1 /* hyperloglog.c - Redis HyperLogLog probabilistic cardinality approximation.
2 * This file implements the algorithm and the exported Redis commands.
3 *
4 * Copyright (c) 2014, Salvatore Sanfilippo <antirez at gmail dot com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * * Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * * Neither the name of Redis nor the names of its contributors may be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include "server.h"
33
34 #include <stdint.h>
35 #include <math.h>
36
37 /* The Redis HyperLogLog implementation is based on the following ideas:
38 *
39 * * The use of a 64 bit hash function as proposed in [1], in order to don't
40 * limited to cardinalities up to 10^9, at the cost of just 1 additional
41 * bit per register.
42 * * The use of 16384 6-bit registers for a great level of accuracy, using
43 * a total of 12k per key.
44 * * The use of the Redis string data type. No new type is introduced.
45 * * No attempt is made to compress the data structure as in [1]. Also the
46 * algorithm used is the original HyperLogLog Algorithm as in [2], with
47 * the only difference that a 64 bit hash function is used, so no correction
48 * is performed for values near 2^32 as in [1].
49 *
50 * [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic
51 * Engineering of a State of The Art Cardinality Estimation Algorithm.
52 *
53 * [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
54 * analysis of a near-optimal cardinality estimation algorithm.
55 *
56 * Redis uses two representations:
57 *
58 * 1) A "dense" representation where every entry is represented by
59 * a 6-bit integer.
60 * 2) A "sparse" representation using run length compression suitable
61 * for representing HyperLogLogs with many registers set to 0 in
62 * a memory efficient way.
63 *
64 *
65 * HLL header
66 * ===
67 *
68 * Both the dense and sparse representation have a 16 byte header as follows:
69 *
70 * +------+---+-----+----------+
71 * | HYLL | E | N/U | Cardin. |
72 * +------+---+-----+----------+
73 *
74 * The first 4 bytes are a magic string set to the bytes "HYLL".
75 * "E" is one byte encoding, currently set to HLL_DENSE or
76 * HLL_SPARSE. N/U are three not used bytes.
77 *
78 * The "Cardin." field is a 64 bit integer stored in little endian format
79 * with the latest cardinality computed that can be reused if the data
80 * structure was not modified since the last computation (this is useful
81 * because there are high probabilities that HLLADD operations don't
82 * modify the actual data structure and hence the approximated cardinality).
83 *
84 * When the most significant bit in the most significant byte of the cached
85 * cardinality is set, it means that the data structure was modified and
86 * we can't reuse the cached value that must be recomputed.
87 *
88 * Dense representation
89 * ===
90 *
91 * The dense representation used by Redis is the following:
92 *
93 * +--------+--------+--------+------// //--+
94 * |11000000|22221111|33333322|55444444 .... |
95 * +--------+--------+--------+------// //--+
96 *
97 * The 6 bits counters are encoded one after the other starting from the
98 * LSB to the MSB, and using the next bytes as needed.
99 *
100 * Sparse representation
101 * ===
102 *
103 * The sparse representation encodes registers using a run length
104 * encoding composed of three opcodes, two using one byte, and one using
105 * of two bytes. The opcodes are called ZERO, XZERO and VAL.
106 *
107 * ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented
108 * by the six bits 'xxxxxx', plus 1, means that there are N registers set
109 * to 0. This opcode can represent from 1 to 64 contiguous registers set
110 * to the value of 0.
111 *
112 * XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit
113 * integer represented by the bits 'xxxxxx' as most significant bits and
114 * 'yyyyyyyy' as least significant bits, plus 1, means that there are N
115 * registers set to 0. This opcode can represent from 0 to 16384 contiguous
116 * registers set to the value of 0.
117 *
118 * VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer
119 * representing the value of a register, and a 2-bit integer representing
120 * the number of contiguous registers set to that value 'vvvvv'.
121 * To obtain the value and run length, the integers vvvvv and xx must be
122 * incremented by one. This opcode can represent values from 1 to 32,
123 * repeated from 1 to 4 times.
124 *
125 * The sparse representation can't represent registers with a value greater
126 * than 32, however it is very unlikely that we find such a register in an
127 * HLL with a cardinality where the sparse representation is still more
128 * memory efficient than the dense representation. When this happens the
129 * HLL is converted to the dense representation.
130 *
131 * The sparse representation is purely positional. For example a sparse
132 * representation of an empty HLL is just: XZERO:16384.
133 *
134 * An HLL having only 3 non-zero registers at position 1000, 1020, 1021
135 * respectively set to 2, 3, 3, is represented by the following three
136 * opcodes:
137 *
138 * XZERO:1000 (Registers 0-999 are set to 0)
139 * VAL:2,1 (1 register set to value 2, that is register 1000)
140 * ZERO:19 (Registers 1001-1019 set to 0)
141 * VAL:3,2 (2 registers set to value 3, that is registers 1020,1021)
142 * XZERO:15362 (Registers 1022-16383 set to 0)
143 *
144 * In the example the sparse representation used just 7 bytes instead
145 * of 12k in order to represent the HLL registers. In general for low
146 * cardinality there is a big win in terms of space efficiency, traded
147 * with CPU time since the sparse representation is slower to access:
148 *
149 * The following table shows average cardinality vs bytes used, 100
150 * samples per cardinality (when the set was not representable because
151 * of registers with too big value, the dense representation size was used
152 * as a sample).
153 *
154 * 100 267
155 * 200 485
156 * 300 678
157 * 400 859
158 * 500 1033
159 * 600 1205
160 * 700 1375
161 * 800 1544
162 * 900 1713
163 * 1000 1882
164 * 2000 3480
165 * 3000 4879
166 * 4000 6089
167 * 5000 7138
168 * 6000 8042
169 * 7000 8823
170 * 8000 9500
171 * 9000 10088
172 * 10000 10591
173 *
174 * The dense representation uses 12288 bytes, so there is a big win up to
175 * a cardinality of ~2000-3000. For bigger cardinalities the constant times
176 * involved in updating the sparse representation is not justified by the
177 * memory savings. The exact maximum length of the sparse representation
178 * when this implementation switches to the dense representation is
179 * configured via the define server.hll_sparse_max_bytes.
180 */
181
182 struct hllhdr {
183 char magic[4]; /* "HYLL" */
184 uint8_t encoding; /* HLL_DENSE or HLL_SPARSE. */
185 uint8_t notused[3]; /* Reserved for future use, must be zero. */
186 uint8_t card[8]; /* Cached cardinality, little endian. */
187 uint8_t registers[]; /* Data bytes. */
188 };
189
190 /* The cached cardinality MSB is used to signal validity of the cached value. */
191 #define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[7] |= (1<<7)
192 #define HLL_VALID_CACHE(hdr) (((hdr)->card[7] & (1<<7)) == 0)
193
194 #define HLL_P 14 /* The greater is P, the smaller the error. */
195 #define HLL_Q (64-HLL_P) /* The number of bits of the hash value used for
196 determining the number of leading zeros. */
197 #define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */
198 #define HLL_P_MASK (HLL_REGISTERS-1) /* Mask to index register. */
199 #define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */
200 #define HLL_REGISTER_MAX ((1<<HLL_BITS)-1)
201 #define HLL_HDR_SIZE sizeof(struct hllhdr)
202 #define HLL_DENSE_SIZE (HLL_HDR_SIZE+((HLL_REGISTERS*HLL_BITS+7)/8))
203 #define HLL_DENSE 0 /* Dense encoding. */
204 #define HLL_SPARSE 1 /* Sparse encoding. */
205 #define HLL_RAW 255 /* Only used internally, never exposed. */
206 #define HLL_MAX_ENCODING 1
207
208 static char *invalid_hll_err = "-INVALIDOBJ Corrupted HLL object detected\r\n";
209
210 /* =========================== Low level bit macros ========================= */
211
212 /* Macros to access the dense representation.
213 *
214 * We need to get and set 6 bit counters in an array of 8 bit bytes.
215 * We use macros to make sure the code is inlined since speed is critical
216 * especially in order to compute the approximated cardinality in
217 * HLLCOUNT where we need to access all the registers at once.
218 * For the same reason we also want to avoid conditionals in this code path.
