID_TO_MODEL(cpu_id) == 0x5a ||
2179 CPUID_TO_MODEL(cpu_id) == 0x5c ||
2180 CPUID_TO_MODEL(cpu_id) == 0x5d ||
2181 CPUID_TO_MODEL(cpu_id) == 0x5f ||
2182 CPUID_TO_MODEL(cpu_id) == 0x6e ||
2183 CPUID_TO_MODEL(cpu_id) == 0x7a ||
2184 CPUID_TO_MODEL(cpu_id) == 0x57 || /* Knights */
2185 CPUID_TO_MODEL(cpu_id) == 0x85))))
2186 pmap_allow_2m_x_ept = 1;
2187 TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2188 }
2189
2190 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2191 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2192 {
2193
2194 return (pmap->pm_type != PT_EPT || !executable ||
2195 !pmap_allow_2m_x_ept);
2196 }
2197
2198 #ifdef NUMA
2199 static void
pmap_init_pv_table(void)2200 pmap_init_pv_table(void)
2201 {
2202 struct pmap_large_md_page *pvd;
2203 vm_size_t s;
2204 long start, end, highest, pv_npg;
2205 int domain, i, j, pages;
2206
2207 /*
2208 * We strongly depend on the size being a power of two, so the assert
2209 * is overzealous. However, should the struct be resized to a
2210 * different power of two, the code below needs to be revisited.
2211 */
2212 CTASSERT((sizeof(*pvd) == 64));
2213
2214 /*
2215 * Calculate the size of the array.
2216 */
2217 pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2218 pv_npg = howmany(pmap_last_pa, NBPDR);
2219 s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2220 s = round_page(s);
2221 pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2222 if (pv_table == NULL)
2223 panic("%s: kva_alloc failed\n", __func__);
2224
2225 /*
2226 * Iterate physical segments to allocate space for respective pages.
2227 */
2228 highest = -1;
2229 s = 0;
2230 for (i = 0; i < vm_phys_nsegs; i++) {
2231 end = vm_phys_segs[i].end / NBPDR;
2232 domain = vm_phys_segs[i].domain;
2233
2234 if (highest >= end)
2235 continue;
2236
2237 start = highest + 1;
2238 pvd = &pv_table[start];
2239
2240 pages = end - start + 1;
2241 s = round_page(pages * sizeof(*pvd));
2242 highest = start + (s / sizeof(*pvd)) - 1;
2243
2244 for (j = 0; j < s; j += PAGE_SIZE) {
2245 vm_page_t m = vm_page_alloc_domain(NULL, 0,
2246 domain, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ);
2247 if (m == NULL)
2248 panic("vm_page_alloc_domain failed for %lx\n", (vm_offset_t)pvd + j);
2249 pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2250 }
2251
2252 for (j = 0; j < s / sizeof(*pvd); j++) {
2253 rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2254 TAILQ_INIT(&pvd->pv_page.pv_list);
2255 pvd->pv_page.pv_gen = 0;
2256 pvd->pv_page.pat_mode = 0;
2257 pvd->pv_invl_gen = 0;
2258 pvd++;
2259 }
2260 }
2261 pvd = &pv_dummy_large;
2262 rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2263 TAILQ_INIT(&pvd->pv_page.pv_list);
2264 pvd->pv_page.pv_gen = 0;
2265 pvd->pv_page.pat_mode = 0;
2266 pvd->pv_invl_gen = 0;
2267 }
2268 #else
2269 static void
pmap_init_pv_table(void)2270 pmap_init_pv_table(void)
2271 {
2272 vm_size_t s;
2273 long i, pv_npg;
2274
2275 /*
2276 * Initialize the pool of pv list locks.
2277 */
2278 for (i = 0; i < NPV_LIST_LOCKS; i++)
2279 rw_init(&pv_list_locks[i], "pmap pv list");
2280
2281 /*
2282 * Calculate the size of the pv head table for superpages.
2283 */
2284 pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2285
2286 /*
2287 * Allocate memory for the pv head table for superpages.
2288 */
2289 s = (vm_size_t)pv_npg * sizeof(struct md_page);
2290 s = round_page(s);
2291 pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
2292 for (i = 0; i < pv_npg; i++)
2293 TAILQ_INIT(&pv_table[i].pv_list);
2294 TAILQ_INIT(&pv_dummy.pv_list);
2295 }
2296 #endif
2297
2298 /*
2299 * Initialize the pmap module.
2300 * Called by vm_init, to initialize any structures that the pmap
2301 * system needs to map virtual memory.
2302 */
2303 void
pmap_init(void)2304 pmap_init(void)
2305 {
2306 struct pmap_preinit_mapping *ppim;
2307 vm_page_t m, mpte;
2308 int error, i, ret, skz63;
2309
2310 /* L1TF, reserve page @0 unconditionally */
2311 vm_page_blacklist_add(0, bootverbose);
2312
2313 /* Detect bare-metal Skylake Server and Skylake-X. */
2314 if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2315 CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2316 /*
2317 * Skylake-X errata SKZ63. Processor May Hang When
2318 * Executing Code In an HLE Transaction Region between
2319 * 40000000H and 403FFFFFH.
2320 *
2321 * Mark the pages in the range as preallocated. It
2322 * seems to be impossible to distinguish between
2323 * Skylake Server and Skylake X.
2324 */
2325 skz63 = 1;
2326 TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2327 if (skz63 != 0) {
2328 if (bootverbose)
2329 printf("SKZ63: skipping 4M RAM starting "
2330 "at physical 1G\n");
2331 for (i = 0; i < atop(0x400000); i++) {
2332 ret = vm_page_blacklist_add(0x40000000 +
2333 ptoa(i), FALSE);
2334 if (!ret && bootverbose)
2335 printf("page at %#lx already used\n",
2336 0x40000000 + ptoa(i));
2337 }
2338 }
2339 }
2340
2341 /* IFU */
2342 pmap_allow_2m_x_ept_recalculate();
2343
2344 /*
2345 * Initialize the vm page array entries for the kernel pmap's
2346 * page table pages.
2347 */
2348 PMAP_LOCK(kernel_pmap);
2349 for (i = 0; i < nkpt; i++) {
2350 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2351 KASSERT(mpte >= vm_page_array &&
2352 mpte < &vm_page_array[vm_page_array_size],
2353 ("pmap_init: page table page is out of range"));
2354 mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2355 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2356 mpte->ref_count = 1;
2357
2358 /*
2359 * Collect the page table pages that were replaced by a 2MB
2360 * page in create_pagetables(). They are zero filled.
2361 */
2362 if ((vm_paddr_t)i << PDRSHIFT < KERNend &&
2363 pmap_insert_pt_page(kernel_pmap, mpte, false))
2364 panic("pmap_init: pmap_insert_pt_page failed");
2365 }
2366 PMAP_UNLOCK(kernel_pmap);
2367 vm_wire_add(nkpt);
2368
2369 /*
2370 * If the kernel is running on a virtual machine, then it must assume
2371 * that MCA is enabled by the hypervisor. Moreover, the kernel must
2372 * be prepared for the hypervisor changing the vendor and family that
2373 * are reported by CPUID. Consequently, the workaround for AMD Family
2374 * 10h Erratum 383 is enabled if the processor's feature set does not
2375 * include at least one feature that is only supported by older Intel
2376 * or newer AMD processors.
2377 */
2378 if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2379 (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2380 CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2381 AMDID2_FMA4)) == 0)
2382 workaround_erratum383 = 1;
2383
2384 /*
2385 * Are large page mappings enabled?
2386 */
2387 TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2388 if (pg_ps_enabled) {
2389 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2390 ("pmap_init: can't assign to pagesizes[1]"));
2391 pagesizes[1] = NBPDR;
2392 if ((amd_feature & AMDID_PAGE1GB) != 0) {
2393 KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2394 ("pmap_init: can't assign to pagesizes[2]"));
2395 pagesizes[2] = NBPDP;
2396 }
2397 }
2398
2399 /*
2400 * Initialize pv chunk lists.
2401 */
2402 for (i = 0; i < PMAP_MEMDOM; i++) {
2403 mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2404 TAILQ_INIT(&pv_chunks[i].pvc_list);
2405 }
2406 pmap_init_pv_table();
2407
2408 pmap_initialized = 1;
2409 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2410 ppim = pmap_preinit_mapping + i;
2411 if (ppim->va == 0)
2412 continue;
2413 /* Make the direct map consistent */
2414 if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2415 (void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2416 ppim->sz, ppim->mode);
2417 }
2418 if (!bootverbose)
2419 continue;
2420 printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2421 ppim->pa, ppim->va, ppim->sz, ppim->mode);
2422 }
2423
2424 mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2425 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2426 (vmem_addr_t *)&qframe);
2427 if (error != 0)
2428 panic("qframe allocation failed");
2429
2430 lm_ents = 8;
2431 TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2432 if (lm_ents > LMEPML4I - LMSPML4I + 1)
2433 lm_ents = LMEPML4I - LMSPML4I + 1;
2434 if (bootverbose)
2435 printf("pmap: large map %u PML4 slots (%lu GB)\n",
2436 lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2437 if (lm_ents != 0) {
2438 large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2439 (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2440 if (large_vmem == NULL) {
2441 printf("pmap: cannot create large map\n");
2442 lm_ents = 0;
2443 }
2444 for (i = 0; i < lm_ents; i++) {
2445 m = pmap_large_map_getptp_unlocked();
2446 /* XXXKIB la57 */
2447 kernel_pml4[LMSPML4I + i] = X86_PG_V |
2448 X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2449 VM_PAGE_TO_PHYS(m);
2450 }
2451 }
2452 }
2453
2454 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2455 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2456 "Maximum number of PML4 entries for use by large map (tunable). "
2457 "Each entry corresponds to 512GB of address space.");
2458
2459 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2460 "2MB page mapping counters");
2461
2462 static u_long pmap_pde_demotions;
2463 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
2464 &pmap_pde_demotions, 0, "2MB page demotions");
2465
2466 static u_long pmap_pde_mappings;
2467 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2468 &pmap_pde_mappings, 0, "2MB page mappings");
2469
2470 static u_long pmap_pde_p_failures;
2471 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2472 &pmap_pde_p_failures, 0, "2MB page promotion failures");
2473
2474 static u_long pmap_pde_promotions;
2475 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2476 &pmap_pde_promotions, 0, "2MB page promotions");
2477
2478 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2479 "1GB page mapping counters");
2480
2481 static u_long pmap_pdpe_demotions;
2482 SYSCTL_ULONG(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2483 &pmap_pdpe_demotions, 0, "1GB page demotions");
2484
2485 /***************************************************
2486 * Low level helper routines.....
2487 ***************************************************/
2488
2489 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2490 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2491 {
2492 int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2493
2494 switch (pmap->pm_type) {
2495 case PT_X86:
2496 case PT_RVI:
2497 /* Verify that both PAT bits are not set at the same time */
2498 KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2499 ("Invalid PAT bits in entry %#lx", entry));
2500
2501 /* Swap the PAT bits if one of them is set */
2502 if ((entry & x86_pat_bits) != 0)
2503 entry ^= x86_pat_bits;
2504 break;
2505 case PT_EPT:
2506 /*
2507 * Nothing to do - the memory attributes are represented
2508 * the same way for regular pages and superpages.
2509 */
2510 break;
2511 default:
2512 panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2513 }
2514
2515 return (entry);
2516 }
2517
2518 boolean_t
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2519 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2520 {
2521
2522 return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2523 pat_index[(int)mode] >= 0);
2524 }
2525
2526 /*
2527 * Determine the appropriate bits to set in a PTE or PDE for a specified
2528 * caching mode.
2529 */
2530 int
pmap_cache_bits(pmap_t pmap,int mode,boolean_t is_pde)2531 pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
2532 {
2533 int cache_bits, pat_flag, pat_idx;
2534
2535 if (!pmap_is_valid_memattr(pmap, mode))
2536 panic("Unknown caching mode %d\n", mode);
2537
2538 switch (pmap->pm_type) {
2539 case PT_X86:
2540 case PT_RVI:
2541 /* The PAT bit is different for PTE's and PDE's. */
2542 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2543
2544 /* Map the caching mode to a PAT index. */
2545 pat_idx = pat_index[mode];
2546
2547 /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2548 cache_bits = 0;
2549 if (pat_idx & 0x4)
2550 cache_bits |= pat_flag;
2551 if (pat_idx & 0x2)
2552 cache_bits |= PG_NC_PCD;
2553 if (pat_idx & 0x1)
2554 cache_bits |= PG_NC_PWT;
2555 break;
2556
2557 case PT_EPT:
2558 cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2559 break;
2560
2561 default:
2562 panic("unsupported pmap type %d", pmap->pm_type);
2563 }
2564
2565 return (cache_bits);
2566 }
2567
2568 static int
pmap_cache_mask(pmap_t pmap,boolean_t is_pde)2569 pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
2570 {
2571 int mask;
2572
2573 switch (pmap->pm_type) {
2574 case PT_X86:
2575 case PT_RVI:
2576 mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2577 break;
2578 case PT_EPT:
2579 mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2580 break;
2581 default:
2582 panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2583 }
2584
2585 return (mask);
2586 }
2587
2588 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2589 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2590 {
2591 int pat_flag, pat_idx;
2592
2593 pat_idx = 0;
2594 switch (pmap->pm_type) {
2595 case PT_X86:
2596 case PT_RVI:
2597 /* The PAT bit is different for PTE's and PDE's. */
2598 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2599
2600 if ((pte & pat_flag) != 0)
2601 pat_idx |= 0x4;
2602 if ((pte & PG_NC_PCD) != 0)
2603 pat_idx |= 0x2;
2604 if ((pte & PG_NC_PWT) != 0)
2605 pat_idx |= 0x1;
2606 break;
2607 case PT_EPT:
2608 if ((pte & EPT_PG_IGNORE_PAT) != 0)
2609 panic("EPT PTE %#lx has no PAT memory type", pte);
2610 pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2611 break;
2612 }
2613
2614 /* See pmap_init_pat(). */
2615 if (pat_idx == 4)
2616 pat_idx = 0;
2617 if (pat_idx == 7)
2618 pat_idx = 3;
2619
2620 return (pat_idx);
2621 }
2622
2623 bool
pmap_ps_enabled(pmap_t pmap)2624 pmap_ps_enabled(pmap_t pmap)
2625 {
2626
2627 return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2628 }
2629
2630 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2631 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2632 {
2633
2634 switch (pmap->pm_type) {
2635 case PT_X86:
2636 break;
2637 case PT_RVI:
2638 case PT_EPT:
2639 /*
2640 * XXX
2641 * This is a little bogus since the generation number is
2642 * supposed to be bumped up when a region of the address
2643 * space is invalidated in the page tables.
2644 *
2645 * In this case the old PDE entry is valid but yet we want
2646 * to make sure that any mappings using the old entry are
2647 * invalidated in the TLB.
2648 *
2649 * The reason this works as expected is because we rendezvous
2650 * "all" host cpus and force any vcpu context to exit as a
2651 * side-effect.
2652 */
2653 atomic_add_long(&pmap->pm_eptgen, 1);
2654 break;
2655 default:
2656 panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2657 }
2658 pde_store(pde, newpde);
2659 }
2660
2661 /*
2662 * After changing the page size for the specified virtual address in the page
2663 * table, flush the corresponding entries from the processor's TLB. Only the
2664 * calling processor's TLB is affected.
2665 *
2666 * The calling thread must be pinned to a processor.
2667 */
2668 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2669 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2670 {
2671 pt_entry_t PG_G;
2672
2673 if (pmap_type_guest(pmap))
2674 return;
2675
2676 KASSERT(pmap->pm_type == PT_X86,
2677 ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2678
2679 PG_G = pmap_global_bit(pmap);
2680
2681 if ((newpde & PG_PS) == 0)
2682 /* Demotion: flush a specific 2MB page mapping. */
2683 invlpg(va);
2684 else if ((newpde & PG_G) == 0)
2685 /*
2686 * Promotion: flush every 4KB page mapping from the TLB
2687 * because there are too many to flush individually.
2688 */
2689 invltlb();
2690 else {
2691 /*
2692 * Promotion: flush every 4KB page mapping from the TLB,
2693 * including any global (PG_G) mappings.
2694 */
2695 invltlb_glob();
2696 }
2697 }
2698
2699 /*
2700 * The amd64 pmap uses different approaches to TLB invalidation
2701 * depending on the kernel configuration, available hardware features,
2702 * and known hardware errata. The kernel configuration option that
2703 * has the greatest operational impact on TLB invalidation is PTI,
2704 * which is enabled automatically on affected Intel CPUs. The most
2705 * impactful hardware features are first PCID, and then INVPCID
2706 * instruction presence. PCID usage is quite different for PTI
2707 * vs. non-PTI.
2708 *
2709 * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2710 * the Meltdown bug in some Intel CPUs. Under PTI, each user address
2711 * space is served by two page tables, user and kernel. The user
2712 * page table only maps user space and a kernel trampoline. The
2713 * kernel trampoline includes the entirety of the kernel text but
2714 * only the kernel data that is needed to switch from user to kernel
2715 * mode. The kernel page table maps the user and kernel address
2716 * spaces in their entirety. It is identical to the per-process
2717 * page table used in non-PTI mode.
2718 *
2719 * User page tables are only used when the CPU is in user mode.
2720 * Consequently, some TLB invalidations can be postponed until the
2721 * switch from kernel to user mode. In contrast, the user
2722 * space part of the kernel page table is used for copyout(9), so
2723 * TLB invalidations on this page table cannot be similarly postponed.
2724 *
2725 * The existence of a user mode page table for the given pmap is
2726 * indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2727 * which case pm_ucr3 contains the %cr3 register value for the user
2728 * mode page table's root.
2729 *
2730 * * The pm_active bitmask indicates which CPUs currently have the
2731 * pmap active. A CPU's bit is set on context switch to the pmap, and
2732 * cleared on switching off this CPU. For the kernel page table,
2733 * the pm_active field is immutable and contains all CPUs. The
2734 * kernel page table is always logically active on every processor,
2735 * but not necessarily in use by the hardware, e.g., in PTI mode.
2736 *
2737 * When requesting invalidation of virtual addresses with
2738 * pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2739 * all CPUs recorded as active in pm_active. Updates to and reads
2740 * from pm_active are not synchronized, and so they may race with
2741 * each other. Shootdown handlers are prepared to handle the race.
2742 *
2743 * * PCID is an optional feature of the long mode x86 MMU where TLB
2744 * entries are tagged with the 'Process ID' of the address space
2745 * they belong to. This feature provides a limited namespace for
2746 * process identifiers, 12 bits, supporting 4095 simultaneous IDs
2747 * total.
2748 *
2749 * Allocation of a PCID to a pmap is done by an algorithm described
2750 * in section 15.12, "Other TLB Consistency Algorithms", of
2751 * Vahalia's book "Unix Internals". A PCID cannot be allocated for
2752 * the whole lifetime of a pmap in pmap_pinit() due to the limited
2753 * namespace. Instead, a per-CPU, per-pmap PCID is assigned when
2754 * the CPU is about to start caching TLB entries from a pmap,
2755 * i.e., on the context switch that activates the pmap on the CPU.
2756 *
2757 * The PCID allocator maintains a per-CPU, per-pmap generation
2758 * count, pm_gen, which is incremented each time a new PCID is
2759 * allocated. On TLB invalidation, the generation counters for the
2760 * pmap are zeroed, which signals the context switch code that the
2761 * previously allocated PCID is no longer valid. Effectively,
2762 * zeroing any of these counters triggers a TLB shootdown for the
2763 * given CPU/address space, due to the allocation of a new PCID.
2764 *
2765 * Zeroing can be performed remotely. Consequently, if a pmap is
2766 * inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2767 * be initiated by an ordinary memory access to reset the target
2768 * CPU's generation count within the pmap. The CPU initiating the
2769 * TLB shootdown does not need to send an IPI to the target CPU.
2770 *
2771 * * PTI + PCID. The available PCIDs are divided into two sets: PCIDs
2772 * for complete (kernel) page tables, and PCIDs for user mode page
2773 * tables. A user PCID value is obtained from the kernel PCID value
2774 * by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2775 *
2776 * User space page tables are activated on return to user mode, by
2777 * loading pm_ucr3 into %cr3. If the PCPU(ucr3_load_mask) requests
2778 * clearing bit 63 of the loaded ucr3, this effectively causes
2779 * complete invalidation of the user mode TLB entries for the
2780 * current pmap. In which case, local invalidations of individual
2781 * pages in the user page table are skipped.
2782 *
2783 * * Local invalidation, all modes. If the requested invalidation is
2784 * for a specific address or the total invalidation of a currently
2785 * active pmap, then the TLB is flushed using INVLPG for a kernel
2786 * page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2787 * user space page table(s).
2788 *
2789 * If the INVPCID instruction is available, it is used to flush entries
2790 * from the kernel page table.
2791 *
2792 * * mode: PTI disabled, PCID present. The kernel reserves PCID 0 for its
2793 * address space, all other 4095 PCIDs are used for user mode spaces
2794 * as described above. A context switch allocates a new PCID if
2795 * the recorded PCID is zero or the recorded generation does not match
2796 * the CPU's generation, effectively flushing the TLB for this address space.
2797 * Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2798 * local user page: INVLPG
2799 * local kernel page: INVLPG
2800 * local user total: INVPCID(CTX)
2801 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2802 * remote user page, inactive pmap: zero pm_gen
2803 * remote user page, active pmap: zero pm_gen + IPI:INVLPG
2804 * (Both actions are required to handle the aforementioned pm_active races.)
2805 * remote kernel page: IPI:INVLPG
2806 * remote user total, inactive pmap: zero pm_gen
2807 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2808 * reload %cr3)
2809 * (See note above about pm_active races.)
2810 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2811 *
2812 * PTI enabled, PCID present.
2813 * local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2814 * for upt
2815 * local kernel page: INVLPG
2816 * local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2817 * on loading UCR3 into %cr3 for upt
2818 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2819 * remote user page, inactive pmap: zero pm_gen
2820 * remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2821 * INVPCID(ADDR) for upt)
2822 * remote kernel page: IPI:INVLPG
2823 * remote user total, inactive pmap: zero pm_gen
2824 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2825 * clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2826 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2827 *
2828 * No PCID.
2829 * local user page: INVLPG
2830 * local kernel page: INVLPG
2831 * local user total: reload %cr3
2832 * local kernel total: invltlb_glob()
2833 * remote user page, inactive pmap: -
2834 * remote user page, active pmap: IPI:INVLPG
2835 * remote kernel page: IPI:INVLPG
2836 * remote user total, inactive pmap: -
2837 * remote user total, active pmap: IPI:(reload %cr3)
2838 * remote kernel total: IPI:invltlb_glob()
2839 * Since on return to user mode, the reload of %cr3 with ucr3 causes
2840 * TLB invalidation, no specific action is required for user page table.
2841 *
2842 * EPT. EPT pmaps do not map KVA, all mappings are userspace.
2843 * XXX TODO
2844 */
2845
2846 #ifdef SMP
2847 /*
2848 * Interrupt the cpus that are executing in the guest context.
2849 * This will force the vcpu to exit and the cached EPT mappings
2850 * will be invalidated by the host before the next vmresume.
2851 */
2852 static __inline void
pmap_invalidate_ept(pmap_t pmap)2853 pmap_invalidate_ept(pmap_t pmap)
2854 {
2855 smr_seq_t goal;
2856 int ipinum;
2857
2858 sched_pin();
2859 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
2860 ("pmap_invalidate_ept: absurd pm_active"));
2861
2862 /*
2863 * The TLB mappings associated with a vcpu context are not
2864 * flushed each time a different vcpu is chosen to execute.
2865 *
2866 * This is in contrast with a process's vtop mappings that
2867 * are flushed from the TLB on each context switch.
2868 *
2869 * Therefore we need to do more than just a TLB shootdown on
2870 * the active cpus in 'pmap->pm_active'. To do this we keep
2871 * track of the number of invalidations performed on this pmap.
2872 *
2873 * Each vcpu keeps a cache of this counter and compares it
2874 * just before a vmresume. If the counter is out-of-date an
2875 * invept will be done to flush stale mappings from the TLB.
2876 *
2877 * To ensure that all vCPU threads have observed the new counter
2878 * value before returning, we use SMR. Ordering is important here:
2879 * the VMM enters an SMR read section before loading the counter
2880 * and after updating the pm_active bit set. Thus, pm_active is
2881 * a superset of active readers, and any reader that has observed
2882 * the goal has observed the new counter value.
2883 */
2884 atomic_add_long(&pmap->pm_eptgen, 1);
2885
2886 goal = smr_advance(pmap->pm_eptsmr);
2887
2888 /*
2889 * Force the vcpu to exit and trap back into the hypervisor.
2890 */
2891 ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
2892 ipi_selected(pmap->pm_active, ipinum);
2893 sched_unpin();
2894
2895 /*
2896 * Ensure that all active vCPUs will observe the new generation counter
2897 * value before executing any more guest instructions.
2898 */
2899 smr_wait(pmap->pm_eptsmr, goal);
2900 }
2901
2902 static cpuset_t
pmap_invalidate_cpu_mask(pmap_t pmap)2903 pmap_invalidate_cpu_mask(pmap_t pmap)
2904 {
2905 return (pmap == kernel_pmap ? all_cpus : pmap->pm_active);
2906 }
2907
2908 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)2909 pmap_invalidate_preipi_pcid(pmap_t pmap)
2910 {
2911 u_int cpuid, i;
2912
2913 sched_pin();
2914
2915 cpuid = PCPU_GET(cpuid);
2916 if (pmap != PCPU_GET(curpmap))
2917 cpuid = 0xffffffff; /* An impossible value */
2918
2919 CPU_FOREACH(i) {
2920 if (cpuid != i)
2921 pmap->pm_pcids[i].pm_gen = 0;
2922 }
2923
2924 /*
2925 * The fence is between stores to pm_gen and the read of the
2926 * pm_active mask. We need to ensure that it is impossible
2927 * for us to miss the bit update in pm_active and
2928 * simultaneously observe a non-zero pm_gen in
2929 * pmap_activate_sw(), otherwise TLB update is missed.
2930 * Without the fence, IA32 allows such an outcome. Note that
2931 * pm_active is updated by a locked operation, which provides
2932 * the reciprocal fence.
2933 */
2934 atomic_thread_fence_seq_cst();
2935 }
2936
2937 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)2938 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
2939 {
2940 sched_pin();
2941 }
2942
2943 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
2944 {
2945 return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
2946 pmap_invalidate_preipi_nopcid);
2947 }
2948
2949 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)2950 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
2951 const bool invpcid_works1)
2952 {
2953 struct invpcid_descr d;
2954 uint64_t kcr3, ucr3;
2955 uint32_t pcid;
2956 u_int cpuid;
2957
2958 /*
2959 * Because pm_pcid is recalculated on a context switch, we
2960 * must ensure there is no preemption, not just pinning.
2961 * Otherwise, we might use a stale value below.
2962 */
2963 CRITICAL_ASSERT(curthread);
2964
2965 /*
2966 * No need to do anything with user page tables invalidation
2967 * if there is no user page table, or invalidation is deferred
2968 * until the return to userspace. ucr3_load_mask is stable
2969 * because we have preemption disabled.
2970 */
2971 if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
2972 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
2973 return;
2974
2975 cpuid = PCPU_GET(cpuid);
2976
2977 pcid = pmap->pm_pcids[cpuid].pm_pcid;
2978 if (invpcid_works1) {
2979 d.pcid = pcid | PMAP_PCID_USER_PT;
2980 d.pad = 0;
2981 d.addr = va;
2982 invpcid(&d, INVPCID_ADDR);
2983 } else {
2984 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
2985 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
2986 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
2987 }
2988 }
2989
2990 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)2991 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
2992 {
2993 pmap_invalidate_page_pcid_cb(pmap, va, true);
2994 }
2995
2996 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)2997 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
2998 {
2999 pmap_invalidate_page_pcid_cb(pmap, va, false);
3000 }
3001
3002 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3003 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3004 {
3005 }
3006
3007 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3008 {
3009 if (pmap_pcid_enabled)
3010 return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3011 pmap_invalidate_page_pcid_noinvpcid_cb);
3012 return (pmap_invalidate_page_nopcid_cb);
3013 }
3014
3015 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3016 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3017 vm_offset_t addr2 __unused)
3018 {
3019 if (pmap == kernel_pmap) {
3020 invlpg(va);
3021 } else if (pmap == PCPU_GET(curpmap)) {
3022 invlpg(va);
3023 pmap_invalidate_page_cb(pmap, va);
3024 }
3025 }
3026
3027 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3028 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3029 {
3030 if (pmap_type_guest(pmap)) {
3031 pmap_invalidate_ept(pmap);
3032 return;
3033 }
3034
3035 KASSERT(pmap->pm_type == PT_X86,
3036 ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3037
3038 pmap_invalidate_preipi(pmap);
3039 smp_masked_invlpg(pmap_invalidate_cpu_mask(pmap), va, pmap,
3040 pmap_invalidate_page_curcpu_cb);
3041 }
3042
3043 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3044 #define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
3045
3046 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3047 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3048 const bool invpcid_works1)
3049 {
3050 struct invpcid_descr d;
3051 uint64_t kcr3, ucr3;
3052 uint32_t pcid;
3053 u_int cpuid;
3054
3055 CRITICAL_ASSERT(curthread);
3056
3057 if (pmap != PCPU_GET(curpmap) ||
3058 pmap->pm_ucr3 == PMAP_NO_CR3 ||
3059 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3060 return;
3061
3062 cpuid = PCPU_GET(cpuid);
3063
3064 pcid = pmap->pm_pcids[cpuid].pm_pcid;
3065 if (invpcid_works1) {
3066 d.pcid = pcid | PMAP_PCID_USER_PT;
3067 d.pad = 0;
3068 for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3069 invpcid(&d, INVPCID_ADDR);
3070 } else {
3071 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3072 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3073 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3074 }
3075 }
3076
3077 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3078 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3079 vm_offset_t eva)
3080 {
3081 pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3082 }
3083
3084 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3085 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3086 vm_offset_t eva)
3087 {
3088 pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3089 }
3090
3091 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3092 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3093 vm_offset_t eva __unused)
3094 {
3095 }
3096
3097 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3098 vm_offset_t))
3099 {
3100 if (pmap_pcid_enabled)
3101 return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3102 pmap_invalidate_range_pcid_noinvpcid_cb);
3103 return (pmap_invalidate_range_nopcid_cb);
3104 }
3105
3106 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3107 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3108 {
3109 vm_offset_t addr;
3110
3111 if (pmap == kernel_pmap) {
3112 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3113 invlpg(addr);
3114 } else if (pmap == PCPU_GET(curpmap)) {
3115 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3116 invlpg(addr);
3117 pmap_invalidate_range_cb(pmap, sva, eva);
3118 }
3119 }
3120
3121 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3122 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3123 {
3124 if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3125 pmap_invalidate_all(pmap);
3126 return;
3127 }
3128
3129 if (pmap_type_guest(pmap)) {
3130 pmap_invalidate_ept(pmap);
3131 return;
3132 }
3133
3134 KASSERT(pmap->pm_type == PT_X86,
3135 ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3136
3137 pmap_invalidate_preipi(pmap);
3138 smp_masked_invlpg_range(pmap_invalidate_cpu_mask(pmap), sva, eva, pmap,
3139 pmap_invalidate_range_curcpu_cb);
3140 }
3141
3142 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3143 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3144 {
3145 struct invpcid_descr d;
3146 uint64_t kcr3;
3147 uint32_t pcid;
3148 u_int cpuid;
3149
3150 if (pmap == kernel_pmap) {
3151 if (invpcid_works1) {
3152 bzero(&d, sizeof(d));
3153 invpcid(&d, INVPCID_CTXGLOB);
3154 } else {
3155 invltlb_glob();
3156 }
3157 } else if (pmap == PCPU_GET(curpmap)) {
3158 CRITICAL_ASSERT(curthread);
3159 cpuid = PCPU_GET(cpuid);
3160
3161 pcid = pmap->pm_pcids[cpuid].pm_pcid;
3162 if (invpcid_works1) {
3163 d.pcid = pcid;
3164 d.pad = 0;
3165 d.addr = 0;
3166 invpcid(&d, INVPCID_CTX);
3167 } else {
3168 kcr3 = pmap->pm_cr3 | pcid;
3169 load_cr3(kcr3);
3170 }
3171 if (pmap->pm_ucr3 != PMAP_NO_CR3)
3172 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3173 }
3174 }
3175
3176 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3177 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3178 {
3179 pmap_invalidate_all_pcid_cb(pmap, true);
3180 }
3181
3182 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3183 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3184 {
3185 pmap_invalidate_all_pcid_cb(pmap, false);
3186 }
3187
3188 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3189 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3190 {
3191 if (pmap == kernel_pmap)
3192 invltlb_glob();
3193 else if (pmap == PCPU_GET(curpmap))
3194 invltlb();
3195 }
3196
3197 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3198 {
3199 if (pmap_pcid_enabled)
3200 return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3201 pmap_invalidate_all_pcid_noinvpcid_cb);
3202 return (pmap_invalidate_all_nopcid_cb);
3203 }
3204
3205 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3206 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3207 vm_offset_t addr2 __unused)
3208 {
3209 pmap_invalidate_all_cb(pmap);
3210 }
3211
3212 void
pmap_invalidate_all(pmap_t pmap)3213 pmap_invalidate_all(pmap_t pmap)
3214 {
3215 if (pmap_type_guest(pmap)) {
3216 pmap_invalidate_ept(pmap);
3217 return;
3218 }
3219
3220 KASSERT(pmap->pm_type == PT_X86,
3221 ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3222
3223 pmap_invalidate_preipi(pmap);
3224 smp_masked_invltlb(pmap_invalidate_cpu_mask(pmap), pmap,
3225 pmap_invalidate_all_curcpu_cb);
3226 }
3227
3228 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3229 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3230 vm_offset_t addr2 __unused)
3231 {
3232 wbinvd();
3233 }
3234
3235 void
pmap_invalidate_cache(void)3236 pmap_invalidate_cache(void)
3237 {
3238 sched_pin();
3239 smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3240 }
3241
3242 struct pde_action {
3243 cpuset_t invalidate; /* processors that invalidate their TLB */
3244 pmap_t pmap;
3245 vm_offset_t va;
3246 pd_entry_t *pde;
3247 pd_entry_t newpde;
3248 u_int store; /* processor that updates the PDE */
3249 };
3250
3251 static void
pmap_update_pde_action(void * arg)3252 pmap_update_pde_action(void *arg)
3253 {
3254 struct pde_action *act = arg;
3255
3256 if (act->store == PCPU_GET(cpuid))
3257 pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3258 }
3259
3260 static void
pmap_update_pde_teardown(void * arg)3261 pmap_update_pde_teardown(void *arg)
3262 {
3263 struct pde_action *act = arg;
3264
3265 if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3266 pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3267 }
3268
3269 /*
3270 * Change the page size for the specified virtual address in a way that
3271 * prevents any possibility of the TLB ever having two entries that map the
3272 * same virtual address using different page sizes. This is the recommended
3273 * workaround for Erratum 383 on AMD Family 10h processors. It prevents a
3274 * machine check exception for a TLB state that is improperly diagnosed as a
3275 * hardware error.
3276 */
3277 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3278 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3279 {
3280 struct pde_action act;
3281 cpuset_t active, other_cpus;
3282 u_int cpuid;
3283
3284 sched_pin();
3285 cpuid = PCPU_GET(cpuid);
3286 other_cpus = all_cpus;
3287 CPU_CLR(cpuid, &other_cpus);
3288 if (pmap == kernel_pmap || pmap_type_guest(pmap))
3289 active = all_cpus;
3290 else {
3291 active = pmap->pm_active;
3292 }
3293 if (CPU_OVERLAP(&active, &other_cpus)) {
3294 act.store = cpuid;
3295 act.invalidate = active;
3296 act.va = va;
3297 act.pmap = pmap;
3298 act.pde = pde;
3299 act.newpde = newpde;
3300 CPU_SET(cpuid, &active);
3301 smp_rendezvous_cpus(active,
3302 smp_no_rendezvous_barrier, pmap_update_pde_action,
3303 pmap_update_pde_teardown, &act);
3304 } else {
3305 pmap_update_pde_store(pmap, pde, newpde);
3306 if (CPU_ISSET(cpuid, &active))
3307 pmap_update_pde_invalidate(pmap, va, newpde);
3308 }
3309 sched_unpin();
3310 }
3311 #else /* !SMP */
3312 /*
3313 * Normal, non-SMP, invalidation functions.
