xref: /f-stack/freebsd/amd64/amd64/pmap.c (revision 22ce4aff)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <[email protected]>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
48  */
49 /*-
50  * Copyright (c) 2003 Networks Associates Technology, Inc.
51  * Copyright (c) 2014-2020 The FreeBSD Foundation
52  * All rights reserved.
53  *
54  * This software was developed for the FreeBSD Project by Jake Burkholder,
55  * Safeport Network Services, and Network Associates Laboratories, the
56  * Security Research Division of Network Associates, Inc. under
57  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
58  * CHATS research program.
59  *
60  * Portions of this software were developed by
61  * Konstantin Belousov <[email protected]> under sponsorship from
62  * the FreeBSD Foundation.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  */
85 
86 #define	AMD64_NPT_AWARE
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 /*
92  *	Manages physical address maps.
93  *
94  *	Since the information managed by this module is
95  *	also stored by the logical address mapping module,
96  *	this module may throw away valid virtual-to-physical
97  *	mappings at almost any time.  However, invalidations
98  *	of virtual-to-physical mappings must be done as
99  *	requested.
100  *
101  *	In order to cope with hardware architectures which
102  *	make virtual-to-physical map invalidates expensive,
103  *	this module may delay invalidate or reduced protection
104  *	operations until such time as they are actually
105  *	necessary.  This module is given full information as
106  *	to which processors are currently using which maps,
107  *	and to when physical maps must be made correct.
108  */
109 
110 #include "opt_ddb.h"
111 #include "opt_pmap.h"
112 #include "opt_vm.h"
113 
114 #include <sys/param.h>
115 #include <sys/bitstring.h>
116 #include <sys/bus.h>
117 #include <sys/systm.h>
118 #include <sys/kernel.h>
119 #include <sys/ktr.h>
120 #include <sys/lock.h>
121 #include <sys/malloc.h>
122 #include <sys/mman.h>
123 #include <sys/mutex.h>
124 #include <sys/proc.h>
125 #include <sys/rangeset.h>
126 #include <sys/rwlock.h>
127 #include <sys/sbuf.h>
128 #include <sys/smr.h>
129 #include <sys/sx.h>
130 #include <sys/turnstile.h>
131 #include <sys/vmem.h>
132 #include <sys/vmmeter.h>
133 #include <sys/sched.h>
134 #include <sys/sysctl.h>
135 #include <sys/smp.h>
136 #ifdef DDB
137 #include <sys/kdb.h>
138 #include <ddb/ddb.h>
139 #endif
140 
141 #include <vm/vm.h>
142 #include <vm/vm_param.h>
143 #include <vm/vm_kern.h>
144 #include <vm/vm_page.h>
145 #include <vm/vm_map.h>
146 #include <vm/vm_object.h>
147 #include <vm/vm_extern.h>
148 #include <vm/vm_pageout.h>
149 #include <vm/vm_pager.h>
150 #include <vm/vm_phys.h>
151 #include <vm/vm_radix.h>
152 #include <vm/vm_reserv.h>
153 #include <vm/vm_dumpset.h>
154 #include <vm/uma.h>
155 
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/intr_machdep.h>
162 #include <machine/md_var.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170 
171 #ifdef NUMA
172 #define	PMAP_MEMDOM	MAXMEMDOM
173 #else
174 #define	PMAP_MEMDOM	1
175 #endif
176 
177 static __inline boolean_t
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180 
181 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183 
184 static __inline boolean_t
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187 
188 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190 
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 	pt_entry_t mask;
195 
196 	switch (pmap->pm_type) {
197 	case PT_X86:
198 	case PT_RVI:
199 		mask = X86_PG_V;
200 		break;
201 	case PT_EPT:
202 		if (pmap_emulate_ad_bits(pmap))
203 			mask = EPT_PG_EMUL_V;
204 		else
205 			mask = EPT_PG_READ;
206 		break;
207 	default:
208 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 	}
210 
211 	return (mask);
212 }
213 
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 	pt_entry_t mask;
218 
219 	switch (pmap->pm_type) {
220 	case PT_X86:
221 	case PT_RVI:
222 		mask = X86_PG_RW;
223 		break;
224 	case PT_EPT:
225 		if (pmap_emulate_ad_bits(pmap))
226 			mask = EPT_PG_EMUL_RW;
227 		else
228 			mask = EPT_PG_WRITE;
229 		break;
230 	default:
231 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 	}
233 
234 	return (mask);
235 }
236 
237 static pt_entry_t pg_g;
238 
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 	pt_entry_t mask;
243 
244 	switch (pmap->pm_type) {
245 	case PT_X86:
246 		mask = pg_g;
247 		break;
248 	case PT_RVI:
249 	case PT_EPT:
250 		mask = 0;
251 		break;
252 	default:
253 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 	}
255 
256 	return (mask);
257 }
258 
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 	pt_entry_t mask;
263 
264 	switch (pmap->pm_type) {
265 	case PT_X86:
266 	case PT_RVI:
267 		mask = X86_PG_A;
268 		break;
269 	case PT_EPT:
270 		if (pmap_emulate_ad_bits(pmap))
271 			mask = EPT_PG_READ;
272 		else
273 			mask = EPT_PG_A;
274 		break;
275 	default:
276 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 	}
278 
279 	return (mask);
280 }
281 
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 	pt_entry_t mask;
286 
287 	switch (pmap->pm_type) {
288 	case PT_X86:
289 	case PT_RVI:
290 		mask = X86_PG_M;
291 		break;
292 	case PT_EPT:
293 		if (pmap_emulate_ad_bits(pmap))
294 			mask = EPT_PG_WRITE;
295 		else
296 			mask = EPT_PG_M;
297 		break;
298 	default:
299 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 	}
301 
302 	return (mask);
303 }
304 
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308 
309 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311 
312 #if !defined(DIAGNOSTIC)
313 #ifdef __GNUC_GNU_INLINE__
314 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
315 #else
316 #define PMAP_INLINE	extern inline
317 #endif
318 #else
319 #define PMAP_INLINE
320 #endif
321 
322 #ifdef PV_STATS
323 #define PV_STAT(x)	do { x ; } while (0)
324 #else
325 #define PV_STAT(x)	do { } while (0)
326 #endif
327 
328 #undef pa_index
329 #ifdef NUMA
330 #define	pa_index(pa)	({					\
331 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
332 	    ("address %lx beyond the last segment", (pa)));	\
333 	(pa) >> PDRSHIFT;					\
334 })
335 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
336 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
337 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
338 	struct rwlock *_lock;					\
339 	if (__predict_false((pa) > pmap_last_pa))		\
340 		_lock = &pv_dummy_large.pv_lock;		\
341 	else							\
342 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
343 	_lock;							\
344 })
345 #else
346 #define	pa_index(pa)	((pa) >> PDRSHIFT)
347 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
348 
349 #define	NPV_LIST_LOCKS	MAXCPU
350 
351 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
352 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
353 #endif
354 
355 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
356 	struct rwlock **_lockp = (lockp);		\
357 	struct rwlock *_new_lock;			\
358 							\
359 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
360 	if (_new_lock != *_lockp) {			\
361 		if (*_lockp != NULL)			\
362 			rw_wunlock(*_lockp);		\
363 		*_lockp = _new_lock;			\
364 		rw_wlock(*_lockp);			\
365 	}						\
366 } while (0)
367 
368 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
369 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
370 
371 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
372 	struct rwlock **_lockp = (lockp);		\
373 							\
374 	if (*_lockp != NULL) {				\
375 		rw_wunlock(*_lockp);			\
376 		*_lockp = NULL;				\
377 	}						\
378 } while (0)
379 
380 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
381 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
382 
383 struct pmap kernel_pmap_store;
384 
385 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
386 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
387 
388 int nkpt;
389 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
390     "Number of kernel page table pages allocated on bootup");
391 
392 static int ndmpdp;
393 vm_paddr_t dmaplimit;
394 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
395 pt_entry_t pg_nx;
396 
397 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
398     "VM/pmap parameters");
399 
400 static int pg_ps_enabled = 1;
401 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
402     &pg_ps_enabled, 0, "Are large page mappings enabled?");
403 
404 int __read_frequently la57 = 0;
405 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
406     &la57, 0,
407     "5-level paging for host is enabled");
408 
409 static bool
pmap_is_la57(pmap_t pmap)410 pmap_is_la57(pmap_t pmap)
411 {
412 	if (pmap->pm_type == PT_X86)
413 		return (la57);
414 	return (false);		/* XXXKIB handle EPT */
415 }
416 
417 #define	PAT_INDEX_SIZE	8
418 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
419 
420 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
421 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
422 u_int64_t		KPDPphys;	/* phys addr of kernel level 3 */
423 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
424 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
425 					   if supported */
426 
427 static pml4_entry_t	*kernel_pml4;
428 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
429 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
430 static int		ndmpdpphys;	/* number of DMPDPphys pages */
431 
432 static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
433 
434 /*
435  * pmap_mapdev support pre initialization (i.e. console)
436  */
437 #define	PMAP_PREINIT_MAPPING_COUNT	8
438 static struct pmap_preinit_mapping {
439 	vm_paddr_t	pa;
440 	vm_offset_t	va;
441 	vm_size_t	sz;
442 	int		mode;
443 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
444 static int pmap_initialized;
445 
446 /*
447  * Data for the pv entry allocation mechanism.
448  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
449  */
450 #ifdef NUMA
451 static __inline int
pc_to_domain(struct pv_chunk * pc)452 pc_to_domain(struct pv_chunk *pc)
453 {
454 
455 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
456 }
457 #else
458 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)459 pc_to_domain(struct pv_chunk *pc __unused)
460 {
461 
462 	return (0);
463 }
464 #endif
465 
466 struct pv_chunks_list {
467 	struct mtx pvc_lock;
468 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
469 	int active_reclaims;
470 } __aligned(CACHE_LINE_SIZE);
471 
472 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
473 
474 #ifdef	NUMA
475 struct pmap_large_md_page {
476 	struct rwlock   pv_lock;
477 	struct md_page  pv_page;
478 	u_long pv_invl_gen;
479 };
480 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
481 #define pv_dummy pv_dummy_large.pv_page
482 __read_mostly static struct pmap_large_md_page *pv_table;
483 __read_mostly vm_paddr_t pmap_last_pa;
484 #else
485 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
486 static u_long pv_invl_gen[NPV_LIST_LOCKS];
487 static struct md_page *pv_table;
488 static struct md_page pv_dummy;
489 #endif
490 
491 /*
492  * All those kernel PT submaps that BSD is so fond of
493  */
494 pt_entry_t *CMAP1 = NULL;
495 caddr_t CADDR1 = 0;
496 static vm_offset_t qframe = 0;
497 static struct mtx qframe_mtx;
498 
499 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
500 
501 static vmem_t *large_vmem;
502 static u_int lm_ents;
503 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
504 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
505 
506 int pmap_pcid_enabled = 1;
507 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
508     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
509 int invpcid_works = 0;
510 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
511     "Is the invpcid instruction available ?");
512 
513 int __read_frequently pti = 0;
514 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
515     &pti, 0,
516     "Page Table Isolation enabled");
517 static vm_object_t pti_obj;
518 static pml4_entry_t *pti_pml4;
519 static vm_pindex_t pti_pg_idx;
520 static bool pti_finalized;
521 
522 struct pmap_pkru_range {
523 	struct rs_el	pkru_rs_el;
524 	u_int		pkru_keyidx;
525 	int		pkru_flags;
526 };
527 
528 static uma_zone_t pmap_pkru_ranges_zone;
529 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
530 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
531 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
532 static void *pkru_dup_range(void *ctx, void *data);
533 static void pkru_free_range(void *ctx, void *node);
534 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
535 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
536 static void pmap_pkru_deassign_all(pmap_t pmap);
537 
538 static int
pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)539 pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)
540 {
541 	int i;
542 	uint64_t res;
543 
544 	res = 0;
545 	CPU_FOREACH(i) {
546 		res += cpuid_to_pcpu[i]->pc_pm_save_cnt;
547 	}
548 	return (sysctl_handle_64(oidp, &res, 0, req));
549 }
550 SYSCTL_PROC(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLTYPE_U64 | CTLFLAG_RD |
551     CTLFLAG_MPSAFE, NULL, 0, pmap_pcid_save_cnt_proc, "QU",
552     "Count of saved TLB context on switch");
553 
554 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
555     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
556 static struct mtx invl_gen_mtx;
557 /* Fake lock object to satisfy turnstiles interface. */
558 static struct lock_object invl_gen_ts = {
559 	.lo_name = "invlts",
560 };
561 static struct pmap_invl_gen pmap_invl_gen_head = {
562 	.gen = 1,
563 	.next = NULL,
564 };
565 static u_long pmap_invl_gen = 1;
566 static int pmap_invl_waiters;
567 static struct callout pmap_invl_callout;
568 static bool pmap_invl_callout_inited;
569 
570 #define	PMAP_ASSERT_NOT_IN_DI() \
571     KASSERT(pmap_not_in_di(), ("DI already started"))
572 
573 static bool
pmap_di_locked(void)574 pmap_di_locked(void)
575 {
576 	int tun;
577 
578 	if ((cpu_feature2 & CPUID2_CX16) == 0)
579 		return (true);
580 	tun = 0;
581 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
582 	return (tun != 0);
583 }
584 
585 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)586 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
587 {
588 	int locked;
589 
590 	locked = pmap_di_locked();
591 	return (sysctl_handle_int(oidp, &locked, 0, req));
592 }
593 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
594     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
595     "Locked delayed invalidation");
596 
597 static bool pmap_not_in_di_l(void);
598 static bool pmap_not_in_di_u(void);
599 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
600 {
601 
602 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
603 }
604 
605 static bool
pmap_not_in_di_l(void)606 pmap_not_in_di_l(void)
607 {
608 	struct pmap_invl_gen *invl_gen;
609 
610 	invl_gen = &curthread->td_md.md_invl_gen;
611 	return (invl_gen->gen == 0);
612 }
613 
614 static void
pmap_thread_init_invl_gen_l(struct thread * td)615 pmap_thread_init_invl_gen_l(struct thread *td)
616 {
617 	struct pmap_invl_gen *invl_gen;
618 
619 	invl_gen = &td->td_md.md_invl_gen;
620 	invl_gen->gen = 0;
621 }
622 
623 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)624 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
625 {
626 	struct turnstile *ts;
627 
628 	ts = turnstile_trywait(&invl_gen_ts);
629 	if (*m_gen > atomic_load_long(invl_gen))
630 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
631 	else
632 		turnstile_cancel(ts);
633 }
634 
635 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)636 pmap_delayed_invl_finish_unblock(u_long new_gen)
637 {
638 	struct turnstile *ts;
639 
640 	turnstile_chain_lock(&invl_gen_ts);
641 	ts = turnstile_lookup(&invl_gen_ts);
642 	if (new_gen != 0)
643 		pmap_invl_gen = new_gen;
644 	if (ts != NULL) {
645 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
646 		turnstile_unpend(ts);
647 	}
648 	turnstile_chain_unlock(&invl_gen_ts);
649 }
650 
651 /*
652  * Start a new Delayed Invalidation (DI) block of code, executed by
653  * the current thread.  Within a DI block, the current thread may
654  * destroy both the page table and PV list entries for a mapping and
655  * then release the corresponding PV list lock before ensuring that
656  * the mapping is flushed from the TLBs of any processors with the
657  * pmap active.
658  */
659 static void
pmap_delayed_invl_start_l(void)660 pmap_delayed_invl_start_l(void)
661 {
662 	struct pmap_invl_gen *invl_gen;
663 	u_long currgen;
664 
665 	invl_gen = &curthread->td_md.md_invl_gen;
666 	PMAP_ASSERT_NOT_IN_DI();
667 	mtx_lock(&invl_gen_mtx);
668 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
669 		currgen = pmap_invl_gen;
670 	else
671 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
672 	invl_gen->gen = currgen + 1;
673 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
674 	mtx_unlock(&invl_gen_mtx);
675 }
676 
677 /*
678  * Finish the DI block, previously started by the current thread.  All
679  * required TLB flushes for the pages marked by
680  * pmap_delayed_invl_page() must be finished before this function is
681  * called.
682  *
683  * This function works by bumping the global DI generation number to
684  * the generation number of the current thread's DI, unless there is a
685  * pending DI that started earlier.  In the latter case, bumping the
686  * global DI generation number would incorrectly signal that the
687  * earlier DI had finished.  Instead, this function bumps the earlier
688  * DI's generation number to match the generation number of the
689  * current thread's DI.
690  */
691 static void
pmap_delayed_invl_finish_l(void)692 pmap_delayed_invl_finish_l(void)
693 {
694 	struct pmap_invl_gen *invl_gen, *next;
695 
696 	invl_gen = &curthread->td_md.md_invl_gen;
697 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
698 	mtx_lock(&invl_gen_mtx);
699 	next = LIST_NEXT(invl_gen, link);
700 	if (next == NULL)
701 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
702 	else
703 		next->gen = invl_gen->gen;
704 	LIST_REMOVE(invl_gen, link);
705 	mtx_unlock(&invl_gen_mtx);
706 	invl_gen->gen = 0;
707 }
708 
709 static bool
pmap_not_in_di_u(void)710 pmap_not_in_di_u(void)
711 {
712 	struct pmap_invl_gen *invl_gen;
713 
714 	invl_gen = &curthread->td_md.md_invl_gen;
715 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
716 }
717 
718 static void
pmap_thread_init_invl_gen_u(struct thread * td)719 pmap_thread_init_invl_gen_u(struct thread *td)
720 {
721 	struct pmap_invl_gen *invl_gen;
722 
723 	invl_gen = &td->td_md.md_invl_gen;
724 	invl_gen->gen = 0;
725 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
726 }
727 
728 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)729 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
730 {
731 	uint64_t new_high, new_low, old_high, old_low;
732 	char res;
733 
734 	old_low = new_low = 0;
735 	old_high = new_high = (uintptr_t)0;
736 
737 	__asm volatile("lock;cmpxchg16b\t%1"
738 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
739 	    : "b"(new_low), "c" (new_high)
740 	    : "memory", "cc");
741 	if (res == 0) {
742 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
743 			return (false);
744 		out->gen = old_low;
745 		out->next = (void *)old_high;
746 	} else {
747 		out->gen = new_low;
748 		out->next = (void *)new_high;
749 	}
750 	return (true);
751 }
752 
753 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)754 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
755     struct pmap_invl_gen *new_val)
756 {
757 	uint64_t new_high, new_low, old_high, old_low;
758 	char res;
759 
760 	new_low = new_val->gen;
761 	new_high = (uintptr_t)new_val->next;
762 	old_low = old_val->gen;
763 	old_high = (uintptr_t)old_val->next;
764 
765 	__asm volatile("lock;cmpxchg16b\t%1"
766 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
767 	    : "b"(new_low), "c" (new_high)
768 	    : "memory", "cc");
769 	return (res);
770 }
771 
772 #ifdef PV_STATS
773 static long invl_start_restart;
774 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_start_restart, CTLFLAG_RD,
775     &invl_start_restart, 0,
776     "");
777 static long invl_finish_restart;
778 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
779     &invl_finish_restart, 0,
780     "");
781 static int invl_max_qlen;
782 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
783     &invl_max_qlen, 0,
784     "");
785 #endif
786 
787 #define di_delay	locks_delay
788 
789 static void
pmap_delayed_invl_start_u(void)790 pmap_delayed_invl_start_u(void)
791 {
792 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
793 	struct thread *td;
794 	struct lock_delay_arg lda;
795 	uintptr_t prevl;
796 	u_char pri;
797 #ifdef PV_STATS
798 	int i, ii;
799 #endif
800 
801 	td = curthread;
802 	invl_gen = &td->td_md.md_invl_gen;
803 	PMAP_ASSERT_NOT_IN_DI();
804 	lock_delay_arg_init(&lda, &di_delay);
805 	invl_gen->saved_pri = 0;
806 	pri = td->td_base_pri;
807 	if (pri > PVM) {
808 		thread_lock(td);
809 		pri = td->td_base_pri;
810 		if (pri > PVM) {
811 			invl_gen->saved_pri = pri;
812 			sched_prio(td, PVM);
813 		}
814 		thread_unlock(td);
815 	}
816 again:
817 	PV_STAT(i = 0);
818 	for (p = &pmap_invl_gen_head;; p = prev.next) {
819 		PV_STAT(i++);
820 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
821 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
822 			PV_STAT(atomic_add_long(&invl_start_restart, 1));
823 			lock_delay(&lda);
824 			goto again;
825 		}
826 		if (prevl == 0)
827 			break;
828 		prev.next = (void *)prevl;
829 	}
830 #ifdef PV_STATS
831 	if ((ii = invl_max_qlen) < i)
832 		atomic_cmpset_int(&invl_max_qlen, ii, i);
833 #endif
834 
835 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
836 		PV_STAT(atomic_add_long(&invl_start_restart, 1));
837 		lock_delay(&lda);
838 		goto again;
839 	}
840 
841 	new_prev.gen = prev.gen;
842 	new_prev.next = invl_gen;
843 	invl_gen->gen = prev.gen + 1;
844 
845 	/* Formal fence between store to invl->gen and updating *p. */
846 	atomic_thread_fence_rel();
847 
848 	/*
849 	 * After inserting an invl_gen element with invalid bit set,
850 	 * this thread blocks any other thread trying to enter the
851 	 * delayed invalidation block.  Do not allow to remove us from
852 	 * the CPU, because it causes starvation for other threads.
853 	 */
854 	critical_enter();
855 
856 	/*
857 	 * ABA for *p is not possible there, since p->gen can only
858 	 * increase.  So if the *p thread finished its di, then
859 	 * started a new one and got inserted into the list at the
860 	 * same place, its gen will appear greater than the previously
861 	 * read gen.
862 	 */
863 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
864 		critical_exit();
865 		PV_STAT(atomic_add_long(&invl_start_restart, 1));
866 		lock_delay(&lda);
867 		goto again;
868 	}
869 
870 	/*
871 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
872 	 * invl_gen->next, allowing other threads to iterate past us.
873 	 * pmap_di_store_invl() provides fence between the generation
874 	 * write and the update of next.
875 	 */
876 	invl_gen->next = NULL;
877 	critical_exit();
878 }
879 
880 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)881 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
882     struct pmap_invl_gen *p)
883 {
884 	struct pmap_invl_gen prev, new_prev;
885 	u_long mygen;
886 
887 	/*
888 	 * Load invl_gen->gen after setting invl_gen->next
889 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
890 	 * generations to propagate to our invl_gen->gen.  Lock prefix
891 	 * in atomic_set_ptr() worked as seq_cst fence.
892 	 */
893 	mygen = atomic_load_long(&invl_gen->gen);
894 
895 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
896 		return (false);
897 
898 	KASSERT(prev.gen < mygen,
899 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
900 	new_prev.gen = mygen;
901 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
902 	    ~PMAP_INVL_GEN_NEXT_INVALID);
903 
904 	/* Formal fence between load of prev and storing update to it. */
905 	atomic_thread_fence_rel();
906 
907 	return (pmap_di_store_invl(p, &prev, &new_prev));
908 }
909 
910 static void
pmap_delayed_invl_finish_u(void)911 pmap_delayed_invl_finish_u(void)
912 {
913 	struct pmap_invl_gen *invl_gen, *p;
914 	struct thread *td;
915 	struct lock_delay_arg lda;
916 	uintptr_t prevl;
917 
918 	td = curthread;
919 	invl_gen = &td->td_md.md_invl_gen;
920 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
921 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
922 	    ("missed invl_start: INVALID"));
923 	lock_delay_arg_init(&lda, &di_delay);
924 
925 again:
926 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
927 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
928 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
929 			PV_STAT(atomic_add_long(&invl_finish_restart, 1));
930 			lock_delay(&lda);
931 			goto again;
932 		}
933 		if ((void *)prevl == invl_gen)
934 			break;
935 	}
936 
937 	/*
938 	 * It is legitimate to not find ourself on the list if a
939 	 * thread before us finished its DI and started it again.
940 	 */
941 	if (__predict_false(p == NULL)) {
942 		PV_STAT(atomic_add_long(&invl_finish_restart, 1));
943 		lock_delay(&lda);
944 		goto again;
945 	}
946 
947 	critical_enter();
948 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
949 	    PMAP_INVL_GEN_NEXT_INVALID);
950 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
951 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
952 		    PMAP_INVL_GEN_NEXT_INVALID);
953 		critical_exit();
954 		PV_STAT(atomic_add_long(&invl_finish_restart, 1));
955 		lock_delay(&lda);
956 		goto again;
957 	}
958 	critical_exit();
959 	if (atomic_load_int(&pmap_invl_waiters) > 0)
960 		pmap_delayed_invl_finish_unblock(0);
961 	if (invl_gen->saved_pri != 0) {
962 		thread_lock(td);
963 		sched_prio(td, invl_gen->saved_pri);
964 		thread_unlock(td);
965 	}
966 }
967 
968 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)969 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
970 {
971 	struct pmap_invl_gen *p, *pn;
972 	struct thread *td;
973 	uintptr_t nextl;
974 	bool first;
975 
976 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
977 	    first = false) {
978 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
979 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
980 		td = first ? NULL : __containerof(p, struct thread,
981 		    td_md.md_invl_gen);
982 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
983 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
984 		    td != NULL ? td->td_tid : -1);
985 	}
986 }
987 #endif
988 
989 #ifdef PV_STATS
990 static long invl_wait;
991 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_wait, CTLFLAG_RD, &invl_wait, 0,
992     "Number of times DI invalidation blocked pmap_remove_all/write");
993 static long invl_wait_slow;
994 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD, &invl_wait_slow, 0,
995     "Number of slow invalidation waits for lockless DI");
996 #endif
997 
998 #ifdef NUMA
999 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1000 pmap_delayed_invl_genp(vm_page_t m)
1001 {
1002 	vm_paddr_t pa;
1003 	u_long *gen;
1004 
1005 	pa = VM_PAGE_TO_PHYS(m);
1006 	if (__predict_false((pa) > pmap_last_pa))
1007 		gen = &pv_dummy_large.pv_invl_gen;
1008 	else
1009 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1010 
1011 	return (gen);
1012 }
1013 #else
1014 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1015 pmap_delayed_invl_genp(vm_page_t m)
1016 {
1017 
1018 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1019 }
1020 #endif
1021 
1022 static void
pmap_delayed_invl_callout_func(void * arg __unused)1023 pmap_delayed_invl_callout_func(void *arg __unused)
1024 {
1025 
1026 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1027 		return;
1028 	pmap_delayed_invl_finish_unblock(0);
1029 }
1030 
1031 static void
pmap_delayed_invl_callout_init(void * arg __unused)1032 pmap_delayed_invl_callout_init(void *arg __unused)
1033 {
1034 
1035 	if (pmap_di_locked())
1036 		return;
1037 	callout_init(&pmap_invl_callout, 1);
1038 	pmap_invl_callout_inited = true;
1039 }
1040 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1041     pmap_delayed_invl_callout_init, NULL);
1042 
1043 /*
1044  * Ensure that all currently executing DI blocks, that need to flush
1045  * TLB for the given page m, actually flushed the TLB at the time the
1046  * function returned.  If the page m has an empty PV list and we call
1047  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1048  * valid mapping for the page m in either its page table or TLB.
1049  *
1050  * This function works by blocking until the global DI generation
1051  * number catches up with the generation number associated with the
1052  * given page m and its PV list.  Since this function's callers
1053  * typically own an object lock and sometimes own a page lock, it
1054  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1055  * processor.
1056  */
1057 static void
pmap_delayed_invl_wait_l(vm_page_t m)1058 pmap_delayed_invl_wait_l(vm_page_t m)
1059 {
1060 	u_long *m_gen;
1061 #ifdef PV_STATS
1062 	bool accounted = false;
1063 #endif
1064 
1065 	m_gen = pmap_delayed_invl_genp(m);
1066 	while (*m_gen > pmap_invl_gen) {
1067 #ifdef PV_STATS
1068 		if (!accounted) {
1069 			atomic_add_long(&invl_wait, 1);
1070 			accounted = true;
1071 		}
1072 #endif
1073 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1074 	}
1075 }
1076 
1077 static void
pmap_delayed_invl_wait_u(vm_page_t m)1078 pmap_delayed_invl_wait_u(vm_page_t m)
1079 {
1080 	u_long *m_gen;
1081 	struct lock_delay_arg lda;
1082 	bool fast;
1083 
1084 	fast = true;
1085 	m_gen = pmap_delayed_invl_genp(m);
1086 	lock_delay_arg_init(&lda, &di_delay);
1087 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1088 		if (fast || !pmap_invl_callout_inited) {
1089 			PV_STAT(atomic_add_long(&invl_wait, 1));
1090 			lock_delay(&lda);
1091 			fast = false;
1092 		} else {
1093 			/*
1094 			 * The page's invalidation generation number
1095 			 * is still below the current thread's number.
1096 			 * Prepare to block so that we do not waste
1097 			 * CPU cycles or worse, suffer livelock.
1098 			 *
1099 			 * Since it is impossible to block without
1100 			 * racing with pmap_delayed_invl_finish_u(),
1101 			 * prepare for the race by incrementing
1102 			 * pmap_invl_waiters and arming a 1-tick
1103 			 * callout which will unblock us if we lose
1104 			 * the race.
1105 			 */
1106 			atomic_add_int(&pmap_invl_waiters, 1);
1107 
1108 			/*
1109 			 * Re-check the current thread's invalidation
1110 			 * generation after incrementing
1111 			 * pmap_invl_waiters, so that there is no race
1112 			 * with pmap_delayed_invl_finish_u() setting
1113 			 * the page generation and checking
1114 			 * pmap_invl_waiters.  The only race allowed
1115 			 * is for a missed unblock, which is handled
1116 			 * by the callout.
1117 			 */
1118 			if (*m_gen >
1119 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1120 				callout_reset(&pmap_invl_callout, 1,
1121 				    pmap_delayed_invl_callout_func, NULL);
1122 				PV_STAT(atomic_add_long(&invl_wait_slow, 1));
1123 				pmap_delayed_invl_wait_block(m_gen,
1124 				    &pmap_invl_gen_head.gen);
1125 			}
1126 			atomic_add_int(&pmap_invl_waiters, -1);
1127 		}
1128 	}
1129 }
1130 
1131 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1132 {
1133 
1134 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1135 	    pmap_thread_init_invl_gen_u);
1136 }
1137 
1138 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1139 {
1140 
1141 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1142 	    pmap_delayed_invl_start_u);
1143 }
1144 
1145 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1146 {
1147 
1148 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1149 	    pmap_delayed_invl_finish_u);
1150 }
1151 
1152 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1153 {
1154 
1155 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1156 	    pmap_delayed_invl_wait_u);
1157 }
1158 
1159 /*
1160  * Mark the page m's PV list as participating in the current thread's
1161  * DI block.  Any threads concurrently using m's PV list to remove or
1162  * restrict all mappings to m will wait for the current thread's DI
1163  * block to complete before proceeding.
1164  *
1165  * The function works by setting the DI generation number for m's PV
1166  * list to at least the DI generation number of the current thread.
1167  * This forces a caller of pmap_delayed_invl_wait() to block until
1168  * current thread calls pmap_delayed_invl_finish().
1169  */
1170 static void
pmap_delayed_invl_page(vm_page_t m)1171 pmap_delayed_invl_page(vm_page_t m)
1172 {
1173 	u_long gen, *m_gen;
1174 
1175 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1176 	gen = curthread->td_md.md_invl_gen.gen;
1177 	if (gen == 0)
1178 		return;
1179 	m_gen = pmap_delayed_invl_genp(m);
1180 	if (*m_gen < gen)
1181 		*m_gen = gen;
1182 }
1183 
1184 /*
1185  * Crashdump maps.
1186  */
1187 static caddr_t crashdumpmap;
1188 
1189 /*
1190  * Internal flags for pmap_enter()'s helper functions.
1191  */
1192 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1193 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1194 
1195 /*
1196  * Internal flags for pmap_mapdev_internal() and
1197  * pmap_change_props_locked().
1198  */
1199 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1200 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1201 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1202 
1203 TAILQ_HEAD(pv_chunklist, pv_chunk);
1204 
1205 static void	free_pv_chunk(struct pv_chunk *pc);
1206 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1207 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1208 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1209 static int	popcnt_pc_map_pq(uint64_t *map);
1210 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1211 static void	reserve_pv_entries(pmap_t pmap, int needed,
1212 		    struct rwlock **lockp);
1213 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1214 		    struct rwlock **lockp);
1215 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1216 		    u_int flags, struct rwlock **lockp);
1217 #if VM_NRESERVLEVEL > 0
1218 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1219 		    struct rwlock **lockp);
1220 #endif
1221 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1222 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1223 		    vm_offset_t va);
1224 
1225 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1226 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1227     vm_prot_t prot, int mode, int flags);
1228 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1229 static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1230     vm_offset_t va, struct rwlock **lockp);
1231 static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1232     vm_offset_t va);
1233 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1234 		    vm_prot_t prot, struct rwlock **lockp);
1235 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1236 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1237 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1238     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1239 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1240 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted);
1241 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1242     vm_offset_t eva);
1243 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1244     vm_offset_t eva);
1245 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1246 		    pd_entry_t pde);
1247 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1248 static vm_page_t pmap_large_map_getptp_unlocked(void);
1249 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1250 #if VM_NRESERVLEVEL > 0
1251 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1252     struct rwlock **lockp);
1253 #endif
1254 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1255     vm_prot_t prot);
1256 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1257 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1258     bool exec);
1259 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1260 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1261 static void pmap_pti_wire_pte(void *pte);
1262 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1263     struct spglist *free, struct rwlock **lockp);
1264 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1265     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1266 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1267 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1268     struct spglist *free);
1269 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1270 		    pd_entry_t *pde, struct spglist *free,
1271 		    struct rwlock **lockp);
1272 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1273     vm_page_t m, struct rwlock **lockp);
1274 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1275     pd_entry_t newpde);
1276 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1277 
1278 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1279 		struct rwlock **lockp);
1280 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1281 		struct rwlock **lockp, vm_offset_t va);
1282 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1283 		struct rwlock **lockp, vm_offset_t va);
1284 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1285 		struct rwlock **lockp);
1286 
1287 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1288     struct spglist *free);
1289 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1290 
1291 /********************/
1292 /* Inline functions */
1293 /********************/
1294 
1295 /*
1296  * Return a non-clipped indexes for a given VA, which are page table
1297  * pages indexes at the corresponding level.
1298  */
1299 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1300 pmap_pde_pindex(vm_offset_t va)
1301 {
1302 	return (va >> PDRSHIFT);
1303 }
1304 
1305 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1306 pmap_pdpe_pindex(vm_offset_t va)
1307 {
1308 	return (NUPDE + (va >> PDPSHIFT));
1309 }
1310 
1311 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1312 pmap_pml4e_pindex(vm_offset_t va)
1313 {
1314 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1315 }
1316 
1317 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1318 pmap_pml5e_pindex(vm_offset_t va)
1319 {
1320 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1321 }
1322 
1323 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1324 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1325 {
1326 
1327 	MPASS(pmap_is_la57(pmap));
1328 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1329 }
1330 
1331 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1332 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1333 {
1334 
1335 	MPASS(pmap_is_la57(pmap));
1336 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1337 }
1338 
1339 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1340 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1341 {
1342 	pml4_entry_t *pml4e;
1343 
1344 	/* XXX MPASS(pmap_is_la57(pmap); */
1345 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1346 	return (&pml4e[pmap_pml4e_index(va)]);
1347 }
1348 
1349 /* Return a pointer to the PML4 slot that corresponds to a VA */
1350 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1351 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1352 {
1353 	pml5_entry_t *pml5e;
1354 	pml4_entry_t *pml4e;
1355 	pt_entry_t PG_V;
1356 
1357 	if (pmap_is_la57(pmap)) {
1358 		pml5e = pmap_pml5e(pmap, va);
1359 		PG_V = pmap_valid_bit(pmap);
1360 		if ((*pml5e & PG_V) == 0)
1361 			return (NULL);
1362 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1363 	} else {
1364 		pml4e = pmap->pm_pmltop;
1365 	}
1366 	return (&pml4e[pmap_pml4e_index(va)]);
1367 }
1368 
1369 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1370 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1371 {
1372 	MPASS(!pmap_is_la57(pmap));
1373 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1374 }
1375 
1376 /* Return a pointer to the PDP slot that corresponds to a VA */
1377 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1378 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1379 {
1380 	pdp_entry_t *pdpe;
1381 
1382 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1383 	return (&pdpe[pmap_pdpe_index(va)]);
1384 }
1385 
1386 /* Return a pointer to the PDP slot that corresponds to a VA */
1387 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1388 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1389 {
1390 	pml4_entry_t *pml4e;
1391 	pt_entry_t PG_V;
1392 
1393 	PG_V = pmap_valid_bit(pmap);
1394 	pml4e = pmap_pml4e(pmap, va);
1395 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1396 		return (NULL);
1397 	return (pmap_pml4e_to_pdpe(pml4e, va));
1398 }
1399 
1400 /* Return a pointer to the PD slot that corresponds to a VA */
1401 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1402 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1403 {
1404 	pd_entry_t *pde;
1405 
1406 	KASSERT((*pdpe & PG_PS) == 0,
1407 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1408 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1409 	return (&pde[pmap_pde_index(va)]);
1410 }
1411 
1412 /* Return a pointer to the PD slot that corresponds to a VA */
1413 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1414 pmap_pde(pmap_t pmap, vm_offset_t va)
1415 {
1416 	pdp_entry_t *pdpe;
1417 	pt_entry_t PG_V;
1418 
1419 	PG_V = pmap_valid_bit(pmap);
1420 	pdpe = pmap_pdpe(pmap, va);
1421 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1422 		return (NULL);
1423 	KASSERT((*pdpe & PG_PS) == 0,
1424 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1425 	return (pmap_pdpe_to_pde(pdpe, va));
1426 }
1427 
1428 /* Return a pointer to the PT slot that corresponds to a VA */
1429 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1430 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1431 {
1432 	pt_entry_t *pte;
1433 
1434 	KASSERT((*pde & PG_PS) == 0,
1435 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1436 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1437 	return (&pte[pmap_pte_index(va)]);
1438 }
1439 
1440 /* Return a pointer to the PT slot that corresponds to a VA */
1441 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1442 pmap_pte(pmap_t pmap, vm_offset_t va)
1443 {
1444 	pd_entry_t *pde;
1445 	pt_entry_t PG_V;
1446 
1447 	PG_V = pmap_valid_bit(pmap);
1448 	pde = pmap_pde(pmap, va);
1449 	if (pde == NULL || (*pde & PG_V) == 0)
1450 		return (NULL);
1451 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1452 		return ((pt_entry_t *)pde);
1453 	return (pmap_pde_to_pte(pde, va));
1454 }
1455 
1456 static __inline void
pmap_resident_count_inc(pmap_t pmap,int count)1457 pmap_resident_count_inc(pmap_t pmap, int count)
1458 {
1459 
1460 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1461 	pmap->pm_stats.resident_count += count;
1462 }
1463 
1464 static __inline void
pmap_resident_count_dec(pmap_t pmap,int count)1465 pmap_resident_count_dec(pmap_t pmap, int count)
1466 {
1467 
1468 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1469 	KASSERT(pmap->pm_stats.resident_count >= count,
1470 	    ("pmap %p resident count underflow %ld %d", pmap,
1471 	    pmap->pm_stats.resident_count, count));
1472 	pmap->pm_stats.resident_count -= count;
1473 }
1474 
1475 PMAP_INLINE pt_entry_t *
vtopte(vm_offset_t va)1476 vtopte(vm_offset_t va)
1477 {
1478 	u_int64_t mask;
1479 
1480 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1481 
1482 	if (la57) {
1483 		mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
1484 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1);
1485 		return (P5Tmap + ((va >> PAGE_SHIFT) & mask));
1486 	} else {
1487 		mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
1488 		    NPML4EPGSHIFT)) - 1);
1489 		return (P4Tmap + ((va >> PAGE_SHIFT) & mask));
1490 	}
1491 }
1492 
1493 static __inline pd_entry_t *
vtopde(vm_offset_t va)1494 vtopde(vm_offset_t va)
1495 {
1496 	u_int64_t mask;
1497 
1498 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1499 
1500 	if (la57) {
1501 		mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1502 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1);
1503 		return (P5Dmap + ((va >> PDRSHIFT) & mask));
1504 	} else {
1505 		mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1506 		    NPML4EPGSHIFT)) - 1);
1507 		return (P4Dmap + ((va >> PDRSHIFT) & mask));
1508 	}
1509 }
1510 
1511 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1512 allocpages(vm_paddr_t *firstaddr, int n)
1513 {
1514 	u_int64_t ret;
1515 
1516 	ret = *firstaddr;
1517 	bzero((void *)ret, n * PAGE_SIZE);
1518 	*firstaddr += n * PAGE_SIZE;
1519 	return (ret);
1520 }
1521 
1522 CTASSERT(powerof2(NDMPML4E));
1523 
1524 /* number of kernel PDP slots */
1525 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1526 
1527 static void
nkpt_init(vm_paddr_t addr)1528 nkpt_init(vm_paddr_t addr)
1529 {
1530 	int pt_pages;
1531 
1532 #ifdef NKPT
1533 	pt_pages = NKPT;
1534 #else
1535 	pt_pages = howmany(addr, 1 << PDRSHIFT);
1536 	pt_pages += NKPDPE(pt_pages);
1537 
1538 	/*
1539 	 * Add some slop beyond the bare minimum required for bootstrapping
1540 	 * the kernel.
1541 	 *
1542 	 * This is quite important when allocating KVA for kernel modules.
1543 	 * The modules are required to be linked in the negative 2GB of
1544 	 * the address space.  If we run out of KVA in this region then
1545 	 * pmap_growkernel() will need to allocate page table pages to map
1546 	 * the entire 512GB of KVA space which is an unnecessary tax on
1547 	 * physical memory.
1548 	 *
1549 	 * Secondly, device memory mapped as part of setting up the low-
1550 	 * level console(s) is taken from KVA, starting at virtual_avail.
1551 	 * This is because cninit() is called after pmap_bootstrap() but
1552 	 * before vm_init() and pmap_init(). 20MB for a frame buffer is
1553 	 * not uncommon.
1554 	 */
1555 	pt_pages += 32;		/* 64MB additional slop. */
1556 #endif
1557 	nkpt = pt_pages;
1558 }
1559 
1560 /*
1561  * Returns the proper write/execute permission for a physical page that is
1562  * part of the initial boot allocations.
1563  *
1564  * If the page has kernel text, it is marked as read-only. If the page has
1565  * kernel read-only data, it is marked as read-only/not-executable. If the
1566  * page has only read-write data, it is marked as read-write/not-executable.
1567  * If the page is below/above the kernel range, it is marked as read-write.
1568  *
1569  * This function operates on 2M pages, since we map the kernel space that
1570  * way.
1571  */
1572 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1573 bootaddr_rwx(vm_paddr_t pa)
1574 {
1575 
1576 	/*
1577 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1578 	 * need not be executable.  The .bss section is padded to a 2MB
1579 	 * boundary, so memory following the kernel need not be executable
1580 	 * either.  Preloaded kernel modules have their mapping permissions
1581 	 * fixed up by the linker.
1582 	 */
1583 	if (pa < trunc_2mpage(btext - KERNBASE) ||
1584 	    pa >= trunc_2mpage(_end - KERNBASE))
1585 		return (X86_PG_RW | pg_nx);
1586 
1587 	/*
1588 	 * The linker should ensure that the read-only and read-write
1589 	 * portions don't share the same 2M page, so this shouldn't
1590 	 * impact read-only data. However, in any case, any page with
1591 	 * read-write data needs to be read-write.
1592 	 */
1593 	if (pa >= trunc_2mpage(brwsection - KERNBASE))
1594 		return (X86_PG_RW | pg_nx);
1595 
1596 	/*
1597 	 * Mark any 2M page containing kernel text as read-only. Mark
1598 	 * other pages with read-only data as read-only and not executable.
1599 	 * (It is likely a small portion of the read-only data section will
1600 	 * be marked as read-only, but executable. This should be acceptable
1601 	 * since the read-only protection will keep the data from changing.)
1602 	 * Note that fixups to the .text section will still work until we
1603 	 * set CR0.WP.
1604 	 */
1605 	if (pa < round_2mpage(etext - KERNBASE))
1606 		return (0);
1607 	return (pg_nx);
1608 }
1609 
1610 static void
create_pagetables(vm_paddr_t * firstaddr)1611 create_pagetables(vm_paddr_t *firstaddr)
1612 {
1613 	int i, j, ndm1g, nkpdpe, nkdmpde;
1614 	pd_entry_t *pd_p;
1615 	pdp_entry_t *pdp_p;
1616 	pml4_entry_t *p4_p;
1617 	uint64_t DMPDkernphys;
1618 
1619 	/* Allocate page table pages for the direct map */
1620 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1621 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1622 		ndmpdp = 4;
1623 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1624 	if (ndmpdpphys > NDMPML4E) {
1625 		/*
1626 		 * Each NDMPML4E allows 512 GB, so limit to that,
1627 		 * and then readjust ndmpdp and ndmpdpphys.