219 *
220 * +--------+--------+--------+------//
221 * |11000000|22221111|33333322|55444444
222 * +--------+--------+--------+------//
223 *
224 * Note: in the above representation the most significant bit (MSB)
225 * of every byte is on the left. We start using bits from the LSB to MSB,
226 * and so forth passing to the next byte.
227 *
228 * Example, we want to access to counter at pos = 1 ("111111" in the
229 * illustration above).
230 *
231 * The index of the first byte b0 containing our data is:
232 *
233 * b0 = 6 * pos / 8 = 0
234 *
235 * +--------+
236 * |11000000| <- Our byte at b0
237 * +--------+
238 *
239 * The position of the first bit (counting from the LSB = 0) in the byte
240 * is given by:
241 *
242 * fb = 6 * pos % 8 -> 6
243 *
244 * Right shift b0 of 'fb' bits.
245 *
246 * +--------+
247 * |11000000| <- Initial value of b0
248 * |00000011| <- After right shift of 6 pos.
249 * +--------+
250 *
251 * Left shift b1 of bits 8-fb bits (2 bits)
252 *
253 * +--------+
254 * |22221111| <- Initial value of b1
255 * |22111100| <- After left shift of 2 bits.
256 * +--------+
257 *
258 * OR the two bits, and finally AND with 111111 (63 in decimal) to
259 * clean the higher order bits we are not interested in:
260 *
261 * +--------+
262 * |00000011| <- b0 right shifted
263 * |22111100| <- b1 left shifted
264 * |22111111| <- b0 OR b1
265 * | 111111| <- (b0 OR b1) AND 63, our value.
266 * +--------+
267 *
268 * We can try with a different example, like pos = 0. In this case
269 * the 6-bit counter is actually contained in a single byte.
270 *
271 * b0 = 6 * pos / 8 = 0
272 *
273 * +--------+
274 * |11000000| <- Our byte at b0
275 * +--------+
276 *
277 * fb = 6 * pos % 8 = 0
278 *
279 * So we right shift of 0 bits (no shift in practice) and
280 * left shift the next byte of 8 bits, even if we don't use it,
281 * but this has the effect of clearing the bits so the result
282 * will not be affacted after the OR.
283 *
284 * -------------------------------------------------------------------------
285 *
286 * Setting the register is a bit more complex, let's assume that 'val'
287 * is the value we want to set, already in the right range.
288 *
289 * We need two steps, in one we need to clear the bits, and in the other
290 * we need to bitwise-OR the new bits.
291 *
292 * Let's try with 'pos' = 1, so our first byte at 'b' is 0,
293 *
294 * "fb" is 6 in this case.
295 *
296 * +--------+
297 * |11000000| <- Our byte at b0
298 * +--------+
299 *
300 * To create a AND-mask to clear the bits about this position, we just
301 * initialize the mask with the value 63, left shift it of "fs" bits,
302 * and finally invert the result.
303 *
304 * +--------+
305 * |00111111| <- "mask" starts at 63
306 * |11000000| <- "mask" after left shift of "ls" bits.
307 * |00111111| <- "mask" after invert.
308 * +--------+
309 *
310 * Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR
311 * it with "val" left-shifted of "ls" bits to set the new bits.
312 *
313 * Now let's focus on the next byte b1:
314 *
315 * +--------+
316 * |22221111| <- Initial value of b1
317 * +--------+
318 *
319 * To build the AND mask we start again with the 63 value, right shift
320 * it by 8-fb bits, and invert it.
321 *
322 * +--------+
323 * |00111111| <- "mask" set at 2&6-1
324 * |00001111| <- "mask" after the right shift by 8-fb = 2 bits
325 * |11110000| <- "mask" after bitwise not.
326 * +--------+
327 *
328 * Now we can mask it with b+1 to clear the old bits, and bitwise-OR
329 * with "val" left-shifted by "rs" bits to set the new value.
330 */
331
332 /* Note: if we access the last counter, we will also access the b+1 byte
333 * that is out of the array, but sds strings always have an implicit null
334 * term, so the byte exists, and we can skip the conditional (or the need
335 * to allocate 1 byte more explicitly). */
336
337 /* Store the value of the register at position 'regnum' into variable 'target'.
338 * 'p' is an array of unsigned bytes. */
339 #define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \
340 uint8_t *_p = (uint8_t*) p; \
341 unsigned long _byte = regnum*HLL_BITS/8; \
342 unsigned long _fb = regnum*HLL_BITS&7; \
343 unsigned long _fb8 = 8 - _fb; \
344 unsigned long b0 = _p[_byte]; \
345 unsigned long b1 = _p[_byte+1]; \
346 target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \
347 } while(0)
348
349 /* Set the value of the register at position 'regnum' to 'val'.
350 * 'p' is an array of unsigned bytes. */
351 #define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \
352 uint8_t *_p = (uint8_t*) p; \
353 unsigned long _byte = regnum*HLL_BITS/8; \
354 unsigned long _fb = regnum*HLL_BITS&7; \
355 unsigned long _fb8 = 8 - _fb; \
356 unsigned long _v = val; \
357 _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \
358 _p[_byte] |= _v << _fb; \
359 _p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \
360 _p[_byte+1] |= _v >> _fb8; \
361 } while(0)
362
363 /* Macros to access the sparse representation.
364 * The macros parameter is expected to be an uint8_t pointer. */
365 #define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */
366 #define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */
367 #define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */
368 #define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT)
369 #define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT)
370 #define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f)+1)
371 #define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p)+1)))+1)
372 #define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f)+1)
373 #define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1)
374 #define HLL_SPARSE_VAL_MAX_VALUE 32
375 #define HLL_SPARSE_VAL_MAX_LEN 4
376 #define HLL_SPARSE_ZERO_MAX_LEN 64
377 #define HLL_SPARSE_XZERO_MAX_LEN 16384
378 #define HLL_SPARSE_VAL_SET(p,val,len) do { \
379 *(p) = (((val)-1)<<2|((len)-1))|HLL_SPARSE_VAL_BIT; \
380 } while(0)
381 #define HLL_SPARSE_ZERO_SET(p,len) do { \
382 *(p) = (len)-1; \
383 } while(0)
384 #define HLL_SPARSE_XZERO_SET(p,len) do { \
385 int _l = (len)-1; \
386 *(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \
387 *((p)+1) = (_l&0xff); \
388 } while(0)
389 #define HLL_ALPHA_INF 0.721347520444481703680 /* constant for 0.5/ln(2) */
390
391 /* ========================= HyperLogLog algorithm ========================= */
392
393 /* Our hash function is MurmurHash2, 64 bit version.
394 * It was modified for Redis in order to provide the same result in
395 * big and little endian archs (endian neutral). */
MurmurHash64A(const void * key,int len,unsigned int seed)396 uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) {
397 const uint64_t m = 0xc6a4a7935bd1e995;
398 const int r = 47;
399 uint64_t h = seed ^ (len * m);
400 const uint8_t *data = (const uint8_t *)key;
401 const uint8_t *end = data + (len-(len&7));
402
403 while(data != end) {
404 uint64_t k;
405
406 #if (BYTE_ORDER == LITTLE_ENDIAN)
407 #ifdef USE_ALIGNED_ACCESS
408 memcpy(&k,data,sizeof(uint64_t));
409 #else
410 k = *((uint64_t*)data);
411 #endif
412 #else
413 k = (uint64_t) data[0];
414 k |= (uint64_t) data[1] << 8;
415 k |= (uint64_t) data[2] << 16;
416 k |= (uint64_t) data[3] << 24;
417 k |= (uint64_t) data[4] << 32;
418 k |= (uint64_t) data[5] << 40;
419 k |= (uint64_t) data[6] << 48;
420 k |= (uint64_t) data[7] << 56;
421 #endif
422
423 k *= m;
424 k ^= k >> r;
425 k *= m;
426 h ^= k;
427 h *= m;
428 data += 8;
429 }
430
431 switch(len & 7) {
432 case 7: h ^= (uint64_t)data[6] << 48; /* fall-thru */
433 case 6: h ^= (uint64_t)data[5] << 40; /* fall-thru */
434 case 5: h ^= (uint64_t)data[4] << 32; /* fall-thru */
435 case 4: h ^= (uint64_t)data[3] << 24; /* fall-thru */
436 case 3: h ^= (uint64_t)data[2] << 16; /* fall-thru */
437 case 2: h ^= (uint64_t)data[1] << 8; /* fall-thru */
438 case 1: h ^= (uint64_t)data[0];
439 h *= m; /* fall-thru */
440 };
441
442 h ^= h >> r;
443 h *= m;
444 h ^= h >> r;
445 return h;
446 }
447
448 /* Given a string element to add to the HyperLogLog, returns the length
449 * of the pattern 000..1 of the element hash. As a side effect 'regp' is
450 * set to the register index this element hashes to. */
hllPatLen(unsigned char * ele,size_t elesize,long * regp)451 int hllPatLen(unsigned char *ele, size_t elesize, long *regp) {
452 uint64_t hash, bit, index;
453 int count;
454
455 /* Count the number of zeroes starting from bit HLL_REGISTERS
456 * (that is a power of two corresponding to the first bit we don't use
457 * as index). The max run can be 64-P+1 = Q+1 bits.