3314 */
3315 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3316 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3317 {
3318 struct invpcid_descr d;
3319 uint64_t kcr3, ucr3;
3320 uint32_t pcid;
3321
3322 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3323 pmap->pm_eptgen++;
3324 return;
3325 }
3326 KASSERT(pmap->pm_type == PT_X86,
3327 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3328
3329 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3330 invlpg(va);
3331 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3332 pmap->pm_ucr3 != PMAP_NO_CR3) {
3333 critical_enter();
3334 pcid = pmap->pm_pcids[0].pm_pcid;
3335 if (invpcid_works) {
3336 d.pcid = pcid | PMAP_PCID_USER_PT;
3337 d.pad = 0;
3338 d.addr = va;
3339 invpcid(&d, INVPCID_ADDR);
3340 } else {
3341 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3342 ucr3 = pmap->pm_ucr3 | pcid |
3343 PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3344 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3345 }
3346 critical_exit();
3347 }
3348 } else if (pmap_pcid_enabled)
3349 pmap->pm_pcids[0].pm_gen = 0;
3350 }
3351
3352 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3353 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3354 {
3355 struct invpcid_descr d;
3356 vm_offset_t addr;
3357 uint64_t kcr3, ucr3;
3358
3359 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3360 pmap->pm_eptgen++;
3361 return;
3362 }
3363 KASSERT(pmap->pm_type == PT_X86,
3364 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3365
3366 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3367 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3368 invlpg(addr);
3369 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3370 pmap->pm_ucr3 != PMAP_NO_CR3) {
3371 critical_enter();
3372 if (invpcid_works) {
3373 d.pcid = pmap->pm_pcids[0].pm_pcid |
3374 PMAP_PCID_USER_PT;
3375 d.pad = 0;
3376 d.addr = sva;
3377 for (; d.addr < eva; d.addr += PAGE_SIZE)
3378 invpcid(&d, INVPCID_ADDR);
3379 } else {
3380 kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].
3381 pm_pcid | CR3_PCID_SAVE;
3382 ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[0].
3383 pm_pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3384 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3385 }
3386 critical_exit();
3387 }
3388 } else if (pmap_pcid_enabled) {
3389 pmap->pm_pcids[0].pm_gen = 0;
3390 }
3391 }
3392
3393 void
pmap_invalidate_all(pmap_t pmap)3394 pmap_invalidate_all(pmap_t pmap)
3395 {
3396 struct invpcid_descr d;
3397 uint64_t kcr3, ucr3;
3398
3399 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3400 pmap->pm_eptgen++;
3401 return;
3402 }
3403 KASSERT(pmap->pm_type == PT_X86,
3404 ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3405
3406 if (pmap == kernel_pmap) {
3407 if (pmap_pcid_enabled && invpcid_works) {
3408 bzero(&d, sizeof(d));
3409 invpcid(&d, INVPCID_CTXGLOB);
3410 } else {
3411 invltlb_glob();
3412 }
3413 } else if (pmap == PCPU_GET(curpmap)) {
3414 if (pmap_pcid_enabled) {
3415 critical_enter();
3416 if (invpcid_works) {
3417 d.pcid = pmap->pm_pcids[0].pm_pcid;
3418 d.pad = 0;
3419 d.addr = 0;
3420 invpcid(&d, INVPCID_CTX);
3421 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3422 d.pcid |= PMAP_PCID_USER_PT;
3423 invpcid(&d, INVPCID_CTX);
3424 }
3425 } else {
3426 kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].pm_pcid;
3427 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3428 ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[
3429 0].pm_pcid | PMAP_PCID_USER_PT;
3430 pmap_pti_pcid_invalidate(ucr3, kcr3);
3431 } else
3432 load_cr3(kcr3);
3433 }
3434 critical_exit();
3435 } else {
3436 invltlb();
3437 }
3438 } else if (pmap_pcid_enabled) {
3439 pmap->pm_pcids[0].pm_gen = 0;
3440 }
3441 }
3442
3443 PMAP_INLINE void
pmap_invalidate_cache(void)3444 pmap_invalidate_cache(void)
3445 {
3446
3447 wbinvd();
3448 }
3449
3450 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3451 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3452 {
3453
3454 pmap_update_pde_store(pmap, pde, newpde);
3455 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3456 pmap_update_pde_invalidate(pmap, va, newpde);
3457 else
3458 pmap->pm_pcids[0].pm_gen = 0;
3459 }
3460 #endif /* !SMP */
3461
3462 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3463 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3464 {
3465
3466 /*
3467 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3468 * by a promotion that did not invalidate the 512 4KB page mappings
3469 * that might exist in the TLB. Consequently, at this point, the TLB
3470 * may hold both 4KB and 2MB page mappings for the address range [va,
3471 * va + NBPDR). Therefore, the entire range must be invalidated here.
3472 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3473 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3474 * single INVLPG suffices to invalidate the 2MB page mapping from the
3475 * TLB.
3476 */
3477 if ((pde & PG_PROMOTED) != 0)
3478 pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3479 else
3480 pmap_invalidate_page(pmap, va);
3481 }
3482
3483 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3484 (vm_offset_t sva, vm_offset_t eva))
3485 {
3486
3487 if ((cpu_feature & CPUID_SS) != 0)
3488 return (pmap_invalidate_cache_range_selfsnoop);
3489 if ((cpu_feature & CPUID_CLFSH) != 0)
3490 return (pmap_force_invalidate_cache_range);
3491 return (pmap_invalidate_cache_range_all);
3492 }
3493
3494 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
3495
3496 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3497 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3498 {
3499
3500 KASSERT((sva & PAGE_MASK) == 0,
3501 ("pmap_invalidate_cache_range: sva not page-aligned"));
3502 KASSERT((eva & PAGE_MASK) == 0,
3503 ("pmap_invalidate_cache_range: eva not page-aligned"));
3504 }
3505
3506 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3507 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3508 {
3509
3510 pmap_invalidate_cache_range_check_align(sva, eva);
3511 }
3512
3513 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3514 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3515 {
3516
3517 sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3518
3519 /*
3520 * XXX: Some CPUs fault, hang, or trash the local APIC
3521 * registers if we use CLFLUSH on the local APIC range. The
3522 * local APIC is always uncached, so we don't need to flush
3523 * for that range anyway.
3524 */
3525 if (pmap_kextract(sva) == lapic_paddr)
3526 return;
3527
3528 if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3529 /*
3530 * Do per-cache line flush. Use a locked
3531 * instruction to insure that previous stores are
3532 * included in the write-back. The processor
3533 * propagates flush to other processors in the cache
3534 * coherence domain.
3535 */
3536 atomic_thread_fence_seq_cst();
3537 for (; sva < eva; sva += cpu_clflush_line_size)
3538 clflushopt(sva);
3539 atomic_thread_fence_seq_cst();
3540 } else {
3541 /*
3542 * Writes are ordered by CLFLUSH on Intel CPUs.
3543 */
3544 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3545 mfence();
3546 for (; sva < eva; sva += cpu_clflush_line_size)
3547 clflush(sva);
3548 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3549 mfence();
3550 }
3551 }
3552
3553 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3554 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3555 {
3556
3557 pmap_invalidate_cache_range_check_align(sva, eva);
3558 pmap_invalidate_cache();
3559 }
3560
3561 /*
3562 * Remove the specified set of pages from the data and instruction caches.
3563 *
3564 * In contrast to pmap_invalidate_cache_range(), this function does not
3565 * rely on the CPU's self-snoop feature, because it is intended for use
3566 * when moving pages into a different cache domain.
3567 */
3568 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3569 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3570 {
3571 vm_offset_t daddr, eva;
3572 int i;
3573 bool useclflushopt;
3574
3575 useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3576 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3577 ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3578 pmap_invalidate_cache();
3579 else {
3580 if (useclflushopt)
3581 atomic_thread_fence_seq_cst();
3582 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3583 mfence();
3584 for (i = 0; i < count; i++) {
3585 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3586 eva = daddr + PAGE_SIZE;
3587 for (; daddr < eva; daddr += cpu_clflush_line_size) {
3588 if (useclflushopt)
3589 clflushopt(daddr);
3590 else
3591 clflush(daddr);
3592 }
3593 }
3594 if (useclflushopt)
3595 atomic_thread_fence_seq_cst();
3596 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3597 mfence();
3598 }
3599 }
3600
3601 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3602 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3603 {
3604
3605 pmap_invalidate_cache_range_check_align(sva, eva);
3606
3607 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3608 pmap_force_invalidate_cache_range(sva, eva);
3609 return;
3610 }
3611
3612 /* See comment in pmap_force_invalidate_cache_range(). */
3613 if (pmap_kextract(sva) == lapic_paddr)
3614 return;
3615
3616 atomic_thread_fence_seq_cst();
3617 for (; sva < eva; sva += cpu_clflush_line_size)
3618 clwb(sva);
3619 atomic_thread_fence_seq_cst();
3620 }
3621
3622 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3623 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3624 {
3625 pt_entry_t *pte;
3626 vm_offset_t vaddr;
3627 int error, pte_bits;
3628
3629 KASSERT((spa & PAGE_MASK) == 0,
3630 ("pmap_flush_cache_phys_range: spa not page-aligned"));
3631 KASSERT((epa & PAGE_MASK) == 0,
3632 ("pmap_flush_cache_phys_range: epa not page-aligned"));
3633
3634 if (spa < dmaplimit) {
3635 pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3636 dmaplimit, epa)));
3637 if (dmaplimit >= epa)
3638 return;
3639 spa = dmaplimit;
3640 }
3641
3642 pte_bits = pmap_cache_bits(kernel_pmap, mattr, 0) | X86_PG_RW |
3643 X86_PG_V;
3644 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3645 &vaddr);
3646 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3647 pte = vtopte(vaddr);
3648 for (; spa < epa; spa += PAGE_SIZE) {
3649 sched_pin();
3650 pte_store(pte, spa | pte_bits);
3651 invlpg(vaddr);
3652 /* XXXKIB atomic inside flush_cache_range are excessive */
3653 pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3654 sched_unpin();
3655 }
3656 vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3657 }
3658
3659 /*
3660 * Routine: pmap_extract
3661 * Function:
3662 * Extract the physical page address associated
3663 * with the given map/virtual_address pair.
3664 */
3665 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3666 pmap_extract(pmap_t pmap, vm_offset_t va)
3667 {
3668 pdp_entry_t *pdpe;
3669 pd_entry_t *pde;
3670 pt_entry_t *pte, PG_V;
3671 vm_paddr_t pa;
3672
3673 pa = 0;
3674 PG_V = pmap_valid_bit(pmap);
3675 PMAP_LOCK(pmap);
3676 pdpe = pmap_pdpe(pmap, va);
3677 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3678 if ((*pdpe & PG_PS) != 0)
3679 pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3680 else {
3681 pde = pmap_pdpe_to_pde(pdpe, va);
3682 if ((*pde & PG_V) != 0) {
3683 if ((*pde & PG_PS) != 0) {
3684 pa = (*pde & PG_PS_FRAME) |
3685 (va & PDRMASK);
3686 } else {
3687 pte = pmap_pde_to_pte(pde, va);
3688 pa = (*pte & PG_FRAME) |
3689 (va & PAGE_MASK);
3690 }
3691 }
3692 }
3693 }
3694 PMAP_UNLOCK(pmap);
3695 return (pa);
3696 }
3697
3698 /*
3699 * Routine: pmap_extract_and_hold
3700 * Function:
3701 * Atomically extract and hold the physical page
3702 * with the given pmap and virtual address pair
3703 * if that mapping permits the given protection.
3704 */
3705 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3706 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3707 {
3708 pdp_entry_t pdpe, *pdpep;
3709 pd_entry_t pde, *pdep;
3710 pt_entry_t pte, PG_RW, PG_V;
3711 vm_page_t m;
3712
3713 m = NULL;
3714 PG_RW = pmap_rw_bit(pmap);
3715 PG_V = pmap_valid_bit(pmap);
3716 PMAP_LOCK(pmap);
3717
3718 pdpep = pmap_pdpe(pmap, va);
3719 if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3720 goto out;
3721 if ((pdpe & PG_PS) != 0) {
3722 if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3723 goto out;
3724 m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3725 goto check_page;
3726 }
3727
3728 pdep = pmap_pdpe_to_pde(pdpep, va);
3729 if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3730 goto out;
3731 if ((pde & PG_PS) != 0) {
3732 if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3733 goto out;
3734 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3735 goto check_page;
3736 }
3737
3738 pte = *pmap_pde_to_pte(pdep, va);
3739 if ((pte & PG_V) == 0 ||
3740 ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3741 goto out;
3742 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3743
3744 check_page:
3745 if (m != NULL && !vm_page_wire_mapped(m))
3746 m = NULL;
3747 out:
3748 PMAP_UNLOCK(pmap);
3749 return (m);
3750 }
3751
3752 vm_paddr_t
pmap_kextract(vm_offset_t va)3753 pmap_kextract(vm_offset_t va)
3754 {
3755 pd_entry_t pde;
3756 vm_paddr_t pa;
3757
3758 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3759 pa = DMAP_TO_PHYS(va);
3760 } else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3761 pa = pmap_large_map_kextract(va);
3762 } else {
3763 pde = *vtopde(va);
3764 if (pde & PG_PS) {
3765 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3766 } else {
3767 /*
3768 * Beware of a concurrent promotion that changes the
3769 * PDE at this point! For example, vtopte() must not
3770 * be used to access the PTE because it would use the
3771 * new PDE. It is, however, safe to use the old PDE
3772 * because the page table page is preserved by the
3773 * promotion.
3774 */
3775 pa = *pmap_pde_to_pte(&pde, va);
3776 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3777 }
3778 }
3779 return (pa);
3780 }
3781
3782 /***************************************************
3783 * Low level mapping routines.....
3784 ***************************************************/
3785
3786 /*
3787 * Add a wired page to the kva.
3788 * Note: not SMP coherent.
3789 */
3790 PMAP_INLINE void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3791 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3792 {
3793 pt_entry_t *pte;
3794
3795 pte = vtopte(va);
3796 pte_store(pte, pa | X86_PG_RW | X86_PG_V | pg_g | pg_nx);
3797 }
3798
3799 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3800 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3801 {
3802 pt_entry_t *pte;
3803 int cache_bits;
3804
3805 pte = vtopte(va);
3806 cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
3807 pte_store(pte, pa | X86_PG_RW | X86_PG_V | pg_g | pg_nx | cache_bits);
3808 }
3809
3810 /*
3811 * Remove a page from the kernel pagetables.
3812 * Note: not SMP coherent.
3813 */
3814 PMAP_INLINE void
pmap_kremove(vm_offset_t va)3815 pmap_kremove(vm_offset_t va)
3816 {
3817 pt_entry_t *pte;
3818
3819 pte = vtopte(va);
3820 pte_clear(pte);
3821 }
3822
3823 /*
3824 * Used to map a range of physical addresses into kernel
3825 * virtual address space.
3826 *
3827 * The value passed in '*virt' is a suggested virtual address for
3828 * the mapping. Architectures which can support a direct-mapped
3829 * physical to virtual region can return the appropriate address
3830 * within that region, leaving '*virt' unchanged. Other
3831 * architectures should map the pages starting at '*virt' and
3832 * update '*virt' with the first usable address after the mapped
3833 * region.
3834 */
3835 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)3836 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3837 {
3838 return PHYS_TO_DMAP(start);
3839 }
3840
3841 /*
3842 * Add a list of wired pages to the kva
3843 * this routine is only used for temporary
3844 * kernel mappings that do not need to have
3845 * page modification or references recorded.
3846 * Note that old mappings are simply written
3847 * over. The page *must* be wired.
3848 * Note: SMP coherent. Uses a ranged shootdown IPI.
3849 */
3850 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)3851 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3852 {
3853 pt_entry_t *endpte, oldpte, pa, *pte;
3854 vm_page_t m;
3855 int cache_bits;
3856
3857 oldpte = 0;
3858 pte = vtopte(sva);
3859 endpte = pte + count;
3860 while (pte < endpte) {
3861 m = *ma++;
3862 cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
3863 pa = VM_PAGE_TO_PHYS(m) | cache_bits;
3864 if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
3865 oldpte |= *pte;
3866 pte_store(pte, pa | pg_g | pg_nx | X86_PG_RW | X86_PG_V);
3867 }
3868 pte++;
3869 }
3870 if (__predict_false((oldpte & X86_PG_V) != 0))
3871 pmap_invalidate_range(kernel_pmap, sva, sva + count *
3872 PAGE_SIZE);
3873 }
3874
3875 /*
3876 * This routine tears out page mappings from the
3877 * kernel -- it is meant only for temporary mappings.
3878 * Note: SMP coherent. Uses a ranged shootdown IPI.
3879 */
3880 void
pmap_qremove(vm_offset_t sva,int count)3881 pmap_qremove(vm_offset_t sva, int count)
3882 {
3883 vm_offset_t va;
3884
3885 va = sva;
3886 while (count-- > 0) {
3887 KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
3888 pmap_kremove(va);
3889 va += PAGE_SIZE;
3890 }
3891 pmap_invalidate_range(kernel_pmap, sva, va);
3892 }
3893
3894 /***************************************************
3895 * Page table page management routines.....
3896 ***************************************************/
3897 /*
3898 * Schedule the specified unused page table page to be freed. Specifically,
3899 * add the page to the specified list of pages that will be released to the
3900 * physical memory manager after the TLB has been updated.
3901 */
3902 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,boolean_t set_PG_ZERO)3903 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
3904 boolean_t set_PG_ZERO)
3905 {
3906
3907 if (set_PG_ZERO)
3908 m->flags |= PG_ZERO;
3909 else
3910 m->flags &= ~PG_ZERO;
3911 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
3912 }
3913
3914 /*
3915 * Inserts the specified page table page into the specified pmap's collection
3916 * of idle page table pages. Each of a pmap's page table pages is responsible
3917 * for mapping a distinct range of virtual addresses. The pmap's collection is
3918 * ordered by this virtual address range.
3919 *
3920 * If "promoted" is false, then the page table page "mpte" must be zero filled.
3921 */
3922 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted)3923 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
3924 {
3925
3926 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3927 mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
3928 return (vm_radix_insert(&pmap->pm_root, mpte));
3929 }
3930
3931 /*
3932 * Removes the page table page mapping the specified virtual address from the
3933 * specified pmap's collection of idle page table pages, and returns it.
3934 * Otherwise, returns NULL if there is no page table page corresponding to the
3935 * specified virtual address.
3936 */
3937 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)3938 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
3939 {
3940
3941 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3942 return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
3943 }
3944
3945 /*
3946 * Decrements a page table page's reference count, which is used to record the
3947 * number of valid page table entries within the page. If the reference count
3948 * drops to zero, then the page table page is unmapped. Returns TRUE if the
3949 * page table page was unmapped and FALSE otherwise.
3950 */
3951 static inline boolean_t
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)3952 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
3953 {
3954
3955 --m->ref_count;
3956 if (m->ref_count == 0) {
3957 _pmap_unwire_ptp(pmap, va, m, free);
3958 return (TRUE);
3959 } else
3960 return (FALSE);
3961 }
3962
3963 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)3964 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
3965 {
3966 pml5_entry_t *pml5;
3967 pml4_entry_t *pml4;
3968 pdp_entry_t *pdp;
3969 pd_entry_t *pd;
3970 vm_page_t pdpg, pdppg, pml4pg;
3971
3972 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3973
3974 /*
3975 * unmap the page table page
3976 */
3977 if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
3978 /* PML4 page */
3979 MPASS(pmap_is_la57(pmap));
3980 pml5 = pmap_pml5e(pmap, va);
3981 *pml5 = 0;
3982 if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
3983 pml5 = pmap_pml5e_u(pmap, va);
3984 *pml5 = 0;
3985 }
3986 } else if (m->pindex >= NUPDE + NUPDPE) {
3987 /* PDP page */
3988 pml4 = pmap_pml4e(pmap, va);
3989 *pml4 = 0;
3990 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
3991 va <= VM_MAXUSER_ADDRESS) {
3992 pml4 = pmap_pml4e_u(pmap, va);
3993 *pml4 = 0;
3994 }
3995 } else if (m->pindex >= NUPDE) {
3996 /* PD page */
3997 pdp = pmap_pdpe(pmap, va);
3998 *pdp = 0;
3999 } else {
4000 /* PTE page */
4001 pd = pmap_pde(pmap, va);
4002 *pd = 0;
4003 }
4004 pmap_resident_count_dec(pmap, 1);
4005 if (m->pindex < NUPDE) {
4006 /* We just released a PT, unhold the matching PD */
4007 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4008 pmap_unwire_ptp(pmap, va, pdpg, free);
4009 } else if (m->pindex < NUPDE + NUPDPE) {
4010 /* We just released a PD, unhold the matching PDP */
4011 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4012 pmap_unwire_ptp(pmap, va, pdppg, free);
4013 } else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4014 /* We just released a PDP, unhold the matching PML4 */
4015 pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4016 pmap_unwire_ptp(pmap, va, pml4pg, free);
4017 }
4018
4019 /*
4020 * Put page on a list so that it is released after
4021 * *ALL* TLB shootdown is done
4022 */
4023 pmap_add_delayed_free_list(m, free, TRUE);
4024 }
4025
4026 /*
4027 * After removing a page table entry, this routine is used to
4028 * conditionally free the page, and manage the reference count.
4029 */
4030 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4031 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4032 struct spglist *free)
4033 {
4034 vm_page_t mpte;
4035
4036 if (va >= VM_MAXUSER_ADDRESS)
4037 return (0);
4038 KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4039 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4040 return (pmap_unwire_ptp(pmap, va, mpte, free));
4041 }
4042
4043 /*
4044 * Release a page table page reference after a failed attempt to create a
4045 * mapping.
4046 */
4047 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4048 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4049 {
4050 struct spglist free;
4051
4052 SLIST_INIT(&free);
4053 if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4054 /*
4055 * Although "va" was never mapped, paging-structure caches
4056 * could nonetheless have entries that refer to the freed
4057 * page table pages. Invalidate those entries.
4058 */
4059 pmap_invalidate_page(pmap, va);
4060 vm_page_free_pages_toq(&free, true);
4061 }
4062 }
4063
4064 void
pmap_pinit0(pmap_t pmap)4065 pmap_pinit0(pmap_t pmap)
4066 {
4067 struct proc *p;
4068 struct thread *td;
4069 int i;
4070
4071 PMAP_LOCK_INIT(pmap);
4072 pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4073 pmap->pm_pmltopu = NULL;
4074 pmap->pm_cr3 = kernel_pmap->pm_cr3;
4075 /* hack to keep pmap_pti_pcid_invalidate() alive */
4076 pmap->pm_ucr3 = PMAP_NO_CR3;
4077 pmap->pm_root.rt_root = 0;
4078 CPU_ZERO(&pmap->pm_active);
4079 TAILQ_INIT(&pmap->pm_pvchunk);
4080 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4081 pmap->pm_flags = pmap_flags;
4082 CPU_FOREACH(i) {
4083 pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN + 1;
4084 pmap->pm_pcids[i].pm_gen = 1;
4085 }
4086 pmap_activate_boot(pmap);
4087 td = curthread;
4088 if (pti) {
4089 p = td->td_proc;
4090 PROC_LOCK(p);
4091 p->p_md.md_flags |= P_MD_KPTI;
4092 PROC_UNLOCK(p);
4093 }
4094 pmap_thread_init_invl_gen(td);
4095
4096 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4097 pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4098 sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4099 UMA_ALIGN_PTR, 0);
4100 }
4101 }
4102
4103 void
pmap_pinit_pml4(vm_page_t pml4pg)4104 pmap_pinit_pml4(vm_page_t pml4pg)
4105 {
4106 pml4_entry_t *pm_pml4;
4107 int i;
4108
4109 pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4110
4111 /* Wire in kernel global address entries. */
4112 for (i = 0; i < NKPML4E; i++) {
4113 pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4114 X86_PG_V;
4115 }
4116 for (i = 0; i < ndmpdpphys; i++) {
4117 pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4118 X86_PG_V;
4119 }
4120
4121 /* install self-referential address mapping entry(s) */
4122 pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4123 X86_PG_A | X86_PG_M;
4124
4125 /* install large map entries if configured */
4126 for (i = 0; i < lm_ents; i++)
4127 pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4128 }
4129
4130 void
pmap_pinit_pml5(vm_page_t pml5pg)4131 pmap_pinit_pml5(vm_page_t pml5pg)
4132 {
4133 pml5_entry_t *pm_pml5;
4134
4135 pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4136
4137 /*
4138 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4139 * entering all existing kernel mappings into level 5 table.
4140 */
4141 pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4142 X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4143 pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4144
4145 /*
4146 * Install self-referential address mapping entry.
4147 */
4148 pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4149 X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
4150 pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4151 }
4152
4153 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4154 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4155 {
4156 pml4_entry_t *pm_pml4u;
4157 int i;
4158
4159 pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4160 for (i = 0; i < NPML4EPG; i++)
4161 pm_pml4u[i] = pti_pml4[i];
4162 }
4163
4164 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4165 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4166 {
4167 pml5_entry_t *pm_pml5u;
4168
4169 pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4170
4171 /*
4172 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4173 * table, entering all kernel mappings needed for usermode
4174 * into level 5 table.
4175 */
4176 pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4177 pmap_kextract((vm_offset_t)pti_pml4) |
4178 X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4179 pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4180 }
4181
4182 /*
4183 * Initialize a preallocated and zeroed pmap structure,
4184 * such as one in a vmspace structure.
4185 */
4186 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4187 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4188 {
4189 vm_page_t pmltop_pg, pmltop_pgu;
4190 vm_paddr_t pmltop_phys;
4191 int i;
4192
4193 /*
4194 * allocate the page directory page
4195 */
4196 pmltop_pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
4197 VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
4198
4199 pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4200 pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4201
4202 CPU_FOREACH(i) {
4203 pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
4204 pmap->pm_pcids[i].pm_gen = 0;
4205 }
4206 pmap->pm_cr3 = PMAP_NO_CR3; /* initialize to an invalid value */
4207 pmap->pm_ucr3 = PMAP_NO_CR3;
4208 pmap->pm_pmltopu = NULL;
4209
4210 pmap->pm_type = pm_type;
4211 if ((pmltop_pg->flags & PG_ZERO) == 0)
4212 pagezero(pmap->pm_pmltop);
4213
4214 /*
4215 * Do not install the host kernel mappings in the nested page
4216 * tables. These mappings are meaningless in the guest physical
4217 * address space.
4218 * Install minimal kernel mappings in PTI case.
4219 */
4220 switch (pm_type) {
4221 case PT_X86:
4222 pmap->pm_cr3 = pmltop_phys;
4223 if (pmap_is_la57(pmap))
4224 pmap_pinit_pml5(pmltop_pg);
4225 else
4226 pmap_pinit_pml4(pmltop_pg);
4227 if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4228 pmltop_pgu = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
4229 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4230 pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4231 VM_PAGE_TO_PHYS(pmltop_pgu));
4232 if (pmap_is_la57(pmap))
4233 pmap_pinit_pml5_pti(pmltop_pgu);
4234 else
4235 pmap_pinit_pml4_pti(pmltop_pgu);
4236 pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4237 }
4238 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4239 rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4240 pkru_free_range, pmap, M_NOWAIT);
4241 }
4242 break;
4243 case PT_EPT:
4244 case PT_RVI:
4245 pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4246 break;
4247 }
4248
4249 pmap->pm_root.rt_root = 0;
4250 CPU_ZERO(&pmap->pm_active);
4251 TAILQ_INIT(&pmap->pm_pvchunk);
4252 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4253 pmap->pm_flags = flags;
4254 pmap->pm_eptgen = 0;
4255
4256 return (1);
4257 }
4258
4259 int
pmap_pinit(pmap_t pmap)4260 pmap_pinit(pmap_t pmap)
4261 {
4262
4263 return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4264 }
4265
4266 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4267 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4268 {
4269 vm_page_t mpg;
4270 struct spglist free;
4271
4272 mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4273 if (mpg->ref_count != 0)
4274 return;
4275 SLIST_INIT(&free);
4276 _pmap_unwire_ptp(pmap, va, mpg, &free);
4277 pmap_invalidate_page(pmap, va);
4278 vm_page_free_pages_toq(&free, true);
4279 }
4280
4281 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4282 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4283 bool addref)
4284 {
4285 vm_pindex_t pml5index;
4286 pml5_entry_t *pml5;
4287 pml4_entry_t *pml4;
4288 vm_page_t pml4pg;
4289 pt_entry_t PG_V;
4290 bool allocated;
4291
4292 if (!pmap_is_la57(pmap))
4293 return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4294
4295 PG_V = pmap_valid_bit(pmap);
4296 pml5index = pmap_pml5e_index(va);
4297 pml5 = &pmap->pm_pmltop[pml5index];
4298 if ((*pml5 & PG_V) == 0) {
4299 if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4300 va) == NULL)
4301 return (NULL);
4302 allocated = true;
4303 } else {
4304 allocated = false;
4305 }
4306 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4307 pml4 = &pml4[pmap_pml4e_index(va)];
4308 if ((*pml4 & PG_V) == 0) {
4309 pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4310 if (allocated && !addref)
4311 pml4pg->ref_count--;
4312 else if (!allocated && addref)
4313 pml4pg->ref_count++;
4314 }
4315 return (pml4);
4316 }
4317
4318 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4319 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4320 bool addref)
4321 {
4322 vm_page_t pdppg;
4323 pml4_entry_t *pml4;
4324 pdp_entry_t *pdp;
4325 pt_entry_t PG_V;
4326 bool allocated;
4327
4328 PG_V = pmap_valid_bit(pmap);
4329
4330 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4331 if (pml4 == NULL)
4332 return (NULL);
4333
4334 if ((*pml4 & PG_V) == 0) {
4335 /* Have to allocate a new pdp, recurse */
4336 if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4337 va) == NULL) {
4338 if (pmap_is_la57(pmap))
4339 pmap_allocpte_free_unref(pmap, va,
4340 pmap_pml5e(pmap, va));
4341 return (NULL);
4342 }
4343 allocated = true;
4344 } else {
4345 allocated = false;
4346 }
4347 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4348 pdp = &pdp[pmap_pdpe_index(va)];
4349 if ((*pdp & PG_V) == 0) {
4350 pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4351 if (allocated && !addref)
4352 pdppg->ref_count--;
4353 else if (!allocated && addref)
4354 pdppg->ref_count++;
4355 }
4356 return (pdp);
4357 }
4358
4359 /*
4360 * The ptepindexes, i.e. page indices, of the page table pages encountered
4361 * while translating virtual address va are defined as follows:
4362 * - for the page table page (last level),
4363 * ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4364 * in other words, it is just the index of the PDE that maps the page
4365 * table page.
4366 * - for the page directory page,
4367 * ptepindex = NUPDE (number of userland PD entries) +
4368 * (pmap_pde_index(va) >> NPDEPGSHIFT)
4369 * i.e. index of PDPE is put after the last index of PDE,
4370 * - for the page directory pointer page,
4371 * ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4372 * NPML4EPGSHIFT),
4373 * i.e. index of pml4e is put after the last index of PDPE,
4374 * - for the PML4 page (if LA57 mode is enabled),
4375 * ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4376 * (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4377 * i.e. index of pml5e is put after the last index of PML4E.
4378 *
4379 * Define an order on the paging entries, where all entries of the
4380 * same height are put together, then heights are put from deepest to
4381 * root. Then ptexpindex is the sequential number of the
4382 * corresponding paging entry in this order.
4383 *
4384 * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4385 * LA57 paging structures even in LA48 paging mode. Moreover, the
4386 * ptepindexes are calculated as if the paging structures were 5-level
4387 * regardless of the actual mode of operation.
4388 *
4389 * The root page at PML4/PML5 does not participate in this indexing scheme,
4390 * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4391 */
4392 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4393 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4394 vm_offset_t va)
4395 {
4396 vm_pindex_t pml5index, pml4index;
4397 pml5_entry_t *pml5, *pml5u;
4398 pml4_entry_t *pml4, *pml4u;
4399 pdp_entry_t *pdp;
4400 pd_entry_t *pd;
4401 vm_page_t m, pdpg;
4402 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4403
4404 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4405
4406 PG_A = pmap_accessed_bit(pmap);
4407 PG_M = pmap_modified_bit(pmap);
4408 PG_V = pmap_valid_bit(pmap);
4409 PG_RW = pmap_rw_bit(pmap);
4410
4411 /*
4412 * Allocate a page table page.
4413 */
4414 if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
4415 VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
4416 return (NULL);
4417 if ((m->flags & PG_ZERO) == 0)
4418 pmap_zero_page(m);
4419
4420 /*
4421 * Map the pagetable page into the process address space, if
4422 * it isn't already there.
4423 */
4424 if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4425 MPASS(pmap_is_la57(pmap));
4426
4427 pml5index = pmap_pml5e_index(va);
4428 pml5 = &pmap->pm_pmltop[pml5index];
4429 KASSERT((*pml5 & PG_V) == 0,
4430 ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4431 *pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4432
4433 if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4434 if (pmap->pm_ucr3 != PMAP_NO_CR3)
4435 *pml5 |= pg_nx;
4436
4437 pml5u = &pmap->pm_pmltopu[pml5index];
4438 *pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4439 PG_A | PG_M;
4440 }
4441 } else if (ptepindex >= NUPDE + NUPDPE) {
4442 pml4index = pmap_pml4e_index(va);
4443 /* Wire up a new PDPE page */
4444 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4445 if (pml4 == NULL) {
4446 vm_page_unwire_noq(m);
4447 vm_page_free_zero(m);
4448 return (NULL);
4449 }
4450 KASSERT((*pml4 & PG_V) == 0,
4451 ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4452 *pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4453
4454 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4455 pml4index < NUPML4E) {
4456 /*
4457 * PTI: Make all user-space mappings in the
4458 * kernel-mode page table no-execute so that
4459 * we detect any programming errors that leave
4460 * the kernel-mode page table active on return
4461 * to user space.
4462 */
4463 if (pmap->pm_ucr3 != PMAP_NO_CR3)
4464 *pml4 |= pg_nx;
4465
4466 pml4u = &pmap->pm_pmltopu[pml4index];
4467 *pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4468 PG_A | PG_M;
4469 }
4470 } else if (ptepindex >= NUPDE) {
4471 /* Wire up a new PDE page */
4472 pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4473 if (pdp == NULL) {
4474 vm_page_unwire_noq(m);
4475 vm_page_free_zero(m);
4476 return (NULL);
4477 }
4478 KASSERT((*pdp & PG_V) == 0,
4479 ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4480 *pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4481 } else {
4482 /* Wire up a new PTE page */
4483 pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4484 if (pdp == NULL) {
4485 vm_page_unwire_noq(m);
4486 vm_page_free_zero(m);
4487 return (NULL);
4488 }
4489 if ((*pdp & PG_V) == 0) {
4490 /* Have to allocate a new pd, recurse */
4491 if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4492 lockp, va) == NULL) {
4493 pmap_allocpte_free_unref(pmap, va,
4494 pmap_pml4e(pmap, va));
4495 vm_page_unwire_noq(m);
4496 vm_page_free_zero(m);
4497 return (NULL);
4498 }
4499 } else {
4500 /* Add reference to the pd page */
4501 pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4502 pdpg->ref_count++;
4503 }
4504 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4505
4506 /* Now we know where the page directory page is */
4507 pd = &pd[pmap_pde_index(va)];
4508 KASSERT((*pd & PG_V) == 0,
4509 ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4510 *pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4511 }
4512
4513 pmap_resident_count_inc(pmap, 1);
4514 return (m);
4515 }
4516
4517 /*
4518 * This routine is called if the desired page table page does not exist.
4519 *
4520 * If page table page allocation fails, this routine may sleep before
4521 * returning NULL. It sleeps only if a lock pointer was given. Sleep
4522 * occurs right before returning to the caller. This way, we never
4523 * drop pmap lock to sleep while a page table page has ref_count == 0,
4524 * which prevents the page from being freed under us.
4525 */
4526 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4527 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4528 vm_offset_t va)
4529 {
4530 vm_page_t m;
4531
4532 m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4533 if (m == NULL && lockp != NULL) {
4534 RELEASE_PV_LIST_LOCK(lockp);
4535 PMAP_UNLOCK(pmap);
4536 PMAP_ASSERT_NOT_IN_DI();
4537 vm_wait(NULL);
4538 PMAP_LOCK(pmap);
4539 }
4540 return (m);
4541 }
4542
4543 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4544 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4545 struct rwlock **lockp)
4546 {
4547 pdp_entry_t *pdpe, PG_V;
4548 pd_entry_t *pde;
4549 vm_page_t pdpg;
4550 vm_pindex_t pdpindex;
4551
4552 PG_V = pmap_valid_bit(pmap);
4553
4554 retry:
4555 pdpe = pmap_pdpe(pmap, va);
4556 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4557 pde = pmap_pdpe_to_pde(pdpe, va);
4558 if (va < VM_MAXUSER_ADDRESS) {
4559 /* Add a reference to the pd page. */
4560 pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4561 pdpg->ref_count++;
4562 } else
4563 pdpg = NULL;
4564 } else if (va < VM_MAXUSER_ADDRESS) {
4565 /* Allocate a pd page. */
4566 pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4567 pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4568 if (pdpg == NULL) {
4569 if (lockp != NULL)
4570 goto retry;
4571 else
4572 return (NULL);
4573 }
4574 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4575 pde = &pde[pmap_pde_index(va)];
4576 } else
4577 panic("pmap_alloc_pde: missing page table page for va %#lx",
4578 va);
4579 *pdpgp = pdpg;
4580 return (pde);
4581 }
4582
4583 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4584 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4585 {
4586 vm_pindex_t ptepindex;
4587 pd_entry_t *pd, PG_V;
4588 vm_page_t m;
4589
4590 PG_V = pmap_valid_bit(pmap);
4591
4592 /*
4593 * Calculate pagetable page index
4594 */
4595 ptepindex = pmap_pde_pindex(va);
4596 retry:
4597 /*
4598 * Get the page directory entry
4599 */
4600 pd = pmap_pde(pmap, va);
4601
4602 /*
4603 * This supports switching from a 2MB page to a
4604 * normal 4K page.