1628 		 */
1629 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1630 		Maxmem = atop(NDMPML4E * NBPML4);
1631 		ndmpdpphys = NDMPML4E;
1632 		ndmpdp = NDMPML4E * NPDEPG;
1633 	}
1634 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1635 	ndm1g = 0;
1636 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1637 		/*
1638 		 * Calculate the number of 1G pages that will fully fit in
1639 		 * Maxmem.
1640 		 */
1641 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1642 
1643 		/*
1644 		 * Allocate 2M pages for the kernel. These will be used in
1645 		 * place of the first one or more 1G pages from ndm1g.
1646 		 */
1647 		nkdmpde = howmany((vm_offset_t)(brwsection - KERNBASE), NBPDP);
1648 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1649 	}
1650 	if (ndm1g < ndmpdp)
1651 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1652 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1653 
1654 	/* Allocate pages */
1655 	KPML4phys = allocpages(firstaddr, 1);
1656 	KPDPphys = allocpages(firstaddr, NKPML4E);
1657 
1658 	/*
1659 	 * Allocate the initial number of kernel page table pages required to
1660 	 * bootstrap.  We defer this until after all memory-size dependent
1661 	 * allocations are done (e.g. direct map), so that we don't have to
1662 	 * build in too much slop in our estimate.
1663 	 *
1664 	 * Note that when NKPML4E > 1, we have an empty page underneath
1665 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1666 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1667 	 */
1668 	nkpt_init(*firstaddr);
1669 	nkpdpe = NKPDPE(nkpt);
1670 
1671 	KPTphys = allocpages(firstaddr, nkpt);
1672 	KPDphys = allocpages(firstaddr, nkpdpe);
1673 
1674 	/*
1675 	 * Connect the zero-filled PT pages to their PD entries.  This
1676 	 * implicitly maps the PT pages at their correct locations within
1677 	 * the PTmap.
1678 	 */
1679 	pd_p = (pd_entry_t *)KPDphys;
1680 	for (i = 0; i < nkpt; i++)
1681 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1682 
1683 	/*
1684 	 * Map from physical address zero to the end of loader preallocated
1685 	 * memory using 2MB pages.  This replaces some of the PD entries
1686 	 * created above.
1687 	 */
1688 	for (i = 0; (i << PDRSHIFT) < KERNend; i++)
1689 		/* Preset PG_M and PG_A because demotion expects it. */
1690 		pd_p[i] = (i << PDRSHIFT) | X86_PG_V | PG_PS | pg_g |
1691 		    X86_PG_M | X86_PG_A | bootaddr_rwx(i << PDRSHIFT);
1692 
1693 	/*
1694 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1695 	 * to record the physical blocks we've actually mapped into kernel
1696 	 * virtual address space.
1697 	 */
1698 	if (*firstaddr < round_2mpage(KERNend))
1699 		*firstaddr = round_2mpage(KERNend);
1700 
1701 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1702 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1703 	for (i = 0; i < nkpdpe; i++)
1704 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1705 
1706 	/*
1707 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1708 	 * the end of physical memory is not aligned to a 1GB page boundary,
1709 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1710 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1711 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1712 	 * that are partially used.
1713 	 */
1714 	pd_p = (pd_entry_t *)DMPDphys;
1715 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1716 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1717 		/* Preset PG_M and PG_A because demotion expects it. */
1718 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1719 		    X86_PG_M | X86_PG_A | pg_nx;
1720 	}
1721 	pdp_p = (pdp_entry_t *)DMPDPphys;
1722 	for (i = 0; i < ndm1g; i++) {
1723 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1724 		/* Preset PG_M and PG_A because demotion expects it. */
1725 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1726 		    X86_PG_M | X86_PG_A | pg_nx;
1727 	}
1728 	for (j = 0; i < ndmpdp; i++, j++) {
1729 		pdp_p[i] = DMPDphys + ptoa(j);
1730 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1731 	}
1732 
1733 	/*
1734 	 * Instead of using a 1G page for the memory containing the kernel,
1735 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1736 	 * pages, this will partially overwrite the PDPEs above.)
1737 	 */
1738 	if (ndm1g) {
1739 		pd_p = (pd_entry_t *)DMPDkernphys;
1740 		for (i = 0; i < (NPDEPG * nkdmpde); i++)
1741 			pd_p[i] = (i << PDRSHIFT) | X86_PG_V | PG_PS | pg_g |
1742 			    X86_PG_M | X86_PG_A | pg_nx |
1743 			    bootaddr_rwx(i << PDRSHIFT);
1744 		for (i = 0; i < nkdmpde; i++)
1745 			pdp_p[i] = (DMPDkernphys + ptoa(i)) | X86_PG_RW |
1746 			    X86_PG_V | pg_nx;
1747 	}
1748 
1749 	/* And recursively map PML4 to itself in order to get PTmap */
1750 	p4_p = (pml4_entry_t *)KPML4phys;
1751 	p4_p[PML4PML4I] = KPML4phys;
1752 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1753 
1754 	/* Connect the Direct Map slot(s) up to the PML4. */
1755 	for (i = 0; i < ndmpdpphys; i++) {
1756 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1757 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1758 	}
1759 
1760 	/* Connect the KVA slots up to the PML4 */
1761 	for (i = 0; i < NKPML4E; i++) {
1762 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1763 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1764 	}
1765 
1766 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1767 }
1768 
1769 /*
1770  *	Bootstrap the system enough to run with virtual memory.
1771  *
1772  *	On amd64 this is called after mapping has already been enabled
1773  *	and just syncs the pmap module with what has already been done.
1774  *	[We can't call it easily with mapping off since the kernel is not
1775  *	mapped with PA == VA, hence we would have to relocate every address
1776  *	from the linked base (virtual) address "KERNBASE" to the actual
1777  *	(physical) address starting relative to 0]
1778  */
1779 void
pmap_bootstrap(vm_paddr_t * firstaddr)1780 pmap_bootstrap(vm_paddr_t *firstaddr)
1781 {
1782 	vm_offset_t va;
1783 	pt_entry_t *pte, *pcpu_pte;
1784 	struct region_descriptor r_gdt;
1785 	uint64_t cr4, pcpu_phys;
1786 	u_long res;
1787 	int i;
1788 
1789 	KERNend = *firstaddr;
1790 	res = atop(KERNend - (vm_paddr_t)kernphys);
1791 
1792 	if (!pti)
1793 		pg_g = X86_PG_G;
1794 
1795 	/*
1796 	 * Create an initial set of page tables to run the kernel in.
1797 	 */
1798 	create_pagetables(firstaddr);
1799 
1800 	pcpu_phys = allocpages(firstaddr, MAXCPU);
1801 
1802 	/*
1803 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1804 	 * preallocated kernel page table pages so that vm_page structures
1805 	 * representing these pages will be created.  The vm_page structures
1806 	 * are required for promotion of the corresponding kernel virtual
1807 	 * addresses to superpage mappings.
1808 	 */
1809 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1810 
1811 	/*
1812 	 * Account for the virtual addresses mapped by create_pagetables().
1813 	 */
1814 	virtual_avail = (vm_offset_t)KERNBASE + round_2mpage(KERNend);
1815 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1816 
1817 	/*
1818 	 * Enable PG_G global pages, then switch to the kernel page
1819 	 * table from the bootstrap page table.  After the switch, it
1820 	 * is possible to enable SMEP and SMAP since PG_U bits are
1821 	 * correct now.
1822 	 */
1823 	cr4 = rcr4();
1824 	cr4 |= CR4_PGE;
1825 	load_cr4(cr4);
1826 	load_cr3(KPML4phys);
1827 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1828 		cr4 |= CR4_SMEP;
1829 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1830 		cr4 |= CR4_SMAP;
1831 	load_cr4(cr4);
1832 
1833 	/*
1834 	 * Initialize the kernel pmap (which is statically allocated).
1835 	 * Count bootstrap data as being resident in case any of this data is
1836 	 * later unmapped (using pmap_remove()) and freed.
1837 	 */
1838 	PMAP_LOCK_INIT(kernel_pmap);
1839 	kernel_pmap->pm_pmltop = kernel_pml4;
1840 	kernel_pmap->pm_cr3 = KPML4phys;
1841 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1842 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
1843 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1844 	kernel_pmap->pm_stats.resident_count = res;
1845 	kernel_pmap->pm_flags = pmap_flags;
1846 
1847  	/*
1848 	 * Initialize the TLB invalidations generation number lock.
1849 	 */
1850 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
1851 
1852 	/*
1853 	 * Reserve some special page table entries/VA space for temporary
1854 	 * mapping of pages.
1855 	 */
1856 #define	SYSMAP(c, p, v, n)	\
1857 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1858 
1859 	va = virtual_avail;
1860 	pte = vtopte(va);
1861 
1862 	/*
1863 	 * Crashdump maps.  The first page is reused as CMAP1 for the
1864 	 * memory test.
1865 	 */
1866 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
1867 	CADDR1 = crashdumpmap;
1868 
1869 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
1870 	virtual_avail = va;
1871 
1872 	for (i = 0; i < MAXCPU; i++) {
1873 		pcpu_pte[i] = (pcpu_phys + ptoa(i)) | X86_PG_V | X86_PG_RW |
1874 		    pg_g | pg_nx | X86_PG_M | X86_PG_A;
1875 	}
1876 
1877 	/*
1878 	 * Re-initialize PCPU area for BSP after switching.
1879 	 * Make hardware use gdt and common_tss from the new PCPU.
1880 	 */
1881 	STAILQ_INIT(&cpuhead);
1882 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
1883 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
1884 	amd64_bsp_pcpu_init1(&__pcpu[0]);
1885 	amd64_bsp_ist_init(&__pcpu[0]);
1886 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
1887 	    IOPERM_BITMAP_SIZE;
1888 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
1889 	    sizeof(struct user_segment_descriptor));
1890 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
1891 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1892 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
1893 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
1894 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
1895 	lgdt(&r_gdt);
1896 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
1897 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1898 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
1899 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
1900 
1901 	/*
1902 	 * Initialize the PAT MSR.
1903 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
1904 	 * side-effect, invalidates stale PG_G TLB entries that might
1905 	 * have been created in our pre-boot environment.
1906 	 */
1907 	pmap_init_pat();
1908 
1909 	/* Initialize TLB Context Id. */
1910 	if (pmap_pcid_enabled) {
1911 		for (i = 0; i < MAXCPU; i++) {
1912 			kernel_pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN;
1913 			kernel_pmap->pm_pcids[i].pm_gen = 1;
1914 		}
1915 
1916 		/*
1917 		 * PMAP_PCID_KERN + 1 is used for initialization of
1918 		 * proc0 pmap.  The pmap' pcid state might be used by
1919 		 * EFIRT entry before first context switch, so it
1920 		 * needs to be valid.
1921 		 */
1922 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
1923 		PCPU_SET(pcid_gen, 1);
1924 
1925 		/*
1926 		 * pcpu area for APs is zeroed during AP startup.
1927 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
1928 		 * during pcpu setup.
1929 		 */
1930 		load_cr4(rcr4() | CR4_PCIDE);
1931 	}
1932 }
1933 
1934 /*
1935  * Setup the PAT MSR.
1936  */
1937 void
pmap_init_pat(void)1938 pmap_init_pat(void)
1939 {
1940 	uint64_t pat_msr;
1941 	u_long cr0, cr4;
1942 	int i;
1943 
1944 	/* Bail if this CPU doesn't implement PAT. */
1945 	if ((cpu_feature & CPUID_PAT) == 0)
1946 		panic("no PAT??");
1947 
1948 	/* Set default PAT index table. */
1949 	for (i = 0; i < PAT_INDEX_SIZE; i++)
1950 		pat_index[i] = -1;
1951 	pat_index[PAT_WRITE_BACK] = 0;
1952 	pat_index[PAT_WRITE_THROUGH] = 1;
1953 	pat_index[PAT_UNCACHEABLE] = 3;
1954 	pat_index[PAT_WRITE_COMBINING] = 6;
1955 	pat_index[PAT_WRITE_PROTECTED] = 5;
1956 	pat_index[PAT_UNCACHED] = 2;
1957 
1958 	/*
1959 	 * Initialize default PAT entries.
1960 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
1961 	 * Program 5 and 6 as WP and WC.
1962 	 *
1963 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
1964 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
1965 	 * to its overload with PG_PS.
1966 	 */
1967 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
1968 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
1969 	    PAT_VALUE(2, PAT_UNCACHED) |
1970 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
1971 	    PAT_VALUE(4, PAT_WRITE_BACK) |
1972 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
1973 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
1974 	    PAT_VALUE(7, PAT_UNCACHEABLE);
1975 
1976 	/* Disable PGE. */
1977 	cr4 = rcr4();
1978 	load_cr4(cr4 & ~CR4_PGE);
1979 
1980 	/* Disable caches (CD = 1, NW = 0). */
1981 	cr0 = rcr0();
1982 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1983 
1984 	/* Flushes caches and TLBs. */
1985 	wbinvd();
1986 	invltlb();
1987 
1988 	/* Update PAT and index table. */
1989 	wrmsr(MSR_PAT, pat_msr);
1990 
1991 	/* Flush caches and TLBs again. */
1992 	wbinvd();
1993 	invltlb();
1994 
1995 	/* Restore caches and PGE. */
1996 	load_cr0(cr0);
1997 	load_cr4(cr4);
1998 }
1999 
2000 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2001     la57_trampoline_gdt[], la57_trampoline_end[];
2002 
2003 static void
pmap_bootstrap_la57(void * arg __unused)2004 pmap_bootstrap_la57(void *arg __unused)
2005 {
2006 	char *v_code;
2007 	pml5_entry_t *v_pml5;
2008 	pml4_entry_t *v_pml4;
2009 	pdp_entry_t *v_pdp;
2010 	pd_entry_t *v_pd;
2011 	pt_entry_t *v_pt;
2012 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2013 	void (*la57_tramp)(uint64_t pml5);
2014 	struct region_descriptor r_gdt;
2015 
2016 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2017 		return;
2018 	if (!TUNABLE_INT_FETCH("vm.pmap.la57", &la57))
2019 		la57 = 1;
2020 	if (!la57)
2021 		return;
2022 
2023 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2024 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2025 
2026 	m_code = vm_page_alloc_contig(NULL, 0,
2027 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2028 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2029 	if ((m_code->flags & PG_ZERO) == 0)
2030 		pmap_zero_page(m_code);
2031 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2032 	m_pml5 = vm_page_alloc_contig(NULL, 0,
2033 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2034 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2035 	if ((m_pml5->flags & PG_ZERO) == 0)
2036 		pmap_zero_page(m_pml5);
2037 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2038 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2039 	m_pml4 = vm_page_alloc_contig(NULL, 0,
2040 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2041 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2042 	if ((m_pml4->flags & PG_ZERO) == 0)
2043 		pmap_zero_page(m_pml4);
2044 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2045 	m_pdp = vm_page_alloc_contig(NULL, 0,
2046 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2047 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2048 	if ((m_pdp->flags & PG_ZERO) == 0)
2049 		pmap_zero_page(m_pdp);
2050 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2051 	m_pd = vm_page_alloc_contig(NULL, 0,
2052 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2053 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2054 	if ((m_pd->flags & PG_ZERO) == 0)
2055 		pmap_zero_page(m_pd);
2056 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2057 	m_pt = vm_page_alloc_contig(NULL, 0,
2058 	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_NOOBJ,
2059 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
2060 	if ((m_pt->flags & PG_ZERO) == 0)
2061 		pmap_zero_page(m_pt);
2062 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2063 
2064 	/*
2065 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2066 	 * address being below 4G.  Since kernel KVA is in upper half,
2067 	 * the pml4e should be zero and free for temporary use.
2068 	 */
2069 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2070 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2071 	    X86_PG_M;
2072 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2073 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2074 	    X86_PG_M;
2075 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2076 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2077 	    X86_PG_M;
2078 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2079 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2080 	    X86_PG_M;
2081 
2082 	/*
2083 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2084 	 * entering all existing kernel mappings into level 5 table.
2085 	 */
2086 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2087 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
2088 
2089 	/*
2090 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2091 	 */
2092 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2093 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2094 	    X86_PG_M;
2095 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2096 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2097 	    X86_PG_M;
2098 
2099 	/*
2100 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2101 	 */
2102 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2103 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2104 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2105 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2106 	la57_tramp(KPML5phys);
2107 
2108 	/*
2109 	 * gdt was necessary reset, switch back to our gdt.
2110 	 */
2111 	lgdt(&r_gdt);
2112 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2113 	load_ds(_udatasel);
2114 	load_es(_udatasel);
2115 	load_fs(_ufssel);
2116 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2117 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2118 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2119 
2120 	/*
2121 	 * Now unmap the trampoline, and free the pages.
2122 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2123 	 */
2124 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2125 	invlpg((vm_offset_t)v_code);
2126 	vm_page_free(m_code);
2127 	vm_page_free(m_pdp);
2128 	vm_page_free(m_pd);
2129 	vm_page_free(m_pt);
2130 
2131 	/*
2132 	 * Recursively map PML5 to itself in order to get PTmap and
2133 	 * PDmap.
2134 	 */
2135 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2136 
2137 	kernel_pmap->pm_cr3 = KPML5phys;
2138 	kernel_pmap->pm_pmltop = v_pml5;
2139 }
2140 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2141 
2142 /*
2143  *	Initialize a vm_page's machine-dependent fields.
2144  */
2145 void
pmap_page_init(vm_page_t m)2146 pmap_page_init(vm_page_t m)
2147 {
2148 
2149 	TAILQ_INIT(&m->md.pv_list);
2150 	m->md.pat_mode = PAT_WRITE_BACK;
2151 }
2152 
2153 static int pmap_allow_2m_x_ept;
2154 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2155     &pmap_allow_2m_x_ept, 0,
2156     "Allow executable superpage mappings in EPT");
2157 
2158 void
pmap_allow_2m_x_ept_recalculate(void)2159 pmap_allow_2m_x_ept_recalculate(void)
2160 {
2161 	/*
2162 	 * SKL002, SKL012S.  Since the EPT format is only used by
2163 	 * Intel CPUs, the vendor check is merely a formality.
2164 	 */
2165 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2166 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2167 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2168 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2169 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2170 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2171 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2172 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2173 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2174 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2175 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2176 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2177 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2178 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2179 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2180 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2181 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2182 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2183 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2184 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2185 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2186 		pmap_allow_2m_x_ept = 1;
2187 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2188 }
2189 
2190 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2191 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2192 {
2193 
2194 	return (pmap->pm_type != PT_EPT || !executable ||
2195 	    !pmap_allow_2m_x_ept);
2196 }
2197 
2198 #ifdef NUMA
2199 static void
pmap_init_pv_table(void)2200 pmap_init_pv_table(void)
2201 {
2202 	struct pmap_large_md_page *pvd;
2203 	vm_size_t s;
2204 	long start, end, highest, pv_npg;
2205 	int domain, i, j, pages;
2206 
2207 	/*
2208 	 * We strongly depend on the size being a power of two, so the assert
2209 	 * is overzealous. However, should the struct be resized to a
2210 	 * different power of two, the code below needs to be revisited.
2211 	 */
2212 	CTASSERT((sizeof(*pvd) == 64));
2213 
2214 	/*
2215 	 * Calculate the size of the array.
2216 	 */
2217 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2218 	pv_npg = howmany(pmap_last_pa, NBPDR);
2219 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2220 	s = round_page(s);
2221 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2222 	if (pv_table == NULL)
2223 		panic("%s: kva_alloc failed\n", __func__);
2224 
2225 	/*
2226 	 * Iterate physical segments to allocate space for respective pages.
2227 	 */
2228 	highest = -1;
2229 	s = 0;
2230 	for (i = 0; i < vm_phys_nsegs; i++) {
2231 		end = vm_phys_segs[i].end / NBPDR;
2232 		domain = vm_phys_segs[i].domain;
2233 
2234 		if (highest >= end)
2235 			continue;
2236 
2237 		start = highest + 1;
2238 		pvd = &pv_table[start];
2239 
2240 		pages = end - start + 1;
2241 		s = round_page(pages * sizeof(*pvd));
2242 		highest = start + (s / sizeof(*pvd)) - 1;
2243 
2244 		for (j = 0; j < s; j += PAGE_SIZE) {
2245 			vm_page_t m = vm_page_alloc_domain(NULL, 0,
2246 			    domain, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ);
2247 			if (m == NULL)
2248 				panic("vm_page_alloc_domain failed for %lx\n", (vm_offset_t)pvd + j);
2249 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2250 		}
2251 
2252 		for (j = 0; j < s / sizeof(*pvd); j++) {
2253 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2254 			TAILQ_INIT(&pvd->pv_page.pv_list);
2255 			pvd->pv_page.pv_gen = 0;
2256 			pvd->pv_page.pat_mode = 0;
2257 			pvd->pv_invl_gen = 0;
2258 			pvd++;
2259 		}
2260 	}
2261 	pvd = &pv_dummy_large;
2262 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2263 	TAILQ_INIT(&pvd->pv_page.pv_list);
2264 	pvd->pv_page.pv_gen = 0;
2265 	pvd->pv_page.pat_mode = 0;
2266 	pvd->pv_invl_gen = 0;
2267 }
2268 #else
2269 static void
pmap_init_pv_table(void)2270 pmap_init_pv_table(void)
2271 {
2272 	vm_size_t s;
2273 	long i, pv_npg;
2274 
2275 	/*
2276 	 * Initialize the pool of pv list locks.
2277 	 */
2278 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2279 		rw_init(&pv_list_locks[i], "pmap pv list");
2280 
2281 	/*
2282 	 * Calculate the size of the pv head table for superpages.
2283 	 */
2284 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2285 
2286 	/*
2287 	 * Allocate memory for the pv head table for superpages.
2288 	 */
2289 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2290 	s = round_page(s);
2291 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
2292 	for (i = 0; i < pv_npg; i++)
2293 		TAILQ_INIT(&pv_table[i].pv_list);
2294 	TAILQ_INIT(&pv_dummy.pv_list);
2295 }
2296 #endif
2297 
2298 /*
2299  *	Initialize the pmap module.
2300  *	Called by vm_init, to initialize any structures that the pmap
2301  *	system needs to map virtual memory.
2302  */
2303 void
pmap_init(void)2304 pmap_init(void)
2305 {
2306 	struct pmap_preinit_mapping *ppim;
2307 	vm_page_t m, mpte;
2308 	int error, i, ret, skz63;
2309 
2310 	/* L1TF, reserve page @0 unconditionally */
2311 	vm_page_blacklist_add(0, bootverbose);
2312 
2313 	/* Detect bare-metal Skylake Server and Skylake-X. */
2314 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2315 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2316 		/*
2317 		 * Skylake-X errata SKZ63. Processor May Hang When
2318 		 * Executing Code In an HLE Transaction Region between
2319 		 * 40000000H and 403FFFFFH.
2320 		 *
2321 		 * Mark the pages in the range as preallocated.  It
2322 		 * seems to be impossible to distinguish between
2323 		 * Skylake Server and Skylake X.
2324 		 */
2325 		skz63 = 1;
2326 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2327 		if (skz63 != 0) {
2328 			if (bootverbose)
2329 				printf("SKZ63: skipping 4M RAM starting "
2330 				    "at physical 1G\n");
2331 			for (i = 0; i < atop(0x400000); i++) {
2332 				ret = vm_page_blacklist_add(0x40000000 +
2333 				    ptoa(i), FALSE);
2334 				if (!ret && bootverbose)
2335 					printf("page at %#lx already used\n",
2336 					    0x40000000 + ptoa(i));
2337 			}
2338 		}
2339 	}
2340 
2341 	/* IFU */
2342 	pmap_allow_2m_x_ept_recalculate();
2343 
2344 	/*
2345 	 * Initialize the vm page array entries for the kernel pmap's
2346 	 * page table pages.
2347 	 */
2348 	PMAP_LOCK(kernel_pmap);
2349 	for (i = 0; i < nkpt; i++) {
2350 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2351 		KASSERT(mpte >= vm_page_array &&
2352 		    mpte < &vm_page_array[vm_page_array_size],
2353 		    ("pmap_init: page table page is out of range"));
2354 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2355 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2356 		mpte->ref_count = 1;
2357 
2358 		/*
2359 		 * Collect the page table pages that were replaced by a 2MB
2360 		 * page in create_pagetables().  They are zero filled.
2361 		 */
2362 		if ((vm_paddr_t)i << PDRSHIFT < KERNend &&
2363 		    pmap_insert_pt_page(kernel_pmap, mpte, false))
2364 			panic("pmap_init: pmap_insert_pt_page failed");
2365 	}
2366 	PMAP_UNLOCK(kernel_pmap);
2367 	vm_wire_add(nkpt);
2368 
2369 	/*
2370 	 * If the kernel is running on a virtual machine, then it must assume
2371 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2372 	 * be prepared for the hypervisor changing the vendor and family that
2373 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2374 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2375 	 * include at least one feature that is only supported by older Intel
2376 	 * or newer AMD processors.
2377 	 */
2378 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2379 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2380 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2381 	    AMDID2_FMA4)) == 0)
2382 		workaround_erratum383 = 1;
2383 
2384 	/*
2385 	 * Are large page mappings enabled?
2386 	 */
2387 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2388 	if (pg_ps_enabled) {
2389 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2390 		    ("pmap_init: can't assign to pagesizes[1]"));
2391 		pagesizes[1] = NBPDR;
2392 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2393 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2394 			    ("pmap_init: can't assign to pagesizes[2]"));
2395 			pagesizes[2] = NBPDP;
2396 		}
2397 	}
2398 
2399 	/*
2400 	 * Initialize pv chunk lists.
2401 	 */
2402 	for (i = 0; i < PMAP_MEMDOM; i++) {
2403 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2404 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2405 	}
2406 	pmap_init_pv_table();
2407 
2408 	pmap_initialized = 1;
2409 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2410 		ppim = pmap_preinit_mapping + i;
2411 		if (ppim->va == 0)
2412 			continue;
2413 		/* Make the direct map consistent */
2414 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2415 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2416 			    ppim->sz, ppim->mode);
2417 		}
2418 		if (!bootverbose)
2419 			continue;
2420 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2421 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2422 	}
2423 
2424 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2425 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2426 	    (vmem_addr_t *)&qframe);
2427 	if (error != 0)
2428 		panic("qframe allocation failed");
2429 
2430 	lm_ents = 8;
2431 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2432 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2433 		lm_ents = LMEPML4I - LMSPML4I + 1;
2434 	if (bootverbose)
2435 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2436 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2437 	if (lm_ents != 0) {
2438 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2439 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2440 		if (large_vmem == NULL) {
2441 			printf("pmap: cannot create large map\n");
2442 			lm_ents = 0;
2443 		}
2444 		for (i = 0; i < lm_ents; i++) {
2445 			m = pmap_large_map_getptp_unlocked();
2446 			/* XXXKIB la57 */
2447 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2448 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2449 			    VM_PAGE_TO_PHYS(m);
2450 		}
2451 	}
2452 }
2453 
2454 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2455     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2456     "Maximum number of PML4 entries for use by large map (tunable).  "
2457     "Each entry corresponds to 512GB of address space.");
2458 
2459 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2460     "2MB page mapping counters");
2461 
2462 static u_long pmap_pde_demotions;
2463 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
2464     &pmap_pde_demotions, 0, "2MB page demotions");
2465 
2466 static u_long pmap_pde_mappings;
2467 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2468     &pmap_pde_mappings, 0, "2MB page mappings");
2469 
2470 static u_long pmap_pde_p_failures;
2471 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2472     &pmap_pde_p_failures, 0, "2MB page promotion failures");
2473 
2474 static u_long pmap_pde_promotions;
2475 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2476     &pmap_pde_promotions, 0, "2MB page promotions");
2477 
2478 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2479     "1GB page mapping counters");
2480 
2481 static u_long pmap_pdpe_demotions;
2482 SYSCTL_ULONG(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2483     &pmap_pdpe_demotions, 0, "1GB page demotions");
2484 
2485 /***************************************************
2486  * Low level helper routines.....
2487  ***************************************************/
2488 
2489 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2490 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2491 {
2492 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2493 
2494 	switch (pmap->pm_type) {
2495 	case PT_X86:
2496 	case PT_RVI:
2497 		/* Verify that both PAT bits are not set at the same time */
2498 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2499 		    ("Invalid PAT bits in entry %#lx", entry));
2500 
2501 		/* Swap the PAT bits if one of them is set */
2502 		if ((entry & x86_pat_bits) != 0)
2503 			entry ^= x86_pat_bits;
2504 		break;
2505 	case PT_EPT:
2506 		/*
2507 		 * Nothing to do - the memory attributes are represented
2508 		 * the same way for regular pages and superpages.
2509 		 */
2510 		break;
2511 	default:
2512 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2513 	}
2514 
2515 	return (entry);
2516 }
2517 
2518 boolean_t
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2519 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2520 {
2521 
2522 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2523 	    pat_index[(int)mode] >= 0);
2524 }
2525 
2526 /*
2527  * Determine the appropriate bits to set in a PTE or PDE for a specified
2528  * caching mode.
2529  */
2530 int
pmap_cache_bits(pmap_t pmap,int mode,boolean_t is_pde)2531 pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
2532 {
2533 	int cache_bits, pat_flag, pat_idx;
2534 
2535 	if (!pmap_is_valid_memattr(pmap, mode))
2536 		panic("Unknown caching mode %d\n", mode);
2537 
2538 	switch (pmap->pm_type) {
2539 	case PT_X86:
2540 	case PT_RVI:
2541 		/* The PAT bit is different for PTE's and PDE's. */
2542 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2543 
2544 		/* Map the caching mode to a PAT index. */
2545 		pat_idx = pat_index[mode];
2546 
2547 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2548 		cache_bits = 0;
2549 		if (pat_idx & 0x4)
2550 			cache_bits |= pat_flag;
2551 		if (pat_idx & 0x2)
2552 			cache_bits |= PG_NC_PCD;
2553 		if (pat_idx & 0x1)
2554 			cache_bits |= PG_NC_PWT;
2555 		break;
2556 
2557 	case PT_EPT:
2558 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2559 		break;
2560 
2561 	default:
2562 		panic("unsupported pmap type %d", pmap->pm_type);
2563 	}
2564 
2565 	return (cache_bits);
2566 }
2567 
2568 static int
pmap_cache_mask(pmap_t pmap,boolean_t is_pde)2569 pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
2570 {
2571 	int mask;
2572 
2573 	switch (pmap->pm_type) {
2574 	case PT_X86:
2575 	case PT_RVI:
2576 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2577 		break;
2578 	case PT_EPT:
2579 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2580 		break;
2581 	default:
2582 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2583 	}
2584 
2585 	return (mask);
2586 }
2587 
2588 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2589 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2590 {
2591 	int pat_flag, pat_idx;
2592 
2593 	pat_idx = 0;
2594 	switch (pmap->pm_type) {
2595 	case PT_X86:
2596 	case PT_RVI:
2597 		/* The PAT bit is different for PTE's and PDE's. */
2598 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2599 
2600 		if ((pte & pat_flag) != 0)
2601 			pat_idx |= 0x4;
2602 		if ((pte & PG_NC_PCD) != 0)
2603 			pat_idx |= 0x2;
2604 		if ((pte & PG_NC_PWT) != 0)
2605 			pat_idx |= 0x1;
2606 		break;
2607 	case PT_EPT:
2608 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2609 			panic("EPT PTE %#lx has no PAT memory type", pte);
2610 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2611 		break;
2612 	}
2613 
2614 	/* See pmap_init_pat(). */
2615 	if (pat_idx == 4)
2616 		pat_idx = 0;
2617 	if (pat_idx == 7)
2618 		pat_idx = 3;
2619 
2620 	return (pat_idx);
2621 }
2622 
2623 bool
pmap_ps_enabled(pmap_t pmap)2624 pmap_ps_enabled(pmap_t pmap)
2625 {
2626 
2627 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2628 }
2629 
2630 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2631 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2632 {
2633 
2634 	switch (pmap->pm_type) {
2635 	case PT_X86:
2636 		break;
2637 	case PT_RVI:
2638 	case PT_EPT:
2639 		/*
2640 		 * XXX
2641 		 * This is a little bogus since the generation number is
2642 		 * supposed to be bumped up when a region of the address
2643 		 * space is invalidated in the page tables.
2644 		 *
2645 		 * In this case the old PDE entry is valid but yet we want
2646 		 * to make sure that any mappings using the old entry are
2647 		 * invalidated in the TLB.
2648 		 *
2649 		 * The reason this works as expected is because we rendezvous
2650 		 * "all" host cpus and force any vcpu context to exit as a
2651 		 * side-effect.
2652 		 */
2653 		atomic_add_long(&pmap->pm_eptgen, 1);
2654 		break;
2655 	default:
2656 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2657 	}
2658 	pde_store(pde, newpde);
2659 }
2660 
2661 /*
2662  * After changing the page size for the specified virtual address in the page
2663  * table, flush the corresponding entries from the processor's TLB.  Only the
2664  * calling processor's TLB is affected.
2665  *
2666  * The calling thread must be pinned to a processor.
2667  */
2668 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2669 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2670 {
2671 	pt_entry_t PG_G;
2672 
2673 	if (pmap_type_guest(pmap))
2674 		return;
2675 
2676 	KASSERT(pmap->pm_type == PT_X86,
2677 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2678 
2679 	PG_G = pmap_global_bit(pmap);
2680 
2681 	if ((newpde & PG_PS) == 0)
2682 		/* Demotion: flush a specific 2MB page mapping. */
2683 		invlpg(va);
2684 	else if ((newpde & PG_G) == 0)
2685 		/*
2686 		 * Promotion: flush every 4KB page mapping from the TLB
2687 		 * because there are too many to flush individually.
2688 		 */
2689 		invltlb();
2690 	else {
2691 		/*
2692 		 * Promotion: flush every 4KB page mapping from the TLB,
2693 		 * including any global (PG_G) mappings.
2694 		 */
2695 		invltlb_glob();
2696 	}
2697 }
2698 
2699 /*
2700  * The amd64 pmap uses different approaches to TLB invalidation
2701  * depending on the kernel configuration, available hardware features,
2702  * and known hardware errata.  The kernel configuration option that
2703  * has the greatest operational impact on TLB invalidation is PTI,
2704  * which is enabled automatically on affected Intel CPUs.  The most
2705  * impactful hardware features are first PCID, and then INVPCID
2706  * instruction presence.  PCID usage is quite different for PTI
2707  * vs. non-PTI.
2708  *
2709  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2710  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2711  *   space is served by two page tables, user and kernel.  The user
2712  *   page table only maps user space and a kernel trampoline.  The
2713  *   kernel trampoline includes the entirety of the kernel text but
2714  *   only the kernel data that is needed to switch from user to kernel
2715  *   mode.  The kernel page table maps the user and kernel address
2716  *   spaces in their entirety.  It is identical to the per-process
2717  *   page table used in non-PTI mode.
2718  *
2719  *   User page tables are only used when the CPU is in user mode.
2720  *   Consequently, some TLB invalidations can be postponed until the
2721  *   switch from kernel to user mode.  In contrast, the user
2722  *   space part of the kernel page table is used for copyout(9), so
2723  *   TLB invalidations on this page table cannot be similarly postponed.
2724  *
2725  *   The existence of a user mode page table for the given pmap is
2726  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2727  *   which case pm_ucr3 contains the %cr3 register value for the user
2728  *   mode page table's root.
2729  *
2730  * * The pm_active bitmask indicates which CPUs currently have the
2731  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2732  *   cleared on switching off this CPU.  For the kernel page table,
2733  *   the pm_active field is immutable and contains all CPUs.  The
2734  *   kernel page table is always logically active on every processor,
2735  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2736  *
2737  *   When requesting invalidation of virtual addresses with
2738  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2739  *   all CPUs recorded as active in pm_active.  Updates to and reads
2740  *   from pm_active are not synchronized, and so they may race with
2741  *   each other.  Shootdown handlers are prepared to handle the race.
2742  *
2743  * * PCID is an optional feature of the long mode x86 MMU where TLB
2744  *   entries are tagged with the 'Process ID' of the address space
2745  *   they belong to.  This feature provides a limited namespace for
2746  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2747  *   total.
2748  *
2749  *   Allocation of a PCID to a pmap is done by an algorithm described
2750  *   in section 15.12, "Other TLB Consistency Algorithms", of
2751  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2752  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2753  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2754  *   the CPU is about to start caching TLB entries from a pmap,
2755  *   i.e., on the context switch that activates the pmap on the CPU.
2756  *
2757  *   The PCID allocator maintains a per-CPU, per-pmap generation
2758  *   count, pm_gen, which is incremented each time a new PCID is
2759  *   allocated.  On TLB invalidation, the generation counters for the
2760  *   pmap are zeroed, which signals the context switch code that the
2761  *   previously allocated PCID is no longer valid.  Effectively,
2762  *   zeroing any of these counters triggers a TLB shootdown for the
2763  *   given CPU/address space, due to the allocation of a new PCID.
2764  *
2765  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2766  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2767  *   be initiated by an ordinary memory access to reset the target
2768  *   CPU's generation count within the pmap.  The CPU initiating the
2769  *   TLB shootdown does not need to send an IPI to the target CPU.
2770  *
2771  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2772  *   for complete (kernel) page tables, and PCIDs for user mode page
2773  *   tables.  A user PCID value is obtained from the kernel PCID value
2774  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2775  *
2776  *   User space page tables are activated on return to user mode, by
2777  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2778  *   clearing bit 63 of the loaded ucr3, this effectively causes
2779  *   complete invalidation of the user mode TLB entries for the
2780  *   current pmap.  In which case, local invalidations of individual
2781  *   pages in the user page table are skipped.
2782  *
2783  * * Local invalidation, all modes.  If the requested invalidation is
2784  *   for a specific address or the total invalidation of a currently
2785  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2786  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2787  *   user space page table(s).
2788  *
2789  *   If the INVPCID instruction is available, it is used to flush entries
2790  *   from the kernel page table.
2791  *
2792  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2793  *   address space, all other 4095 PCIDs are used for user mode spaces
2794  *   as described above.  A context switch allocates a new PCID if
2795  *   the recorded PCID is zero or the recorded generation does not match
2796  *   the CPU's generation, effectively flushing the TLB for this address space.
2797  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2798  *	local user page: INVLPG
2799  *	local kernel page: INVLPG
2800  *	local user total: INVPCID(CTX)
2801  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2802  *	remote user page, inactive pmap: zero pm_gen
2803  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2804  *	(Both actions are required to handle the aforementioned pm_active races.)
2805  *	remote kernel page: IPI:INVLPG
2806  *	remote user total, inactive pmap: zero pm_gen
2807  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2808  *          reload %cr3)
2809  *	(See note above about pm_active races.)
2810  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2811  *
2812  * PTI enabled, PCID present.
2813  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2814  *          for upt
2815  *	local kernel page: INVLPG
2816  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2817  *          on loading UCR3 into %cr3 for upt
2818  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2819  *	remote user page, inactive pmap: zero pm_gen
2820  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2821  *          INVPCID(ADDR) for upt)
2822  *	remote kernel page: IPI:INVLPG
2823  *	remote user total, inactive pmap: zero pm_gen
2824  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2825  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2826  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2827  *
2828  *  No PCID.
2829  *	local user page: INVLPG
2830  *	local kernel page: INVLPG
2831  *	local user total: reload %cr3
2832  *	local kernel total: invltlb_glob()
2833  *	remote user page, inactive pmap: -
2834  *	remote user page, active pmap: IPI:INVLPG
2835  *	remote kernel page: IPI:INVLPG
2836  *	remote user total, inactive pmap: -
2837  *	remote user total, active pmap: IPI:(reload %cr3)
2838  *	remote kernel total: IPI:invltlb_glob()
2839  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
2840  *  TLB invalidation, no specific action is required for user page table.
2841  *
2842  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
2843  * XXX TODO
2844  */
2845 
2846 #ifdef SMP
2847 /*
2848  * Interrupt the cpus that are executing in the guest context.
2849  * This will force the vcpu to exit and the cached EPT mappings
2850  * will be invalidated by the host before the next vmresume.
2851  */
2852 static __inline void
pmap_invalidate_ept(pmap_t pmap)2853 pmap_invalidate_ept(pmap_t pmap)
2854 {
2855 	smr_seq_t goal;
2856 	int ipinum;
2857 
2858 	sched_pin();
2859 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
2860 	    ("pmap_invalidate_ept: absurd pm_active"));
2861 
2862 	/*
2863 	 * The TLB mappings associated with a vcpu context are not
2864 	 * flushed each time a different vcpu is chosen to execute.
2865 	 *
2866 	 * This is in contrast with a process's vtop mappings that
2867 	 * are flushed from the TLB on each context switch.
2868 	 *
2869 	 * Therefore we need to do more than just a TLB shootdown on
2870 	 * the active cpus in 'pmap->pm_active'. To do this we keep
2871 	 * track of the number of invalidations performed on this pmap.
2872 	 *
2873 	 * Each vcpu keeps a cache of this counter and compares it
2874 	 * just before a vmresume. If the counter is out-of-date an
2875 	 * invept will be done to flush stale mappings from the TLB.
2876 	 *
2877 	 * To ensure that all vCPU threads have observed the new counter
2878 	 * value before returning, we use SMR.  Ordering is important here:
2879 	 * the VMM enters an SMR read section before loading the counter
2880 	 * and after updating the pm_active bit set.  Thus, pm_active is
2881 	 * a superset of active readers, and any reader that has observed
2882 	 * the goal has observed the new counter value.
2883 	 */
2884 	atomic_add_long(&pmap->pm_eptgen, 1);
2885 
2886 	goal = smr_advance(pmap->pm_eptsmr);
2887 
2888 	/*
2889 	 * Force the vcpu to exit and trap back into the hypervisor.
2890 	 */
2891 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
2892 	ipi_selected(pmap->pm_active, ipinum);
2893 	sched_unpin();
2894 
2895 	/*
2896 	 * Ensure that all active vCPUs will observe the new generation counter
2897 	 * value before executing any more guest instructions.
2898 	 */
2899 	smr_wait(pmap->pm_eptsmr, goal);
2900 }
2901 
2902 static cpuset_t
pmap_invalidate_cpu_mask(pmap_t pmap)2903 pmap_invalidate_cpu_mask(pmap_t pmap)
2904 {
2905 	return (pmap == kernel_pmap ? all_cpus : pmap->pm_active);
2906 }
2907 
2908 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)2909 pmap_invalidate_preipi_pcid(pmap_t pmap)
2910 {
2911 	u_int cpuid, i;
2912 
2913 	sched_pin();
2914 
2915 	cpuid = PCPU_GET(cpuid);
2916 	if (pmap != PCPU_GET(curpmap))
2917 		cpuid = 0xffffffff;	/* An impossible value */
2918 
2919 	CPU_FOREACH(i) {
2920 		if (cpuid != i)
2921 			pmap->pm_pcids[i].pm_gen = 0;
2922 	}
2923 
2924 	/*
2925 	 * The fence is between stores to pm_gen and the read of the
2926 	 * pm_active mask.  We need to ensure that it is impossible
2927 	 * for us to miss the bit update in pm_active and
2928 	 * simultaneously observe a non-zero pm_gen in
2929 	 * pmap_activate_sw(), otherwise TLB update is missed.
2930 	 * Without the fence, IA32 allows such an outcome.  Note that
2931 	 * pm_active is updated by a locked operation, which provides
2932 	 * the reciprocal fence.
2933 	 */
2934 	atomic_thread_fence_seq_cst();
2935 }
2936 
2937 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)2938 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
2939 {
2940 	sched_pin();
2941 }
2942 
2943 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
2944 {
2945 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
2946 	    pmap_invalidate_preipi_nopcid);
2947 }
2948 
2949 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)2950 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
2951     const bool invpcid_works1)
2952 {
2953 	struct invpcid_descr d;
2954 	uint64_t kcr3, ucr3;
2955 	uint32_t pcid;
2956 	u_int cpuid;
2957 
2958 	/*
2959 	 * Because pm_pcid is recalculated on a context switch, we
2960 	 * must ensure there is no preemption, not just pinning.
2961 	 * Otherwise, we might use a stale value below.
2962 	 */
2963 	CRITICAL_ASSERT(curthread);
2964 
2965 	/*
2966 	 * No need to do anything with user page tables invalidation
2967 	 * if there is no user page table, or invalidation is deferred
2968 	 * until the return to userspace.  ucr3_load_mask is stable
2969 	 * because we have preemption disabled.