458 *
459 * Note that the final "1" ending the sequence of zeroes must be
460 * included in the count, so if we find "001" the count is 3, and
461 * the smallest count possible is no zeroes at all, just a 1 bit
462 * at the first position, that is a count of 1.
463 *
464 * This may sound like inefficient, but actually in the average case
465 * there are high probabilities to find a 1 after a few iterations. */
466 hash = MurmurHash64A(ele,elesize,0xadc83b19ULL);
467 index = hash & HLL_P_MASK; /* Register index. */
468 hash >>= HLL_P; /* Remove bits used to address the register. */
469 hash |= ((uint64_t)1<<HLL_Q); /* Make sure the loop terminates
470 and count will be <= Q+1. */
471 bit = 1;
472 count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */
473 while((hash & bit) == 0) {
474 count++;
475 bit <<= 1;
476 }
477 *regp = (int) index;
478 return count;
479 }
480
481 /* ================== Dense representation implementation ================== */
482
483 /* Low level function to set the dense HLL register at 'index' to the
484 * specified value if the current value is smaller than 'count'.
485 *
486 * 'registers' is expected to have room for HLL_REGISTERS plus an
487 * additional byte on the right. This requirement is met by sds strings
488 * automatically since they are implicitly null terminated.
489 *
490 * The function always succeed, however if as a result of the operation
491 * the approximated cardinality changed, 1 is returned. Otherwise 0
492 * is returned. */
hllDenseSet(uint8_t * registers,long index,uint8_t count)493 int hllDenseSet(uint8_t *registers, long index, uint8_t count) {
494 uint8_t oldcount;
495
496 HLL_DENSE_GET_REGISTER(oldcount,registers,index);
497 if (count > oldcount) {
498 HLL_DENSE_SET_REGISTER(registers,index,count);
499 return 1;
500 } else {
501 return 0;
502 }
503 }
504
505 /* "Add" the element in the dense hyperloglog data structure.
506 * Actually nothing is added, but the max 0 pattern counter of the subset
507 * the element belongs to is incremented if needed.
508 *
509 * This is just a wrapper to hllDenseSet(), performing the hashing of the
510 * element in order to retrieve the index and zero-run count. */
hllDenseAdd(uint8_t * registers,unsigned char * ele,size_t elesize)511 int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) {
512 long index;
513 uint8_t count = hllPatLen(ele,elesize,&index);
514 /* Update the register if this element produced a longer run of zeroes. */
515 return hllDenseSet(registers,index,count);
516 }
517
518 /* Compute the register histogram in the dense representation. */
hllDenseRegHisto(uint8_t * registers,int * reghisto)519 void hllDenseRegHisto(uint8_t *registers, int* reghisto) {
520 int j;
521
522 /* Redis default is to use 16384 registers 6 bits each. The code works
523 * with other values by modifying the defines, but for our target value
524 * we take a faster path with unrolled loops. */
525 if (HLL_REGISTERS == 16384 && HLL_BITS == 6) {
526 uint8_t *r = registers;
527 unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9,
528 r10, r11, r12, r13, r14, r15;
529 for (j = 0; j < 1024; j++) {
530 /* Handle 16 registers per iteration. */
531 r0 = r[0] & 63;
532 r1 = (r[0] >> 6 | r[1] << 2) & 63;
533 r2 = (r[1] >> 4 | r[2] << 4) & 63;
534 r3 = (r[2] >> 2) & 63;
535 r4 = r[3] & 63;
536 r5 = (r[3] >> 6 | r[4] << 2) & 63;
537 r6 = (r[4] >> 4 | r[5] << 4) & 63;
538 r7 = (r[5] >> 2) & 63;
539 r8 = r[6] & 63;
540 r9 = (r[6] >> 6 | r[7] << 2) & 63;
541 r10 = (r[7] >> 4 | r[8] << 4) & 63;
542 r11 = (r[8] >> 2) & 63;
543 r12 = r[9] & 63;
544 r13 = (r[9] >> 6 | r[10] << 2) & 63;
545 r14 = (r[10] >> 4 | r[11] << 4) & 63;
546 r15 = (r[11] >> 2) & 63;
547
548 reghisto[r0]++;
549 reghisto[r1]++;
550 reghisto[r2]++;
551 reghisto[r3]++;
552 reghisto[r4]++;
553 reghisto[r5]++;
554 reghisto[r6]++;
555 reghisto[r7]++;
556 reghisto[r8]++;
557 reghisto[r9]++;
558 reghisto[r10]++;
559 reghisto[r11]++;
560 reghisto[r12]++;
561 reghisto[r13]++;
562 reghisto[r14]++;
563 reghisto[r15]++;
564
565 r += 12;
566 }
567 } else {
568 for(j = 0; j < HLL_REGISTERS; j++) {
569 unsigned long reg;
570 HLL_DENSE_GET_REGISTER(reg,registers,j);
571 reghisto[reg]++;
572 }
573 }
574 }
575
576 /* ================== Sparse representation implementation ================= */
577
578 /* Convert the HLL with sparse representation given as input in its dense
579 * representation. Both representations are represented by SDS strings, and
580 * the input representation is freed as a side effect.
581 *
582 * The function returns C_OK if the sparse representation was valid,
583 * otherwise C_ERR is returned if the representation was corrupted. */
hllSparseToDense(robj * o)584 int hllSparseToDense(robj *o) {
585 sds sparse = o->ptr, dense;
586 struct hllhdr *hdr, *oldhdr = (struct hllhdr*)sparse;
587 int idx = 0, runlen, regval;
588 uint8_t *p = (uint8_t*)sparse, *end = p+sdslen(sparse);
589
590 /* If the representation is already the right one return ASAP. */
591 hdr = (struct hllhdr*) sparse;
592 if (hdr->encoding == HLL_DENSE) return C_OK;
593
594 /* Create a string of the right size filled with zero bytes.
595 * Note that the cached cardinality is set to 0 as a side effect
596 * that is exactly the cardinality of an empty HLL. */
597 dense = sdsnewlen(NULL,HLL_DENSE_SIZE);
598 hdr = (struct hllhdr*) dense;
599 *hdr = *oldhdr; /* This will copy the magic and cached cardinality. */
600 hdr->encoding = HLL_DENSE;
601
602 /* Now read the sparse representation and set non-zero registers
603 * accordingly. */
604 p += HLL_HDR_SIZE;
605 while(p < end) {
606 if (HLL_SPARSE_IS_ZERO(p)) {
607 runlen = HLL_SPARSE_ZERO_LEN(p);
608 idx += runlen;
609 p++;
610 } else if (HLL_SPARSE_IS_XZERO(p)) {
611 runlen = HLL_SPARSE_XZERO_LEN(p);
612 idx += runlen;
613 p += 2;
614 } else {
615 runlen = HLL_SPARSE_VAL_LEN(p);
616 regval = HLL_SPARSE_VAL_VALUE(p);
617 if ((runlen + idx) > HLL_REGISTERS) break; /* Overflow. */
618 while(runlen--) {
619 HLL_DENSE_SET_REGISTER(hdr->registers,idx,regval);
620 idx++;
621 }
622 p++;
623 }
624 }
625
626 /* If the sparse representation was valid, we expect to find idx
627 * set to HLL_REGISTERS. */
628 if (idx != HLL_REGISTERS) {
629 sdsfree(dense);
630 return C_ERR;
631 }
632
633 /* Free the old representation and set the new one. */
634 sdsfree(o->ptr);
635 o->ptr = dense;
636 return C_OK;
637 }
638
639 /* Low level function to set the sparse HLL register at 'index' to the
640 * specified value if the current value is smaller than 'count'.