4605 */
4606 if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4607 if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4608 /*
4609 * Invalidation of the 2MB page mapping may have caused
4610 * the deallocation of the underlying PD page.
4611 */
4612 pd = NULL;
4613 }
4614 }
4615
4616 /*
4617 * If the page table page is mapped, we just increment the
4618 * hold count, and activate it.
4619 */
4620 if (pd != NULL && (*pd & PG_V) != 0) {
4621 m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4622 m->ref_count++;
4623 } else {
4624 /*
4625 * Here if the pte page isn't mapped, or if it has been
4626 * deallocated.
4627 */
4628 m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4629 if (m == NULL && lockp != NULL)
4630 goto retry;
4631 }
4632 return (m);
4633 }
4634
4635 /***************************************************
4636 * Pmap allocation/deallocation routines.
4637 ***************************************************/
4638
4639 /*
4640 * Release any resources held by the given physical map.
4641 * Called when a pmap initialized by pmap_pinit is being released.
4642 * Should only be called if the map contains no valid mappings.
4643 */
4644 void
pmap_release(pmap_t pmap)4645 pmap_release(pmap_t pmap)
4646 {
4647 vm_page_t m;
4648 int i;
4649
4650 KASSERT(pmap->pm_stats.resident_count == 0,
4651 ("pmap_release: pmap %p resident count %ld != 0",
4652 pmap, pmap->pm_stats.resident_count));
4653 KASSERT(vm_radix_is_empty(&pmap->pm_root),
4654 ("pmap_release: pmap %p has reserved page table page(s)",
4655 pmap));
4656 KASSERT(CPU_EMPTY(&pmap->pm_active),
4657 ("releasing active pmap %p", pmap));
4658
4659 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4660
4661 if (pmap_is_la57(pmap)) {
4662 pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4663 pmap->pm_pmltop[PML5PML5I] = 0;
4664 } else {
4665 for (i = 0; i < NKPML4E; i++) /* KVA */
4666 pmap->pm_pmltop[KPML4BASE + i] = 0;
4667 for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4668 pmap->pm_pmltop[DMPML4I + i] = 0;
4669 pmap->pm_pmltop[PML4PML4I] = 0; /* Recursive Mapping */
4670 for (i = 0; i < lm_ents; i++) /* Large Map */
4671 pmap->pm_pmltop[LMSPML4I + i] = 0;
4672 }
4673
4674 vm_page_unwire_noq(m);
4675 vm_page_free_zero(m);
4676
4677 if (pmap->pm_pmltopu != NULL) {
4678 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4679 pm_pmltopu));
4680 vm_page_unwire_noq(m);
4681 vm_page_free(m);
4682 }
4683 if (pmap->pm_type == PT_X86 &&
4684 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4685 rangeset_fini(&pmap->pm_pkru);
4686 }
4687
4688 static int
kvm_size(SYSCTL_HANDLER_ARGS)4689 kvm_size(SYSCTL_HANDLER_ARGS)
4690 {
4691 unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4692
4693 return sysctl_handle_long(oidp, &ksize, 0, req);
4694 }
4695 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4696 0, 0, kvm_size, "LU",
4697 "Size of KVM");
4698
4699 static int
kvm_free(SYSCTL_HANDLER_ARGS)4700 kvm_free(SYSCTL_HANDLER_ARGS)
4701 {
4702 unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4703
4704 return sysctl_handle_long(oidp, &kfree, 0, req);
4705 }
4706 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4707 0, 0, kvm_free, "LU",
4708 "Amount of KVM free");
4709
4710 /*
4711 * Allocate physical memory for the vm_page array and map it into KVA,
4712 * attempting to back the vm_pages with domain-local memory.
4713 */
4714 void
pmap_page_array_startup(long pages)4715 pmap_page_array_startup(long pages)
4716 {
4717 pdp_entry_t *pdpe;
4718 pd_entry_t *pde, newpdir;
4719 vm_offset_t va, start, end;
4720 vm_paddr_t pa;
4721 long pfn;
4722 int domain, i;
4723
4724 vm_page_array_size = pages;
4725
4726 start = VM_MIN_KERNEL_ADDRESS;
4727 end = start + pages * sizeof(struct vm_page);
4728 for (va = start; va < end; va += NBPDR) {
4729 pfn = first_page + (va - start) / sizeof(struct vm_page);
4730 domain = vm_phys_domain(ptoa(pfn));
4731 pdpe = pmap_pdpe(kernel_pmap, va);
4732 if ((*pdpe & X86_PG_V) == 0) {
4733 pa = vm_phys_early_alloc(domain, PAGE_SIZE);
4734 dump_add_page(pa);
4735 pagezero((void *)PHYS_TO_DMAP(pa));
4736 *pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
4737 X86_PG_A | X86_PG_M);
4738 }
4739 pde = pmap_pdpe_to_pde(pdpe, va);
4740 if ((*pde & X86_PG_V) != 0)
4741 panic("Unexpected pde");
4742 pa = vm_phys_early_alloc(domain, NBPDR);
4743 for (i = 0; i < NPDEPG; i++)
4744 dump_add_page(pa + i * PAGE_SIZE);
4745 newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
4746 X86_PG_M | PG_PS | pg_g | pg_nx);
4747 pde_store(pde, newpdir);
4748 }
4749 vm_page_array = (vm_page_t)start;
4750 }
4751
4752 /*
4753 * grow the number of kernel page table entries, if needed
4754 */
4755 void
pmap_growkernel(vm_offset_t addr)4756 pmap_growkernel(vm_offset_t addr)
4757 {
4758 vm_paddr_t paddr;
4759 vm_page_t nkpg;
4760 pd_entry_t *pde, newpdir;
4761 pdp_entry_t *pdpe;
4762
4763 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
4764
4765 /*
4766 * Return if "addr" is within the range of kernel page table pages
4767 * that were preallocated during pmap bootstrap. Moreover, leave
4768 * "kernel_vm_end" and the kernel page table as they were.
4769 *
4770 * The correctness of this action is based on the following
4771 * argument: vm_map_insert() allocates contiguous ranges of the
4772 * kernel virtual address space. It calls this function if a range
4773 * ends after "kernel_vm_end". If the kernel is mapped between
4774 * "kernel_vm_end" and "addr", then the range cannot begin at
4775 * "kernel_vm_end". In fact, its beginning address cannot be less
4776 * than the kernel. Thus, there is no immediate need to allocate
4777 * any new kernel page table pages between "kernel_vm_end" and
4778 * "KERNBASE".
4779 */
4780 if (KERNBASE < addr && addr <= KERNBASE + nkpt * NBPDR)
4781 return;
4782
4783 addr = roundup2(addr, NBPDR);
4784 if (addr - 1 >= vm_map_max(kernel_map))
4785 addr = vm_map_max(kernel_map);
4786 while (kernel_vm_end < addr) {
4787 pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
4788 if ((*pdpe & X86_PG_V) == 0) {
4789 /* We need a new PDP entry */
4790 nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDPSHIFT,
4791 VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
4792 VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4793 if (nkpg == NULL)
4794 panic("pmap_growkernel: no memory to grow kernel");
4795 if ((nkpg->flags & PG_ZERO) == 0)
4796 pmap_zero_page(nkpg);
4797 paddr = VM_PAGE_TO_PHYS(nkpg);
4798 *pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
4799 X86_PG_A | X86_PG_M);
4800 continue; /* try again */
4801 }
4802 pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
4803 if ((*pde & X86_PG_V) != 0) {
4804 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
4805 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
4806 kernel_vm_end = vm_map_max(kernel_map);
4807 break;
4808 }
4809 continue;
4810 }
4811
4812 nkpg = vm_page_alloc(NULL, pmap_pde_pindex(kernel_vm_end),
4813 VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
4814 VM_ALLOC_ZERO);
4815 if (nkpg == NULL)
4816 panic("pmap_growkernel: no memory to grow kernel");
4817 if ((nkpg->flags & PG_ZERO) == 0)
4818 pmap_zero_page(nkpg);
4819 paddr = VM_PAGE_TO_PHYS(nkpg);
4820 newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4821 pde_store(pde, newpdir);
4822
4823 kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
4824 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
4825 kernel_vm_end = vm_map_max(kernel_map);
4826 break;
4827 }
4828 }
4829 }
4830
4831 /***************************************************
4832 * page management routines.
4833 ***************************************************/
4834
4835 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
4836 CTASSERT(_NPCM == 3);
4837 CTASSERT(_NPCPV == 168);
4838
4839 static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)4840 pv_to_chunk(pv_entry_t pv)
4841 {
4842
4843 return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
4844 }
4845
4846 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
4847
4848 #define PC_FREE0 0xfffffffffffffffful
4849 #define PC_FREE1 0xfffffffffffffffful
4850 #define PC_FREE2 0x000000fffffffffful
4851
4852 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
4853
4854 #ifdef PV_STATS
4855 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
4856
4857 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
4858 "Current number of pv entry chunks");
4859 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
4860 "Current number of pv entry chunks allocated");
4861 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
4862 "Current number of pv entry chunks frees");
4863 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
4864 "Number of times tried to get a chunk page but failed.");
4865
4866 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
4867 static int pv_entry_spare;
4868
4869 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
4870 "Current number of pv entry frees");
4871 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
4872 "Current number of pv entry allocs");
4873 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
4874 "Current number of pv entries");
4875 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
4876 "Current number of spare pv entries");
4877 #endif
4878
4879 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)4880 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
4881 {
4882
4883 if (pmap == NULL)
4884 return;
4885 pmap_invalidate_all(pmap);
4886 if (pmap != locked_pmap)
4887 PMAP_UNLOCK(pmap);
4888 if (start_di)
4889 pmap_delayed_invl_finish();
4890 }
4891
4892 /*
4893 * We are in a serious low memory condition. Resort to
4894 * drastic measures to free some pages so we can allocate
4895 * another pv entry chunk.
4896 *
4897 * Returns NULL if PV entries were reclaimed from the specified pmap.
4898 *
4899 * We do not, however, unmap 2mpages because subsequent accesses will
4900 * allocate per-page pv entries until repromotion occurs, thereby
4901 * exacerbating the shortage of free pv entries.
4902 */
4903 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)4904 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
4905 {
4906 struct pv_chunks_list *pvc;
4907 struct pv_chunk *pc, *pc_marker, *pc_marker_end;
4908 struct pv_chunk_header pc_marker_b, pc_marker_end_b;
4909 struct md_page *pvh;
4910 pd_entry_t *pde;
4911 pmap_t next_pmap, pmap;
4912 pt_entry_t *pte, tpte;
4913 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
4914 pv_entry_t pv;
4915 vm_offset_t va;
4916 vm_page_t m, m_pc;
4917 struct spglist free;
4918 uint64_t inuse;
4919 int bit, field, freed;
4920 bool start_di, restart;
4921
4922 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
4923 KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
4924 pmap = NULL;
4925 m_pc = NULL;
4926 PG_G = PG_A = PG_M = PG_RW = 0;
4927 SLIST_INIT(&free);
4928 bzero(&pc_marker_b, sizeof(pc_marker_b));
4929 bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
4930 pc_marker = (struct pv_chunk *)&pc_marker_b;
4931 pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
4932
4933 /*
4934 * A delayed invalidation block should already be active if
4935 * pmap_advise() or pmap_remove() called this function by way
4936 * of pmap_demote_pde_locked().
4937 */
4938 start_di = pmap_not_in_di();
4939
4940 pvc = &pv_chunks[domain];
4941 mtx_lock(&pvc->pvc_lock);
4942 pvc->active_reclaims++;
4943 TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
4944 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
4945 while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
4946 SLIST_EMPTY(&free)) {
4947 next_pmap = pc->pc_pmap;
4948 if (next_pmap == NULL) {
4949 /*
4950 * The next chunk is a marker. However, it is
4951 * not our marker, so active_reclaims must be
4952 * > 1. Consequently, the next_chunk code
4953 * will not rotate the pv_chunks list.
4954 */
4955 goto next_chunk;
4956 }
4957 mtx_unlock(&pvc->pvc_lock);
4958
4959 /*
4960 * A pv_chunk can only be removed from the pc_lru list
4961 * when both pc_chunks_mutex is owned and the
4962 * corresponding pmap is locked.
4963 */
4964 if (pmap != next_pmap) {
4965 restart = false;
4966 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
4967 start_di);
4968 pmap = next_pmap;
4969 /* Avoid deadlock and lock recursion. */
4970 if (pmap > locked_pmap) {
4971 RELEASE_PV_LIST_LOCK(lockp);
4972 PMAP_LOCK(pmap);
4973 if (start_di)
4974 pmap_delayed_invl_start();
4975 mtx_lock(&pvc->pvc_lock);
4976 restart = true;
4977 } else if (pmap != locked_pmap) {
4978 if (PMAP_TRYLOCK(pmap)) {
4979 if (start_di)
4980 pmap_delayed_invl_start();
4981 mtx_lock(&pvc->pvc_lock);
4982 restart = true;
4983 } else {
4984 pmap = NULL; /* pmap is not locked */
4985 mtx_lock(&pvc->pvc_lock);
4986 pc = TAILQ_NEXT(pc_marker, pc_lru);
4987 if (pc == NULL ||
4988 pc->pc_pmap != next_pmap)
4989 continue;
4990 goto next_chunk;
4991 }
4992 } else if (start_di)
4993 pmap_delayed_invl_start();
4994 PG_G = pmap_global_bit(pmap);
4995 PG_A = pmap_accessed_bit(pmap);
4996 PG_M = pmap_modified_bit(pmap);
4997 PG_RW = pmap_rw_bit(pmap);
4998 if (restart)
4999 continue;
5000 }
5001
5002 /*
5003 * Destroy every non-wired, 4 KB page mapping in the chunk.
5004 */
5005 freed = 0;
5006 for (field = 0; field < _NPCM; field++) {
5007 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5008 inuse != 0; inuse &= ~(1UL << bit)) {
5009 bit = bsfq(inuse);
5010 pv = &pc->pc_pventry[field * 64 + bit];
5011 va = pv->pv_va;
5012 pde = pmap_pde(pmap, va);
5013 if ((*pde & PG_PS) != 0)
5014 continue;
5015 pte = pmap_pde_to_pte(pde, va);
5016 if ((*pte & PG_W) != 0)
5017 continue;
5018 tpte = pte_load_clear(pte);
5019 if ((tpte & PG_G) != 0)
5020 pmap_invalidate_page(pmap, va);
5021 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5022 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5023 vm_page_dirty(m);
5024 if ((tpte & PG_A) != 0)
5025 vm_page_aflag_set(m, PGA_REFERENCED);
5026 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5027 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5028 m->md.pv_gen++;
5029 if (TAILQ_EMPTY(&m->md.pv_list) &&
5030 (m->flags & PG_FICTITIOUS) == 0) {
5031 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5032 if (TAILQ_EMPTY(&pvh->pv_list)) {
5033 vm_page_aflag_clear(m,
5034 PGA_WRITEABLE);
5035 }
5036 }
5037 pmap_delayed_invl_page(m);
5038 pc->pc_map[field] |= 1UL << bit;
5039 pmap_unuse_pt(pmap, va, *pde, &free);
5040 freed++;
5041 }
5042 }
5043 if (freed == 0) {
5044 mtx_lock(&pvc->pvc_lock);
5045 goto next_chunk;
5046 }
5047 /* Every freed mapping is for a 4 KB page. */
5048 pmap_resident_count_dec(pmap, freed);
5049 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5050 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5051 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5052 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5053 if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
5054 pc->pc_map[2] == PC_FREE2) {
5055 PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
5056 PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
5057 PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
5058 /* Entire chunk is free; return it. */
5059 m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5060 dump_drop_page(m_pc->phys_addr);
5061 mtx_lock(&pvc->pvc_lock);
5062 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5063 break;
5064 }
5065 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5066 mtx_lock(&pvc->pvc_lock);
5067 /* One freed pv entry in locked_pmap is sufficient. */
5068 if (pmap == locked_pmap)
5069 break;
5070 next_chunk:
5071 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5072 TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5073 if (pvc->active_reclaims == 1 && pmap != NULL) {
5074 /*
5075 * Rotate the pv chunks list so that we do not
5076 * scan the same pv chunks that could not be
5077 * freed (because they contained a wired
5078 * and/or superpage mapping) on every
5079 * invocation of reclaim_pv_chunk().
5080 */
5081 while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5082 MPASS(pc->pc_pmap != NULL);
5083 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5084 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5085 }
5086 }
5087 }
5088 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5089 TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5090 pvc->active_reclaims--;
5091 mtx_unlock(&pvc->pvc_lock);
5092 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5093 if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5094 m_pc = SLIST_FIRST(&free);
5095 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5096 /* Recycle a freed page table page. */
5097 m_pc->ref_count = 1;
5098 }
5099 vm_page_free_pages_toq(&free, true);
5100 return (m_pc);
5101 }
5102
5103 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5104 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5105 {
5106 vm_page_t m;
5107 int i, domain;
5108
5109 domain = PCPU_GET(domain);
5110 for (i = 0; i < vm_ndomains; i++) {
5111 m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5112 if (m != NULL)
5113 break;
5114 domain = (domain + 1) % vm_ndomains;
5115 }
5116
5117 return (m);
5118 }
5119
5120 /*
5121 * free the pv_entry back to the free list
5122 */
5123 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5124 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5125 {
5126 struct pv_chunk *pc;
5127 int idx, field, bit;
5128
5129 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5130 PV_STAT(atomic_add_long(&pv_entry_frees, 1));
5131 PV_STAT(atomic_add_int(&pv_entry_spare, 1));
5132 PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
5133 pc = pv_to_chunk(pv);
5134 idx = pv - &pc->pc_pventry[0];
5135 field = idx / 64;
5136 bit = idx % 64;
5137 pc->pc_map[field] |= 1ul << bit;
5138 if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
5139 pc->pc_map[2] != PC_FREE2) {
5140 /* 98% of the time, pc is already at the head of the list. */
5141 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5142 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5143 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5144 }
5145 return;
5146 }
5147 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5148 free_pv_chunk(pc);
5149 }
5150
5151 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5152 free_pv_chunk_dequeued(struct pv_chunk *pc)
5153 {
5154 vm_page_t m;
5155
5156 PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
5157 PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
5158 PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
5159 /* entire chunk is free, return it */
5160 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5161 dump_drop_page(m->phys_addr);
5162 vm_page_unwire_noq(m);
5163 vm_page_free(m);
5164 }
5165
5166 static void
free_pv_chunk(struct pv_chunk * pc)5167 free_pv_chunk(struct pv_chunk *pc)
5168 {
5169 struct pv_chunks_list *pvc;
5170
5171 pvc = &pv_chunks[pc_to_domain(pc)];
5172 mtx_lock(&pvc->pvc_lock);
5173 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5174 mtx_unlock(&pvc->pvc_lock);
5175 free_pv_chunk_dequeued(pc);
5176 }
5177
5178 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5179 free_pv_chunk_batch(struct pv_chunklist *batch)
5180 {
5181 struct pv_chunks_list *pvc;
5182 struct pv_chunk *pc, *npc;
5183 int i;
5184
5185 for (i = 0; i < vm_ndomains; i++) {
5186 if (TAILQ_EMPTY(&batch[i]))
5187 continue;
5188 pvc = &pv_chunks[i];
5189 mtx_lock(&pvc->pvc_lock);
5190 TAILQ_FOREACH(pc, &batch[i], pc_list) {
5191 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5192 }
5193 mtx_unlock(&pvc->pvc_lock);
5194 }
5195
5196 for (i = 0; i < vm_ndomains; i++) {
5197 TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5198 free_pv_chunk_dequeued(pc);
5199 }
5200 }
5201 }
5202
5203 /*
5204 * Returns a new PV entry, allocating a new PV chunk from the system when
5205 * needed. If this PV chunk allocation fails and a PV list lock pointer was
5206 * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
5207 * returned.
5208 *
5209 * The given PV list lock may be released.
5210 */
5211 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5212 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5213 {
5214 struct pv_chunks_list *pvc;
5215 int bit, field;
5216 pv_entry_t pv;
5217 struct pv_chunk *pc;
5218 vm_page_t m;
5219
5220 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5221 PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
5222 retry:
5223 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5224 if (pc != NULL) {
5225 for (field = 0; field < _NPCM; field++) {
5226 if (pc->pc_map[field]) {
5227 bit = bsfq(pc->pc_map[field]);
5228 break;
5229 }
5230 }
5231 if (field < _NPCM) {
5232 pv = &pc->pc_pventry[field * 64 + bit];
5233 pc->pc_map[field] &= ~(1ul << bit);
5234 /* If this was the last item, move it to tail */
5235 if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
5236 pc->pc_map[2] == 0) {
5237 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5238 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5239 pc_list);
5240 }
5241 PV_STAT(atomic_add_long(&pv_entry_count, 1));
5242 PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
5243 return (pv);
5244 }
5245 }
5246 /* No free items, allocate another chunk */
5247 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
5248 VM_ALLOC_WIRED);
5249 if (m == NULL) {
5250 if (lockp == NULL) {
5251 PV_STAT(pc_chunk_tryfail++);
5252 return (NULL);
5253 }
5254 m = reclaim_pv_chunk(pmap, lockp);
5255 if (m == NULL)
5256 goto retry;
5257 }
5258 PV_STAT(atomic_add_int(&pc_chunk_count, 1));
5259 PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
5260 dump_add_page(m->phys_addr);
5261 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5262 pc->pc_pmap = pmap;
5263 pc->pc_map[0] = PC_FREE0 & ~1ul; /* preallocated bit 0 */
5264 pc->pc_map[1] = PC_FREE1;
5265 pc->pc_map[2] = PC_FREE2;
5266 pvc = &pv_chunks[vm_page_domain(m)];
5267 mtx_lock(&pvc->pvc_lock);
5268 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5269 mtx_unlock(&pvc->pvc_lock);
5270 pv = &pc->pc_pventry[0];
5271 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5272 PV_STAT(atomic_add_long(&pv_entry_count, 1));
5273 PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
5274 return (pv);
5275 }
5276
5277 /*
5278 * Returns the number of one bits within the given PV chunk map.
5279 *
5280 * The erratas for Intel processors state that "POPCNT Instruction May
5281 * Take Longer to Execute Than Expected". It is believed that the
5282 * issue is the spurious dependency on the destination register.
5283 * Provide a hint to the register rename logic that the destination
5284 * value is overwritten, by clearing it, as suggested in the
5285 * optimization manual. It should be cheap for unaffected processors
5286 * as well.
5287 *
5288 * Reference numbers for erratas are
5289 * 4th Gen Core: HSD146
5290 * 5th Gen Core: BDM85
5291 * 6th Gen Core: SKL029
5292 */
5293 static int
popcnt_pc_map_pq(uint64_t * map)5294 popcnt_pc_map_pq(uint64_t *map)
5295 {
5296 u_long result, tmp;
5297
5298 __asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5299 "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5300 "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5301 : "=&r" (result), "=&r" (tmp)
5302 : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5303 return (result);
5304 }
5305
5306 /*
5307 * Ensure that the number of spare PV entries in the specified pmap meets or
5308 * exceeds the given count, "needed".
5309 *
5310 * The given PV list lock may be released.
5311 */
5312 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5313 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5314 {
5315 struct pv_chunks_list *pvc;
5316 struct pch new_tail[PMAP_MEMDOM];
5317 struct pv_chunk *pc;
5318 vm_page_t m;
5319 int avail, free, i;
5320 bool reclaimed;
5321
5322 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5323 KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5324
5325 /*
5326 * Newly allocated PV chunks must be stored in a private list until
5327 * the required number of PV chunks have been allocated. Otherwise,
5328 * reclaim_pv_chunk() could recycle one of these chunks. In
5329 * contrast, these chunks must be added to the pmap upon allocation.
5330 */
5331 for (i = 0; i < PMAP_MEMDOM; i++)
5332 TAILQ_INIT(&new_tail[i]);
5333 retry:
5334 avail = 0;
5335 TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5336 #ifndef __POPCNT__
5337 if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5338 bit_count((bitstr_t *)pc->pc_map, 0,
5339 sizeof(pc->pc_map) * NBBY, &free);
5340 else
5341 #endif
5342 free = popcnt_pc_map_pq(pc->pc_map);
5343 if (free == 0)
5344 break;
5345 avail += free;
5346 if (avail >= needed)
5347 break;
5348 }
5349 for (reclaimed = false; avail < needed; avail += _NPCPV) {
5350 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
5351 VM_ALLOC_WIRED);
5352 if (m == NULL) {
5353 m = reclaim_pv_chunk(pmap, lockp);
5354 if (m == NULL)
5355 goto retry;
5356 reclaimed = true;
5357 }
5358 PV_STAT(atomic_add_int(&pc_chunk_count, 1));
5359 PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
5360 dump_add_page(m->phys_addr);
5361 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5362 pc->pc_pmap = pmap;
5363 pc->pc_map[0] = PC_FREE0;
5364 pc->pc_map[1] = PC_FREE1;
5365 pc->pc_map[2] = PC_FREE2;
5366 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5367 TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5368 PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
5369
5370 /*
5371 * The reclaim might have freed a chunk from the current pmap.
5372 * If that chunk contained available entries, we need to
5373 * re-count the number of available entries.
5374 */
5375 if (reclaimed)
5376 goto retry;
5377 }
5378 for (i = 0; i < vm_ndomains; i++) {
5379 if (TAILQ_EMPTY(&new_tail[i]))
5380 continue;
5381 pvc = &pv_chunks[i];
5382 mtx_lock(&pvc->pvc_lock);
5383 TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5384 mtx_unlock(&pvc->pvc_lock);
5385 }
5386 }
5387
5388 /*
5389 * First find and then remove the pv entry for the specified pmap and virtual
5390 * address from the specified pv list. Returns the pv entry if found and NULL
5391 * otherwise. This operation can be performed on pv lists for either 4KB or
5392 * 2MB page mappings.
5393 */
5394 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5395 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5396 {
5397 pv_entry_t pv;
5398
5399 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5400 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5401 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5402 pvh->pv_gen++;
5403 break;
5404 }
5405 }
5406 return (pv);
5407 }
5408
5409 /*
5410 * After demotion from a 2MB page mapping to 512 4KB page mappings,
5411 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5412 * entries for each of the 4KB page mappings.
5413 */
5414 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5415 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5416 struct rwlock **lockp)
5417 {
5418 struct md_page *pvh;
5419 struct pv_chunk *pc;
5420 pv_entry_t pv;
5421 vm_offset_t va_last;
5422 vm_page_t m;
5423 int bit, field;
5424
5425 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5426 KASSERT((pa & PDRMASK) == 0,
5427 ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5428 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5429
5430 /*
5431 * Transfer the 2mpage's pv entry for this mapping to the first
5432 * page's pv list. Once this transfer begins, the pv list lock
5433 * must not be released until the last pv entry is reinstantiated.
5434 */
5435 pvh = pa_to_pvh(pa);
5436 va = trunc_2mpage(va);
5437 pv = pmap_pvh_remove(pvh, pmap, va);
5438 KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5439 m = PHYS_TO_VM_PAGE(pa);
5440 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5441 m->md.pv_gen++;
5442 /* Instantiate the remaining NPTEPG - 1 pv entries. */
5443 PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
5444 va_last = va + NBPDR - PAGE_SIZE;
5445 for (;;) {
5446 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5447 KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
5448 pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
5449 for (field = 0; field < _NPCM; field++) {
5450 while (pc->pc_map[field]) {
5451 bit = bsfq(pc->pc_map[field]);
5452 pc->pc_map[field] &= ~(1ul << bit);
5453 pv = &pc->pc_pventry[field * 64 + bit];
5454 va += PAGE_SIZE;
5455 pv->pv_va = va;
5456 m++;
5457 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5458 ("pmap_pv_demote_pde: page %p is not managed", m));
5459 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5460 m->md.pv_gen++;
5461 if (va == va_last)
5462 goto out;
5463 }
5464 }
5465 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5466 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5467 }
5468 out:
5469 if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
5470 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5471 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5472 }
5473 PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
5474 PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
5475 }
5476
5477 #if VM_NRESERVLEVEL > 0
5478 /*
5479 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5480 * replace the many pv entries for the 4KB page mappings by a single pv entry
5481 * for the 2MB page mapping.
5482 */
5483 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5484 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5485 struct rwlock **lockp)
5486 {
5487 struct md_page *pvh;
5488 pv_entry_t pv;
5489 vm_offset_t va_last;
5490 vm_page_t m;
5491
5492 KASSERT((pa & PDRMASK) == 0,
5493 ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5494 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5495
5496 /*
5497 * Transfer the first page's pv entry for this mapping to the 2mpage's
5498 * pv list. Aside from avoiding the cost of a call to get_pv_entry(),
5499 * a transfer avoids the possibility that get_pv_entry() calls
5500 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5501 * mappings that is being promoted.
5502 */
5503 m = PHYS_TO_VM_PAGE(pa);
5504 va = trunc_2mpage(va);
5505 pv = pmap_pvh_remove(&m->md, pmap, va);
5506 KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5507 pvh = pa_to_pvh(pa);
5508 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5509 pvh->pv_gen++;
5510 /* Free the remaining NPTEPG - 1 pv entries. */
5511 va_last = va + NBPDR - PAGE_SIZE;
5512 do {
5513 m++;
5514 va += PAGE_SIZE;
5515 pmap_pvh_free(&m->md, pmap, va);
5516 } while (va < va_last);
5517 }
5518 #endif /* VM_NRESERVLEVEL > 0 */
5519
5520 /*
5521 * First find and then destroy the pv entry for the specified pmap and virtual
5522 * address. This operation can be performed on pv lists for either 4KB or 2MB
5523 * page mappings.
5524 */
5525 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5526 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5527 {
5528 pv_entry_t pv;
5529
5530 pv = pmap_pvh_remove(pvh, pmap, va);
5531 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5532 free_pv_entry(pmap, pv);
5533 }
5534
5535 /*
5536 * Conditionally create the PV entry for a 4KB page mapping if the required
5537 * memory can be allocated without resorting to reclamation.
5538 */
5539 static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5540 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5541 struct rwlock **lockp)
5542 {
5543 pv_entry_t pv;
5544
5545 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5546 /* Pass NULL instead of the lock pointer to disable reclamation. */
5547 if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5548 pv->pv_va = va;
5549 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5550 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5551 m->md.pv_gen++;
5552 return (TRUE);
5553 } else
5554 return (FALSE);
5555 }
5556
5557 /*
5558 * Create the PV entry for a 2MB page mapping. Always returns true unless the
5559 * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
5560 * false if the PV entry cannot be allocated without resorting to reclamation.
5561 */
5562 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5563 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5564 struct rwlock **lockp)
5565 {
5566 struct md_page *pvh;
5567 pv_entry_t pv;
5568 vm_paddr_t pa;
5569
5570 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5571 /* Pass NULL instead of the lock pointer to disable reclamation. */
5572 if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5573 NULL : lockp)) == NULL)
5574 return (false);
5575 pv->pv_va = va;
5576 pa = pde & PG_PS_FRAME;
5577 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5578 pvh = pa_to_pvh(pa);
5579 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5580 pvh->pv_gen++;
5581 return (true);
5582 }
5583
5584 /*
5585 * Fills a page table page with mappings to consecutive physical pages.
5586 */
5587 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5588 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5589 {
5590 pt_entry_t *pte;
5591
5592 for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5593 *pte = newpte;
5594 newpte += PAGE_SIZE;
5595 }
5596 }
5597
5598 /*
5599 * Tries to demote a 2MB page mapping. If demotion fails, the 2MB page
5600 * mapping is invalidated.
5601 */
5602 static boolean_t
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5603 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5604 {
5605 struct rwlock *lock;
5606 boolean_t rv;
5607
5608 lock = NULL;
5609 rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5610 if (lock != NULL)
5611 rw_wunlock(lock);
5612 return (rv);
5613 }
5614
5615 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5616 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5617 {
5618 #ifdef INVARIANTS
5619 #ifdef DIAGNOSTIC
5620 pt_entry_t *xpte, *ypte;
5621
5622 for (xpte = firstpte; xpte < firstpte + NPTEPG;
5623 xpte++, newpte += PAGE_SIZE) {
5624 if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5625 printf("pmap_demote_pde: xpte %zd and newpte map "
5626 "different pages: found %#lx, expected %#lx\n",
5627 xpte - firstpte, *xpte, newpte);
5628 printf("page table dump\n");
5629 for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5630 printf("%zd %#lx\n", ypte - firstpte, *ypte);
5631 panic("firstpte");
5632 }
5633 }
5634 #else
5635 KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5636 ("pmap_demote_pde: firstpte and newpte map different physical"
5637 " addresses"));
5638 #endif
5639 #endif
5640 }
5641
5642 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)5643 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5644 pd_entry_t oldpde, struct rwlock **lockp)
5645 {
5646 struct spglist free;
5647 vm_offset_t sva;
5648
5649 SLIST_INIT(&free);
5650 sva = trunc_2mpage(va);
5651 pmap_remove_pde(pmap, pde, sva, &free, lockp);
5652 if ((oldpde & pmap_global_bit(pmap)) == 0)
5653 pmap_invalidate_pde_page(pmap, sva, oldpde);
5654 vm_page_free_pages_toq(&free, true);
5655 CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
5656 va, pmap);
5657 }
5658
5659 static boolean_t
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)5660 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5661 struct rwlock **lockp)
5662 {
5663 pd_entry_t newpde, oldpde;
5664 pt_entry_t *firstpte, newpte;
5665 pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
5666 vm_paddr_t mptepa;
5667 vm_page_t mpte;
5668 int PG_PTE_CACHE;
5669 bool in_kernel;
5670
5671 PG_A = pmap_accessed_bit(pmap);
5672 PG_G = pmap_global_bit(pmap);
5673 PG_M = pmap_modified_bit(pmap);
5674 PG_RW = pmap_rw_bit(pmap);
5675 PG_V = pmap_valid_bit(pmap);
5676 PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
5677 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
5678
5679 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5680 in_kernel = va >= VM_MAXUSER_ADDRESS;
5681 oldpde = *pde;
5682 KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
5683 ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
5684
5685 /*
5686 * Invalidate the 2MB page mapping and return "failure" if the
5687 * mapping was never accessed.
5688 */
5689 if ((oldpde & PG_A) == 0) {
5690 KASSERT((oldpde & PG_W) == 0,
5691 ("pmap_demote_pde: a wired mapping is missing PG_A"));
5692 pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
5693 return (FALSE);
5694 }
5695
5696 mpte = pmap_remove_pt_page(pmap, va);
5697 if (mpte == NULL) {
5698 KASSERT((oldpde & PG_W) == 0,
5699 ("pmap_demote_pde: page table page for a wired mapping"
5700 " is missing"));
5701
5702 /*
5703 * If the page table page is missing and the mapping
5704 * is for a kernel address, the mapping must belong to
5705 * the direct map. Page table pages are preallocated
5706 * for every other part of the kernel address space,
5707 * so the direct map region is the only part of the
5708 * kernel address space that must be handled here.
5709 */
5710 KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
5711 va < DMAP_MAX_ADDRESS),
5712 ("pmap_demote_pde: No saved mpte for va %#lx", va));
5713
5714 /*
5715 * If the 2MB page mapping belongs to the direct map
5716 * region of the kernel's address space, then the page
5717 * allocation request specifies the highest possible
5718 * priority (VM_ALLOC_INTERRUPT). Otherwise, the
5719 * priority is normal.
5720 */
5721 mpte = vm_page_alloc(NULL, pmap_pde_pindex(va),
5722 (in_kernel ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
5723 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5724
5725 /*
5726 * If the allocation of the new page table page fails,
5727 * invalidate the 2MB page mapping and return "failure".
5728 */
5729 if (mpte == NULL) {
5730 pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
5731 return (FALSE);
5732 }
5733
5734 if (!in_kernel) {
5735 mpte->ref_count = NPTEPG;
5736 pmap_resident_count_inc(pmap, 1);
5737 }
5738 }
5739 mptepa = VM_PAGE_TO_PHYS(mpte);
5740 firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
5741 newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
5742 KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
5743 ("pmap_demote_pde: oldpde is missing PG_M"));
5744 newpte = oldpde & ~PG_PS;
5745 newpte = pmap_swap_pat(pmap, newpte);
5746
5747 /*
5748 * If the page table page is not leftover from an earlier promotion,
5749 * initialize it.
5750 */
5751 if (mpte->valid == 0)
5752 pmap_fill_ptp(firstpte, newpte);
5753
5754 pmap_demote_pde_check(firstpte, newpte);
5755
5756 /*
5757 * If the mapping has changed attributes, update the page table
5758 * entries.
5759 */
5760 if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
5761 pmap_fill_ptp(firstpte, newpte);
5762
5763 /*
5764 * The spare PV entries must be reserved prior to demoting the
5765 * mapping, that is, prior to changing the PDE. Otherwise, the state
5766 * of the PDE and the PV lists will be inconsistent, which can result
5767 * in reclaim_pv_chunk() attempting to remove a PV entry from the
5768 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
5769 * PV entry for the 2MB page mapping that is being demoted.
5770 */
5771 if ((oldpde & PG_MANAGED) != 0)
5772 reserve_pv_entries(pmap, NPTEPG - 1, lockp);
5773
5774 /*
5775 * Demote the mapping. This pmap is locked. The old PDE has
5776 * PG_A set. If the old PDE has PG_RW set, it also has PG_M
5777 * set. Thus, there is no danger of a race with another
5778 * processor changing the setting of PG_A and/or PG_M between
5779 * the read above and the store below.