2970 	 */
2971 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
2972 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
2973 		return;
2974 
2975 	cpuid = PCPU_GET(cpuid);
2976 
2977 	pcid = pmap->pm_pcids[cpuid].pm_pcid;
2978 	if (invpcid_works1) {
2979 		d.pcid = pcid | PMAP_PCID_USER_PT;
2980 		d.pad = 0;
2981 		d.addr = va;
2982 		invpcid(&d, INVPCID_ADDR);
2983 	} else {
2984 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
2985 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
2986 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
2987 	}
2988 }
2989 
2990 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)2991 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
2992 {
2993 	pmap_invalidate_page_pcid_cb(pmap, va, true);
2994 }
2995 
2996 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)2997 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
2998 {
2999 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3000 }
3001 
3002 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3003 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3004 {
3005 }
3006 
3007 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3008 {
3009 	if (pmap_pcid_enabled)
3010 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3011 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3012 	return (pmap_invalidate_page_nopcid_cb);
3013 }
3014 
3015 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3016 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3017     vm_offset_t addr2 __unused)
3018 {
3019 	if (pmap == kernel_pmap) {
3020 		invlpg(va);
3021 	} else if (pmap == PCPU_GET(curpmap)) {
3022 		invlpg(va);
3023 		pmap_invalidate_page_cb(pmap, va);
3024 	}
3025 }
3026 
3027 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3028 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3029 {
3030 	if (pmap_type_guest(pmap)) {
3031 		pmap_invalidate_ept(pmap);
3032 		return;
3033 	}
3034 
3035 	KASSERT(pmap->pm_type == PT_X86,
3036 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3037 
3038 	pmap_invalidate_preipi(pmap);
3039 	smp_masked_invlpg(pmap_invalidate_cpu_mask(pmap), va, pmap,
3040 	    pmap_invalidate_page_curcpu_cb);
3041 }
3042 
3043 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3044 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3045 
3046 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3047 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3048     const bool invpcid_works1)
3049 {
3050 	struct invpcid_descr d;
3051 	uint64_t kcr3, ucr3;
3052 	uint32_t pcid;
3053 	u_int cpuid;
3054 
3055 	CRITICAL_ASSERT(curthread);
3056 
3057 	if (pmap != PCPU_GET(curpmap) ||
3058 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3059 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3060 		return;
3061 
3062 	cpuid = PCPU_GET(cpuid);
3063 
3064 	pcid = pmap->pm_pcids[cpuid].pm_pcid;
3065 	if (invpcid_works1) {
3066 		d.pcid = pcid | PMAP_PCID_USER_PT;
3067 		d.pad = 0;
3068 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3069 			invpcid(&d, INVPCID_ADDR);
3070 	} else {
3071 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3072 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3073 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3074 	}
3075 }
3076 
3077 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3078 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3079     vm_offset_t eva)
3080 {
3081 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3082 }
3083 
3084 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3085 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3086     vm_offset_t eva)
3087 {
3088 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3089 }
3090 
3091 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3092 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3093     vm_offset_t eva __unused)
3094 {
3095 }
3096 
3097 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3098     vm_offset_t))
3099 {
3100 	if (pmap_pcid_enabled)
3101 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3102 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3103 	return (pmap_invalidate_range_nopcid_cb);
3104 }
3105 
3106 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3107 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3108 {
3109 	vm_offset_t addr;
3110 
3111 	if (pmap == kernel_pmap) {
3112 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3113 			invlpg(addr);
3114 	} else if (pmap == PCPU_GET(curpmap)) {
3115 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3116 			invlpg(addr);
3117 		pmap_invalidate_range_cb(pmap, sva, eva);
3118 	}
3119 }
3120 
3121 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3122 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3123 {
3124 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3125 		pmap_invalidate_all(pmap);
3126 		return;
3127 	}
3128 
3129 	if (pmap_type_guest(pmap)) {
3130 		pmap_invalidate_ept(pmap);
3131 		return;
3132 	}
3133 
3134 	KASSERT(pmap->pm_type == PT_X86,
3135 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3136 
3137 	pmap_invalidate_preipi(pmap);
3138 	smp_masked_invlpg_range(pmap_invalidate_cpu_mask(pmap), sva, eva, pmap,
3139 	    pmap_invalidate_range_curcpu_cb);
3140 }
3141 
3142 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3143 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3144 {
3145 	struct invpcid_descr d;
3146 	uint64_t kcr3;
3147 	uint32_t pcid;
3148 	u_int cpuid;
3149 
3150 	if (pmap == kernel_pmap) {
3151 		if (invpcid_works1) {
3152 			bzero(&d, sizeof(d));
3153 			invpcid(&d, INVPCID_CTXGLOB);
3154 		} else {
3155 			invltlb_glob();
3156 		}
3157 	} else if (pmap == PCPU_GET(curpmap)) {
3158 		CRITICAL_ASSERT(curthread);
3159 		cpuid = PCPU_GET(cpuid);
3160 
3161 		pcid = pmap->pm_pcids[cpuid].pm_pcid;
3162 		if (invpcid_works1) {
3163 			d.pcid = pcid;
3164 			d.pad = 0;
3165 			d.addr = 0;
3166 			invpcid(&d, INVPCID_CTX);
3167 		} else {
3168 			kcr3 = pmap->pm_cr3 | pcid;
3169 			load_cr3(kcr3);
3170 		}
3171 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3172 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3173 	}
3174 }
3175 
3176 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3177 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3178 {
3179 	pmap_invalidate_all_pcid_cb(pmap, true);
3180 }
3181 
3182 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3183 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3184 {
3185 	pmap_invalidate_all_pcid_cb(pmap, false);
3186 }
3187 
3188 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3189 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3190 {
3191 	if (pmap == kernel_pmap)
3192 		invltlb_glob();
3193 	else if (pmap == PCPU_GET(curpmap))
3194 		invltlb();
3195 }
3196 
3197 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3198 {
3199 	if (pmap_pcid_enabled)
3200 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3201 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3202 	return (pmap_invalidate_all_nopcid_cb);
3203 }
3204 
3205 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3206 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3207     vm_offset_t addr2 __unused)
3208 {
3209 	pmap_invalidate_all_cb(pmap);
3210 }
3211 
3212 void
pmap_invalidate_all(pmap_t pmap)3213 pmap_invalidate_all(pmap_t pmap)
3214 {
3215 	if (pmap_type_guest(pmap)) {
3216 		pmap_invalidate_ept(pmap);
3217 		return;
3218 	}
3219 
3220 	KASSERT(pmap->pm_type == PT_X86,
3221 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3222 
3223 	pmap_invalidate_preipi(pmap);
3224 	smp_masked_invltlb(pmap_invalidate_cpu_mask(pmap), pmap,
3225 	    pmap_invalidate_all_curcpu_cb);
3226 }
3227 
3228 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3229 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3230     vm_offset_t addr2 __unused)
3231 {
3232 	wbinvd();
3233 }
3234 
3235 void
pmap_invalidate_cache(void)3236 pmap_invalidate_cache(void)
3237 {
3238 	sched_pin();
3239 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3240 }
3241 
3242 struct pde_action {
3243 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3244 	pmap_t pmap;
3245 	vm_offset_t va;
3246 	pd_entry_t *pde;
3247 	pd_entry_t newpde;
3248 	u_int store;		/* processor that updates the PDE */
3249 };
3250 
3251 static void
pmap_update_pde_action(void * arg)3252 pmap_update_pde_action(void *arg)
3253 {
3254 	struct pde_action *act = arg;
3255 
3256 	if (act->store == PCPU_GET(cpuid))
3257 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3258 }
3259 
3260 static void
pmap_update_pde_teardown(void * arg)3261 pmap_update_pde_teardown(void *arg)
3262 {
3263 	struct pde_action *act = arg;
3264 
3265 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3266 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3267 }
3268 
3269 /*
3270  * Change the page size for the specified virtual address in a way that
3271  * prevents any possibility of the TLB ever having two entries that map the
3272  * same virtual address using different page sizes.  This is the recommended
3273  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3274  * machine check exception for a TLB state that is improperly diagnosed as a
3275  * hardware error.
3276  */
3277 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3278 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3279 {
3280 	struct pde_action act;
3281 	cpuset_t active, other_cpus;
3282 	u_int cpuid;
3283 
3284 	sched_pin();
3285 	cpuid = PCPU_GET(cpuid);
3286 	other_cpus = all_cpus;
3287 	CPU_CLR(cpuid, &other_cpus);
3288 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3289 		active = all_cpus;
3290 	else {
3291 		active = pmap->pm_active;
3292 	}
3293 	if (CPU_OVERLAP(&active, &other_cpus)) {
3294 		act.store = cpuid;
3295 		act.invalidate = active;
3296 		act.va = va;
3297 		act.pmap = pmap;
3298 		act.pde = pde;
3299 		act.newpde = newpde;
3300 		CPU_SET(cpuid, &active);
3301 		smp_rendezvous_cpus(active,
3302 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3303 		    pmap_update_pde_teardown, &act);
3304 	} else {
3305 		pmap_update_pde_store(pmap, pde, newpde);
3306 		if (CPU_ISSET(cpuid, &active))
3307 			pmap_update_pde_invalidate(pmap, va, newpde);
3308 	}
3309 	sched_unpin();
3310 }
3311 #else /* !SMP */
3312 /*
3313  * Normal, non-SMP, invalidation functions.
3314  */
3315 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3316 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3317 {
3318 	struct invpcid_descr d;
3319 	uint64_t kcr3, ucr3;
3320 	uint32_t pcid;
3321 
3322 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3323 		pmap->pm_eptgen++;
3324 		return;
3325 	}
3326 	KASSERT(pmap->pm_type == PT_X86,
3327 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3328 
3329 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3330 		invlpg(va);
3331 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3332 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3333 			critical_enter();
3334 			pcid = pmap->pm_pcids[0].pm_pcid;
3335 			if (invpcid_works) {
3336 				d.pcid = pcid | PMAP_PCID_USER_PT;
3337 				d.pad = 0;
3338 				d.addr = va;
3339 				invpcid(&d, INVPCID_ADDR);
3340 			} else {
3341 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3342 				ucr3 = pmap->pm_ucr3 | pcid |
3343 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3344 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3345 			}
3346 			critical_exit();
3347 		}
3348 	} else if (pmap_pcid_enabled)
3349 		pmap->pm_pcids[0].pm_gen = 0;
3350 }
3351 
3352 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3353 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3354 {
3355 	struct invpcid_descr d;
3356 	vm_offset_t addr;
3357 	uint64_t kcr3, ucr3;
3358 
3359 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3360 		pmap->pm_eptgen++;
3361 		return;
3362 	}
3363 	KASSERT(pmap->pm_type == PT_X86,
3364 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3365 
3366 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3367 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3368 			invlpg(addr);
3369 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3370 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3371 			critical_enter();
3372 			if (invpcid_works) {
3373 				d.pcid = pmap->pm_pcids[0].pm_pcid |
3374 				    PMAP_PCID_USER_PT;
3375 				d.pad = 0;
3376 				d.addr = sva;
3377 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3378 					invpcid(&d, INVPCID_ADDR);
3379 			} else {
3380 				kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].
3381 				    pm_pcid | CR3_PCID_SAVE;
3382 				ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[0].
3383 				    pm_pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3384 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3385 			}
3386 			critical_exit();
3387 		}
3388 	} else if (pmap_pcid_enabled) {
3389 		pmap->pm_pcids[0].pm_gen = 0;
3390 	}
3391 }
3392 
3393 void
pmap_invalidate_all(pmap_t pmap)3394 pmap_invalidate_all(pmap_t pmap)
3395 {
3396 	struct invpcid_descr d;
3397 	uint64_t kcr3, ucr3;
3398 
3399 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3400 		pmap->pm_eptgen++;
3401 		return;
3402 	}
3403 	KASSERT(pmap->pm_type == PT_X86,
3404 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3405 
3406 	if (pmap == kernel_pmap) {
3407 		if (pmap_pcid_enabled && invpcid_works) {
3408 			bzero(&d, sizeof(d));
3409 			invpcid(&d, INVPCID_CTXGLOB);
3410 		} else {
3411 			invltlb_glob();
3412 		}
3413 	} else if (pmap == PCPU_GET(curpmap)) {
3414 		if (pmap_pcid_enabled) {
3415 			critical_enter();
3416 			if (invpcid_works) {
3417 				d.pcid = pmap->pm_pcids[0].pm_pcid;
3418 				d.pad = 0;
3419 				d.addr = 0;
3420 				invpcid(&d, INVPCID_CTX);
3421 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3422 					d.pcid |= PMAP_PCID_USER_PT;
3423 					invpcid(&d, INVPCID_CTX);
3424 				}
3425 			} else {
3426 				kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].pm_pcid;
3427 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3428 					ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[
3429 					    0].pm_pcid | PMAP_PCID_USER_PT;
3430 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3431 				} else
3432 					load_cr3(kcr3);
3433 			}
3434 			critical_exit();
3435 		} else {
3436 			invltlb();
3437 		}
3438 	} else if (pmap_pcid_enabled) {
3439 		pmap->pm_pcids[0].pm_gen = 0;
3440 	}
3441 }
3442 
3443 PMAP_INLINE void
pmap_invalidate_cache(void)3444 pmap_invalidate_cache(void)
3445 {
3446 
3447 	wbinvd();
3448 }
3449 
3450 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3451 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3452 {
3453 
3454 	pmap_update_pde_store(pmap, pde, newpde);
3455 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3456 		pmap_update_pde_invalidate(pmap, va, newpde);
3457 	else
3458 		pmap->pm_pcids[0].pm_gen = 0;
3459 }
3460 #endif /* !SMP */
3461 
3462 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3463 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3464 {
3465 
3466 	/*
3467 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3468 	 * by a promotion that did not invalidate the 512 4KB page mappings
3469 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3470 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3471 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3472 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3473 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3474 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3475 	 * TLB.
3476 	 */
3477 	if ((pde & PG_PROMOTED) != 0)
3478 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3479 	else
3480 		pmap_invalidate_page(pmap, va);
3481 }
3482 
3483 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3484     (vm_offset_t sva, vm_offset_t eva))
3485 {
3486 
3487 	if ((cpu_feature & CPUID_SS) != 0)
3488 		return (pmap_invalidate_cache_range_selfsnoop);
3489 	if ((cpu_feature & CPUID_CLFSH) != 0)
3490 		return (pmap_force_invalidate_cache_range);
3491 	return (pmap_invalidate_cache_range_all);
3492 }
3493 
3494 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3495 
3496 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3497 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3498 {
3499 
3500 	KASSERT((sva & PAGE_MASK) == 0,
3501 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3502 	KASSERT((eva & PAGE_MASK) == 0,
3503 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3504 }
3505 
3506 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3507 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3508 {
3509 
3510 	pmap_invalidate_cache_range_check_align(sva, eva);
3511 }
3512 
3513 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3514 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3515 {
3516 
3517 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3518 
3519 	/*
3520 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3521 	 * registers if we use CLFLUSH on the local APIC range.  The
3522 	 * local APIC is always uncached, so we don't need to flush
3523 	 * for that range anyway.
3524 	 */
3525 	if (pmap_kextract(sva) == lapic_paddr)
3526 		return;
3527 
3528 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3529 		/*
3530 		 * Do per-cache line flush.  Use a locked
3531 		 * instruction to insure that previous stores are
3532 		 * included in the write-back.  The processor
3533 		 * propagates flush to other processors in the cache
3534 		 * coherence domain.
3535 		 */
3536 		atomic_thread_fence_seq_cst();
3537 		for (; sva < eva; sva += cpu_clflush_line_size)
3538 			clflushopt(sva);
3539 		atomic_thread_fence_seq_cst();
3540 	} else {
3541 		/*
3542 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3543 		 */
3544 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3545 			mfence();
3546 		for (; sva < eva; sva += cpu_clflush_line_size)
3547 			clflush(sva);
3548 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3549 			mfence();
3550 	}
3551 }
3552 
3553 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3554 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3555 {
3556 
3557 	pmap_invalidate_cache_range_check_align(sva, eva);
3558 	pmap_invalidate_cache();
3559 }
3560 
3561 /*
3562  * Remove the specified set of pages from the data and instruction caches.
3563  *
3564  * In contrast to pmap_invalidate_cache_range(), this function does not
3565  * rely on the CPU's self-snoop feature, because it is intended for use
3566  * when moving pages into a different cache domain.
3567  */
3568 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3569 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3570 {
3571 	vm_offset_t daddr, eva;
3572 	int i;
3573 	bool useclflushopt;
3574 
3575 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3576 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3577 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3578 		pmap_invalidate_cache();
3579 	else {
3580 		if (useclflushopt)
3581 			atomic_thread_fence_seq_cst();
3582 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3583 			mfence();
3584 		for (i = 0; i < count; i++) {
3585 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3586 			eva = daddr + PAGE_SIZE;
3587 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3588 				if (useclflushopt)
3589 					clflushopt(daddr);
3590 				else
3591 					clflush(daddr);
3592 			}
3593 		}
3594 		if (useclflushopt)
3595 			atomic_thread_fence_seq_cst();
3596 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3597 			mfence();
3598 	}
3599 }
3600 
3601 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3602 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3603 {
3604 
3605 	pmap_invalidate_cache_range_check_align(sva, eva);
3606 
3607 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3608 		pmap_force_invalidate_cache_range(sva, eva);
3609 		return;
3610 	}
3611 
3612 	/* See comment in pmap_force_invalidate_cache_range(). */
3613 	if (pmap_kextract(sva) == lapic_paddr)
3614 		return;
3615 
3616 	atomic_thread_fence_seq_cst();
3617 	for (; sva < eva; sva += cpu_clflush_line_size)
3618 		clwb(sva);
3619 	atomic_thread_fence_seq_cst();
3620 }
3621 
3622 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3623 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3624 {
3625 	pt_entry_t *pte;
3626 	vm_offset_t vaddr;
3627 	int error, pte_bits;
3628 
3629 	KASSERT((spa & PAGE_MASK) == 0,
3630 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3631 	KASSERT((epa & PAGE_MASK) == 0,
3632 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3633 
3634 	if (spa < dmaplimit) {
3635 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3636 		    dmaplimit, epa)));
3637 		if (dmaplimit >= epa)
3638 			return;
3639 		spa = dmaplimit;
3640 	}
3641 
3642 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, 0) | X86_PG_RW |
3643 	    X86_PG_V;
3644 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3645 	    &vaddr);
3646 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3647 	pte = vtopte(vaddr);
3648 	for (; spa < epa; spa += PAGE_SIZE) {
3649 		sched_pin();
3650 		pte_store(pte, spa | pte_bits);
3651 		invlpg(vaddr);
3652 		/* XXXKIB atomic inside flush_cache_range are excessive */
3653 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3654 		sched_unpin();
3655 	}
3656 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3657 }
3658 
3659 /*
3660  *	Routine:	pmap_extract
3661  *	Function:
3662  *		Extract the physical page address associated
3663  *		with the given map/virtual_address pair.
3664  */
3665 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3666 pmap_extract(pmap_t pmap, vm_offset_t va)
3667 {
3668 	pdp_entry_t *pdpe;
3669 	pd_entry_t *pde;
3670 	pt_entry_t *pte, PG_V;
3671 	vm_paddr_t pa;
3672 
3673 	pa = 0;
3674 	PG_V = pmap_valid_bit(pmap);
3675 	PMAP_LOCK(pmap);
3676 	pdpe = pmap_pdpe(pmap, va);
3677 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3678 		if ((*pdpe & PG_PS) != 0)
3679 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3680 		else {
3681 			pde = pmap_pdpe_to_pde(pdpe, va);
3682 			if ((*pde & PG_V) != 0) {
3683 				if ((*pde & PG_PS) != 0) {
3684 					pa = (*pde & PG_PS_FRAME) |
3685 					    (va & PDRMASK);
3686 				} else {
3687 					pte = pmap_pde_to_pte(pde, va);
3688 					pa = (*pte & PG_FRAME) |
3689 					    (va & PAGE_MASK);
3690 				}
3691 			}
3692 		}
3693 	}
3694 	PMAP_UNLOCK(pmap);
3695 	return (pa);
3696 }
3697 
3698 /*
3699  *	Routine:	pmap_extract_and_hold
3700  *	Function:
3701  *		Atomically extract and hold the physical page
3702  *		with the given pmap and virtual address pair
3703  *		if that mapping permits the given protection.
3704  */
3705 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3706 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3707 {
3708 	pdp_entry_t pdpe, *pdpep;
3709 	pd_entry_t pde, *pdep;
3710 	pt_entry_t pte, PG_RW, PG_V;
3711 	vm_page_t m;
3712 
3713 	m = NULL;
3714 	PG_RW = pmap_rw_bit(pmap);
3715 	PG_V = pmap_valid_bit(pmap);
3716 	PMAP_LOCK(pmap);
3717 
3718 	pdpep = pmap_pdpe(pmap, va);
3719 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3720 		goto out;
3721 	if ((pdpe & PG_PS) != 0) {
3722 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3723 			goto out;
3724 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3725 		goto check_page;
3726 	}
3727 
3728 	pdep = pmap_pdpe_to_pde(pdpep, va);
3729 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3730 		goto out;
3731 	if ((pde & PG_PS) != 0) {
3732 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3733 			goto out;
3734 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3735 		goto check_page;
3736 	}
3737 
3738 	pte = *pmap_pde_to_pte(pdep, va);
3739 	if ((pte & PG_V) == 0 ||
3740 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3741 		goto out;
3742 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3743 
3744 check_page:
3745 	if (m != NULL && !vm_page_wire_mapped(m))
3746 		m = NULL;
3747 out:
3748 	PMAP_UNLOCK(pmap);
3749 	return (m);
3750 }
3751 
3752 vm_paddr_t
pmap_kextract(vm_offset_t va)3753 pmap_kextract(vm_offset_t va)
3754 {
3755 	pd_entry_t pde;
3756 	vm_paddr_t pa;
3757 
3758 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3759 		pa = DMAP_TO_PHYS(va);
3760 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3761 		pa = pmap_large_map_kextract(va);
3762 	} else {
3763 		pde = *vtopde(va);
3764 		if (pde & PG_PS) {
3765 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3766 		} else {
3767 			/*
3768 			 * Beware of a concurrent promotion that changes the
3769 			 * PDE at this point!  For example, vtopte() must not
3770 			 * be used to access the PTE because it would use the
3771 			 * new PDE.  It is, however, safe to use the old PDE
3772 			 * because the page table page is preserved by the
3773 			 * promotion.
3774 			 */
3775 			pa = *pmap_pde_to_pte(&pde, va);
3776 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3777 		}
3778 	}
3779 	return (pa);
3780 }
3781 
3782 /***************************************************
3783  * Low level mapping routines.....
3784  ***************************************************/
3785 
3786 /*
3787  * Add a wired page to the kva.
3788  * Note: not SMP coherent.
3789  */
3790 PMAP_INLINE void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3791 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3792 {
3793 	pt_entry_t *pte;
3794 
3795 	pte = vtopte(va);
3796 	pte_store(pte, pa | X86_PG_RW | X86_PG_V | pg_g | pg_nx);
3797 }
3798 
3799 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3800 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3801 {
3802 	pt_entry_t *pte;
3803 	int cache_bits;
3804 
3805 	pte = vtopte(va);
3806 	cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
3807 	pte_store(pte, pa | X86_PG_RW | X86_PG_V | pg_g | pg_nx | cache_bits);
3808 }
3809 
3810 /*
3811  * Remove a page from the kernel pagetables.
3812  * Note: not SMP coherent.
3813  */
3814 PMAP_INLINE void
pmap_kremove(vm_offset_t va)3815 pmap_kremove(vm_offset_t va)
3816 {
3817 	pt_entry_t *pte;
3818 
3819 	pte = vtopte(va);
3820 	pte_clear(pte);
3821 }
3822 
3823 /*
3824  *	Used to map a range of physical addresses into kernel
3825  *	virtual address space.
3826  *
3827  *	The value passed in '*virt' is a suggested virtual address for
3828  *	the mapping. Architectures which can support a direct-mapped
3829  *	physical to virtual region can return the appropriate address
3830  *	within that region, leaving '*virt' unchanged. Other
3831  *	architectures should map the pages starting at '*virt' and
3832  *	update '*virt' with the first usable address after the mapped
3833  *	region.
3834  */
3835 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)3836 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3837 {
3838 	return PHYS_TO_DMAP(start);
3839 }
3840 
3841 /*
3842  * Add a list of wired pages to the kva
3843  * this routine is only used for temporary
3844  * kernel mappings that do not need to have
3845  * page modification or references recorded.
3846  * Note that old mappings are simply written
3847  * over.  The page *must* be wired.
3848  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3849  */
3850 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)3851 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3852 {
3853 	pt_entry_t *endpte, oldpte, pa, *pte;
3854 	vm_page_t m;
3855 	int cache_bits;
3856 
3857 	oldpte = 0;
3858 	pte = vtopte(sva);
3859 	endpte = pte + count;
3860 	while (pte < endpte) {
3861 		m = *ma++;
3862 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
3863 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
3864 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
3865 			oldpte |= *pte;
3866 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_RW | X86_PG_V);
3867 		}
3868 		pte++;
3869 	}
3870 	if (__predict_false((oldpte & X86_PG_V) != 0))
3871 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
3872 		    PAGE_SIZE);
3873 }
3874 
3875 /*
3876  * This routine tears out page mappings from the
3877  * kernel -- it is meant only for temporary mappings.
3878  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3879  */
3880 void
pmap_qremove(vm_offset_t sva,int count)3881 pmap_qremove(vm_offset_t sva, int count)
3882 {
3883 	vm_offset_t va;
3884 
3885 	va = sva;
3886 	while (count-- > 0) {
3887 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
3888 		pmap_kremove(va);
3889 		va += PAGE_SIZE;
3890 	}
3891 	pmap_invalidate_range(kernel_pmap, sva, va);
3892 }
3893 
3894 /***************************************************
3895  * Page table page management routines.....
3896  ***************************************************/
3897 /*
3898  * Schedule the specified unused page table page to be freed.  Specifically,
3899  * add the page to the specified list of pages that will be released to the
3900  * physical memory manager after the TLB has been updated.
3901  */
3902 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,boolean_t set_PG_ZERO)3903 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
3904     boolean_t set_PG_ZERO)
3905 {
3906 
3907 	if (set_PG_ZERO)
3908 		m->flags |= PG_ZERO;
3909 	else
3910 		m->flags &= ~PG_ZERO;
3911 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
3912 }
3913 
3914 /*
3915  * Inserts the specified page table page into the specified pmap's collection
3916  * of idle page table pages.  Each of a pmap's page table pages is responsible
3917  * for mapping a distinct range of virtual addresses.  The pmap's collection is
3918  * ordered by this virtual address range.
3919  *
3920  * If "promoted" is false, then the page table page "mpte" must be zero filled.
3921  */
3922 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted)3923 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted)
3924 {
3925 
3926 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3927 	mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0;
3928 	return (vm_radix_insert(&pmap->pm_root, mpte));
3929 }
3930 
3931 /*
3932  * Removes the page table page mapping the specified virtual address from the
3933  * specified pmap's collection of idle page table pages, and returns it.
3934  * Otherwise, returns NULL if there is no page table page corresponding to the
3935  * specified virtual address.
3936  */
3937 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)3938 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
3939 {
3940 
3941 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3942 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
3943 }
3944 
3945 /*
3946  * Decrements a page table page's reference count, which is used to record the
3947  * number of valid page table entries within the page.  If the reference count
3948  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
3949  * page table page was unmapped and FALSE otherwise.
3950  */
3951 static inline boolean_t
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)3952 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
3953 {
3954 
3955 	--m->ref_count;
3956 	if (m->ref_count == 0) {
3957 		_pmap_unwire_ptp(pmap, va, m, free);
3958 		return (TRUE);
3959 	} else
3960 		return (FALSE);
3961 }
3962 
3963 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)3964 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
3965 {
3966 	pml5_entry_t *pml5;
3967 	pml4_entry_t *pml4;
3968 	pdp_entry_t *pdp;
3969 	pd_entry_t *pd;
3970 	vm_page_t pdpg, pdppg, pml4pg;
3971 
3972 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3973 
3974 	/*
3975 	 * unmap the page table page
3976 	 */
3977 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
3978 		/* PML4 page */
3979 		MPASS(pmap_is_la57(pmap));
3980 		pml5 = pmap_pml5e(pmap, va);
3981 		*pml5 = 0;
3982 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
3983 			pml5 = pmap_pml5e_u(pmap, va);
3984 			*pml5 = 0;
3985 		}
3986 	} else if (m->pindex >= NUPDE + NUPDPE) {
3987 		/* PDP page */
3988 		pml4 = pmap_pml4e(pmap, va);
3989 		*pml4 = 0;
3990 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
3991 		    va <= VM_MAXUSER_ADDRESS) {
3992 			pml4 = pmap_pml4e_u(pmap, va);
3993 			*pml4 = 0;
3994 		}
3995 	} else if (m->pindex >= NUPDE) {
3996 		/* PD page */
3997 		pdp = pmap_pdpe(pmap, va);
3998 		*pdp = 0;
3999 	} else {
4000 		/* PTE page */
4001 		pd = pmap_pde(pmap, va);
4002 		*pd = 0;
4003 	}
4004 	pmap_resident_count_dec(pmap, 1);
4005 	if (m->pindex < NUPDE) {
4006 		/* We just released a PT, unhold the matching PD */
4007 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4008 		pmap_unwire_ptp(pmap, va, pdpg, free);
4009 	} else if (m->pindex < NUPDE + NUPDPE) {
4010 		/* We just released a PD, unhold the matching PDP */
4011 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4012 		pmap_unwire_ptp(pmap, va, pdppg, free);
4013 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4014 		/* We just released a PDP, unhold the matching PML4 */
4015 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4016 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4017 	}
4018 
4019 	/*
4020 	 * Put page on a list so that it is released after
4021 	 * *ALL* TLB shootdown is done
4022 	 */
4023 	pmap_add_delayed_free_list(m, free, TRUE);
4024 }
4025 
4026 /*
4027  * After removing a page table entry, this routine is used to
4028  * conditionally free the page, and manage the reference count.
4029  */
4030 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4031 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4032     struct spglist *free)
4033 {
4034 	vm_page_t mpte;
4035 
4036 	if (va >= VM_MAXUSER_ADDRESS)
4037 		return (0);
4038 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4039 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4040 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4041 }
4042 
4043 /*
4044  * Release a page table page reference after a failed attempt to create a
4045  * mapping.
4046  */
4047 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4048 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4049 {
4050 	struct spglist free;
4051 
4052 	SLIST_INIT(&free);
4053 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4054 		/*
4055 		 * Although "va" was never mapped, paging-structure caches
4056 		 * could nonetheless have entries that refer to the freed
4057 		 * page table pages.  Invalidate those entries.
4058 		 */
4059 		pmap_invalidate_page(pmap, va);
4060 		vm_page_free_pages_toq(&free, true);
4061 	}
4062 }
4063 
4064 void
pmap_pinit0(pmap_t pmap)4065 pmap_pinit0(pmap_t pmap)
4066 {
4067 	struct proc *p;
4068 	struct thread *td;
4069 	int i;
4070 
4071 	PMAP_LOCK_INIT(pmap);
4072 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4073 	pmap->pm_pmltopu = NULL;
4074 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4075 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4076 	pmap->pm_ucr3 = PMAP_NO_CR3;
4077 	pmap->pm_root.rt_root = 0;
4078 	CPU_ZERO(&pmap->pm_active);
4079 	TAILQ_INIT(&pmap->pm_pvchunk);
4080 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4081 	pmap->pm_flags = pmap_flags;
4082 	CPU_FOREACH(i) {
4083 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN + 1;
4084 		pmap->pm_pcids[i].pm_gen = 1;
4085 	}
4086 	pmap_activate_boot(pmap);
4087 	td = curthread;
4088 	if (pti) {
4089 		p = td->td_proc;
4090 		PROC_LOCK(p);
4091 		p->p_md.md_flags |= P_MD_KPTI;
4092 		PROC_UNLOCK(p);
4093 	}
4094 	pmap_thread_init_invl_gen(td);
4095 
4096 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4097 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4098 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4099 		    UMA_ALIGN_PTR, 0);
4100 	}
4101 }
4102 
4103 void
pmap_pinit_pml4(vm_page_t pml4pg)4104 pmap_pinit_pml4(vm_page_t pml4pg)
4105 {
4106 	pml4_entry_t *pm_pml4;
4107 	int i;
4108 
4109 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4110 
4111 	/* Wire in kernel global address entries. */
4112 	for (i = 0; i < NKPML4E; i++) {
4113 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4114 		    X86_PG_V;
4115 	}
4116 	for (i = 0; i < ndmpdpphys; i++) {
4117 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4118 		    X86_PG_V;
4119 	}
4120 
4121 	/* install self-referential address mapping entry(s) */
4122 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4123 	    X86_PG_A | X86_PG_M;
4124 
4125 	/* install large map entries if configured */
4126 	for (i = 0; i < lm_ents; i++)
4127 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4128 }
4129 
4130 void
pmap_pinit_pml5(vm_page_t pml5pg)4131 pmap_pinit_pml5(vm_page_t pml5pg)
4132 {
4133 	pml5_entry_t *pm_pml5;
4134 
4135 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4136 
4137 	/*
4138 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4139 	 * entering all existing kernel mappings into level 5 table.
4140 	 */
4141 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4142 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4143 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4144 
4145 	/*
4146 	 * Install self-referential address mapping entry.
4147 	 */
4148 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4149 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
4150 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4151 }
4152 
4153 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4154 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4155 {
4156 	pml4_entry_t *pm_pml4u;
4157 	int i;
4158 
4159 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4160 	for (i = 0; i < NPML4EPG; i++)
4161 		pm_pml4u[i] = pti_pml4[i];
4162 }
4163 
4164 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4165 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4166 {
4167 	pml5_entry_t *pm_pml5u;
4168 
4169 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4170 
4171 	/*
4172 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4173 	 * table, entering all kernel mappings needed for usermode
4174 	 * into level 5 table.
4175 	 */
4176 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4177 	    pmap_kextract((vm_offset_t)pti_pml4) |
4178 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4179 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, FALSE);
4180 }
4181 
4182 /*
4183  * Initialize a preallocated and zeroed pmap structure,
4184  * such as one in a vmspace structure.
4185  */
4186 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4187 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4188 {
4189 	vm_page_t pmltop_pg, pmltop_pgu;
4190 	vm_paddr_t pmltop_phys;
4191 	int i;
4192 
4193 	/*
4194 	 * allocate the page directory page
4195 	 */
4196 	pmltop_pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
4197 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
4198 
4199 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4200 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4201 
4202 	CPU_FOREACH(i) {
4203 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
4204 		pmap->pm_pcids[i].pm_gen = 0;
4205 	}
4206 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4207 	pmap->pm_ucr3 = PMAP_NO_CR3;
4208 	pmap->pm_pmltopu = NULL;
4209 
4210 	pmap->pm_type = pm_type;
4211 	if ((pmltop_pg->flags & PG_ZERO) == 0)
4212 		pagezero(pmap->pm_pmltop);
4213 
4214 	/*
4215 	 * Do not install the host kernel mappings in the nested page
4216 	 * tables. These mappings are meaningless in the guest physical
4217 	 * address space.
4218 	 * Install minimal kernel mappings in PTI case.
4219 	 */
4220 	switch (pm_type) {
4221 	case PT_X86:
4222 		pmap->pm_cr3 = pmltop_phys;
4223 		if (pmap_is_la57(pmap))
4224 			pmap_pinit_pml5(pmltop_pg);
4225 		else
4226 			pmap_pinit_pml4(pmltop_pg);
4227 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4228 			pmltop_pgu = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
4229 			    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4230 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4231 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4232 			if (pmap_is_la57(pmap))
4233 				pmap_pinit_pml5_pti(pmltop_pgu);
4234 			else
4235 				pmap_pinit_pml4_pti(pmltop_pgu);
4236 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4237 		}
4238 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4239 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4240 			    pkru_free_range, pmap, M_NOWAIT);
4241 		}
4242 		break;
4243 	case PT_EPT:
4244 	case PT_RVI:
4245 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4246 		break;
4247 	}
4248 
4249 	pmap->pm_root.rt_root = 0;
4250 	CPU_ZERO(&pmap->pm_active);
4251 	TAILQ_INIT(&pmap->pm_pvchunk);
4252 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4253 	pmap->pm_flags = flags;
4254 	pmap->pm_eptgen = 0;
4255 
4256 	return (1);
4257 }
4258 
4259 int
pmap_pinit(pmap_t pmap)4260 pmap_pinit(pmap_t pmap)
4261 {
4262 
4263 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4264 }
4265 
4266 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4267 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4268 {
4269 	vm_page_t mpg;
4270 	struct spglist free;
4271 
4272 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4273 	if (mpg->ref_count != 0)
4274 		return;
4275 	SLIST_INIT(&free);
4276 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4277 	pmap_invalidate_page(pmap, va);
4278 	vm_page_free_pages_toq(&free, true);
4279 }
4280 
4281 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4282 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4283     bool addref)
4284 {
4285 	vm_pindex_t pml5index;
4286 	pml5_entry_t *pml5;
4287 	pml4_entry_t *pml4;
4288 	vm_page_t pml4pg;
4289 	pt_entry_t PG_V;
4290 	bool allocated;
4291 
4292 	if (!pmap_is_la57(pmap))
4293 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4294 
4295 	PG_V = pmap_valid_bit(pmap);
4296 	pml5index = pmap_pml5e_index(va);
4297 	pml5 = &pmap->pm_pmltop[pml5index];
4298 	if ((*pml5 & PG_V) == 0) {
4299 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4300 		    va) == NULL)
4301 			return (NULL);
4302 		allocated = true;
4303 	} else {
4304 		allocated = false;
4305 	}
4306 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4307 	pml4 = &pml4[pmap_pml4e_index(va)];
4308 	if ((*pml4 & PG_V) == 0) {
4309 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4310 		if (allocated && !addref)
4311 			pml4pg->ref_count--;
4312 		else if (!allocated && addref)
4313 			pml4pg->ref_count++;
4314 	}
4315 	return (pml4);
4316 }
4317 
4318 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4319 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4320     bool addref)
4321 {
4322 	vm_page_t pdppg;
4323 	pml4_entry_t *pml4;
4324 	pdp_entry_t *pdp;
4325 	pt_entry_t PG_V;
4326 	bool allocated;
4327 
4328 	PG_V = pmap_valid_bit(pmap);
4329 
4330 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4331 	if (pml4 == NULL)
4332 		return (NULL);
4333 
4334 	if ((*pml4 & PG_V) == 0) {
4335 		/* Have to allocate a new pdp, recurse */
4336 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4337 		    va) == NULL) {
4338 			if (pmap_is_la57(pmap))
4339 				pmap_allocpte_free_unref(pmap, va,
4340 				    pmap_pml5e(pmap, va));
4341 			return (NULL);
4342 		}
4343 		allocated = true;
4344 	} else {
4345 		allocated = false;
4346 	}
4347 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4348 	pdp = &pdp[pmap_pdpe_index(va)];
4349 	if ((*pdp & PG_V) == 0) {
4350 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4351 		if (allocated && !addref)
4352 			pdppg->ref_count--;
4353 		else if (!allocated && addref)
4354 			pdppg->ref_count++;
4355 	}
4356 	return (pdp);
4357 }
4358 
4359 /*
4360  * The ptepindexes, i.e. page indices, of the page table pages encountered
4361  * while translating virtual address va are defined as follows:
4362  * - for the page table page (last level),
4363  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4364  *   in other words, it is just the index of the PDE that maps the page
4365  *   table page.
4366  * - for the page directory page,
4367  *      ptepindex = NUPDE (number of userland PD entries) +
4368  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4369  *   i.e. index of PDPE is put after the last index of PDE,
4370  * - for the page directory pointer page,
4371  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4372  *          NPML4EPGSHIFT),
4373  *   i.e. index of pml4e is put after the last index of PDPE,
4374  * - for the PML4 page (if LA57 mode is enabled),
4375  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4376  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4377  *   i.e. index of pml5e is put after the last index of PML4E.
4378  *
4379  * Define an order on the paging entries, where all entries of the
4380  * same height are put together, then heights are put from deepest to
4381  * root.  Then ptexpindex is the sequential number of the
4382  * corresponding paging entry in this order.
4383  *
4384  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4385  * LA57 paging structures even in LA48 paging mode. Moreover, the
4386  * ptepindexes are calculated as if the paging structures were 5-level
4387  * regardless of the actual mode of operation.
4388  *
4389  * The root page at PML4/PML5 does not participate in this indexing scheme,
4390  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4391  */
4392 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4393 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4394     vm_offset_t va)
4395 {
4396 	vm_pindex_t pml5index, pml4index;
4397 	pml5_entry_t *pml5, *pml5u;
4398 	pml4_entry_t *pml4, *pml4u;
4399 	pdp_entry_t *pdp;
4400 	pd_entry_t *pd;
4401 	vm_page_t m, pdpg;
4402 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4403 
4404 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4405 
4406 	PG_A = pmap_accessed_bit(pmap);
4407 	PG_M = pmap_modified_bit(pmap);
4408 	PG_V = pmap_valid_bit(pmap);
4409 	PG_RW = pmap_rw_bit(pmap);
4410 
4411 	/*
4412 	 * Allocate a page table page.
4413 	 */
4414 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
4415 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
4416 		return (NULL);
4417 	if ((m->flags & PG_ZERO) == 0)
4418 		pmap_zero_page(m);
4419 
4420 	/*
4421 	 * Map the pagetable page into the process address space, if
4422 	 * it isn't already there.
4423 	 */
4424 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4425 		MPASS(pmap_is_la57(pmap));
4426 
4427 		pml5index = pmap_pml5e_index(va);
4428 		pml5 = &pmap->pm_pmltop[pml5index];
4429 		KASSERT((*pml5 & PG_V) == 0,
4430 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4431 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4432 
4433 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4434 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4435 				*pml5 |= pg_nx;
4436 
4437 			pml5u = &pmap->pm_pmltopu[pml5index];
4438 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4439 			    PG_A | PG_M;
4440 		}
4441 	} else if (ptepindex >= NUPDE + NUPDPE) {
4442 		pml4index = pmap_pml4e_index(va);
4443 		/* Wire up a new PDPE page */
4444 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4445 		if (pml4 == NULL) {
4446 			vm_page_unwire_noq(m);
4447 			vm_page_free_zero(m);
4448 			return (NULL);
4449 		}
4450 		KASSERT((*pml4 & PG_V) == 0,
4451 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4452 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4453 
4454 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4455 		    pml4index < NUPML4E) {
4456 			/*
4457 			 * PTI: Make all user-space mappings in the
4458 			 * kernel-mode page table no-execute so that
4459 			 * we detect any programming errors that leave
4460 			 * the kernel-mode page table active on return
4461 			 * to user space.
4462 			 */
4463 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4464 				*pml4 |= pg_nx;
4465 
4466 			pml4u = &pmap->pm_pmltopu[pml4index];
4467 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4468 			    PG_A | PG_M;
4469 		}
4470 	} else if (ptepindex >= NUPDE) {
4471 		/* Wire up a new PDE page */
4472 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4473 		if (pdp == NULL) {
4474 			vm_page_unwire_noq(m);
4475 			vm_page_free_zero(m);
4476 			return (NULL);
4477 		}
4478 		KASSERT((*pdp & PG_V) == 0,
4479 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4480 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4481 	} else {
4482 		/* Wire up a new PTE page */
4483 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4484 		if (pdp == NULL) {
4485 			vm_page_unwire_noq(m);
4486 			vm_page_free_zero(m);
4487 			return (NULL);
4488 		}
4489 		if ((*pdp & PG_V) == 0) {
4490 			/* Have to allocate a new pd, recurse */
4491 		  if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4492 		      lockp, va) == NULL) {
4493 				pmap_allocpte_free_unref(pmap, va,
4494 				    pmap_pml4e(pmap, va));
4495 				vm_page_unwire_noq(m);
4496 				vm_page_free_zero(m);
4497 				return (NULL);
4498 			}
4499 		} else {
4500 			/* Add reference to the pd page */
4501 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4502 			pdpg->ref_count++;
4503 		}
4504 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4505 
4506 		/* Now we know where the page directory page is */
4507 		pd = &pd[pmap_pde_index(va)];
4508 		KASSERT((*pd & PG_V) == 0,
4509 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4510 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4511 	}
4512 
4513 	pmap_resident_count_inc(pmap, 1);
4514 	return (m);
4515 }
4516 
4517 /*
4518  * This routine is called if the desired page table page does not exist.
4519  *
4520  * If page table page allocation fails, this routine may sleep before
4521  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4522  * occurs right before returning to the caller. This way, we never
4523  * drop pmap lock to sleep while a page table page has ref_count == 0,
4524  * which prevents the page from being freed under us.
4525  */
4526 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4527 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4528     vm_offset_t va)
4529 {
4530 	vm_page_t m;
4531 
4532 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4533 	if (m == NULL && lockp != NULL) {
4534 		RELEASE_PV_LIST_LOCK(lockp);
4535 		PMAP_UNLOCK(pmap);
4536 		PMAP_ASSERT_NOT_IN_DI();
4537 		vm_wait(NULL);
4538 		PMAP_LOCK(pmap);
4539 	}
4540 	return (m);
4541 }
4542 
4543 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4544 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4545     struct rwlock **lockp)
4546 {
4547 	pdp_entry_t *pdpe, PG_V;
4548 	pd_entry_t *pde;
4549 	vm_page_t pdpg;
4550 	vm_pindex_t pdpindex;
4551 
4552 	PG_V = pmap_valid_bit(pmap);
4553 
4554 retry:
4555 	pdpe = pmap_pdpe(pmap, va);
4556 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4557 		pde = pmap_pdpe_to_pde(pdpe, va);
4558 		if (va < VM_MAXUSER_ADDRESS) {
4559 			/* Add a reference to the pd page. */
4560 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4561 			pdpg->ref_count++;
4562 		} else
4563 			pdpg = NULL;
4564 	} else if (va < VM_MAXUSER_ADDRESS) {
4565 		/* Allocate a pd page. */
4566 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4567 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4568 		if (pdpg == NULL) {
4569 			if (lockp != NULL)
4570 				goto retry;
4571 			else
4572 				return (NULL);
4573 		}
4574 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4575 		pde = &pde[pmap_pde_index(va)];
4576 	} else
4577 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4578 		    va);
4579 	*pdpgp = pdpg;
4580 	return (pde);
4581 }
4582 
4583 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4584 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4585 {
4586 	vm_pindex_t ptepindex;
4587 	pd_entry_t *pd, PG_V;
4588 	vm_page_t m;
4589 
4590 	PG_V = pmap_valid_bit(pmap);
4591 
4592 	/*
4593 	 * Calculate pagetable page index
4594 	 */
4595 	ptepindex = pmap_pde_pindex(va);
4596 retry:
4597 	/*
4598 	 * Get the page directory entry
4599 	 */
4600 	pd = pmap_pde(pmap, va);
4601 
4602 	/*
4603 	 * This supports switching from a 2MB page to a
4604 	 * normal 4K page.