641 *
642 * The object 'o' is the String object holding the HLL. The function requires
643 * a reference to the object in order to be able to enlarge the string if
644 * needed.
645 *
646 * On success, the function returns 1 if the cardinality changed, or 0
647 * if the register for this element was not updated.
648 * On error (if the representation is invalid) -1 is returned.
649 *
650 * As a side effect the function may promote the HLL representation from
651 * sparse to dense: this happens when a register requires to be set to a value
652 * not representable with the sparse representation, or when the resulting
653 * size would be greater than server.hll_sparse_max_bytes. */
hllSparseSet(robj * o,long index,uint8_t count)654 int hllSparseSet(robj *o, long index, uint8_t count) {
655 struct hllhdr *hdr;
656 uint8_t oldcount, *sparse, *end, *p, *prev, *next;
657 long first, span;
658 long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0;
659
660 /* If the count is too big to be representable by the sparse representation
661 * switch to dense representation. */
662 if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote;
663
664 /* When updating a sparse representation, sometimes we may need to
665 * enlarge the buffer for up to 3 bytes in the worst case (XZERO split
666 * into XZERO-VAL-XZERO). Make sure there is enough space right now
667 * so that the pointers we take during the execution of the function
668 * will be valid all the time. */
669 o->ptr = sdsMakeRoomFor(o->ptr,3);
670
671 /* Step 1: we need to locate the opcode we need to modify to check
672 * if a value update is actually needed. */
673 sparse = p = ((uint8_t*)o->ptr) + HLL_HDR_SIZE;
674 end = p + sdslen(o->ptr) - HLL_HDR_SIZE;
675
676 first = 0;
677 prev = NULL; /* Points to previous opcode at the end of the loop. */
678 next = NULL; /* Points to the next opcode at the end of the loop. */
679 span = 0;
680 while(p < end) {
681 long oplen;
682
683 /* Set span to the number of registers covered by this opcode.
684 *
685 * This is the most performance critical loop of the sparse
686 * representation. Sorting the conditionals from the most to the
687 * least frequent opcode in many-bytes sparse HLLs is faster. */
688 oplen = 1;
689 if (HLL_SPARSE_IS_ZERO(p)) {
690 span = HLL_SPARSE_ZERO_LEN(p);
691 } else if (HLL_SPARSE_IS_VAL(p)) {
692 span = HLL_SPARSE_VAL_LEN(p);
693 } else { /* XZERO. */
694 span = HLL_SPARSE_XZERO_LEN(p);
695 oplen = 2;
696 }
697 /* Break if this opcode covers the register as 'index'. */
698 if (index <= first+span-1) break;
699 prev = p;
700 p += oplen;
701 first += span;
702 }
703 if (span == 0) return -1; /* Invalid format. */
704
705 next = HLL_SPARSE_IS_XZERO(p) ? p+2 : p+1;
706 if (next >= end) next = NULL;
707
708 /* Cache current opcode type to avoid using the macro again and
709 * again for something that will not change.
710 * Also cache the run-length of the opcode. */
711 if (HLL_SPARSE_IS_ZERO(p)) {
712 is_zero = 1;
713 runlen = HLL_SPARSE_ZERO_LEN(p);
714 } else if (HLL_SPARSE_IS_XZERO(p)) {
715 is_xzero = 1;
716 runlen = HLL_SPARSE_XZERO_LEN(p);
717 } else {
718 is_val = 1;
719 runlen = HLL_SPARSE_VAL_LEN(p);
720 }
721
722 /* Step 2: After the loop:
723 *
724 * 'first' stores to the index of the first register covered
725 * by the current opcode, which is pointed by 'p'.
726 *
727 * 'next' ad 'prev' store respectively the next and previous opcode,
728 * or NULL if the opcode at 'p' is respectively the last or first.
729 *
730 * 'span' is set to the number of registers covered by the current
731 * opcode.
732 *
733 * There are different cases in order to update the data structure
734 * in place without generating it from scratch:
735 *
736 * A) If it is a VAL opcode already set to a value >= our 'count'
737 * no update is needed, regardless of the VAL run-length field.
738 * In this case PFADD returns 0 since no changes are performed.
739 *
740 * B) If it is a VAL opcode with len = 1 (representing only our
741 * register) and the value is less than 'count', we just update it
742 * since this is a trivial case. */
743 if (is_val) {
744 oldcount = HLL_SPARSE_VAL_VALUE(p);
745 /* Case A. */
746 if (oldcount >= count) return 0;
747
748 /* Case B. */
749 if (runlen == 1) {
750 HLL_SPARSE_VAL_SET(p,count,1);
751 goto updated;
752 }
753 }
754
755 /* C) Another trivial to handle case is a ZERO opcode with a len of 1.
756 * We can just replace it with a VAL opcode with our value and len of 1. */
757 if (is_zero && runlen == 1) {
758 HLL_SPARSE_VAL_SET(p,count,1);
759 goto updated;
760 }
761
762 /* D) General case.
763 *
764 * The other cases are more complex: our register requires to be updated
765 * and is either currently represented by a VAL opcode with len > 1,
766 * by a ZERO opcode with len > 1, or by an XZERO opcode.
767 *
768 * In those cases the original opcode must be split into multiple
769 * opcodes. The worst case is an XZERO split in the middle resuling into
770 * XZERO - VAL - XZERO, so the resulting sequence max length is
771 * 5 bytes.
772 *
773 * We perform the split writing the new sequence into the 'new' buffer
774 * with 'newlen' as length. Later the new sequence is inserted in place
775 * of the old one, possibly moving what is on the right a few bytes
776 * if the new sequence is longer than the older one. */
777 uint8_t seq[5], *n = seq;
778 int last = first+span-1; /* Last register covered by the sequence. */
779 int len;
780
781 if (is_zero || is_xzero) {
782 /* Handle splitting of ZERO / XZERO. */
783 if (index != first) {
784 len = index-first;
785 if (len > HLL_SPARSE_ZERO_MAX_LEN) {
786 HLL_SPARSE_XZERO_SET(n,len);
787 n += 2;
788 } else {
789 HLL_SPARSE_ZERO_SET(n,len);
790 n++;
791 }
792 }
793 HLL_SPARSE_VAL_SET(n,count,1);
794 n++;
795 if (index != last) {
796 len = last-index;
797 if (len > HLL_SPARSE_ZERO_MAX_LEN) {
798 HLL_SPARSE_XZERO_SET(n,len);
799 n += 2;
800 } else {
801 HLL_SPARSE_ZERO_SET(n,len);
802 n++;
803 }
804 }
805 } else {
806 /* Handle splitting of VAL. */
807 int curval = HLL_SPARSE_VAL_VALUE(p);
808
809 if (index != first) {
810 len = index-first;
811 HLL_SPARSE_VAL_SET(n,curval,len);
812 n++;
813 }
814 HLL_SPARSE_VAL_SET(n,count,1);
815 n++;
816 if (index != last) {
817 len = last-index;
818 HLL_SPARSE_VAL_SET(n,curval,len);
819 n++;
820 }
821 }
822
823 /* Step 3: substitute the new sequence with the old one.
824 *
825 * Note that we already allocated space on the sds string
826 * calling sdsMakeRoomFor(). */
827 int seqlen = n-seq;
828 int oldlen = is_xzero ? 2 : 1;
829 int deltalen = seqlen-oldlen;
830
831 if (deltalen > 0 &&
832 sdslen(o->ptr)+deltalen > server.hll_sparse_max_bytes) goto promote;
833 if (deltalen && next) memmove(next+deltalen,next,end-next);
834 sdsIncrLen(o->ptr,deltalen);
835 memcpy(p,seq,seqlen);
836 end += deltalen;
837
838 updated:
839 /* Step 4: Merge adjacent values if possible.