5780 */
5781 if (workaround_erratum383)
5782 pmap_update_pde(pmap, va, pde, newpde);
5783 else
5784 pde_store(pde, newpde);
5785
5786 /*
5787 * Invalidate a stale recursive mapping of the page table page.
5788 */
5789 if (in_kernel)
5790 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
5791
5792 /*
5793 * Demote the PV entry.
5794 */
5795 if ((oldpde & PG_MANAGED) != 0)
5796 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
5797
5798 atomic_add_long(&pmap_pde_demotions, 1);
5799 CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
5800 va, pmap);
5801 return (TRUE);
5802 }
5803
5804 /*
5805 * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
5806 */
5807 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5808 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5809 {
5810 pd_entry_t newpde;
5811 vm_paddr_t mptepa;
5812 vm_page_t mpte;
5813
5814 KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
5815 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5816 mpte = pmap_remove_pt_page(pmap, va);
5817 if (mpte == NULL)
5818 panic("pmap_remove_kernel_pde: Missing pt page.");
5819
5820 mptepa = VM_PAGE_TO_PHYS(mpte);
5821 newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
5822
5823 /*
5824 * If this page table page was unmapped by a promotion, then it
5825 * contains valid mappings. Zero it to invalidate those mappings.
5826 */
5827 if (mpte->valid != 0)
5828 pagezero((void *)PHYS_TO_DMAP(mptepa));
5829
5830 /*
5831 * Demote the mapping.
5832 */
5833 if (workaround_erratum383)
5834 pmap_update_pde(pmap, va, pde, newpde);
5835 else
5836 pde_store(pde, newpde);
5837
5838 /*
5839 * Invalidate a stale recursive mapping of the page table page.
5840 */
5841 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
5842 }
5843
5844 /*
5845 * pmap_remove_pde: do the things to unmap a superpage in a process
5846 */
5847 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free,struct rwlock ** lockp)5848 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
5849 struct spglist *free, struct rwlock **lockp)
5850 {
5851 struct md_page *pvh;
5852 pd_entry_t oldpde;
5853 vm_offset_t eva, va;
5854 vm_page_t m, mpte;
5855 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5856
5857 PG_G = pmap_global_bit(pmap);
5858 PG_A = pmap_accessed_bit(pmap);
5859 PG_M = pmap_modified_bit(pmap);
5860 PG_RW = pmap_rw_bit(pmap);
5861
5862 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5863 KASSERT((sva & PDRMASK) == 0,
5864 ("pmap_remove_pde: sva is not 2mpage aligned"));
5865 oldpde = pte_load_clear(pdq);
5866 if (oldpde & PG_W)
5867 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
5868 if ((oldpde & PG_G) != 0)
5869 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
5870 pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
5871 if (oldpde & PG_MANAGED) {
5872 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5873 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5874 pmap_pvh_free(pvh, pmap, sva);
5875 eva = sva + NBPDR;
5876 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5877 va < eva; va += PAGE_SIZE, m++) {
5878 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5879 vm_page_dirty(m);
5880 if (oldpde & PG_A)
5881 vm_page_aflag_set(m, PGA_REFERENCED);
5882 if (TAILQ_EMPTY(&m->md.pv_list) &&
5883 TAILQ_EMPTY(&pvh->pv_list))
5884 vm_page_aflag_clear(m, PGA_WRITEABLE);
5885 pmap_delayed_invl_page(m);
5886 }
5887 }
5888 if (pmap == kernel_pmap) {
5889 pmap_remove_kernel_pde(pmap, pdq, sva);
5890 } else {
5891 mpte = pmap_remove_pt_page(pmap, sva);
5892 if (mpte != NULL) {
5893 KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
5894 ("pmap_remove_pde: pte page not promoted"));
5895 pmap_resident_count_dec(pmap, 1);
5896 KASSERT(mpte->ref_count == NPTEPG,
5897 ("pmap_remove_pde: pte page ref count error"));
5898 mpte->ref_count = 0;
5899 pmap_add_delayed_free_list(mpte, free, FALSE);
5900 }
5901 }
5902 return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
5903 }
5904
5905 /*
5906 * pmap_remove_pte: do the things to unmap a page in a process
5907 */
5908 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)5909 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5910 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5911 {
5912 struct md_page *pvh;
5913 pt_entry_t oldpte, PG_A, PG_M, PG_RW;
5914 vm_page_t m;
5915
5916 PG_A = pmap_accessed_bit(pmap);
5917 PG_M = pmap_modified_bit(pmap);
5918 PG_RW = pmap_rw_bit(pmap);
5919
5920 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5921 oldpte = pte_load_clear(ptq);
5922 if (oldpte & PG_W)
5923 pmap->pm_stats.wired_count -= 1;
5924 pmap_resident_count_dec(pmap, 1);
5925 if (oldpte & PG_MANAGED) {
5926 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5927 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5928 vm_page_dirty(m);
5929 if (oldpte & PG_A)
5930 vm_page_aflag_set(m, PGA_REFERENCED);
5931 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5932 pmap_pvh_free(&m->md, pmap, va);
5933 if (TAILQ_EMPTY(&m->md.pv_list) &&
5934 (m->flags & PG_FICTITIOUS) == 0) {
5935 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5936 if (TAILQ_EMPTY(&pvh->pv_list))
5937 vm_page_aflag_clear(m, PGA_WRITEABLE);
5938 }
5939 pmap_delayed_invl_page(m);
5940 }
5941 return (pmap_unuse_pt(pmap, va, ptepde, free));
5942 }
5943
5944 /*
5945 * Remove a single page from a process address space
5946 */
5947 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)5948 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5949 struct spglist *free)
5950 {
5951 struct rwlock *lock;
5952 pt_entry_t *pte, PG_V;
5953
5954 PG_V = pmap_valid_bit(pmap);
5955 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5956 if ((*pde & PG_V) == 0)
5957 return;
5958 pte = pmap_pde_to_pte(pde, va);
5959 if ((*pte & PG_V) == 0)
5960 return;
5961 lock = NULL;
5962 pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
5963 if (lock != NULL)
5964 rw_wunlock(lock);
5965 pmap_invalidate_page(pmap, va);
5966 }
5967
5968 /*
5969 * Removes the specified range of addresses from the page table page.
5970 */
5971 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)5972 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5973 pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
5974 {
5975 pt_entry_t PG_G, *pte;
5976 vm_offset_t va;
5977 bool anyvalid;
5978
5979 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5980 PG_G = pmap_global_bit(pmap);
5981 anyvalid = false;
5982 va = eva;
5983 for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
5984 sva += PAGE_SIZE) {
5985 if (*pte == 0) {
5986 if (va != eva) {
5987 pmap_invalidate_range(pmap, va, sva);
5988 va = eva;
5989 }
5990 continue;
5991 }
5992 if ((*pte & PG_G) == 0)
5993 anyvalid = true;
5994 else if (va == eva)
5995 va = sva;
5996 if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
5997 sva += PAGE_SIZE;
5998 break;
5999 }
6000 }
6001 if (va != eva)
6002 pmap_invalidate_range(pmap, va, sva);
6003 return (anyvalid);
6004 }
6005
6006 /*
6007 * Remove the given range of addresses from the specified map.
6008 *
6009 * It is assumed that the start and end are properly
6010 * rounded to the page size.
6011 */
6012 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6013 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6014 {
6015 struct rwlock *lock;
6016 vm_page_t mt;
6017 vm_offset_t va_next;
6018 pml5_entry_t *pml5e;
6019 pml4_entry_t *pml4e;
6020 pdp_entry_t *pdpe;
6021 pd_entry_t ptpaddr, *pde;
6022 pt_entry_t PG_G, PG_V;
6023 struct spglist free;
6024 int anyvalid;
6025
6026 PG_G = pmap_global_bit(pmap);
6027 PG_V = pmap_valid_bit(pmap);
6028
6029 /*
6030 * Perform an unsynchronized read. This is, however, safe.
6031 */
6032 if (pmap->pm_stats.resident_count == 0)
6033 return;
6034
6035 anyvalid = 0;
6036 SLIST_INIT(&free);
6037
6038 pmap_delayed_invl_start();
6039 PMAP_LOCK(pmap);
6040 pmap_pkru_on_remove(pmap, sva, eva);
6041
6042 /*
6043 * special handling of removing one page. a very
6044 * common operation and easy to short circuit some
6045 * code.
6046 */
6047 if (sva + PAGE_SIZE == eva) {
6048 pde = pmap_pde(pmap, sva);
6049 if (pde && (*pde & PG_PS) == 0) {
6050 pmap_remove_page(pmap, sva, pde, &free);
6051 goto out;
6052 }
6053 }
6054
6055 lock = NULL;
6056 for (; sva < eva; sva = va_next) {
6057 if (pmap->pm_stats.resident_count == 0)
6058 break;
6059
6060 if (pmap_is_la57(pmap)) {
6061 pml5e = pmap_pml5e(pmap, sva);
6062 if ((*pml5e & PG_V) == 0) {
6063 va_next = (sva + NBPML5) & ~PML5MASK;
6064 if (va_next < sva)
6065 va_next = eva;
6066 continue;
6067 }
6068 pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6069 } else {
6070 pml4e = pmap_pml4e(pmap, sva);
6071 }
6072 if ((*pml4e & PG_V) == 0) {
6073 va_next = (sva + NBPML4) & ~PML4MASK;
6074 if (va_next < sva)
6075 va_next = eva;
6076 continue;
6077 }
6078
6079 va_next = (sva + NBPDP) & ~PDPMASK;
6080 if (va_next < sva)
6081 va_next = eva;
6082 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6083 if ((*pdpe & PG_V) == 0)
6084 continue;
6085 if ((*pdpe & PG_PS) != 0) {
6086 KASSERT(va_next <= eva,
6087 ("partial update of non-transparent 1G mapping "
6088 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6089 *pdpe, sva, eva, va_next));
6090 MPASS(pmap != kernel_pmap); /* XXXKIB */
6091 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6092 anyvalid = 1;
6093 *pdpe = 0;
6094 pmap_resident_count_dec(pmap, NBPDP / PAGE_SIZE);
6095 mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6096 pmap_unwire_ptp(pmap, sva, mt, &free);
6097 continue;
6098 }
6099
6100 /*
6101 * Calculate index for next page table.
6102 */
6103 va_next = (sva + NBPDR) & ~PDRMASK;
6104 if (va_next < sva)
6105 va_next = eva;
6106
6107 pde = pmap_pdpe_to_pde(pdpe, sva);
6108 ptpaddr = *pde;
6109
6110 /*
6111 * Weed out invalid mappings.
6112 */
6113 if (ptpaddr == 0)
6114 continue;
6115
6116 /*
6117 * Check for large page.
6118 */
6119 if ((ptpaddr & PG_PS) != 0) {
6120 /*
6121 * Are we removing the entire large page? If not,
6122 * demote the mapping and fall through.
6123 */
6124 if (sva + NBPDR == va_next && eva >= va_next) {
6125 /*
6126 * The TLB entry for a PG_G mapping is
6127 * invalidated by pmap_remove_pde().
6128 */
6129 if ((ptpaddr & PG_G) == 0)
6130 anyvalid = 1;
6131 pmap_remove_pde(pmap, pde, sva, &free, &lock);
6132 continue;
6133 } else if (!pmap_demote_pde_locked(pmap, pde, sva,
6134 &lock)) {
6135 /* The large page mapping was destroyed. */
6136 continue;
6137 } else
6138 ptpaddr = *pde;
6139 }
6140
6141 /*
6142 * Limit our scan to either the end of the va represented
6143 * by the current page table page, or to the end of the
6144 * range being removed.
6145 */
6146 if (va_next > eva)
6147 va_next = eva;
6148
6149 if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6150 anyvalid = 1;
6151 }
6152 if (lock != NULL)
6153 rw_wunlock(lock);
6154 out:
6155 if (anyvalid)
6156 pmap_invalidate_all(pmap);
6157 PMAP_UNLOCK(pmap);
6158 pmap_delayed_invl_finish();
6159 vm_page_free_pages_toq(&free, true);
6160 }
6161
6162 /*
6163 * Routine: pmap_remove_all
6164 * Function:
6165 * Removes this physical page from
6166 * all physical maps in which it resides.
6167 * Reflects back modify bits to the pager.
6168 *
6169 * Notes:
6170 * Original versions of this routine were very
6171 * inefficient because they iteratively called
6172 * pmap_remove (slow...)
6173 */
6174
6175 void
pmap_remove_all(vm_page_t m)6176 pmap_remove_all(vm_page_t m)
6177 {
6178 struct md_page *pvh;
6179 pv_entry_t pv;
6180 pmap_t pmap;
6181 struct rwlock *lock;
6182 pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6183 pd_entry_t *pde;
6184 vm_offset_t va;
6185 struct spglist free;
6186 int pvh_gen, md_gen;
6187
6188 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6189 ("pmap_remove_all: page %p is not managed", m));
6190 SLIST_INIT(&free);
6191 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6192 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6193 pa_to_pvh(VM_PAGE_TO_PHYS(m));
6194 retry:
6195 rw_wlock(lock);
6196 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6197 pmap = PV_PMAP(pv);
6198 if (!PMAP_TRYLOCK(pmap)) {
6199 pvh_gen = pvh->pv_gen;
6200 rw_wunlock(lock);
6201 PMAP_LOCK(pmap);
6202 rw_wlock(lock);
6203 if (pvh_gen != pvh->pv_gen) {
6204 rw_wunlock(lock);
6205 PMAP_UNLOCK(pmap);
6206 goto retry;
6207 }
6208 }
6209 va = pv->pv_va;
6210 pde = pmap_pde(pmap, va);
6211 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6212 PMAP_UNLOCK(pmap);
6213 }
6214 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6215 pmap = PV_PMAP(pv);
6216 if (!PMAP_TRYLOCK(pmap)) {
6217 pvh_gen = pvh->pv_gen;
6218 md_gen = m->md.pv_gen;
6219 rw_wunlock(lock);
6220 PMAP_LOCK(pmap);
6221 rw_wlock(lock);
6222 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6223 rw_wunlock(lock);
6224 PMAP_UNLOCK(pmap);
6225 goto retry;
6226 }
6227 }
6228 PG_A = pmap_accessed_bit(pmap);
6229 PG_M = pmap_modified_bit(pmap);
6230 PG_RW = pmap_rw_bit(pmap);
6231 pmap_resident_count_dec(pmap, 1);
6232 pde = pmap_pde(pmap, pv->pv_va);
6233 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6234 " a 2mpage in page %p's pv list", m));
6235 pte = pmap_pde_to_pte(pde, pv->pv_va);
6236 tpte = pte_load_clear(pte);
6237 if (tpte & PG_W)
6238 pmap->pm_stats.wired_count--;
6239 if (tpte & PG_A)
6240 vm_page_aflag_set(m, PGA_REFERENCED);
6241
6242 /*
6243 * Update the vm_page_t clean and reference bits.
6244 */
6245 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6246 vm_page_dirty(m);
6247 pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6248 pmap_invalidate_page(pmap, pv->pv_va);
6249 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6250 m->md.pv_gen++;
6251 free_pv_entry(pmap, pv);
6252 PMAP_UNLOCK(pmap);
6253 }
6254 vm_page_aflag_clear(m, PGA_WRITEABLE);
6255 rw_wunlock(lock);
6256 pmap_delayed_invl_wait(m);
6257 vm_page_free_pages_toq(&free, true);
6258 }
6259
6260 /*
6261 * pmap_protect_pde: do the things to protect a 2mpage in a process
6262 */
6263 static boolean_t
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6264 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6265 {
6266 pd_entry_t newpde, oldpde;
6267 vm_page_t m, mt;
6268 boolean_t anychanged;
6269 pt_entry_t PG_G, PG_M, PG_RW;
6270
6271 PG_G = pmap_global_bit(pmap);
6272 PG_M = pmap_modified_bit(pmap);
6273 PG_RW = pmap_rw_bit(pmap);
6274
6275 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6276 KASSERT((sva & PDRMASK) == 0,
6277 ("pmap_protect_pde: sva is not 2mpage aligned"));
6278 anychanged = FALSE;
6279 retry:
6280 oldpde = newpde = *pde;
6281 if ((prot & VM_PROT_WRITE) == 0) {
6282 if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6283 (PG_MANAGED | PG_M | PG_RW)) {
6284 m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6285 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6286 vm_page_dirty(mt);
6287 }
6288 newpde &= ~(PG_RW | PG_M);
6289 }
6290 if ((prot & VM_PROT_EXECUTE) == 0)
6291 newpde |= pg_nx;
6292 if (newpde != oldpde) {
6293 /*
6294 * As an optimization to future operations on this PDE, clear
6295 * PG_PROMOTED. The impending invalidation will remove any
6296 * lingering 4KB page mappings from the TLB.
6297 */
6298 if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6299 goto retry;
6300 if ((oldpde & PG_G) != 0)
6301 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6302 else
6303 anychanged = TRUE;
6304 }
6305 return (anychanged);
6306 }
6307
6308 /*
6309 * Set the physical protection on the
6310 * specified range of this map as requested.
6311 */
6312 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6313 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6314 {
6315 vm_page_t m;
6316 vm_offset_t va_next;
6317 pml4_entry_t *pml4e;
6318 pdp_entry_t *pdpe;
6319 pd_entry_t ptpaddr, *pde;
6320 pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6321 pt_entry_t obits, pbits;
6322 boolean_t anychanged;
6323
6324 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6325 if (prot == VM_PROT_NONE) {
6326 pmap_remove(pmap, sva, eva);
6327 return;
6328 }
6329
6330 if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6331 (VM_PROT_WRITE|VM_PROT_EXECUTE))
6332 return;
6333
6334 PG_G = pmap_global_bit(pmap);
6335 PG_M = pmap_modified_bit(pmap);
6336 PG_V = pmap_valid_bit(pmap);
6337 PG_RW = pmap_rw_bit(pmap);
6338 anychanged = FALSE;
6339
6340 /*
6341 * Although this function delays and batches the invalidation
6342 * of stale TLB entries, it does not need to call
6343 * pmap_delayed_invl_start() and
6344 * pmap_delayed_invl_finish(), because it does not
6345 * ordinarily destroy mappings. Stale TLB entries from
6346 * protection-only changes need only be invalidated before the
6347 * pmap lock is released, because protection-only changes do
6348 * not destroy PV entries. Even operations that iterate over
6349 * a physical page's PV list of mappings, like
6350 * pmap_remove_write(), acquire the pmap lock for each
6351 * mapping. Consequently, for protection-only changes, the
6352 * pmap lock suffices to synchronize both page table and TLB
6353 * updates.
6354 *
6355 * This function only destroys a mapping if pmap_demote_pde()
6356 * fails. In that case, stale TLB entries are immediately
6357 * invalidated.
6358 */
6359
6360 PMAP_LOCK(pmap);
6361 for (; sva < eva; sva = va_next) {
6362 pml4e = pmap_pml4e(pmap, sva);
6363 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6364 va_next = (sva + NBPML4) & ~PML4MASK;
6365 if (va_next < sva)
6366 va_next = eva;
6367 continue;
6368 }
6369
6370 va_next = (sva + NBPDP) & ~PDPMASK;
6371 if (va_next < sva)
6372 va_next = eva;
6373 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6374 if ((*pdpe & PG_V) == 0)
6375 continue;
6376 if ((*pdpe & PG_PS) != 0) {
6377 KASSERT(va_next <= eva,
6378 ("partial update of non-transparent 1G mapping "
6379 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6380 *pdpe, sva, eva, va_next));
6381 retry_pdpe:
6382 obits = pbits = *pdpe;
6383 MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6384 MPASS(pmap != kernel_pmap); /* XXXKIB */
6385 if ((prot & VM_PROT_WRITE) == 0)
6386 pbits &= ~(PG_RW | PG_M);
6387 if ((prot & VM_PROT_EXECUTE) == 0)
6388 pbits |= pg_nx;
6389
6390 if (pbits != obits) {
6391 if (!atomic_cmpset_long(pdpe, obits, pbits))
6392 /* PG_PS cannot be cleared under us, */
6393 goto retry_pdpe;
6394 anychanged = TRUE;
6395 }
6396 continue;
6397 }
6398
6399 va_next = (sva + NBPDR) & ~PDRMASK;
6400 if (va_next < sva)
6401 va_next = eva;
6402
6403 pde = pmap_pdpe_to_pde(pdpe, sva);
6404 ptpaddr = *pde;
6405
6406 /*
6407 * Weed out invalid mappings.
6408 */
6409 if (ptpaddr == 0)
6410 continue;
6411
6412 /*
6413 * Check for large page.
6414 */
6415 if ((ptpaddr & PG_PS) != 0) {
6416 /*
6417 * Are we protecting the entire large page? If not,
6418 * demote the mapping and fall through.
6419 */
6420 if (sva + NBPDR == va_next && eva >= va_next) {
6421 /*
6422 * The TLB entry for a PG_G mapping is
6423 * invalidated by pmap_protect_pde().
6424 */
6425 if (pmap_protect_pde(pmap, pde, sva, prot))
6426 anychanged = TRUE;
6427 continue;
6428 } else if (!pmap_demote_pde(pmap, pde, sva)) {
6429 /*
6430 * The large page mapping was destroyed.
6431 */
6432 continue;
6433 }
6434 }
6435
6436 if (va_next > eva)
6437 va_next = eva;
6438
6439 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6440 sva += PAGE_SIZE) {
6441 retry:
6442 obits = pbits = *pte;
6443 if ((pbits & PG_V) == 0)
6444 continue;
6445
6446 if ((prot & VM_PROT_WRITE) == 0) {
6447 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6448 (PG_MANAGED | PG_M | PG_RW)) {
6449 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6450 vm_page_dirty(m);
6451 }
6452 pbits &= ~(PG_RW | PG_M);
6453 }
6454 if ((prot & VM_PROT_EXECUTE) == 0)
6455 pbits |= pg_nx;
6456
6457 if (pbits != obits) {
6458 if (!atomic_cmpset_long(pte, obits, pbits))
6459 goto retry;
6460 if (obits & PG_G)
6461 pmap_invalidate_page(pmap, sva);
6462 else
6463 anychanged = TRUE;
6464 }
6465 }
6466 }
6467 if (anychanged)
6468 pmap_invalidate_all(pmap);
6469 PMAP_UNLOCK(pmap);
6470 }
6471
6472 #if VM_NRESERVLEVEL > 0
6473 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6474 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6475 {
6476
6477 if (pmap->pm_type != PT_EPT)
6478 return (false);
6479 return ((pde & EPT_PG_EXECUTE) != 0);
6480 }
6481
6482 /*
6483 * Tries to promote the 512, contiguous 4KB page mappings that are within a
6484 * single page table page (PTP) to a single 2MB page mapping. For promotion
6485 * to occur, two conditions must be met: (1) the 4KB page mappings must map
6486 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6487 * identical characteristics.
6488 */
6489 static void
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6490 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6491 struct rwlock **lockp)
6492 {
6493 pd_entry_t newpde;
6494 pt_entry_t *firstpte, oldpte, pa, *pte;
6495 pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V, PG_PKU_MASK;
6496 vm_page_t mpte;
6497 int PG_PTE_CACHE;
6498
6499 PG_A = pmap_accessed_bit(pmap);
6500 PG_G = pmap_global_bit(pmap);
6501 PG_M = pmap_modified_bit(pmap);
6502 PG_V = pmap_valid_bit(pmap);
6503 PG_RW = pmap_rw_bit(pmap);
6504 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6505 PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
6506
6507 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6508
6509 /*
6510 * Examine the first PTE in the specified PTP. Abort if this PTE is
6511 * either invalid, unused, or does not map the first 4KB physical page
6512 * within a 2MB page.
6513 */
6514 firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6515 setpde:
6516 newpde = *firstpte;
6517 if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V) ||
6518 !pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
6519 newpde))) {
6520 atomic_add_long(&pmap_pde_p_failures, 1);
6521 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6522 " in pmap %p", va, pmap);
6523 return;
6524 }
6525 if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6526 /*
6527 * When PG_M is already clear, PG_RW can be cleared without
6528 * a TLB invalidation.
6529 */
6530 if (!atomic_cmpset_long(firstpte, newpde, newpde & ~PG_RW))
6531 goto setpde;
6532 newpde &= ~PG_RW;
6533 }
6534
6535 /*
6536 * Examine each of the other PTEs in the specified PTP. Abort if this
6537 * PTE maps an unexpected 4KB physical page or does not have identical
6538 * characteristics to the first PTE.
6539 */
6540 pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
6541 for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6542 setpte:
6543 oldpte = *pte;
6544 if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
6545 atomic_add_long(&pmap_pde_p_failures, 1);
6546 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6547 " in pmap %p", va, pmap);
6548 return;
6549 }
6550 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6551 /*
6552 * When PG_M is already clear, PG_RW can be cleared
6553 * without a TLB invalidation.
6554 */
6555 if (!atomic_cmpset_long(pte, oldpte, oldpte & ~PG_RW))
6556 goto setpte;
6557 oldpte &= ~PG_RW;
6558 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6559 " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6560 (va & ~PDRMASK), pmap);
6561 }
6562 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6563 atomic_add_long(&pmap_pde_p_failures, 1);
6564 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6565 " in pmap %p", va, pmap);
6566 return;
6567 }
6568 pa -= PAGE_SIZE;
6569 }
6570
6571 /*
6572 * Save the page table page in its current state until the PDE
6573 * mapping the superpage is demoted by pmap_demote_pde() or
6574 * destroyed by pmap_remove_pde().
6575 */
6576 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6577 KASSERT(mpte >= vm_page_array &&
6578 mpte < &vm_page_array[vm_page_array_size],
6579 ("pmap_promote_pde: page table page is out of range"));
6580 KASSERT(mpte->pindex == pmap_pde_pindex(va),
6581 ("pmap_promote_pde: page table page's pindex is wrong"));
6582 if (pmap_insert_pt_page(pmap, mpte, true)) {
6583 atomic_add_long(&pmap_pde_p_failures, 1);
6584 CTR2(KTR_PMAP,
6585 "pmap_promote_pde: failure for va %#lx in pmap %p", va,
6586 pmap);
6587 return;
6588 }
6589
6590 /*
6591 * Promote the pv entries.
6592 */
6593 if ((newpde & PG_MANAGED) != 0)
6594 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
6595
6596 /*
6597 * Propagate the PAT index to its proper position.
6598 */
6599 newpde = pmap_swap_pat(pmap, newpde);
6600
6601 /*
6602 * Map the superpage.
6603 */
6604 if (workaround_erratum383)
6605 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
6606 else
6607 pde_store(pde, PG_PROMOTED | PG_PS | newpde);
6608
6609 atomic_add_long(&pmap_pde_promotions, 1);
6610 CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
6611 " in pmap %p", va, pmap);
6612 }
6613 #endif /* VM_NRESERVLEVEL > 0 */
6614
6615 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)6616 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
6617 int psind)
6618 {
6619 vm_page_t mp;
6620 pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
6621
6622 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6623 KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
6624 ("psind %d unexpected", psind));
6625 KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
6626 ("unaligned phys address %#lx newpte %#lx psind %d",
6627 newpte & PG_FRAME, newpte, psind));
6628 KASSERT((va & (pagesizes[psind] - 1)) == 0,
6629 ("unaligned va %#lx psind %d", va, psind));
6630 KASSERT(va < VM_MAXUSER_ADDRESS,
6631 ("kernel mode non-transparent superpage")); /* XXXKIB */
6632 KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
6633 ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
6634
6635 PG_V = pmap_valid_bit(pmap);
6636
6637 restart:
6638 if (!pmap_pkru_same(pmap, va, va + pagesizes[psind]))
6639 return (KERN_PROTECTION_FAILURE);
6640 pten = newpte;
6641 if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
6642 pten |= pmap_pkru_get(pmap, va);
6643
6644 if (psind == 2) { /* 1G */
6645 pml4e = pmap_pml4e(pmap, va);
6646 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6647 mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
6648 NULL, va);
6649 if (mp == NULL)
6650 goto allocf;
6651 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6652 pdpe = &pdpe[pmap_pdpe_index(va)];
6653 origpte = *pdpe;
6654 MPASS(origpte == 0);
6655 } else {
6656 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
6657 KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
6658 origpte = *pdpe;
6659 if ((origpte & PG_V) == 0) {
6660 mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
6661 mp->ref_count++;
6662 }
6663 }
6664 *pdpe = pten;
6665 } else /* (psind == 1) */ { /* 2M */
6666 pde = pmap_pde(pmap, va);
6667 if (pde == NULL) {
6668 mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
6669 NULL, va);
6670 if (mp == NULL)
6671 goto allocf;
6672 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6673 pde = &pde[pmap_pde_index(va)];
6674 origpte = *pde;
6675 MPASS(origpte == 0);
6676 } else {
6677 origpte = *pde;
6678 if ((origpte & PG_V) == 0) {
6679 pdpe = pmap_pdpe(pmap, va);
6680 MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
6681 mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
6682 mp->ref_count++;
6683 }
6684 }
6685 *pde = pten;
6686 }
6687 KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
6688 (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
6689 ("va %#lx changing %s phys page origpte %#lx pten %#lx",
6690 va, psind == 2 ? "1G" : "2M", origpte, pten));
6691 if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
6692 pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
6693 else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
6694 pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
6695 if ((origpte & PG_V) == 0)
6696 pmap_resident_count_inc(pmap, pagesizes[psind] / PAGE_SIZE);
6697
6698 return (KERN_SUCCESS);
6699
6700 allocf:
6701 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
6702 return (KERN_RESOURCE_SHORTAGE);
6703 PMAP_UNLOCK(pmap);
6704 vm_wait(NULL);
6705 PMAP_LOCK(pmap);
6706 goto restart;
6707 }
6708
6709 /*
6710 * Insert the given physical page (p) at
6711 * the specified virtual address (v) in the
6712 * target physical map with the protection requested.
6713 *
6714 * If specified, the page will be wired down, meaning
6715 * that the related pte can not be reclaimed.
6716 *
6717 * NB: This is the only routine which MAY NOT lazy-evaluate
6718 * or lose information. That is, this routine must actually
6719 * insert this page into the given map NOW.
6720 *
6721 * When destroying both a page table and PV entry, this function
6722 * performs the TLB invalidation before releasing the PV list
6723 * lock, so we do not need pmap_delayed_invl_page() calls here.
6724 */
6725 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)6726 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
6727 u_int flags, int8_t psind)
6728 {
6729 struct rwlock *lock;
6730 pd_entry_t *pde;
6731 pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
6732 pt_entry_t newpte, origpte;
6733 pv_entry_t pv;
6734 vm_paddr_t opa, pa;
6735 vm_page_t mpte, om;
6736 int rv;
6737 boolean_t nosleep;
6738
6739 PG_A = pmap_accessed_bit(pmap);
6740 PG_G = pmap_global_bit(pmap);
6741 PG_M = pmap_modified_bit(pmap);
6742 PG_V = pmap_valid_bit(pmap);
6743 PG_RW = pmap_rw_bit(pmap);
6744
6745 va = trunc_page(va);
6746 KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
6747 KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
6748 ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
6749 va));
6750 KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
6751 va >= kmi.clean_eva,
6752 ("pmap_enter: managed mapping within the clean submap"));
6753 if ((m->oflags & VPO_UNMANAGED) == 0)
6754 VM_PAGE_OBJECT_BUSY_ASSERT(m);
6755 KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
6756 ("pmap_enter: flags %u has reserved bits set", flags));
6757 pa = VM_PAGE_TO_PHYS(m);
6758 newpte = (pt_entry_t)(pa | PG_A | PG_V);
6759 if ((flags & VM_PROT_WRITE) != 0)
6760 newpte |= PG_M;
6761 if ((prot & VM_PROT_WRITE) != 0)
6762 newpte |= PG_RW;
6763 KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
6764 ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
6765 if ((prot & VM_PROT_EXECUTE) == 0)
6766 newpte |= pg_nx;
6767 if ((flags & PMAP_ENTER_WIRED) != 0)
6768 newpte |= PG_W;
6769 if (va < VM_MAXUSER_ADDRESS)
6770 newpte |= PG_U;
6771 if (pmap == kernel_pmap)
6772 newpte |= PG_G;
6773 newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
6774
6775 /*
6776 * Set modified bit gratuitously for writeable mappings if
6777 * the page is unmanaged. We do not want to take a fault
6778 * to do the dirty bit accounting for these mappings.
6779 */
6780 if ((m->oflags & VPO_UNMANAGED) != 0) {
6781 if ((newpte & PG_RW) != 0)
6782 newpte |= PG_M;
6783 } else
6784 newpte |= PG_MANAGED;
6785
6786 lock = NULL;
6787 PMAP_LOCK(pmap);
6788 if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
6789 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
6790 ("managed largepage va %#lx flags %#x", va, flags));
6791 rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
6792 psind);
6793 goto out;
6794 }
6795 if (psind == 1) {
6796 /* Assert the required virtual and physical alignment. */
6797 KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
6798 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
6799 rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
6800 goto out;
6801 }
6802 mpte = NULL;
6803
6804 /*
6805 * In the case that a page table page is not
6806 * resident, we are creating it here.
6807 */
6808 retry:
6809 pde = pmap_pde(pmap, va);
6810 if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
6811 pmap_demote_pde_locked(pmap, pde, va, &lock))) {
6812 pte = pmap_pde_to_pte(pde, va);
6813 if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
6814 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6815 mpte->ref_count++;
6816 }
6817 } else if (va < VM_MAXUSER_ADDRESS) {
6818 /*
6819 * Here if the pte page isn't mapped, or if it has been
6820 * deallocated.
6821 */
6822 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
6823 mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
6824 nosleep ? NULL : &lock, va);
6825 if (mpte == NULL && nosleep) {
6826 rv = KERN_RESOURCE_SHORTAGE;
6827 goto out;
6828 }
6829 goto retry;
6830 } else
6831 panic("pmap_enter: invalid page directory va=%#lx", va);
6832
6833 origpte = *pte;
6834 pv = NULL;
6835 if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
6836 newpte |= pmap_pkru_get(pmap, va);
6837
6838 /*
6839 * Is the specified virtual address already mapped?
6840 */
6841 if ((origpte & PG_V) != 0) {
6842 /*
6843 * Wiring change, just update stats. We don't worry about
6844 * wiring PT pages as they remain resident as long as there
6845 * are valid mappings in them. Hence, if a user page is wired,
6846 * the PT page will be also.
6847 */
6848 if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
6849 pmap->pm_stats.wired_count++;
6850 else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
6851 pmap->pm_stats.wired_count--;
6852
6853 /*
6854 * Remove the extra PT page reference.
6855 */
6856 if (mpte != NULL) {
6857 mpte->ref_count--;
6858 KASSERT(mpte->ref_count > 0,
6859 ("pmap_enter: missing reference to page table page,"
6860 " va: 0x%lx", va));
6861 }
6862
6863 /*
6864 * Has the physical page changed?
6865 */
6866 opa = origpte & PG_FRAME;
6867 if (opa == pa) {
6868 /*
6869 * No, might be a protection or wiring change.
6870 */
6871 if ((origpte & PG_MANAGED) != 0 &&
6872 (newpte & PG_RW) != 0)
6873 vm_page_aflag_set(m, PGA_WRITEABLE);
6874 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
6875 goto unchanged;
6876 goto validate;
6877 }
6878
6879 /*
6880 * The physical page has changed. Temporarily invalidate
6881 * the mapping. This ensures that all threads sharing the
6882 * pmap keep a consistent view of the mapping, which is
6883 * necessary for the correct handling of COW faults. It
6884 * also permits reuse of the old mapping's PV entry,
6885 * avoiding an allocation.
6886 *
6887 * For consistency, handle unmanaged mappings the same way.
6888 */
6889 origpte = pte_load_clear(pte);
6890 KASSERT((origpte & PG_FRAME) == opa,
6891 ("pmap_enter: unexpected pa update for %#lx", va));
6892 if ((origpte & PG_MANAGED) != 0) {
6893 om = PHYS_TO_VM_PAGE(opa);
6894
6895 /*
6896 * The pmap lock is sufficient to synchronize with
6897 * concurrent calls to pmap_page_test_mappings() and
6898 * pmap_ts_referenced().
6899 */
6900 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6901 vm_page_dirty(om);
6902 if ((origpte & PG_A) != 0) {
6903 pmap_invalidate_page(pmap, va);
6904 vm_page_aflag_set(om, PGA_REFERENCED);
6905 }
6906 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
6907 pv = pmap_pvh_remove(&om->md, pmap, va);
6908 KASSERT(pv != NULL,
6909 ("pmap_enter: no PV entry for %#lx", va));
6910 if ((newpte & PG_MANAGED) == 0)
6911 free_pv_entry(pmap, pv);
6912 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
6913 TAILQ_EMPTY(&om->md.pv_list) &&
6914 ((om->flags & PG_FICTITIOUS) != 0 ||
6915 TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
6916 vm_page_aflag_clear(om, PGA_WRITEABLE);
6917 } else {
6918 /*
6919 * Since this mapping is unmanaged, assume that PG_A
6920 * is set.
6921 */
6922 pmap_invalidate_page(pmap, va);
6923 }
6924 origpte = 0;
6925 } else {
6926 /*
6927 * Increment the counters.