4605 	 */
4606 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4607 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4608 			/*
4609 			 * Invalidation of the 2MB page mapping may have caused
4610 			 * the deallocation of the underlying PD page.
4611 			 */
4612 			pd = NULL;
4613 		}
4614 	}
4615 
4616 	/*
4617 	 * If the page table page is mapped, we just increment the
4618 	 * hold count, and activate it.
4619 	 */
4620 	if (pd != NULL && (*pd & PG_V) != 0) {
4621 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4622 		m->ref_count++;
4623 	} else {
4624 		/*
4625 		 * Here if the pte page isn't mapped, or if it has been
4626 		 * deallocated.
4627 		 */
4628 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4629 		if (m == NULL && lockp != NULL)
4630 			goto retry;
4631 	}
4632 	return (m);
4633 }
4634 
4635 /***************************************************
4636  * Pmap allocation/deallocation routines.
4637  ***************************************************/
4638 
4639 /*
4640  * Release any resources held by the given physical map.
4641  * Called when a pmap initialized by pmap_pinit is being released.
4642  * Should only be called if the map contains no valid mappings.
4643  */
4644 void
pmap_release(pmap_t pmap)4645 pmap_release(pmap_t pmap)
4646 {
4647 	vm_page_t m;
4648 	int i;
4649 
4650 	KASSERT(pmap->pm_stats.resident_count == 0,
4651 	    ("pmap_release: pmap %p resident count %ld != 0",
4652 	    pmap, pmap->pm_stats.resident_count));
4653 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4654 	    ("pmap_release: pmap %p has reserved page table page(s)",
4655 	    pmap));
4656 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4657 	    ("releasing active pmap %p", pmap));
4658 
4659 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4660 
4661 	if (pmap_is_la57(pmap)) {
4662 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4663 		pmap->pm_pmltop[PML5PML5I] = 0;
4664 	} else {
4665 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4666 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4667 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4668 			pmap->pm_pmltop[DMPML4I + i] = 0;
4669 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4670 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4671 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4672 	}
4673 
4674 	vm_page_unwire_noq(m);
4675 	vm_page_free_zero(m);
4676 
4677 	if (pmap->pm_pmltopu != NULL) {
4678 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4679 		    pm_pmltopu));
4680 		vm_page_unwire_noq(m);
4681 		vm_page_free(m);
4682 	}
4683 	if (pmap->pm_type == PT_X86 &&
4684 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4685 		rangeset_fini(&pmap->pm_pkru);
4686 }
4687 
4688 static int
kvm_size(SYSCTL_HANDLER_ARGS)4689 kvm_size(SYSCTL_HANDLER_ARGS)
4690 {
4691 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4692 
4693 	return sysctl_handle_long(oidp, &ksize, 0, req);
4694 }
4695 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4696     0, 0, kvm_size, "LU",
4697     "Size of KVM");
4698 
4699 static int
kvm_free(SYSCTL_HANDLER_ARGS)4700 kvm_free(SYSCTL_HANDLER_ARGS)
4701 {
4702 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4703 
4704 	return sysctl_handle_long(oidp, &kfree, 0, req);
4705 }
4706 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4707     0, 0, kvm_free, "LU",
4708     "Amount of KVM free");
4709 
4710 /*
4711  * Allocate physical memory for the vm_page array and map it into KVA,
4712  * attempting to back the vm_pages with domain-local memory.
4713  */
4714 void
pmap_page_array_startup(long pages)4715 pmap_page_array_startup(long pages)
4716 {
4717 	pdp_entry_t *pdpe;
4718 	pd_entry_t *pde, newpdir;
4719 	vm_offset_t va, start, end;
4720 	vm_paddr_t pa;
4721 	long pfn;
4722 	int domain, i;
4723 
4724 	vm_page_array_size = pages;
4725 
4726 	start = VM_MIN_KERNEL_ADDRESS;
4727 	end = start + pages * sizeof(struct vm_page);
4728 	for (va = start; va < end; va += NBPDR) {
4729 		pfn = first_page + (va - start) / sizeof(struct vm_page);
4730 		domain = vm_phys_domain(ptoa(pfn));
4731 		pdpe = pmap_pdpe(kernel_pmap, va);
4732 		if ((*pdpe & X86_PG_V) == 0) {
4733 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
4734 			dump_add_page(pa);
4735 			pagezero((void *)PHYS_TO_DMAP(pa));
4736 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
4737 			    X86_PG_A | X86_PG_M);
4738 		}
4739 		pde = pmap_pdpe_to_pde(pdpe, va);
4740 		if ((*pde & X86_PG_V) != 0)
4741 			panic("Unexpected pde");
4742 		pa = vm_phys_early_alloc(domain, NBPDR);
4743 		for (i = 0; i < NPDEPG; i++)
4744 			dump_add_page(pa + i * PAGE_SIZE);
4745 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
4746 		    X86_PG_M | PG_PS | pg_g | pg_nx);
4747 		pde_store(pde, newpdir);
4748 	}
4749 	vm_page_array = (vm_page_t)start;
4750 }
4751 
4752 /*
4753  * grow the number of kernel page table entries, if needed
4754  */
4755 void
pmap_growkernel(vm_offset_t addr)4756 pmap_growkernel(vm_offset_t addr)
4757 {
4758 	vm_paddr_t paddr;
4759 	vm_page_t nkpg;
4760 	pd_entry_t *pde, newpdir;
4761 	pdp_entry_t *pdpe;
4762 
4763 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
4764 
4765 	/*
4766 	 * Return if "addr" is within the range of kernel page table pages
4767 	 * that were preallocated during pmap bootstrap.  Moreover, leave
4768 	 * "kernel_vm_end" and the kernel page table as they were.
4769 	 *
4770 	 * The correctness of this action is based on the following
4771 	 * argument: vm_map_insert() allocates contiguous ranges of the
4772 	 * kernel virtual address space.  It calls this function if a range
4773 	 * ends after "kernel_vm_end".  If the kernel is mapped between
4774 	 * "kernel_vm_end" and "addr", then the range cannot begin at
4775 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
4776 	 * than the kernel.  Thus, there is no immediate need to allocate
4777 	 * any new kernel page table pages between "kernel_vm_end" and
4778 	 * "KERNBASE".
4779 	 */
4780 	if (KERNBASE < addr && addr <= KERNBASE + nkpt * NBPDR)
4781 		return;
4782 
4783 	addr = roundup2(addr, NBPDR);
4784 	if (addr - 1 >= vm_map_max(kernel_map))
4785 		addr = vm_map_max(kernel_map);
4786 	while (kernel_vm_end < addr) {
4787 		pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
4788 		if ((*pdpe & X86_PG_V) == 0) {
4789 			/* We need a new PDP entry */
4790 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDPSHIFT,
4791 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
4792 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4793 			if (nkpg == NULL)
4794 				panic("pmap_growkernel: no memory to grow kernel");
4795 			if ((nkpg->flags & PG_ZERO) == 0)
4796 				pmap_zero_page(nkpg);
4797 			paddr = VM_PAGE_TO_PHYS(nkpg);
4798 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
4799 			    X86_PG_A | X86_PG_M);
4800 			continue; /* try again */
4801 		}
4802 		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
4803 		if ((*pde & X86_PG_V) != 0) {
4804 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
4805 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
4806 				kernel_vm_end = vm_map_max(kernel_map);
4807 				break;
4808 			}
4809 			continue;
4810 		}
4811 
4812 		nkpg = vm_page_alloc(NULL, pmap_pde_pindex(kernel_vm_end),
4813 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
4814 		    VM_ALLOC_ZERO);
4815 		if (nkpg == NULL)
4816 			panic("pmap_growkernel: no memory to grow kernel");
4817 		if ((nkpg->flags & PG_ZERO) == 0)
4818 			pmap_zero_page(nkpg);
4819 		paddr = VM_PAGE_TO_PHYS(nkpg);
4820 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4821 		pde_store(pde, newpdir);
4822 
4823 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
4824 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
4825 			kernel_vm_end = vm_map_max(kernel_map);
4826 			break;
4827 		}
4828 	}
4829 }
4830 
4831 /***************************************************
4832  * page management routines.
4833  ***************************************************/
4834 
4835 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
4836 CTASSERT(_NPCM == 3);
4837 CTASSERT(_NPCPV == 168);
4838 
4839 static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)4840 pv_to_chunk(pv_entry_t pv)
4841 {
4842 
4843 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
4844 }
4845 
4846 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
4847 
4848 #define	PC_FREE0	0xfffffffffffffffful
4849 #define	PC_FREE1	0xfffffffffffffffful
4850 #define	PC_FREE2	0x000000fffffffffful
4851 
4852 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
4853 
4854 #ifdef PV_STATS
4855 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
4856 
4857 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
4858 	"Current number of pv entry chunks");
4859 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
4860 	"Current number of pv entry chunks allocated");
4861 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
4862 	"Current number of pv entry chunks frees");
4863 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
4864 	"Number of times tried to get a chunk page but failed.");
4865 
4866 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
4867 static int pv_entry_spare;
4868 
4869 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
4870 	"Current number of pv entry frees");
4871 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
4872 	"Current number of pv entry allocs");
4873 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
4874 	"Current number of pv entries");
4875 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
4876 	"Current number of spare pv entries");
4877 #endif
4878 
4879 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)4880 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
4881 {
4882 
4883 	if (pmap == NULL)
4884 		return;
4885 	pmap_invalidate_all(pmap);
4886 	if (pmap != locked_pmap)
4887 		PMAP_UNLOCK(pmap);
4888 	if (start_di)
4889 		pmap_delayed_invl_finish();
4890 }
4891 
4892 /*
4893  * We are in a serious low memory condition.  Resort to
4894  * drastic measures to free some pages so we can allocate
4895  * another pv entry chunk.
4896  *
4897  * Returns NULL if PV entries were reclaimed from the specified pmap.
4898  *
4899  * We do not, however, unmap 2mpages because subsequent accesses will
4900  * allocate per-page pv entries until repromotion occurs, thereby
4901  * exacerbating the shortage of free pv entries.
4902  */
4903 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)4904 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
4905 {
4906 	struct pv_chunks_list *pvc;
4907 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
4908 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
4909 	struct md_page *pvh;
4910 	pd_entry_t *pde;
4911 	pmap_t next_pmap, pmap;
4912 	pt_entry_t *pte, tpte;
4913 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
4914 	pv_entry_t pv;
4915 	vm_offset_t va;
4916 	vm_page_t m, m_pc;
4917 	struct spglist free;
4918 	uint64_t inuse;
4919 	int bit, field, freed;
4920 	bool start_di, restart;
4921 
4922 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
4923 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
4924 	pmap = NULL;
4925 	m_pc = NULL;
4926 	PG_G = PG_A = PG_M = PG_RW = 0;
4927 	SLIST_INIT(&free);
4928 	bzero(&pc_marker_b, sizeof(pc_marker_b));
4929 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
4930 	pc_marker = (struct pv_chunk *)&pc_marker_b;
4931 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
4932 
4933 	/*
4934 	 * A delayed invalidation block should already be active if
4935 	 * pmap_advise() or pmap_remove() called this function by way
4936 	 * of pmap_demote_pde_locked().
4937 	 */
4938 	start_di = pmap_not_in_di();
4939 
4940 	pvc = &pv_chunks[domain];
4941 	mtx_lock(&pvc->pvc_lock);
4942 	pvc->active_reclaims++;
4943 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
4944 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
4945 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
4946 	    SLIST_EMPTY(&free)) {
4947 		next_pmap = pc->pc_pmap;
4948 		if (next_pmap == NULL) {
4949 			/*
4950 			 * The next chunk is a marker.  However, it is
4951 			 * not our marker, so active_reclaims must be
4952 			 * > 1.  Consequently, the next_chunk code
4953 			 * will not rotate the pv_chunks list.
4954 			 */
4955 			goto next_chunk;
4956 		}
4957 		mtx_unlock(&pvc->pvc_lock);
4958 
4959 		/*
4960 		 * A pv_chunk can only be removed from the pc_lru list
4961 		 * when both pc_chunks_mutex is owned and the
4962 		 * corresponding pmap is locked.
4963 		 */
4964 		if (pmap != next_pmap) {
4965 			restart = false;
4966 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
4967 			    start_di);
4968 			pmap = next_pmap;
4969 			/* Avoid deadlock and lock recursion. */
4970 			if (pmap > locked_pmap) {
4971 				RELEASE_PV_LIST_LOCK(lockp);
4972 				PMAP_LOCK(pmap);
4973 				if (start_di)
4974 					pmap_delayed_invl_start();
4975 				mtx_lock(&pvc->pvc_lock);
4976 				restart = true;
4977 			} else if (pmap != locked_pmap) {
4978 				if (PMAP_TRYLOCK(pmap)) {
4979 					if (start_di)
4980 						pmap_delayed_invl_start();
4981 					mtx_lock(&pvc->pvc_lock);
4982 					restart = true;
4983 				} else {
4984 					pmap = NULL; /* pmap is not locked */
4985 					mtx_lock(&pvc->pvc_lock);
4986 					pc = TAILQ_NEXT(pc_marker, pc_lru);
4987 					if (pc == NULL ||
4988 					    pc->pc_pmap != next_pmap)
4989 						continue;
4990 					goto next_chunk;
4991 				}
4992 			} else if (start_di)
4993 				pmap_delayed_invl_start();
4994 			PG_G = pmap_global_bit(pmap);
4995 			PG_A = pmap_accessed_bit(pmap);
4996 			PG_M = pmap_modified_bit(pmap);
4997 			PG_RW = pmap_rw_bit(pmap);
4998 			if (restart)
4999 				continue;
5000 		}
5001 
5002 		/*
5003 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5004 		 */
5005 		freed = 0;
5006 		for (field = 0; field < _NPCM; field++) {
5007 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5008 			    inuse != 0; inuse &= ~(1UL << bit)) {
5009 				bit = bsfq(inuse);
5010 				pv = &pc->pc_pventry[field * 64 + bit];
5011 				va = pv->pv_va;
5012 				pde = pmap_pde(pmap, va);
5013 				if ((*pde & PG_PS) != 0)
5014 					continue;
5015 				pte = pmap_pde_to_pte(pde, va);
5016 				if ((*pte & PG_W) != 0)
5017 					continue;
5018 				tpte = pte_load_clear(pte);
5019 				if ((tpte & PG_G) != 0)
5020 					pmap_invalidate_page(pmap, va);
5021 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5022 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5023 					vm_page_dirty(m);
5024 				if ((tpte & PG_A) != 0)
5025 					vm_page_aflag_set(m, PGA_REFERENCED);
5026 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5027 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5028 				m->md.pv_gen++;
5029 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5030 				    (m->flags & PG_FICTITIOUS) == 0) {
5031 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5032 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5033 						vm_page_aflag_clear(m,
5034 						    PGA_WRITEABLE);
5035 					}
5036 				}
5037 				pmap_delayed_invl_page(m);
5038 				pc->pc_map[field] |= 1UL << bit;
5039 				pmap_unuse_pt(pmap, va, *pde, &free);
5040 				freed++;
5041 			}
5042 		}
5043 		if (freed == 0) {
5044 			mtx_lock(&pvc->pvc_lock);
5045 			goto next_chunk;
5046 		}
5047 		/* Every freed mapping is for a 4 KB page. */
5048 		pmap_resident_count_dec(pmap, freed);
5049 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5050 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5051 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5052 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5053 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
5054 		    pc->pc_map[2] == PC_FREE2) {
5055 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
5056 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
5057 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
5058 			/* Entire chunk is free; return it. */
5059 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5060 			dump_drop_page(m_pc->phys_addr);
5061 			mtx_lock(&pvc->pvc_lock);
5062 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5063 			break;
5064 		}
5065 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5066 		mtx_lock(&pvc->pvc_lock);
5067 		/* One freed pv entry in locked_pmap is sufficient. */
5068 		if (pmap == locked_pmap)
5069 			break;
5070 next_chunk:
5071 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5072 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5073 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5074 			/*
5075 			 * Rotate the pv chunks list so that we do not
5076 			 * scan the same pv chunks that could not be
5077 			 * freed (because they contained a wired
5078 			 * and/or superpage mapping) on every
5079 			 * invocation of reclaim_pv_chunk().
5080 			 */
5081 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5082 				MPASS(pc->pc_pmap != NULL);
5083 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5084 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5085 			}
5086 		}
5087 	}
5088 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5089 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5090 	pvc->active_reclaims--;
5091 	mtx_unlock(&pvc->pvc_lock);
5092 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5093 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5094 		m_pc = SLIST_FIRST(&free);
5095 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5096 		/* Recycle a freed page table page. */
5097 		m_pc->ref_count = 1;
5098 	}
5099 	vm_page_free_pages_toq(&free, true);
5100 	return (m_pc);
5101 }
5102 
5103 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5104 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5105 {
5106 	vm_page_t m;
5107 	int i, domain;
5108 
5109 	domain = PCPU_GET(domain);
5110 	for (i = 0; i < vm_ndomains; i++) {
5111 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5112 		if (m != NULL)
5113 			break;
5114 		domain = (domain + 1) % vm_ndomains;
5115 	}
5116 
5117 	return (m);
5118 }
5119 
5120 /*
5121  * free the pv_entry back to the free list
5122  */
5123 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5124 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5125 {
5126 	struct pv_chunk *pc;
5127 	int idx, field, bit;
5128 
5129 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5130 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
5131 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
5132 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
5133 	pc = pv_to_chunk(pv);
5134 	idx = pv - &pc->pc_pventry[0];
5135 	field = idx / 64;
5136 	bit = idx % 64;
5137 	pc->pc_map[field] |= 1ul << bit;
5138 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
5139 	    pc->pc_map[2] != PC_FREE2) {
5140 		/* 98% of the time, pc is already at the head of the list. */
5141 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5142 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5143 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5144 		}
5145 		return;
5146 	}
5147 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5148 	free_pv_chunk(pc);
5149 }
5150 
5151 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5152 free_pv_chunk_dequeued(struct pv_chunk *pc)
5153 {
5154 	vm_page_t m;
5155 
5156 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
5157 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
5158 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
5159 	/* entire chunk is free, return it */
5160 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5161 	dump_drop_page(m->phys_addr);
5162 	vm_page_unwire_noq(m);
5163 	vm_page_free(m);
5164 }
5165 
5166 static void
free_pv_chunk(struct pv_chunk * pc)5167 free_pv_chunk(struct pv_chunk *pc)
5168 {
5169 	struct pv_chunks_list *pvc;
5170 
5171 	pvc = &pv_chunks[pc_to_domain(pc)];
5172 	mtx_lock(&pvc->pvc_lock);
5173 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5174 	mtx_unlock(&pvc->pvc_lock);
5175 	free_pv_chunk_dequeued(pc);
5176 }
5177 
5178 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5179 free_pv_chunk_batch(struct pv_chunklist *batch)
5180 {
5181 	struct pv_chunks_list *pvc;
5182 	struct pv_chunk *pc, *npc;
5183 	int i;
5184 
5185 	for (i = 0; i < vm_ndomains; i++) {
5186 		if (TAILQ_EMPTY(&batch[i]))
5187 			continue;
5188 		pvc = &pv_chunks[i];
5189 		mtx_lock(&pvc->pvc_lock);
5190 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5191 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5192 		}
5193 		mtx_unlock(&pvc->pvc_lock);
5194 	}
5195 
5196 	for (i = 0; i < vm_ndomains; i++) {
5197 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5198 			free_pv_chunk_dequeued(pc);
5199 		}
5200 	}
5201 }
5202 
5203 /*
5204  * Returns a new PV entry, allocating a new PV chunk from the system when
5205  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5206  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5207  * returned.
5208  *
5209  * The given PV list lock may be released.
5210  */
5211 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5212 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5213 {
5214 	struct pv_chunks_list *pvc;
5215 	int bit, field;
5216 	pv_entry_t pv;
5217 	struct pv_chunk *pc;
5218 	vm_page_t m;
5219 
5220 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5221 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
5222 retry:
5223 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5224 	if (pc != NULL) {
5225 		for (field = 0; field < _NPCM; field++) {
5226 			if (pc->pc_map[field]) {
5227 				bit = bsfq(pc->pc_map[field]);
5228 				break;
5229 			}
5230 		}
5231 		if (field < _NPCM) {
5232 			pv = &pc->pc_pventry[field * 64 + bit];
5233 			pc->pc_map[field] &= ~(1ul << bit);
5234 			/* If this was the last item, move it to tail */
5235 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
5236 			    pc->pc_map[2] == 0) {
5237 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5238 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5239 				    pc_list);
5240 			}
5241 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
5242 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
5243 			return (pv);
5244 		}
5245 	}
5246 	/* No free items, allocate another chunk */
5247 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
5248 	    VM_ALLOC_WIRED);
5249 	if (m == NULL) {
5250 		if (lockp == NULL) {
5251 			PV_STAT(pc_chunk_tryfail++);
5252 			return (NULL);
5253 		}
5254 		m = reclaim_pv_chunk(pmap, lockp);
5255 		if (m == NULL)
5256 			goto retry;
5257 	}
5258 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
5259 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
5260 	dump_add_page(m->phys_addr);
5261 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5262 	pc->pc_pmap = pmap;
5263 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
5264 	pc->pc_map[1] = PC_FREE1;
5265 	pc->pc_map[2] = PC_FREE2;
5266 	pvc = &pv_chunks[vm_page_domain(m)];
5267 	mtx_lock(&pvc->pvc_lock);
5268 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5269 	mtx_unlock(&pvc->pvc_lock);
5270 	pv = &pc->pc_pventry[0];
5271 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5272 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
5273 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
5274 	return (pv);
5275 }
5276 
5277 /*
5278  * Returns the number of one bits within the given PV chunk map.
5279  *
5280  * The erratas for Intel processors state that "POPCNT Instruction May
5281  * Take Longer to Execute Than Expected".  It is believed that the
5282  * issue is the spurious dependency on the destination register.
5283  * Provide a hint to the register rename logic that the destination
5284  * value is overwritten, by clearing it, as suggested in the
5285  * optimization manual.  It should be cheap for unaffected processors
5286  * as well.
5287  *
5288  * Reference numbers for erratas are
5289  * 4th Gen Core: HSD146
5290  * 5th Gen Core: BDM85
5291  * 6th Gen Core: SKL029
5292  */
5293 static int
popcnt_pc_map_pq(uint64_t * map)5294 popcnt_pc_map_pq(uint64_t *map)
5295 {
5296 	u_long result, tmp;
5297 
5298 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5299 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5300 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5301 	    : "=&r" (result), "=&r" (tmp)
5302 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5303 	return (result);
5304 }
5305 
5306 /*
5307  * Ensure that the number of spare PV entries in the specified pmap meets or
5308  * exceeds the given count, "needed".
5309  *
5310  * The given PV list lock may be released.
5311  */
5312 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5313 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5314 {
5315 	struct pv_chunks_list *pvc;
5316 	struct pch new_tail[PMAP_MEMDOM];
5317 	struct pv_chunk *pc;
5318 	vm_page_t m;
5319 	int avail, free, i;
5320 	bool reclaimed;
5321 
5322 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5323 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5324 
5325 	/*
5326 	 * Newly allocated PV chunks must be stored in a private list until
5327 	 * the required number of PV chunks have been allocated.  Otherwise,
5328 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5329 	 * contrast, these chunks must be added to the pmap upon allocation.
5330 	 */
5331 	for (i = 0; i < PMAP_MEMDOM; i++)
5332 		TAILQ_INIT(&new_tail[i]);
5333 retry:
5334 	avail = 0;
5335 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5336 #ifndef __POPCNT__
5337 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5338 			bit_count((bitstr_t *)pc->pc_map, 0,
5339 			    sizeof(pc->pc_map) * NBBY, &free);
5340 		else
5341 #endif
5342 		free = popcnt_pc_map_pq(pc->pc_map);
5343 		if (free == 0)
5344 			break;
5345 		avail += free;
5346 		if (avail >= needed)
5347 			break;
5348 	}
5349 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5350 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
5351 		    VM_ALLOC_WIRED);
5352 		if (m == NULL) {
5353 			m = reclaim_pv_chunk(pmap, lockp);
5354 			if (m == NULL)
5355 				goto retry;
5356 			reclaimed = true;
5357 		}
5358 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
5359 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
5360 		dump_add_page(m->phys_addr);
5361 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5362 		pc->pc_pmap = pmap;
5363 		pc->pc_map[0] = PC_FREE0;
5364 		pc->pc_map[1] = PC_FREE1;
5365 		pc->pc_map[2] = PC_FREE2;
5366 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5367 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5368 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
5369 
5370 		/*
5371 		 * The reclaim might have freed a chunk from the current pmap.
5372 		 * If that chunk contained available entries, we need to
5373 		 * re-count the number of available entries.
5374 		 */
5375 		if (reclaimed)
5376 			goto retry;
5377 	}
5378 	for (i = 0; i < vm_ndomains; i++) {
5379 		if (TAILQ_EMPTY(&new_tail[i]))
5380 			continue;
5381 		pvc = &pv_chunks[i];
5382 		mtx_lock(&pvc->pvc_lock);
5383 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5384 		mtx_unlock(&pvc->pvc_lock);
5385 	}
5386 }
5387 
5388 /*
5389  * First find and then remove the pv entry for the specified pmap and virtual
5390  * address from the specified pv list.  Returns the pv entry if found and NULL
5391  * otherwise.  This operation can be performed on pv lists for either 4KB or
5392  * 2MB page mappings.
5393  */
5394 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5395 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5396 {
5397 	pv_entry_t pv;
5398 
5399 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5400 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5401 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5402 			pvh->pv_gen++;
5403 			break;
5404 		}
5405 	}
5406 	return (pv);
5407 }
5408 
5409 /*
5410  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5411  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5412  * entries for each of the 4KB page mappings.
5413  */
5414 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5415 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5416     struct rwlock **lockp)
5417 {
5418 	struct md_page *pvh;
5419 	struct pv_chunk *pc;
5420 	pv_entry_t pv;
5421 	vm_offset_t va_last;
5422 	vm_page_t m;
5423 	int bit, field;
5424 
5425 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5426 	KASSERT((pa & PDRMASK) == 0,
5427 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5428 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5429 
5430 	/*
5431 	 * Transfer the 2mpage's pv entry for this mapping to the first
5432 	 * page's pv list.  Once this transfer begins, the pv list lock
5433 	 * must not be released until the last pv entry is reinstantiated.
5434 	 */
5435 	pvh = pa_to_pvh(pa);
5436 	va = trunc_2mpage(va);
5437 	pv = pmap_pvh_remove(pvh, pmap, va);
5438 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5439 	m = PHYS_TO_VM_PAGE(pa);
5440 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5441 	m->md.pv_gen++;
5442 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5443 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
5444 	va_last = va + NBPDR - PAGE_SIZE;
5445 	for (;;) {
5446 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5447 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
5448 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
5449 		for (field = 0; field < _NPCM; field++) {
5450 			while (pc->pc_map[field]) {
5451 				bit = bsfq(pc->pc_map[field]);
5452 				pc->pc_map[field] &= ~(1ul << bit);
5453 				pv = &pc->pc_pventry[field * 64 + bit];
5454 				va += PAGE_SIZE;
5455 				pv->pv_va = va;
5456 				m++;
5457 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5458 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5459 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5460 				m->md.pv_gen++;
5461 				if (va == va_last)
5462 					goto out;
5463 			}
5464 		}
5465 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5466 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5467 	}
5468 out:
5469 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
5470 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5471 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5472 	}
5473 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
5474 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
5475 }
5476 
5477 #if VM_NRESERVLEVEL > 0
5478 /*
5479  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5480  * replace the many pv entries for the 4KB page mappings by a single pv entry
5481  * for the 2MB page mapping.
5482  */
5483 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5484 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5485     struct rwlock **lockp)
5486 {
5487 	struct md_page *pvh;
5488 	pv_entry_t pv;
5489 	vm_offset_t va_last;
5490 	vm_page_t m;
5491 
5492 	KASSERT((pa & PDRMASK) == 0,
5493 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5494 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5495 
5496 	/*
5497 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5498 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5499 	 * a transfer avoids the possibility that get_pv_entry() calls
5500 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5501 	 * mappings that is being promoted.
5502 	 */
5503 	m = PHYS_TO_VM_PAGE(pa);
5504 	va = trunc_2mpage(va);
5505 	pv = pmap_pvh_remove(&m->md, pmap, va);
5506 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5507 	pvh = pa_to_pvh(pa);
5508 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5509 	pvh->pv_gen++;
5510 	/* Free the remaining NPTEPG - 1 pv entries. */
5511 	va_last = va + NBPDR - PAGE_SIZE;
5512 	do {
5513 		m++;
5514 		va += PAGE_SIZE;
5515 		pmap_pvh_free(&m->md, pmap, va);
5516 	} while (va < va_last);
5517 }
5518 #endif /* VM_NRESERVLEVEL > 0 */
5519 
5520 /*
5521  * First find and then destroy the pv entry for the specified pmap and virtual
5522  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5523  * page mappings.
5524  */
5525 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5526 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5527 {
5528 	pv_entry_t pv;
5529 
5530 	pv = pmap_pvh_remove(pvh, pmap, va);
5531 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5532 	free_pv_entry(pmap, pv);
5533 }
5534 
5535 /*
5536  * Conditionally create the PV entry for a 4KB page mapping if the required
5537  * memory can be allocated without resorting to reclamation.
5538  */
5539 static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5540 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5541     struct rwlock **lockp)
5542 {
5543 	pv_entry_t pv;
5544 
5545 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5546 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5547 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5548 		pv->pv_va = va;
5549 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5550 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5551 		m->md.pv_gen++;
5552 		return (TRUE);
5553 	} else
5554 		return (FALSE);
5555 }
5556 
5557 /*
5558  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5559  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5560  * false if the PV entry cannot be allocated without resorting to reclamation.
5561  */
5562 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5563 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5564     struct rwlock **lockp)
5565 {
5566 	struct md_page *pvh;
5567 	pv_entry_t pv;
5568 	vm_paddr_t pa;
5569 
5570 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5571 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5572 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5573 	    NULL : lockp)) == NULL)
5574 		return (false);
5575 	pv->pv_va = va;
5576 	pa = pde & PG_PS_FRAME;
5577 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5578 	pvh = pa_to_pvh(pa);
5579 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5580 	pvh->pv_gen++;
5581 	return (true);
5582 }
5583 
5584 /*
5585  * Fills a page table page with mappings to consecutive physical pages.
5586  */
5587 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5588 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5589 {
5590 	pt_entry_t *pte;
5591 
5592 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5593 		*pte = newpte;
5594 		newpte += PAGE_SIZE;
5595 	}
5596 }
5597 
5598 /*
5599  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5600  * mapping is invalidated.
5601  */
5602 static boolean_t
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5603 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5604 {
5605 	struct rwlock *lock;
5606 	boolean_t rv;
5607 
5608 	lock = NULL;
5609 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5610 	if (lock != NULL)
5611 		rw_wunlock(lock);
5612 	return (rv);
5613 }
5614 
5615 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5616 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5617 {
5618 #ifdef INVARIANTS
5619 #ifdef DIAGNOSTIC
5620 	pt_entry_t *xpte, *ypte;
5621 
5622 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5623 	    xpte++, newpte += PAGE_SIZE) {
5624 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5625 			printf("pmap_demote_pde: xpte %zd and newpte map "
5626 			    "different pages: found %#lx, expected %#lx\n",
5627 			    xpte - firstpte, *xpte, newpte);
5628 			printf("page table dump\n");
5629 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5630 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5631 			panic("firstpte");
5632 		}
5633 	}
5634 #else
5635 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5636 	    ("pmap_demote_pde: firstpte and newpte map different physical"
5637 	    " addresses"));
5638 #endif
5639 #endif
5640 }
5641 
5642 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)5643 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5644     pd_entry_t oldpde, struct rwlock **lockp)
5645 {
5646 	struct spglist free;
5647 	vm_offset_t sva;
5648 
5649 	SLIST_INIT(&free);
5650 	sva = trunc_2mpage(va);
5651 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
5652 	if ((oldpde & pmap_global_bit(pmap)) == 0)
5653 		pmap_invalidate_pde_page(pmap, sva, oldpde);
5654 	vm_page_free_pages_toq(&free, true);
5655 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
5656 	    va, pmap);
5657 }
5658 
5659 static boolean_t
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)5660 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5661     struct rwlock **lockp)
5662 {
5663 	pd_entry_t newpde, oldpde;
5664 	pt_entry_t *firstpte, newpte;
5665 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
5666 	vm_paddr_t mptepa;
5667 	vm_page_t mpte;
5668 	int PG_PTE_CACHE;
5669 	bool in_kernel;
5670 
5671 	PG_A = pmap_accessed_bit(pmap);
5672 	PG_G = pmap_global_bit(pmap);
5673 	PG_M = pmap_modified_bit(pmap);
5674 	PG_RW = pmap_rw_bit(pmap);
5675 	PG_V = pmap_valid_bit(pmap);
5676 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
5677 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
5678 
5679 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5680 	in_kernel = va >= VM_MAXUSER_ADDRESS;
5681 	oldpde = *pde;
5682 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
5683 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
5684 
5685 	/*
5686 	 * Invalidate the 2MB page mapping and return "failure" if the
5687 	 * mapping was never accessed.
5688 	 */
5689 	if ((oldpde & PG_A) == 0) {
5690 		KASSERT((oldpde & PG_W) == 0,
5691 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
5692 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
5693 		return (FALSE);
5694 	}
5695 
5696 	mpte = pmap_remove_pt_page(pmap, va);
5697 	if (mpte == NULL) {
5698 		KASSERT((oldpde & PG_W) == 0,
5699 		    ("pmap_demote_pde: page table page for a wired mapping"
5700 		    " is missing"));
5701 
5702 		/*
5703 		 * If the page table page is missing and the mapping
5704 		 * is for a kernel address, the mapping must belong to
5705 		 * the direct map.  Page table pages are preallocated
5706 		 * for every other part of the kernel address space,
5707 		 * so the direct map region is the only part of the
5708 		 * kernel address space that must be handled here.
5709 		 */
5710 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
5711 		    va < DMAP_MAX_ADDRESS),
5712 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
5713 
5714 		/*
5715 		 * If the 2MB page mapping belongs to the direct map
5716 		 * region of the kernel's address space, then the page
5717 		 * allocation request specifies the highest possible
5718 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
5719 		 * priority is normal.
5720 		 */
5721 		mpte = vm_page_alloc(NULL, pmap_pde_pindex(va),
5722 		    (in_kernel ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
5723 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5724 
5725 		/*
5726 		 * If the allocation of the new page table page fails,
5727 		 * invalidate the 2MB page mapping and return "failure".
5728 		 */
5729 		if (mpte == NULL) {
5730 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
5731 			return (FALSE);
5732 		}
5733 
5734 		if (!in_kernel) {
5735 			mpte->ref_count = NPTEPG;
5736 			pmap_resident_count_inc(pmap, 1);
5737 		}
5738 	}
5739 	mptepa = VM_PAGE_TO_PHYS(mpte);
5740 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
5741 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
5742 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
5743 	    ("pmap_demote_pde: oldpde is missing PG_M"));
5744 	newpte = oldpde & ~PG_PS;
5745 	newpte = pmap_swap_pat(pmap, newpte);
5746 
5747 	/*
5748 	 * If the page table page is not leftover from an earlier promotion,
5749 	 * initialize it.
5750 	 */
5751 	if (mpte->valid == 0)
5752 		pmap_fill_ptp(firstpte, newpte);
5753 
5754 	pmap_demote_pde_check(firstpte, newpte);
5755 
5756 	/*
5757 	 * If the mapping has changed attributes, update the page table
5758 	 * entries.
5759 	 */
5760 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
5761 		pmap_fill_ptp(firstpte, newpte);
5762 
5763 	/*
5764 	 * The spare PV entries must be reserved prior to demoting the
5765 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
5766 	 * of the PDE and the PV lists will be inconsistent, which can result
5767 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
5768 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
5769 	 * PV entry for the 2MB page mapping that is being demoted.
5770 	 */
5771 	if ((oldpde & PG_MANAGED) != 0)
5772 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
5773 
5774 	/*
5775 	 * Demote the mapping.  This pmap is locked.  The old PDE has
5776 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
5777 	 * set.  Thus, there is no danger of a race with another
5778 	 * processor changing the setting of PG_A and/or PG_M between
5779 	 * the read above and the store below.
5780 	 */
5781 	if (workaround_erratum383)
5782 		pmap_update_pde(pmap, va, pde, newpde);
5783 	else
5784 		pde_store(pde, newpde);
5785 
5786 	/*
5787 	 * Invalidate a stale recursive mapping of the page table page.
5788 	 */
5789 	if (in_kernel)
5790 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
5791 
5792 	/*
5793 	 * Demote the PV entry.
5794 	 */
5795 	if ((oldpde & PG_MANAGED) != 0)
5796 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
5797 
5798 	atomic_add_long(&pmap_pde_demotions, 1);
5799 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
5800 	    va, pmap);
5801 	return (TRUE);
5802 }
5803 
5804 /*
5805  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
5806  */
5807 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5808 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5809 {
5810 	pd_entry_t newpde;
5811 	vm_paddr_t mptepa;
5812 	vm_page_t mpte;
5813 
5814 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
5815 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5816 	mpte = pmap_remove_pt_page(pmap, va);
5817 	if (mpte == NULL)
5818 		panic("pmap_remove_kernel_pde: Missing pt page.");
5819 
5820 	mptepa = VM_PAGE_TO_PHYS(mpte);
5821 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
5822 
5823 	/*
5824 	 * If this page table page was unmapped by a promotion, then it
5825 	 * contains valid mappings.  Zero it to invalidate those mappings.
5826 	 */
5827 	if (mpte->valid != 0)
5828 		pagezero((void *)PHYS_TO_DMAP(mptepa));
5829 
5830 	/*
5831 	 * Demote the mapping.
5832 	 */
5833 	if (workaround_erratum383)
5834 		pmap_update_pde(pmap, va, pde, newpde);
5835 	else
5836 		pde_store(pde, newpde);
5837 
5838 	/*
5839 	 * Invalidate a stale recursive mapping of the page table page.
5840 	 */
5841 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
5842 }
5843 
5844 /*
5845  * pmap_remove_pde: do the things to unmap a superpage in a process
5846  */
5847 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free,struct rwlock ** lockp)5848 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
5849     struct spglist *free, struct rwlock **lockp)
5850 {
5851 	struct md_page *pvh;
5852 	pd_entry_t oldpde;
5853 	vm_offset_t eva, va;
5854 	vm_page_t m, mpte;
5855 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5856 
5857 	PG_G = pmap_global_bit(pmap);
5858 	PG_A = pmap_accessed_bit(pmap);
5859 	PG_M = pmap_modified_bit(pmap);
5860 	PG_RW = pmap_rw_bit(pmap);
5861 
5862 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5863 	KASSERT((sva & PDRMASK) == 0,
5864 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
5865 	oldpde = pte_load_clear(pdq);
5866 	if (oldpde & PG_W)
5867 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
5868 	if ((oldpde & PG_G) != 0)
5869 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
5870 	pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
5871 	if (oldpde & PG_MANAGED) {
5872 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5873 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5874 		pmap_pvh_free(pvh, pmap, sva);
5875 		eva = sva + NBPDR;
5876 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5877 		    va < eva; va += PAGE_SIZE, m++) {
5878 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5879 				vm_page_dirty(m);
5880 			if (oldpde & PG_A)
5881 				vm_page_aflag_set(m, PGA_REFERENCED);
5882 			if (TAILQ_EMPTY(&m->md.pv_list) &&
5883 			    TAILQ_EMPTY(&pvh->pv_list))
5884 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5885 			pmap_delayed_invl_page(m);
5886 		}
5887 	}
5888 	if (pmap == kernel_pmap) {
5889 		pmap_remove_kernel_pde(pmap, pdq, sva);
5890 	} else {
5891 		mpte = pmap_remove_pt_page(pmap, sva);
5892 		if (mpte != NULL) {
5893 			KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
5894 			    ("pmap_remove_pde: pte page not promoted"));
5895 			pmap_resident_count_dec(pmap, 1);
5896 			KASSERT(mpte->ref_count == NPTEPG,
5897 			    ("pmap_remove_pde: pte page ref count error"));
5898 			mpte->ref_count = 0;
5899 			pmap_add_delayed_free_list(mpte, free, FALSE);
5900 		}
5901 	}
5902 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
5903 }
5904 
5905 /*
5906  * pmap_remove_pte: do the things to unmap a page in a process
5907  */
5908 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)5909 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5910     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5911 {
5912 	struct md_page *pvh;
5913 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
5914 	vm_page_t m;
5915 
5916 	PG_A = pmap_accessed_bit(pmap);
5917 	PG_M = pmap_modified_bit(pmap);
5918 	PG_RW = pmap_rw_bit(pmap);
5919 
5920 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5921 	oldpte = pte_load_clear(ptq);
5922 	if (oldpte & PG_W)
5923 		pmap->pm_stats.wired_count -= 1;
5924 	pmap_resident_count_dec(pmap, 1);
5925 	if (oldpte & PG_MANAGED) {
5926 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5927 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5928 			vm_page_dirty(m);
5929 		if (oldpte & PG_A)
5930 			vm_page_aflag_set(m, PGA_REFERENCED);
5931 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5932 		pmap_pvh_free(&m->md, pmap, va);
5933 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5934 		    (m->flags & PG_FICTITIOUS) == 0) {
5935 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5936 			if (TAILQ_EMPTY(&pvh->pv_list))
5937 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5938 		}
5939 		pmap_delayed_invl_page(m);
5940 	}
5941 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5942 }
5943 
5944 /*
5945  * Remove a single page from a process address space
5946  */
5947 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)5948 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5949     struct spglist *free)
5950 {
5951 	struct rwlock *lock;
5952 	pt_entry_t *pte, PG_V;
5953 
5954 	PG_V = pmap_valid_bit(pmap);
5955 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5956 	if ((*pde & PG_V) == 0)
5957 		return;
5958 	pte = pmap_pde_to_pte(pde, va);
5959 	if ((*pte & PG_V) == 0)
5960 		return;
5961 	lock = NULL;
5962 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
5963 	if (lock != NULL)
5964 		rw_wunlock(lock);
5965 	pmap_invalidate_page(pmap, va);
5966 }
5967 
5968 /*
5969  * Removes the specified range of addresses from the page table page.
5970  */
5971 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)5972 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5973     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
5974 {
5975 	pt_entry_t PG_G, *pte;
5976 	vm_offset_t va;
5977 	bool anyvalid;
5978 
5979 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5980 	PG_G = pmap_global_bit(pmap);
5981 	anyvalid = false;
5982 	va = eva;
5983 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
5984 	    sva += PAGE_SIZE) {
5985 		if (*pte == 0) {
5986 			if (va != eva) {
5987 				pmap_invalidate_range(pmap, va, sva);
5988 				va = eva;
5989 			}
5990 			continue;
5991 		}
5992 		if ((*pte & PG_G) == 0)
5993 			anyvalid = true;
5994 		else if (va == eva)
5995 			va = sva;
5996 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
5997 			sva += PAGE_SIZE;
5998 			break;
5999 		}
6000 	}
6001 	if (va != eva)
6002 		pmap_invalidate_range(pmap, va, sva);
6003 	return (anyvalid);
6004 }
6005 
6006 /*
6007  *	Remove the given range of addresses from the specified map.
6008  *
6009  *	It is assumed that the start and end are properly
6010  *	rounded to the page size.
6011  */
6012 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6013 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6014 {
6015 	struct rwlock *lock;
6016 	vm_page_t mt;
6017 	vm_offset_t va_next;
6018 	pml5_entry_t *pml5e;
6019 	pml4_entry_t *pml4e;
6020 	pdp_entry_t *pdpe;
6021 	pd_entry_t ptpaddr, *pde;
6022 	pt_entry_t PG_G, PG_V;
6023 	struct spglist free;
6024 	int anyvalid;
6025 
6026 	PG_G = pmap_global_bit(pmap);
6027 	PG_V = pmap_valid_bit(pmap);
6028 
6029 	/*
6030 	 * Perform an unsynchronized read.  This is, however, safe.
6031 	 */
6032 	if (pmap->pm_stats.resident_count == 0)
6033 		return;
6034 
6035 	anyvalid = 0;
6036 	SLIST_INIT(&free);
6037 
6038 	pmap_delayed_invl_start();
6039 	PMAP_LOCK(pmap);
6040 	pmap_pkru_on_remove(pmap, sva, eva);
6041 
6042 	/*
6043 	 * special handling of removing one page.  a very
6044 	 * common operation and easy to short circuit some
6045 	 * code.