840 *
841 * The representation was updated, however the resulting representation
842 * may not be optimal: adjacent VAL opcodes can sometimes be merged into
843 * a single one. */
844 p = prev ? prev : sparse;
845 int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */
846 while (p < end && scanlen--) {
847 if (HLL_SPARSE_IS_XZERO(p)) {
848 p += 2;
849 continue;
850 } else if (HLL_SPARSE_IS_ZERO(p)) {
851 p++;
852 continue;
853 }
854 /* We need two adjacent VAL opcodes to try a merge, having
855 * the same value, and a len that fits the VAL opcode max len. */
856 if (p+1 < end && HLL_SPARSE_IS_VAL(p+1)) {
857 int v1 = HLL_SPARSE_VAL_VALUE(p);
858 int v2 = HLL_SPARSE_VAL_VALUE(p+1);
859 if (v1 == v2) {
860 int len = HLL_SPARSE_VAL_LEN(p)+HLL_SPARSE_VAL_LEN(p+1);
861 if (len <= HLL_SPARSE_VAL_MAX_LEN) {
862 HLL_SPARSE_VAL_SET(p+1,v1,len);
863 memmove(p,p+1,end-p);
864 sdsIncrLen(o->ptr,-1);
865 end--;
866 /* After a merge we reiterate without incrementing 'p'
867 * in order to try to merge the just merged value with
868 * a value on its right. */
869 continue;
870 }
871 }
872 }
873 p++;
874 }
875
876 /* Invalidate the cached cardinality. */
877 hdr = o->ptr;
878 HLL_INVALIDATE_CACHE(hdr);
879 return 1;
880
881 promote: /* Promote to dense representation. */
882 if (hllSparseToDense(o) == C_ERR) return -1; /* Corrupted HLL. */
883 hdr = o->ptr;
884
885 /* We need to call hllDenseAdd() to perform the operation after the
886 * conversion. However the result must be 1, since if we need to
887 * convert from sparse to dense a register requires to be updated.
888 *
889 * Note that this in turn means that PFADD will make sure the command
890 * is propagated to slaves / AOF, so if there is a sparse -> dense
891 * conversion, it will be performed in all the slaves as well. */
892 int dense_retval = hllDenseSet(hdr->registers,index,count);
893 serverAssert(dense_retval == 1);
894 return dense_retval;
895 }
896
897 /* "Add" the element in the sparse hyperloglog data structure.
898 * Actually nothing is added, but the max 0 pattern counter of the subset
899 * the element belongs to is incremented if needed.
900 *
901 * This function is actually a wrapper for hllSparseSet(), it only performs
902 * the hashshing of the elmenet to obtain the index and zeros run length. */
hllSparseAdd(robj * o,unsigned char * ele,size_t elesize)903 int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) {
904 long index;
905 uint8_t count = hllPatLen(ele,elesize,&index);
906 /* Update the register if this element produced a longer run of zeroes. */
907 return hllSparseSet(o,index,count);
908 }
909
910 /* Compute the register histogram in the sparse representation. */
hllSparseRegHisto(uint8_t * sparse,int sparselen,int * invalid,int * reghisto)911 void hllSparseRegHisto(uint8_t *sparse, int sparselen, int *invalid, int* reghisto) {
912 int idx = 0, runlen, regval;
913 uint8_t *end = sparse+sparselen, *p = sparse;
914
915 while(p < end) {
916 if (HLL_SPARSE_IS_ZERO(p)) {
917 runlen = HLL_SPARSE_ZERO_LEN(p);
918 idx += runlen;
919 reghisto[0] += runlen;
920 p++;
921 } else if (HLL_SPARSE_IS_XZERO(p)) {
922 runlen = HLL_SPARSE_XZERO_LEN(p);
923 idx += runlen;
924 reghisto[0] += runlen;
925 p += 2;
926 } else {
927 runlen = HLL_SPARSE_VAL_LEN(p);
928 regval = HLL_SPARSE_VAL_VALUE(p);
929 idx += runlen;
930 reghisto[regval] += runlen;
931 p++;
932 }
933 }
934 if (idx != HLL_REGISTERS && invalid) *invalid = 1;
935 }
936
937 /* ========================= HyperLogLog Count ==============================
938 * This is the core of the algorithm where the approximated count is computed.
939 * The function uses the lower level hllDenseRegHisto() and hllSparseRegHisto()
940 * functions as helpers to compute histogram of register values part of the
941 * computation, which is representation-specific, while all the rest is common. */
942
943 /* Implements the register histogram calculation for uint8_t data type
944 * which is only used internally as speedup for PFCOUNT with multiple keys. */
hllRawRegHisto(uint8_t * registers,int * reghisto)945 void hllRawRegHisto(uint8_t *registers, int* reghisto) {
946 uint64_t *word = (uint64_t*) registers;
947 uint8_t *bytes;
948 int j;
949
950 for (j = 0; j < HLL_REGISTERS/8; j++) {
951 if (*word == 0) {
952 reghisto[0] += 8;
953 } else {
954 bytes = (uint8_t*) word;
955 reghisto[bytes[0]]++;
956 reghisto[bytes[1]]++;
957 reghisto[bytes[2]]++;
958 reghisto[bytes[3]]++;
959 reghisto[bytes[4]]++;
960 reghisto[bytes[5]]++;
961 reghisto[bytes[6]]++;
962 reghisto[bytes[7]]++;
963 }
964 word++;
965 }
966 }
967
968 /* Helper function sigma as defined in
969 * "New cardinality estimation algorithms for HyperLogLog sketches"
970 * Otmar Ertl, arXiv:1702.01284 */
hllSigma(double x)971 double hllSigma(double x) {
972 if (x == 1.) return INFINITY;
973 double zPrime;
974 double y = 1;
975 double z = x;
976 do {
977 x *= x;
978 zPrime = z;
979 z += x * y;
980 y += y;
981 } while(zPrime != z);
982 return z;
983 }
984
985 /* Helper function tau as defined in
986 * "New cardinality estimation algorithms for HyperLogLog sketches"
987 * Otmar Ertl, arXiv:1702.01284 */
hllTau(double x)988 double hllTau(double x) {
989 if (x == 0. || x == 1.) return 0.;
990 double zPrime;
991 double y = 1.0;
992 double z = 1 - x;
993 do {
994 x = sqrt(x);
995 zPrime = z;
996 y *= 0.5;
997 z -= pow(1 - x, 2)*y;
998 } while(zPrime != z);
999 return z / 3;
1000 }
1001
1002 /* Return the approximated cardinality of the set based on the harmonic
1003 * mean of the registers values. 'hdr' points to the start of the SDS
1004 * representing the String object holding the HLL representation.
1005 *
1006 * If the sparse representation of the HLL object is not valid, the integer
1007 * pointed by 'invalid' is set to non-zero, otherwise it is left untouched.
1008 *
1009 * hllCount() supports a special internal-only encoding of HLL_RAW, that
1010 * is, hdr->registers will point to an uint8_t array of HLL_REGISTERS element.