6928 */
6929 if ((newpte & PG_W) != 0)
6930 pmap->pm_stats.wired_count++;
6931 pmap_resident_count_inc(pmap, 1);
6932 }
6933
6934 /*
6935 * Enter on the PV list if part of our managed memory.
6936 */
6937 if ((newpte & PG_MANAGED) != 0) {
6938 if (pv == NULL) {
6939 pv = get_pv_entry(pmap, &lock);
6940 pv->pv_va = va;
6941 }
6942 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
6943 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
6944 m->md.pv_gen++;
6945 if ((newpte & PG_RW) != 0)
6946 vm_page_aflag_set(m, PGA_WRITEABLE);
6947 }
6948
6949 /*
6950 * Update the PTE.
6951 */
6952 if ((origpte & PG_V) != 0) {
6953 validate:
6954 origpte = pte_load_store(pte, newpte);
6955 KASSERT((origpte & PG_FRAME) == pa,
6956 ("pmap_enter: unexpected pa update for %#lx", va));
6957 if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
6958 (PG_M | PG_RW)) {
6959 if ((origpte & PG_MANAGED) != 0)
6960 vm_page_dirty(m);
6961
6962 /*
6963 * Although the PTE may still have PG_RW set, TLB
6964 * invalidation may nonetheless be required because
6965 * the PTE no longer has PG_M set.
6966 */
6967 } else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
6968 /*
6969 * This PTE change does not require TLB invalidation.
6970 */
6971 goto unchanged;
6972 }
6973 if ((origpte & PG_A) != 0)
6974 pmap_invalidate_page(pmap, va);
6975 } else
6976 pte_store(pte, newpte);
6977
6978 unchanged:
6979
6980 #if VM_NRESERVLEVEL > 0
6981 /*
6982 * If both the page table page and the reservation are fully
6983 * populated, then attempt promotion.
6984 */
6985 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
6986 pmap_ps_enabled(pmap) &&
6987 (m->flags & PG_FICTITIOUS) == 0 &&
6988 vm_reserv_level_iffullpop(m) == 0)
6989 pmap_promote_pde(pmap, pde, va, &lock);
6990 #endif
6991
6992 rv = KERN_SUCCESS;
6993 out:
6994 if (lock != NULL)
6995 rw_wunlock(lock);
6996 PMAP_UNLOCK(pmap);
6997 return (rv);
6998 }
6999
7000 /*
7001 * Tries to create a read- and/or execute-only 2MB page mapping. Returns true
7002 * if successful. Returns false if (1) a page table page cannot be allocated
7003 * without sleeping, (2) a mapping already exists at the specified virtual
7004 * address, or (3) a PV entry cannot be allocated without reclaiming another
7005 * PV entry.
7006 */
7007 static bool
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7008 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7009 struct rwlock **lockp)
7010 {
7011 pd_entry_t newpde;
7012 pt_entry_t PG_V;
7013
7014 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7015 PG_V = pmap_valid_bit(pmap);
7016 newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
7017 PG_PS | PG_V;
7018 if ((m->oflags & VPO_UNMANAGED) == 0)
7019 newpde |= PG_MANAGED;
7020 if ((prot & VM_PROT_EXECUTE) == 0)
7021 newpde |= pg_nx;
7022 if (va < VM_MAXUSER_ADDRESS)
7023 newpde |= PG_U;
7024 return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7025 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
7026 KERN_SUCCESS);
7027 }
7028
7029 /*
7030 * Returns true if every page table entry in the specified page table page is
7031 * zero.
7032 */
7033 static bool
pmap_every_pte_zero(vm_paddr_t pa)7034 pmap_every_pte_zero(vm_paddr_t pa)
7035 {
7036 pt_entry_t *pt_end, *pte;
7037
7038 KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7039 pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7040 for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7041 if (*pte != 0)
7042 return (false);
7043 }
7044 return (true);
7045 }
7046
7047 /*
7048 * Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
7049 * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
7050 * otherwise. Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
7051 * a mapping already exists at the specified virtual address. Returns
7052 * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
7053 * page allocation failed. Returns KERN_RESOURCE_SHORTAGE if
7054 * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
7055 *
7056 * The parameter "m" is only used when creating a managed, writeable mapping.
7057 */
7058 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7059 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7060 vm_page_t m, struct rwlock **lockp)
7061 {
7062 struct spglist free;
7063 pd_entry_t oldpde, *pde;
7064 pt_entry_t PG_G, PG_RW, PG_V;
7065 vm_page_t mt, pdpg;
7066
7067 KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
7068 ("pmap_enter_pde: cannot create wired user mapping"));
7069 PG_G = pmap_global_bit(pmap);
7070 PG_RW = pmap_rw_bit(pmap);
7071 KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7072 ("pmap_enter_pde: newpde is missing PG_M"));
7073 PG_V = pmap_valid_bit(pmap);
7074 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7075
7076 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7077 newpde))) {
7078 CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7079 " in pmap %p", va, pmap);
7080 return (KERN_FAILURE);
7081 }
7082 if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7083 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7084 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7085 " in pmap %p", va, pmap);
7086 return (KERN_RESOURCE_SHORTAGE);
7087 }
7088
7089 /*
7090 * If pkru is not same for the whole pde range, return failure
7091 * and let vm_fault() cope. Check after pde allocation, since
7092 * it could sleep.
7093 */
7094 if (!pmap_pkru_same(pmap, va, va + NBPDR)) {
7095 pmap_abort_ptp(pmap, va, pdpg);
7096 return (KERN_FAILURE);
7097 }
7098 if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86) {
7099 newpde &= ~X86_PG_PKU_MASK;
7100 newpde |= pmap_pkru_get(pmap, va);
7101 }
7102
7103 /*
7104 * If there are existing mappings, either abort or remove them.
7105 */
7106 oldpde = *pde;
7107 if ((oldpde & PG_V) != 0) {
7108 KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7109 ("pmap_enter_pde: pdpg's reference count is too low"));
7110 if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (va <
7111 VM_MAXUSER_ADDRESS || (oldpde & PG_PS) != 0 ||
7112 !pmap_every_pte_zero(oldpde & PG_FRAME))) {
7113 if (pdpg != NULL)
7114 pdpg->ref_count--;
7115 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7116 " in pmap %p", va, pmap);
7117 return (KERN_FAILURE);
7118 }
7119 /* Break the existing mapping(s). */
7120 SLIST_INIT(&free);
7121 if ((oldpde & PG_PS) != 0) {
7122 /*
7123 * The reference to the PD page that was acquired by
7124 * pmap_alloc_pde() ensures that it won't be freed.
7125 * However, if the PDE resulted from a promotion, then
7126 * a reserved PT page could be freed.
7127 */
7128 (void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7129 if ((oldpde & PG_G) == 0)
7130 pmap_invalidate_pde_page(pmap, va, oldpde);
7131 } else {
7132 pmap_delayed_invl_start();
7133 if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7134 lockp))
7135 pmap_invalidate_all(pmap);
7136 pmap_delayed_invl_finish();
7137 }
7138 if (va < VM_MAXUSER_ADDRESS) {
7139 vm_page_free_pages_toq(&free, true);
7140 KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7141 pde));
7142 } else {
7143 KASSERT(SLIST_EMPTY(&free),
7144 ("pmap_enter_pde: freed kernel page table page"));
7145
7146 /*
7147 * Both pmap_remove_pde() and pmap_remove_ptes() will
7148 * leave the kernel page table page zero filled.
7149 */
7150 mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7151 if (pmap_insert_pt_page(pmap, mt, false))
7152 panic("pmap_enter_pde: trie insert failed");
7153 }
7154 }
7155
7156 if ((newpde & PG_MANAGED) != 0) {
7157 /*
7158 * Abort this mapping if its PV entry could not be created.
7159 */
7160 if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7161 if (pdpg != NULL)
7162 pmap_abort_ptp(pmap, va, pdpg);
7163 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7164 " in pmap %p", va, pmap);
7165 return (KERN_RESOURCE_SHORTAGE);
7166 }
7167 if ((newpde & PG_RW) != 0) {
7168 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7169 vm_page_aflag_set(mt, PGA_WRITEABLE);
7170 }
7171 }
7172
7173 /*
7174 * Increment counters.
7175 */
7176 if ((newpde & PG_W) != 0)
7177 pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7178 pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
7179
7180 /*
7181 * Map the superpage. (This is not a promoted mapping; there will not
7182 * be any lingering 4KB page mappings in the TLB.)
7183 */
7184 pde_store(pde, newpde);
7185
7186 atomic_add_long(&pmap_pde_mappings, 1);
7187 CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7188 va, pmap);
7189 return (KERN_SUCCESS);
7190 }
7191
7192 /*
7193 * Maps a sequence of resident pages belonging to the same object.
7194 * The sequence begins with the given page m_start. This page is
7195 * mapped at the given virtual address start. Each subsequent page is
7196 * mapped at a virtual address that is offset from start by the same
7197 * amount as the page is offset from m_start within the object. The
7198 * last page in the sequence is the page with the largest offset from
7199 * m_start that can be mapped at a virtual address less than the given
7200 * virtual address end. Not every virtual page between start and end
7201 * is mapped; only those for which a resident page exists with the
7202 * corresponding offset from m_start are mapped.
7203 */
7204 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7205 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7206 vm_page_t m_start, vm_prot_t prot)
7207 {
7208 struct rwlock *lock;
7209 vm_offset_t va;
7210 vm_page_t m, mpte;
7211 vm_pindex_t diff, psize;
7212
7213 VM_OBJECT_ASSERT_LOCKED(m_start->object);
7214
7215 psize = atop(end - start);
7216 mpte = NULL;
7217 m = m_start;
7218 lock = NULL;
7219 PMAP_LOCK(pmap);
7220 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7221 va = start + ptoa(diff);
7222 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7223 m->psind == 1 && pmap_ps_enabled(pmap) &&
7224 pmap_allow_2m_x_page(pmap, (prot & VM_PROT_EXECUTE) != 0) &&
7225 pmap_enter_2mpage(pmap, va, m, prot, &lock))
7226 m = &m[NBPDR / PAGE_SIZE - 1];
7227 else
7228 mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7229 mpte, &lock);
7230 m = TAILQ_NEXT(m, listq);
7231 }
7232 if (lock != NULL)
7233 rw_wunlock(lock);
7234 PMAP_UNLOCK(pmap);
7235 }
7236
7237 /*
7238 * this code makes some *MAJOR* assumptions:
7239 * 1. Current pmap & pmap exists.
7240 * 2. Not wired.
7241 * 3. Read access.
7242 * 4. No page table pages.
7243 * but is *MUCH* faster than pmap_enter...
7244 */
7245
7246 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7247 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7248 {
7249 struct rwlock *lock;
7250
7251 lock = NULL;
7252 PMAP_LOCK(pmap);
7253 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7254 if (lock != NULL)
7255 rw_wunlock(lock);
7256 PMAP_UNLOCK(pmap);
7257 }
7258
7259 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7260 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7261 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7262 {
7263 pt_entry_t newpte, *pte, PG_V;
7264
7265 KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
7266 (m->oflags & VPO_UNMANAGED) != 0,
7267 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7268 PG_V = pmap_valid_bit(pmap);
7269 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7270
7271 /*
7272 * In the case that a page table page is not
7273 * resident, we are creating it here.
7274 */
7275 if (va < VM_MAXUSER_ADDRESS) {
7276 vm_pindex_t ptepindex;
7277 pd_entry_t *ptepa;
7278
7279 /*
7280 * Calculate pagetable page index
7281 */
7282 ptepindex = pmap_pde_pindex(va);
7283 if (mpte && (mpte->pindex == ptepindex)) {
7284 mpte->ref_count++;
7285 } else {
7286 /*
7287 * Get the page directory entry
7288 */
7289 ptepa = pmap_pde(pmap, va);
7290
7291 /*
7292 * If the page table page is mapped, we just increment
7293 * the hold count, and activate it. Otherwise, we
7294 * attempt to allocate a page table page. If this
7295 * attempt fails, we don't retry. Instead, we give up.
7296 */
7297 if (ptepa && (*ptepa & PG_V) != 0) {
7298 if (*ptepa & PG_PS)
7299 return (NULL);
7300 mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
7301 mpte->ref_count++;
7302 } else {
7303 /*
7304 * Pass NULL instead of the PV list lock
7305 * pointer, because we don't intend to sleep.
7306 */
7307 mpte = pmap_allocpte_alloc(pmap, ptepindex,
7308 NULL, va);
7309 if (mpte == NULL)
7310 return (mpte);
7311 }
7312 }
7313 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7314 pte = &pte[pmap_pte_index(va)];
7315 } else {
7316 mpte = NULL;
7317 pte = vtopte(va);
7318 }
7319 if (*pte) {
7320 if (mpte != NULL)
7321 mpte->ref_count--;
7322 return (NULL);
7323 }
7324
7325 /*
7326 * Enter on the PV list if part of our managed memory.
7327 */
7328 if ((m->oflags & VPO_UNMANAGED) == 0 &&
7329 !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7330 if (mpte != NULL)
7331 pmap_abort_ptp(pmap, va, mpte);
7332 return (NULL);
7333 }
7334
7335 /*
7336 * Increment counters
7337 */
7338 pmap_resident_count_inc(pmap, 1);
7339
7340 newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7341 pmap_cache_bits(pmap, m->md.pat_mode, 0);
7342 if ((m->oflags & VPO_UNMANAGED) == 0)
7343 newpte |= PG_MANAGED;
7344 if ((prot & VM_PROT_EXECUTE) == 0)
7345 newpte |= pg_nx;
7346 if (va < VM_MAXUSER_ADDRESS)
7347 newpte |= PG_U | pmap_pkru_get(pmap, va);
7348 pte_store(pte, newpte);
7349 return (mpte);
7350 }
7351
7352 /*
7353 * Make a temporary mapping for a physical address. This is only intended
7354 * to be used for panic dumps.
7355 */
7356 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7357 pmap_kenter_temporary(vm_paddr_t pa, int i)
7358 {
7359 vm_offset_t va;
7360
7361 va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7362 pmap_kenter(va, pa);
7363 invlpg(va);
7364 return ((void *)crashdumpmap);
7365 }
7366
7367 /*
7368 * This code maps large physical mmap regions into the
7369 * processor address space. Note that some shortcuts
7370 * are taken, but the code works.
7371 */
7372 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7373 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7374 vm_pindex_t pindex, vm_size_t size)
7375 {
7376 pd_entry_t *pde;
7377 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7378 vm_paddr_t pa, ptepa;
7379 vm_page_t p, pdpg;
7380 int pat_mode;
7381
7382 PG_A = pmap_accessed_bit(pmap);
7383 PG_M = pmap_modified_bit(pmap);
7384 PG_V = pmap_valid_bit(pmap);
7385 PG_RW = pmap_rw_bit(pmap);
7386
7387 VM_OBJECT_ASSERT_WLOCKED(object);
7388 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7389 ("pmap_object_init_pt: non-device object"));
7390 if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7391 if (!pmap_ps_enabled(pmap))
7392 return;
7393 if (!vm_object_populate(object, pindex, pindex + atop(size)))
7394 return;
7395 p = vm_page_lookup(object, pindex);
7396 KASSERT(p->valid == VM_PAGE_BITS_ALL,
7397 ("pmap_object_init_pt: invalid page %p", p));
7398 pat_mode = p->md.pat_mode;
7399
7400 /*
7401 * Abort the mapping if the first page is not physically
7402 * aligned to a 2MB page boundary.
7403 */
7404 ptepa = VM_PAGE_TO_PHYS(p);
7405 if (ptepa & (NBPDR - 1))
7406 return;
7407
7408 /*
7409 * Skip the first page. Abort the mapping if the rest of
7410 * the pages are not physically contiguous or have differing
7411 * memory attributes.
7412 */
7413 p = TAILQ_NEXT(p, listq);
7414 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7415 pa += PAGE_SIZE) {
7416 KASSERT(p->valid == VM_PAGE_BITS_ALL,
7417 ("pmap_object_init_pt: invalid page %p", p));
7418 if (pa != VM_PAGE_TO_PHYS(p) ||
7419 pat_mode != p->md.pat_mode)
7420 return;
7421 p = TAILQ_NEXT(p, listq);
7422 }
7423
7424 /*
7425 * Map using 2MB pages. Since "ptepa" is 2M aligned and
7426 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7427 * will not affect the termination of this loop.
7428 */
7429 PMAP_LOCK(pmap);
7430 for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
7431 pa < ptepa + size; pa += NBPDR) {
7432 pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7433 if (pde == NULL) {
7434 /*
7435 * The creation of mappings below is only an
7436 * optimization. If a page directory page
7437 * cannot be allocated without blocking,
7438 * continue on to the next mapping rather than
7439 * blocking.
7440 */
7441 addr += NBPDR;
7442 continue;
7443 }
7444 if ((*pde & PG_V) == 0) {
7445 pde_store(pde, pa | PG_PS | PG_M | PG_A |
7446 PG_U | PG_RW | PG_V);
7447 pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
7448 atomic_add_long(&pmap_pde_mappings, 1);
7449 } else {
7450 /* Continue on if the PDE is already valid. */
7451 pdpg->ref_count--;
7452 KASSERT(pdpg->ref_count > 0,
7453 ("pmap_object_init_pt: missing reference "
7454 "to page directory page, va: 0x%lx", addr));
7455 }
7456 addr += NBPDR;
7457 }
7458 PMAP_UNLOCK(pmap);
7459 }
7460 }
7461
7462 /*
7463 * Clear the wired attribute from the mappings for the specified range of
7464 * addresses in the given pmap. Every valid mapping within that range
7465 * must have the wired attribute set. In contrast, invalid mappings
7466 * cannot have the wired attribute set, so they are ignored.
7467 *
7468 * The wired attribute of the page table entry is not a hardware
7469 * feature, so there is no need to invalidate any TLB entries.
7470 * Since pmap_demote_pde() for the wired entry must never fail,
7471 * pmap_delayed_invl_start()/finish() calls around the
7472 * function are not needed.
7473 */
7474 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7475 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7476 {
7477 vm_offset_t va_next;
7478 pml4_entry_t *pml4e;
7479 pdp_entry_t *pdpe;
7480 pd_entry_t *pde;
7481 pt_entry_t *pte, PG_V, PG_G;
7482
7483 PG_V = pmap_valid_bit(pmap);
7484 PG_G = pmap_global_bit(pmap);
7485 PMAP_LOCK(pmap);
7486 for (; sva < eva; sva = va_next) {
7487 pml4e = pmap_pml4e(pmap, sva);
7488 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7489 va_next = (sva + NBPML4) & ~PML4MASK;
7490 if (va_next < sva)
7491 va_next = eva;
7492 continue;
7493 }
7494
7495 va_next = (sva + NBPDP) & ~PDPMASK;
7496 if (va_next < sva)
7497 va_next = eva;
7498 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7499 if ((*pdpe & PG_V) == 0)
7500 continue;
7501 if ((*pdpe & PG_PS) != 0) {
7502 KASSERT(va_next <= eva,
7503 ("partial update of non-transparent 1G mapping "
7504 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7505 *pdpe, sva, eva, va_next));
7506 MPASS(pmap != kernel_pmap); /* XXXKIB */
7507 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7508 atomic_clear_long(pdpe, PG_W);
7509 pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7510 continue;
7511 }
7512
7513 va_next = (sva + NBPDR) & ~PDRMASK;
7514 if (va_next < sva)
7515 va_next = eva;
7516 pde = pmap_pdpe_to_pde(pdpe, sva);
7517 if ((*pde & PG_V) == 0)
7518 continue;
7519 if ((*pde & PG_PS) != 0) {
7520 if ((*pde & PG_W) == 0)
7521 panic("pmap_unwire: pde %#jx is missing PG_W",
7522 (uintmax_t)*pde);
7523
7524 /*
7525 * Are we unwiring the entire large page? If not,
7526 * demote the mapping and fall through.
7527 */
7528 if (sva + NBPDR == va_next && eva >= va_next) {
7529 atomic_clear_long(pde, PG_W);
7530 pmap->pm_stats.wired_count -= NBPDR /
7531 PAGE_SIZE;
7532 continue;
7533 } else if (!pmap_demote_pde(pmap, pde, sva))
7534 panic("pmap_unwire: demotion failed");
7535 }
7536 if (va_next > eva)
7537 va_next = eva;
7538 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
7539 sva += PAGE_SIZE) {
7540 if ((*pte & PG_V) == 0)
7541 continue;
7542 if ((*pte & PG_W) == 0)
7543 panic("pmap_unwire: pte %#jx is missing PG_W",
7544 (uintmax_t)*pte);
7545
7546 /*
7547 * PG_W must be cleared atomically. Although the pmap
7548 * lock synchronizes access to PG_W, another processor
7549 * could be setting PG_M and/or PG_A concurrently.
7550 */
7551 atomic_clear_long(pte, PG_W);
7552 pmap->pm_stats.wired_count--;
7553 }
7554 }
7555 PMAP_UNLOCK(pmap);
7556 }
7557
7558 /*
7559 * Copy the range specified by src_addr/len
7560 * from the source map to the range dst_addr/len
7561 * in the destination map.
7562 *
7563 * This routine is only advisory and need not do anything.
7564 */
7565 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)7566 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
7567 vm_offset_t src_addr)
7568 {
7569 struct rwlock *lock;
7570 pml4_entry_t *pml4e;
7571 pdp_entry_t *pdpe;
7572 pd_entry_t *pde, srcptepaddr;
7573 pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
7574 vm_offset_t addr, end_addr, va_next;
7575 vm_page_t dst_pdpg, dstmpte, srcmpte;
7576
7577 if (dst_addr != src_addr)
7578 return;
7579
7580 if (dst_pmap->pm_type != src_pmap->pm_type)
7581 return;
7582
7583 /*
7584 * EPT page table entries that require emulation of A/D bits are
7585 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
7586 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
7587 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
7588 * implementations flag an EPT misconfiguration for exec-only
7589 * mappings we skip this function entirely for emulated pmaps.
7590 */
7591 if (pmap_emulate_ad_bits(dst_pmap))
7592 return;
7593
7594 end_addr = src_addr + len;
7595 lock = NULL;
7596 if (dst_pmap < src_pmap) {
7597 PMAP_LOCK(dst_pmap);
7598 PMAP_LOCK(src_pmap);
7599 } else {
7600 PMAP_LOCK(src_pmap);
7601 PMAP_LOCK(dst_pmap);
7602 }
7603
7604 PG_A = pmap_accessed_bit(dst_pmap);
7605 PG_M = pmap_modified_bit(dst_pmap);
7606 PG_V = pmap_valid_bit(dst_pmap);
7607
7608 for (addr = src_addr; addr < end_addr; addr = va_next) {
7609 KASSERT(addr < UPT_MIN_ADDRESS,
7610 ("pmap_copy: invalid to pmap_copy page tables"));
7611
7612 pml4e = pmap_pml4e(src_pmap, addr);
7613 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7614 va_next = (addr + NBPML4) & ~PML4MASK;
7615 if (va_next < addr)
7616 va_next = end_addr;
7617 continue;
7618 }
7619
7620 va_next = (addr + NBPDP) & ~PDPMASK;
7621 if (va_next < addr)
7622 va_next = end_addr;
7623 pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
7624 if ((*pdpe & PG_V) == 0)
7625 continue;
7626 if ((*pdpe & PG_PS) != 0) {
7627 KASSERT(va_next <= end_addr,
7628 ("partial update of non-transparent 1G mapping "
7629 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7630 *pdpe, addr, end_addr, va_next));
7631 MPASS((addr & PDPMASK) == 0);
7632 MPASS((*pdpe & PG_MANAGED) == 0);
7633 srcptepaddr = *pdpe;
7634 pdpe = pmap_pdpe(dst_pmap, addr);
7635 if (pdpe == NULL) {
7636 if (pmap_allocpte_alloc(dst_pmap,
7637 pmap_pml4e_pindex(addr), NULL, addr) ==
7638 NULL)
7639 break;
7640 pdpe = pmap_pdpe(dst_pmap, addr);
7641 } else {
7642 pml4e = pmap_pml4e(dst_pmap, addr);
7643 dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7644 dst_pdpg->ref_count++;
7645 }
7646 KASSERT(*pdpe == 0,
7647 ("1G mapping present in dst pmap "
7648 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7649 *pdpe, addr, end_addr, va_next));
7650 *pdpe = srcptepaddr & ~PG_W;
7651 pmap_resident_count_inc(dst_pmap, NBPDP / PAGE_SIZE);
7652 continue;
7653 }
7654
7655 va_next = (addr + NBPDR) & ~PDRMASK;
7656 if (va_next < addr)
7657 va_next = end_addr;
7658
7659 pde = pmap_pdpe_to_pde(pdpe, addr);
7660 srcptepaddr = *pde;
7661 if (srcptepaddr == 0)
7662 continue;
7663
7664 if (srcptepaddr & PG_PS) {
7665 if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
7666 continue;
7667 pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
7668 if (pde == NULL)
7669 break;
7670 if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
7671 pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
7672 PMAP_ENTER_NORECLAIM, &lock))) {
7673 *pde = srcptepaddr & ~PG_W;
7674 pmap_resident_count_inc(dst_pmap, NBPDR /
7675 PAGE_SIZE);
7676 atomic_add_long(&pmap_pde_mappings, 1);
7677 } else
7678 pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
7679 continue;
7680 }
7681
7682 srcptepaddr &= PG_FRAME;
7683 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
7684 KASSERT(srcmpte->ref_count > 0,
7685 ("pmap_copy: source page table page is unused"));
7686
7687 if (va_next > end_addr)
7688 va_next = end_addr;
7689
7690 src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
7691 src_pte = &src_pte[pmap_pte_index(addr)];
7692 dstmpte = NULL;
7693 for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
7694 ptetemp = *src_pte;
7695
7696 /*
7697 * We only virtual copy managed pages.
7698 */
7699 if ((ptetemp & PG_MANAGED) == 0)
7700 continue;
7701
7702 if (dstmpte != NULL) {
7703 KASSERT(dstmpte->pindex ==
7704 pmap_pde_pindex(addr),
7705 ("dstmpte pindex/addr mismatch"));
7706 dstmpte->ref_count++;
7707 } else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
7708 NULL)) == NULL)
7709 goto out;
7710 dst_pte = (pt_entry_t *)
7711 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
7712 dst_pte = &dst_pte[pmap_pte_index(addr)];
7713 if (*dst_pte == 0 &&
7714 pmap_try_insert_pv_entry(dst_pmap, addr,
7715 PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
7716 /*
7717 * Clear the wired, modified, and accessed
7718 * (referenced) bits during the copy.
7719 */
7720 *dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
7721 pmap_resident_count_inc(dst_pmap, 1);
7722 } else {
7723 pmap_abort_ptp(dst_pmap, addr, dstmpte);
7724 goto out;
7725 }
7726 /* Have we copied all of the valid mappings? */
7727 if (dstmpte->ref_count >= srcmpte->ref_count)
7728 break;
7729 }
7730 }
7731 out:
7732 if (lock != NULL)
7733 rw_wunlock(lock);
7734 PMAP_UNLOCK(src_pmap);
7735 PMAP_UNLOCK(dst_pmap);
7736 }
7737
7738 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)7739 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
7740 {
7741 int error;
7742
7743 if (dst_pmap->pm_type != src_pmap->pm_type ||
7744 dst_pmap->pm_type != PT_X86 ||
7745 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
7746 return (0);
7747 for (;;) {
7748 if (dst_pmap < src_pmap) {
7749 PMAP_LOCK(dst_pmap);
7750 PMAP_LOCK(src_pmap);
7751 } else {
7752 PMAP_LOCK(src_pmap);
7753 PMAP_LOCK(dst_pmap);
7754 }
7755 error = pmap_pkru_copy(dst_pmap, src_pmap);
7756 /* Clean up partial copy on failure due to no memory. */
7757 if (error == ENOMEM)
7758 pmap_pkru_deassign_all(dst_pmap);
7759 PMAP_UNLOCK(src_pmap);
7760 PMAP_UNLOCK(dst_pmap);
7761 if (error != ENOMEM)
7762 break;
7763 vm_wait(NULL);
7764 }
7765 return (error);
7766 }
7767
7768 /*
7769 * Zero the specified hardware page.
7770 */
7771 void
pmap_zero_page(vm_page_t m)7772 pmap_zero_page(vm_page_t m)
7773 {
7774 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
7775
7776 pagezero((void *)va);
7777 }
7778
7779 /*
7780 * Zero an an area within a single hardware page. off and size must not
7781 * cover an area beyond a single hardware page.
7782 */
7783 void
pmap_zero_page_area(vm_page_t m,int off,int size)7784 pmap_zero_page_area(vm_page_t m, int off, int size)
7785 {
7786 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
7787
7788 if (off == 0 && size == PAGE_SIZE)
7789 pagezero((void *)va);
7790 else
7791 bzero((char *)va + off, size);
7792 }
7793
7794 /*
7795 * Copy 1 specified hardware page to another.
7796 */
7797 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)7798 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
7799 {
7800 vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
7801 vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
7802
7803 pagecopy((void *)src, (void *)dst);
7804 }
7805
7806 int unmapped_buf_allowed = 1;
7807
7808 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)7809 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
7810 vm_offset_t b_offset, int xfersize)
7811 {
7812 void *a_cp, *b_cp;
7813 vm_page_t pages[2];
7814 vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
7815 int cnt;
7816 boolean_t mapped;
7817
7818 while (xfersize > 0) {
7819 a_pg_offset = a_offset & PAGE_MASK;
7820 pages[0] = ma[a_offset >> PAGE_SHIFT];
7821 b_pg_offset = b_offset & PAGE_MASK;
7822 pages[1] = mb[b_offset >> PAGE_SHIFT];
7823 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
7824 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
7825 mapped = pmap_map_io_transient(pages, vaddr, 2, FALSE);
7826 a_cp = (char *)vaddr[0] + a_pg_offset;
7827 b_cp = (char *)vaddr[1] + b_pg_offset;
7828 bcopy(a_cp, b_cp, cnt);
7829 if (__predict_false(mapped))
7830 pmap_unmap_io_transient(pages, vaddr, 2, FALSE);
7831 a_offset += cnt;
7832 b_offset += cnt;
7833 xfersize -= cnt;
7834 }
7835 }
7836
7837 /*
7838 * Returns true if the pmap's pv is one of the first
7839 * 16 pvs linked to from this page. This count may
7840 * be changed upwards or downwards in the future; it
7841 * is only necessary that true be returned for a small
7842 * subset of pmaps for proper page aging.
7843 */
7844 boolean_t
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)7845 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
7846 {
7847 struct md_page *pvh;
7848 struct rwlock *lock;
7849 pv_entry_t pv;
7850 int loops = 0;
7851 boolean_t rv;
7852
7853 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7854 ("pmap_page_exists_quick: page %p is not managed", m));
7855 rv = FALSE;
7856 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7857 rw_rlock(lock);
7858 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7859 if (PV_PMAP(pv) == pmap) {
7860 rv = TRUE;
7861 break;
7862 }
7863 loops++;
7864 if (loops >= 16)
7865 break;
7866 }
7867 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
7868 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
7869 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
7870 if (PV_PMAP(pv) == pmap) {
7871 rv = TRUE;
7872 break;
7873 }
7874 loops++;
7875 if (loops >= 16)
7876 break;
7877 }
7878 }
7879 rw_runlock(lock);
7880 return (rv);
7881 }
7882
7883 /*
7884 * pmap_page_wired_mappings:
7885 *
7886 * Return the number of managed mappings to the given physical page
7887 * that are wired.
7888 */
7889 int
pmap_page_wired_mappings(vm_page_t m)7890 pmap_page_wired_mappings(vm_page_t m)
7891 {
7892 struct rwlock *lock;
7893 struct md_page *pvh;
7894 pmap_t pmap;
7895 pt_entry_t *pte;
7896 pv_entry_t pv;
7897 int count, md_gen, pvh_gen;
7898
7899 if ((m->oflags & VPO_UNMANAGED) != 0)
7900 return (0);
7901 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7902 rw_rlock(lock);
7903 restart:
7904 count = 0;
7905 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7906 pmap = PV_PMAP(pv);
7907 if (!PMAP_TRYLOCK(pmap)) {
7908 md_gen = m->md.pv_gen;
7909 rw_runlock(lock);
7910 PMAP_LOCK(pmap);
7911 rw_rlock(lock);
7912 if (md_gen != m->md.pv_gen) {
7913 PMAP_UNLOCK(pmap);
7914 goto restart;
7915 }
7916 }
7917 pte = pmap_pte(pmap, pv->pv_va);
7918 if ((*pte & PG_W) != 0)
7919 count++;
7920 PMAP_UNLOCK(pmap);
7921 }
7922 if ((m->flags & PG_FICTITIOUS) == 0) {
7923 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
7924 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
7925 pmap = PV_PMAP(pv);
7926 if (!PMAP_TRYLOCK(pmap)) {
7927 md_gen = m->md.pv_gen;
7928 pvh_gen = pvh->pv_gen;
7929 rw_runlock(lock);
7930 PMAP_LOCK(pmap);
7931 rw_rlock(lock);
7932 if (md_gen != m->md.pv_gen ||
7933 pvh_gen != pvh->pv_gen) {
7934 PMAP_UNLOCK(pmap);
7935 goto restart;
7936 }
7937 }
7938 pte = pmap_pde(pmap, pv->pv_va);
7939 if ((*pte & PG_W) != 0)
7940 count++;
7941 PMAP_UNLOCK(pmap);
7942 }
7943 }
7944 rw_runlock(lock);
7945 return (count);
7946 }
7947
7948 /*
7949 * Returns TRUE if the given page is mapped individually or as part of
7950 * a 2mpage. Otherwise, returns FALSE.
7951 */
7952 boolean_t
pmap_page_is_mapped(vm_page_t m)7953 pmap_page_is_mapped(vm_page_t m)
7954 {
7955 struct rwlock *lock;
7956 boolean_t rv;
7957
7958 if ((m->oflags & VPO_UNMANAGED) != 0)
7959 return (FALSE);
7960 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7961 rw_rlock(lock);
7962 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
7963 ((m->flags & PG_FICTITIOUS) == 0 &&
7964 !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
7965 rw_runlock(lock);
7966 return (rv);
7967 }
7968
7969 /*
7970 * Destroy all managed, non-wired mappings in the given user-space
7971 * pmap. This pmap cannot be active on any processor besides the
7972 * caller.
7973 *
7974 * This function cannot be applied to the kernel pmap. Moreover, it
7975 * is not intended for general use. It is only to be used during
7976 * process termination. Consequently, it can be implemented in ways
7977 * that make it faster than pmap_remove(). First, it can more quickly
7978 * destroy mappings by iterating over the pmap's collection of PV
7979 * entries, rather than searching the page table. Second, it doesn't
7980 * have to test and clear the page table entries atomically, because
7981 * no processor is currently accessing the user address space. In
7982 * particular, a page table entry's dirty bit won't change state once
7983 * this function starts.
7984 *
7985 * Although this function destroys all of the pmap's managed,
7986 * non-wired mappings, it can delay and batch the invalidation of TLB
7987 * entries without calling pmap_delayed_invl_start() and
7988 * pmap_delayed_invl_finish(). Because the pmap is not active on
7989 * any other processor, none of these TLB entries will ever be used
7990 * before their eventual invalidation. Consequently, there is no need
7991 * for either pmap_remove_all() or pmap_remove_write() to wait for
7992 * that eventual TLB invalidation.
7993 */
7994 void
pmap_remove_pages(pmap_t pmap)7995 pmap_remove_pages(pmap_t pmap)
7996 {
7997 pd_entry_t ptepde;
7998 pt_entry_t *pte, tpte;
7999 pt_entry_t PG_M, PG_RW, PG_V;
8000 struct spglist free;
8001 struct pv_chunklist free_chunks[PMAP_MEMDOM];
8002 vm_page_t m, mpte, mt;
8003 pv_entry_t pv;
8004 struct md_page *pvh;
8005 struct pv_chunk *pc, *npc;
8006 struct rwlock *lock;
8007 int64_t bit;
8008 uint64_t inuse, bitmask;
8009 int allfree, field, freed, i, idx;
8010 boolean_t superpage;
8011 vm_paddr_t pa;
8012
8013 /*
8014 * Assert that the given pmap is only active on the current
8015 * CPU. Unfortunately, we cannot block another CPU from
8016 * activating the pmap while this function is executing.
8017 */
8018 KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8019 #ifdef INVARIANTS
8020 {
8021 cpuset_t other_cpus;
8022
8023 other_cpus = all_cpus;
8024 critical_enter();
8025 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8026 CPU_AND(&other_cpus, &pmap->pm_active);
8027 critical_exit();
8028 KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8029 }
8030 #endif
8031
8032 lock = NULL;
8033 PG_M = pmap_modified_bit(pmap);
8034 PG_V = pmap_valid_bit(pmap);
8035 PG_RW = pmap_rw_bit(pmap);
8036
8037 for (i = 0; i < PMAP_MEMDOM; i++)
8038 TAILQ_INIT(&free_chunks[i]);
8039 SLIST_INIT(&free);
8040 PMAP_LOCK(pmap);
8041 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8042 allfree = 1;
8043 freed = 0;
8044 for (field = 0; field < _NPCM; field++) {
8045 inuse = ~pc->pc_map[field] & pc_freemask[field];
8046 while (inuse != 0) {
8047 bit = bsfq(inuse);
8048 bitmask = 1UL << bit;
8049 idx = field * 64 + bit;
8050 pv = &pc->pc_pventry[idx];
8051 inuse &= ~bitmask;
8052
8053 pte = pmap_pdpe(pmap, pv->pv_va);
8054 ptepde = *pte;
8055 pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8056 tpte = *pte;
8057 if ((tpte & (PG_PS | PG_V)) == PG_V) {
8058 superpage = FALSE;
8059 ptepde = tpte;
8060 pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8061 PG_FRAME);
8062 pte = &pte[pmap_pte_index(pv->pv_va)];
8063 tpte = *pte;
8064 } else {
8065 /*
8066 * Keep track whether 'tpte' is a
8067 * superpage explicitly instead of
8068 * relying on PG_PS being set.