6046 	 */
6047 	if (sva + PAGE_SIZE == eva) {
6048 		pde = pmap_pde(pmap, sva);
6049 		if (pde && (*pde & PG_PS) == 0) {
6050 			pmap_remove_page(pmap, sva, pde, &free);
6051 			goto out;
6052 		}
6053 	}
6054 
6055 	lock = NULL;
6056 	for (; sva < eva; sva = va_next) {
6057 		if (pmap->pm_stats.resident_count == 0)
6058 			break;
6059 
6060 		if (pmap_is_la57(pmap)) {
6061 			pml5e = pmap_pml5e(pmap, sva);
6062 			if ((*pml5e & PG_V) == 0) {
6063 				va_next = (sva + NBPML5) & ~PML5MASK;
6064 				if (va_next < sva)
6065 					va_next = eva;
6066 				continue;
6067 			}
6068 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6069 		} else {
6070 			pml4e = pmap_pml4e(pmap, sva);
6071 		}
6072 		if ((*pml4e & PG_V) == 0) {
6073 			va_next = (sva + NBPML4) & ~PML4MASK;
6074 			if (va_next < sva)
6075 				va_next = eva;
6076 			continue;
6077 		}
6078 
6079 		va_next = (sva + NBPDP) & ~PDPMASK;
6080 		if (va_next < sva)
6081 			va_next = eva;
6082 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6083 		if ((*pdpe & PG_V) == 0)
6084 			continue;
6085 		if ((*pdpe & PG_PS) != 0) {
6086 			KASSERT(va_next <= eva,
6087 			    ("partial update of non-transparent 1G mapping "
6088 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6089 			    *pdpe, sva, eva, va_next));
6090 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6091 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6092 			anyvalid = 1;
6093 			*pdpe = 0;
6094 			pmap_resident_count_dec(pmap, NBPDP / PAGE_SIZE);
6095 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6096 			pmap_unwire_ptp(pmap, sva, mt, &free);
6097 			continue;
6098 		}
6099 
6100 		/*
6101 		 * Calculate index for next page table.
6102 		 */
6103 		va_next = (sva + NBPDR) & ~PDRMASK;
6104 		if (va_next < sva)
6105 			va_next = eva;
6106 
6107 		pde = pmap_pdpe_to_pde(pdpe, sva);
6108 		ptpaddr = *pde;
6109 
6110 		/*
6111 		 * Weed out invalid mappings.
6112 		 */
6113 		if (ptpaddr == 0)
6114 			continue;
6115 
6116 		/*
6117 		 * Check for large page.
6118 		 */
6119 		if ((ptpaddr & PG_PS) != 0) {
6120 			/*
6121 			 * Are we removing the entire large page?  If not,
6122 			 * demote the mapping and fall through.
6123 			 */
6124 			if (sva + NBPDR == va_next && eva >= va_next) {
6125 				/*
6126 				 * The TLB entry for a PG_G mapping is
6127 				 * invalidated by pmap_remove_pde().
6128 				 */
6129 				if ((ptpaddr & PG_G) == 0)
6130 					anyvalid = 1;
6131 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6132 				continue;
6133 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6134 			    &lock)) {
6135 				/* The large page mapping was destroyed. */
6136 				continue;
6137 			} else
6138 				ptpaddr = *pde;
6139 		}
6140 
6141 		/*
6142 		 * Limit our scan to either the end of the va represented
6143 		 * by the current page table page, or to the end of the
6144 		 * range being removed.
6145 		 */
6146 		if (va_next > eva)
6147 			va_next = eva;
6148 
6149 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6150 			anyvalid = 1;
6151 	}
6152 	if (lock != NULL)
6153 		rw_wunlock(lock);
6154 out:
6155 	if (anyvalid)
6156 		pmap_invalidate_all(pmap);
6157 	PMAP_UNLOCK(pmap);
6158 	pmap_delayed_invl_finish();
6159 	vm_page_free_pages_toq(&free, true);
6160 }
6161 
6162 /*
6163  *	Routine:	pmap_remove_all
6164  *	Function:
6165  *		Removes this physical page from
6166  *		all physical maps in which it resides.
6167  *		Reflects back modify bits to the pager.
6168  *
6169  *	Notes:
6170  *		Original versions of this routine were very
6171  *		inefficient because they iteratively called
6172  *		pmap_remove (slow...)
6173  */
6174 
6175 void
pmap_remove_all(vm_page_t m)6176 pmap_remove_all(vm_page_t m)
6177 {
6178 	struct md_page *pvh;
6179 	pv_entry_t pv;
6180 	pmap_t pmap;
6181 	struct rwlock *lock;
6182 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6183 	pd_entry_t *pde;
6184 	vm_offset_t va;
6185 	struct spglist free;
6186 	int pvh_gen, md_gen;
6187 
6188 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6189 	    ("pmap_remove_all: page %p is not managed", m));
6190 	SLIST_INIT(&free);
6191 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6192 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6193 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6194 retry:
6195 	rw_wlock(lock);
6196 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6197 		pmap = PV_PMAP(pv);
6198 		if (!PMAP_TRYLOCK(pmap)) {
6199 			pvh_gen = pvh->pv_gen;
6200 			rw_wunlock(lock);
6201 			PMAP_LOCK(pmap);
6202 			rw_wlock(lock);
6203 			if (pvh_gen != pvh->pv_gen) {
6204 				rw_wunlock(lock);
6205 				PMAP_UNLOCK(pmap);
6206 				goto retry;
6207 			}
6208 		}
6209 		va = pv->pv_va;
6210 		pde = pmap_pde(pmap, va);
6211 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6212 		PMAP_UNLOCK(pmap);
6213 	}
6214 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6215 		pmap = PV_PMAP(pv);
6216 		if (!PMAP_TRYLOCK(pmap)) {
6217 			pvh_gen = pvh->pv_gen;
6218 			md_gen = m->md.pv_gen;
6219 			rw_wunlock(lock);
6220 			PMAP_LOCK(pmap);
6221 			rw_wlock(lock);
6222 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6223 				rw_wunlock(lock);
6224 				PMAP_UNLOCK(pmap);
6225 				goto retry;
6226 			}
6227 		}
6228 		PG_A = pmap_accessed_bit(pmap);
6229 		PG_M = pmap_modified_bit(pmap);
6230 		PG_RW = pmap_rw_bit(pmap);
6231 		pmap_resident_count_dec(pmap, 1);
6232 		pde = pmap_pde(pmap, pv->pv_va);
6233 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6234 		    " a 2mpage in page %p's pv list", m));
6235 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6236 		tpte = pte_load_clear(pte);
6237 		if (tpte & PG_W)
6238 			pmap->pm_stats.wired_count--;
6239 		if (tpte & PG_A)
6240 			vm_page_aflag_set(m, PGA_REFERENCED);
6241 
6242 		/*
6243 		 * Update the vm_page_t clean and reference bits.
6244 		 */
6245 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6246 			vm_page_dirty(m);
6247 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6248 		pmap_invalidate_page(pmap, pv->pv_va);
6249 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6250 		m->md.pv_gen++;
6251 		free_pv_entry(pmap, pv);
6252 		PMAP_UNLOCK(pmap);
6253 	}
6254 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6255 	rw_wunlock(lock);
6256 	pmap_delayed_invl_wait(m);
6257 	vm_page_free_pages_toq(&free, true);
6258 }
6259 
6260 /*
6261  * pmap_protect_pde: do the things to protect a 2mpage in a process
6262  */
6263 static boolean_t
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6264 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6265 {
6266 	pd_entry_t newpde, oldpde;
6267 	vm_page_t m, mt;
6268 	boolean_t anychanged;
6269 	pt_entry_t PG_G, PG_M, PG_RW;
6270 
6271 	PG_G = pmap_global_bit(pmap);
6272 	PG_M = pmap_modified_bit(pmap);
6273 	PG_RW = pmap_rw_bit(pmap);
6274 
6275 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6276 	KASSERT((sva & PDRMASK) == 0,
6277 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6278 	anychanged = FALSE;
6279 retry:
6280 	oldpde = newpde = *pde;
6281 	if ((prot & VM_PROT_WRITE) == 0) {
6282 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6283 		    (PG_MANAGED | PG_M | PG_RW)) {
6284 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6285 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6286 				vm_page_dirty(mt);
6287 		}
6288 		newpde &= ~(PG_RW | PG_M);
6289 	}
6290 	if ((prot & VM_PROT_EXECUTE) == 0)
6291 		newpde |= pg_nx;
6292 	if (newpde != oldpde) {
6293 		/*
6294 		 * As an optimization to future operations on this PDE, clear
6295 		 * PG_PROMOTED.  The impending invalidation will remove any
6296 		 * lingering 4KB page mappings from the TLB.
6297 		 */
6298 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6299 			goto retry;
6300 		if ((oldpde & PG_G) != 0)
6301 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6302 		else
6303 			anychanged = TRUE;
6304 	}
6305 	return (anychanged);
6306 }
6307 
6308 /*
6309  *	Set the physical protection on the
6310  *	specified range of this map as requested.
6311  */
6312 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6313 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6314 {
6315 	vm_page_t m;
6316 	vm_offset_t va_next;
6317 	pml4_entry_t *pml4e;
6318 	pdp_entry_t *pdpe;
6319 	pd_entry_t ptpaddr, *pde;
6320 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6321 	pt_entry_t obits, pbits;
6322 	boolean_t anychanged;
6323 
6324 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6325 	if (prot == VM_PROT_NONE) {
6326 		pmap_remove(pmap, sva, eva);
6327 		return;
6328 	}
6329 
6330 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6331 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6332 		return;
6333 
6334 	PG_G = pmap_global_bit(pmap);
6335 	PG_M = pmap_modified_bit(pmap);
6336 	PG_V = pmap_valid_bit(pmap);
6337 	PG_RW = pmap_rw_bit(pmap);
6338 	anychanged = FALSE;
6339 
6340 	/*
6341 	 * Although this function delays and batches the invalidation
6342 	 * of stale TLB entries, it does not need to call
6343 	 * pmap_delayed_invl_start() and
6344 	 * pmap_delayed_invl_finish(), because it does not
6345 	 * ordinarily destroy mappings.  Stale TLB entries from
6346 	 * protection-only changes need only be invalidated before the
6347 	 * pmap lock is released, because protection-only changes do
6348 	 * not destroy PV entries.  Even operations that iterate over
6349 	 * a physical page's PV list of mappings, like
6350 	 * pmap_remove_write(), acquire the pmap lock for each
6351 	 * mapping.  Consequently, for protection-only changes, the
6352 	 * pmap lock suffices to synchronize both page table and TLB
6353 	 * updates.
6354 	 *
6355 	 * This function only destroys a mapping if pmap_demote_pde()
6356 	 * fails.  In that case, stale TLB entries are immediately
6357 	 * invalidated.
6358 	 */
6359 
6360 	PMAP_LOCK(pmap);
6361 	for (; sva < eva; sva = va_next) {
6362 		pml4e = pmap_pml4e(pmap, sva);
6363 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6364 			va_next = (sva + NBPML4) & ~PML4MASK;
6365 			if (va_next < sva)
6366 				va_next = eva;
6367 			continue;
6368 		}
6369 
6370 		va_next = (sva + NBPDP) & ~PDPMASK;
6371 		if (va_next < sva)
6372 			va_next = eva;
6373 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6374 		if ((*pdpe & PG_V) == 0)
6375 			continue;
6376 		if ((*pdpe & PG_PS) != 0) {
6377 			KASSERT(va_next <= eva,
6378 			    ("partial update of non-transparent 1G mapping "
6379 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6380 			    *pdpe, sva, eva, va_next));
6381 retry_pdpe:
6382 			obits = pbits = *pdpe;
6383 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6384 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6385 			if ((prot & VM_PROT_WRITE) == 0)
6386 				pbits &= ~(PG_RW | PG_M);
6387 			if ((prot & VM_PROT_EXECUTE) == 0)
6388 				pbits |= pg_nx;
6389 
6390 			if (pbits != obits) {
6391 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6392 					/* PG_PS cannot be cleared under us, */
6393 					goto retry_pdpe;
6394 				anychanged = TRUE;
6395 			}
6396 			continue;
6397 		}
6398 
6399 		va_next = (sva + NBPDR) & ~PDRMASK;
6400 		if (va_next < sva)
6401 			va_next = eva;
6402 
6403 		pde = pmap_pdpe_to_pde(pdpe, sva);
6404 		ptpaddr = *pde;
6405 
6406 		/*
6407 		 * Weed out invalid mappings.
6408 		 */
6409 		if (ptpaddr == 0)
6410 			continue;
6411 
6412 		/*
6413 		 * Check for large page.
6414 		 */
6415 		if ((ptpaddr & PG_PS) != 0) {
6416 			/*
6417 			 * Are we protecting the entire large page?  If not,
6418 			 * demote the mapping and fall through.
6419 			 */
6420 			if (sva + NBPDR == va_next && eva >= va_next) {
6421 				/*
6422 				 * The TLB entry for a PG_G mapping is
6423 				 * invalidated by pmap_protect_pde().
6424 				 */
6425 				if (pmap_protect_pde(pmap, pde, sva, prot))
6426 					anychanged = TRUE;
6427 				continue;
6428 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
6429 				/*
6430 				 * The large page mapping was destroyed.
6431 				 */
6432 				continue;
6433 			}
6434 		}
6435 
6436 		if (va_next > eva)
6437 			va_next = eva;
6438 
6439 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6440 		    sva += PAGE_SIZE) {
6441 retry:
6442 			obits = pbits = *pte;
6443 			if ((pbits & PG_V) == 0)
6444 				continue;
6445 
6446 			if ((prot & VM_PROT_WRITE) == 0) {
6447 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6448 				    (PG_MANAGED | PG_M | PG_RW)) {
6449 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6450 					vm_page_dirty(m);
6451 				}
6452 				pbits &= ~(PG_RW | PG_M);
6453 			}
6454 			if ((prot & VM_PROT_EXECUTE) == 0)
6455 				pbits |= pg_nx;
6456 
6457 			if (pbits != obits) {
6458 				if (!atomic_cmpset_long(pte, obits, pbits))
6459 					goto retry;
6460 				if (obits & PG_G)
6461 					pmap_invalidate_page(pmap, sva);
6462 				else
6463 					anychanged = TRUE;
6464 			}
6465 		}
6466 	}
6467 	if (anychanged)
6468 		pmap_invalidate_all(pmap);
6469 	PMAP_UNLOCK(pmap);
6470 }
6471 
6472 #if VM_NRESERVLEVEL > 0
6473 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6474 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6475 {
6476 
6477 	if (pmap->pm_type != PT_EPT)
6478 		return (false);
6479 	return ((pde & EPT_PG_EXECUTE) != 0);
6480 }
6481 
6482 /*
6483  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6484  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6485  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6486  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6487  * identical characteristics.
6488  */
6489 static void
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6490 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6491     struct rwlock **lockp)
6492 {
6493 	pd_entry_t newpde;
6494 	pt_entry_t *firstpte, oldpte, pa, *pte;
6495 	pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V, PG_PKU_MASK;
6496 	vm_page_t mpte;
6497 	int PG_PTE_CACHE;
6498 
6499 	PG_A = pmap_accessed_bit(pmap);
6500 	PG_G = pmap_global_bit(pmap);
6501 	PG_M = pmap_modified_bit(pmap);
6502 	PG_V = pmap_valid_bit(pmap);
6503 	PG_RW = pmap_rw_bit(pmap);
6504 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6505 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
6506 
6507 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6508 
6509 	/*
6510 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6511 	 * either invalid, unused, or does not map the first 4KB physical page
6512 	 * within a 2MB page.
6513 	 */
6514 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6515 setpde:
6516 	newpde = *firstpte;
6517 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V) ||
6518 	    !pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
6519 	    newpde))) {
6520 		atomic_add_long(&pmap_pde_p_failures, 1);
6521 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6522 		    " in pmap %p", va, pmap);
6523 		return;
6524 	}
6525 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6526 		/*
6527 		 * When PG_M is already clear, PG_RW can be cleared without
6528 		 * a TLB invalidation.
6529 		 */
6530 		if (!atomic_cmpset_long(firstpte, newpde, newpde & ~PG_RW))
6531 			goto setpde;
6532 		newpde &= ~PG_RW;
6533 	}
6534 
6535 	/*
6536 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6537 	 * PTE maps an unexpected 4KB physical page or does not have identical
6538 	 * characteristics to the first PTE.
6539 	 */
6540 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
6541 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6542 setpte:
6543 		oldpte = *pte;
6544 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
6545 			atomic_add_long(&pmap_pde_p_failures, 1);
6546 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6547 			    " in pmap %p", va, pmap);
6548 			return;
6549 		}
6550 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6551 			/*
6552 			 * When PG_M is already clear, PG_RW can be cleared
6553 			 * without a TLB invalidation.
6554 			 */
6555 			if (!atomic_cmpset_long(pte, oldpte, oldpte & ~PG_RW))
6556 				goto setpte;
6557 			oldpte &= ~PG_RW;
6558 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6559 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6560 			    (va & ~PDRMASK), pmap);
6561 		}
6562 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6563 			atomic_add_long(&pmap_pde_p_failures, 1);
6564 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6565 			    " in pmap %p", va, pmap);
6566 			return;
6567 		}
6568 		pa -= PAGE_SIZE;
6569 	}
6570 
6571 	/*
6572 	 * Save the page table page in its current state until the PDE
6573 	 * mapping the superpage is demoted by pmap_demote_pde() or
6574 	 * destroyed by pmap_remove_pde().
6575 	 */
6576 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6577 	KASSERT(mpte >= vm_page_array &&
6578 	    mpte < &vm_page_array[vm_page_array_size],
6579 	    ("pmap_promote_pde: page table page is out of range"));
6580 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
6581 	    ("pmap_promote_pde: page table page's pindex is wrong"));
6582 	if (pmap_insert_pt_page(pmap, mpte, true)) {
6583 		atomic_add_long(&pmap_pde_p_failures, 1);
6584 		CTR2(KTR_PMAP,
6585 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
6586 		    pmap);
6587 		return;
6588 	}
6589 
6590 	/*
6591 	 * Promote the pv entries.
6592 	 */
6593 	if ((newpde & PG_MANAGED) != 0)
6594 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
6595 
6596 	/*
6597 	 * Propagate the PAT index to its proper position.
6598 	 */
6599 	newpde = pmap_swap_pat(pmap, newpde);
6600 
6601 	/*
6602 	 * Map the superpage.
6603 	 */
6604 	if (workaround_erratum383)
6605 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
6606 	else
6607 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
6608 
6609 	atomic_add_long(&pmap_pde_promotions, 1);
6610 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
6611 	    " in pmap %p", va, pmap);
6612 }
6613 #endif /* VM_NRESERVLEVEL > 0 */
6614 
6615 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)6616 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
6617     int psind)
6618 {
6619 	vm_page_t mp;
6620 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
6621 
6622 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6623 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
6624 	    ("psind %d unexpected", psind));
6625 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
6626 	    ("unaligned phys address %#lx newpte %#lx psind %d",
6627 	    newpte & PG_FRAME, newpte, psind));
6628 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
6629 	    ("unaligned va %#lx psind %d", va, psind));
6630 	KASSERT(va < VM_MAXUSER_ADDRESS,
6631 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
6632 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
6633 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
6634 
6635 	PG_V = pmap_valid_bit(pmap);
6636 
6637 restart:
6638 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind]))
6639 		return (KERN_PROTECTION_FAILURE);
6640 	pten = newpte;
6641 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
6642 		pten |= pmap_pkru_get(pmap, va);
6643 
6644 	if (psind == 2) {	/* 1G */
6645 		pml4e = pmap_pml4e(pmap, va);
6646 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6647 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
6648 			    NULL, va);
6649 			if (mp == NULL)
6650 				goto allocf;
6651 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6652 			pdpe = &pdpe[pmap_pdpe_index(va)];
6653 			origpte = *pdpe;
6654 			MPASS(origpte == 0);
6655 		} else {
6656 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
6657 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
6658 			origpte = *pdpe;
6659 			if ((origpte & PG_V) == 0) {
6660 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
6661 				mp->ref_count++;
6662 			}
6663 		}
6664 		*pdpe = pten;
6665 	} else /* (psind == 1) */ {	/* 2M */
6666 		pde = pmap_pde(pmap, va);
6667 		if (pde == NULL) {
6668 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
6669 			    NULL, va);
6670 			if (mp == NULL)
6671 				goto allocf;
6672 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
6673 			pde = &pde[pmap_pde_index(va)];
6674 			origpte = *pde;
6675 			MPASS(origpte == 0);
6676 		} else {
6677 			origpte = *pde;
6678 			if ((origpte & PG_V) == 0) {
6679 				pdpe = pmap_pdpe(pmap, va);
6680 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
6681 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
6682 				mp->ref_count++;
6683 			}
6684 		}
6685 		*pde = pten;
6686 	}
6687 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
6688 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
6689 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
6690 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
6691 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
6692 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
6693 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
6694 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
6695 	if ((origpte & PG_V) == 0)
6696 		pmap_resident_count_inc(pmap, pagesizes[psind] / PAGE_SIZE);
6697 
6698 	return (KERN_SUCCESS);
6699 
6700 allocf:
6701 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
6702 		return (KERN_RESOURCE_SHORTAGE);
6703 	PMAP_UNLOCK(pmap);
6704 	vm_wait(NULL);
6705 	PMAP_LOCK(pmap);
6706 	goto restart;
6707 }
6708 
6709 /*
6710  *	Insert the given physical page (p) at
6711  *	the specified virtual address (v) in the
6712  *	target physical map with the protection requested.
6713  *
6714  *	If specified, the page will be wired down, meaning
6715  *	that the related pte can not be reclaimed.
6716  *
6717  *	NB:  This is the only routine which MAY NOT lazy-evaluate
6718  *	or lose information.  That is, this routine must actually
6719  *	insert this page into the given map NOW.
6720  *
6721  *	When destroying both a page table and PV entry, this function
6722  *	performs the TLB invalidation before releasing the PV list
6723  *	lock, so we do not need pmap_delayed_invl_page() calls here.
6724  */
6725 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)6726 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
6727     u_int flags, int8_t psind)
6728 {
6729 	struct rwlock *lock;
6730 	pd_entry_t *pde;
6731 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
6732 	pt_entry_t newpte, origpte;
6733 	pv_entry_t pv;
6734 	vm_paddr_t opa, pa;
6735 	vm_page_t mpte, om;
6736 	int rv;
6737 	boolean_t nosleep;
6738 
6739 	PG_A = pmap_accessed_bit(pmap);
6740 	PG_G = pmap_global_bit(pmap);
6741 	PG_M = pmap_modified_bit(pmap);
6742 	PG_V = pmap_valid_bit(pmap);
6743 	PG_RW = pmap_rw_bit(pmap);
6744 
6745 	va = trunc_page(va);
6746 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
6747 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
6748 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
6749 	    va));
6750 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
6751 	    va >= kmi.clean_eva,
6752 	    ("pmap_enter: managed mapping within the clean submap"));
6753 	if ((m->oflags & VPO_UNMANAGED) == 0)
6754 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
6755 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
6756 	    ("pmap_enter: flags %u has reserved bits set", flags));
6757 	pa = VM_PAGE_TO_PHYS(m);
6758 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
6759 	if ((flags & VM_PROT_WRITE) != 0)
6760 		newpte |= PG_M;
6761 	if ((prot & VM_PROT_WRITE) != 0)
6762 		newpte |= PG_RW;
6763 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
6764 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
6765 	if ((prot & VM_PROT_EXECUTE) == 0)
6766 		newpte |= pg_nx;
6767 	if ((flags & PMAP_ENTER_WIRED) != 0)
6768 		newpte |= PG_W;
6769 	if (va < VM_MAXUSER_ADDRESS)
6770 		newpte |= PG_U;
6771 	if (pmap == kernel_pmap)
6772 		newpte |= PG_G;
6773 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
6774 
6775 	/*
6776 	 * Set modified bit gratuitously for writeable mappings if
6777 	 * the page is unmanaged. We do not want to take a fault
6778 	 * to do the dirty bit accounting for these mappings.
6779 	 */
6780 	if ((m->oflags & VPO_UNMANAGED) != 0) {
6781 		if ((newpte & PG_RW) != 0)
6782 			newpte |= PG_M;
6783 	} else
6784 		newpte |= PG_MANAGED;
6785 
6786 	lock = NULL;
6787 	PMAP_LOCK(pmap);
6788 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
6789 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
6790 		    ("managed largepage va %#lx flags %#x", va, flags));
6791 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
6792 		    psind);
6793 		goto out;
6794 	}
6795 	if (psind == 1) {
6796 		/* Assert the required virtual and physical alignment. */
6797 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
6798 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
6799 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
6800 		goto out;
6801 	}
6802 	mpte = NULL;
6803 
6804 	/*
6805 	 * In the case that a page table page is not
6806 	 * resident, we are creating it here.
6807 	 */
6808 retry:
6809 	pde = pmap_pde(pmap, va);
6810 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
6811 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
6812 		pte = pmap_pde_to_pte(pde, va);
6813 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
6814 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6815 			mpte->ref_count++;
6816 		}
6817 	} else if (va < VM_MAXUSER_ADDRESS) {
6818 		/*
6819 		 * Here if the pte page isn't mapped, or if it has been
6820 		 * deallocated.
6821 		 */
6822 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
6823 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
6824 		    nosleep ? NULL : &lock, va);
6825 		if (mpte == NULL && nosleep) {
6826 			rv = KERN_RESOURCE_SHORTAGE;
6827 			goto out;
6828 		}
6829 		goto retry;
6830 	} else
6831 		panic("pmap_enter: invalid page directory va=%#lx", va);
6832 
6833 	origpte = *pte;
6834 	pv = NULL;
6835 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
6836 		newpte |= pmap_pkru_get(pmap, va);
6837 
6838 	/*
6839 	 * Is the specified virtual address already mapped?
6840 	 */
6841 	if ((origpte & PG_V) != 0) {
6842 		/*
6843 		 * Wiring change, just update stats. We don't worry about
6844 		 * wiring PT pages as they remain resident as long as there
6845 		 * are valid mappings in them. Hence, if a user page is wired,
6846 		 * the PT page will be also.
6847 		 */
6848 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
6849 			pmap->pm_stats.wired_count++;
6850 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
6851 			pmap->pm_stats.wired_count--;
6852 
6853 		/*
6854 		 * Remove the extra PT page reference.
6855 		 */
6856 		if (mpte != NULL) {
6857 			mpte->ref_count--;
6858 			KASSERT(mpte->ref_count > 0,
6859 			    ("pmap_enter: missing reference to page table page,"
6860 			     " va: 0x%lx", va));
6861 		}
6862 
6863 		/*
6864 		 * Has the physical page changed?
6865 		 */
6866 		opa = origpte & PG_FRAME;
6867 		if (opa == pa) {
6868 			/*
6869 			 * No, might be a protection or wiring change.
6870 			 */
6871 			if ((origpte & PG_MANAGED) != 0 &&
6872 			    (newpte & PG_RW) != 0)
6873 				vm_page_aflag_set(m, PGA_WRITEABLE);
6874 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
6875 				goto unchanged;
6876 			goto validate;
6877 		}
6878 
6879 		/*
6880 		 * The physical page has changed.  Temporarily invalidate
6881 		 * the mapping.  This ensures that all threads sharing the
6882 		 * pmap keep a consistent view of the mapping, which is
6883 		 * necessary for the correct handling of COW faults.  It
6884 		 * also permits reuse of the old mapping's PV entry,
6885 		 * avoiding an allocation.
6886 		 *
6887 		 * For consistency, handle unmanaged mappings the same way.
6888 		 */
6889 		origpte = pte_load_clear(pte);
6890 		KASSERT((origpte & PG_FRAME) == opa,
6891 		    ("pmap_enter: unexpected pa update for %#lx", va));
6892 		if ((origpte & PG_MANAGED) != 0) {
6893 			om = PHYS_TO_VM_PAGE(opa);
6894 
6895 			/*
6896 			 * The pmap lock is sufficient to synchronize with
6897 			 * concurrent calls to pmap_page_test_mappings() and
6898 			 * pmap_ts_referenced().
6899 			 */
6900 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6901 				vm_page_dirty(om);
6902 			if ((origpte & PG_A) != 0) {
6903 				pmap_invalidate_page(pmap, va);
6904 				vm_page_aflag_set(om, PGA_REFERENCED);
6905 			}
6906 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
6907 			pv = pmap_pvh_remove(&om->md, pmap, va);
6908 			KASSERT(pv != NULL,
6909 			    ("pmap_enter: no PV entry for %#lx", va));
6910 			if ((newpte & PG_MANAGED) == 0)
6911 				free_pv_entry(pmap, pv);
6912 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
6913 			    TAILQ_EMPTY(&om->md.pv_list) &&
6914 			    ((om->flags & PG_FICTITIOUS) != 0 ||
6915 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
6916 				vm_page_aflag_clear(om, PGA_WRITEABLE);
6917 		} else {
6918 			/*
6919 			 * Since this mapping is unmanaged, assume that PG_A
6920 			 * is set.
6921 			 */
6922 			pmap_invalidate_page(pmap, va);
6923 		}
6924 		origpte = 0;
6925 	} else {
6926 		/*
6927 		 * Increment the counters.
6928 		 */
6929 		if ((newpte & PG_W) != 0)
6930 			pmap->pm_stats.wired_count++;
6931 		pmap_resident_count_inc(pmap, 1);
6932 	}
6933 
6934 	/*
6935 	 * Enter on the PV list if part of our managed memory.
6936 	 */
6937 	if ((newpte & PG_MANAGED) != 0) {
6938 		if (pv == NULL) {
6939 			pv = get_pv_entry(pmap, &lock);
6940 			pv->pv_va = va;
6941 		}
6942 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
6943 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
6944 		m->md.pv_gen++;
6945 		if ((newpte & PG_RW) != 0)
6946 			vm_page_aflag_set(m, PGA_WRITEABLE);
6947 	}
6948 
6949 	/*
6950 	 * Update the PTE.
6951 	 */
6952 	if ((origpte & PG_V) != 0) {
6953 validate:
6954 		origpte = pte_load_store(pte, newpte);
6955 		KASSERT((origpte & PG_FRAME) == pa,
6956 		    ("pmap_enter: unexpected pa update for %#lx", va));
6957 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
6958 		    (PG_M | PG_RW)) {
6959 			if ((origpte & PG_MANAGED) != 0)
6960 				vm_page_dirty(m);
6961 
6962 			/*
6963 			 * Although the PTE may still have PG_RW set, TLB
6964 			 * invalidation may nonetheless be required because
6965 			 * the PTE no longer has PG_M set.
6966 			 */
6967 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
6968 			/*
6969 			 * This PTE change does not require TLB invalidation.
6970 			 */
6971 			goto unchanged;
6972 		}
6973 		if ((origpte & PG_A) != 0)
6974 			pmap_invalidate_page(pmap, va);
6975 	} else
6976 		pte_store(pte, newpte);
6977 
6978 unchanged:
6979 
6980 #if VM_NRESERVLEVEL > 0
6981 	/*
6982 	 * If both the page table page and the reservation are fully
6983 	 * populated, then attempt promotion.
6984 	 */
6985 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
6986 	    pmap_ps_enabled(pmap) &&
6987 	    (m->flags & PG_FICTITIOUS) == 0 &&
6988 	    vm_reserv_level_iffullpop(m) == 0)
6989 		pmap_promote_pde(pmap, pde, va, &lock);
6990 #endif
6991 
6992 	rv = KERN_SUCCESS;
6993 out:
6994 	if (lock != NULL)
6995 		rw_wunlock(lock);
6996 	PMAP_UNLOCK(pmap);
6997 	return (rv);
6998 }
6999 
7000 /*
7001  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
7002  * if successful.  Returns false if (1) a page table page cannot be allocated
7003  * without sleeping, (2) a mapping already exists at the specified virtual
7004  * address, or (3) a PV entry cannot be allocated without reclaiming another
7005  * PV entry.
7006  */
7007 static bool
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7008 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7009     struct rwlock **lockp)
7010 {
7011 	pd_entry_t newpde;
7012 	pt_entry_t PG_V;
7013 
7014 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7015 	PG_V = pmap_valid_bit(pmap);
7016 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
7017 	    PG_PS | PG_V;
7018 	if ((m->oflags & VPO_UNMANAGED) == 0)
7019 		newpde |= PG_MANAGED;
7020 	if ((prot & VM_PROT_EXECUTE) == 0)
7021 		newpde |= pg_nx;
7022 	if (va < VM_MAXUSER_ADDRESS)
7023 		newpde |= PG_U;
7024 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7025 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
7026 	    KERN_SUCCESS);
7027 }
7028 
7029 /*
7030  * Returns true if every page table entry in the specified page table page is
7031  * zero.
7032  */
7033 static bool
pmap_every_pte_zero(vm_paddr_t pa)7034 pmap_every_pte_zero(vm_paddr_t pa)
7035 {
7036 	pt_entry_t *pt_end, *pte;
7037 
7038 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7039 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7040 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7041 		if (*pte != 0)
7042 			return (false);
7043 	}
7044 	return (true);
7045 }
7046 
7047 /*
7048  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7049  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
7050  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
7051  * a mapping already exists at the specified virtual address.  Returns
7052  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
7053  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
7054  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
7055  *
7056  * The parameter "m" is only used when creating a managed, writeable mapping.
7057  */
7058 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7059 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7060     vm_page_t m, struct rwlock **lockp)
7061 {
7062 	struct spglist free;
7063 	pd_entry_t oldpde, *pde;
7064 	pt_entry_t PG_G, PG_RW, PG_V;
7065 	vm_page_t mt, pdpg;
7066 
7067 	KASSERT(pmap == kernel_pmap || (newpde & PG_W) == 0,
7068 	    ("pmap_enter_pde: cannot create wired user mapping"));
7069 	PG_G = pmap_global_bit(pmap);
7070 	PG_RW = pmap_rw_bit(pmap);
7071 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7072 	    ("pmap_enter_pde: newpde is missing PG_M"));
7073 	PG_V = pmap_valid_bit(pmap);
7074 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7075 
7076 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7077 	    newpde))) {
7078 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7079 		    " in pmap %p", va, pmap);
7080 		return (KERN_FAILURE);
7081 	}
7082 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7083 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7084 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7085 		    " in pmap %p", va, pmap);
7086 		return (KERN_RESOURCE_SHORTAGE);
7087 	}
7088 
7089 	/*
7090 	 * If pkru is not same for the whole pde range, return failure
7091 	 * and let vm_fault() cope.  Check after pde allocation, since
7092 	 * it could sleep.
7093 	 */
7094 	if (!pmap_pkru_same(pmap, va, va + NBPDR)) {
7095 		pmap_abort_ptp(pmap, va, pdpg);
7096 		return (KERN_FAILURE);
7097 	}
7098 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86) {
7099 		newpde &= ~X86_PG_PKU_MASK;
7100 		newpde |= pmap_pkru_get(pmap, va);
7101 	}
7102 
7103 	/*
7104 	 * If there are existing mappings, either abort or remove them.
7105 	 */
7106 	oldpde = *pde;
7107 	if ((oldpde & PG_V) != 0) {
7108 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7109 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7110 		if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (va <
7111 		    VM_MAXUSER_ADDRESS || (oldpde & PG_PS) != 0 ||
7112 		    !pmap_every_pte_zero(oldpde & PG_FRAME))) {
7113 			if (pdpg != NULL)
7114 				pdpg->ref_count--;
7115 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7116 			    " in pmap %p", va, pmap);
7117 			return (KERN_FAILURE);
7118 		}
7119 		/* Break the existing mapping(s). */
7120 		SLIST_INIT(&free);
7121 		if ((oldpde & PG_PS) != 0) {
7122 			/*
7123 			 * The reference to the PD page that was acquired by
7124 			 * pmap_alloc_pde() ensures that it won't be freed.
7125 			 * However, if the PDE resulted from a promotion, then
7126 			 * a reserved PT page could be freed.
7127 			 */
7128 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7129 			if ((oldpde & PG_G) == 0)
7130 				pmap_invalidate_pde_page(pmap, va, oldpde);
7131 		} else {
7132 			pmap_delayed_invl_start();
7133 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7134 			    lockp))
7135 		               pmap_invalidate_all(pmap);
7136 			pmap_delayed_invl_finish();
7137 		}
7138 		if (va < VM_MAXUSER_ADDRESS) {
7139 			vm_page_free_pages_toq(&free, true);
7140 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7141 			    pde));
7142 		} else {
7143 			KASSERT(SLIST_EMPTY(&free),
7144 			    ("pmap_enter_pde: freed kernel page table page"));
7145 
7146 			/*
7147 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7148 			 * leave the kernel page table page zero filled.
7149 			 */
7150 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7151 			if (pmap_insert_pt_page(pmap, mt, false))
7152 				panic("pmap_enter_pde: trie insert failed");
7153 		}
7154 	}
7155 
7156 	if ((newpde & PG_MANAGED) != 0) {
7157 		/*
7158 		 * Abort this mapping if its PV entry could not be created.
7159 		 */
7160 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7161 			if (pdpg != NULL)
7162 				pmap_abort_ptp(pmap, va, pdpg);
7163 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7164 			    " in pmap %p", va, pmap);
7165 			return (KERN_RESOURCE_SHORTAGE);
7166 		}
7167 		if ((newpde & PG_RW) != 0) {
7168 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7169 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7170 		}
7171 	}
7172 
7173 	/*
7174 	 * Increment counters.
7175 	 */
7176 	if ((newpde & PG_W) != 0)
7177 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7178 	pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
7179 
7180 	/*
7181 	 * Map the superpage.  (This is not a promoted mapping; there will not
7182 	 * be any lingering 4KB page mappings in the TLB.)
7183 	 */
7184 	pde_store(pde, newpde);
7185 
7186 	atomic_add_long(&pmap_pde_mappings, 1);
7187 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7188 	    va, pmap);
7189 	return (KERN_SUCCESS);
7190 }
7191 
7192 /*
7193  * Maps a sequence of resident pages belonging to the same object.
7194  * The sequence begins with the given page m_start.  This page is
7195  * mapped at the given virtual address start.  Each subsequent page is
7196  * mapped at a virtual address that is offset from start by the same
7197  * amount as the page is offset from m_start within the object.  The
7198  * last page in the sequence is the page with the largest offset from
7199  * m_start that can be mapped at a virtual address less than the given
7200  * virtual address end.  Not every virtual page between start and end
7201  * is mapped; only those for which a resident page exists with the
7202  * corresponding offset from m_start are mapped.
7203  */
7204 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7205 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7206     vm_page_t m_start, vm_prot_t prot)
7207 {
7208 	struct rwlock *lock;
7209 	vm_offset_t va;
7210 	vm_page_t m, mpte;
7211 	vm_pindex_t diff, psize;
7212 
7213 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7214 
7215 	psize = atop(end - start);
7216 	mpte = NULL;
7217 	m = m_start;
7218 	lock = NULL;
7219 	PMAP_LOCK(pmap);
7220 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7221 		va = start + ptoa(diff);
7222 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7223 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7224 		    pmap_allow_2m_x_page(pmap, (prot & VM_PROT_EXECUTE) != 0) &&
7225 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
7226 			m = &m[NBPDR / PAGE_SIZE - 1];
7227 		else
7228 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7229 			    mpte, &lock);
7230 		m = TAILQ_NEXT(m, listq);
7231 	}
7232 	if (lock != NULL)
7233 		rw_wunlock(lock);
7234 	PMAP_UNLOCK(pmap);
7235 }
7236 
7237 /*
7238  * this code makes some *MAJOR* assumptions:
7239  * 1. Current pmap & pmap exists.
7240  * 2. Not wired.
7241  * 3. Read access.
7242  * 4. No page table pages.
7243  * but is *MUCH* faster than pmap_enter...
7244  */
7245 
7246 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7247 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7248 {
7249 	struct rwlock *lock;
7250 
7251 	lock = NULL;
7252 	PMAP_LOCK(pmap);
7253 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7254 	if (lock != NULL)
7255 		rw_wunlock(lock);
7256 	PMAP_UNLOCK(pmap);
7257 }
7258 
7259 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7260 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7261     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7262 {
7263 	pt_entry_t newpte, *pte, PG_V;
7264 
7265 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
7266 	    (m->oflags & VPO_UNMANAGED) != 0,
7267 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7268 	PG_V = pmap_valid_bit(pmap);
7269 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7270 
7271 	/*
7272 	 * In the case that a page table page is not
7273 	 * resident, we are creating it here.
7274 	 */
7275 	if (va < VM_MAXUSER_ADDRESS) {
7276 		vm_pindex_t ptepindex;
7277 		pd_entry_t *ptepa;
7278 
7279 		/*
7280 		 * Calculate pagetable page index
7281 		 */
7282 		ptepindex = pmap_pde_pindex(va);
7283 		if (mpte && (mpte->pindex == ptepindex)) {
7284 			mpte->ref_count++;
7285 		} else {
7286 			/*
7287 			 * Get the page directory entry
7288 			 */
7289 			ptepa = pmap_pde(pmap, va);
7290 
7291 			/*
7292 			 * If the page table page is mapped, we just increment
7293 			 * the hold count, and activate it.  Otherwise, we
7294 			 * attempt to allocate a page table page.  If this
7295 			 * attempt fails, we don't retry.  Instead, we give up.
7296 			 */
7297 			if (ptepa && (*ptepa & PG_V) != 0) {
7298 				if (*ptepa & PG_PS)
7299 					return (NULL);
7300 				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
7301 				mpte->ref_count++;
7302 			} else {
7303 				/*
7304 				 * Pass NULL instead of the PV list lock
7305 				 * pointer, because we don't intend to sleep.
7306 				 */
7307 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7308 				    NULL, va);
7309 				if (mpte == NULL)
7310 					return (mpte);
7311 			}
7312 		}
7313 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7314 		pte = &pte[pmap_pte_index(va)];
7315 	} else {
7316 		mpte = NULL;
7317 		pte = vtopte(va);
7318 	}
7319 	if (*pte) {
7320 		if (mpte != NULL)
7321 			mpte->ref_count--;
7322 		return (NULL);
7323 	}
7324 
7325 	/*
7326 	 * Enter on the PV list if part of our managed memory.
7327 	 */
7328 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7329 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7330 		if (mpte != NULL)
7331 			pmap_abort_ptp(pmap, va, mpte);
7332 		return (NULL);
7333 	}
7334 
7335 	/*
7336 	 * Increment counters
7337 	 */
7338 	pmap_resident_count_inc(pmap, 1);
7339 
7340 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7341 	    pmap_cache_bits(pmap, m->md.pat_mode, 0);
7342 	if ((m->oflags & VPO_UNMANAGED) == 0)
7343 		newpte |= PG_MANAGED;
7344 	if ((prot & VM_PROT_EXECUTE) == 0)
7345 		newpte |= pg_nx;
7346 	if (va < VM_MAXUSER_ADDRESS)
7347 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7348 	pte_store(pte, newpte);
7349 	return (mpte);
7350 }
7351 
7352 /*
7353  * Make a temporary mapping for a physical address.  This is only intended
7354  * to be used for panic dumps.
7355  */
7356 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7357 pmap_kenter_temporary(vm_paddr_t pa, int i)
7358 {
7359 	vm_offset_t va;
7360 
7361 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7362 	pmap_kenter(va, pa);
7363 	invlpg(va);
7364 	return ((void *)crashdumpmap);
7365 }
7366 
7367 /*
7368  * This code maps large physical mmap regions into the
7369  * processor address space.  Note that some shortcuts
7370  * are taken, but the code works.
7371  */
7372 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7373 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7374     vm_pindex_t pindex, vm_size_t size)
7375 {
7376 	pd_entry_t *pde;
7377 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7378 	vm_paddr_t pa, ptepa;
7379 	vm_page_t p, pdpg;
7380 	int pat_mode;
7381 
7382 	PG_A = pmap_accessed_bit(pmap);
7383 	PG_M = pmap_modified_bit(pmap);
7384 	PG_V = pmap_valid_bit(pmap);
7385 	PG_RW = pmap_rw_bit(pmap);
7386 
7387 	VM_OBJECT_ASSERT_WLOCKED(object);
7388 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7389 	    ("pmap_object_init_pt: non-device object"));
7390 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7391 		if (!pmap_ps_enabled(pmap))
7392 			return;
7393 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7394 			return;
7395 		p = vm_page_lookup(object, pindex);
7396 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
7397 		    ("pmap_object_init_pt: invalid page %p", p));
7398 		pat_mode = p->md.pat_mode;
7399 
7400 		/*
7401 		 * Abort the mapping if the first page is not physically
7402 		 * aligned to a 2MB page boundary.
7403 		 */
7404 		ptepa = VM_PAGE_TO_PHYS(p);
7405 		if (ptepa & (NBPDR - 1))
7406 			return;
7407 
7408 		/*
7409 		 * Skip the first page.  Abort the mapping if the rest of
7410 		 * the pages are not physically contiguous or have differing
7411 		 * memory attributes.