1011 * This is useful in order to speedup PFCOUNT when called against multiple
1012 * keys (no need to work with 6-bit integers encoding). */
hllCount(struct hllhdr * hdr,int * invalid)1013 uint64_t hllCount(struct hllhdr *hdr, int *invalid) {
1014 double m = HLL_REGISTERS;
1015 double E;
1016 int j;
1017 /* Note that reghisto size could be just HLL_Q+2, becuase HLL_Q+1 is
1018 * the maximum frequency of the "000...1" sequence the hash function is
1019 * able to return. However it is slow to check for sanity of the
1020 * input: instead we history array at a safe size: overflows will
1021 * just write data to wrong, but correctly allocated, places. */
1022 int reghisto[64] = {0};
1023
1024 /* Compute register histogram */
1025 if (hdr->encoding == HLL_DENSE) {
1026 hllDenseRegHisto(hdr->registers,reghisto);
1027 } else if (hdr->encoding == HLL_SPARSE) {
1028 hllSparseRegHisto(hdr->registers,
1029 sdslen((sds)hdr)-HLL_HDR_SIZE,invalid,reghisto);
1030 } else if (hdr->encoding == HLL_RAW) {
1031 hllRawRegHisto(hdr->registers,reghisto);
1032 } else {
1033 serverPanic("Unknown HyperLogLog encoding in hllCount()");
1034 }
1035
1036 /* Estimate cardinality form register histogram. See:
1037 * "New cardinality estimation algorithms for HyperLogLog sketches"
1038 * Otmar Ertl, arXiv:1702.01284 */
1039 double z = m * hllTau((m-reghisto[HLL_Q+1])/(double)m);
1040 for (j = HLL_Q; j >= 1; --j) {
1041 z += reghisto[j];
1042 z *= 0.5;
1043 }
1044 z += m * hllSigma(reghisto[0]/(double)m);
1045 E = llroundl(HLL_ALPHA_INF*m*m/z);
1046
1047 return (uint64_t) E;
1048 }
1049
1050 /* Call hllDenseAdd() or hllSparseAdd() according to the HLL encoding. */
hllAdd(robj * o,unsigned char * ele,size_t elesize)1051 int hllAdd(robj *o, unsigned char *ele, size_t elesize) {
1052 struct hllhdr *hdr = o->ptr;
1053 switch(hdr->encoding) {
1054 case HLL_DENSE: return hllDenseAdd(hdr->registers,ele,elesize);
1055 case HLL_SPARSE: return hllSparseAdd(o,ele,elesize);
1056 default: return -1; /* Invalid representation. */
1057 }
1058 }
1059
1060 /* Merge by computing MAX(registers[i],hll[i]) the HyperLogLog 'hll'
1061 * with an array of uint8_t HLL_REGISTERS registers pointed by 'max'.
1062 *
1063 * The hll object must be already validated via isHLLObjectOrReply()
1064 * or in some other way.
1065 *
1066 * If the HyperLogLog is sparse and is found to be invalid, C_ERR
1067 * is returned, otherwise the function always succeeds. */
hllMerge(uint8_t * max,robj * hll)1068 int hllMerge(uint8_t *max, robj *hll) {
1069 struct hllhdr *hdr = hll->ptr;
1070 int i;
1071
1072 if (hdr->encoding == HLL_DENSE) {
1073 uint8_t val;
1074
1075 for (i = 0; i < HLL_REGISTERS; i++) {
1076 HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
1077 if (val > max[i]) max[i] = val;
1078 }
1079 } else {
1080 uint8_t *p = hll->ptr, *end = p + sdslen(hll->ptr);
1081 long runlen, regval;
1082
1083 p += HLL_HDR_SIZE;
1084 i = 0;
1085 while(p < end) {
1086 if (HLL_SPARSE_IS_ZERO(p)) {
1087 runlen = HLL_SPARSE_ZERO_LEN(p);
1088 i += runlen;
1089 p++;
1090 } else if (HLL_SPARSE_IS_XZERO(p)) {
1091 runlen = HLL_SPARSE_XZERO_LEN(p);
1092 i += runlen;
1093 p += 2;
1094 } else {
1095 runlen = HLL_SPARSE_VAL_LEN(p);
1096 regval = HLL_SPARSE_VAL_VALUE(p);
1097 if ((runlen + i) > HLL_REGISTERS) break; /* Overflow. */
1098 while(runlen--) {
1099 if (regval > max[i]) max[i] = regval;
1100 i++;
1101 }
1102 p++;
1103 }
1104 }
1105 if (i != HLL_REGISTERS) return C_ERR;
1106 }
1107 return C_OK;
1108 }
1109
1110 /* ========================== HyperLogLog commands ========================== */
1111
1112 /* Create an HLL object. We always create the HLL using sparse encoding.
1113 * This will be upgraded to the dense representation as needed. */
createHLLObject(void)1114 robj *createHLLObject(void) {
1115 robj *o;
1116 struct hllhdr *hdr;
1117 sds s;
1118 uint8_t *p;
1119 int sparselen = HLL_HDR_SIZE +
1120 (((HLL_REGISTERS+(HLL_SPARSE_XZERO_MAX_LEN-1)) /
1121 HLL_SPARSE_XZERO_MAX_LEN)*2);
1122 int aux;
1123
1124 /* Populate the sparse representation with as many XZERO opcodes as
1125 * needed to represent all the registers. */
1126 aux = HLL_REGISTERS;
1127 s = sdsnewlen(NULL,sparselen);
1128 p = (uint8_t*)s + HLL_HDR_SIZE;
1129 while(aux) {
1130 int xzero = HLL_SPARSE_XZERO_MAX_LEN;
1131 if (xzero > aux) xzero = aux;
1132 HLL_SPARSE_XZERO_SET(p,xzero);
1133 p += 2;
1134 aux -= xzero;
1135 }
1136 serverAssert((p-(uint8_t*)s) == sparselen);
1137
1138 /* Create the actual object. */
1139 o = createObject(OBJ_STRING,s);
1140 hdr = o->ptr;
1141 memcpy(hdr->magic,"HYLL",4);
1142 hdr->encoding = HLL_SPARSE;
1143 return o;
1144 }
1145
1146 /* Check if the object is a String with a valid HLL representation.
1147 * Return C_OK if this is true, otherwise reply to the client
1148 * with an error and return C_ERR. */
isHLLObjectOrReply(client * c,robj * o)1149 int isHLLObjectOrReply(client *c, robj *o) {
1150 struct hllhdr *hdr;
1151
1152 /* Key exists, check type */
1153 if (checkType(c,o,OBJ_STRING))
1154 return C_ERR; /* Error already sent. */
1155
1156 if (!sdsEncodedObject(o)) goto invalid;
1157 if (stringObjectLen(o) < sizeof(*hdr)) goto invalid;
1158 hdr = o->ptr;
1159
1160 /* Magic should be "HYLL". */
1161 if (hdr->magic[0] != 'H' || hdr->magic[1] != 'Y' ||
1162 hdr->magic[2] != 'L' || hdr->magic[3] != 'L') goto invalid;
1163
1164 if (hdr->encoding > HLL_MAX_ENCODING) goto invalid;
1165
1166 /* Dense representation string length should match exactly. */
1167 if (hdr->encoding == HLL_DENSE &&
1168 stringObjectLen(o) != HLL_DENSE_SIZE) goto invalid;
1169
1170 /* All tests passed. */
1171 return C_OK;
1172
1173 invalid:
1174 addReplySds(c,
1175 sdsnew("-WRONGTYPE Key is not a valid "
1176 "HyperLogLog string value.\r\n"));
1177 return C_ERR;
1178 }
1179
1180 /* PFADD var ele ele ele ... ele => :0 or :1 */
pfaddCommand(client * c)1181 void pfaddCommand(client *c) {
1182 robj *o = lookupKeyWrite(c->db,c->argv[1]);
1183 struct hllhdr *hdr;
1184 int updated = 0, j;
1185
1186 if (o == NULL) {
1187 /* Create the key with a string value of the exact length to
1188 * hold our HLL data structure. sdsnewlen() when NULL is passed
1189 * is guaranteed to return bytes initialized to zero. */
1190 o = createHLLObject();
1191 dbAdd(c->db,c->argv[1],o);
1192 updated++;
1193 } else {
1194 if (isHLLObjectOrReply(c,o) != C_OK) return;
1195 o = dbUnshareStringValue(c->db,c->argv[1],o);
1196 }
1197 /* Perform the low level ADD operation for every element. */
1198 for (j = 2; j < c->argc; j++) {
1199 int retval = hllAdd(o, (unsigned char*)c->argv[j]->ptr,
1200 sdslen(c->argv[j]->ptr));
1201 switch(retval) {
1202 case 1:
1203 updated++;
1204 break;
1205 case -1:
1206 addReplySds(c,sdsnew(invalid_hll_err));
1207 return;
1208 }
1209 }
1210 hdr = o->ptr;
1211 if (updated) {
1212 signalModifiedKey(c->db,c->argv[1]);
1213 notifyKeyspaceEvent(NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
1214 server.dirty++;
1215 HLL_INVALIDATE_CACHE(hdr);
1216 }
1217 addReply(c, updated ? shared.cone : shared.czero);
1218 }
1219
1220 /* PFCOUNT var -> approximated cardinality of set. */
pfcountCommand(client * c)1221 void pfcountCommand(client *c) {
1222 robj *o;
1223 struct hllhdr *hdr;
1224 uint64_t card;
1225
1226 /* Case 1: multi-key keys, cardinality of the union.
