1 //===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef LLVM_SUPPORT_PARALLEL_H
10 #define LLVM_SUPPORT_PARALLEL_H
11
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/Config/llvm-config.h"
14 #include "llvm/Support/Error.h"
15 #include "llvm/Support/MathExtras.h"
16 #include "llvm/Support/Threading.h"
17
18 #include <algorithm>
19 #include <condition_variable>
20 #include <functional>
21 #include <mutex>
22
23 namespace llvm {
24
25 namespace parallel {
26
27 // Strategy for the default executor used by the parallel routines provided by
28 // this file. It defaults to using all hardware threads and should be
29 // initialized before the first use of parallel routines.
30 extern ThreadPoolStrategy strategy;
31
32 namespace detail {
33
34 #if LLVM_ENABLE_THREADS
35
36 class Latch {
37 uint32_t Count;
38 mutable std::mutex Mutex;
39 mutable std::condition_variable Cond;
40
41 public:
Count(Count)42 explicit Latch(uint32_t Count = 0) : Count(Count) {}
~Latch()43 ~Latch() {
44 // Ensure at least that sync() was called.
45 assert(Count == 0);
46 }
47
inc()48 void inc() {
49 std::lock_guard<std::mutex> lock(Mutex);
50 ++Count;
51 }
52
dec()53 void dec() {
54 std::lock_guard<std::mutex> lock(Mutex);
55 if (--Count == 0)
56 Cond.notify_all();
57 }
58
sync()59 void sync() const {
60 std::unique_lock<std::mutex> lock(Mutex);
61 Cond.wait(lock, [&] { return Count == 0; });
62 }
63 };
64
65 class TaskGroup {
66 Latch L;
67 bool Parallel;
68
69 public:
70 TaskGroup();
71 ~TaskGroup();
72
73 void spawn(std::function<void()> f);
74
sync()75 void sync() const { L.sync(); }
76 };
77
78 const ptrdiff_t MinParallelSize = 1024;
79
80 /// Inclusive median.
81 template <class RandomAccessIterator, class Comparator>
medianOf3(RandomAccessIterator Start,RandomAccessIterator End,const Comparator & Comp)82 RandomAccessIterator medianOf3(RandomAccessIterator Start,
83 RandomAccessIterator End,
84 const Comparator &Comp) {
85 RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
86 return Comp(*Start, *(End - 1))
87 ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
88 : End - 1)
89 : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
90 : Start);
91 }
92
93 template <class RandomAccessIterator, class Comparator>
parallel_quick_sort(RandomAccessIterator Start,RandomAccessIterator End,const Comparator & Comp,TaskGroup & TG,size_t Depth)94 void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
95 const Comparator &Comp, TaskGroup &TG, size_t Depth) {
96 // Do a sequential sort for small inputs.
97 if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
98 llvm::sort(Start, End, Comp);
99 return;
100 }
101
102 // Partition.
103 auto Pivot = medianOf3(Start, End, Comp);
104 // Move Pivot to End.
105 std::swap(*(End - 1), *Pivot);
106 Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
107 return Comp(V, *(End - 1));
108 });
109 // Move Pivot to middle of partition.
110 std::swap(*Pivot, *(End - 1));
111
112 // Recurse.
113 TG.spawn([=, &Comp, &TG] {
114 parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
115 });
116 parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
117 }
118
119 template <class RandomAccessIterator, class Comparator>
parallel_sort(RandomAccessIterator Start,RandomAccessIterator End,const Comparator & Comp)120 void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
121 const Comparator &Comp) {
122 TaskGroup TG;
123 parallel_quick_sort(Start, End, Comp, TG,
124 llvm::Log2_64(std::distance(Start, End)) + 1);
125 }
126
127 // TaskGroup has a relatively high overhead, so we want to reduce
128 // the number of spawn() calls. We'll create up to 1024 tasks here.
129 // (Note that 1024 is an arbitrary number. This code probably needs
130 // improving to take the number of available cores into account.)
131 enum { MaxTasksPerGroup = 1024 };
132
133 template <class IterTy, class ResultTy, class ReduceFuncTy,
134 class TransformFuncTy>
parallel_transform_reduce(IterTy Begin,IterTy End,ResultTy Init,ReduceFuncTy Reduce,TransformFuncTy Transform)135 ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init,
136 ReduceFuncTy Reduce,
137 TransformFuncTy Transform) {
138 // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
139 // overhead on large inputs.
140 size_t NumInputs = std::distance(Begin, End);
141 if (NumInputs == 0)
142 return std::move(Init);
143 size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs);
144 std::vector<ResultTy> Results(NumTasks, Init);
145 {
146 // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs
147 // remaining after dividing them equally amongst tasks are distributed as
148 // one extra input over the first tasks.