7412 		 */
7413 		p = TAILQ_NEXT(p, listq);
7414 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7415 		    pa += PAGE_SIZE) {
7416 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
7417 			    ("pmap_object_init_pt: invalid page %p", p));
7418 			if (pa != VM_PAGE_TO_PHYS(p) ||
7419 			    pat_mode != p->md.pat_mode)
7420 				return;
7421 			p = TAILQ_NEXT(p, listq);
7422 		}
7423 
7424 		/*
7425 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7426 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7427 		 * will not affect the termination of this loop.
7428 		 */
7429 		PMAP_LOCK(pmap);
7430 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
7431 		    pa < ptepa + size; pa += NBPDR) {
7432 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7433 			if (pde == NULL) {
7434 				/*
7435 				 * The creation of mappings below is only an
7436 				 * optimization.  If a page directory page
7437 				 * cannot be allocated without blocking,
7438 				 * continue on to the next mapping rather than
7439 				 * blocking.
7440 				 */
7441 				addr += NBPDR;
7442 				continue;
7443 			}
7444 			if ((*pde & PG_V) == 0) {
7445 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7446 				    PG_U | PG_RW | PG_V);
7447 				pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
7448 				atomic_add_long(&pmap_pde_mappings, 1);
7449 			} else {
7450 				/* Continue on if the PDE is already valid. */
7451 				pdpg->ref_count--;
7452 				KASSERT(pdpg->ref_count > 0,
7453 				    ("pmap_object_init_pt: missing reference "
7454 				    "to page directory page, va: 0x%lx", addr));
7455 			}
7456 			addr += NBPDR;
7457 		}
7458 		PMAP_UNLOCK(pmap);
7459 	}
7460 }
7461 
7462 /*
7463  *	Clear the wired attribute from the mappings for the specified range of
7464  *	addresses in the given pmap.  Every valid mapping within that range
7465  *	must have the wired attribute set.  In contrast, invalid mappings
7466  *	cannot have the wired attribute set, so they are ignored.
7467  *
7468  *	The wired attribute of the page table entry is not a hardware
7469  *	feature, so there is no need to invalidate any TLB entries.
7470  *	Since pmap_demote_pde() for the wired entry must never fail,
7471  *	pmap_delayed_invl_start()/finish() calls around the
7472  *	function are not needed.
7473  */
7474 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7475 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7476 {
7477 	vm_offset_t va_next;
7478 	pml4_entry_t *pml4e;
7479 	pdp_entry_t *pdpe;
7480 	pd_entry_t *pde;
7481 	pt_entry_t *pte, PG_V, PG_G;
7482 
7483 	PG_V = pmap_valid_bit(pmap);
7484 	PG_G = pmap_global_bit(pmap);
7485 	PMAP_LOCK(pmap);
7486 	for (; sva < eva; sva = va_next) {
7487 		pml4e = pmap_pml4e(pmap, sva);
7488 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7489 			va_next = (sva + NBPML4) & ~PML4MASK;
7490 			if (va_next < sva)
7491 				va_next = eva;
7492 			continue;
7493 		}
7494 
7495 		va_next = (sva + NBPDP) & ~PDPMASK;
7496 		if (va_next < sva)
7497 			va_next = eva;
7498 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7499 		if ((*pdpe & PG_V) == 0)
7500 			continue;
7501 		if ((*pdpe & PG_PS) != 0) {
7502 			KASSERT(va_next <= eva,
7503 			    ("partial update of non-transparent 1G mapping "
7504 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7505 			    *pdpe, sva, eva, va_next));
7506 			MPASS(pmap != kernel_pmap); /* XXXKIB */
7507 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7508 			atomic_clear_long(pdpe, PG_W);
7509 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7510 			continue;
7511 		}
7512 
7513 		va_next = (sva + NBPDR) & ~PDRMASK;
7514 		if (va_next < sva)
7515 			va_next = eva;
7516 		pde = pmap_pdpe_to_pde(pdpe, sva);
7517 		if ((*pde & PG_V) == 0)
7518 			continue;
7519 		if ((*pde & PG_PS) != 0) {
7520 			if ((*pde & PG_W) == 0)
7521 				panic("pmap_unwire: pde %#jx is missing PG_W",
7522 				    (uintmax_t)*pde);
7523 
7524 			/*
7525 			 * Are we unwiring the entire large page?  If not,
7526 			 * demote the mapping and fall through.
7527 			 */
7528 			if (sva + NBPDR == va_next && eva >= va_next) {
7529 				atomic_clear_long(pde, PG_W);
7530 				pmap->pm_stats.wired_count -= NBPDR /
7531 				    PAGE_SIZE;
7532 				continue;
7533 			} else if (!pmap_demote_pde(pmap, pde, sva))
7534 				panic("pmap_unwire: demotion failed");
7535 		}
7536 		if (va_next > eva)
7537 			va_next = eva;
7538 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
7539 		    sva += PAGE_SIZE) {
7540 			if ((*pte & PG_V) == 0)
7541 				continue;
7542 			if ((*pte & PG_W) == 0)
7543 				panic("pmap_unwire: pte %#jx is missing PG_W",
7544 				    (uintmax_t)*pte);
7545 
7546 			/*
7547 			 * PG_W must be cleared atomically.  Although the pmap
7548 			 * lock synchronizes access to PG_W, another processor
7549 			 * could be setting PG_M and/or PG_A concurrently.
7550 			 */
7551 			atomic_clear_long(pte, PG_W);
7552 			pmap->pm_stats.wired_count--;
7553 		}
7554 	}
7555 	PMAP_UNLOCK(pmap);
7556 }
7557 
7558 /*
7559  *	Copy the range specified by src_addr/len
7560  *	from the source map to the range dst_addr/len
7561  *	in the destination map.
7562  *
7563  *	This routine is only advisory and need not do anything.
7564  */
7565 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)7566 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
7567     vm_offset_t src_addr)
7568 {
7569 	struct rwlock *lock;
7570 	pml4_entry_t *pml4e;
7571 	pdp_entry_t *pdpe;
7572 	pd_entry_t *pde, srcptepaddr;
7573 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
7574 	vm_offset_t addr, end_addr, va_next;
7575 	vm_page_t dst_pdpg, dstmpte, srcmpte;
7576 
7577 	if (dst_addr != src_addr)
7578 		return;
7579 
7580 	if (dst_pmap->pm_type != src_pmap->pm_type)
7581 		return;
7582 
7583 	/*
7584 	 * EPT page table entries that require emulation of A/D bits are
7585 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
7586 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
7587 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
7588 	 * implementations flag an EPT misconfiguration for exec-only
7589 	 * mappings we skip this function entirely for emulated pmaps.
7590 	 */
7591 	if (pmap_emulate_ad_bits(dst_pmap))
7592 		return;
7593 
7594 	end_addr = src_addr + len;
7595 	lock = NULL;
7596 	if (dst_pmap < src_pmap) {
7597 		PMAP_LOCK(dst_pmap);
7598 		PMAP_LOCK(src_pmap);
7599 	} else {
7600 		PMAP_LOCK(src_pmap);
7601 		PMAP_LOCK(dst_pmap);
7602 	}
7603 
7604 	PG_A = pmap_accessed_bit(dst_pmap);
7605 	PG_M = pmap_modified_bit(dst_pmap);
7606 	PG_V = pmap_valid_bit(dst_pmap);
7607 
7608 	for (addr = src_addr; addr < end_addr; addr = va_next) {
7609 		KASSERT(addr < UPT_MIN_ADDRESS,
7610 		    ("pmap_copy: invalid to pmap_copy page tables"));
7611 
7612 		pml4e = pmap_pml4e(src_pmap, addr);
7613 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7614 			va_next = (addr + NBPML4) & ~PML4MASK;
7615 			if (va_next < addr)
7616 				va_next = end_addr;
7617 			continue;
7618 		}
7619 
7620 		va_next = (addr + NBPDP) & ~PDPMASK;
7621 		if (va_next < addr)
7622 			va_next = end_addr;
7623 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
7624 		if ((*pdpe & PG_V) == 0)
7625 			continue;
7626 		if ((*pdpe & PG_PS) != 0) {
7627 			KASSERT(va_next <= end_addr,
7628 			    ("partial update of non-transparent 1G mapping "
7629 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7630 			    *pdpe, addr, end_addr, va_next));
7631 			MPASS((addr & PDPMASK) == 0);
7632 			MPASS((*pdpe & PG_MANAGED) == 0);
7633 			srcptepaddr = *pdpe;
7634 			pdpe = pmap_pdpe(dst_pmap, addr);
7635 			if (pdpe == NULL) {
7636 				if (pmap_allocpte_alloc(dst_pmap,
7637 				    pmap_pml4e_pindex(addr), NULL, addr) ==
7638 				    NULL)
7639 					break;
7640 				pdpe = pmap_pdpe(dst_pmap, addr);
7641 			} else {
7642 				pml4e = pmap_pml4e(dst_pmap, addr);
7643 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7644 				dst_pdpg->ref_count++;
7645 			}
7646 			KASSERT(*pdpe == 0,
7647 			    ("1G mapping present in dst pmap "
7648 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7649 			    *pdpe, addr, end_addr, va_next));
7650 			*pdpe = srcptepaddr & ~PG_W;
7651 			pmap_resident_count_inc(dst_pmap, NBPDP / PAGE_SIZE);
7652 			continue;
7653 		}
7654 
7655 		va_next = (addr + NBPDR) & ~PDRMASK;
7656 		if (va_next < addr)
7657 			va_next = end_addr;
7658 
7659 		pde = pmap_pdpe_to_pde(pdpe, addr);
7660 		srcptepaddr = *pde;
7661 		if (srcptepaddr == 0)
7662 			continue;
7663 
7664 		if (srcptepaddr & PG_PS) {
7665 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
7666 				continue;
7667 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
7668 			if (pde == NULL)
7669 				break;
7670 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
7671 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
7672 			    PMAP_ENTER_NORECLAIM, &lock))) {
7673 				*pde = srcptepaddr & ~PG_W;
7674 				pmap_resident_count_inc(dst_pmap, NBPDR /
7675 				    PAGE_SIZE);
7676 				atomic_add_long(&pmap_pde_mappings, 1);
7677 			} else
7678 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
7679 			continue;
7680 		}
7681 
7682 		srcptepaddr &= PG_FRAME;
7683 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
7684 		KASSERT(srcmpte->ref_count > 0,
7685 		    ("pmap_copy: source page table page is unused"));
7686 
7687 		if (va_next > end_addr)
7688 			va_next = end_addr;
7689 
7690 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
7691 		src_pte = &src_pte[pmap_pte_index(addr)];
7692 		dstmpte = NULL;
7693 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
7694 			ptetemp = *src_pte;
7695 
7696 			/*
7697 			 * We only virtual copy managed pages.
7698 			 */
7699 			if ((ptetemp & PG_MANAGED) == 0)
7700 				continue;
7701 
7702 			if (dstmpte != NULL) {
7703 				KASSERT(dstmpte->pindex ==
7704 				    pmap_pde_pindex(addr),
7705 				    ("dstmpte pindex/addr mismatch"));
7706 				dstmpte->ref_count++;
7707 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
7708 			    NULL)) == NULL)
7709 				goto out;
7710 			dst_pte = (pt_entry_t *)
7711 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
7712 			dst_pte = &dst_pte[pmap_pte_index(addr)];
7713 			if (*dst_pte == 0 &&
7714 			    pmap_try_insert_pv_entry(dst_pmap, addr,
7715 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
7716 				/*
7717 				 * Clear the wired, modified, and accessed
7718 				 * (referenced) bits during the copy.
7719 				 */
7720 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
7721 				pmap_resident_count_inc(dst_pmap, 1);
7722 			} else {
7723 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
7724 				goto out;
7725 			}
7726 			/* Have we copied all of the valid mappings? */
7727 			if (dstmpte->ref_count >= srcmpte->ref_count)
7728 				break;
7729 		}
7730 	}
7731 out:
7732 	if (lock != NULL)
7733 		rw_wunlock(lock);
7734 	PMAP_UNLOCK(src_pmap);
7735 	PMAP_UNLOCK(dst_pmap);
7736 }
7737 
7738 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)7739 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
7740 {
7741 	int error;
7742 
7743 	if (dst_pmap->pm_type != src_pmap->pm_type ||
7744 	    dst_pmap->pm_type != PT_X86 ||
7745 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
7746 		return (0);
7747 	for (;;) {
7748 		if (dst_pmap < src_pmap) {
7749 			PMAP_LOCK(dst_pmap);
7750 			PMAP_LOCK(src_pmap);
7751 		} else {
7752 			PMAP_LOCK(src_pmap);
7753 			PMAP_LOCK(dst_pmap);
7754 		}
7755 		error = pmap_pkru_copy(dst_pmap, src_pmap);
7756 		/* Clean up partial copy on failure due to no memory. */
7757 		if (error == ENOMEM)
7758 			pmap_pkru_deassign_all(dst_pmap);
7759 		PMAP_UNLOCK(src_pmap);
7760 		PMAP_UNLOCK(dst_pmap);
7761 		if (error != ENOMEM)
7762 			break;
7763 		vm_wait(NULL);
7764 	}
7765 	return (error);
7766 }
7767 
7768 /*
7769  * Zero the specified hardware page.
7770  */
7771 void
pmap_zero_page(vm_page_t m)7772 pmap_zero_page(vm_page_t m)
7773 {
7774 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
7775 
7776 	pagezero((void *)va);
7777 }
7778 
7779 /*
7780  * Zero an an area within a single hardware page.  off and size must not
7781  * cover an area beyond a single hardware page.
7782  */
7783 void
pmap_zero_page_area(vm_page_t m,int off,int size)7784 pmap_zero_page_area(vm_page_t m, int off, int size)
7785 {
7786 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
7787 
7788 	if (off == 0 && size == PAGE_SIZE)
7789 		pagezero((void *)va);
7790 	else
7791 		bzero((char *)va + off, size);
7792 }
7793 
7794 /*
7795  * Copy 1 specified hardware page to another.
7796  */
7797 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)7798 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
7799 {
7800 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
7801 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
7802 
7803 	pagecopy((void *)src, (void *)dst);
7804 }
7805 
7806 int unmapped_buf_allowed = 1;
7807 
7808 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)7809 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
7810     vm_offset_t b_offset, int xfersize)
7811 {
7812 	void *a_cp, *b_cp;
7813 	vm_page_t pages[2];
7814 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
7815 	int cnt;
7816 	boolean_t mapped;
7817 
7818 	while (xfersize > 0) {
7819 		a_pg_offset = a_offset & PAGE_MASK;
7820 		pages[0] = ma[a_offset >> PAGE_SHIFT];
7821 		b_pg_offset = b_offset & PAGE_MASK;
7822 		pages[1] = mb[b_offset >> PAGE_SHIFT];
7823 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
7824 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
7825 		mapped = pmap_map_io_transient(pages, vaddr, 2, FALSE);
7826 		a_cp = (char *)vaddr[0] + a_pg_offset;
7827 		b_cp = (char *)vaddr[1] + b_pg_offset;
7828 		bcopy(a_cp, b_cp, cnt);
7829 		if (__predict_false(mapped))
7830 			pmap_unmap_io_transient(pages, vaddr, 2, FALSE);
7831 		a_offset += cnt;
7832 		b_offset += cnt;
7833 		xfersize -= cnt;
7834 	}
7835 }
7836 
7837 /*
7838  * Returns true if the pmap's pv is one of the first
7839  * 16 pvs linked to from this page.  This count may
7840  * be changed upwards or downwards in the future; it
7841  * is only necessary that true be returned for a small
7842  * subset of pmaps for proper page aging.
7843  */
7844 boolean_t
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)7845 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
7846 {
7847 	struct md_page *pvh;
7848 	struct rwlock *lock;
7849 	pv_entry_t pv;
7850 	int loops = 0;
7851 	boolean_t rv;
7852 
7853 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7854 	    ("pmap_page_exists_quick: page %p is not managed", m));
7855 	rv = FALSE;
7856 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7857 	rw_rlock(lock);
7858 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7859 		if (PV_PMAP(pv) == pmap) {
7860 			rv = TRUE;
7861 			break;
7862 		}
7863 		loops++;
7864 		if (loops >= 16)
7865 			break;
7866 	}
7867 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
7868 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
7869 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
7870 			if (PV_PMAP(pv) == pmap) {
7871 				rv = TRUE;
7872 				break;
7873 			}
7874 			loops++;
7875 			if (loops >= 16)
7876 				break;
7877 		}
7878 	}
7879 	rw_runlock(lock);
7880 	return (rv);
7881 }
7882 
7883 /*
7884  *	pmap_page_wired_mappings:
7885  *
7886  *	Return the number of managed mappings to the given physical page
7887  *	that are wired.
7888  */
7889 int
pmap_page_wired_mappings(vm_page_t m)7890 pmap_page_wired_mappings(vm_page_t m)
7891 {
7892 	struct rwlock *lock;
7893 	struct md_page *pvh;
7894 	pmap_t pmap;
7895 	pt_entry_t *pte;
7896 	pv_entry_t pv;
7897 	int count, md_gen, pvh_gen;
7898 
7899 	if ((m->oflags & VPO_UNMANAGED) != 0)
7900 		return (0);
7901 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7902 	rw_rlock(lock);
7903 restart:
7904 	count = 0;
7905 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7906 		pmap = PV_PMAP(pv);
7907 		if (!PMAP_TRYLOCK(pmap)) {
7908 			md_gen = m->md.pv_gen;
7909 			rw_runlock(lock);
7910 			PMAP_LOCK(pmap);
7911 			rw_rlock(lock);
7912 			if (md_gen != m->md.pv_gen) {
7913 				PMAP_UNLOCK(pmap);
7914 				goto restart;
7915 			}
7916 		}
7917 		pte = pmap_pte(pmap, pv->pv_va);
7918 		if ((*pte & PG_W) != 0)
7919 			count++;
7920 		PMAP_UNLOCK(pmap);
7921 	}
7922 	if ((m->flags & PG_FICTITIOUS) == 0) {
7923 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
7924 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
7925 			pmap = PV_PMAP(pv);
7926 			if (!PMAP_TRYLOCK(pmap)) {
7927 				md_gen = m->md.pv_gen;
7928 				pvh_gen = pvh->pv_gen;
7929 				rw_runlock(lock);
7930 				PMAP_LOCK(pmap);
7931 				rw_rlock(lock);
7932 				if (md_gen != m->md.pv_gen ||
7933 				    pvh_gen != pvh->pv_gen) {
7934 					PMAP_UNLOCK(pmap);
7935 					goto restart;
7936 				}
7937 			}
7938 			pte = pmap_pde(pmap, pv->pv_va);
7939 			if ((*pte & PG_W) != 0)
7940 				count++;
7941 			PMAP_UNLOCK(pmap);
7942 		}
7943 	}
7944 	rw_runlock(lock);
7945 	return (count);
7946 }
7947 
7948 /*
7949  * Returns TRUE if the given page is mapped individually or as part of
7950  * a 2mpage.  Otherwise, returns FALSE.
7951  */
7952 boolean_t
pmap_page_is_mapped(vm_page_t m)7953 pmap_page_is_mapped(vm_page_t m)
7954 {
7955 	struct rwlock *lock;
7956 	boolean_t rv;
7957 
7958 	if ((m->oflags & VPO_UNMANAGED) != 0)
7959 		return (FALSE);
7960 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7961 	rw_rlock(lock);
7962 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
7963 	    ((m->flags & PG_FICTITIOUS) == 0 &&
7964 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
7965 	rw_runlock(lock);
7966 	return (rv);
7967 }
7968 
7969 /*
7970  * Destroy all managed, non-wired mappings in the given user-space
7971  * pmap.  This pmap cannot be active on any processor besides the
7972  * caller.
7973  *
7974  * This function cannot be applied to the kernel pmap.  Moreover, it
7975  * is not intended for general use.  It is only to be used during
7976  * process termination.  Consequently, it can be implemented in ways
7977  * that make it faster than pmap_remove().  First, it can more quickly
7978  * destroy mappings by iterating over the pmap's collection of PV
7979  * entries, rather than searching the page table.  Second, it doesn't
7980  * have to test and clear the page table entries atomically, because
7981  * no processor is currently accessing the user address space.  In
7982  * particular, a page table entry's dirty bit won't change state once
7983  * this function starts.
7984  *
7985  * Although this function destroys all of the pmap's managed,
7986  * non-wired mappings, it can delay and batch the invalidation of TLB
7987  * entries without calling pmap_delayed_invl_start() and
7988  * pmap_delayed_invl_finish().  Because the pmap is not active on
7989  * any other processor, none of these TLB entries will ever be used
7990  * before their eventual invalidation.  Consequently, there is no need
7991  * for either pmap_remove_all() or pmap_remove_write() to wait for
7992  * that eventual TLB invalidation.
7993  */
7994 void
pmap_remove_pages(pmap_t pmap)7995 pmap_remove_pages(pmap_t pmap)
7996 {
7997 	pd_entry_t ptepde;
7998 	pt_entry_t *pte, tpte;
7999 	pt_entry_t PG_M, PG_RW, PG_V;
8000 	struct spglist free;
8001 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8002 	vm_page_t m, mpte, mt;
8003 	pv_entry_t pv;
8004 	struct md_page *pvh;
8005 	struct pv_chunk *pc, *npc;
8006 	struct rwlock *lock;
8007 	int64_t bit;
8008 	uint64_t inuse, bitmask;
8009 	int allfree, field, freed, i, idx;
8010 	boolean_t superpage;
8011 	vm_paddr_t pa;
8012 
8013 	/*
8014 	 * Assert that the given pmap is only active on the current
8015 	 * CPU.  Unfortunately, we cannot block another CPU from
8016 	 * activating the pmap while this function is executing.
8017 	 */
8018 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8019 #ifdef INVARIANTS
8020 	{
8021 		cpuset_t other_cpus;
8022 
8023 		other_cpus = all_cpus;
8024 		critical_enter();
8025 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8026 		CPU_AND(&other_cpus, &pmap->pm_active);
8027 		critical_exit();
8028 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8029 	}
8030 #endif
8031 
8032 	lock = NULL;
8033 	PG_M = pmap_modified_bit(pmap);
8034 	PG_V = pmap_valid_bit(pmap);
8035 	PG_RW = pmap_rw_bit(pmap);
8036 
8037 	for (i = 0; i < PMAP_MEMDOM; i++)
8038 		TAILQ_INIT(&free_chunks[i]);
8039 	SLIST_INIT(&free);
8040 	PMAP_LOCK(pmap);
8041 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8042 		allfree = 1;
8043 		freed = 0;
8044 		for (field = 0; field < _NPCM; field++) {
8045 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8046 			while (inuse != 0) {
8047 				bit = bsfq(inuse);
8048 				bitmask = 1UL << bit;
8049 				idx = field * 64 + bit;
8050 				pv = &pc->pc_pventry[idx];
8051 				inuse &= ~bitmask;
8052 
8053 				pte = pmap_pdpe(pmap, pv->pv_va);
8054 				ptepde = *pte;
8055 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8056 				tpte = *pte;
8057 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8058 					superpage = FALSE;
8059 					ptepde = tpte;
8060 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8061 					    PG_FRAME);
8062 					pte = &pte[pmap_pte_index(pv->pv_va)];
8063 					tpte = *pte;
8064 				} else {
8065 					/*
8066 					 * Keep track whether 'tpte' is a
8067 					 * superpage explicitly instead of
8068 					 * relying on PG_PS being set.
8069 					 *
8070 					 * This is because PG_PS is numerically
8071 					 * identical to PG_PTE_PAT and thus a
8072 					 * regular page could be mistaken for
8073 					 * a superpage.
8074 					 */
8075 					superpage = TRUE;
8076 				}
8077 
8078 				if ((tpte & PG_V) == 0) {
8079 					panic("bad pte va %lx pte %lx",
8080 					    pv->pv_va, tpte);
8081 				}
8082 
8083 /*
8084  * We cannot remove wired pages from a process' mapping at this time
8085  */
8086 				if (tpte & PG_W) {
8087 					allfree = 0;
8088 					continue;
8089 				}
8090 
8091 				if (superpage)
8092 					pa = tpte & PG_PS_FRAME;
8093 				else
8094 					pa = tpte & PG_FRAME;
8095 
8096 				m = PHYS_TO_VM_PAGE(pa);
8097 				KASSERT(m->phys_addr == pa,
8098 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8099 				    m, (uintmax_t)m->phys_addr,
8100 				    (uintmax_t)tpte));
8101 
8102 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8103 				    m < &vm_page_array[vm_page_array_size],
8104 				    ("pmap_remove_pages: bad tpte %#jx",
8105 				    (uintmax_t)tpte));
8106 
8107 				pte_clear(pte);
8108 
8109 				/*
8110 				 * Update the vm_page_t clean/reference bits.
8111 				 */
8112 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8113 					if (superpage) {
8114 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8115 							vm_page_dirty(mt);
8116 					} else
8117 						vm_page_dirty(m);
8118 				}
8119 
8120 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8121 
8122 				/* Mark free */
8123 				pc->pc_map[field] |= bitmask;
8124 				if (superpage) {
8125 					pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
8126 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8127 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8128 					pvh->pv_gen++;
8129 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8130 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8131 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8132 							    TAILQ_EMPTY(&mt->md.pv_list))
8133 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8134 					}
8135 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8136 					if (mpte != NULL) {
8137 						KASSERT(mpte->valid == VM_PAGE_BITS_ALL,
8138 						    ("pmap_remove_pages: pte page not promoted"));
8139 						pmap_resident_count_dec(pmap, 1);
8140 						KASSERT(mpte->ref_count == NPTEPG,
8141 						    ("pmap_remove_pages: pte page reference count error"));
8142 						mpte->ref_count = 0;
8143 						pmap_add_delayed_free_list(mpte, &free, FALSE);
8144 					}
8145 				} else {
8146 					pmap_resident_count_dec(pmap, 1);
8147 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8148 					m->md.pv_gen++;
8149 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8150 					    TAILQ_EMPTY(&m->md.pv_list) &&
8151 					    (m->flags & PG_FICTITIOUS) == 0) {
8152 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8153 						if (TAILQ_EMPTY(&pvh->pv_list))
8154 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8155 					}
8156 				}
8157 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8158 				freed++;
8159 			}
8160 		}
8161 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
8162 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
8163 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
8164 		if (allfree) {
8165 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8166 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8167 		}
8168 	}
8169 	if (lock != NULL)
8170 		rw_wunlock(lock);
8171 	pmap_invalidate_all(pmap);
8172 	pmap_pkru_deassign_all(pmap);
8173 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8174 	PMAP_UNLOCK(pmap);
8175 	vm_page_free_pages_toq(&free, true);
8176 }
8177 
8178 static boolean_t
pmap_page_test_mappings(vm_page_t m,boolean_t accessed,boolean_t modified)8179 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
8180 {
8181 	struct rwlock *lock;
8182 	pv_entry_t pv;
8183 	struct md_page *pvh;
8184 	pt_entry_t *pte, mask;
8185 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8186 	pmap_t pmap;
8187 	int md_gen, pvh_gen;
8188 	boolean_t rv;
8189 
8190 	rv = FALSE;
8191 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8192 	rw_rlock(lock);
8193 restart:
8194 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8195 		pmap = PV_PMAP(pv);
8196 		if (!PMAP_TRYLOCK(pmap)) {
8197 			md_gen = m->md.pv_gen;
8198 			rw_runlock(lock);
8199 			PMAP_LOCK(pmap);
8200 			rw_rlock(lock);
8201 			if (md_gen != m->md.pv_gen) {
8202 				PMAP_UNLOCK(pmap);
8203 				goto restart;
8204 			}
8205 		}
8206 		pte = pmap_pte(pmap, pv->pv_va);
8207 		mask = 0;
8208 		if (modified) {
8209 			PG_M = pmap_modified_bit(pmap);
8210 			PG_RW = pmap_rw_bit(pmap);
8211 			mask |= PG_RW | PG_M;
8212 		}
8213 		if (accessed) {
8214 			PG_A = pmap_accessed_bit(pmap);
8215 			PG_V = pmap_valid_bit(pmap);
8216 			mask |= PG_V | PG_A;
8217 		}
8218 		rv = (*pte & mask) == mask;
8219 		PMAP_UNLOCK(pmap);
8220 		if (rv)
8221 			goto out;
8222 	}
8223 	if ((m->flags & PG_FICTITIOUS) == 0) {
8224 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8225 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8226 			pmap = PV_PMAP(pv);
8227 			if (!PMAP_TRYLOCK(pmap)) {
8228 				md_gen = m->md.pv_gen;
8229 				pvh_gen = pvh->pv_gen;
8230 				rw_runlock(lock);
8231 				PMAP_LOCK(pmap);
8232 				rw_rlock(lock);
8233 				if (md_gen != m->md.pv_gen ||
8234 				    pvh_gen != pvh->pv_gen) {
8235 					PMAP_UNLOCK(pmap);
8236 					goto restart;
8237 				}
8238 			}
8239 			pte = pmap_pde(pmap, pv->pv_va);
8240 			mask = 0;
8241 			if (modified) {
8242 				PG_M = pmap_modified_bit(pmap);
8243 				PG_RW = pmap_rw_bit(pmap);
8244 				mask |= PG_RW | PG_M;
8245 			}
8246 			if (accessed) {
8247 				PG_A = pmap_accessed_bit(pmap);
8248 				PG_V = pmap_valid_bit(pmap);
8249 				mask |= PG_V | PG_A;
8250 			}
8251 			rv = (*pte & mask) == mask;
8252 			PMAP_UNLOCK(pmap);
8253 			if (rv)
8254 				goto out;
8255 		}
8256 	}
8257 out:
8258 	rw_runlock(lock);
8259 	return (rv);
8260 }
8261 
8262 /*
8263  *	pmap_is_modified:
8264  *
8265  *	Return whether or not the specified physical page was modified
8266  *	in any physical maps.
8267  */
8268 boolean_t
pmap_is_modified(vm_page_t m)8269 pmap_is_modified(vm_page_t m)
8270 {
8271 
8272 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8273 	    ("pmap_is_modified: page %p is not managed", m));
8274 
8275 	/*
8276 	 * If the page is not busied then this check is racy.
8277 	 */
8278 	if (!pmap_page_is_write_mapped(m))
8279 		return (FALSE);
8280 	return (pmap_page_test_mappings(m, FALSE, TRUE));
8281 }
8282 
8283 /*
8284  *	pmap_is_prefaultable:
8285  *
8286  *	Return whether or not the specified virtual address is eligible
8287  *	for prefault.
8288  */
8289 boolean_t
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8290 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8291 {
8292 	pd_entry_t *pde;
8293 	pt_entry_t *pte, PG_V;
8294 	boolean_t rv;
8295 
8296 	PG_V = pmap_valid_bit(pmap);
8297 	rv = FALSE;
8298 	PMAP_LOCK(pmap);
8299 	pde = pmap_pde(pmap, addr);
8300 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8301 		pte = pmap_pde_to_pte(pde, addr);
8302 		rv = (*pte & PG_V) == 0;
8303 	}
8304 	PMAP_UNLOCK(pmap);
8305 	return (rv);
8306 }
8307 
8308 /*
8309  *	pmap_is_referenced:
8310  *
8311  *	Return whether or not the specified physical page was referenced
8312  *	in any physical maps.
8313  */
8314 boolean_t
pmap_is_referenced(vm_page_t m)8315 pmap_is_referenced(vm_page_t m)
8316 {
8317 
8318 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8319 	    ("pmap_is_referenced: page %p is not managed", m));
8320 	return (pmap_page_test_mappings(m, TRUE, FALSE));
8321 }
8322 
8323 /*
8324  * Clear the write and modified bits in each of the given page's mappings.
8325  */
8326 void
pmap_remove_write(vm_page_t m)8327 pmap_remove_write(vm_page_t m)
8328 {
8329 	struct md_page *pvh;
8330 	pmap_t pmap;
8331 	struct rwlock *lock;
8332 	pv_entry_t next_pv, pv;
8333 	pd_entry_t *pde;
8334 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8335 	vm_offset_t va;
8336 	int pvh_gen, md_gen;
8337 
8338 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8339 	    ("pmap_remove_write: page %p is not managed", m));
8340 
8341 	vm_page_assert_busied(m);
8342 	if (!pmap_page_is_write_mapped(m))
8343 		return;
8344 
8345 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8346 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8347 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8348 retry_pv_loop:
8349 	rw_wlock(lock);
8350 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8351 		pmap = PV_PMAP(pv);
8352 		if (!PMAP_TRYLOCK(pmap)) {
8353 			pvh_gen = pvh->pv_gen;
8354 			rw_wunlock(lock);
8355 			PMAP_LOCK(pmap);
8356 			rw_wlock(lock);
8357 			if (pvh_gen != pvh->pv_gen) {
8358 				PMAP_UNLOCK(pmap);
8359 				rw_wunlock(lock);
8360 				goto retry_pv_loop;
8361 			}
8362 		}
8363 		PG_RW = pmap_rw_bit(pmap);
8364 		va = pv->pv_va;
8365 		pde = pmap_pde(pmap, va);
8366 		if ((*pde & PG_RW) != 0)
8367 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8368 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8369 		    ("inconsistent pv lock %p %p for page %p",
8370 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8371 		PMAP_UNLOCK(pmap);
8372 	}
8373 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8374 		pmap = PV_PMAP(pv);
8375 		if (!PMAP_TRYLOCK(pmap)) {
8376 			pvh_gen = pvh->pv_gen;
8377 			md_gen = m->md.pv_gen;
8378 			rw_wunlock(lock);
8379 			PMAP_LOCK(pmap);
8380 			rw_wlock(lock);
8381 			if (pvh_gen != pvh->pv_gen ||
8382 			    md_gen != m->md.pv_gen) {
8383 				PMAP_UNLOCK(pmap);
8384 				rw_wunlock(lock);
8385 				goto retry_pv_loop;
8386 			}
8387 		}
8388 		PG_M = pmap_modified_bit(pmap);
8389 		PG_RW = pmap_rw_bit(pmap);
8390 		pde = pmap_pde(pmap, pv->pv_va);
8391 		KASSERT((*pde & PG_PS) == 0,
8392 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8393 		    m));
8394 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8395 retry:
8396 		oldpte = *pte;
8397 		if (oldpte & PG_RW) {
8398 			if (!atomic_cmpset_long(pte, oldpte, oldpte &
8399 			    ~(PG_RW | PG_M)))
8400 				goto retry;
8401 			if ((oldpte & PG_M) != 0)
8402 				vm_page_dirty(m);
8403 			pmap_invalidate_page(pmap, pv->pv_va);
8404 		}
8405 		PMAP_UNLOCK(pmap);
8406 	}
8407 	rw_wunlock(lock);
8408 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8409 	pmap_delayed_invl_wait(m);
8410 }
8411 
8412 static __inline boolean_t
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)8413 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
8414 {
8415 
8416 	if (!pmap_emulate_ad_bits(pmap))
8417 		return (TRUE);
8418 
8419 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
8420 
8421 	/*
8422 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
8423 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
8424 	 * if the EPT_PG_WRITE bit is set.
8425 	 */
8426 	if ((pte & EPT_PG_WRITE) != 0)
8427 		return (FALSE);
8428 
8429 	/*
8430 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
8431 	 */
8432 	if ((pte & EPT_PG_EXECUTE) == 0 ||
8433 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
8434 		return (TRUE);
8435 	else
8436 		return (FALSE);
8437 }
8438 
8439 /*
8440  *	pmap_ts_referenced:
8441  *
8442  *	Return a count of reference bits for a page, clearing those bits.
8443  *	It is not necessary for every reference bit to be cleared, but it
8444  *	is necessary that 0 only be returned when there are truly no
8445  *	reference bits set.
8446  *
8447  *	As an optimization, update the page's dirty field if a modified bit is
8448  *	found while counting reference bits.  This opportunistic update can be
8449  *	performed at low cost and can eliminate the need for some future calls
8450  *	to pmap_is_modified().  However, since this function stops after
8451  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8452  *	dirty pages.  Those dirty pages will only be detected by a future call
8453  *	to pmap_is_modified().
8454  *
8455  *	A DI block is not needed within this function, because
8456  *	invalidations are performed before the PV list lock is
8457  *	released.
8458  */
8459 int
pmap_ts_referenced(vm_page_t m)8460 pmap_ts_referenced(vm_page_t m)
8461 {
8462 	struct md_page *pvh;
8463 	pv_entry_t pv, pvf;
8464 	pmap_t pmap;
8465 	struct rwlock *lock;
8466 	pd_entry_t oldpde, *pde;
8467 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8468 	vm_offset_t va;
8469 	vm_paddr_t pa;
8470 	int cleared, md_gen, not_cleared, pvh_gen;
8471 	struct spglist free;
8472 	boolean_t demoted;
8473 
8474 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8475 	    ("pmap_ts_referenced: page %p is not managed", m));
8476 	SLIST_INIT(&free);
8477 	cleared = 0;
8478 	pa = VM_PAGE_TO_PHYS(m);
8479 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8480 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8481 	rw_wlock(lock);
8482 retry:
8483 	not_cleared = 0;
8484 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8485 		goto small_mappings;
8486 	pv = pvf;
8487 	do {
8488 		if (pvf == NULL)
8489 			pvf = pv;
8490 		pmap = PV_PMAP(pv);
8491 		if (!PMAP_TRYLOCK(pmap)) {
8492 			pvh_gen = pvh->pv_gen;
8493 			rw_wunlock(lock);
8494 			PMAP_LOCK(pmap);
8495 			rw_wlock(lock);
8496 			if (pvh_gen != pvh->pv_gen) {
8497 				PMAP_UNLOCK(pmap);
8498 				goto retry;
8499 			}
8500 		}
8501 		PG_A = pmap_accessed_bit(pmap);
8502 		PG_M = pmap_modified_bit(pmap);
8503 		PG_RW = pmap_rw_bit(pmap);
8504 		va = pv->pv_va;
8505 		pde = pmap_pde(pmap, pv->pv_va);
8506 		oldpde = *pde;
8507 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8508 			/*
8509 			 * Although "oldpde" is mapping a 2MB page, because
8510 			 * this function is called at a 4KB page granularity,
8511 			 * we only update the 4KB page under test.
8512 			 */
8513 			vm_page_dirty(m);
8514 		}
8515 		if ((oldpde & PG_A) != 0) {
8516 			/*
8517 			 * Since this reference bit is shared by 512 4KB
8518 			 * pages, it should not be cleared every time it is
8519 			 * tested.  Apply a simple "hash" function on the
8520 			 * physical page number, the virtual superpage number,
8521 			 * and the pmap address to select one 4KB page out of
8522 			 * the 512 on which testing the reference bit will
8523 			 * result in clearing that reference bit.  This
8524 			 * function is designed to avoid the selection of the
8525 			 * same 4KB page for every 2MB page mapping.
8526 			 *
8527 			 * On demotion, a mapping that hasn't been referenced
8528 			 * is simply destroyed.  To avoid the possibility of a
8529 			 * subsequent page fault on a demoted wired mapping,
8530 			 * always leave its reference bit set.  Moreover,
8531 			 * since the superpage is wired, the current state of
8532 			 * its reference bit won't affect page replacement.
8533 			 */
8534 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
8535 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
8536 			    (oldpde & PG_W) == 0) {
8537 				if (safe_to_clear_referenced(pmap, oldpde)) {
8538 					atomic_clear_long(pde, PG_A);
8539 					pmap_invalidate_page(pmap, pv->pv_va);
8540 					demoted = FALSE;
8541 				} else if (pmap_demote_pde_locked(pmap, pde,
8542 				    pv->pv_va, &lock)) {
8543 					/*
8544 					 * Remove the mapping to a single page
8545 					 * so that a subsequent access may
8546 					 * repromote.  Since the underlying
8547 					 * page table page is fully populated,
8548 					 * this removal never frees a page
8549 					 * table page.
8550 					 */
8551 					demoted = TRUE;
8552 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
8553 					    PG_PS_FRAME);
8554 					pte = pmap_pde_to_pte(pde, va);
8555 					pmap_remove_pte(pmap, pte, va, *pde,
8556 					    NULL, &lock);
8557 					pmap_invalidate_page(pmap, va);
8558 				} else
8559 					demoted = TRUE;
8560 
8561 				if (demoted) {
8562 					/*
8563 					 * The superpage mapping was removed
8564 					 * entirely and therefore 'pv' is no
8565 					 * longer valid.
8566 					 */
8567 					if (pvf == pv)
8568 						pvf = NULL;
8569 					pv = NULL;
8570 				}
8571 				cleared++;
8572 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8573 				    ("inconsistent pv lock %p %p for page %p",
8574 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8575 			} else
8576 				not_cleared++;
8577 		}
8578 		PMAP_UNLOCK(pmap);
8579 		/* Rotate the PV list if it has more than one entry. */
8580 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
8581 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8582 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
8583 			pvh->pv_gen++;
8584 		}
8585 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
8586 			goto out;
8587 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
8588 small_mappings:
8589 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
8590 		goto out;
8591 	pv = pvf;
8592 	do {
8593 		if (pvf == NULL)
8594 			pvf = pv;
8595 		pmap = PV_PMAP(pv);
8596 		if (!PMAP_TRYLOCK(pmap)) {
8597 			pvh_gen = pvh->pv_gen;
8598 			md_gen = m->md.pv_gen;
8599 			rw_wunlock(lock);
8600 			PMAP_LOCK(pmap);
8601 			rw_wlock(lock);
8602 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
8603 				PMAP_UNLOCK(pmap);
8604 				goto retry;
8605 			}
8606 		}
8607 		PG_A = pmap_accessed_bit(pmap);
8608 		PG_M = pmap_modified_bit(pmap);
8609 		PG_RW = pmap_rw_bit(pmap);
8610 		pde = pmap_pde(pmap, pv->pv_va);
8611 		KASSERT((*pde & PG_PS) == 0,
8612 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
8613 		    m));
8614 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8615 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
8616 			vm_page_dirty(m);
8617 		if ((*pte & PG_A) != 0) {
8618 			if (safe_to_clear_referenced(pmap, *pte)) {
8619 				atomic_clear_long(pte, PG_A);
8620 				pmap_invalidate_page(pmap, pv->pv_va);
8621 				cleared++;
8622 			} else if ((*pte & PG_W) == 0) {
8623 				/*
8624 				 * Wired pages cannot be paged out so
8625 				 * doing accessed bit emulation for
8626 				 * them is wasted effort. We do the
8627 				 * hard work for unwired pages only.
8628 				 */
8629 				pmap_remove_pte(pmap, pte, pv->pv_va,
8630 				    *pde, &free, &lock);
8631 				pmap_invalidate_page(pmap, pv->pv_va);
8632 				cleared++;
8633 				if (pvf == pv)
8634 					pvf = NULL;
8635 				pv = NULL;
8636 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8637 				    ("inconsistent pv lock %p %p for page %p",
8638 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8639 			} else
8640 				not_cleared++;
8641 		}
8642 		PMAP_UNLOCK(pmap);
8643 		/* Rotate the PV list if it has more than one entry. */
8644 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
8645 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8646 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
8647 			m->md.pv_gen++;
8648 		}
8649 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
8650 	    not_cleared < PMAP_TS_REFERENCED_MAX);
8651 out:
8652 	rw_wunlock(lock);
8653 	vm_page_free_pages_toq(&free, true);
8654 	return (cleared + not_cleared);
8655 }
8656 
8657 /*
8658  *	Apply the given advice to the specified range of addresses within the
8659  *	given pmap.  Depending on the advice, clear the referenced and/or
8660  *	modified flags in each mapping and set the mapped page's dirty field.
8661  */
8662 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)8663 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
8664 {
8665 	struct rwlock *lock;
8666 	pml4_entry_t *pml4e;
8667 	pdp_entry_t *pdpe;
8668 	pd_entry_t oldpde, *pde;
8669 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
8670 	vm_offset_t va, va_next;
8671 	vm_page_t m;
8672 	bool anychanged;
8673 
8674 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
8675 		return;
8676 
8677 	/*
8678 	 * A/D bit emulation requires an alternate code path when clearing
8679 	 * the modified and accessed bits below. Since this function is
8680 	 * advisory in nature we skip it entirely for pmaps that require
8681 	 * A/D bit emulation.
8682 	 */
8683 	if (pmap_emulate_ad_bits(pmap))
8684 		return;
8685 
8686 	PG_A = pmap_accessed_bit(pmap);
8687 	PG_G = pmap_global_bit(pmap);
8688 	PG_M = pmap_modified_bit(pmap);
8689 	PG_V = pmap_valid_bit(pmap);
8690 	PG_RW = pmap_rw_bit(pmap);
8691 	anychanged = false;
8692 	pmap_delayed_invl_start();
8693 	PMAP_LOCK(pmap);
8694 	for (; sva < eva; sva = va_next) {
8695 		pml4e = pmap_pml4e(pmap, sva);
8696 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8697 			va_next = (sva + NBPML4) & ~PML4MASK;
8698 			if (va_next < sva)
8699 				va_next = eva;
8700 			continue;
8701 		}
8702 
8703 		va_next = (sva + NBPDP) & ~PDPMASK;
8704 		if (va_next < sva)
8705 			va_next = eva;
8706 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
8707 		if ((*pdpe & PG_V) == 0)
8708 			continue;
8709 		if ((*pdpe & PG_PS) != 0) {
8710 			KASSERT(va_next <= eva,
8711 			    ("partial update of non-transparent 1G mapping "
8712 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8713 			    *pdpe, sva, eva, va_next));
8714 			continue;
8715 		}
8716 
8717 		va_next = (sva + NBPDR) & ~PDRMASK;
8718 		if (va_next < sva)
8719 			va_next = eva;
8720 		pde = pmap_pdpe_to_pde(pdpe, sva);
8721 		oldpde = *pde;
8722 		if ((oldpde & PG_V) == 0)
8723 			continue;
8724 		else if ((oldpde & PG_PS) != 0) {
8725 			if ((oldpde & PG_MANAGED) == 0)
8726 				continue;
8727 			lock = NULL;
8728 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
8729 				if (lock != NULL)
8730 					rw_wunlock(lock);
8731 
8732 				/*
8733 				 * The large page mapping was destroyed.