1227 *
1228 * When multiple keys are specified, PFCOUNT actually computes
1229 * the cardinality of the merge of the N HLLs specified. */
1230 if (c->argc > 2) {
1231 uint8_t max[HLL_HDR_SIZE+HLL_REGISTERS], *registers;
1232 int j;
1233
1234 /* Compute an HLL with M[i] = MAX(M[i]_j). */
1235 memset(max,0,sizeof(max));
1236 hdr = (struct hllhdr*) max;
1237 hdr->encoding = HLL_RAW; /* Special internal-only encoding. */
1238 registers = max + HLL_HDR_SIZE;
1239 for (j = 1; j < c->argc; j++) {
1240 /* Check type and size. */
1241 robj *o = lookupKeyRead(c->db,c->argv[j]);
1242 if (o == NULL) continue; /* Assume empty HLL for non existing var.*/
1243 if (isHLLObjectOrReply(c,o) != C_OK) return;
1244
1245 /* Merge with this HLL with our 'max' HHL by setting max[i]
1246 * to MAX(max[i],hll[i]). */
1247 if (hllMerge(registers,o) == C_ERR) {
1248 addReplySds(c,sdsnew(invalid_hll_err));
1249 return;
1250 }
1251 }
1252
1253 /* Compute cardinality of the resulting set. */
1254 addReplyLongLong(c,hllCount(hdr,NULL));
1255 return;
1256 }
1257
1258 /* Case 2: cardinality of the single HLL.
1259 *
1260 * The user specified a single key. Either return the cached value
1261 * or compute one and update the cache. */
1262 o = lookupKeyWrite(c->db,c->argv[1]);
1263 if (o == NULL) {
1264 /* No key? Cardinality is zero since no element was added, otherwise
1265 * we would have a key as HLLADD creates it as a side effect. */
1266 addReply(c,shared.czero);
1267 } else {
1268 if (isHLLObjectOrReply(c,o) != C_OK) return;
1269 o = dbUnshareStringValue(c->db,c->argv[1],o);
1270
1271 /* Check if the cached cardinality is valid. */
1272 hdr = o->ptr;
1273 if (HLL_VALID_CACHE(hdr)) {
1274 /* Just return the cached value. */
1275 card = (uint64_t)hdr->card[0];
1276 card |= (uint64_t)hdr->card[1] << 8;
1277 card |= (uint64_t)hdr->card[2] << 16;
1278 card |= (uint64_t)hdr->card[3] << 24;
1279 card |= (uint64_t)hdr->card[4] << 32;
1280 card |= (uint64_t)hdr->card[5] << 40;
1281 card |= (uint64_t)hdr->card[6] << 48;
1282 card |= (uint64_t)hdr->card[7] << 56;
1283 } else {
1284 int invalid = 0;
1285 /* Recompute it and update the cached value. */
1286 card = hllCount(hdr,&invalid);
1287 if (invalid) {
1288 addReplySds(c,sdsnew(invalid_hll_err));
1289 return;
1290 }
1291 hdr->card[0] = card & 0xff;
1292 hdr->card[1] = (card >> 8) & 0xff;
1293 hdr->card[2] = (card >> 16) & 0xff;
1294 hdr->card[3] = (card >> 24) & 0xff;
1295 hdr->card[4] = (card >> 32) & 0xff;
1296 hdr->card[5] = (card >> 40) & 0xff;
1297 hdr->card[6] = (card >> 48) & 0xff;
1298 hdr->card[7] = (card >> 56) & 0xff;
1299 /* This is not considered a read-only command even if the
1300 * data structure is not modified, since the cached value
1301 * may be modified and given that the HLL is a Redis string
1302 * we need to propagate the change. */
1303 signalModifiedKey(c->db,c->argv[1]);
1304 server.dirty++;
1305 }
1306 addReplyLongLong(c,card);
1307 }
1308 }
1309
1310 /* PFMERGE dest src1 src2 src3 ... srcN => OK */
pfmergeCommand(client * c)1311 void pfmergeCommand(client *c) {
1312 uint8_t max[HLL_REGISTERS];
1313 struct hllhdr *hdr;
1314 int j;
1315 int use_dense = 0; /* Use dense representation as target? */
1316
1317 /* Compute an HLL with M[i] = MAX(M[i]_j).
1318 * We store the maximum into the max array of registers. We'll write
1319 * it to the target variable later. */
1320 memset(max,0,sizeof(max));
1321 for (j = 1; j < c->argc; j++) {
1322 /* Check type and size. */
1323 robj *o = lookupKeyRead(c->db,c->argv[j]);
1324 if (o == NULL) continue; /* Assume empty HLL for non existing var. */
1325 if (isHLLObjectOrReply(c,o) != C_OK) return;
1326
1327 /* If at least one involved HLL is dense, use the dense representation
1328 * as target ASAP to save time and avoid the conversion step. */
1329 hdr = o->ptr;
1330 if (hdr->encoding == HLL_DENSE) use_dense = 1;
1331
1332 /* Merge with this HLL with our 'max' HHL by setting max[i]
1333 * to MAX(max[i],hll[i]). */
1334 if (hllMerge(max,o) == C_ERR) {
1335 addReplySds(c,sdsnew(invalid_hll_err));
1336 return;
1337 }
1338 }
1339
1340 /* Create / unshare the destination key's value if needed. */
1341 robj *o = lookupKeyWrite(c->db,c->argv[1]);
1342 if (o == NULL) {
1343 /* Create the key with a string value of the exact length to
1344 * hold our HLL data structure. sdsnewlen() when NULL is passed
1345 * is guaranteed to return bytes initialized to zero. */
1346 o = createHLLObject();
1347 dbAdd(c->db,c->argv[1],o);
1348 } else {
1349 /* If key exists we are sure it's of the right type/size
1350 * since we checked when merging the different HLLs, so we
1351 * don't check again. */
1352 o = dbUnshareStringValue(c->db,c->argv[1],o);
1353 }
1354
1355 /* Convert the destination object to dense representation if at least
1356 * one of the inputs was dense. */
1357 if (use_dense && hllSparseToDense(o) == C_ERR) {
1358 addReplySds(c,sdsnew(invalid_hll_err));
1359 return;
1360 }
1361
1362 /* Write the resulting HLL to the destination HLL registers and
1363 * invalidate the cached value. */
1364 for (j = 0; j < HLL_REGISTERS; j++) {
1365 if (max[j] == 0) continue;
1366 hdr = o->ptr;
1367 switch(hdr->encoding) {
1368 case HLL_DENSE: hllDenseSet(hdr->registers,j,max[j]); break;
1369 case HLL_SPARSE: hllSparseSet(o,j,max[j]); break;
1370 }
1371 }
1372 hdr = o->ptr; /* o->ptr may be different now, as a side effect of
1373 last hllSparseSet() call. */
1374 HLL_INVALIDATE_CACHE(hdr);
1375
1376 signalModifiedKey(c->db,c->argv[1]);
1377 /* We generate a PFADD event for PFMERGE for semantical simplicity
1378 * since in theory this is a mass-add of elements. */
1379 notifyKeyspaceEvent(NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
1380 server.dirty++;
1381 addReply(c,shared.ok);
1382 }
1383
1384 /* ========================== Testing / Debugging ========================== */
1385
1386 /* PFSELFTEST
1387 * This command performs a self-test of the HLL registers implementation.
1388 * Something that is not easy to test from within the outside. */
1389 #define HLL_TEST_CYCLES 1000
pfselftestCommand(client * c)1390 void pfselftestCommand(client *c) {
1391 unsigned int j, i;
1392 sds bitcounters = sdsnewlen(NULL,HLL_DENSE_SIZE);
1393 struct hllhdr *hdr = (struct hllhdr*) bitcounters, *hdr2;
1394 robj *o = NULL;
1395 uint8_t bytecounters[HLL_REGISTERS];
1396
1397 /* Test 1: access registers.