149 TaskGroup TG;
150 size_t TaskSize = NumInputs / NumTasks;
151 size_t RemainingInputs = NumInputs % NumTasks;
152 IterTy TBegin = Begin;
153 for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) {
154 IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0);
155 TG.spawn([=, &Transform, &Reduce, &Results] {
156 // Reduce the result of transformation eagerly within each task.
157 ResultTy R = Init;
158 for (IterTy It = TBegin; It != TEnd; ++It)
159 R = Reduce(R, Transform(*It));
160 Results[TaskId] = R;
161 });
162 TBegin = TEnd;
163 }
164 assert(TBegin == End);
165 }
166
167 // Do a final reduction. There are at most 1024 tasks, so this only adds
168 // constant single-threaded overhead for large inputs. Hopefully most
169 // reductions are cheaper than the transformation.
170 ResultTy FinalResult = std::move(Results.front());
171 for (ResultTy &PartialResult :
172 makeMutableArrayRef(Results.data() + 1, Results.size() - 1))
173 FinalResult = Reduce(FinalResult, std::move(PartialResult));
174 return std::move(FinalResult);
175 }
176
177 #endif
178
179 } // namespace detail
180 } // namespace parallel
181
182 template <class RandomAccessIterator,
183 class Comparator = std::less<
184 typename std::iterator_traits<RandomAccessIterator>::value_type>>
185 void parallelSort(RandomAccessIterator Start, RandomAccessIterator End,
186 const Comparator &Comp = Comparator()) {
187 #if LLVM_ENABLE_THREADS
188 if (parallel::strategy.ThreadsRequested != 1) {
189 parallel::detail::parallel_sort(Start, End, Comp);
190 return;
191 }
192 #endif
193 llvm::sort(Start, End, Comp);
194 }
195
196 void parallelFor(size_t Begin, size_t End, function_ref<void(size_t)> Fn);
197
198 template <class IterTy, class FuncTy>
parallelForEach(IterTy Begin,IterTy End,FuncTy Fn)199 void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) {
200 parallelFor(0, End - Begin, [&](size_t I) { Fn(Begin[I]); });
201 }
202
203 template <class IterTy, class ResultTy, class ReduceFuncTy,
204 class TransformFuncTy>
parallelTransformReduce(IterTy Begin,IterTy End,ResultTy Init,ReduceFuncTy Reduce,TransformFuncTy Transform)205 ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init,
206 ReduceFuncTy Reduce,
207 TransformFuncTy Transform) {
208 #if LLVM_ENABLE_THREADS
209 if (parallel::strategy.ThreadsRequested != 1) {
210 return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce,
211 Transform);
212 }
213 #endif
214 for (IterTy I = Begin; I != End; ++I)
215 Init = Reduce(std::move(Init), Transform(*I));
216 return std::move(Init);
217 }
218
219 // Range wrappers.
220 template <class RangeTy,
221 class Comparator = std::less<decltype(*std::begin(RangeTy()))>>
222 void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) {
223 parallelSort(std::begin(R), std::end(R), Comp);
224 }
225
226 template <class RangeTy, class FuncTy>
parallelForEach(RangeTy && R,FuncTy Fn)227 void parallelForEach(RangeTy &&R, FuncTy Fn) {
228 parallelForEach(std::begin(R), std::end(R), Fn);
229 }
230
231 template <class RangeTy, class ResultTy, class ReduceFuncTy,
232 class TransformFuncTy>
parallelTransformReduce(RangeTy && R,ResultTy Init,ReduceFuncTy Reduce,TransformFuncTy Transform)233 ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init,
234 ReduceFuncTy Reduce,
235 TransformFuncTy Transform) {
236 return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce,
237 Transform);
238 }
239
240 // Parallel for-each, but with error handling.
241 template <class RangeTy, class FuncTy>
parallelForEachError(RangeTy && R,FuncTy Fn)242 Error parallelForEachError(RangeTy &&R, FuncTy Fn) {
243 // The transform_reduce algorithm requires that the initial value be copyable.
244 // Error objects are uncopyable. We only need to copy initial success values,
245 // so work around this mismatch via the C API. The C API represents success
246 // values with a null pointer. The joinErrors discards null values and joins
247 // multiple errors into an ErrorList.
248 return unwrap(parallelTransformReduce(
249 std::begin(R), std::end(R), wrap(Error::success()),
250 [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) {
251 return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs)));
252 },
253 [&Fn](auto &&V) { return wrap(Fn(V)); }));
254 }
255
256 } // namespace llvm
257
258 #endif // LLVM_SUPPORT_PARALLEL_H
259