1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2016 6WIND S.A.
4  */
5 
6 #include <stdbool.h>
7 #include <stdio.h>
8 #include <string.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <errno.h>
14 #include <sys/queue.h>
15 
16 #include <rte_common.h>
17 #include <rte_log.h>
18 #include <rte_debug.h>
19 #include <rte_memory.h>
20 #include <rte_memzone.h>
21 #include <rte_malloc.h>
22 #include <rte_atomic.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_eal_memconfig.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_errno.h>
30 #include <rte_string_fns.h>
31 #include <rte_spinlock.h>
32 #include <rte_tailq.h>
33 #include <rte_eal_paging.h>
34 
35 #include "rte_mempool.h"
36 #include "rte_mempool_trace.h"
37 
38 TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
39 
40 static struct rte_tailq_elem rte_mempool_tailq = {
41 	.name = "RTE_MEMPOOL",
42 };
EAL_REGISTER_TAILQ(rte_mempool_tailq)43 EAL_REGISTER_TAILQ(rte_mempool_tailq)
44 
45 #define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
46 #define CALC_CACHE_FLUSHTHRESH(c)	\
47 	((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
48 
49 #if defined(RTE_ARCH_X86)
50 /*
51  * return the greatest common divisor between a and b (fast algorithm)
52  *
53  */
54 static unsigned get_gcd(unsigned a, unsigned b)
55 {
56 	unsigned c;
57 
58 	if (0 == a)
59 		return b;
60 	if (0 == b)
61 		return a;
62 
63 	if (a < b) {
64 		c = a;
65 		a = b;
66 		b = c;
67 	}
68 
69 	while (b != 0) {
70 		c = a % b;
71 		a = b;
72 		b = c;
73 	}
74 
75 	return a;
76 }
77 
78 /*
79  * Depending on memory configuration on x86 arch, objects addresses are spread
80  * between channels and ranks in RAM: the pool allocator will add
81  * padding between objects. This function return the new size of the
82  * object.
83  */
84 static unsigned int
arch_mem_object_align(unsigned int obj_size)85 arch_mem_object_align(unsigned int obj_size)
86 {
87 	unsigned nrank, nchan;
88 	unsigned new_obj_size;
89 
90 	/* get number of channels */
91 	nchan = rte_memory_get_nchannel();
92 	if (nchan == 0)
93 		nchan = 4;
94 
95 	nrank = rte_memory_get_nrank();
96 	if (nrank == 0)
97 		nrank = 1;
98 
99 	/* process new object size */
100 	new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
101 	while (get_gcd(new_obj_size, nrank * nchan) != 1)
102 		new_obj_size++;
103 	return new_obj_size * RTE_MEMPOOL_ALIGN;
104 }
105 #else
106 static unsigned int
107 arch_mem_object_align(unsigned int obj_size)
108 {
109 	return obj_size;
110 }
111 #endif
112 
113 struct pagesz_walk_arg {
114 	int socket_id;
115 	size_t min;
116 };
117 
118 static int
find_min_pagesz(const struct rte_memseg_list * msl,void * arg)119 find_min_pagesz(const struct rte_memseg_list *msl, void *arg)
120 {
121 	struct pagesz_walk_arg *wa = arg;
122 	bool valid;
123 
124 	/*
125 	 * we need to only look at page sizes available for a particular socket
126 	 * ID.  so, we either need an exact match on socket ID (can match both
127 	 * native and external memory), or, if SOCKET_ID_ANY was specified as a
128 	 * socket ID argument, we must only look at native memory and ignore any
129 	 * page sizes associated with external memory.