1398 * The test is conceived to test that the different counters of our data
1399 * structure are accessible and that setting their values both result in
1400 * the correct value to be retained and not affect adjacent values. */
1401 for (j = 0; j < HLL_TEST_CYCLES; j++) {
1402 /* Set the HLL counters and an array of unsigned byes of the
1403 * same size to the same set of random values. */
1404 for (i = 0; i < HLL_REGISTERS; i++) {
1405 unsigned int r = rand() & HLL_REGISTER_MAX;
1406
1407 bytecounters[i] = r;
1408 HLL_DENSE_SET_REGISTER(hdr->registers,i,r);
1409 }
1410 /* Check that we are able to retrieve the same values. */
1411 for (i = 0; i < HLL_REGISTERS; i++) {
1412 unsigned int val;
1413
1414 HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
1415 if (val != bytecounters[i]) {
1416 addReplyErrorFormat(c,
1417 "TESTFAILED Register %d should be %d but is %d",
1418 i, (int) bytecounters[i], (int) val);
1419 goto cleanup;
1420 }
1421 }
1422 }
1423
1424 /* Test 2: approximation error.
1425 * The test adds unique elements and check that the estimated value
1426 * is always reasonable bounds.
1427 *
1428 * We check that the error is smaller than a few times than the expected
1429 * standard error, to make it very unlikely for the test to fail because
1430 * of a "bad" run.
1431 *
1432 * The test is performed with both dense and sparse HLLs at the same
1433 * time also verifying that the computed cardinality is the same. */
1434 memset(hdr->registers,0,HLL_DENSE_SIZE-HLL_HDR_SIZE);
1435 o = createHLLObject();
1436 double relerr = 1.04/sqrt(HLL_REGISTERS);
1437 int64_t checkpoint = 1;
1438 uint64_t seed = (uint64_t)rand() | (uint64_t)rand() << 32;
1439 uint64_t ele;
1440 for (j = 1; j <= 10000000; j++) {
1441 ele = j ^ seed;
1442 hllDenseAdd(hdr->registers,(unsigned char*)&ele,sizeof(ele));
1443 hllAdd(o,(unsigned char*)&ele,sizeof(ele));
1444
1445 /* Make sure that for small cardinalities we use sparse
1446 * encoding. */
1447 if (j == checkpoint && j < server.hll_sparse_max_bytes/2) {
1448 hdr2 = o->ptr;
1449 if (hdr2->encoding != HLL_SPARSE) {
1450 addReplyError(c, "TESTFAILED sparse encoding not used");
1451 goto cleanup;
1452 }
1453 }
1454
1455 /* Check that dense and sparse representations agree. */
1456 if (j == checkpoint && hllCount(hdr,NULL) != hllCount(o->ptr,NULL)) {
1457 addReplyError(c, "TESTFAILED dense/sparse disagree");
1458 goto cleanup;
1459 }
1460
1461 /* Check error. */
1462 if (j == checkpoint) {
1463 int64_t abserr = checkpoint - (int64_t)hllCount(hdr,NULL);
1464 uint64_t maxerr = ceil(relerr*6*checkpoint);
1465
1466 /* Adjust the max error we expect for cardinality 10
1467 * since from time to time it is statistically likely to get
1468 * much higher error due to collision, resulting into a false
1469 * positive. */
1470 if (j == 10) maxerr = 1;
1471
1472 if (abserr < 0) abserr = -abserr;
1473 if (abserr > (int64_t)maxerr) {
1474 addReplyErrorFormat(c,
1475 "TESTFAILED Too big error. card:%llu abserr:%llu",
1476 (unsigned long long) checkpoint,
1477 (unsigned long long) abserr);
1478 goto cleanup;
1479 }
1480 checkpoint *= 10;
1481 }
1482 }
1483
1484 /* Success! */
1485 addReply(c,shared.ok);
1486
1487 cleanup:
1488 sdsfree(bitcounters);
1489 if (o) decrRefCount(o);
1490 }
1491
1492 /* PFDEBUG <subcommand> <key> ... args ...
1493 * Different debugging related operations about the HLL implementation. */
pfdebugCommand(client * c)1494 void pfdebugCommand(client *c) {
1495 char *cmd = c->argv[1]->ptr;
1496 struct hllhdr *hdr;
1497 robj *o;
1498 int j;
1499
1500 o = lookupKeyWrite(c->db,c->argv[2]);
1501 if (o == NULL) {
1502 addReplyError(c,"The specified key does not exist");
1503 return;
1504 }
1505 if (isHLLObjectOrReply(c,o) != C_OK) return;
1506 o = dbUnshareStringValue(c->db,c->argv[2],o);
1507 hdr = o->ptr;
1508
1509 /* PFDEBUG GETREG <key> */
1510 if (!strcasecmp(cmd,"getreg")) {
1511 if (c->argc != 3) goto arityerr;
1512
1513 if (hdr->encoding == HLL_SPARSE) {
1514 if (hllSparseToDense(o) == C_ERR) {
1515 addReplySds(c,sdsnew(invalid_hll_err));
1516 return;
1517 }
1518 server.dirty++; /* Force propagation on encoding change. */
1519 }
1520
1521 hdr = o->ptr;
1522 addReplyMultiBulkLen(c,HLL_REGISTERS);
1523 for (j = 0; j < HLL_REGISTERS; j++) {
1524 uint8_t val;
1525
1526 HLL_DENSE_GET_REGISTER(val,hdr->registers,j);
1527 addReplyLongLong(c,val);
1528 }
1529 }
1530 /* PFDEBUG DECODE <key> */
1531 else if (!strcasecmp(cmd,"decode")) {
1532 if (c->argc != 3) goto arityerr;
1533
1534 uint8_t *p = o->ptr, *end = p+sdslen(o->ptr);
1535 sds decoded = sdsempty();
1536
1537 if (hdr->encoding != HLL_SPARSE) {
1538 addReplyError(c,"HLL encoding is not sparse");
1539 return;
1540 }
1541
1542 p += HLL_HDR_SIZE;
1543 while(p < end) {
1544 int runlen, regval;
1545
1546 if (HLL_SPARSE_IS_ZERO(p)) {
1547 runlen = HLL_SPARSE_ZERO_LEN(p);
1548 p++;
1549 decoded = sdscatprintf(decoded,"z:%d ",runlen);
1550 } else if (HLL_SPARSE_IS_XZERO(p)) {
1551 runlen = HLL_SPARSE_XZERO_LEN(p);
1552 p += 2;
1553 decoded = sdscatprintf(decoded,"Z:%d ",runlen);
1554 } else {
1555 runlen = HLL_SPARSE_VAL_LEN(p);
1556 regval = HLL_SPARSE_VAL_VALUE(p);
1557 p++;
1558 decoded = sdscatprintf(decoded,"v:%d,%d ",regval,runlen);
1559 }
1560 }
1561 decoded = sdstrim(decoded," ");
1562 addReplyBulkCBuffer(c,decoded,sdslen(decoded));
1563 sdsfree(decoded);
1564 }
1565 /* PFDEBUG ENCODING <key> */
1566 else if (!strcasecmp(cmd,"encoding")) {
1567 char *encodingstr[2] = {"dense","sparse"};
1568 if (c->argc != 3) goto arityerr;
1569
1570 addReplyStatus(c,encodingstr[hdr->encoding]);
1571 }
1572 /* PFDEBUG TODENSE <key> */
1573 else if (!strcasecmp(cmd,"todense")) {
1574 int conv = 0;
1575 if (c->argc != 3) goto arityerr;
1576
1577 if (hdr->encoding == HLL_SPARSE) {
1578 if (hllSparseToDense(o) == C_ERR) {
1579 addReplySds(c,sdsnew(invalid_hll_err));
1580 return;
1581 }
1582 conv = 1;
1583 server.dirty++; /* Force propagation on encoding change. */
1584 }
1585 addReply(c,conv ? shared.cone : shared.czero);
1586 } else {
1587 addReplyErrorFormat(c,"Unknown PFDEBUG subcommand '%s'", cmd);
1588 }
1589 return;
1590
1591 arityerr:
1592 addReplyErrorFormat(c,
1593 "Wrong number of arguments for the '%s' subcommand",cmd);
1594 }
1595
1596