8069 *
8070 * This is because PG_PS is numerically
8071 * identical to PG_PTE_PAT and thus a
8072 * regular page could be mistaken for
8073 * a superpage.
8074 */
8075 superpage = TRUE;
8076 }
8077
8078 if ((tpte & PG_V) == 0) {
8079 panic("bad pte va %lx pte %lx",
8080 pv->pv_va, tpte);
8081 }
8082
8083 /*
8084 * We cannot remove wired pages from a process' mapping at this time
8085 */
8086 if (tpte & PG_W) {
8087 allfree = 0;
8088 continue;
8089 }
8090
8091 if (superpage)
8092 pa = tpte & PG_PS_FRAME;
8093 else
8094 pa = tpte & PG_FRAME;
8095
8096 m = PHYS_TO_VM_PAGE(pa);
8097 KASSERT(m->phys_addr == pa,
8098 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8099 m, (uintmax_t)m->phys_addr,
8100 (uintmax_t)tpte));
8101
8102 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8103 m < &vm_page_array[vm_page_array_size],
8104 ("pmap_remove_pages: bad tpte %#jx",
8105 (uintmax_t)tpte));
8106
8107 pte_clear(pte);
8108
8109 /*
8110 * Update the vm_page_t clean/reference bits.
8111 */
8112 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8113 if (superpage) {
8114 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8115 vm_page_dirty(mt);
8116 } else
8117 vm_page_dirty(m);
8118 }
8119
8120 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8121
8122 /* Mark free */
8123 pc->pc_map[field] |= bitmask;
8124 if (superpage) {
8125 pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
8126 pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8127 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8128 pvh->pv_gen++;
8129 if (TAILQ_EMPTY(&pvh->pv_list)) {
8130 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8131 if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8132 TAILQ_EMPTY(&mt->md.pv_list))
8133 vm_page_aflag_clear(mt, PGA_WRITEABLE);
8134 }
8135 mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8136 if (mpte != NULL) {
8137 KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
8138 ("pmap_remove_pages: pte page not promoted"));
8139 pmap_resident_count_dec(pmap, 1);
8140 KASSERT(mpte->ref_count == NPTEPG,
8141 ("pmap_remove_pages: pte page reference count error"));
8142 mpte->ref_count = 0;
8143 pmap_add_delayed_free_list(mpte, &free, FALSE);
8144 }
8145 } else {
8146 pmap_resident_count_dec(pmap, 1);
8147 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8148 m->md.pv_gen++;
8149 if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8150 TAILQ_EMPTY(&m->md.pv_list) &&
8151 (m->flags & PG_FICTITIOUS) == 0) {
8152 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8153 if (TAILQ_EMPTY(&pvh->pv_list))
8154 vm_page_aflag_clear(m, PGA_WRITEABLE);
8155 }
8156 }
8157 pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8158 freed++;
8159 }
8160 }
8161 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
8162 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
8163 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
8164 if (allfree) {
8165 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8166 TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8167 }
8168 }
8169 if (lock != NULL)
8170 rw_wunlock(lock);
8171 pmap_invalidate_all(pmap);
8172 pmap_pkru_deassign_all(pmap);
8173 free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8174 PMAP_UNLOCK(pmap);
8175 vm_page_free_pages_toq(&free, true);
8176 }
8177
8178 static boolean_t
pmap_page_test_mappings(vm_page_t m,boolean_t accessed,boolean_t modified)8179 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
8180 {
8181 struct rwlock *lock;
8182 pv_entry_t pv;
8183 struct md_page *pvh;
8184 pt_entry_t *pte, mask;
8185 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8186 pmap_t pmap;
8187 int md_gen, pvh_gen;
8188 boolean_t rv;
8189
8190 rv = FALSE;
8191 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8192 rw_rlock(lock);
8193 restart:
8194 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8195 pmap = PV_PMAP(pv);
8196 if (!PMAP_TRYLOCK(pmap)) {
8197 md_gen = m->md.pv_gen;
8198 rw_runlock(lock);
8199 PMAP_LOCK(pmap);
8200 rw_rlock(lock);
8201 if (md_gen != m->md.pv_gen) {
8202 PMAP_UNLOCK(pmap);
8203 goto restart;
8204 }
8205 }
8206 pte = pmap_pte(pmap, pv->pv_va);
8207 mask = 0;
8208 if (modified) {
8209 PG_M = pmap_modified_bit(pmap);
8210 PG_RW = pmap_rw_bit(pmap);
8211 mask |= PG_RW | PG_M;
8212 }
8213 if (accessed) {
8214 PG_A = pmap_accessed_bit(pmap);
8215 PG_V = pmap_valid_bit(pmap);
8216 mask |= PG_V | PG_A;
8217 }
8218 rv = (*pte & mask) == mask;
8219 PMAP_UNLOCK(pmap);
8220 if (rv)
8221 goto out;
8222 }
8223 if ((m->flags & PG_FICTITIOUS) == 0) {
8224 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8225 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8226 pmap = PV_PMAP(pv);
8227 if (!PMAP_TRYLOCK(pmap)) {
8228 md_gen = m->md.pv_gen;
8229 pvh_gen = pvh->pv_gen;
8230 rw_runlock(lock);
8231 PMAP_LOCK(pmap);
8232 rw_rlock(lock);
8233 if (md_gen != m->md.pv_gen ||
8234 pvh_gen != pvh->pv_gen) {
8235 PMAP_UNLOCK(pmap);
8236 goto restart;
8237 }
8238 }
8239 pte = pmap_pde(pmap, pv->pv_va);
8240 mask = 0;
8241 if (modified) {
8242 PG_M = pmap_modified_bit(pmap);
8243 PG_RW = pmap_rw_bit(pmap);
8244 mask |= PG_RW | PG_M;
8245 }
8246 if (accessed) {
8247 PG_A = pmap_accessed_bit(pmap);
8248 PG_V = pmap_valid_bit(pmap);
8249 mask |= PG_V | PG_A;
8250 }
8251 rv = (*pte & mask) == mask;
8252 PMAP_UNLOCK(pmap);
8253 if (rv)
8254 goto out;
8255 }
8256 }
8257 out:
8258 rw_runlock(lock);
8259 return (rv);
8260 }
8261
8262 /*
8263 * pmap_is_modified:
8264 *
8265 * Return whether or not the specified physical page was modified
8266 * in any physical maps.
8267 */
8268 boolean_t
pmap_is_modified(vm_page_t m)8269 pmap_is_modified(vm_page_t m)
8270 {
8271
8272 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8273 ("pmap_is_modified: page %p is not managed", m));
8274
8275 /*
8276 * If the page is not busied then this check is racy.
8277 */
8278 if (!pmap_page_is_write_mapped(m))
8279 return (FALSE);
8280 return (pmap_page_test_mappings(m, FALSE, TRUE));
8281 }
8282
8283 /*
8284 * pmap_is_prefaultable:
8285 *
8286 * Return whether or not the specified virtual address is eligible
8287 * for prefault.
8288 */
8289 boolean_t
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8290 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8291 {
8292 pd_entry_t *pde;
8293 pt_entry_t *pte, PG_V;
8294 boolean_t rv;
8295
8296 PG_V = pmap_valid_bit(pmap);
8297 rv = FALSE;
8298 PMAP_LOCK(pmap);
8299 pde = pmap_pde(pmap, addr);
8300 if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8301 pte = pmap_pde_to_pte(pde, addr);
8302 rv = (*pte & PG_V) == 0;
8303 }
8304 PMAP_UNLOCK(pmap);
8305 return (rv);
8306 }
8307
8308 /*
8309 * pmap_is_referenced:
8310 *
8311 * Return whether or not the specified physical page was referenced
8312 * in any physical maps.
8313 */
8314 boolean_t
pmap_is_referenced(vm_page_t m)8315 pmap_is_referenced(vm_page_t m)
8316 {
8317
8318 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8319 ("pmap_is_referenced: page %p is not managed", m));
8320 return (pmap_page_test_mappings(m, TRUE, FALSE));
8321 }
8322
8323 /*
8324 * Clear the write and modified bits in each of the given page's mappings.
8325 */
8326 void
pmap_remove_write(vm_page_t m)8327 pmap_remove_write(vm_page_t m)
8328 {
8329 struct md_page *pvh;
8330 pmap_t pmap;
8331 struct rwlock *lock;
8332 pv_entry_t next_pv, pv;
8333 pd_entry_t *pde;
8334 pt_entry_t oldpte, *pte, PG_M, PG_RW;
8335 vm_offset_t va;
8336 int pvh_gen, md_gen;
8337
8338 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8339 ("pmap_remove_write: page %p is not managed", m));
8340
8341 vm_page_assert_busied(m);
8342 if (!pmap_page_is_write_mapped(m))
8343 return;
8344
8345 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8346 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8347 pa_to_pvh(VM_PAGE_TO_PHYS(m));
8348 retry_pv_loop:
8349 rw_wlock(lock);
8350 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8351 pmap = PV_PMAP(pv);
8352 if (!PMAP_TRYLOCK(pmap)) {
8353 pvh_gen = pvh->pv_gen;
8354 rw_wunlock(lock);
8355 PMAP_LOCK(pmap);
8356 rw_wlock(lock);
8357 if (pvh_gen != pvh->pv_gen) {
8358 PMAP_UNLOCK(pmap);
8359 rw_wunlock(lock);
8360 goto retry_pv_loop;
8361 }
8362 }
8363 PG_RW = pmap_rw_bit(pmap);
8364 va = pv->pv_va;
8365 pde = pmap_pde(pmap, va);
8366 if ((*pde & PG_RW) != 0)
8367 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8368 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8369 ("inconsistent pv lock %p %p for page %p",
8370 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8371 PMAP_UNLOCK(pmap);
8372 }
8373 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8374 pmap = PV_PMAP(pv);
8375 if (!PMAP_TRYLOCK(pmap)) {
8376 pvh_gen = pvh->pv_gen;
8377 md_gen = m->md.pv_gen;
8378 rw_wunlock(lock);
8379 PMAP_LOCK(pmap);
8380 rw_wlock(lock);
8381 if (pvh_gen != pvh->pv_gen ||
8382 md_gen != m->md.pv_gen) {
8383 PMAP_UNLOCK(pmap);
8384 rw_wunlock(lock);
8385 goto retry_pv_loop;
8386 }
8387 }
8388 PG_M = pmap_modified_bit(pmap);
8389 PG_RW = pmap_rw_bit(pmap);
8390 pde = pmap_pde(pmap, pv->pv_va);
8391 KASSERT((*pde & PG_PS) == 0,
8392 ("pmap_remove_write: found a 2mpage in page %p's pv list",
8393 m));
8394 pte = pmap_pde_to_pte(pde, pv->pv_va);
8395 retry:
8396 oldpte = *pte;
8397 if (oldpte & PG_RW) {
8398 if (!atomic_cmpset_long(pte, oldpte, oldpte &
8399 ~(PG_RW | PG_M)))
8400 goto retry;
8401 if ((oldpte & PG_M) != 0)
8402 vm_page_dirty(m);
8403 pmap_invalidate_page(pmap, pv->pv_va);
8404 }
8405 PMAP_UNLOCK(pmap);
8406 }
8407 rw_wunlock(lock);
8408 vm_page_aflag_clear(m, PGA_WRITEABLE);
8409 pmap_delayed_invl_wait(m);
8410 }
8411
8412 static __inline boolean_t
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)8413 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
8414 {
8415
8416 if (!pmap_emulate_ad_bits(pmap))
8417 return (TRUE);
8418
8419 KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
8420
8421 /*
8422 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
8423 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
8424 * if the EPT_PG_WRITE bit is set.
8425 */
8426 if ((pte & EPT_PG_WRITE) != 0)
8427 return (FALSE);
8428
8429 /*
8430 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
8431 */
8432 if ((pte & EPT_PG_EXECUTE) == 0 ||
8433 ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
8434 return (TRUE);
8435 else
8436 return (FALSE);
8437 }
8438
8439 /*
8440 * pmap_ts_referenced:
8441 *
8442 * Return a count of reference bits for a page, clearing those bits.
8443 * It is not necessary for every reference bit to be cleared, but it
8444 * is necessary that 0 only be returned when there are truly no
8445 * reference bits set.
8446 *
8447 * As an optimization, update the page's dirty field if a modified bit is
8448 * found while counting reference bits. This opportunistic update can be
8449 * performed at low cost and can eliminate the need for some future calls
8450 * to pmap_is_modified(). However, since this function stops after
8451 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8452 * dirty pages. Those dirty pages will only be detected by a future call
8453 * to pmap_is_modified().
8454 *
8455 * A DI block is not needed within this function, because
8456 * invalidations are performed before the PV list lock is
8457 * released.
8458 */
8459 int
pmap_ts_referenced(vm_page_t m)8460 pmap_ts_referenced(vm_page_t m)
8461 {
8462 struct md_page *pvh;
8463 pv_entry_t pv, pvf;
8464 pmap_t pmap;
8465 struct rwlock *lock;
8466 pd_entry_t oldpde, *pde;
8467 pt_entry_t *pte, PG_A, PG_M, PG_RW;
8468 vm_offset_t va;
8469 vm_paddr_t pa;
8470 int cleared, md_gen, not_cleared, pvh_gen;
8471 struct spglist free;
8472 boolean_t demoted;
8473
8474 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8475 ("pmap_ts_referenced: page %p is not managed", m));
8476 SLIST_INIT(&free);
8477 cleared = 0;
8478 pa = VM_PAGE_TO_PHYS(m);
8479 lock = PHYS_TO_PV_LIST_LOCK(pa);
8480 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8481 rw_wlock(lock);
8482 retry:
8483 not_cleared = 0;
8484 if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8485 goto small_mappings;
8486 pv = pvf;
8487 do {
8488 if (pvf == NULL)
8489 pvf = pv;
8490 pmap = PV_PMAP(pv);
8491 if (!PMAP_TRYLOCK(pmap)) {
8492 pvh_gen = pvh->pv_gen;
8493 rw_wunlock(lock);
8494 PMAP_LOCK(pmap);
8495 rw_wlock(lock);
8496 if (pvh_gen != pvh->pv_gen) {
8497 PMAP_UNLOCK(pmap);
8498 goto retry;
8499 }
8500 }
8501 PG_A = pmap_accessed_bit(pmap);
8502 PG_M = pmap_modified_bit(pmap);
8503 PG_RW = pmap_rw_bit(pmap);
8504 va = pv->pv_va;
8505 pde = pmap_pde(pmap, pv->pv_va);
8506 oldpde = *pde;
8507 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8508 /*
8509 * Although "oldpde" is mapping a 2MB page, because
8510 * this function is called at a 4KB page granularity,
8511 * we only update the 4KB page under test.
8512 */
8513 vm_page_dirty(m);
8514 }
8515 if ((oldpde & PG_A) != 0) {
8516 /*
8517 * Since this reference bit is shared by 512 4KB
8518 * pages, it should not be cleared every time it is
8519 * tested. Apply a simple "hash" function on the
8520 * physical page number, the virtual superpage number,
8521 * and the pmap address to select one 4KB page out of
8522 * the 512 on which testing the reference bit will
8523 * result in clearing that reference bit. This
8524 * function is designed to avoid the selection of the
8525 * same 4KB page for every 2MB page mapping.
8526 *
8527 * On demotion, a mapping that hasn't been referenced
8528 * is simply destroyed. To avoid the possibility of a
8529 * subsequent page fault on a demoted wired mapping,
8530 * always leave its reference bit set. Moreover,
8531 * since the superpage is wired, the current state of
8532 * its reference bit won't affect page replacement.
8533 */
8534 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
8535 (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
8536 (oldpde & PG_W) == 0) {
8537 if (safe_to_clear_referenced(pmap, oldpde)) {
8538 atomic_clear_long(pde, PG_A);
8539 pmap_invalidate_page(pmap, pv->pv_va);
8540 demoted = FALSE;
8541 } else if (pmap_demote_pde_locked(pmap, pde,
8542 pv->pv_va, &lock)) {
8543 /*
8544 * Remove the mapping to a single page
8545 * so that a subsequent access may
8546 * repromote. Since the underlying
8547 * page table page is fully populated,
8548 * this removal never frees a page
8549 * table page.
8550 */
8551 demoted = TRUE;
8552 va += VM_PAGE_TO_PHYS(m) - (oldpde &
8553 PG_PS_FRAME);
8554 pte = pmap_pde_to_pte(pde, va);
8555 pmap_remove_pte(pmap, pte, va, *pde,
8556 NULL, &lock);
8557 pmap_invalidate_page(pmap, va);
8558 } else
8559 demoted = TRUE;
8560
8561 if (demoted) {
8562 /*
8563 * The superpage mapping was removed
8564 * entirely and therefore 'pv' is no
8565 * longer valid.
8566 */
8567 if (pvf == pv)
8568 pvf = NULL;
8569 pv = NULL;
8570 }
8571 cleared++;
8572 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8573 ("inconsistent pv lock %p %p for page %p",
8574 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8575 } else
8576 not_cleared++;
8577 }
8578 PMAP_UNLOCK(pmap);
8579 /* Rotate the PV list if it has more than one entry. */
8580 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
8581 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8582 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
8583 pvh->pv_gen++;
8584 }
8585 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
8586 goto out;
8587 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
8588 small_mappings:
8589 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
8590 goto out;
8591 pv = pvf;
8592 do {
8593 if (pvf == NULL)
8594 pvf = pv;
8595 pmap = PV_PMAP(pv);
8596 if (!PMAP_TRYLOCK(pmap)) {
8597 pvh_gen = pvh->pv_gen;
8598 md_gen = m->md.pv_gen;
8599 rw_wunlock(lock);
8600 PMAP_LOCK(pmap);
8601 rw_wlock(lock);
8602 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
8603 PMAP_UNLOCK(pmap);
8604 goto retry;
8605 }
8606 }
8607 PG_A = pmap_accessed_bit(pmap);
8608 PG_M = pmap_modified_bit(pmap);
8609 PG_RW = pmap_rw_bit(pmap);
8610 pde = pmap_pde(pmap, pv->pv_va);
8611 KASSERT((*pde & PG_PS) == 0,
8612 ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
8613 m));
8614 pte = pmap_pde_to_pte(pde, pv->pv_va);
8615 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
8616 vm_page_dirty(m);
8617 if ((*pte & PG_A) != 0) {
8618 if (safe_to_clear_referenced(pmap, *pte)) {
8619 atomic_clear_long(pte, PG_A);
8620 pmap_invalidate_page(pmap, pv->pv_va);
8621 cleared++;
8622 } else if ((*pte & PG_W) == 0) {
8623 /*
8624 * Wired pages cannot be paged out so
8625 * doing accessed bit emulation for
8626 * them is wasted effort. We do the
8627 * hard work for unwired pages only.
8628 */
8629 pmap_remove_pte(pmap, pte, pv->pv_va,
8630 *pde, &free, &lock);
8631 pmap_invalidate_page(pmap, pv->pv_va);
8632 cleared++;
8633 if (pvf == pv)
8634 pvf = NULL;
8635 pv = NULL;
8636 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8637 ("inconsistent pv lock %p %p for page %p",
8638 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8639 } else
8640 not_cleared++;
8641 }
8642 PMAP_UNLOCK(pmap);
8643 /* Rotate the PV list if it has more than one entry. */
8644 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
8645 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8646 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
8647 m->md.pv_gen++;
8648 }
8649 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
8650 not_cleared < PMAP_TS_REFERENCED_MAX);
8651 out:
8652 rw_wunlock(lock);
8653 vm_page_free_pages_toq(&free, true);
8654 return (cleared + not_cleared);
8655 }
8656
8657 /*
8658 * Apply the given advice to the specified range of addresses within the
8659 * given pmap. Depending on the advice, clear the referenced and/or
8660 * modified flags in each mapping and set the mapped page's dirty field.
8661 */
8662 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)8663 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
8664 {
8665 struct rwlock *lock;
8666 pml4_entry_t *pml4e;
8667 pdp_entry_t *pdpe;
8668 pd_entry_t oldpde, *pde;
8669 pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
8670 vm_offset_t va, va_next;
8671 vm_page_t m;
8672 bool anychanged;
8673
8674 if (advice != MADV_DONTNEED && advice != MADV_FREE)
8675 return;
8676
8677 /*
8678 * A/D bit emulation requires an alternate code path when clearing
8679 * the modified and accessed bits below. Since this function is
8680 * advisory in nature we skip it entirely for pmaps that require
8681 * A/D bit emulation.
8682 */
8683 if (pmap_emulate_ad_bits(pmap))
8684 return;
8685
8686 PG_A = pmap_accessed_bit(pmap);
8687 PG_G = pmap_global_bit(pmap);
8688 PG_M = pmap_modified_bit(pmap);
8689 PG_V = pmap_valid_bit(pmap);
8690 PG_RW = pmap_rw_bit(pmap);
8691 anychanged = false;
8692 pmap_delayed_invl_start();
8693 PMAP_LOCK(pmap);
8694 for (; sva < eva; sva = va_next) {
8695 pml4e = pmap_pml4e(pmap, sva);
8696 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8697 va_next = (sva + NBPML4) & ~PML4MASK;
8698 if (va_next < sva)
8699 va_next = eva;
8700 continue;
8701 }
8702
8703 va_next = (sva + NBPDP) & ~PDPMASK;
8704 if (va_next < sva)
8705 va_next = eva;
8706 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
8707 if ((*pdpe & PG_V) == 0)
8708 continue;
8709 if ((*pdpe & PG_PS) != 0) {
8710 KASSERT(va_next <= eva,
8711 ("partial update of non-transparent 1G mapping "
8712 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8713 *pdpe, sva, eva, va_next));
8714 continue;
8715 }
8716
8717 va_next = (sva + NBPDR) & ~PDRMASK;
8718 if (va_next < sva)
8719 va_next = eva;
8720 pde = pmap_pdpe_to_pde(pdpe, sva);
8721 oldpde = *pde;
8722 if ((oldpde & PG_V) == 0)
8723 continue;
8724 else if ((oldpde & PG_PS) != 0) {
8725 if ((oldpde & PG_MANAGED) == 0)
8726 continue;
8727 lock = NULL;
8728 if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
8729 if (lock != NULL)
8730 rw_wunlock(lock);
8731
8732 /*
8733 * The large page mapping was destroyed.
8734 */
8735 continue;
8736 }
8737
8738 /*
8739 * Unless the page mappings are wired, remove the
8740 * mapping to a single page so that a subsequent
8741 * access may repromote. Choosing the last page
8742 * within the address range [sva, min(va_next, eva))
8743 * generally results in more repromotions. Since the
8744 * underlying page table page is fully populated, this
8745 * removal never frees a page table page.
8746 */
8747 if ((oldpde & PG_W) == 0) {
8748 va = eva;
8749 if (va > va_next)
8750 va = va_next;
8751 va -= PAGE_SIZE;
8752 KASSERT(va >= sva,
8753 ("pmap_advise: no address gap"));
8754 pte = pmap_pde_to_pte(pde, va);
8755 KASSERT((*pte & PG_V) != 0,
8756 ("pmap_advise: invalid PTE"));
8757 pmap_remove_pte(pmap, pte, va, *pde, NULL,
8758 &lock);
8759 anychanged = true;
8760 }
8761 if (lock != NULL)
8762 rw_wunlock(lock);
8763 }
8764 if (va_next > eva)
8765 va_next = eva;
8766 va = va_next;
8767 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8768 sva += PAGE_SIZE) {
8769 if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
8770 goto maybe_invlrng;
8771 else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8772 if (advice == MADV_DONTNEED) {
8773 /*
8774 * Future calls to pmap_is_modified()
8775 * can be avoided by making the page
8776 * dirty now.
8777 */
8778 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
8779 vm_page_dirty(m);
8780 }
8781 atomic_clear_long(pte, PG_M | PG_A);
8782 } else if ((*pte & PG_A) != 0)
8783 atomic_clear_long(pte, PG_A);
8784 else
8785 goto maybe_invlrng;
8786
8787 if ((*pte & PG_G) != 0) {
8788 if (va == va_next)
8789 va = sva;
8790 } else
8791 anychanged = true;
8792 continue;
8793 maybe_invlrng:
8794 if (va != va_next) {
8795 pmap_invalidate_range(pmap, va, sva);
8796 va = va_next;
8797 }
8798 }
8799 if (va != va_next)
8800 pmap_invalidate_range(pmap, va, sva);
8801 }
8802 if (anychanged)
8803 pmap_invalidate_all(pmap);
8804 PMAP_UNLOCK(pmap);
8805 pmap_delayed_invl_finish();
8806 }
8807
8808 /*
8809 * Clear the modify bits on the specified physical page.
8810 */
8811 void
pmap_clear_modify(vm_page_t m)8812 pmap_clear_modify(vm_page_t m)
8813 {
8814 struct md_page *pvh;
8815 pmap_t pmap;
8816 pv_entry_t next_pv, pv;
8817 pd_entry_t oldpde, *pde;
8818 pt_entry_t *pte, PG_M, PG_RW;
8819 struct rwlock *lock;
8820 vm_offset_t va;
8821 int md_gen, pvh_gen;
8822
8823 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8824 ("pmap_clear_modify: page %p is not managed", m));
8825 vm_page_assert_busied(m);
8826
8827 if (!pmap_page_is_write_mapped(m))
8828 return;
8829 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8830 pa_to_pvh(VM_PAGE_TO_PHYS(m));
8831 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8832 rw_wlock(lock);
8833 restart:
8834 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8835 pmap = PV_PMAP(pv);
8836 if (!PMAP_TRYLOCK(pmap)) {
8837 pvh_gen = pvh->pv_gen;
8838 rw_wunlock(lock);
8839 PMAP_LOCK(pmap);
8840 rw_wlock(lock);
8841 if (pvh_gen != pvh->pv_gen) {
8842 PMAP_UNLOCK(pmap);
8843 goto restart;
8844 }
8845 }
8846 PG_M = pmap_modified_bit(pmap);
8847 PG_RW = pmap_rw_bit(pmap);
8848 va = pv->pv_va;
8849 pde = pmap_pde(pmap, va);
8850 oldpde = *pde;
8851 /* If oldpde has PG_RW set, then it also has PG_M set. */
8852 if ((oldpde & PG_RW) != 0 &&
8853 pmap_demote_pde_locked(pmap, pde, va, &lock) &&
8854 (oldpde & PG_W) == 0) {
8855 /*
8856 * Write protect the mapping to a single page so that
8857 * a subsequent write access may repromote.
8858 */
8859 va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
8860 pte = pmap_pde_to_pte(pde, va);
8861 atomic_clear_long(pte, PG_M | PG_RW);
8862 vm_page_dirty(m);
8863 pmap_invalidate_page(pmap, va);
8864 }
8865 PMAP_UNLOCK(pmap);
8866 }
8867 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8868 pmap = PV_PMAP(pv);
8869 if (!PMAP_TRYLOCK(pmap)) {
8870 md_gen = m->md.pv_gen;
8871 pvh_gen = pvh->pv_gen;
8872 rw_wunlock(lock);
8873 PMAP_LOCK(pmap);
8874 rw_wlock(lock);
8875 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
8876 PMAP_UNLOCK(pmap);
8877 goto restart;
8878 }
8879 }
8880 PG_M = pmap_modified_bit(pmap);
8881 PG_RW = pmap_rw_bit(pmap);
8882 pde = pmap_pde(pmap, pv->pv_va);
8883 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
8884 " a 2mpage in page %p's pv list", m));
8885 pte = pmap_pde_to_pte(pde, pv->pv_va);
8886 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8887 atomic_clear_long(pte, PG_M);
8888 pmap_invalidate_page(pmap, pv->pv_va);
8889 }
8890 PMAP_UNLOCK(pmap);
8891 }
8892 rw_wunlock(lock);
8893 }
8894
8895 /*
8896 * Miscellaneous support routines follow
8897 */
8898
8899 /* Adjust the properties for a leaf page table entry. */
8900 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)8901 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
8902 {
8903 u_long opte, npte;
8904
8905 opte = *(u_long *)pte;
8906 do {
8907 npte = opte & ~mask;
8908 npte |= bits;
8909 } while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
8910 npte));
8911 }
8912
8913 /*
8914 * Map a set of physical memory pages into the kernel virtual
8915 * address space. Return a pointer to where it is mapped. This
8916 * routine is intended to be used for mapping device memory,
8917 * NOT real memory.
8918 */
8919 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)8920 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
8921 {
8922 struct pmap_preinit_mapping *ppim;
8923 vm_offset_t va, offset;
8924 vm_size_t tmpsize;
8925 int i;
8926
8927 offset = pa & PAGE_MASK;
8928 size = round_page(offset + size);
8929 pa = trunc_page(pa);
8930
8931 if (!pmap_initialized) {
8932 va = 0;
8933 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
8934 ppim = pmap_preinit_mapping + i;
8935 if (ppim->va == 0) {
8936 ppim->pa = pa;
8937 ppim->sz = size;
8938 ppim->mode = mode;
8939 ppim->va = virtual_avail;
8940 virtual_avail += size;
8941 va = ppim->va;
8942 break;
8943 }
8944 }
8945 if (va == 0)
8946 panic("%s: too many preinit mappings", __func__);
8947 } else {
8948 /*
8949 * If we have a preinit mapping, re-use it.
8950 */
8951 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
8952 ppim = pmap_preinit_mapping + i;
8953 if (ppim->pa == pa && ppim->sz == size &&
8954 (ppim->mode == mode ||
8955 (flags & MAPDEV_SETATTR) == 0))
8956 return ((void *)(ppim->va + offset));
8957 }
8958 /*
8959 * If the specified range of physical addresses fits within
8960 * the direct map window, use the direct map.
8961 */
8962 if (pa < dmaplimit && pa + size <= dmaplimit) {
8963 va = PHYS_TO_DMAP(pa);
8964 if ((flags & MAPDEV_SETATTR) != 0) {
8965 PMAP_LOCK(kernel_pmap);
8966 i = pmap_change_props_locked(va, size,
8967 PROT_NONE, mode, flags);
8968 PMAP_UNLOCK(kernel_pmap);
8969 } else
8970 i = 0;
8971 if (!i)
8972 return ((void *)(va + offset));
8973 }
8974 va = kva_alloc(size);
8975 if (va == 0)
8976 panic("%s: Couldn't allocate KVA", __func__);
8977 }
8978 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
8979 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
8980 pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
8981 if ((flags & MAPDEV_FLUSHCACHE) != 0)
8982 pmap_invalidate_cache_range(va, va + tmpsize);
8983 return ((void *)(va + offset));
8984 }
8985
8986 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)8987 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
8988 {
8989
8990 return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
8991 MAPDEV_SETATTR));
8992 }
8993
8994 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)8995 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
8996 {
8997
8998 return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
8999 }
9000
9001 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9002 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9003 {
9004
9005 return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9006 MAPDEV_SETATTR));
9007 }
9008
9009 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9010 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9011 {
9012
9013 return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9014 MAPDEV_FLUSHCACHE));
9015 }
9016
9017 void
pmap_unmapdev(vm_offset_t va,vm_size_t size)9018 pmap_unmapdev(vm_offset_t va, vm_size_t size)
9019 {
9020 struct pmap_preinit_mapping *ppim;
9021 vm_offset_t offset;
9022 int i;
9023
9024 /* If we gave a direct map region in pmap_mapdev, do nothing */
9025 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9026 return;
9027 offset = va & PAGE_MASK;
9028 size = round_page(offset + size);
9029 va = trunc_page(va);
9030 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9031 ppim = pmap_preinit_mapping + i;
9032 if (ppim->va == va && ppim->sz == size) {
9033 if (pmap_initialized)
9034 return;
9035 ppim->pa = 0;
9036 ppim->va = 0;
9037 ppim->sz = 0;
9038 ppim->mode = 0;
9039 if (va + size == virtual_avail)
9040 virtual_avail = va;
9041 return;
9042 }
9043 }
9044 if (pmap_initialized) {
9045 pmap_qremove(va, atop(size));
9046 kva_free(va, size);
9047 }
9048 }
9049
9050 /*
9051 * Tries to demote a 1GB page mapping.
9052 */
9053 static boolean_t
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va)9054 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9055 {
9056 pdp_entry_t newpdpe, oldpdpe;
9057 pd_entry_t *firstpde, newpde, *pde;
9058 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9059 vm_paddr_t pdpgpa;
9060 vm_page_t pdpg;
9061
9062 PG_A = pmap_accessed_bit(pmap);
9063 PG_M = pmap_modified_bit(pmap);
9064 PG_V = pmap_valid_bit(pmap);
9065 PG_RW = pmap_rw_bit(pmap);
9066
9067 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9068 oldpdpe = *pdpe;
9069 KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9070 ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9071 if ((pdpg = vm_page_alloc(NULL, va >> PDPSHIFT, VM_ALLOC_INTERRUPT |
9072 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
9073 CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9074 " in pmap %p", va, pmap);
9075 return (FALSE);
9076 }
9077 pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9078 firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9079 newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9080 KASSERT((oldpdpe & PG_A) != 0,
9081 ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9082 KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9083 ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9084 newpde = oldpdpe;
9085
9086 /*
9087 * Initialize the page directory page.
9088 */
9089 for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9090 *pde = newpde;
9091 newpde += NBPDR;
9092 }
9093
9094 /*
9095 * Demote the mapping.
9096 */
9097 *pdpe = newpdpe;
9098
9099 /*
9100 * Invalidate a stale recursive mapping of the page directory page.
9101 */
9102 pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9103
9104 pmap_pdpe_demotions++;
9105 CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9106 " in pmap %p", va, pmap);
9107 return (TRUE);
9108 }
9109
9110 /*
9111 * Sets the memory attribute for the specified page.
9112 */
9113 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9114 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9115 {
9116
9117 m->md.pat_mode = ma;
9118
9119 /*
9120 * If "m" is a normal page, update its direct mapping. This update
9121 * can be relied upon to perform any cache operations that are
9122 * required for data coherence.
9123 */
9124 if ((m->flags & PG_FICTITIOUS) == 0 &&
9125 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9126 m->md.pat_mode))
9127 panic("memory attribute change on the direct map failed");
9128 }
9129
9130 /*
9131 * Changes the specified virtual address range's memory type to that given by
9132 * the parameter "mode". The specified virtual address range must be
9133 * completely contained within either the direct map or the kernel map. If
9134 * the virtual address range is contained within the kernel map, then the
9135 * memory type for each of the corresponding ranges of the direct map is also
9136 * changed. (The corresponding ranges of the direct map are those ranges that
9137 * map the same physical pages as the specified virtual address range.) These
9138 * changes to the direct map are necessary because Intel describes the
9139 * behavior of their processors as "undefined" if two or more mappings to the
9140 * same physical page have different memory types.
9141 *
9142 * Returns zero if the change completed successfully, and either EINVAL or
9143 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
9144 * of the virtual address range was not mapped, and ENOMEM is returned if
9145 * there was insufficient memory available to complete the change. In the
9146 * latter case, the memory type may have been changed on some part of the
9147 * virtual address range or the direct map.
9148 */
9149 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9150 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9151 {
9152 int error;
9153
9154 PMAP_LOCK(kernel_pmap);
9155 error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9156 MAPDEV_FLUSHCACHE);
9157 PMAP_UNLOCK(kernel_pmap);
9158 return (error);
9159 }
9160
9161 /*
9162 * Changes the specified virtual address range's protections to those
9163 * specified by "prot". Like pmap_change_attr(), protections for aliases
9164 * in the direct map are updated as well. Protections on aliasing mappings may
9165 * be a subset of the requested protections; for example, mappings in the direct
9166 * map are never executable.
9167 */
9168 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9169 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9170 {
9171 int error;
9172
9173 /* Only supported within the kernel map. */
9174 if (va < VM_MIN_KERNEL_ADDRESS)
9175 return (EINVAL);
9176
9177 PMAP_LOCK(kernel_pmap);
9178 error = pmap_change_props_locked(va, size, prot, -1,
9179 MAPDEV_ASSERTVALID);
9180 PMAP_UNLOCK(kernel_pmap);
9181 return (error);
9182 }
9183
9184 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9185 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9186 int mode, int flags)
9187 {
9188 vm_offset_t base, offset, tmpva;
9189 vm_paddr_t pa_start, pa_end, pa_end1;
9190 pdp_entry_t *pdpe;
9191 pd_entry_t *pde, pde_bits, pde_mask;
9192 pt_entry_t *pte, pte_bits, pte_mask;
9193 int error;
9194 bool changed;
9195
9196 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9197 base = trunc_page(va);
9198 offset = va & PAGE_MASK;
9199 size = round_page(offset + size);
9200
9201 /*
9202 * Only supported on kernel virtual addresses, including the direct
9203 * map but excluding the recursive map.