8734 				 */
8735 				continue;
8736 			}
8737 
8738 			/*
8739 			 * Unless the page mappings are wired, remove the
8740 			 * mapping to a single page so that a subsequent
8741 			 * access may repromote.  Choosing the last page
8742 			 * within the address range [sva, min(va_next, eva))
8743 			 * generally results in more repromotions.  Since the
8744 			 * underlying page table page is fully populated, this
8745 			 * removal never frees a page table page.
8746 			 */
8747 			if ((oldpde & PG_W) == 0) {
8748 				va = eva;
8749 				if (va > va_next)
8750 					va = va_next;
8751 				va -= PAGE_SIZE;
8752 				KASSERT(va >= sva,
8753 				    ("pmap_advise: no address gap"));
8754 				pte = pmap_pde_to_pte(pde, va);
8755 				KASSERT((*pte & PG_V) != 0,
8756 				    ("pmap_advise: invalid PTE"));
8757 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
8758 				    &lock);
8759 				anychanged = true;
8760 			}
8761 			if (lock != NULL)
8762 				rw_wunlock(lock);
8763 		}
8764 		if (va_next > eva)
8765 			va_next = eva;
8766 		va = va_next;
8767 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8768 		    sva += PAGE_SIZE) {
8769 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
8770 				goto maybe_invlrng;
8771 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8772 				if (advice == MADV_DONTNEED) {
8773 					/*
8774 					 * Future calls to pmap_is_modified()
8775 					 * can be avoided by making the page
8776 					 * dirty now.
8777 					 */
8778 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
8779 					vm_page_dirty(m);
8780 				}
8781 				atomic_clear_long(pte, PG_M | PG_A);
8782 			} else if ((*pte & PG_A) != 0)
8783 				atomic_clear_long(pte, PG_A);
8784 			else
8785 				goto maybe_invlrng;
8786 
8787 			if ((*pte & PG_G) != 0) {
8788 				if (va == va_next)
8789 					va = sva;
8790 			} else
8791 				anychanged = true;
8792 			continue;
8793 maybe_invlrng:
8794 			if (va != va_next) {
8795 				pmap_invalidate_range(pmap, va, sva);
8796 				va = va_next;
8797 			}
8798 		}
8799 		if (va != va_next)
8800 			pmap_invalidate_range(pmap, va, sva);
8801 	}
8802 	if (anychanged)
8803 		pmap_invalidate_all(pmap);
8804 	PMAP_UNLOCK(pmap);
8805 	pmap_delayed_invl_finish();
8806 }
8807 
8808 /*
8809  *	Clear the modify bits on the specified physical page.
8810  */
8811 void
pmap_clear_modify(vm_page_t m)8812 pmap_clear_modify(vm_page_t m)
8813 {
8814 	struct md_page *pvh;
8815 	pmap_t pmap;
8816 	pv_entry_t next_pv, pv;
8817 	pd_entry_t oldpde, *pde;
8818 	pt_entry_t *pte, PG_M, PG_RW;
8819 	struct rwlock *lock;
8820 	vm_offset_t va;
8821 	int md_gen, pvh_gen;
8822 
8823 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8824 	    ("pmap_clear_modify: page %p is not managed", m));
8825 	vm_page_assert_busied(m);
8826 
8827 	if (!pmap_page_is_write_mapped(m))
8828 		return;
8829 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8830 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8831 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8832 	rw_wlock(lock);
8833 restart:
8834 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8835 		pmap = PV_PMAP(pv);
8836 		if (!PMAP_TRYLOCK(pmap)) {
8837 			pvh_gen = pvh->pv_gen;
8838 			rw_wunlock(lock);
8839 			PMAP_LOCK(pmap);
8840 			rw_wlock(lock);
8841 			if (pvh_gen != pvh->pv_gen) {
8842 				PMAP_UNLOCK(pmap);
8843 				goto restart;
8844 			}
8845 		}
8846 		PG_M = pmap_modified_bit(pmap);
8847 		PG_RW = pmap_rw_bit(pmap);
8848 		va = pv->pv_va;
8849 		pde = pmap_pde(pmap, va);
8850 		oldpde = *pde;
8851 		/* If oldpde has PG_RW set, then it also has PG_M set. */
8852 		if ((oldpde & PG_RW) != 0 &&
8853 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
8854 		    (oldpde & PG_W) == 0) {
8855 			/*
8856 			 * Write protect the mapping to a single page so that
8857 			 * a subsequent write access may repromote.
8858 			 */
8859 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
8860 			pte = pmap_pde_to_pte(pde, va);
8861 			atomic_clear_long(pte, PG_M | PG_RW);
8862 			vm_page_dirty(m);
8863 			pmap_invalidate_page(pmap, va);
8864 		}
8865 		PMAP_UNLOCK(pmap);
8866 	}
8867 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8868 		pmap = PV_PMAP(pv);
8869 		if (!PMAP_TRYLOCK(pmap)) {
8870 			md_gen = m->md.pv_gen;
8871 			pvh_gen = pvh->pv_gen;
8872 			rw_wunlock(lock);
8873 			PMAP_LOCK(pmap);
8874 			rw_wlock(lock);
8875 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
8876 				PMAP_UNLOCK(pmap);
8877 				goto restart;
8878 			}
8879 		}
8880 		PG_M = pmap_modified_bit(pmap);
8881 		PG_RW = pmap_rw_bit(pmap);
8882 		pde = pmap_pde(pmap, pv->pv_va);
8883 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
8884 		    " a 2mpage in page %p's pv list", m));
8885 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8886 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8887 			atomic_clear_long(pte, PG_M);
8888 			pmap_invalidate_page(pmap, pv->pv_va);
8889 		}
8890 		PMAP_UNLOCK(pmap);
8891 	}
8892 	rw_wunlock(lock);
8893 }
8894 
8895 /*
8896  * Miscellaneous support routines follow
8897  */
8898 
8899 /* Adjust the properties for a leaf page table entry. */
8900 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)8901 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
8902 {
8903 	u_long opte, npte;
8904 
8905 	opte = *(u_long *)pte;
8906 	do {
8907 		npte = opte & ~mask;
8908 		npte |= bits;
8909 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
8910 	    npte));
8911 }
8912 
8913 /*
8914  * Map a set of physical memory pages into the kernel virtual
8915  * address space. Return a pointer to where it is mapped. This
8916  * routine is intended to be used for mapping device memory,
8917  * NOT real memory.
8918  */
8919 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)8920 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
8921 {
8922 	struct pmap_preinit_mapping *ppim;
8923 	vm_offset_t va, offset;
8924 	vm_size_t tmpsize;
8925 	int i;
8926 
8927 	offset = pa & PAGE_MASK;
8928 	size = round_page(offset + size);
8929 	pa = trunc_page(pa);
8930 
8931 	if (!pmap_initialized) {
8932 		va = 0;
8933 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
8934 			ppim = pmap_preinit_mapping + i;
8935 			if (ppim->va == 0) {
8936 				ppim->pa = pa;
8937 				ppim->sz = size;
8938 				ppim->mode = mode;
8939 				ppim->va = virtual_avail;
8940 				virtual_avail += size;
8941 				va = ppim->va;
8942 				break;
8943 			}
8944 		}
8945 		if (va == 0)
8946 			panic("%s: too many preinit mappings", __func__);
8947 	} else {
8948 		/*
8949 		 * If we have a preinit mapping, re-use it.
8950 		 */
8951 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
8952 			ppim = pmap_preinit_mapping + i;
8953 			if (ppim->pa == pa && ppim->sz == size &&
8954 			    (ppim->mode == mode ||
8955 			    (flags & MAPDEV_SETATTR) == 0))
8956 				return ((void *)(ppim->va + offset));
8957 		}
8958 		/*
8959 		 * If the specified range of physical addresses fits within
8960 		 * the direct map window, use the direct map.
8961 		 */
8962 		if (pa < dmaplimit && pa + size <= dmaplimit) {
8963 			va = PHYS_TO_DMAP(pa);
8964 			if ((flags & MAPDEV_SETATTR) != 0) {
8965 				PMAP_LOCK(kernel_pmap);
8966 				i = pmap_change_props_locked(va, size,
8967 				    PROT_NONE, mode, flags);
8968 				PMAP_UNLOCK(kernel_pmap);
8969 			} else
8970 				i = 0;
8971 			if (!i)
8972 				return ((void *)(va + offset));
8973 		}
8974 		va = kva_alloc(size);
8975 		if (va == 0)
8976 			panic("%s: Couldn't allocate KVA", __func__);
8977 	}
8978 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
8979 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
8980 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
8981 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
8982 		pmap_invalidate_cache_range(va, va + tmpsize);
8983 	return ((void *)(va + offset));
8984 }
8985 
8986 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)8987 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
8988 {
8989 
8990 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
8991 	    MAPDEV_SETATTR));
8992 }
8993 
8994 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)8995 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
8996 {
8997 
8998 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
8999 }
9000 
9001 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9002 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9003 {
9004 
9005 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9006 	    MAPDEV_SETATTR));
9007 }
9008 
9009 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9010 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9011 {
9012 
9013 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9014 	    MAPDEV_FLUSHCACHE));
9015 }
9016 
9017 void
pmap_unmapdev(vm_offset_t va,vm_size_t size)9018 pmap_unmapdev(vm_offset_t va, vm_size_t size)
9019 {
9020 	struct pmap_preinit_mapping *ppim;
9021 	vm_offset_t offset;
9022 	int i;
9023 
9024 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9025 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9026 		return;
9027 	offset = va & PAGE_MASK;
9028 	size = round_page(offset + size);
9029 	va = trunc_page(va);
9030 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9031 		ppim = pmap_preinit_mapping + i;
9032 		if (ppim->va == va && ppim->sz == size) {
9033 			if (pmap_initialized)
9034 				return;
9035 			ppim->pa = 0;
9036 			ppim->va = 0;
9037 			ppim->sz = 0;
9038 			ppim->mode = 0;
9039 			if (va + size == virtual_avail)
9040 				virtual_avail = va;
9041 			return;
9042 		}
9043 	}
9044 	if (pmap_initialized) {
9045 		pmap_qremove(va, atop(size));
9046 		kva_free(va, size);
9047 	}
9048 }
9049 
9050 /*
9051  * Tries to demote a 1GB page mapping.
9052  */
9053 static boolean_t
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va)9054 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9055 {
9056 	pdp_entry_t newpdpe, oldpdpe;
9057 	pd_entry_t *firstpde, newpde, *pde;
9058 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9059 	vm_paddr_t pdpgpa;
9060 	vm_page_t pdpg;
9061 
9062 	PG_A = pmap_accessed_bit(pmap);
9063 	PG_M = pmap_modified_bit(pmap);
9064 	PG_V = pmap_valid_bit(pmap);
9065 	PG_RW = pmap_rw_bit(pmap);
9066 
9067 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9068 	oldpdpe = *pdpe;
9069 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9070 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9071 	if ((pdpg = vm_page_alloc(NULL, va >> PDPSHIFT, VM_ALLOC_INTERRUPT |
9072 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
9073 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9074 		    " in pmap %p", va, pmap);
9075 		return (FALSE);
9076 	}
9077 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9078 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9079 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9080 	KASSERT((oldpdpe & PG_A) != 0,
9081 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9082 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9083 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9084 	newpde = oldpdpe;
9085 
9086 	/*
9087 	 * Initialize the page directory page.
9088 	 */
9089 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9090 		*pde = newpde;
9091 		newpde += NBPDR;
9092 	}
9093 
9094 	/*
9095 	 * Demote the mapping.
9096 	 */
9097 	*pdpe = newpdpe;
9098 
9099 	/*
9100 	 * Invalidate a stale recursive mapping of the page directory page.
9101 	 */
9102 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9103 
9104 	pmap_pdpe_demotions++;
9105 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9106 	    " in pmap %p", va, pmap);
9107 	return (TRUE);
9108 }
9109 
9110 /*
9111  * Sets the memory attribute for the specified page.
9112  */
9113 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9114 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9115 {
9116 
9117 	m->md.pat_mode = ma;
9118 
9119 	/*
9120 	 * If "m" is a normal page, update its direct mapping.  This update
9121 	 * can be relied upon to perform any cache operations that are
9122 	 * required for data coherence.
9123 	 */
9124 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9125 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9126 	    m->md.pat_mode))
9127 		panic("memory attribute change on the direct map failed");
9128 }
9129 
9130 /*
9131  * Changes the specified virtual address range's memory type to that given by
9132  * the parameter "mode".  The specified virtual address range must be
9133  * completely contained within either the direct map or the kernel map.  If
9134  * the virtual address range is contained within the kernel map, then the
9135  * memory type for each of the corresponding ranges of the direct map is also
9136  * changed.  (The corresponding ranges of the direct map are those ranges that
9137  * map the same physical pages as the specified virtual address range.)  These
9138  * changes to the direct map are necessary because Intel describes the
9139  * behavior of their processors as "undefined" if two or more mappings to the
9140  * same physical page have different memory types.
9141  *
9142  * Returns zero if the change completed successfully, and either EINVAL or
9143  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9144  * of the virtual address range was not mapped, and ENOMEM is returned if
9145  * there was insufficient memory available to complete the change.  In the
9146  * latter case, the memory type may have been changed on some part of the
9147  * virtual address range or the direct map.
9148  */
9149 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9150 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9151 {
9152 	int error;
9153 
9154 	PMAP_LOCK(kernel_pmap);
9155 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9156 	    MAPDEV_FLUSHCACHE);
9157 	PMAP_UNLOCK(kernel_pmap);
9158 	return (error);
9159 }
9160 
9161 /*
9162  * Changes the specified virtual address range's protections to those
9163  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9164  * in the direct map are updated as well.  Protections on aliasing mappings may
9165  * be a subset of the requested protections; for example, mappings in the direct
9166  * map are never executable.
9167  */
9168 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9169 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9170 {
9171 	int error;
9172 
9173 	/* Only supported within the kernel map. */
9174 	if (va < VM_MIN_KERNEL_ADDRESS)
9175 		return (EINVAL);
9176 
9177 	PMAP_LOCK(kernel_pmap);
9178 	error = pmap_change_props_locked(va, size, prot, -1,
9179 	    MAPDEV_ASSERTVALID);
9180 	PMAP_UNLOCK(kernel_pmap);
9181 	return (error);
9182 }
9183 
9184 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9185 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9186     int mode, int flags)
9187 {
9188 	vm_offset_t base, offset, tmpva;
9189 	vm_paddr_t pa_start, pa_end, pa_end1;
9190 	pdp_entry_t *pdpe;
9191 	pd_entry_t *pde, pde_bits, pde_mask;
9192 	pt_entry_t *pte, pte_bits, pte_mask;
9193 	int error;
9194 	bool changed;
9195 
9196 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9197 	base = trunc_page(va);
9198 	offset = va & PAGE_MASK;
9199 	size = round_page(offset + size);
9200 
9201 	/*
9202 	 * Only supported on kernel virtual addresses, including the direct
9203 	 * map but excluding the recursive map.
9204 	 */
9205 	if (base < DMAP_MIN_ADDRESS)
9206 		return (EINVAL);
9207 
9208 	/*
9209 	 * Construct our flag sets and masks.  "bits" is the subset of
9210 	 * "mask" that will be set in each modified PTE.
9211 	 *
9212 	 * Mappings in the direct map are never allowed to be executable.
9213 	 */
9214 	pde_bits = pte_bits = 0;
9215 	pde_mask = pte_mask = 0;
9216 	if (mode != -1) {
9217 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9218 		pde_mask |= X86_PG_PDE_CACHE;
9219 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9220 		pte_mask |= X86_PG_PTE_CACHE;
9221 	}
9222 	if (prot != VM_PROT_NONE) {
9223 		if ((prot & VM_PROT_WRITE) != 0) {
9224 			pde_bits |= X86_PG_RW;
9225 			pte_bits |= X86_PG_RW;
9226 		}
9227 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9228 		    va < VM_MIN_KERNEL_ADDRESS) {
9229 			pde_bits |= pg_nx;
9230 			pte_bits |= pg_nx;
9231 		}
9232 		pde_mask |= X86_PG_RW | pg_nx;
9233 		pte_mask |= X86_PG_RW | pg_nx;
9234 	}
9235 
9236 	/*
9237 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9238 	 * into 4KB pages if required.
9239 	 */
9240 	for (tmpva = base; tmpva < base + size; ) {
9241 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9242 		if (pdpe == NULL || *pdpe == 0) {
9243 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9244 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9245 			return (EINVAL);
9246 		}
9247 		if (*pdpe & PG_PS) {
9248 			/*
9249 			 * If the current 1GB page already has the required
9250 			 * properties, then we need not demote this page.  Just
9251 			 * increment tmpva to the next 1GB page frame.
9252 			 */
9253 			if ((*pdpe & pde_mask) == pde_bits) {
9254 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9255 				continue;
9256 			}
9257 
9258 			/*
9259 			 * If the current offset aligns with a 1GB page frame
9260 			 * and there is at least 1GB left within the range, then
9261 			 * we need not break down this page into 2MB pages.
9262 			 */
9263 			if ((tmpva & PDPMASK) == 0 &&
9264 			    tmpva + PDPMASK < base + size) {
9265 				tmpva += NBPDP;
9266 				continue;
9267 			}
9268 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9269 				return (ENOMEM);
9270 		}
9271 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9272 		if (*pde == 0) {
9273 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9274 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9275 			return (EINVAL);
9276 		}
9277 		if (*pde & PG_PS) {
9278 			/*
9279 			 * If the current 2MB page already has the required
9280 			 * properties, then we need not demote this page.  Just
9281 			 * increment tmpva to the next 2MB page frame.
9282 			 */
9283 			if ((*pde & pde_mask) == pde_bits) {
9284 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9285 				continue;
9286 			}
9287 
9288 			/*
9289 			 * If the current offset aligns with a 2MB page frame
9290 			 * and there is at least 2MB left within the range, then
9291 			 * we need not break down this page into 4KB pages.
9292 			 */
9293 			if ((tmpva & PDRMASK) == 0 &&
9294 			    tmpva + PDRMASK < base + size) {
9295 				tmpva += NBPDR;
9296 				continue;
9297 			}
9298 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9299 				return (ENOMEM);
9300 		}
9301 		pte = pmap_pde_to_pte(pde, tmpva);
9302 		if (*pte == 0) {
9303 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9304 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9305 			return (EINVAL);
9306 		}
9307 		tmpva += PAGE_SIZE;
9308 	}
9309 	error = 0;
9310 
9311 	/*
9312 	 * Ok, all the pages exist, so run through them updating their
9313 	 * properties if required.
9314 	 */
9315 	changed = false;
9316 	pa_start = pa_end = 0;
9317 	for (tmpva = base; tmpva < base + size; ) {
9318 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9319 		if (*pdpe & PG_PS) {
9320 			if ((*pdpe & pde_mask) != pde_bits) {
9321 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9322 				changed = true;
9323 			}
9324 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9325 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9326 				if (pa_start == pa_end) {
9327 					/* Start physical address run. */
9328 					pa_start = *pdpe & PG_PS_FRAME;
9329 					pa_end = pa_start + NBPDP;
9330 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9331 					pa_end += NBPDP;
9332 				else {
9333 					/* Run ended, update direct map. */
9334 					error = pmap_change_props_locked(
9335 					    PHYS_TO_DMAP(pa_start),
9336 					    pa_end - pa_start, prot, mode,
9337 					    flags);
9338 					if (error != 0)
9339 						break;
9340 					/* Start physical address run. */
9341 					pa_start = *pdpe & PG_PS_FRAME;
9342 					pa_end = pa_start + NBPDP;
9343 				}
9344 			}
9345 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9346 			continue;
9347 		}
9348 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9349 		if (*pde & PG_PS) {
9350 			if ((*pde & pde_mask) != pde_bits) {
9351 				pmap_pte_props(pde, pde_bits, pde_mask);
9352 				changed = true;
9353 			}
9354 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9355 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9356 				if (pa_start == pa_end) {
9357 					/* Start physical address run. */
9358 					pa_start = *pde & PG_PS_FRAME;
9359 					pa_end = pa_start + NBPDR;
9360 				} else if (pa_end == (*pde & PG_PS_FRAME))
9361 					pa_end += NBPDR;
9362 				else {
9363 					/* Run ended, update direct map. */
9364 					error = pmap_change_props_locked(
9365 					    PHYS_TO_DMAP(pa_start),
9366 					    pa_end - pa_start, prot, mode,
9367 					    flags);
9368 					if (error != 0)
9369 						break;
9370 					/* Start physical address run. */
9371 					pa_start = *pde & PG_PS_FRAME;
9372 					pa_end = pa_start + NBPDR;
9373 				}
9374 			}
9375 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9376 		} else {
9377 			pte = pmap_pde_to_pte(pde, tmpva);
9378 			if ((*pte & pte_mask) != pte_bits) {
9379 				pmap_pte_props(pte, pte_bits, pte_mask);
9380 				changed = true;
9381 			}
9382 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9383 			    (*pte & PG_FRAME) < dmaplimit) {
9384 				if (pa_start == pa_end) {
9385 					/* Start physical address run. */
9386 					pa_start = *pte & PG_FRAME;
9387 					pa_end = pa_start + PAGE_SIZE;
9388 				} else if (pa_end == (*pte & PG_FRAME))
9389 					pa_end += PAGE_SIZE;
9390 				else {
9391 					/* Run ended, update direct map. */
9392 					error = pmap_change_props_locked(
9393 					    PHYS_TO_DMAP(pa_start),
9394 					    pa_end - pa_start, prot, mode,
9395 					    flags);
9396 					if (error != 0)
9397 						break;
9398 					/* Start physical address run. */
9399 					pa_start = *pte & PG_FRAME;
9400 					pa_end = pa_start + PAGE_SIZE;
9401 				}
9402 			}
9403 			tmpva += PAGE_SIZE;
9404 		}
9405 	}
9406 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9407 		pa_end1 = MIN(pa_end, dmaplimit);
9408 		if (pa_start != pa_end1)
9409 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9410 			    pa_end1 - pa_start, prot, mode, flags);
9411 	}
9412 
9413 	/*
9414 	 * Flush CPU caches if required to make sure any data isn't cached that
9415 	 * shouldn't be, etc.
9416 	 */
9417 	if (changed) {
9418 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9419 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9420 			pmap_invalidate_cache_range(base, tmpva);
9421 	}
9422 	return (error);
9423 }
9424 
9425 /*
9426  * Demotes any mapping within the direct map region that covers more than the
9427  * specified range of physical addresses.  This range's size must be a power
9428  * of two and its starting address must be a multiple of its size.  Since the
9429  * demotion does not change any attributes of the mapping, a TLB invalidation
9430  * is not mandatory.  The caller may, however, request a TLB invalidation.
9431  */
9432 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,boolean_t invalidate)9433 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
9434 {
9435 	pdp_entry_t *pdpe;
9436 	pd_entry_t *pde;
9437 	vm_offset_t va;
9438 	boolean_t changed;
9439 
9440 	if (len == 0)
9441 		return;
9442 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9443 	KASSERT((base & (len - 1)) == 0,
9444 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9445 	if (len < NBPDP && base < dmaplimit) {
9446 		va = PHYS_TO_DMAP(base);
9447 		changed = FALSE;
9448 		PMAP_LOCK(kernel_pmap);
9449 		pdpe = pmap_pdpe(kernel_pmap, va);
9450 		if ((*pdpe & X86_PG_V) == 0)
9451 			panic("pmap_demote_DMAP: invalid PDPE");
9452 		if ((*pdpe & PG_PS) != 0) {
9453 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9454 				panic("pmap_demote_DMAP: PDPE failed");
9455 			changed = TRUE;
9456 		}
9457 		if (len < NBPDR) {
9458 			pde = pmap_pdpe_to_pde(pdpe, va);
9459 			if ((*pde & X86_PG_V) == 0)
9460 				panic("pmap_demote_DMAP: invalid PDE");
9461 			if ((*pde & PG_PS) != 0) {
9462 				if (!pmap_demote_pde(kernel_pmap, pde, va))
9463 					panic("pmap_demote_DMAP: PDE failed");
9464 				changed = TRUE;
9465 			}
9466 		}
9467 		if (changed && invalidate)
9468 			pmap_invalidate_page(kernel_pmap, va);
9469 		PMAP_UNLOCK(kernel_pmap);
9470 	}
9471 }
9472 
9473 /*
9474  * Perform the pmap work for mincore(2).  If the page is not both referenced and
9475  * modified by this pmap, returns its physical address so that the caller can
9476  * find other mappings.
9477  */
9478 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)9479 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
9480 {
9481 	pdp_entry_t *pdpe;
9482 	pd_entry_t *pdep;
9483 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
9484 	vm_paddr_t pa;
9485 	int val;
9486 
9487 	PG_A = pmap_accessed_bit(pmap);
9488 	PG_M = pmap_modified_bit(pmap);
9489 	PG_V = pmap_valid_bit(pmap);
9490 	PG_RW = pmap_rw_bit(pmap);
9491 
9492 	PMAP_LOCK(pmap);
9493 	pte = 0;
9494 	pa = 0;
9495 	val = 0;
9496 	pdpe = pmap_pdpe(pmap, addr);
9497 	if (pdpe == NULL)
9498 		goto out;
9499 	if ((*pdpe & PG_V) != 0) {
9500 		if ((*pdpe & PG_PS) != 0) {
9501 			pte = *pdpe;
9502 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
9503 			    PG_FRAME;
9504 			val = MINCORE_PSIND(2);
9505 		} else {
9506 			pdep = pmap_pde(pmap, addr);
9507 			if (pdep != NULL && (*pdep & PG_V) != 0) {
9508 				if ((*pdep & PG_PS) != 0) {
9509 					pte = *pdep;
9510 			/* Compute the physical address of the 4KB page. */
9511 					pa = ((pte & PG_PS_FRAME) | (addr &
9512 					    PDRMASK)) & PG_FRAME;
9513 					val = MINCORE_PSIND(1);
9514 				} else {
9515 					pte = *pmap_pde_to_pte(pdep, addr);
9516 					pa = pte & PG_FRAME;
9517 					val = 0;
9518 				}
9519 			}
9520 		}
9521 	}
9522 	if ((pte & PG_V) != 0) {
9523 		val |= MINCORE_INCORE;
9524 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9525 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
9526 		if ((pte & PG_A) != 0)
9527 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
9528 	}
9529 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
9530 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
9531 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
9532 		*pap = pa;
9533 	}
9534 out:
9535 	PMAP_UNLOCK(pmap);
9536 	return (val);
9537 }
9538 
9539 static uint64_t
pmap_pcid_alloc(pmap_t pmap,u_int cpuid)9540 pmap_pcid_alloc(pmap_t pmap, u_int cpuid)
9541 {
9542 	uint32_t gen, new_gen, pcid_next;
9543 
9544 	CRITICAL_ASSERT(curthread);
9545 	gen = PCPU_GET(pcid_gen);
9546 	if (pmap->pm_pcids[cpuid].pm_pcid == PMAP_PCID_KERN)
9547 		return (pti ? 0 : CR3_PCID_SAVE);
9548 	if (pmap->pm_pcids[cpuid].pm_gen == gen)
9549 		return (CR3_PCID_SAVE);
9550 	pcid_next = PCPU_GET(pcid_next);
9551 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
9552 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
9553 	    ("cpu %d pcid_next %#x", cpuid, pcid_next));
9554 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
9555 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
9556 		new_gen = gen + 1;
9557 		if (new_gen == 0)
9558 			new_gen = 1;
9559 		PCPU_SET(pcid_gen, new_gen);
9560 		pcid_next = PMAP_PCID_KERN + 1;
9561 	} else {
9562 		new_gen = gen;
9563 	}
9564 	pmap->pm_pcids[cpuid].pm_pcid = pcid_next;
9565 	pmap->pm_pcids[cpuid].pm_gen = new_gen;
9566 	PCPU_SET(pcid_next, pcid_next + 1);
9567 	return (0);
9568 }
9569 
9570 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,u_int cpuid)9571 pmap_pcid_alloc_checked(pmap_t pmap, u_int cpuid)
9572 {
9573 	uint64_t cached;
9574 
9575 	cached = pmap_pcid_alloc(pmap, cpuid);
9576 	KASSERT(pmap->pm_pcids[cpuid].pm_pcid < PMAP_PCID_OVERMAX,
9577 	    ("pmap %p cpu %d pcid %#x", pmap, cpuid,
9578 	    pmap->pm_pcids[cpuid].pm_pcid));
9579 	KASSERT(pmap->pm_pcids[cpuid].pm_pcid != PMAP_PCID_KERN ||
9580 	    pmap == kernel_pmap,
9581 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
9582 	    pmap, cpuid, pmap->pm_pcids[cpuid].pm_pcid));
9583 	return (cached);
9584 }
9585 
9586 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)9587 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
9588 {
9589 
9590 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
9591 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
9592 }
9593 
9594 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)9595 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
9596 {
9597 	pmap_t old_pmap;
9598 	uint64_t cached, cr3, kcr3, ucr3;
9599 
9600 	KASSERT((read_rflags() & PSL_I) == 0,
9601 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
9602 
9603 	/* See the comment in pmap_invalidate_page_pcid(). */
9604 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
9605 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
9606 		old_pmap = PCPU_GET(curpmap);
9607 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
9608 		old_pmap->pm_pcids[cpuid].pm_gen = 0;
9609 	}
9610 
9611 	cached = pmap_pcid_alloc_checked(pmap, cpuid);
9612 	cr3 = rcr3();
9613 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
9614 		load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid);
9615 	PCPU_SET(curpmap, pmap);
9616 	kcr3 = pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid;
9617 	ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[cpuid].pm_pcid |
9618 	    PMAP_PCID_USER_PT;
9619 
9620 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
9621 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
9622 
9623 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
9624 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
9625 	if (cached)
9626 		PCPU_INC(pm_save_cnt);
9627 
9628 	pmap_activate_sw_pti_post(td, pmap);
9629 }
9630 
9631 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)9632 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
9633     u_int cpuid)
9634 {
9635 	uint64_t cached, cr3;
9636 
9637 	KASSERT((read_rflags() & PSL_I) == 0,
9638 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
9639 
9640 	cached = pmap_pcid_alloc_checked(pmap, cpuid);
9641 	cr3 = rcr3();
9642 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
9643 		load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid |
9644 		    cached);
9645 	PCPU_SET(curpmap, pmap);
9646 	if (cached)
9647 		PCPU_INC(pm_save_cnt);
9648 }
9649 
9650 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)9651 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
9652     u_int cpuid __unused)
9653 {
9654 
9655 	load_cr3(pmap->pm_cr3);
9656 	PCPU_SET(curpmap, pmap);
9657 }
9658 
9659 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)9660 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
9661     u_int cpuid __unused)
9662 {
9663 
9664 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
9665 	PCPU_SET(kcr3, pmap->pm_cr3);
9666 	PCPU_SET(ucr3, pmap->pm_ucr3);
9667 	pmap_activate_sw_pti_post(td, pmap);
9668 }
9669 
9670 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
9671     u_int))
9672 {
9673 
9674 	if (pmap_pcid_enabled && pti)
9675 		return (pmap_activate_sw_pcid_pti);
9676 	else if (pmap_pcid_enabled && !pti)
9677 		return (pmap_activate_sw_pcid_nopti);
9678 	else if (!pmap_pcid_enabled && pti)
9679 		return (pmap_activate_sw_nopcid_pti);
9680 	else /* if (!pmap_pcid_enabled && !pti) */
9681 		return (pmap_activate_sw_nopcid_nopti);
9682 }
9683 
9684 void
pmap_activate_sw(struct thread * td)9685 pmap_activate_sw(struct thread *td)
9686 {
9687 	pmap_t oldpmap, pmap;
9688 	u_int cpuid;
9689 
9690 	oldpmap = PCPU_GET(curpmap);
9691 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
9692 	if (oldpmap == pmap) {
9693 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
9694 			mfence();
9695 		return;
9696 	}
9697 	cpuid = PCPU_GET(cpuid);
9698 #ifdef SMP
9699 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
9700 #else
9701 	CPU_SET(cpuid, &pmap->pm_active);
9702 #endif
9703 	pmap_activate_sw_mode(td, pmap, cpuid);
9704 #ifdef SMP
9705 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
9706 #else
9707 	CPU_CLR(cpuid, &oldpmap->pm_active);
9708 #endif
9709 }
9710 
9711 void
pmap_activate(struct thread * td)9712 pmap_activate(struct thread *td)
9713 {
9714 	/*
9715 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
9716 	 * invalidate_all IPI, which checks for curpmap ==
9717 	 * smp_tlb_pmap.  The below sequence of operations has a
9718 	 * window where %CR3 is loaded with the new pmap's PML4
9719 	 * address, but the curpmap value has not yet been updated.
9720 	 * This causes the invltlb IPI handler, which is called
9721 	 * between the updates, to execute as a NOP, which leaves
9722 	 * stale TLB entries.
9723 	 *
9724 	 * Note that the most common use of pmap_activate_sw(), from
9725 	 * a context switch, is immune to this race, because
9726 	 * interrupts are disabled (while the thread lock is owned),
9727 	 * so the IPI is delayed until after curpmap is updated.  Protect
9728 	 * other callers in a similar way, by disabling interrupts
9729 	 * around the %cr3 register reload and curpmap assignment.
9730 	 */
9731 	spinlock_enter();
9732 	pmap_activate_sw(td);
9733 	spinlock_exit();
9734 }
9735 
9736 void
pmap_activate_boot(pmap_t pmap)9737 pmap_activate_boot(pmap_t pmap)
9738 {
9739 	uint64_t kcr3;
9740 	u_int cpuid;
9741 
9742 	/*
9743 	 * kernel_pmap must be never deactivated, and we ensure that
9744 	 * by never activating it at all.
9745 	 */
9746 	MPASS(pmap != kernel_pmap);
9747 
9748 	cpuid = PCPU_GET(cpuid);
9749 #ifdef SMP
9750 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
9751 #else
9752 	CPU_SET(cpuid, &pmap->pm_active);
9753 #endif
9754 	PCPU_SET(curpmap, pmap);
9755 	if (pti) {
9756 		kcr3 = pmap->pm_cr3;
9757 		if (pmap_pcid_enabled)
9758 			kcr3 |= pmap->pm_pcids[cpuid].pm_pcid | CR3_PCID_SAVE;
9759 	} else {
9760 		kcr3 = PMAP_NO_CR3;
9761 	}
9762 	PCPU_SET(kcr3, kcr3);
9763 	PCPU_SET(ucr3, PMAP_NO_CR3);
9764 }
9765 
9766 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)9767 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
9768 {
9769 }
9770 
9771 /*
9772  *	Increase the starting virtual address of the given mapping if a
9773  *	different alignment might result in more superpage mappings.
9774  */
9775 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)9776 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
9777     vm_offset_t *addr, vm_size_t size)
9778 {
9779 	vm_offset_t superpage_offset;
9780 
9781 	if (size < NBPDR)
9782 		return;
9783 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
9784 		offset += ptoa(object->pg_color);
9785 	superpage_offset = offset & PDRMASK;
9786 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
9787 	    (*addr & PDRMASK) == superpage_offset)
9788 		return;
9789 	if ((*addr & PDRMASK) < superpage_offset)
9790 		*addr = (*addr & ~PDRMASK) + superpage_offset;
9791 	else
9792 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
9793 }
9794 
9795 #ifdef INVARIANTS
9796 static unsigned long num_dirty_emulations;
9797 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
9798 	     &num_dirty_emulations, 0, NULL);
9799 
9800 static unsigned long num_accessed_emulations;
9801 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
9802 	     &num_accessed_emulations, 0, NULL);
9803 
9804 static unsigned long num_superpage_accessed_emulations;
9805 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
9806 	     &num_superpage_accessed_emulations, 0, NULL);
9807 
9808 static unsigned long ad_emulation_superpage_promotions;
9809 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
9810 	     &ad_emulation_superpage_promotions, 0, NULL);
9811 #endif	/* INVARIANTS */
9812 
9813 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)9814 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
9815 {
9816 	int rv;
9817 	struct rwlock *lock;
9818 #if VM_NRESERVLEVEL > 0
9819 	vm_page_t m, mpte;
9820 #endif
9821 	pd_entry_t *pde;
9822 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
9823 
9824 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
9825 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
9826 
9827 	if (!pmap_emulate_ad_bits(pmap))
9828 		return (-1);
9829 
9830 	PG_A = pmap_accessed_bit(pmap);
9831 	PG_M = pmap_modified_bit(pmap);
9832 	PG_V = pmap_valid_bit(pmap);
9833 	PG_RW = pmap_rw_bit(pmap);
9834 
9835 	rv = -1;
9836 	lock = NULL;
9837 	PMAP_LOCK(pmap);
9838 
9839 	pde = pmap_pde(pmap, va);
9840 	if (pde == NULL || (*pde & PG_V) == 0)
9841 		goto done;
9842 
9843 	if ((*pde & PG_PS) != 0) {
9844 		if (ftype == VM_PROT_READ) {
9845 #ifdef INVARIANTS
9846 			atomic_add_long(&num_superpage_accessed_emulations, 1);
9847 #endif
9848 			*pde |= PG_A;
9849 			rv = 0;
9850 		}
9851 		goto done;
9852 	}
9853 
9854 	pte = pmap_pde_to_pte(pde, va);
9855 	if ((*pte & PG_V) == 0)
9856 		goto done;
9857 
9858 	if (ftype == VM_PROT_WRITE) {
9859 		if ((*pte & PG_RW) == 0)
9860 			goto done;
9861 		/*
9862 		 * Set the modified and accessed bits simultaneously.
9863 		 *
9864 		 * Intel EPT PTEs that do software emulation of A/D bits map
9865 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
9866 		 * An EPT misconfiguration is triggered if the PTE is writable
9867 		 * but not readable (WR=10). This is avoided by setting PG_A
9868 		 * and PG_M simultaneously.
9869 		 */
9870 		*pte |= PG_M | PG_A;
9871 	} else {
9872 		*pte |= PG_A;
9873 	}
9874 
9875 #if VM_NRESERVLEVEL > 0
9876 	/* try to promote the mapping */
9877 	if (va < VM_MAXUSER_ADDRESS)
9878 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
9879 	else
9880 		mpte = NULL;
9881 
9882 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9883 
9884 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
9885 	    pmap_ps_enabled(pmap) &&
9886 	    (m->flags & PG_FICTITIOUS) == 0 &&
9887 	    vm_reserv_level_iffullpop(m) == 0) {
9888 		pmap_promote_pde(pmap, pde, va, &lock);
9889 #ifdef INVARIANTS
9890 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
9891 #endif
9892 	}
9893 #endif
9894 
9895 #ifdef INVARIANTS
9896 	if (ftype == VM_PROT_WRITE)
9897 		atomic_add_long(&num_dirty_emulations, 1);
9898 	else
9899 		atomic_add_long(&num_accessed_emulations, 1);
9900 #endif
9901 	rv = 0;		/* success */
9902 done:
9903 	if (lock != NULL)
9904 		rw_wunlock(lock);
9905 	PMAP_UNLOCK(pmap);
9906 	return (rv);
9907 }
9908 
9909 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)9910 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
9911 {
9912 	pml4_entry_t *pml4;
9913 	pdp_entry_t *pdp;
9914 	pd_entry_t *pde;
9915 	pt_entry_t *pte, PG_V;
9916 	int idx;
9917 
9918 	idx = 0;
9919 	PG_V = pmap_valid_bit(pmap);
9920 	PMAP_LOCK(pmap);
9921 
9922 	pml4 = pmap_pml4e(pmap, va);
9923 	if (pml4 == NULL)
9924 		goto done;
9925 	ptr[idx++] = *pml4;
9926 	if ((*pml4 & PG_V) == 0)
9927 		goto done;
9928 
9929 	pdp = pmap_pml4e_to_pdpe(pml4, va);
9930 	ptr[idx++] = *pdp;
9931 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
9932 		goto done;
9933 
9934 	pde = pmap_pdpe_to_pde(pdp, va);
9935 	ptr[idx++] = *pde;
9936 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
9937 		goto done;
9938 
9939 	pte = pmap_pde_to_pte(pde, va);
9940 	ptr[idx++] = *pte;
9941 
9942 done:
9943 	PMAP_UNLOCK(pmap);
9944 	*num = idx;
9945 }
9946 
9947 /**
9948  * Get the kernel virtual address of a set of physical pages. If there are
9949  * physical addresses not covered by the DMAP perform a transient mapping
9950  * that will be removed when calling pmap_unmap_io_transient.
9951  *
9952  * \param page        The pages the caller wishes to obtain the virtual
9953  *                    address on the kernel memory map.
9954  * \param vaddr       On return contains the kernel virtual memory address
9955  *                    of the pages passed in the page parameter.
9956  * \param count       Number of pages passed in.
9957  * \param can_fault   TRUE if the thread using the mapped pages can take
9958  *                    page faults, FALSE otherwise.
9959  *
9960  * \returns TRUE if the caller must call pmap_unmap_io_transient when
9961  *          finished or FALSE otherwise.
9962  *
9963  */
9964 boolean_t
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,boolean_t can_fault)9965 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
9966     boolean_t can_fault)
9967 {
9968 	vm_paddr_t paddr;
9969 	boolean_t needs_mapping;
9970 	pt_entry_t *pte;
9971 	int cache_bits, error __unused, i;
9972 
9973 	/*
9974 	 * Allocate any KVA space that we need, this is done in a separate
9975 	 * loop to prevent calling vmem_alloc while pinned.
9976 	 */
9977 	needs_mapping = FALSE;
9978 	for (i = 0; i < count; i++) {
9979 		paddr = VM_PAGE_TO_PHYS(page[i]);
9980 		if (__predict_false(paddr >= dmaplimit)) {
9981 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
9982 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
9983 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
9984 			needs_mapping = TRUE;
9985 		} else {
9986 			vaddr[i] = PHYS_TO_DMAP(paddr);
9987 		}
9988 	}
9989 
9990 	/* Exit early if everything is covered by the DMAP */
9991 	if (!needs_mapping)
9992 		return (FALSE);
9993 
9994 	/*
9995 	 * NB:  The sequence of updating a page table followed by accesses
9996 	 * to the corresponding pages used in the !DMAP case is subject to
9997 	 * the situation described in the "AMD64 Architecture Programmer's
9998 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
9999 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10000 	 * after modifying the PTE bits is crucial.
10001 	 */
10002 	if (!can_fault)
10003 		sched_pin();
10004 	for (i = 0; i < count; i++) {
10005 		paddr = VM_PAGE_TO_PHYS(page[i]);
10006 		if (paddr >= dmaplimit) {
10007 			if (can_fault) {
10008 				/*
10009 				 * Slow path, since we can get page faults
10010 				 * while mappings are active don't pin the
10011 				 * thread to the CPU and instead add a global
10012 				 * mapping visible to all CPUs.
10013 				 */
10014 				pmap_qenter(vaddr[i], &page[i], 1);
10015 			} else {
10016 				pte = vtopte(vaddr[i]);
10017 				cache_bits = pmap_cache_bits(kernel_pmap,
10018 				    page[i]->md.pat_mode, 0);
10019 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10020 				    cache_bits);
10021 				invlpg(vaddr[i]);
10022 			}
10023 		}
10024 	}
10025 
10026 	return (needs_mapping);
10027 }
10028 
10029 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,boolean_t can_fault)10030 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10031     boolean_t can_fault)
10032 {
10033 	vm_paddr_t paddr;
10034 	int i;
10035 
10036 	if (!can_fault)
10037 		sched_unpin();
10038 	for (i = 0; i < count; i++) {
10039 		paddr = VM_PAGE_TO_PHYS(page[i]);
10040 		if (paddr >= dmaplimit) {
10041 			if (can_fault)
10042 				pmap_qremove(vaddr[i], 1);
10043 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10044 		}
10045 	}
10046 }
10047 
10048 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10049 pmap_quick_enter_page(vm_page_t m)
10050 {
10051 	vm_paddr_t paddr;
10052 
10053 	paddr = VM_PAGE_TO_PHYS(m);
10054 	if (paddr < dmaplimit)
10055 		return (PHYS_TO_DMAP(paddr));
10056 	mtx_lock_spin(&qframe_mtx);
10057 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10058 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10059 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0));
10060 	return (qframe);
10061 }
10062 
10063 void
pmap_quick_remove_page(vm_offset_t addr)10064 pmap_quick_remove_page(vm_offset_t addr)
10065 {
10066 
10067 	if (addr != qframe)
10068 		return;
10069 	pte_store(vtopte(qframe), 0);
10070 	invlpg(qframe);
10071 	mtx_unlock_spin(&qframe_mtx);
10072 }
10073 
10074 /*
10075  * Pdp pages from the large map are managed differently from either
10076  * kernel or user page table pages.  They are permanently allocated at
10077  * initialization time, and their reference count is permanently set to
10078  * zero.  The pml4 entries pointing to those pages are copied into
10079  * each allocated pmap.