130 	 */
131 	valid = msl->socket_id == wa->socket_id;
132 	valid |= wa->socket_id == SOCKET_ID_ANY && msl->external == 0;
133 
134 	if (valid && msl->page_sz < wa->min)
135 		wa->min = msl->page_sz;
136 
137 	return 0;
138 }
139 
140 static size_t
get_min_page_size(int socket_id)141 get_min_page_size(int socket_id)
142 {
143 	struct pagesz_walk_arg wa;
144 
145 	wa.min = SIZE_MAX;
146 	wa.socket_id = socket_id;
147 
148 	rte_memseg_list_walk(find_min_pagesz, &wa);
149 
150 	return wa.min == SIZE_MAX ? (size_t) rte_mem_page_size() : wa.min;
151 }
152 
153 
154 static void
mempool_add_elem(struct rte_mempool * mp,__rte_unused void * opaque,void * obj,rte_iova_t iova)155 mempool_add_elem(struct rte_mempool *mp, __rte_unused void *opaque,
156 		 void *obj, rte_iova_t iova)
157 {
158 	struct rte_mempool_objhdr *hdr;
159 	struct rte_mempool_objtlr *tlr __rte_unused;
160 
161 	/* set mempool ptr in header */
162 	hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
163 	hdr->mp = mp;
164 	hdr->iova = iova;
165 	STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
166 	mp->populated_size++;
167 
168 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
169 	hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
170 	tlr = __mempool_get_trailer(obj);
171 	tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
172 #endif
173 }
174 
175 /* call obj_cb() for each mempool element */
176 uint32_t
rte_mempool_obj_iter(struct rte_mempool * mp,rte_mempool_obj_cb_t * obj_cb,void * obj_cb_arg)177 rte_mempool_obj_iter(struct rte_mempool *mp,
178 	rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
179 {
180 	struct rte_mempool_objhdr *hdr;
181 	void *obj;
182 	unsigned n = 0;
183 
184 	STAILQ_FOREACH(hdr, &mp->elt_list, next) {
185 		obj = (char *)hdr + sizeof(*hdr);
186 		obj_cb(mp, obj_cb_arg, obj, n);
187 		n++;
188 	}
189 
190 	return n;
191 }
192 
193 /* call mem_cb() for each mempool memory chunk */
194 uint32_t
rte_mempool_mem_iter(struct rte_mempool * mp,rte_mempool_mem_cb_t * mem_cb,void * mem_cb_arg)195 rte_mempool_mem_iter(struct rte_mempool *mp,
196 	rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
197 {
198 	struct rte_mempool_memhdr *hdr;
199 	unsigned n = 0;
200 
201 	STAILQ_FOREACH(hdr, &mp->mem_list, next) {
202 		mem_cb(mp, mem_cb_arg, hdr, n);
203 		n++;
204 	}
205 
206 	return n;
207 }
208 
209 /* get the header, trailer and total size of a mempool element. */
210 uint32_t
rte_mempool_calc_obj_size(uint32_t elt_size,uint32_t flags,struct rte_mempool_objsz * sz)211 rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
212 	struct rte_mempool_objsz *sz)
213 {
214 	struct rte_mempool_objsz lsz;
215 
216 	sz = (sz != NULL) ? sz : &lsz;
217 
218 	sz->header_size = sizeof(struct rte_mempool_objhdr);
219 	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
220 		sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
221 			RTE_MEMPOOL_ALIGN);
222 
223 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
224 	sz->trailer_size = sizeof(struct rte_mempool_objtlr);
225 #else
226 	sz->trailer_size = 0;
227 #endif
228 
229 	/* element size is 8 bytes-aligned at least */
230 	sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
231 
232 	/* expand trailer to next cache line */
233 	if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
234 		sz->total_size = sz->header_size + sz->elt_size +
235 			sz->trailer_size;
236 		sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
237 				  (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
238 				 RTE_MEMPOOL_ALIGN_MASK);
239 	}
240 
241 	/*
242 	 * increase trailer to add padding between objects in order to
243 	 * spread them across memory channels/ranks
244 	 */
245 	if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
246 		unsigned new_size;
247 		new_size = arch_mem_object_align
248 			    (sz->header_size + sz->elt_size + sz->trailer_size);
249 		sz->trailer_size = new_size - sz->header_size - sz->elt_size;
250 	}
251 
252 	/* this is the size of an object, including header and trailer */
253 	sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
254 
255 	return sz->total_size;
256 }
257 
258 /* free a memchunk allocated with rte_memzone_reserve() */
259 static void
rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr * memhdr,void * opaque)260 rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
261 	void *opaque)
262 {
263 	const struct rte_memzone *mz = opaque;
264 	rte_memzone_free(mz);
265 }
266 
267 /* Free memory chunks used by a mempool. Objects must be in pool */
268 static void
rte_mempool_free_memchunks(struct rte_mempool * mp)269 rte_mempool_free_memchunks(struct rte_mempool *mp)
270 {
271 	struct rte_mempool_memhdr *memhdr;
272 	void *elt;
273 
274 	while (!STAILQ_EMPTY(&mp->elt_list)) {
275 		rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
276 		(void)elt;
277 		STAILQ_REMOVE_HEAD(&mp->elt_list, next);
278 		mp->populated_size--;
279 	}
280 
281 	while (!STAILQ_EMPTY(&mp->mem_list)) {
282 		memhdr = STAILQ_FIRST(&mp->mem_list);
283 		STAILQ_REMOVE_HEAD(&mp->mem_list, next);
284 		if (memhdr->free_cb != NULL)
285 			memhdr->free_cb(memhdr, memhdr->opaque);
286 		rte_free(memhdr);
287 		mp->nb_mem_chunks--;
288 	}
289 }
290 
291 static int
mempool_ops_alloc_once(struct rte_mempool * mp)292 mempool_ops_alloc_once(struct rte_mempool *mp)
293 {
294 	int ret;
295 
296 	/* create the internal ring if not already done */
297 	if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) {
298 		ret = rte_mempool_ops_alloc(mp);
299 		if (ret != 0)
300 			return ret;
301 		mp->flags |= MEMPOOL_F_POOL_CREATED;
302 	}
303 	return 0;
304 }
305 
306 /* Add objects in the pool, using a physically contiguous memory
307  * zone. Return the number of objects added, or a negative value
308  * on error.