9204 */
9205 if (base < DMAP_MIN_ADDRESS)
9206 return (EINVAL);
9207
9208 /*
9209 * Construct our flag sets and masks. "bits" is the subset of
9210 * "mask" that will be set in each modified PTE.
9211 *
9212 * Mappings in the direct map are never allowed to be executable.
9213 */
9214 pde_bits = pte_bits = 0;
9215 pde_mask = pte_mask = 0;
9216 if (mode != -1) {
9217 pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9218 pde_mask |= X86_PG_PDE_CACHE;
9219 pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9220 pte_mask |= X86_PG_PTE_CACHE;
9221 }
9222 if (prot != VM_PROT_NONE) {
9223 if ((prot & VM_PROT_WRITE) != 0) {
9224 pde_bits |= X86_PG_RW;
9225 pte_bits |= X86_PG_RW;
9226 }
9227 if ((prot & VM_PROT_EXECUTE) == 0 ||
9228 va < VM_MIN_KERNEL_ADDRESS) {
9229 pde_bits |= pg_nx;
9230 pte_bits |= pg_nx;
9231 }
9232 pde_mask |= X86_PG_RW | pg_nx;
9233 pte_mask |= X86_PG_RW | pg_nx;
9234 }
9235
9236 /*
9237 * Pages that aren't mapped aren't supported. Also break down 2MB pages
9238 * into 4KB pages if required.
9239 */
9240 for (tmpva = base; tmpva < base + size; ) {
9241 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9242 if (pdpe == NULL || *pdpe == 0) {
9243 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9244 ("%s: addr %#lx is not mapped", __func__, tmpva));
9245 return (EINVAL);
9246 }
9247 if (*pdpe & PG_PS) {
9248 /*
9249 * If the current 1GB page already has the required
9250 * properties, then we need not demote this page. Just
9251 * increment tmpva to the next 1GB page frame.
9252 */
9253 if ((*pdpe & pde_mask) == pde_bits) {
9254 tmpva = trunc_1gpage(tmpva) + NBPDP;
9255 continue;
9256 }
9257
9258 /*
9259 * If the current offset aligns with a 1GB page frame
9260 * and there is at least 1GB left within the range, then
9261 * we need not break down this page into 2MB pages.
9262 */
9263 if ((tmpva & PDPMASK) == 0 &&
9264 tmpva + PDPMASK < base + size) {
9265 tmpva += NBPDP;
9266 continue;
9267 }
9268 if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9269 return (ENOMEM);
9270 }
9271 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9272 if (*pde == 0) {
9273 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9274 ("%s: addr %#lx is not mapped", __func__, tmpva));
9275 return (EINVAL);
9276 }
9277 if (*pde & PG_PS) {
9278 /*
9279 * If the current 2MB page already has the required
9280 * properties, then we need not demote this page. Just
9281 * increment tmpva to the next 2MB page frame.
9282 */
9283 if ((*pde & pde_mask) == pde_bits) {
9284 tmpva = trunc_2mpage(tmpva) + NBPDR;
9285 continue;
9286 }
9287
9288 /*
9289 * If the current offset aligns with a 2MB page frame
9290 * and there is at least 2MB left within the range, then
9291 * we need not break down this page into 4KB pages.
9292 */
9293 if ((tmpva & PDRMASK) == 0 &&
9294 tmpva + PDRMASK < base + size) {
9295 tmpva += NBPDR;
9296 continue;
9297 }
9298 if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9299 return (ENOMEM);
9300 }
9301 pte = pmap_pde_to_pte(pde, tmpva);
9302 if (*pte == 0) {
9303 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9304 ("%s: addr %#lx is not mapped", __func__, tmpva));
9305 return (EINVAL);
9306 }
9307 tmpva += PAGE_SIZE;
9308 }
9309 error = 0;
9310
9311 /*
9312 * Ok, all the pages exist, so run through them updating their
9313 * properties if required.
9314 */
9315 changed = false;
9316 pa_start = pa_end = 0;
9317 for (tmpva = base; tmpva < base + size; ) {
9318 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9319 if (*pdpe & PG_PS) {
9320 if ((*pdpe & pde_mask) != pde_bits) {
9321 pmap_pte_props(pdpe, pde_bits, pde_mask);
9322 changed = true;
9323 }
9324 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9325 (*pdpe & PG_PS_FRAME) < dmaplimit) {
9326 if (pa_start == pa_end) {
9327 /* Start physical address run. */
9328 pa_start = *pdpe & PG_PS_FRAME;
9329 pa_end = pa_start + NBPDP;
9330 } else if (pa_end == (*pdpe & PG_PS_FRAME))
9331 pa_end += NBPDP;
9332 else {
9333 /* Run ended, update direct map. */
9334 error = pmap_change_props_locked(
9335 PHYS_TO_DMAP(pa_start),
9336 pa_end - pa_start, prot, mode,
9337 flags);
9338 if (error != 0)
9339 break;
9340 /* Start physical address run. */
9341 pa_start = *pdpe & PG_PS_FRAME;
9342 pa_end = pa_start + NBPDP;
9343 }
9344 }
9345 tmpva = trunc_1gpage(tmpva) + NBPDP;
9346 continue;
9347 }
9348 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9349 if (*pde & PG_PS) {
9350 if ((*pde & pde_mask) != pde_bits) {
9351 pmap_pte_props(pde, pde_bits, pde_mask);
9352 changed = true;
9353 }
9354 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9355 (*pde & PG_PS_FRAME) < dmaplimit) {
9356 if (pa_start == pa_end) {
9357 /* Start physical address run. */
9358 pa_start = *pde & PG_PS_FRAME;
9359 pa_end = pa_start + NBPDR;
9360 } else if (pa_end == (*pde & PG_PS_FRAME))
9361 pa_end += NBPDR;
9362 else {
9363 /* Run ended, update direct map. */
9364 error = pmap_change_props_locked(
9365 PHYS_TO_DMAP(pa_start),
9366 pa_end - pa_start, prot, mode,
9367 flags);
9368 if (error != 0)
9369 break;
9370 /* Start physical address run. */
9371 pa_start = *pde & PG_PS_FRAME;
9372 pa_end = pa_start + NBPDR;
9373 }
9374 }
9375 tmpva = trunc_2mpage(tmpva) + NBPDR;
9376 } else {
9377 pte = pmap_pde_to_pte(pde, tmpva);
9378 if ((*pte & pte_mask) != pte_bits) {
9379 pmap_pte_props(pte, pte_bits, pte_mask);
9380 changed = true;
9381 }
9382 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9383 (*pte & PG_FRAME) < dmaplimit) {
9384 if (pa_start == pa_end) {
9385 /* Start physical address run. */
9386 pa_start = *pte & PG_FRAME;
9387 pa_end = pa_start + PAGE_SIZE;
9388 } else if (pa_end == (*pte & PG_FRAME))
9389 pa_end += PAGE_SIZE;
9390 else {
9391 /* Run ended, update direct map. */
9392 error = pmap_change_props_locked(
9393 PHYS_TO_DMAP(pa_start),
9394 pa_end - pa_start, prot, mode,
9395 flags);
9396 if (error != 0)
9397 break;
9398 /* Start physical address run. */
9399 pa_start = *pte & PG_FRAME;
9400 pa_end = pa_start + PAGE_SIZE;
9401 }
9402 }
9403 tmpva += PAGE_SIZE;
9404 }
9405 }
9406 if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9407 pa_end1 = MIN(pa_end, dmaplimit);
9408 if (pa_start != pa_end1)
9409 error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9410 pa_end1 - pa_start, prot, mode, flags);
9411 }
9412
9413 /*
9414 * Flush CPU caches if required to make sure any data isn't cached that
9415 * shouldn't be, etc.
9416 */
9417 if (changed) {
9418 pmap_invalidate_range(kernel_pmap, base, tmpva);
9419 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9420 pmap_invalidate_cache_range(base, tmpva);
9421 }
9422 return (error);
9423 }
9424
9425 /*
9426 * Demotes any mapping within the direct map region that covers more than the
9427 * specified range of physical addresses. This range's size must be a power
9428 * of two and its starting address must be a multiple of its size. Since the
9429 * demotion does not change any attributes of the mapping, a TLB invalidation
9430 * is not mandatory. The caller may, however, request a TLB invalidation.
9431 */
9432 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,boolean_t invalidate)9433 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
9434 {
9435 pdp_entry_t *pdpe;
9436 pd_entry_t *pde;
9437 vm_offset_t va;
9438 boolean_t changed;
9439
9440 if (len == 0)
9441 return;
9442 KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9443 KASSERT((base & (len - 1)) == 0,
9444 ("pmap_demote_DMAP: base is not a multiple of len"));
9445 if (len < NBPDP && base < dmaplimit) {
9446 va = PHYS_TO_DMAP(base);
9447 changed = FALSE;
9448 PMAP_LOCK(kernel_pmap);
9449 pdpe = pmap_pdpe(kernel_pmap, va);
9450 if ((*pdpe & X86_PG_V) == 0)
9451 panic("pmap_demote_DMAP: invalid PDPE");
9452 if ((*pdpe & PG_PS) != 0) {
9453 if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9454 panic("pmap_demote_DMAP: PDPE failed");
9455 changed = TRUE;
9456 }
9457 if (len < NBPDR) {
9458 pde = pmap_pdpe_to_pde(pdpe, va);
9459 if ((*pde & X86_PG_V) == 0)
9460 panic("pmap_demote_DMAP: invalid PDE");
9461 if ((*pde & PG_PS) != 0) {
9462 if (!pmap_demote_pde(kernel_pmap, pde, va))
9463 panic("pmap_demote_DMAP: PDE failed");
9464 changed = TRUE;
9465 }
9466 }
9467 if (changed && invalidate)
9468 pmap_invalidate_page(kernel_pmap, va);
9469 PMAP_UNLOCK(kernel_pmap);
9470 }
9471 }
9472
9473 /*
9474 * Perform the pmap work for mincore(2). If the page is not both referenced and
9475 * modified by this pmap, returns its physical address so that the caller can
9476 * find other mappings.
9477 */
9478 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)9479 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
9480 {
9481 pdp_entry_t *pdpe;
9482 pd_entry_t *pdep;
9483 pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
9484 vm_paddr_t pa;
9485 int val;
9486
9487 PG_A = pmap_accessed_bit(pmap);
9488 PG_M = pmap_modified_bit(pmap);
9489 PG_V = pmap_valid_bit(pmap);
9490 PG_RW = pmap_rw_bit(pmap);
9491
9492 PMAP_LOCK(pmap);
9493 pte = 0;
9494 pa = 0;
9495 val = 0;
9496 pdpe = pmap_pdpe(pmap, addr);
9497 if (pdpe == NULL)
9498 goto out;
9499 if ((*pdpe & PG_V) != 0) {
9500 if ((*pdpe & PG_PS) != 0) {
9501 pte = *pdpe;
9502 pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
9503 PG_FRAME;
9504 val = MINCORE_PSIND(2);
9505 } else {
9506 pdep = pmap_pde(pmap, addr);
9507 if (pdep != NULL && (*pdep & PG_V) != 0) {
9508 if ((*pdep & PG_PS) != 0) {
9509 pte = *pdep;
9510 /* Compute the physical address of the 4KB page. */
9511 pa = ((pte & PG_PS_FRAME) | (addr &
9512 PDRMASK)) & PG_FRAME;
9513 val = MINCORE_PSIND(1);
9514 } else {
9515 pte = *pmap_pde_to_pte(pdep, addr);
9516 pa = pte & PG_FRAME;
9517 val = 0;
9518 }
9519 }
9520 }
9521 }
9522 if ((pte & PG_V) != 0) {
9523 val |= MINCORE_INCORE;
9524 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9525 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
9526 if ((pte & PG_A) != 0)
9527 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
9528 }
9529 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
9530 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
9531 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
9532 *pap = pa;
9533 }
9534 out:
9535 PMAP_UNLOCK(pmap);
9536 return (val);
9537 }
9538
9539 static uint64_t
pmap_pcid_alloc(pmap_t pmap,u_int cpuid)9540 pmap_pcid_alloc(pmap_t pmap, u_int cpuid)
9541 {
9542 uint32_t gen, new_gen, pcid_next;
9543
9544 CRITICAL_ASSERT(curthread);
9545 gen = PCPU_GET(pcid_gen);
9546 if (pmap->pm_pcids[cpuid].pm_pcid == PMAP_PCID_KERN)
9547 return (pti ? 0 : CR3_PCID_SAVE);
9548 if (pmap->pm_pcids[cpuid].pm_gen == gen)
9549 return (CR3_PCID_SAVE);
9550 pcid_next = PCPU_GET(pcid_next);
9551 KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
9552 (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
9553 ("cpu %d pcid_next %#x", cpuid, pcid_next));
9554 if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
9555 (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
9556 new_gen = gen + 1;
9557 if (new_gen == 0)
9558 new_gen = 1;
9559 PCPU_SET(pcid_gen, new_gen);
9560 pcid_next = PMAP_PCID_KERN + 1;
9561 } else {
9562 new_gen = gen;
9563 }
9564 pmap->pm_pcids[cpuid].pm_pcid = pcid_next;
9565 pmap->pm_pcids[cpuid].pm_gen = new_gen;
9566 PCPU_SET(pcid_next, pcid_next + 1);
9567 return (0);
9568 }
9569
9570 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,u_int cpuid)9571 pmap_pcid_alloc_checked(pmap_t pmap, u_int cpuid)
9572 {
9573 uint64_t cached;
9574
9575 cached = pmap_pcid_alloc(pmap, cpuid);
9576 KASSERT(pmap->pm_pcids[cpuid].pm_pcid < PMAP_PCID_OVERMAX,
9577 ("pmap %p cpu %d pcid %#x", pmap, cpuid,
9578 pmap->pm_pcids[cpuid].pm_pcid));
9579 KASSERT(pmap->pm_pcids[cpuid].pm_pcid != PMAP_PCID_KERN ||
9580 pmap == kernel_pmap,
9581 ("non-kernel pmap pmap %p cpu %d pcid %#x",
9582 pmap, cpuid, pmap->pm_pcids[cpuid].pm_pcid));
9583 return (cached);
9584 }
9585
9586 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)9587 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
9588 {
9589
9590 PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
9591 PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
9592 }
9593
9594 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)9595 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
9596 {
9597 pmap_t old_pmap;
9598 uint64_t cached, cr3, kcr3, ucr3;
9599
9600 KASSERT((read_rflags() & PSL_I) == 0,
9601 ("PCID needs interrupts disabled in pmap_activate_sw()"));
9602
9603 /* See the comment in pmap_invalidate_page_pcid(). */
9604 if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
9605 PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
9606 old_pmap = PCPU_GET(curpmap);
9607 MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
9608 old_pmap->pm_pcids[cpuid].pm_gen = 0;
9609 }
9610
9611 cached = pmap_pcid_alloc_checked(pmap, cpuid);
9612 cr3 = rcr3();
9613 if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
9614 load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid);
9615 PCPU_SET(curpmap, pmap);
9616 kcr3 = pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid;
9617 ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[cpuid].pm_pcid |
9618 PMAP_PCID_USER_PT;
9619
9620 if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
9621 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
9622
9623 PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
9624 PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
9625 if (cached)
9626 PCPU_INC(pm_save_cnt);
9627
9628 pmap_activate_sw_pti_post(td, pmap);
9629 }
9630
9631 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)9632 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
9633 u_int cpuid)
9634 {
9635 uint64_t cached, cr3;
9636
9637 KASSERT((read_rflags() & PSL_I) == 0,
9638 ("PCID needs interrupts disabled in pmap_activate_sw()"));
9639
9640 cached = pmap_pcid_alloc_checked(pmap, cpuid);
9641 cr3 = rcr3();
9642 if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
9643 load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid |
9644 cached);
9645 PCPU_SET(curpmap, pmap);
9646 if (cached)
9647 PCPU_INC(pm_save_cnt);
9648 }
9649
9650 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)9651 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
9652 u_int cpuid __unused)
9653 {
9654
9655 load_cr3(pmap->pm_cr3);
9656 PCPU_SET(curpmap, pmap);
9657 }
9658
9659 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)9660 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
9661 u_int cpuid __unused)
9662 {
9663
9664 pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
9665 PCPU_SET(kcr3, pmap->pm_cr3);
9666 PCPU_SET(ucr3, pmap->pm_ucr3);
9667 pmap_activate_sw_pti_post(td, pmap);
9668 }
9669
9670 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
9671 u_int))
9672 {
9673
9674 if (pmap_pcid_enabled && pti)
9675 return (pmap_activate_sw_pcid_pti);
9676 else if (pmap_pcid_enabled && !pti)
9677 return (pmap_activate_sw_pcid_nopti);
9678 else if (!pmap_pcid_enabled && pti)
9679 return (pmap_activate_sw_nopcid_pti);
9680 else /* if (!pmap_pcid_enabled && !pti) */
9681 return (pmap_activate_sw_nopcid_nopti);
9682 }
9683
9684 void
pmap_activate_sw(struct thread * td)9685 pmap_activate_sw(struct thread *td)
9686 {
9687 pmap_t oldpmap, pmap;
9688 u_int cpuid;
9689
9690 oldpmap = PCPU_GET(curpmap);
9691 pmap = vmspace_pmap(td->td_proc->p_vmspace);
9692 if (oldpmap == pmap) {
9693 if (cpu_vendor_id != CPU_VENDOR_INTEL)
9694 mfence();
9695 return;
9696 }
9697 cpuid = PCPU_GET(cpuid);
9698 #ifdef SMP
9699 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
9700 #else
9701 CPU_SET(cpuid, &pmap->pm_active);
9702 #endif
9703 pmap_activate_sw_mode(td, pmap, cpuid);
9704 #ifdef SMP
9705 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
9706 #else
9707 CPU_CLR(cpuid, &oldpmap->pm_active);
9708 #endif
9709 }
9710
9711 void
pmap_activate(struct thread * td)9712 pmap_activate(struct thread *td)
9713 {
9714 /*
9715 * invltlb_{invpcid,}_pcid_handler() is used to handle an
9716 * invalidate_all IPI, which checks for curpmap ==
9717 * smp_tlb_pmap. The below sequence of operations has a
9718 * window where %CR3 is loaded with the new pmap's PML4
9719 * address, but the curpmap value has not yet been updated.
9720 * This causes the invltlb IPI handler, which is called
9721 * between the updates, to execute as a NOP, which leaves
9722 * stale TLB entries.
9723 *
9724 * Note that the most common use of pmap_activate_sw(), from
9725 * a context switch, is immune to this race, because
9726 * interrupts are disabled (while the thread lock is owned),
9727 * so the IPI is delayed until after curpmap is updated. Protect
9728 * other callers in a similar way, by disabling interrupts
9729 * around the %cr3 register reload and curpmap assignment.
9730 */
9731 spinlock_enter();
9732 pmap_activate_sw(td);
9733 spinlock_exit();
9734 }
9735
9736 void
pmap_activate_boot(pmap_t pmap)9737 pmap_activate_boot(pmap_t pmap)
9738 {
9739 uint64_t kcr3;
9740 u_int cpuid;
9741
9742 /*
9743 * kernel_pmap must be never deactivated, and we ensure that
9744 * by never activating it at all.
9745 */
9746 MPASS(pmap != kernel_pmap);
9747
9748 cpuid = PCPU_GET(cpuid);
9749 #ifdef SMP
9750 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
9751 #else
9752 CPU_SET(cpuid, &pmap->pm_active);
9753 #endif
9754 PCPU_SET(curpmap, pmap);
9755 if (pti) {
9756 kcr3 = pmap->pm_cr3;
9757 if (pmap_pcid_enabled)
9758 kcr3 |= pmap->pm_pcids[cpuid].pm_pcid | CR3_PCID_SAVE;
9759 } else {
9760 kcr3 = PMAP_NO_CR3;
9761 }
9762 PCPU_SET(kcr3, kcr3);
9763 PCPU_SET(ucr3, PMAP_NO_CR3);
9764 }
9765
9766 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)9767 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
9768 {
9769 }
9770
9771 /*
9772 * Increase the starting virtual address of the given mapping if a
9773 * different alignment might result in more superpage mappings.
9774 */
9775 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)9776 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
9777 vm_offset_t *addr, vm_size_t size)
9778 {
9779 vm_offset_t superpage_offset;
9780
9781 if (size < NBPDR)
9782 return;
9783 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
9784 offset += ptoa(object->pg_color);
9785 superpage_offset = offset & PDRMASK;
9786 if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
9787 (*addr & PDRMASK) == superpage_offset)
9788 return;
9789 if ((*addr & PDRMASK) < superpage_offset)
9790 *addr = (*addr & ~PDRMASK) + superpage_offset;
9791 else
9792 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
9793 }
9794
9795 #ifdef INVARIANTS
9796 static unsigned long num_dirty_emulations;
9797 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
9798 &num_dirty_emulations, 0, NULL);
9799
9800 static unsigned long num_accessed_emulations;
9801 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
9802 &num_accessed_emulations, 0, NULL);
9803
9804 static unsigned long num_superpage_accessed_emulations;
9805 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
9806 &num_superpage_accessed_emulations, 0, NULL);
9807
9808 static unsigned long ad_emulation_superpage_promotions;
9809 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
9810 &ad_emulation_superpage_promotions, 0, NULL);
9811 #endif /* INVARIANTS */
9812
9813 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)9814 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
9815 {
9816 int rv;
9817 struct rwlock *lock;
9818 #if VM_NRESERVLEVEL > 0
9819 vm_page_t m, mpte;
9820 #endif
9821 pd_entry_t *pde;
9822 pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
9823
9824 KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
9825 ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
9826
9827 if (!pmap_emulate_ad_bits(pmap))
9828 return (-1);
9829
9830 PG_A = pmap_accessed_bit(pmap);
9831 PG_M = pmap_modified_bit(pmap);
9832 PG_V = pmap_valid_bit(pmap);
9833 PG_RW = pmap_rw_bit(pmap);
9834
9835 rv = -1;
9836 lock = NULL;
9837 PMAP_LOCK(pmap);
9838
9839 pde = pmap_pde(pmap, va);
9840 if (pde == NULL || (*pde & PG_V) == 0)
9841 goto done;
9842
9843 if ((*pde & PG_PS) != 0) {
9844 if (ftype == VM_PROT_READ) {
9845 #ifdef INVARIANTS
9846 atomic_add_long(&num_superpage_accessed_emulations, 1);
9847 #endif
9848 *pde |= PG_A;
9849 rv = 0;
9850 }
9851 goto done;
9852 }
9853
9854 pte = pmap_pde_to_pte(pde, va);
9855 if ((*pte & PG_V) == 0)
9856 goto done;
9857
9858 if (ftype == VM_PROT_WRITE) {
9859 if ((*pte & PG_RW) == 0)
9860 goto done;
9861 /*
9862 * Set the modified and accessed bits simultaneously.
9863 *
9864 * Intel EPT PTEs that do software emulation of A/D bits map
9865 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
9866 * An EPT misconfiguration is triggered if the PTE is writable
9867 * but not readable (WR=10). This is avoided by setting PG_A
9868 * and PG_M simultaneously.
9869 */
9870 *pte |= PG_M | PG_A;
9871 } else {
9872 *pte |= PG_A;
9873 }
9874
9875 #if VM_NRESERVLEVEL > 0
9876 /* try to promote the mapping */
9877 if (va < VM_MAXUSER_ADDRESS)
9878 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
9879 else
9880 mpte = NULL;
9881
9882 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9883
9884 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
9885 pmap_ps_enabled(pmap) &&
9886 (m->flags & PG_FICTITIOUS) == 0 &&
9887 vm_reserv_level_iffullpop(m) == 0) {
9888 pmap_promote_pde(pmap, pde, va, &lock);
9889 #ifdef INVARIANTS
9890 atomic_add_long(&ad_emulation_superpage_promotions, 1);
9891 #endif
9892 }
9893 #endif
9894
9895 #ifdef INVARIANTS
9896 if (ftype == VM_PROT_WRITE)
9897 atomic_add_long(&num_dirty_emulations, 1);
9898 else
9899 atomic_add_long(&num_accessed_emulations, 1);
9900 #endif
9901 rv = 0; /* success */
9902 done:
9903 if (lock != NULL)
9904 rw_wunlock(lock);
9905 PMAP_UNLOCK(pmap);
9906 return (rv);
9907 }
9908
9909 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)9910 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
9911 {
9912 pml4_entry_t *pml4;
9913 pdp_entry_t *pdp;
9914 pd_entry_t *pde;
9915 pt_entry_t *pte, PG_V;
9916 int idx;
9917
9918 idx = 0;
9919 PG_V = pmap_valid_bit(pmap);
9920 PMAP_LOCK(pmap);
9921
9922 pml4 = pmap_pml4e(pmap, va);
9923 if (pml4 == NULL)
9924 goto done;
9925 ptr[idx++] = *pml4;
9926 if ((*pml4 & PG_V) == 0)
9927 goto done;
9928
9929 pdp = pmap_pml4e_to_pdpe(pml4, va);
9930 ptr[idx++] = *pdp;
9931 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
9932 goto done;
9933
9934 pde = pmap_pdpe_to_pde(pdp, va);
9935 ptr[idx++] = *pde;
9936 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
9937 goto done;
9938
9939 pte = pmap_pde_to_pte(pde, va);
9940 ptr[idx++] = *pte;
9941
9942 done:
9943 PMAP_UNLOCK(pmap);
9944 *num = idx;
9945 }
9946
9947 /**
9948 * Get the kernel virtual address of a set of physical pages. If there are
9949 * physical addresses not covered by the DMAP perform a transient mapping
9950 * that will be removed when calling pmap_unmap_io_transient.
9951 *
9952 * \param page The pages the caller wishes to obtain the virtual
9953 * address on the kernel memory map.
9954 * \param vaddr On return contains the kernel virtual memory address
9955 * of the pages passed in the page parameter.
9956 * \param count Number of pages passed in.
9957 * \param can_fault TRUE if the thread using the mapped pages can take
9958 * page faults, FALSE otherwise.
9959 *
9960 * \returns TRUE if the caller must call pmap_unmap_io_transient when
9961 * finished or FALSE otherwise.
9962 *
9963 */
9964 boolean_t
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,boolean_t can_fault)9965 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
9966 boolean_t can_fault)
9967 {
9968 vm_paddr_t paddr;
9969 boolean_t needs_mapping;
9970 pt_entry_t *pte;
9971 int cache_bits, error __unused, i;
9972
9973 /*
9974 * Allocate any KVA space that we need, this is done in a separate
9975 * loop to prevent calling vmem_alloc while pinned.
9976 */
9977 needs_mapping = FALSE;
9978 for (i = 0; i < count; i++) {
9979 paddr = VM_PAGE_TO_PHYS(page[i]);
9980 if (__predict_false(paddr >= dmaplimit)) {
9981 error = vmem_alloc(kernel_arena, PAGE_SIZE,
9982 M_BESTFIT | M_WAITOK, &vaddr[i]);
9983 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
9984 needs_mapping = TRUE;
9985 } else {
9986 vaddr[i] = PHYS_TO_DMAP(paddr);
9987 }
9988 }
9989
9990 /* Exit early if everything is covered by the DMAP */
9991 if (!needs_mapping)
9992 return (FALSE);
9993
9994 /*
9995 * NB: The sequence of updating a page table followed by accesses
9996 * to the corresponding pages used in the !DMAP case is subject to
9997 * the situation described in the "AMD64 Architecture Programmer's
9998 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
9999 * Coherency Considerations". Therefore, issuing the INVLPG right
10000 * after modifying the PTE bits is crucial.
10001 */
10002 if (!can_fault)
10003 sched_pin();
10004 for (i = 0; i < count; i++) {
10005 paddr = VM_PAGE_TO_PHYS(page[i]);
10006 if (paddr >= dmaplimit) {
10007 if (can_fault) {
10008 /*
10009 * Slow path, since we can get page faults
10010 * while mappings are active don't pin the
10011 * thread to the CPU and instead add a global
10012 * mapping visible to all CPUs.
10013 */
10014 pmap_qenter(vaddr[i], &page[i], 1);
10015 } else {
10016 pte = vtopte(vaddr[i]);
10017 cache_bits = pmap_cache_bits(kernel_pmap,
10018 page[i]->md.pat_mode, 0);
10019 pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10020 cache_bits);
10021 invlpg(vaddr[i]);
10022 }
10023 }
10024 }
10025
10026 return (needs_mapping);
10027 }
10028
10029 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,boolean_t can_fault)10030 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10031 boolean_t can_fault)
10032 {
10033 vm_paddr_t paddr;
10034 int i;
10035
10036 if (!can_fault)
10037 sched_unpin();
10038 for (i = 0; i < count; i++) {
10039 paddr = VM_PAGE_TO_PHYS(page[i]);
10040 if (paddr >= dmaplimit) {
10041 if (can_fault)
10042 pmap_qremove(vaddr[i], 1);
10043 vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10044 }
10045 }
10046 }
10047
10048 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10049 pmap_quick_enter_page(vm_page_t m)
10050 {
10051 vm_paddr_t paddr;
10052
10053 paddr = VM_PAGE_TO_PHYS(m);
10054 if (paddr < dmaplimit)
10055 return (PHYS_TO_DMAP(paddr));
10056 mtx_lock_spin(&qframe_mtx);
10057 KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10058 pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10059 X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0));
10060 return (qframe);
10061 }
10062
10063 void
pmap_quick_remove_page(vm_offset_t addr)10064 pmap_quick_remove_page(vm_offset_t addr)
10065 {
10066
10067 if (addr != qframe)
10068 return;
10069 pte_store(vtopte(qframe), 0);
10070 invlpg(qframe);
10071 mtx_unlock_spin(&qframe_mtx);
10072 }
10073
10074 /*
10075 * Pdp pages from the large map are managed differently from either
10076 * kernel or user page table pages. They are permanently allocated at
10077 * initialization time, and their reference count is permanently set to
10078 * zero. The pml4 entries pointing to those pages are copied into
10079 * each allocated pmap.
10080 *
10081 * In contrast, pd and pt pages are managed like user page table
10082 * pages. They are dynamically allocated, and their reference count
10083 * represents the number of valid entries within the page.
10084 */
10085 static vm_page_t
pmap_large_map_getptp_unlocked(void)10086 pmap_large_map_getptp_unlocked(void)
10087 {
10088 vm_page_t m;
10089
10090 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
10091 VM_ALLOC_ZERO);
10092 if (m != NULL && (m->flags & PG_ZERO) == 0)
10093 pmap_zero_page(m);
10094 return (m);
10095 }
10096
10097 static vm_page_t
pmap_large_map_getptp(void)10098 pmap_large_map_getptp(void)
10099 {
10100 vm_page_t m;
10101
10102 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10103 m = pmap_large_map_getptp_unlocked();
10104 if (m == NULL) {
10105 PMAP_UNLOCK(kernel_pmap);
10106 vm_wait(NULL);
10107 PMAP_LOCK(kernel_pmap);
10108 /* Callers retry. */
10109 }
10110 return (m);
10111 }
10112
10113 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10114 pmap_large_map_pdpe(vm_offset_t va)
10115 {
10116 vm_pindex_t pml4_idx;
10117 vm_paddr_t mphys;
10118
10119 pml4_idx = pmap_pml4e_index(va);
10120 KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10121 ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10122 "%#jx lm_ents %d",
10123 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10124 KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10125 ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10126 "LMSPML4I %#jx lm_ents %d",
10127 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10128 mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10129 return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10130 }
10131
10132 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10133 pmap_large_map_pde(vm_offset_t va)
10134 {
10135 pdp_entry_t *pdpe;
10136 vm_page_t m;
10137 vm_paddr_t mphys;
10138
10139 retry:
10140 pdpe = pmap_large_map_pdpe(va);
10141 if (*pdpe == 0) {
10142 m = pmap_large_map_getptp();
10143 if (m == NULL)
10144 goto retry;
10145 mphys = VM_PAGE_TO_PHYS(m);
10146 *pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10147 } else {
10148 MPASS((*pdpe & X86_PG_PS) == 0);
10149 mphys = *pdpe & PG_FRAME;
10150 }
10151 return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10152 }
10153
10154 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10155 pmap_large_map_pte(vm_offset_t va)
10156 {
10157 pd_entry_t *pde;
10158 vm_page_t m;
10159 vm_paddr_t mphys;
10160
10161 retry:
10162 pde = pmap_large_map_pde(va);
10163 if (*pde == 0) {
10164 m = pmap_large_map_getptp();
10165 if (m == NULL)
10166 goto retry;
10167 mphys = VM_PAGE_TO_PHYS(m);
10168 *pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10169 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10170 } else {
10171 MPASS((*pde & X86_PG_PS) == 0);
10172 mphys = *pde & PG_FRAME;
10173 }
10174 return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10175 }
10176
10177 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10178 pmap_large_map_kextract(vm_offset_t va)
10179 {
10180 pdp_entry_t *pdpe, pdp;
10181 pd_entry_t *pde, pd;
10182 pt_entry_t *pte, pt;
10183
10184 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10185 ("not largemap range %#lx", (u_long)va));
10186 pdpe = pmap_large_map_pdpe(va);
10187 pdp = *pdpe;
10188 KASSERT((pdp & X86_PG_V) != 0,
10189 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10190 (u_long)pdpe, pdp));
10191 if ((pdp & X86_PG_PS) != 0) {
10192 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10193 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10194 (u_long)pdpe, pdp));
10195 return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10196 }
10197 pde = pmap_pdpe_to_pde(pdpe, va);
10198 pd = *pde;
10199 KASSERT((pd & X86_PG_V) != 0,
10200 ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10201 if ((pd & X86_PG_PS) != 0)
10202 return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10203 pte = pmap_pde_to_pte(pde, va);
10204 pt = *pte;
10205 KASSERT((pt & X86_PG_V) != 0,
10206 ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10207 return ((pt & PG_FRAME) | (va & PAGE_MASK));
10208 }
10209
10210 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10211 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10212 vmem_addr_t *vmem_res)
10213 {
10214
10215 /*
10216 * Large mappings are all but static. Consequently, there
10217 * is no point in waiting for an earlier allocation to be
10218 * freed.
10219 */
10220 return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10221 VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10222 }
10223
10224 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10225 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10226 vm_memattr_t mattr)
10227 {
10228 pdp_entry_t *pdpe;
10229 pd_entry_t *pde;
10230 pt_entry_t *pte;
10231 vm_offset_t va, inc;
10232 vmem_addr_t vmem_res;
10233 vm_paddr_t pa;
10234 int error;
10235
10236 if (len == 0 || spa + len < spa)
10237 return (EINVAL);
10238
10239 /* See if DMAP can serve. */
10240 if (spa + len <= dmaplimit) {
10241 va = PHYS_TO_DMAP(spa);
10242 *addr = (void *)va;
10243 return (pmap_change_attr(va, len, mattr));
10244 }
10245
10246 /*
10247 * No, allocate KVA. Fit the address with best possible
10248 * alignment for superpages. Fall back to worse align if
10249 * failed.
10250 */
10251 error = ENOMEM;
10252 if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10253 NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10254 error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10255 &vmem_res);
10256 if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10257 NBPDR) + NBPDR)
10258 error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10259 &vmem_res);
10260 if (error != 0)
10261 error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10262 if (error != 0)
10263 return (error);
10264
10265 /*
10266 * Fill pagetable. PG_M is not pre-set, we scan modified bits
10267 * in the pagetable to minimize flushing. No need to
10268 * invalidate TLB, since we only update invalid entries.