10080  *
10081  * In contrast, pd and pt pages are managed like user page table
10082  * pages.  They are dynamically allocated, and their reference count
10083  * represents the number of valid entries within the page.
10084  */
10085 static vm_page_t
pmap_large_map_getptp_unlocked(void)10086 pmap_large_map_getptp_unlocked(void)
10087 {
10088 	vm_page_t m;
10089 
10090 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
10091 	    VM_ALLOC_ZERO);
10092 	if (m != NULL && (m->flags & PG_ZERO) == 0)
10093 		pmap_zero_page(m);
10094 	return (m);
10095 }
10096 
10097 static vm_page_t
pmap_large_map_getptp(void)10098 pmap_large_map_getptp(void)
10099 {
10100 	vm_page_t m;
10101 
10102 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10103 	m = pmap_large_map_getptp_unlocked();
10104 	if (m == NULL) {
10105 		PMAP_UNLOCK(kernel_pmap);
10106 		vm_wait(NULL);
10107 		PMAP_LOCK(kernel_pmap);
10108 		/* Callers retry. */
10109 	}
10110 	return (m);
10111 }
10112 
10113 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10114 pmap_large_map_pdpe(vm_offset_t va)
10115 {
10116 	vm_pindex_t pml4_idx;
10117 	vm_paddr_t mphys;
10118 
10119 	pml4_idx = pmap_pml4e_index(va);
10120 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10121 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10122 	    "%#jx lm_ents %d",
10123 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10124 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10125 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10126 	    "LMSPML4I %#jx lm_ents %d",
10127 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10128 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10129 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10130 }
10131 
10132 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10133 pmap_large_map_pde(vm_offset_t va)
10134 {
10135 	pdp_entry_t *pdpe;
10136 	vm_page_t m;
10137 	vm_paddr_t mphys;
10138 
10139 retry:
10140 	pdpe = pmap_large_map_pdpe(va);
10141 	if (*pdpe == 0) {
10142 		m = pmap_large_map_getptp();
10143 		if (m == NULL)
10144 			goto retry;
10145 		mphys = VM_PAGE_TO_PHYS(m);
10146 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10147 	} else {
10148 		MPASS((*pdpe & X86_PG_PS) == 0);
10149 		mphys = *pdpe & PG_FRAME;
10150 	}
10151 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10152 }
10153 
10154 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10155 pmap_large_map_pte(vm_offset_t va)
10156 {
10157 	pd_entry_t *pde;
10158 	vm_page_t m;
10159 	vm_paddr_t mphys;
10160 
10161 retry:
10162 	pde = pmap_large_map_pde(va);
10163 	if (*pde == 0) {
10164 		m = pmap_large_map_getptp();
10165 		if (m == NULL)
10166 			goto retry;
10167 		mphys = VM_PAGE_TO_PHYS(m);
10168 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10169 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10170 	} else {
10171 		MPASS((*pde & X86_PG_PS) == 0);
10172 		mphys = *pde & PG_FRAME;
10173 	}
10174 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10175 }
10176 
10177 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10178 pmap_large_map_kextract(vm_offset_t va)
10179 {
10180 	pdp_entry_t *pdpe, pdp;
10181 	pd_entry_t *pde, pd;
10182 	pt_entry_t *pte, pt;
10183 
10184 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10185 	    ("not largemap range %#lx", (u_long)va));
10186 	pdpe = pmap_large_map_pdpe(va);
10187 	pdp = *pdpe;
10188 	KASSERT((pdp & X86_PG_V) != 0,
10189 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10190 	    (u_long)pdpe, pdp));
10191 	if ((pdp & X86_PG_PS) != 0) {
10192 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10193 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10194 		    (u_long)pdpe, pdp));
10195 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10196 	}
10197 	pde = pmap_pdpe_to_pde(pdpe, va);
10198 	pd = *pde;
10199 	KASSERT((pd & X86_PG_V) != 0,
10200 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10201 	if ((pd & X86_PG_PS) != 0)
10202 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10203 	pte = pmap_pde_to_pte(pde, va);
10204 	pt = *pte;
10205 	KASSERT((pt & X86_PG_V) != 0,
10206 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10207 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10208 }
10209 
10210 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10211 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10212     vmem_addr_t *vmem_res)
10213 {
10214 
10215 	/*
10216 	 * Large mappings are all but static.  Consequently, there
10217 	 * is no point in waiting for an earlier allocation to be
10218 	 * freed.
10219 	 */
10220 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10221 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10222 }
10223 
10224 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10225 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10226     vm_memattr_t mattr)
10227 {
10228 	pdp_entry_t *pdpe;
10229 	pd_entry_t *pde;
10230 	pt_entry_t *pte;
10231 	vm_offset_t va, inc;
10232 	vmem_addr_t vmem_res;
10233 	vm_paddr_t pa;
10234 	int error;
10235 
10236 	if (len == 0 || spa + len < spa)
10237 		return (EINVAL);
10238 
10239 	/* See if DMAP can serve. */
10240 	if (spa + len <= dmaplimit) {
10241 		va = PHYS_TO_DMAP(spa);
10242 		*addr = (void *)va;
10243 		return (pmap_change_attr(va, len, mattr));
10244 	}
10245 
10246 	/*
10247 	 * No, allocate KVA.  Fit the address with best possible
10248 	 * alignment for superpages.  Fall back to worse align if
10249 	 * failed.
10250 	 */
10251 	error = ENOMEM;
10252 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10253 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10254 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10255 		    &vmem_res);
10256 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10257 	    NBPDR) + NBPDR)
10258 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10259 		    &vmem_res);
10260 	if (error != 0)
10261 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10262 	if (error != 0)
10263 		return (error);
10264 
10265 	/*
10266 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10267 	 * in the pagetable to minimize flushing.  No need to
10268 	 * invalidate TLB, since we only update invalid entries.
10269 	 */
10270 	PMAP_LOCK(kernel_pmap);
10271 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10272 	    len -= inc) {
10273 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10274 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10275 			pdpe = pmap_large_map_pdpe(va);
10276 			MPASS(*pdpe == 0);
10277 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10278 			    X86_PG_V | X86_PG_A | pg_nx |
10279 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10280 			inc = NBPDP;
10281 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10282 		    (va & PDRMASK) == 0) {
10283 			pde = pmap_large_map_pde(va);
10284 			MPASS(*pde == 0);
10285 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10286 			    X86_PG_V | X86_PG_A | pg_nx |
10287 			    pmap_cache_bits(kernel_pmap, mattr, TRUE);
10288 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10289 			    ref_count++;
10290 			inc = NBPDR;
10291 		} else {
10292 			pte = pmap_large_map_pte(va);
10293 			MPASS(*pte == 0);
10294 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10295 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10296 			    mattr, FALSE);
10297 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10298 			    ref_count++;
10299 			inc = PAGE_SIZE;
10300 		}
10301 	}
10302 	PMAP_UNLOCK(kernel_pmap);
10303 	MPASS(len == 0);
10304 
10305 	*addr = (void *)vmem_res;
10306 	return (0);
10307 }
10308 
10309 void
pmap_large_unmap(void * svaa,vm_size_t len)10310 pmap_large_unmap(void *svaa, vm_size_t len)
10311 {
10312 	vm_offset_t sva, va;
10313 	vm_size_t inc;
10314 	pdp_entry_t *pdpe, pdp;
10315 	pd_entry_t *pde, pd;
10316 	pt_entry_t *pte;
10317 	vm_page_t m;
10318 	struct spglist spgf;
10319 
10320 	sva = (vm_offset_t)svaa;
10321 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10322 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10323 		return;
10324 
10325 	SLIST_INIT(&spgf);
10326 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10327 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10328 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10329 	PMAP_LOCK(kernel_pmap);
10330 	for (va = sva; va < sva + len; va += inc) {
10331 		pdpe = pmap_large_map_pdpe(va);
10332 		pdp = *pdpe;
10333 		KASSERT((pdp & X86_PG_V) != 0,
10334 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10335 		    (u_long)pdpe, pdp));
10336 		if ((pdp & X86_PG_PS) != 0) {
10337 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10338 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10339 			    (u_long)pdpe, pdp));
10340 			KASSERT((va & PDPMASK) == 0,
10341 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10342 			    (u_long)pdpe, pdp));
10343 			KASSERT(va + NBPDP <= sva + len,
10344 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10345 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10346 			    (u_long)pdpe, pdp, len));
10347 			*pdpe = 0;
10348 			inc = NBPDP;
10349 			continue;
10350 		}
10351 		pde = pmap_pdpe_to_pde(pdpe, va);
10352 		pd = *pde;
10353 		KASSERT((pd & X86_PG_V) != 0,
10354 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10355 		    (u_long)pde, pd));
10356 		if ((pd & X86_PG_PS) != 0) {
10357 			KASSERT((va & PDRMASK) == 0,
10358 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10359 			    (u_long)pde, pd));
10360 			KASSERT(va + NBPDR <= sva + len,
10361 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10362 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10363 			    pd, len));
10364 			pde_store(pde, 0);
10365 			inc = NBPDR;
10366 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10367 			m->ref_count--;
10368 			if (m->ref_count == 0) {
10369 				*pdpe = 0;
10370 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10371 			}
10372 			continue;
10373 		}
10374 		pte = pmap_pde_to_pte(pde, va);
10375 		KASSERT((*pte & X86_PG_V) != 0,
10376 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10377 		    (u_long)pte, *pte));
10378 		pte_clear(pte);
10379 		inc = PAGE_SIZE;
10380 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10381 		m->ref_count--;
10382 		if (m->ref_count == 0) {
10383 			*pde = 0;
10384 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10385 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10386 			m->ref_count--;
10387 			if (m->ref_count == 0) {
10388 				*pdpe = 0;
10389 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10390 			}
10391 		}
10392 	}
10393 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10394 	PMAP_UNLOCK(kernel_pmap);
10395 	vm_page_free_pages_toq(&spgf, false);
10396 	vmem_free(large_vmem, sva, len);
10397 }
10398 
10399 static void
pmap_large_map_wb_fence_mfence(void)10400 pmap_large_map_wb_fence_mfence(void)
10401 {
10402 
10403 	mfence();
10404 }
10405 
10406 static void
pmap_large_map_wb_fence_atomic(void)10407 pmap_large_map_wb_fence_atomic(void)
10408 {
10409 
10410 	atomic_thread_fence_seq_cst();
10411 }
10412 
10413 static void
pmap_large_map_wb_fence_nop(void)10414 pmap_large_map_wb_fence_nop(void)
10415 {
10416 }
10417 
10418 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10419 {
10420 
10421 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10422 		return (pmap_large_map_wb_fence_mfence);
10423 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10424 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10425 		return (pmap_large_map_wb_fence_atomic);
10426 	else
10427 		/* clflush is strongly enough ordered */
10428 		return (pmap_large_map_wb_fence_nop);
10429 }
10430 
10431 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10432 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10433 {
10434 
10435 	for (; len > 0; len -= cpu_clflush_line_size,
10436 	    va += cpu_clflush_line_size)
10437 		clwb(va);
10438 }
10439 
10440 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10441 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10442 {
10443 
10444 	for (; len > 0; len -= cpu_clflush_line_size,
10445 	    va += cpu_clflush_line_size)
10446 		clflushopt(va);
10447 }
10448 
10449 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10450 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10451 {
10452 
10453 	for (; len > 0; len -= cpu_clflush_line_size,
10454 	    va += cpu_clflush_line_size)
10455 		clflush(va);
10456 }
10457 
10458 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)10459 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10460 {
10461 }
10462 
10463 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10464 {
10465 
10466 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10467 		return (pmap_large_map_flush_range_clwb);
10468 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10469 		return (pmap_large_map_flush_range_clflushopt);
10470 	else if ((cpu_feature & CPUID_CLFSH) != 0)
10471 		return (pmap_large_map_flush_range_clflush);
10472 	else
10473 		return (pmap_large_map_flush_range_nop);
10474 }
10475 
10476 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)10477 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
10478 {
10479 	volatile u_long *pe;
10480 	u_long p;
10481 	vm_offset_t va;
10482 	vm_size_t inc;
10483 	bool seen_other;
10484 
10485 	for (va = sva; va < eva; va += inc) {
10486 		inc = 0;
10487 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
10488 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
10489 			p = *pe;
10490 			if ((p & X86_PG_PS) != 0)
10491 				inc = NBPDP;
10492 		}
10493 		if (inc == 0) {
10494 			pe = (volatile u_long *)pmap_large_map_pde(va);
10495 			p = *pe;
10496 			if ((p & X86_PG_PS) != 0)
10497 				inc = NBPDR;
10498 		}
10499 		if (inc == 0) {
10500 			pe = (volatile u_long *)pmap_large_map_pte(va);
10501 			p = *pe;
10502 			inc = PAGE_SIZE;
10503 		}
10504 		seen_other = false;
10505 		for (;;) {
10506 			if ((p & X86_PG_AVAIL1) != 0) {
10507 				/*
10508 				 * Spin-wait for the end of a parallel
10509 				 * write-back.
10510 				 */
10511 				cpu_spinwait();
10512 				p = *pe;
10513 
10514 				/*
10515 				 * If we saw other write-back
10516 				 * occuring, we cannot rely on PG_M to
10517 				 * indicate state of the cache.  The
10518 				 * PG_M bit is cleared before the
10519 				 * flush to avoid ignoring new writes,
10520 				 * and writes which are relevant for
10521 				 * us might happen after.
10522 				 */
10523 				seen_other = true;
10524 				continue;
10525 			}
10526 
10527 			if ((p & X86_PG_M) != 0 || seen_other) {
10528 				if (!atomic_fcmpset_long(pe, &p,
10529 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
10530 					/*
10531 					 * If we saw PG_M without
10532 					 * PG_AVAIL1, and then on the
10533 					 * next attempt we do not
10534 					 * observe either PG_M or
10535 					 * PG_AVAIL1, the other
10536 					 * write-back started after us
10537 					 * and finished before us.  We
10538 					 * can rely on it doing our
10539 					 * work.
10540 					 */
10541 					continue;
10542 				pmap_large_map_flush_range(va, inc);
10543 				atomic_clear_long(pe, X86_PG_AVAIL1);
10544 			}
10545 			break;
10546 		}
10547 		maybe_yield();
10548 	}
10549 }
10550 
10551 /*
10552  * Write-back cache lines for the given address range.
10553  *
10554  * Must be called only on the range or sub-range returned from
10555  * pmap_large_map().  Must not be called on the coalesced ranges.
10556  *
10557  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
10558  * instructions support.
10559  */
10560 void
pmap_large_map_wb(void * svap,vm_size_t len)10561 pmap_large_map_wb(void *svap, vm_size_t len)
10562 {
10563 	vm_offset_t eva, sva;
10564 
10565 	sva = (vm_offset_t)svap;
10566 	eva = sva + len;
10567 	pmap_large_map_wb_fence();
10568 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
10569 		pmap_large_map_flush_range(sva, len);
10570 	} else {
10571 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
10572 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
10573 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
10574 		pmap_large_map_wb_large(sva, eva);
10575 	}
10576 	pmap_large_map_wb_fence();
10577 }
10578 
10579 static vm_page_t
pmap_pti_alloc_page(void)10580 pmap_pti_alloc_page(void)
10581 {
10582 	vm_page_t m;
10583 
10584 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10585 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_NOBUSY |
10586 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
10587 	return (m);
10588 }
10589 
10590 static bool
pmap_pti_free_page(vm_page_t m)10591 pmap_pti_free_page(vm_page_t m)
10592 {
10593 
10594 	KASSERT(m->ref_count > 0, ("page %p not referenced", m));
10595 	if (!vm_page_unwire_noq(m))
10596 		return (false);
10597 	vm_page_free_zero(m);
10598 	return (true);
10599 }
10600 
10601 static void
pmap_pti_init(void)10602 pmap_pti_init(void)
10603 {
10604 	vm_page_t pml4_pg;
10605 	pdp_entry_t *pdpe;
10606 	vm_offset_t va;
10607 	int i;
10608 
10609 	if (!pti)
10610 		return;
10611 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
10612 	VM_OBJECT_WLOCK(pti_obj);
10613 	pml4_pg = pmap_pti_alloc_page();
10614 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
10615 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
10616 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
10617 		pdpe = pmap_pti_pdpe(va);
10618 		pmap_pti_wire_pte(pdpe);
10619 	}
10620 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
10621 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
10622 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
10623 	    sizeof(struct gate_descriptor) * NIDT, false);
10624 	CPU_FOREACH(i) {
10625 		/* Doublefault stack IST 1 */
10626 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
10627 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
10628 		/* NMI stack IST 2 */
10629 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
10630 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
10631 		/* MC# stack IST 3 */
10632 		va = __pcpu[i].pc_common_tss.tss_ist3 +
10633 		    sizeof(struct nmi_pcpu);
10634 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
10635 		/* DB# stack IST 4 */
10636 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
10637 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
10638 	}
10639 	pmap_pti_add_kva_locked((vm_offset_t)kernphys + KERNBASE,
10640 	    (vm_offset_t)etext, true);
10641 	pti_finalized = true;
10642 	VM_OBJECT_WUNLOCK(pti_obj);
10643 }
10644 SYSINIT(pmap_pti, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_pti_init, NULL);
10645 
10646 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)10647 pmap_pti_pdpe(vm_offset_t va)
10648 {
10649 	pml4_entry_t *pml4e;
10650 	pdp_entry_t *pdpe;
10651 	vm_page_t m;
10652 	vm_pindex_t pml4_idx;
10653 	vm_paddr_t mphys;
10654 
10655 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10656 
10657 	pml4_idx = pmap_pml4e_index(va);
10658 	pml4e = &pti_pml4[pml4_idx];
10659 	m = NULL;
10660 	if (*pml4e == 0) {
10661 		if (pti_finalized)
10662 			panic("pml4 alloc after finalization\n");
10663 		m = pmap_pti_alloc_page();
10664 		if (*pml4e != 0) {
10665 			pmap_pti_free_page(m);
10666 			mphys = *pml4e & ~PAGE_MASK;
10667 		} else {
10668 			mphys = VM_PAGE_TO_PHYS(m);
10669 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
10670 		}
10671 	} else {
10672 		mphys = *pml4e & ~PAGE_MASK;
10673 	}
10674 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
10675 	return (pdpe);
10676 }
10677 
10678 static void
pmap_pti_wire_pte(void * pte)10679 pmap_pti_wire_pte(void *pte)
10680 {
10681 	vm_page_t m;
10682 
10683 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10684 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
10685 	m->ref_count++;
10686 }
10687 
10688 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)10689 pmap_pti_unwire_pde(void *pde, bool only_ref)
10690 {
10691 	vm_page_t m;
10692 
10693 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10694 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
10695 	MPASS(m->ref_count > 0);
10696 	MPASS(only_ref || m->ref_count > 1);
10697 	pmap_pti_free_page(m);
10698 }
10699 
10700 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)10701 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
10702 {
10703 	vm_page_t m;
10704 	pd_entry_t *pde;
10705 
10706 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10707 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
10708 	MPASS(m->ref_count > 0);
10709 	if (pmap_pti_free_page(m)) {
10710 		pde = pmap_pti_pde(va);
10711 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
10712 		*pde = 0;
10713 		pmap_pti_unwire_pde(pde, false);
10714 	}
10715 }
10716 
10717 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)10718 pmap_pti_pde(vm_offset_t va)
10719 {
10720 	pdp_entry_t *pdpe;
10721 	pd_entry_t *pde;
10722 	vm_page_t m;
10723 	vm_pindex_t pd_idx;
10724 	vm_paddr_t mphys;
10725 
10726 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10727 
10728 	pdpe = pmap_pti_pdpe(va);
10729 	if (*pdpe == 0) {
10730 		m = pmap_pti_alloc_page();
10731 		if (*pdpe != 0) {
10732 			pmap_pti_free_page(m);
10733 			MPASS((*pdpe & X86_PG_PS) == 0);
10734 			mphys = *pdpe & ~PAGE_MASK;
10735 		} else {
10736 			mphys =  VM_PAGE_TO_PHYS(m);
10737 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
10738 		}
10739 	} else {
10740 		MPASS((*pdpe & X86_PG_PS) == 0);
10741 		mphys = *pdpe & ~PAGE_MASK;
10742 	}
10743 
10744 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
10745 	pd_idx = pmap_pde_index(va);
10746 	pde += pd_idx;
10747 	return (pde);
10748 }
10749 
10750 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)10751 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
10752 {
10753 	pd_entry_t *pde;
10754 	pt_entry_t *pte;
10755 	vm_page_t m;
10756 	vm_paddr_t mphys;
10757 
10758 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10759 
10760 	pde = pmap_pti_pde(va);
10761 	if (unwire_pde != NULL) {
10762 		*unwire_pde = true;
10763 		pmap_pti_wire_pte(pde);
10764 	}
10765 	if (*pde == 0) {
10766 		m = pmap_pti_alloc_page();
10767 		if (*pde != 0) {
10768 			pmap_pti_free_page(m);
10769 			MPASS((*pde & X86_PG_PS) == 0);
10770 			mphys = *pde & ~(PAGE_MASK | pg_nx);
10771 		} else {
10772 			mphys = VM_PAGE_TO_PHYS(m);
10773 			*pde = mphys | X86_PG_RW | X86_PG_V;
10774 			if (unwire_pde != NULL)
10775 				*unwire_pde = false;
10776 		}
10777 	} else {
10778 		MPASS((*pde & X86_PG_PS) == 0);
10779 		mphys = *pde & ~(PAGE_MASK | pg_nx);
10780 	}
10781 
10782 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
10783 	pte += pmap_pte_index(va);
10784 
10785 	return (pte);
10786 }
10787 
10788 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)10789 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
10790 {
10791 	vm_paddr_t pa;
10792 	pd_entry_t *pde;
10793 	pt_entry_t *pte, ptev;
10794 	bool unwire_pde;
10795 
10796 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
10797 
10798 	sva = trunc_page(sva);
10799 	MPASS(sva > VM_MAXUSER_ADDRESS);
10800 	eva = round_page(eva);
10801 	MPASS(sva < eva);
10802 	for (; sva < eva; sva += PAGE_SIZE) {
10803 		pte = pmap_pti_pte(sva, &unwire_pde);
10804 		pa = pmap_kextract(sva);
10805 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
10806 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
10807 		    VM_MEMATTR_DEFAULT, FALSE);
10808 		if (*pte == 0) {
10809 			pte_store(pte, ptev);
10810 			pmap_pti_wire_pte(pte);
10811 		} else {
10812 			KASSERT(!pti_finalized,
10813 			    ("pti overlap after fin %#lx %#lx %#lx",
10814 			    sva, *pte, ptev));
10815 			KASSERT(*pte == ptev,
10816 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
10817 			    sva, *pte, ptev));
10818 		}
10819 		if (unwire_pde) {
10820 			pde = pmap_pti_pde(sva);
10821 			pmap_pti_unwire_pde(pde, true);
10822 		}
10823 	}
10824 }
10825 
10826 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)10827 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
10828 {
10829 
10830 	if (!pti)
10831 		return;
10832 	VM_OBJECT_WLOCK(pti_obj);
10833 	pmap_pti_add_kva_locked(sva, eva, exec);
10834 	VM_OBJECT_WUNLOCK(pti_obj);
10835 }
10836 
10837 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)10838 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
10839 {
10840 	pt_entry_t *pte;
10841 	vm_offset_t va;
10842 
10843 	if (!pti)
10844 		return;
10845 	sva = rounddown2(sva, PAGE_SIZE);
10846 	MPASS(sva > VM_MAXUSER_ADDRESS);
10847 	eva = roundup2(eva, PAGE_SIZE);
10848 	MPASS(sva < eva);
10849 	VM_OBJECT_WLOCK(pti_obj);
10850 	for (va = sva; va < eva; va += PAGE_SIZE) {
10851 		pte = pmap_pti_pte(va, NULL);
10852 		KASSERT((*pte & X86_PG_V) != 0,
10853 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10854 		    (u_long)pte, *pte));
10855 		pte_clear(pte);
10856 		pmap_pti_unwire_pte(pte, va);
10857 	}
10858 	pmap_invalidate_range(kernel_pmap, sva, eva);
10859 	VM_OBJECT_WUNLOCK(pti_obj);
10860 }
10861 
10862 static void *
pkru_dup_range(void * ctx __unused,void * data)10863 pkru_dup_range(void *ctx __unused, void *data)
10864 {
10865 	struct pmap_pkru_range *node, *new_node;
10866 
10867 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
10868 	if (new_node == NULL)
10869 		return (NULL);
10870 	node = data;
10871 	memcpy(new_node, node, sizeof(*node));
10872 	return (new_node);
10873 }
10874 
10875 static void
pkru_free_range(void * ctx __unused,void * node)10876 pkru_free_range(void *ctx __unused, void *node)
10877 {
10878 
10879 	uma_zfree(pmap_pkru_ranges_zone, node);
10880 }
10881 
10882 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)10883 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
10884     int flags)
10885 {
10886 	struct pmap_pkru_range *ppr;
10887 	int error;
10888 
10889 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10890 	MPASS(pmap->pm_type == PT_X86);
10891 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
10892 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
10893 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
10894 		return (EBUSY);
10895 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
10896 	if (ppr == NULL)
10897 		return (ENOMEM);
10898 	ppr->pkru_keyidx = keyidx;
10899 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
10900 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
10901 	if (error != 0)
10902 		uma_zfree(pmap_pkru_ranges_zone, ppr);
10903 	return (error);
10904 }
10905 
10906 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)10907 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
10908 {
10909 
10910 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10911 	MPASS(pmap->pm_type == PT_X86);
10912 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
10913 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
10914 }
10915 
10916 static void
pmap_pkru_deassign_all(pmap_t pmap)10917 pmap_pkru_deassign_all(pmap_t pmap)
10918 {
10919 
10920 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10921 	if (pmap->pm_type == PT_X86 &&
10922 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
10923 		rangeset_remove_all(&pmap->pm_pkru);
10924 }
10925 
10926 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)10927 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
10928 {
10929 	struct pmap_pkru_range *ppr, *prev_ppr;
10930 	vm_offset_t va;
10931 
10932 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10933 	if (pmap->pm_type != PT_X86 ||
10934 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
10935 	    sva >= VM_MAXUSER_ADDRESS)
10936 		return (true);
10937 	MPASS(eva <= VM_MAXUSER_ADDRESS);
10938 	for (va = sva; va < eva; prev_ppr = ppr) {
10939 		ppr = rangeset_lookup(&pmap->pm_pkru, va);
10940 		if (va == sva)
10941 			prev_ppr = ppr;
10942 		else if ((ppr == NULL) ^ (prev_ppr == NULL))
10943 			return (false);
10944 		if (ppr == NULL) {
10945 			va += PAGE_SIZE;
10946 			continue;
10947 		}
10948 		if (prev_ppr->pkru_keyidx != ppr->pkru_keyidx)
10949 			return (false);
10950 		va = ppr->pkru_rs_el.re_end;
10951 	}
10952 	return (true);
10953 }
10954 
10955 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)10956 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
10957 {
10958 	struct pmap_pkru_range *ppr;
10959 
10960 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10961 	if (pmap->pm_type != PT_X86 ||
10962 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
10963 	    va >= VM_MAXUSER_ADDRESS)
10964 		return (0);
10965 	ppr = rangeset_lookup(&pmap->pm_pkru, va);
10966 	if (ppr != NULL)
10967 		return (X86_PG_PKU(ppr->pkru_keyidx));
10968 	return (0);
10969 }
10970 
10971 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)10972 pred_pkru_on_remove(void *ctx __unused, void *r)
10973 {
10974 	struct pmap_pkru_range *ppr;
10975 
10976 	ppr = r;
10977 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
10978 }
10979 
10980 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)10981 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
10982 {
10983 
10984 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
10985 	if (pmap->pm_type == PT_X86 &&
10986 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
10987 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
10988 		    pred_pkru_on_remove);
10989 	}
10990 }
10991 
10992 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)10993 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
10994 {
10995 
10996 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
10997 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
10998 	MPASS(dst_pmap->pm_type == PT_X86);
10999 	MPASS(src_pmap->pm_type == PT_X86);
11000 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11001 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11002 		return (0);
11003 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11004 }
11005 
11006 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11007 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11008     u_int keyidx)
11009 {
11010 	pml4_entry_t *pml4e;
11011 	pdp_entry_t *pdpe;
11012 	pd_entry_t newpde, ptpaddr, *pde;
11013 	pt_entry_t newpte, *ptep, pte;
11014 	vm_offset_t va, va_next;
11015 	bool changed;
11016 
11017 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11018 	MPASS(pmap->pm_type == PT_X86);
11019 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11020 
11021 	for (changed = false, va = sva; va < eva; va = va_next) {
11022 		pml4e = pmap_pml4e(pmap, va);
11023 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11024 			va_next = (va + NBPML4) & ~PML4MASK;
11025 			if (va_next < va)
11026 				va_next = eva;
11027 			continue;
11028 		}
11029 
11030 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11031 		if ((*pdpe & X86_PG_V) == 0) {
11032 			va_next = (va + NBPDP) & ~PDPMASK;
11033 			if (va_next < va)
11034 				va_next = eva;
11035 			continue;
11036 		}
11037 
11038 		va_next = (va + NBPDR) & ~PDRMASK;
11039 		if (va_next < va)
11040 			va_next = eva;
11041 
11042 		pde = pmap_pdpe_to_pde(pdpe, va);
11043 		ptpaddr = *pde;
11044 		if (ptpaddr == 0)
11045 			continue;
11046 
11047 		MPASS((ptpaddr & X86_PG_V) != 0);
11048 		if ((ptpaddr & PG_PS) != 0) {
11049 			if (va + NBPDR == va_next && eva >= va_next) {
11050 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11051 				    X86_PG_PKU(keyidx);
11052 				if (newpde != ptpaddr) {
11053 					*pde = newpde;
11054 					changed = true;
11055 				}
11056 				continue;
11057 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11058 				continue;
11059 			}
11060 		}
11061 
11062 		if (va_next > eva)
11063 			va_next = eva;
11064 
11065 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11066 		    ptep++, va += PAGE_SIZE) {
11067 			pte = *ptep;
11068 			if ((pte & X86_PG_V) == 0)
11069 				continue;
11070 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11071 			if (newpte != pte) {
11072 				*ptep = newpte;
11073 				changed = true;
11074 			}
11075 		}
11076 	}
11077 	if (changed)
11078 		pmap_invalidate_range(pmap, sva, eva);
11079 }
11080 
11081 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11082 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11083     u_int keyidx, int flags)
11084 {
11085 
11086 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11087 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11088 		return (EINVAL);
11089 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11090 		return (EFAULT);
11091 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11092 		return (ENOTSUP);
11093 	return (0);
11094 }
11095 
11096 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11097 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11098     int flags)
11099 {
11100 	int error;
11101 
11102 	sva = trunc_page(sva);
11103 	eva = round_page(eva);
11104 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11105 	if (error != 0)
11106 		return (error);
11107 	for (;;) {
11108 		PMAP_LOCK(pmap);
11109 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11110 		if (error == 0)
11111 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11112 		PMAP_UNLOCK(pmap);
11113 		if (error != ENOMEM)
11114 			break;
11115 		vm_wait(NULL);
11116 	}
11117 	return (error);
11118 }
11119 
11120 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11121 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11122 {
11123 	int error;
11124 
11125 	sva = trunc_page(sva);
11126 	eva = round_page(eva);
11127 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11128 	if (error != 0)
11129 		return (error);
11130 	for (;;) {
11131 		PMAP_LOCK(pmap);
11132 		error = pmap_pkru_deassign(pmap, sva, eva);
11133 		if (error == 0)
11134 			pmap_pkru_update_range(pmap, sva, eva, 0);
11135 		PMAP_UNLOCK(pmap);
11136 		if (error != ENOMEM)
11137 			break;
11138 		vm_wait(NULL);
11139 	}
11140 	return (error);
11141 }
11142 
11143 /*
11144  * Track a range of the kernel's virtual address space that is contiguous
11145  * in various mapping attributes.
11146  */
11147 struct pmap_kernel_map_range {
11148 	vm_offset_t sva;
11149 	pt_entry_t attrs;
11150 	int ptes;
11151 	int pdes;
11152 	int pdpes;
11153 };
11154 
11155 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11156 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11157     vm_offset_t eva)
11158 {
11159 	const char *mode;
11160 	int i, pat_idx;
11161 
11162 	if (eva <= range->sva)
11163 		return;
11164 
11165 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11166 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11167 		if (pat_index[i] == pat_idx)
11168 			break;
11169 
11170 	switch (i) {
11171 	case PAT_WRITE_BACK:
11172 		mode = "WB";
11173 		break;
11174 	case PAT_WRITE_THROUGH:
11175 		mode = "WT";
11176 		break;
11177 	case PAT_UNCACHEABLE:
11178 		mode = "UC";
11179 		break;
11180 	case PAT_UNCACHED:
11181 		mode = "U-";
11182 		break;
11183 	case PAT_WRITE_PROTECTED:
11184 		mode = "WP";
11185 		break;
11186 	case PAT_WRITE_COMBINING:
11187 		mode = "WC";
11188 		break;
11189 	default:
11190 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11191 		    __func__, pat_idx, range->sva, eva);
11192 		mode = "??";
11193 		break;
11194 	}
11195 
11196 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11197 	    range->sva, eva,
11198 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11199 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11200 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11201 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11202 	    mode, range->pdpes, range->pdes, range->ptes);
11203 
11204 	/* Reset to sentinel value. */
11205 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11206 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11207 	    NPDEPG - 1, NPTEPG - 1);
11208 }
11209 
11210 /*
11211  * Determine whether the attributes specified by a page table entry match those
11212  * being tracked by the current range.  This is not quite as simple as a direct
11213  * flag comparison since some PAT modes have multiple representations.
11214  */
11215 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11216 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11217 {
11218 	pt_entry_t diff, mask;
11219 
11220 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11221 	diff = (range->attrs ^ attrs) & mask;
11222 	if (diff == 0)
11223 		return (true);
11224 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11225 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11226 	    pmap_pat_index(kernel_pmap, attrs, true))
11227 		return (true);
11228 	return (false);
11229 }
11230 
11231 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11232 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11233     pt_entry_t attrs)
11234 {
11235 
11236 	memset(range, 0, sizeof(*range));
11237 	range->sva = va;
11238 	range->attrs = attrs;
11239 }
11240 
11241 /*
11242  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11243  * those of the current run, dump the address range and its attributes, and
11244  * begin a new run.
11245  */
11246 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11247 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11248     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11249     pt_entry_t pte)
11250 {
11251 	pt_entry_t attrs;
11252 
11253 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11254 
11255 	attrs |= pdpe & pg_nx;
11256 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11257 	if ((pdpe & PG_PS) != 0) {
11258 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11259 	} else if (pde != 0) {
11260 		attrs |= pde & pg_nx;
11261 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11262 	}
11263 	if ((pde & PG_PS) != 0) {
11264 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11265 	} else if (pte != 0) {
11266 		attrs |= pte & pg_nx;
11267 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11268 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11269 
11270 		/* Canonicalize by always using the PDE PAT bit. */
11271 		if ((attrs & X86_PG_PTE_PAT) != 0)
11272 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11273 	}
11274 
11275 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11276 		sysctl_kmaps_dump(sb, range, va);
11277 		sysctl_kmaps_reinit(range, va, attrs);
11278 	}
11279 }
11280 
11281 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)11282 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11283 {
11284 	struct pmap_kernel_map_range range;
11285 	struct sbuf sbuf, *sb;
11286 	pml4_entry_t pml4e;
11287 	pdp_entry_t *pdp, pdpe;
11288 	pd_entry_t *pd, pde;
11289 	pt_entry_t *pt, pte;
11290 	vm_offset_t sva;
11291 	vm_paddr_t pa;
11292 	int error, i, j, k, l;
11293 
11294 	error = sysctl_wire_old_buffer(req, 0);
11295 	if (error != 0)
11296 		return (error);
11297 	sb = &sbuf;
11298 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
11299 
11300 	/* Sentinel value. */
11301 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11302 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11303 	    NPDEPG - 1, NPTEPG - 1);
11304 
11305 	/*
11306 	 * Iterate over the kernel page tables without holding the kernel pmap
11307 	 * lock.  Outside of the large map, kernel page table pages are never
11308 	 * freed, so at worst we will observe inconsistencies in the output.
11309 	 * Within the large map, ensure that PDP and PD page addresses are
11310 	 * valid before descending.
11311 	 */
11312 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
11313 		switch (i) {
11314 		case PML4PML4I:
11315 			sbuf_printf(sb, "\nRecursive map:\n");
11316 			break;
11317 		case DMPML4I:
11318 			sbuf_printf(sb, "\nDirect map:\n");
11319 			break;
11320 		case KPML4BASE:
11321 			sbuf_printf(sb, "\nKernel map:\n");
11322 			break;
11323 		case LMSPML4I:
11324 			sbuf_printf(sb, "\nLarge map:\n");
11325 			break;
11326 		}
11327 
11328 		/* Convert to canonical form. */
11329 		if (sva == 1ul << 47)
11330 			sva |= -1ul << 48;
11331 
11332 restart:
11333 		pml4e = kernel_pml4[i];
11334 		if ((pml4e & X86_PG_V) == 0) {
11335 			sva = rounddown2(sva, NBPML4);
11336 			sysctl_kmaps_dump(sb, &range, sva);
11337 			sva += NBPML4;
11338 			continue;
11339 		}
11340 		pa = pml4e & PG_FRAME;
11341 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
11342 
11343 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
11344 			pdpe = pdp[j];
11345 			if ((pdpe & X86_PG_V) == 0) {
11346 				sva = rounddown2(sva, NBPDP);
11347 				sysctl_kmaps_dump(sb, &range, sva);
11348 				sva += NBPDP;
11349 				continue;
11350 			}
11351 			pa = pdpe & PG_FRAME;
11352 			if ((pdpe & PG_PS) != 0) {
11353 				sva = rounddown2(sva, NBPDP);
11354 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
11355 				    0, 0);
11356 				range.pdpes++;
11357 				sva += NBPDP;
11358 				continue;
11359 			}
11360 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11361 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
11362 				/*
11363 				 * Page table pages for the large map may be
11364 				 * freed.  Validate the next-level address
11365 				 * before descending.
11366 				 */
11367 				goto restart;
11368 			}
11369 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
11370 
11371 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
11372 				pde = pd[k];
11373 				if ((pde & X86_PG_V) == 0) {
11374 					sva = rounddown2(sva, NBPDR);
11375 					sysctl_kmaps_dump(sb, &range, sva);
11376 					sva += NBPDR;
11377 					continue;
11378 				}
11379 				pa = pde & PG_FRAME;
11380 				if ((pde & PG_PS) != 0) {
11381 					sva = rounddown2(sva, NBPDR);
11382 					sysctl_kmaps_check(sb, &range, sva,
11383 					    pml4e, pdpe, pde, 0);
11384 					range.pdes++;
11385 					sva += NBPDR;
11386 					continue;
11387 				}
11388 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
11389 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
11390 					/*
11391 					 * Page table pages for the large map
11392 					 * may be freed.  Validate the
11393 					 * next-level address before descending.
11394 					 */
11395 					goto restart;
11396 				}
11397 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
11398 
11399 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
11400 				    sva += PAGE_SIZE) {
11401 					pte = pt[l];
11402 					if ((pte & X86_PG_V) == 0) {
11403 						sysctl_kmaps_dump(sb, &range,
11404 						    sva);
11405 						continue;
11406 					}
11407 					sysctl_kmaps_check(sb, &range, sva,
11408 					    pml4e, pdpe, pde, pte);
11409 					range.ptes++;
11410 				}
11411 			}
11412 		}
11413 	}
11414 
11415 	error = sbuf_finish(sb);
11416 	sbuf_delete(sb);
11417 	return (error);
11418 }
11419 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
11420     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
11421     NULL, 0, sysctl_kmaps, "A",
11422     "Dump kernel address layout");
11423 
11424 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)11425 DB_SHOW_COMMAND(pte, pmap_print_pte)
11426 {
11427 	pmap_t pmap;
11428 	pml5_entry_t *pml5;
11429 	pml4_entry_t *pml4;
11430 	pdp_entry_t *pdp;
11431 	pd_entry_t *pde;
11432 	pt_entry_t *pte, PG_V;
11433 	vm_offset_t va;
11434 
11435 	if (!have_addr) {
11436 		db_printf("show pte addr\n");
11437 		return;
11438 	}
11439 	va = (vm_offset_t)addr;
11440 
11441 	if (kdb_thread != NULL)
11442 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
11443 	else
11444 		pmap = PCPU_GET(curpmap);
11445 
11446 	PG_V = pmap_valid_bit(pmap);
11447 	db_printf("VA 0x%016lx", va);
11448 
11449 	if (pmap_is_la57(pmap)) {
11450 		pml5 = pmap_pml5e(pmap, va);
11451 		db_printf(" pml5e 0x%016lx", *pml5);
11452 		if ((*pml5 & PG_V) == 0) {
11453 			db_printf("\n");
11454 			return;
11455 		}
11456 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
11457 	} else {
11458 		pml4 = pmap_pml4e(pmap, va);
11459 	}
11460 	db_printf(" pml4e 0x%016lx", *pml4);
11461 	if ((*pml4 & PG_V) == 0) {
11462 		db_printf("\n");
11463 		return;
11464 	}
11465 	pdp = pmap_pml4e_to_pdpe(pml4, va);
11466 	db_printf(" pdpe 0x%016lx", *pdp);
11467 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
11468 		db_printf("\n");
11469 		return;
11470 	}
11471 	pde = pmap_pdpe_to_pde(pdp, va);
11472 	db_printf(" pde 0x%016lx", *pde);
11473 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
11474 		db_printf("\n");
11475 		return;
11476 	}
11477 	pte = pmap_pde_to_pte(pde, va);
11478 	db_printf(" pte 0x%016lx\n", *pte);
11479 }
11480 
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)11481 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
11482 {
11483 	vm_paddr_t a;
11484 
11485 	if (have_addr) {
11486 		a = (vm_paddr_t)addr;
11487 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
11488 	} else {
11489 		db_printf("show phys2dmap addr\n");
11490 	}
11491 }
11492 
11493 static void
ptpages_show_page(int level,int idx,vm_page_t pg)11494 ptpages_show_page(int level, int idx, vm_page_t pg)
11495 {
11496 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
11497 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
11498 }
11499 
11500 static void
ptpages_show_complain(int level,int idx,uint64_t pte)11501 ptpages_show_complain(int level, int idx, uint64_t pte)
11502 {
11503 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
11504 }
11505 
11506 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)11507 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
11508 {
11509 	vm_page_t pg3, pg2, pg1;
11510 	pml4_entry_t *pml4;
11511 	pdp_entry_t *pdp;
11512 	pd_entry_t *pd;
11513 	int i4, i3, i2;
11514 
11515 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
11516 	for (i4 = 0; i4 < num_entries; i4++) {
11517 		if ((pml4[i4] & PG_V) == 0)
11518 			continue;
11519 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
11520 		if (pg3 == NULL) {
11521 			ptpages_show_complain(3, i4, pml4[i4]);
11522 			continue;
11523 		}
11524 		ptpages_show_page(3, i4, pg3);
11525 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
11526 		for (i3 = 0; i3 < NPDPEPG; i3++) {
11527 			if ((pdp[i3] & PG_V) == 0)
11528 				continue;
11529 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
11530 			if (pg3 == NULL) {
11531 				ptpages_show_complain(2, i3, pdp[i3]);
11532 				continue;
11533 			}
11534 			ptpages_show_page(2, i3, pg2);
11535 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
11536 			for (i2 = 0; i2 < NPDEPG; i2++) {
11537 				if ((pd[i2] & PG_V) == 0)
11538 					continue;
11539 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
11540 				if (pg1 == NULL) {
11541 					ptpages_show_complain(1, i2, pd[i2]);
11542 					continue;
11543 				}
11544 				ptpages_show_page(1, i2, pg1);
11545 			}
11546 		}
11547 	}
11548 }
11549 
DB_SHOW_COMMAND(ptpages,pmap_ptpages)11550 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
11551 {
11552 	pmap_t pmap;
11553 	vm_page_t pg;
11554 	pml5_entry_t *pml5;
11555 	uint64_t PG_V;
11556 	int i5;
11557 
11558 	if (have_addr)
11559 		pmap = (pmap_t)addr;
11560 	else
11561 		pmap = PCPU_GET(curpmap);
11562 
11563 	PG_V = pmap_valid_bit(pmap);
11564 
11565 	if (pmap_is_la57(pmap)) {
11566 		pml5 = pmap->pm_pmltop;
11567 		for (i5 = 0; i5 < NUPML5E; i5++) {
11568 			if ((pml5[i5] & PG_V) == 0)
11569 				continue;
11570 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
11571 			if (pg == NULL) {
11572 				ptpages_show_complain(4, i5, pml5[i5]);
11573 				continue;
11574 			}
11575 			ptpages_show_page(4, i5, pg);
11576 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
11577 		}
11578 	} else {
11579 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
11580 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
11581 	}
11582 }
11583 #endif
11584