309  */
310 int
rte_mempool_populate_iova(struct rte_mempool * mp,char * vaddr,rte_iova_t iova,size_t len,rte_mempool_memchunk_free_cb_t * free_cb,void * opaque)311 rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
312 	rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
313 	void *opaque)
314 {
315 	unsigned i = 0;
316 	size_t off;
317 	struct rte_mempool_memhdr *memhdr;
318 	int ret;
319 
320 	ret = mempool_ops_alloc_once(mp);
321 	if (ret != 0)
322 		return ret;
323 
324 	/* mempool is already populated */
325 	if (mp->populated_size >= mp->size)
326 		return -ENOSPC;
327 
328 	memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
329 	if (memhdr == NULL)
330 		return -ENOMEM;
331 
332 	memhdr->mp = mp;
333 	memhdr->addr = vaddr;
334 	memhdr->iova = iova;
335 	memhdr->len = len;
336 	memhdr->free_cb = free_cb;
337 	memhdr->opaque = opaque;
338 
339 	if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
340 		off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
341 	else
342 		off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_MEMPOOL_ALIGN) - vaddr;
343 
344 	if (off > len) {
345 		ret = 0;
346 		goto fail;
347 	}
348 
349 	i = rte_mempool_ops_populate(mp, mp->size - mp->populated_size,
350 		(char *)vaddr + off,
351 		(iova == RTE_BAD_IOVA) ? RTE_BAD_IOVA : (iova + off),
352 		len - off, mempool_add_elem, NULL);
353 
354 	/* not enough room to store one object */
355 	if (i == 0) {
356 		ret = 0;
357 		goto fail;
358 	}
359 
360 	STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
361 	mp->nb_mem_chunks++;
362 
363 	rte_mempool_trace_populate_iova(mp, vaddr, iova, len, free_cb, opaque);
364 	return i;
365 
366 fail:
367 	rte_free(memhdr);
368 	return ret;
369 }
370 
371 static rte_iova_t
get_iova(void * addr)372 get_iova(void *addr)
373 {
374 	struct rte_memseg *ms;
375 
376 	/* try registered memory first */
377 	ms = rte_mem_virt2memseg(addr, NULL);
378 	if (ms == NULL || ms->iova == RTE_BAD_IOVA)
379 		/* fall back to actual physical address */
380 		return rte_mem_virt2iova(addr);
381 	return ms->iova + RTE_PTR_DIFF(addr, ms->addr);
382 }
383 
384 /* Populate the mempool with a virtual area. Return the number of
385  * objects added, or a negative value on error.