10269 */
10270 PMAP_LOCK(kernel_pmap);
10271 for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10272 len -= inc) {
10273 if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10274 (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10275 pdpe = pmap_large_map_pdpe(va);
10276 MPASS(*pdpe == 0);
10277 *pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10278 X86_PG_V | X86_PG_A | pg_nx |
10279 pmap_cache_bits(kernel_pmap, mattr, TRUE);
10280 inc = NBPDP;
10281 } else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10282 (va & PDRMASK) == 0) {
10283 pde = pmap_large_map_pde(va);
10284 MPASS(*pde == 0);
10285 *pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10286 X86_PG_V | X86_PG_A | pg_nx |
10287 pmap_cache_bits(kernel_pmap, mattr, TRUE);
10288 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10289 ref_count++;
10290 inc = NBPDR;
10291 } else {
10292 pte = pmap_large_map_pte(va);
10293 MPASS(*pte == 0);
10294 *pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10295 X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10296 mattr, FALSE);
10297 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10298 ref_count++;
10299 inc = PAGE_SIZE;
10300 }
10301 }
10302 PMAP_UNLOCK(kernel_pmap);
10303 MPASS(len == 0);
10304
10305 *addr = (void *)vmem_res;
10306 return (0);
10307 }
10308
10309 void
pmap_large_unmap(void * svaa,vm_size_t len)10310 pmap_large_unmap(void *svaa, vm_size_t len)
10311 {
10312 vm_offset_t sva, va;
10313 vm_size_t inc;
10314 pdp_entry_t *pdpe, pdp;
10315 pd_entry_t *pde, pd;
10316 pt_entry_t *pte;
10317 vm_page_t m;
10318 struct spglist spgf;
10319
10320 sva = (vm_offset_t)svaa;
10321 if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10322 sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10323 return;
10324
10325 SLIST_INIT(&spgf);
10326 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10327 PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10328 ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10329 PMAP_LOCK(kernel_pmap);
10330 for (va = sva; va < sva + len; va += inc) {
10331 pdpe = pmap_large_map_pdpe(va);
10332 pdp = *pdpe;
10333 KASSERT((pdp & X86_PG_V) != 0,
10334 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10335 (u_long)pdpe, pdp));
10336 if ((pdp & X86_PG_PS) != 0) {
10337 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10338 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10339 (u_long)pdpe, pdp));
10340 KASSERT((va & PDPMASK) == 0,
10341 ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10342 (u_long)pdpe, pdp));
10343 KASSERT(va + NBPDP <= sva + len,
10344 ("unmap covers partial 1GB page, sva %#lx va %#lx "
10345 "pdpe %#lx pdp %#lx len %#lx", sva, va,
10346 (u_long)pdpe, pdp, len));
10347 *pdpe = 0;
10348 inc = NBPDP;
10349 continue;
10350 }
10351 pde = pmap_pdpe_to_pde(pdpe, va);
10352 pd = *pde;
10353 KASSERT((pd & X86_PG_V) != 0,
10354 ("invalid pd va %#lx pde %#lx pd %#lx", va,
10355 (u_long)pde, pd));
10356 if ((pd & X86_PG_PS) != 0) {
10357 KASSERT((va & PDRMASK) == 0,
10358 ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10359 (u_long)pde, pd));
10360 KASSERT(va + NBPDR <= sva + len,
10361 ("unmap covers partial 2MB page, sva %#lx va %#lx "
10362 "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10363 pd, len));
10364 pde_store(pde, 0);
10365 inc = NBPDR;
10366 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10367 m->ref_count--;
10368 if (m->ref_count == 0) {
10369 *pdpe = 0;
10370 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10371 }
10372 continue;
10373 }
10374 pte = pmap_pde_to_pte(pde, va);
10375 KASSERT((*pte & X86_PG_V) != 0,
10376 ("invalid pte va %#lx pte %#lx pt %#lx", va,
10377 (u_long)pte, *pte));
10378 pte_clear(pte);
10379 inc = PAGE_SIZE;
10380 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10381 m->ref_count--;
10382 if (m->ref_count == 0) {
10383 *pde = 0;
10384 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10385 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10386 m->ref_count--;
10387 if (m->ref_count == 0) {
10388 *pdpe = 0;
10389 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10390 }
10391 }
10392 }
10393 pmap_invalidate_range(kernel_pmap, sva, sva + len);
10394 PMAP_UNLOCK(kernel_pmap);
10395 vm_page_free_pages_toq(&spgf, false);
10396 vmem_free(large_vmem, sva, len);
10397 }
10398
10399 static void
pmap_large_map_wb_fence_mfence(void)10400 pmap_large_map_wb_fence_mfence(void)
10401 {
10402
10403 mfence();
10404 }
10405
10406 static void
pmap_large_map_wb_fence_atomic(void)10407 pmap_large_map_wb_fence_atomic(void)
10408 {
10409
10410 atomic_thread_fence_seq_cst();
10411 }
10412
10413 static void
pmap_large_map_wb_fence_nop(void)10414 pmap_large_map_wb_fence_nop(void)
10415 {
10416 }
10417
10418 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10419 {
10420
10421 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10422 return (pmap_large_map_wb_fence_mfence);
10423 else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10424 CPUID_STDEXT_CLFLUSHOPT)) == 0)
10425 return (pmap_large_map_wb_fence_atomic);
10426 else
10427 /* clflush is strongly enough ordered */
10428 return (pmap_large_map_wb_fence_nop);
10429 }
10430
10431 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10432 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10433 {
10434
10435 for (; len > 0; len -= cpu_clflush_line_size,
10436 va += cpu_clflush_line_size)
10437 clwb(va);
10438 }
10439
10440 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10441 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10442 {
10443
10444 for (; len > 0; len -= cpu_clflush_line_size,
10445 va += cpu_clflush_line_size)
10446 clflushopt(va);
10447 }
10448
10449 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10450 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10451 {
10452
10453 for (; len > 0; len -= cpu_clflush_line_size,
10454 va += cpu_clflush_line_size)
10455 clflush(va);
10456 }
10457
10458 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)10459 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10460 {
10461 }
10462
10463 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10464 {
10465
10466 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10467 return (pmap_large_map_flush_range_clwb);
10468 else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10469 return (pmap_large_map_flush_range_clflushopt);
10470 else if ((cpu_feature & CPUID_CLFSH) != 0)
10471 return (pmap_large_map_flush_range_clflush);
10472 else
10473 return (pmap_large_map_flush_range_nop);
10474 }
10475
10476 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)10477 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
10478 {
10479 volatile u_long *pe;
10480 u_long p;
10481 vm_offset_t va;
10482 vm_size_t inc;
10483 bool seen_other;
10484
10485 for (va = sva; va < eva; va += inc) {
10486 inc = 0;
10487 if ((amd_feature & AMDID_PAGE1GB) != 0) {
10488 pe = (volatile u_long *)pmap_large_map_pdpe(va);
10489 p = *pe;
10490 if ((p & X86_PG_PS) != 0)
10491 inc = NBPDP;
10492 }
10493 if (inc == 0) {
10494 pe = (volatile u_long *)pmap_large_map_pde(va);
10495 p = *pe;
10496 if ((p & X86_PG_PS) != 0)
10497 inc = NBPDR;
10498 }
10499 if (inc == 0) {
10500 pe = (volatile u_long *)pmap_large_map_pte(va);
10501 p = *pe;
10502 inc = PAGE_SIZE;
10503 }
10504 seen_other = false;
10505 for (;;) {
10506 if ((p & X86_PG_AVAIL1) != 0) {
10507 /*
10508 * Spin-wait for the end of a parallel
10509 * write-back.
10510 */
10511 cpu_spinwait();
10512 p = *pe;
10513
10514 /*
10515 * If we saw other write-back
10516 * occuring, we cannot rely on PG_M to
10517 * indicate state of the cache. The
10518 * PG_M bit is cleared before the
10519 * flush to avoid ignoring new writes,
10520 * and writes which are relevant for
10521 * us might happen after.
10522 */
10523 seen_other = true;
10524 continue;
10525 }
10526
10527 if ((p & X86_PG_M) != 0 || seen_other) {
10528 if (!atomic_fcmpset_long(pe, &p,
10529 (p & ~X86_PG_M) | X86_PG_AVAIL1))
10530 /*
10531 * If we saw PG_M without
10532 * PG_AVAIL1, and then on the
10533 * next attempt we do not
10534 * observe either PG_M or
10535 * PG_AVAIL1, the other
10536 * write-back started after us
10537 * and finished before us. We
10538 * can rely on it doing our
10539 * work.
10540 */
10541 continue;
10542 pmap_large_map_flush_range(va, inc);
10543 atomic_clear_long(pe, X86_PG_AVAIL1);
10544 }
10545 break;
10546 }
10547 maybe_yield();
10548 }
10549 }
10550
10551 /*
10552 * Write-back cache lines for the given address range.
10553 *
10554 * Must be called only on the range or sub-range returned from
10555 * pmap_large_map(). Must not be called on the coalesced ranges.
10556 *
10557 * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
10558 * instructions support.
10559 */
10560 void
pmap_large_map_wb(void * svap,vm_size_t len)10561 pmap_large_map_wb(void *svap, vm_size_t len)
10562 {
10563 vm_offset_t eva, sva;
10564
10565 sva = (vm_offset_t)svap;
10566 eva = sva + len;
10567 pmap_large_map_wb_fence();
10568 if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
10569 pmap_large_map_flush_range(sva, len);
10570 } else {
10571 KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
10572 eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
10573 ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
10574 pmap_large_map_wb_large(sva, eva);
10575 }
10576 pmap_large_map_wb_fence();
10577 }
10578
10579 static vm_page_t
pmap_pti_alloc_page(void)10580 pmap_pti_alloc_page(void)
10581 {
10582 vm_page_t m;
10583
10584 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10585 m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_NOBUSY |
10586 VM_ALLOC_WIRED | VM_ALLOC_ZERO);
10587 return (m);
10588 }
10589
10590 static bool
pmap_pti_free_page(vm_page_t m)10591 pmap_pti_free_page(vm_page_t m)
10592 {
10593
10594 KASSERT(m->ref_count > 0, ("page %p not referenced", m));
10595 if (!vm_page_unwire_noq(m))
10596 return (false);
10597 vm_page_free_zero(m);
10598 return (true);
10599 }
10600
10601 static void
pmap_pti_init(void)10602 pmap_pti_init(void)
10603 {
10604 vm_page_t pml4_pg;
10605 pdp_entry_t *pdpe;
10606 vm_offset_t va;
10607 int i;
10608
10609 if (!pti)
10610 return;
10611 pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
10612 VM_OBJECT_WLOCK(pti_obj);
10613 pml4_pg = pmap_pti_alloc_page();
10614 pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
10615 for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
10616 va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
10617 pdpe = pmap_pti_pdpe(va);
10618 pmap_pti_wire_pte(pdpe);
10619 }
10620 pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
10621 (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
10622 pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
10623 sizeof(struct gate_descriptor) * NIDT, false);
10624 CPU_FOREACH(i) {
10625 /* Doublefault stack IST 1 */
10626 va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
10627 pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
10628 /* NMI stack IST 2 */
10629 va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
10630 pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
10631 /* MC# stack IST 3 */
10632 va = __pcpu[i].pc_common_tss.tss_ist3 +
10633 sizeof(struct nmi_pcpu);
10634 pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
10635 /* DB# stack IST 4 */
10636 va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
10637 pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
10638 }
10639 pmap_pti_add_kva_locked((vm_offset_t)kernphys + KERNBASE,
10640 (vm_offset_t)etext, true);
10641 pti_finalized = true;
10642 VM_OBJECT_WUNLOCK(pti_obj);
10643 }
10644 SYSINIT(pmap_pti, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_pti_init, NULL);
10645
10646 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)10647 pmap_pti_pdpe(vm_offset_t va)
10648 {
10649 pml4_entry_t *pml4e;
10650 pdp_entry_t *pdpe;
10651 vm_page_t m;
10652 vm_pindex_t pml4_idx;
10653 vm_paddr_t mphys;
10654
10655 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10656
10657 pml4_idx = pmap_pml4e_index(va);
10658 pml4e = &pti_pml4[pml4_idx];
10659 m = NULL;
10660 if (*pml4e == 0) {
10661 if (pti_finalized)
10662 panic("pml4 alloc after finalization\n");
10663 m = pmap_pti_alloc_page();
10664 if (*pml4e != 0) {
10665 pmap_pti_free_page(m);
10666 mphys = *pml4e & ~PAGE_MASK;
10667 } else {
10668 mphys = VM_PAGE_TO_PHYS(m);
10669 *pml4e = mphys | X86_PG_RW | X86_PG_V;
10670 }
10671 } else {
10672 mphys = *pml4e & ~PAGE_MASK;
10673 }
10674 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
10675 return (pdpe);
10676 }
10677
10678 static void
pmap_pti_wire_pte(void * pte)10679 pmap_pti_wire_pte(void *pte)
10680 {
10681 vm_page_t m;
10682
10683 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10684 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
10685 m->ref_count++;
10686 }
10687
10688 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)10689 pmap_pti_unwire_pde(void *pde, bool only_ref)
10690 {
10691 vm_page_t m;
10692
10693 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10694 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
10695 MPASS(m->ref_count > 0);
10696 MPASS(only_ref || m->ref_count > 1);
10697 pmap_pti_free_page(m);
10698 }
10699
10700 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)10701 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
10702 {
10703 vm_page_t m;
10704 pd_entry_t *pde;
10705
10706 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10707 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
10708 MPASS(m->ref_count > 0);
10709 if (pmap_pti_free_page(m)) {
10710 pde = pmap_pti_pde(va);
10711 MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
10712 *pde = 0;
10713 pmap_pti_unwire_pde(pde, false);
10714 }
10715 }
10716
10717 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)10718 pmap_pti_pde(vm_offset_t va)
10719 {
10720 pdp_entry_t *pdpe;
10721 pd_entry_t *pde;
10722 vm_page_t m;
10723 vm_pindex_t pd_idx;
10724 vm_paddr_t mphys;
10725
10726 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10727
10728 pdpe = pmap_pti_pdpe(va);
10729 if (*pdpe == 0) {
10730 m = pmap_pti_alloc_page();
10731 if (*pdpe != 0) {
10732 pmap_pti_free_page(m);
10733 MPASS((*pdpe & X86_PG_PS) == 0);
10734 mphys = *pdpe & ~PAGE_MASK;
10735 } else {
10736 mphys = VM_PAGE_TO_PHYS(m);
10737 *pdpe = mphys | X86_PG_RW | X86_PG_V;
10738 }
10739 } else {
10740 MPASS((*pdpe & X86_PG_PS) == 0);
10741 mphys = *pdpe & ~PAGE_MASK;
10742 }
10743
10744 pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
10745 pd_idx = pmap_pde_index(va);
10746 pde += pd_idx;
10747 return (pde);
10748 }
10749
10750 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)10751 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
10752 {
10753 pd_entry_t *pde;
10754 pt_entry_t *pte;
10755 vm_page_t m;
10756 vm_paddr_t mphys;
10757
10758 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10759
10760 pde = pmap_pti_pde(va);
10761 if (unwire_pde != NULL) {
10762 *unwire_pde = true;
10763 pmap_pti_wire_pte(pde);
10764 }
10765 if (*pde == 0) {
10766 m = pmap_pti_alloc_page();
10767 if (*pde != 0) {
10768 pmap_pti_free_page(m);
10769 MPASS((*pde & X86_PG_PS) == 0);
10770 mphys = *pde & ~(PAGE_MASK | pg_nx);
10771 } else {
10772 mphys = VM_PAGE_TO_PHYS(m);
10773 *pde = mphys | X86_PG_RW | X86_PG_V;
10774 if (unwire_pde != NULL)
10775 *unwire_pde = false;
10776 }
10777 } else {
10778 MPASS((*pde & X86_PG_PS) == 0);
10779 mphys = *pde & ~(PAGE_MASK | pg_nx);
10780 }
10781
10782 pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
10783 pte += pmap_pte_index(va);
10784
10785 return (pte);
10786 }
10787
10788 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)10789 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
10790 {
10791 vm_paddr_t pa;
10792 pd_entry_t *pde;
10793 pt_entry_t *pte, ptev;
10794 bool unwire_pde;
10795
10796 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10797
10798 sva = trunc_page(sva);
10799 MPASS(sva > VM_MAXUSER_ADDRESS);
10800 eva = round_page(eva);
10801 MPASS(sva < eva);
10802 for (; sva < eva; sva += PAGE_SIZE) {
10803 pte = pmap_pti_pte(sva, &unwire_pde);
10804 pa = pmap_kextract(sva);
10805 ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
10806 (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
10807 VM_MEMATTR_DEFAULT, FALSE);
10808 if (*pte == 0) {
10809 pte_store(pte, ptev);
10810 pmap_pti_wire_pte(pte);
10811 } else {
10812 KASSERT(!pti_finalized,
10813 ("pti overlap after fin %#lx %#lx %#lx",
10814 sva, *pte, ptev));
10815 KASSERT(*pte == ptev,
10816 ("pti non-identical pte after fin %#lx %#lx %#lx",
10817 sva, *pte, ptev));
10818 }
10819 if (unwire_pde) {
10820 pde = pmap_pti_pde(sva);
10821 pmap_pti_unwire_pde(pde, true);
10822 }
10823 }
10824 }
10825
10826 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)10827 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
10828 {
10829
10830 if (!pti)
10831 return;
10832 VM_OBJECT_WLOCK(pti_obj);
10833 pmap_pti_add_kva_locked(sva, eva, exec);
10834 VM_OBJECT_WUNLOCK(pti_obj);
10835 }
10836
10837 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)10838 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
10839 {
10840 pt_entry_t *pte;
10841 vm_offset_t va;
10842
10843 if (!pti)
10844 return;
10845 sva = rounddown2(sva, PAGE_SIZE);
10846 MPASS(sva > VM_MAXUSER_ADDRESS);
10847 eva = roundup2(eva, PAGE_SIZE);
10848 MPASS(sva < eva);
10849 VM_OBJECT_WLOCK(pti_obj);
10850 for (va = sva; va < eva; va += PAGE_SIZE) {
10851 pte = pmap_pti_pte(va, NULL);
10852 KASSERT((*pte & X86_PG_V) != 0,
10853 ("invalid pte va %#lx pte %#lx pt %#lx", va,
10854 (u_long)pte, *pte));
10855 pte_clear(pte);
10856 pmap_pti_unwire_pte(pte, va);
10857 }
10858 pmap_invalidate_range(kernel_pmap, sva, eva);
10859 VM_OBJECT_WUNLOCK(pti_obj);
10860 }
10861
10862 static void *
pkru_dup_range(void * ctx __unused,void * data)10863 pkru_dup_range(void *ctx __unused, void *data)
10864 {
10865 struct pmap_pkru_range *node, *new_node;
10866
10867 new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
10868 if (new_node == NULL)
10869 return (NULL);
10870 node = data;
10871 memcpy(new_node, node, sizeof(*node));
10872 return (new_node);
10873 }
10874
10875 static void
pkru_free_range(void * ctx __unused,void * node)10876 pkru_free_range(void *ctx __unused, void *node)
10877 {
10878
10879 uma_zfree(pmap_pkru_ranges_zone, node);
10880 }
10881
10882 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)10883 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
10884 int flags)
10885 {
10886 struct pmap_pkru_range *ppr;
10887 int error;
10888
10889 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10890 MPASS(pmap->pm_type == PT_X86);
10891 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
10892 if ((flags & AMD64_PKRU_EXCL) != 0 &&
10893 !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
10894 return (EBUSY);
10895 ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
10896 if (ppr == NULL)
10897 return (ENOMEM);
10898 ppr->pkru_keyidx = keyidx;
10899 ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
10900 error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
10901 if (error != 0)
10902 uma_zfree(pmap_pkru_ranges_zone, ppr);
10903 return (error);
10904 }
10905
10906 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)10907 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
10908 {
10909
10910 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10911 MPASS(pmap->pm_type == PT_X86);
10912 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
10913 return (rangeset_remove(&pmap->pm_pkru, sva, eva));
10914 }
10915
10916 static void
pmap_pkru_deassign_all(pmap_t pmap)10917 pmap_pkru_deassign_all(pmap_t pmap)
10918 {
10919
10920 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10921 if (pmap->pm_type == PT_X86 &&
10922 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
10923 rangeset_remove_all(&pmap->pm_pkru);
10924 }
10925
10926 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)10927 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
10928 {
10929 struct pmap_pkru_range *ppr, *prev_ppr;
10930 vm_offset_t va;
10931
10932 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10933 if (pmap->pm_type != PT_X86 ||
10934 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
10935 sva >= VM_MAXUSER_ADDRESS)
10936 return (true);
10937 MPASS(eva <= VM_MAXUSER_ADDRESS);
10938 for (va = sva; va < eva; prev_ppr = ppr) {
10939 ppr = rangeset_lookup(&pmap->pm_pkru, va);
10940 if (va == sva)
10941 prev_ppr = ppr;
10942 else if ((ppr == NULL) ^ (prev_ppr == NULL))
10943 return (false);
10944 if (ppr == NULL) {
10945 va += PAGE_SIZE;
10946 continue;
10947 }
10948 if (prev_ppr->pkru_keyidx != ppr->pkru_keyidx)
10949 return (false);
10950 va = ppr->pkru_rs_el.re_end;
10951 }
10952 return (true);
10953 }
10954
10955 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)10956 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
10957 {
10958 struct pmap_pkru_range *ppr;
10959
10960 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10961 if (pmap->pm_type != PT_X86 ||
10962 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
10963 va >= VM_MAXUSER_ADDRESS)
10964 return (0);
10965 ppr = rangeset_lookup(&pmap->pm_pkru, va);
10966 if (ppr != NULL)
10967 return (X86_PG_PKU(ppr->pkru_keyidx));
10968 return (0);
10969 }
10970
10971 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)10972 pred_pkru_on_remove(void *ctx __unused, void *r)
10973 {
10974 struct pmap_pkru_range *ppr;
10975
10976 ppr = r;
10977 return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
10978 }
10979
10980 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)10981 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
10982 {
10983
10984 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10985 if (pmap->pm_type == PT_X86 &&
10986 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
10987 rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
10988 pred_pkru_on_remove);
10989 }
10990 }
10991
10992 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)10993 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
10994 {
10995
10996 PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
10997 PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
10998 MPASS(dst_pmap->pm_type == PT_X86);
10999 MPASS(src_pmap->pm_type == PT_X86);
11000 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11001 if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11002 return (0);
11003 return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11004 }
11005
11006 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11007 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11008 u_int keyidx)
11009 {
11010 pml4_entry_t *pml4e;
11011 pdp_entry_t *pdpe;
11012 pd_entry_t newpde, ptpaddr, *pde;
11013 pt_entry_t newpte, *ptep, pte;
11014 vm_offset_t va, va_next;
11015 bool changed;
11016
11017 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11018 MPASS(pmap->pm_type == PT_X86);
11019 MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11020
11021 for (changed = false, va = sva; va < eva; va = va_next) {
11022 pml4e = pmap_pml4e(pmap, va);
11023 if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11024 va_next = (va + NBPML4) & ~PML4MASK;
11025 if (va_next < va)
11026 va_next = eva;
11027 continue;
11028 }
11029
11030 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11031 if ((*pdpe & X86_PG_V) == 0) {
11032 va_next = (va + NBPDP) & ~PDPMASK;
11033 if (va_next < va)
11034 va_next = eva;
11035 continue;
11036 }
11037
11038 va_next = (va + NBPDR) & ~PDRMASK;
11039 if (va_next < va)
11040 va_next = eva;
11041
11042 pde = pmap_pdpe_to_pde(pdpe, va);
11043 ptpaddr = *pde;
11044 if (ptpaddr == 0)
11045 continue;
11046
11047 MPASS((ptpaddr & X86_PG_V) != 0);
11048 if ((ptpaddr & PG_PS) != 0) {
11049 if (va + NBPDR == va_next && eva >= va_next) {
11050 newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11051 X86_PG_PKU(keyidx);
11052 if (newpde != ptpaddr) {
11053 *pde = newpde;
11054 changed = true;
11055 }
11056 continue;
11057 } else if (!pmap_demote_pde(pmap, pde, va)) {
11058 continue;
11059 }
11060 }
11061
11062 if (va_next > eva)
11063 va_next = eva;
11064
11065 for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11066 ptep++, va += PAGE_SIZE) {
11067 pte = *ptep;
11068 if ((pte & X86_PG_V) == 0)
11069 continue;
11070 newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11071 if (newpte != pte) {
11072 *ptep = newpte;
11073 changed = true;
11074 }
11075 }
11076 }
11077 if (changed)
11078 pmap_invalidate_range(pmap, sva, eva);
11079 }
11080
11081 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11082 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11083 u_int keyidx, int flags)
11084 {
11085
11086 if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11087 (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11088 return (EINVAL);
11089 if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11090 return (EFAULT);
11091 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11092 return (ENOTSUP);
11093 return (0);
11094 }
11095
11096 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11097 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11098 int flags)
11099 {
11100 int error;
11101
11102 sva = trunc_page(sva);
11103 eva = round_page(eva);
11104 error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11105 if (error != 0)
11106 return (error);
11107 for (;;) {
11108 PMAP_LOCK(pmap);
11109 error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11110 if (error == 0)
11111 pmap_pkru_update_range(pmap, sva, eva, keyidx);
11112 PMAP_UNLOCK(pmap);
11113 if (error != ENOMEM)
11114 break;
11115 vm_wait(NULL);
11116 }
11117 return (error);
11118 }
11119
11120 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11121 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11122 {
11123 int error;
11124
11125 sva = trunc_page(sva);
11126 eva = round_page(eva);
11127 error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11128 if (error != 0)
11129 return (error);
11130 for (;;) {
11131 PMAP_LOCK(pmap);
11132 error = pmap_pkru_deassign(pmap, sva, eva);
11133 if (error == 0)
11134 pmap_pkru_update_range(pmap, sva, eva, 0);
11135 PMAP_UNLOCK(pmap);
11136 if (error != ENOMEM)
11137 break;
11138 vm_wait(NULL);
11139 }
11140 return (error);
11141 }
11142
11143 /*
11144 * Track a range of the kernel's virtual address space that is contiguous
11145 * in various mapping attributes.
11146 */
11147 struct pmap_kernel_map_range {
11148 vm_offset_t sva;
11149 pt_entry_t attrs;
11150 int ptes;
11151 int pdes;
11152 int pdpes;
11153 };
11154
11155 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11156 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11157 vm_offset_t eva)
11158 {
11159 const char *mode;
11160 int i, pat_idx;
11161
11162 if (eva <= range->sva)
11163 return;
11164
11165 pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11166 for (i = 0; i < PAT_INDEX_SIZE; i++)
11167 if (pat_index[i] == pat_idx)
11168 break;
11169
11170 switch (i) {
11171 case PAT_WRITE_BACK:
11172 mode = "WB";
11173 break;
11174 case PAT_WRITE_THROUGH:
11175 mode = "WT";
11176 break;
11177 case PAT_UNCACHEABLE:
11178 mode = "UC";
11179 break;
11180 case PAT_UNCACHED:
11181 mode = "U-";
11182 break;
11183 case PAT_WRITE_PROTECTED:
11184 mode = "WP";
11185 break;
11186 case PAT_WRITE_COMBINING:
11187 mode = "WC";
11188 break;
11189 default:
11190 printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11191 __func__, pat_idx, range->sva, eva);
11192 mode = "??";
11193 break;
11194 }
11195
11196 sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11197 range->sva, eva,
11198 (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11199 (range->attrs & pg_nx) != 0 ? '-' : 'x',
11200 (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11201 (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11202 mode, range->pdpes, range->pdes, range->ptes);
11203
11204 /* Reset to sentinel value. */
11205 range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11206 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11207 NPDEPG - 1, NPTEPG - 1);
11208 }
11209
11210 /*
11211 * Determine whether the attributes specified by a page table entry match those
11212 * being tracked by the current range. This is not quite as simple as a direct
11213 * flag comparison since some PAT modes have multiple representations.
11214 */
11215 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11216 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11217 {
11218 pt_entry_t diff, mask;
11219
11220 mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11221 diff = (range->attrs ^ attrs) & mask;
11222 if (diff == 0)
11223 return (true);
11224 if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11225 pmap_pat_index(kernel_pmap, range->attrs, true) ==
11226 pmap_pat_index(kernel_pmap, attrs, true))
11227 return (true);
11228 return (false);
11229 }
11230
11231 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11232 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11233 pt_entry_t attrs)
11234 {
11235
11236 memset(range, 0, sizeof(*range));
11237 range->sva = va;
11238 range->attrs = attrs;
11239 }
11240
11241 /*
11242 * Given a leaf PTE, derive the mapping's attributes. If they do not match
11243 * those of the current run, dump the address range and its attributes, and
11244 * begin a new run.
11245 */
11246 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11247 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11248 vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11249 pt_entry_t pte)
11250 {
11251 pt_entry_t attrs;
11252
11253 attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11254
11255 attrs |= pdpe & pg_nx;
11256 attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11257 if ((pdpe & PG_PS) != 0) {
11258 attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11259 } else if (pde != 0) {
11260 attrs |= pde & pg_nx;
11261 attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11262 }
11263 if ((pde & PG_PS) != 0) {
11264 attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11265 } else if (pte != 0) {
11266 attrs |= pte & pg_nx;
11267 attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11268 attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11269
11270 /* Canonicalize by always using the PDE PAT bit. */
11271 if ((attrs & X86_PG_PTE_PAT) != 0)
11272 attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11273 }
11274
11275 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11276 sysctl_kmaps_dump(sb, range, va);
11277 sysctl_kmaps_reinit(range, va, attrs);
11278 }
11279 }
11280
11281 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)11282 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11283 {
11284 struct pmap_kernel_map_range range;
11285 struct sbuf sbuf, *sb;
11286 pml4_entry_t pml4e;
11287 pdp_entry_t *pdp, pdpe;
11288 pd_entry_t *pd, pde;
11289 pt_entry_t *pt, pte;
11290 vm_offset_t sva;
11291 vm_paddr_t pa;
11292 int error, i, j, k, l;
11293
11294 error = sysctl_wire_old_buffer(req, 0);
11295 if (error != 0)
11296 return (error);
11297 sb = &sbuf;
11298 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
11299
11300 /* Sentinel value. */
11301 range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11302 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11303 NPDEPG - 1, NPTEPG - 1);
11304
11305 /*
11306 * Iterate over the kernel page tables without holding the kernel pmap
11307 * lock. Outside of the large map, kernel page table pages are never
11308 * freed, so at worst we will observe inconsistencies in the output.
11309 * Within the large map, ensure that PDP and PD page addresses are
11310 * valid before descending.
11311 */
11312 for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
11313 switch (i) {
11314 case PML4PML4I:
11315 sbuf_printf(sb, "\nRecursive map:\n");
11316 break;
11317 case DMPML4I:
11318 sbuf_printf(sb, "\nDirect map:\n");
11319 break;
11320 case KPML4BASE:
11321 sbuf_printf(sb, "\nKernel map:\n");
11322 break;
11323 case LMSPML4I:
11324 sbuf_printf(sb, "\nLarge map:\n");
11325 break;
11326 }
11327
11328 /* Convert to canonical form. */
11329 if (sva == 1ul << 47)
11330 sva |= -1ul << 48;
11331
11332 restart:
11333 pml4e = kernel_pml4[i];
11334 if ((pml4e & X86_PG_V) == 0) {
11335 sva = rounddown2(sva, NBPML4);
11336 sysctl_kmaps_dump(sb, &range, sva);
11337 sva += NBPML4;
11338 continue;
11339 }
11340 pa = pml4e & PG_FRAME;
11341 pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
11342
11343 for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
11344 pdpe = pdp[j];
11345 if ((pdpe & X86_PG_V) == 0) {
11346 sva = rounddown2(sva, NBPDP);
11347 sysctl_kmaps_dump(sb, &range, sva);
11348 sva += NBPDP;
11349 continue;
11350 }
11351 pa = pdpe & PG_FRAME;
11352 if ((pdpe & PG_PS) != 0) {
11353 sva = rounddown2(sva, NBPDP);
11354 sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
11355 0, 0);
11356 range.pdpes++;
11357 sva += NBPDP;
11358 continue;
11359 }
11360 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11361 vm_phys_paddr_to_vm_page(pa) == NULL) {
11362 /*
11363 * Page table pages for the large map may be
11364 * freed. Validate the next-level address
11365 * before descending.
11366 */
11367 goto restart;
11368 }
11369 pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
11370
11371 for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
11372 pde = pd[k];
11373 if ((pde & X86_PG_V) == 0) {
11374 sva = rounddown2(sva, NBPDR);
11375 sysctl_kmaps_dump(sb, &range, sva);
11376 sva += NBPDR;
11377 continue;
11378 }
11379 pa = pde & PG_FRAME;
11380 if ((pde & PG_PS) != 0) {
11381 sva = rounddown2(sva, NBPDR);
11382 sysctl_kmaps_check(sb, &range, sva,
11383 pml4e, pdpe, pde, 0);
11384 range.pdes++;
11385 sva += NBPDR;
11386 continue;
11387 }
11388 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11389 vm_phys_paddr_to_vm_page(pa) == NULL) {
11390 /*
11391 * Page table pages for the large map
11392 * may be freed. Validate the
11393 * next-level address before descending.
11394 */
11395 goto restart;
11396 }
11397 pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
11398
11399 for (l = pmap_pte_index(sva); l < NPTEPG; l++,
11400 sva += PAGE_SIZE) {
11401 pte = pt[l];
11402 if ((pte & X86_PG_V) == 0) {
11403 sysctl_kmaps_dump(sb, &range,
11404 sva);
11405 continue;
11406 }
11407 sysctl_kmaps_check(sb, &range, sva,
11408 pml4e, pdpe, pde, pte);
11409 range.ptes++;
11410 }
11411 }
11412 }
11413 }
11414
11415 error = sbuf_finish(sb);
11416 sbuf_delete(sb);
11417 return (error);
11418 }
11419 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
11420 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
11421 NULL, 0, sysctl_kmaps, "A",
11422 "Dump kernel address layout");
11423
11424 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)11425 DB_SHOW_COMMAND(pte, pmap_print_pte)
11426 {
11427 pmap_t pmap;
11428 pml5_entry_t *pml5;
11429 pml4_entry_t *pml4;
11430 pdp_entry_t *pdp;
11431 pd_entry_t *pde;
11432 pt_entry_t *pte, PG_V;
11433 vm_offset_t va;
11434
11435 if (!have_addr) {
11436 db_printf("show pte addr\n");
11437 return;
11438 }
11439 va = (vm_offset_t)addr;
11440
11441 if (kdb_thread != NULL)
11442 pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
11443 else
11444 pmap = PCPU_GET(curpmap);
11445
11446 PG_V = pmap_valid_bit(pmap);
11447 db_printf("VA 0x%016lx", va);
11448
11449 if (pmap_is_la57(pmap)) {
11450 pml5 = pmap_pml5e(pmap, va);
11451 db_printf(" pml5e 0x%016lx", *pml5);
11452 if ((*pml5 & PG_V) == 0) {
11453 db_printf("\n");
11454 return;
11455 }
11456 pml4 = pmap_pml5e_to_pml4e(pml5, va);
11457 } else {
11458 pml4 = pmap_pml4e(pmap, va);
11459 }
11460 db_printf(" pml4e 0x%016lx", *pml4);
11461 if ((*pml4 & PG_V) == 0) {
11462 db_printf("\n");
11463 return;
11464 }
11465 pdp = pmap_pml4e_to_pdpe(pml4, va);
11466 db_printf(" pdpe 0x%016lx", *pdp);
11467 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
11468 db_printf("\n");
11469 return;
11470 }
11471 pde = pmap_pdpe_to_pde(pdp, va);
11472 db_printf(" pde 0x%016lx", *pde);
11473 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
11474 db_printf("\n");
11475 return;
11476 }
11477 pte = pmap_pde_to_pte(pde, va);
11478 db_printf(" pte 0x%016lx\n", *pte);
11479 }
11480
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)11481 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
11482 {
11483 vm_paddr_t a;
11484
11485 if (have_addr) {
11486 a = (vm_paddr_t)addr;
11487 db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
11488 } else {
11489 db_printf("show phys2dmap addr\n");
11490 }
11491 }
11492
11493 static void
ptpages_show_page(int level,int idx,vm_page_t pg)11494 ptpages_show_page(int level, int idx, vm_page_t pg)
11495 {
11496 db_printf("l %d i %d pg %p phys %#lx ref %x\n",
11497 level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
11498 }
11499
11500 static void
ptpages_show_complain(int level,int idx,uint64_t pte)11501 ptpages_show_complain(int level, int idx, uint64_t pte)
11502 {
11503 db_printf("l %d i %d pte %#lx\n", level, idx, pte);
11504 }
11505
11506 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)11507 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
11508 {
11509 vm_page_t pg3, pg2, pg1;
11510 pml4_entry_t *pml4;
11511 pdp_entry_t *pdp;
11512 pd_entry_t *pd;
11513 int i4, i3, i2;
11514
11515 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
11516 for (i4 = 0; i4 < num_entries; i4++) {
11517 if ((pml4[i4] & PG_V) == 0)
11518 continue;
11519 pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
11520 if (pg3 == NULL) {
11521 ptpages_show_complain(3, i4, pml4[i4]);
11522 continue;
11523 }
11524 ptpages_show_page(3, i4, pg3);
11525 pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
11526 for (i3 = 0; i3 < NPDPEPG; i3++) {
11527 if ((pdp[i3] & PG_V) == 0)
11528 continue;
11529 pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
11530 if (pg3 == NULL) {
11531 ptpages_show_complain(2, i3, pdp[i3]);
11532 continue;
11533 }
11534 ptpages_show_page(2, i3, pg2);
11535 pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
11536 for (i2 = 0; i2 < NPDEPG; i2++) {
11537 if ((pd[i2] & PG_V) == 0)
11538 continue;
11539 pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
11540 if (pg1 == NULL) {
11541 ptpages_show_complain(1, i2, pd[i2]);
11542 continue;
11543 }
11544 ptpages_show_page(1, i2, pg1);
11545 }
11546 }
11547 }
11548 }
11549
DB_SHOW_COMMAND(ptpages,pmap_ptpages)11550 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
11551 {
11552 pmap_t pmap;
11553 vm_page_t pg;
11554 pml5_entry_t *pml5;
11555 uint64_t PG_V;
11556 int i5;
11557
11558 if (have_addr)
11559 pmap = (pmap_t)addr;
11560 else
11561 pmap = PCPU_GET(curpmap);
11562
11563 PG_V = pmap_valid_bit(pmap);
11564
11565 if (pmap_is_la57(pmap)) {
11566 pml5 = pmap->pm_pmltop;
11567 for (i5 = 0; i5 < NUPML5E; i5++) {
11568 if ((pml5[i5] & PG_V) == 0)
11569 continue;
11570 pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
11571 if (pg == NULL) {
11572 ptpages_show_complain(4, i5, pml5[i5]);
11573 continue;
11574 }
11575 ptpages_show_page(4, i5, pg);
11576 ptpages_show_pml4(pg, NPML4EPG, PG_V);
11577 }
11578 } else {
11579 ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
11580 (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
11581 }
11582 }
11583 #endif
11584