386  */
387 int
rte_mempool_populate_virt(struct rte_mempool * mp,char * addr,size_t len,size_t pg_sz,rte_mempool_memchunk_free_cb_t * free_cb,void * opaque)388 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
389 	size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
390 	void *opaque)
391 {
392 	rte_iova_t iova;
393 	size_t off, phys_len;
394 	int ret, cnt = 0;
395 
396 	if (mp->flags & MEMPOOL_F_NO_IOVA_CONTIG)
397 		return rte_mempool_populate_iova(mp, addr, RTE_BAD_IOVA,
398 			len, free_cb, opaque);
399 
400 	for (off = 0; off < len &&
401 		     mp->populated_size < mp->size; off += phys_len) {
402 
403 		iova = get_iova(addr + off);
404 
405 		/* populate with the largest group of contiguous pages */
406 		for (phys_len = RTE_MIN(
407 			(size_t)(RTE_PTR_ALIGN_CEIL(addr + off + 1, pg_sz) -
408 				(addr + off)),
409 			len - off);
410 		     off + phys_len < len;
411 		     phys_len = RTE_MIN(phys_len + pg_sz, len - off)) {
412 			rte_iova_t iova_tmp;
413 
414 			iova_tmp = get_iova(addr + off + phys_len);
415 
416 			if (iova_tmp == RTE_BAD_IOVA ||
417 					iova_tmp != iova + phys_len)
418 				break;
419 		}
420 
421 		ret = rte_mempool_populate_iova(mp, addr + off, iova,
422 			phys_len, free_cb, opaque);
423 		if (ret == 0)
424 			continue;
425 		if (ret < 0)
426 			goto fail;
427 		/* no need to call the free callback for next chunks */
428 		free_cb = NULL;
429 		cnt += ret;
430 	}
431 
432 	rte_mempool_trace_populate_virt(mp, addr, len, pg_sz, free_cb, opaque);
433 	return cnt;
434 
435  fail:
436 	rte_mempool_free_memchunks(mp);
437 	return ret;
438 }
439 
440 /* Get the minimal page size used in a mempool before populating it. */
441 int
rte_mempool_get_page_size(struct rte_mempool * mp,size_t * pg_sz)442 rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz)
443 {
444 	bool need_iova_contig_obj;
445 	bool alloc_in_ext_mem;
446 	int ret;
447 
448 	/* check if we can retrieve a valid socket ID */
449 	ret = rte_malloc_heap_socket_is_external(mp->socket_id);
450 	if (ret < 0)
451 		return -EINVAL;
452 	alloc_in_ext_mem = (ret == 1);
453 	need_iova_contig_obj = !(mp->flags & MEMPOOL_F_NO_IOVA_CONTIG);
454 
455 	if (!need_iova_contig_obj)
456 		*pg_sz = 0;
457 	else if (rte_eal_has_hugepages() || alloc_in_ext_mem)
458 		*pg_sz = get_min_page_size(mp->socket_id);
459 	else
460 		*pg_sz = rte_mem_page_size();
461 
462 	rte_mempool_trace_get_page_size(mp, *pg_sz);
463 	return 0;
464 }
465 
466 /* Default function to populate the mempool: allocate memory in memzones,
467  * and populate them. Return the number of objects added, or a negative
468  * value on error.
469  */
470 int
rte_mempool_populate_default(struct rte_mempool * mp)471 rte_mempool_populate_default(struct rte_mempool *mp)
472 {
473 	unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
474 	char mz_name[RTE_MEMZONE_NAMESIZE];
475 	const struct rte_memzone *mz;
476 	ssize_t mem_size;
477 	size_t align, pg_sz, pg_shift = 0;
478 	rte_iova_t iova;
479 	unsigned mz_id, n;
480 	int ret;
481 	bool need_iova_contig_obj;
482 	size_t max_alloc_size = SIZE_MAX;
483 
484 	ret = mempool_ops_alloc_once(mp);
485 	if (ret != 0)
486 		return ret;
487 
488 	/* mempool must not be populated */
489 	if (mp->nb_mem_chunks != 0)
490 		return -EEXIST;
491 
492 	/*
493 	 * the following section calculates page shift and page size values.
494 	 *
495 	 * these values impact the result of calc_mem_size operation, which
496 	 * returns the amount of memory that should be allocated to store the
497 	 * desired number of objects. when not zero, it allocates more memory
498 	 * for the padding between objects, to ensure that an object does not
499 	 * cross a page boundary. in other words, page size/shift are to be set
500 	 * to zero if mempool elements won't care about page boundaries.
501 	 * there are several considerations for page size and page shift here.
502 	 *
503 	 * if we don't need our mempools to have physically contiguous objects,
504 	 * then just set page shift and page size to 0, because the user has
505 	 * indicated that there's no need to care about anything.
506 	 *
507 	 * if we do need contiguous objects (if a mempool driver has its
508 	 * own calc_size() method returning min_chunk_size = mem_size),
509 	 * there is also an option to reserve the entire mempool memory
510 	 * as one contiguous block of memory.
511 	 *
512 	 * if we require contiguous objects, but not necessarily the entire
513 	 * mempool reserved space to be contiguous, pg_sz will be != 0,
514 	 * and the default ops->populate() will take care of not placing
515 	 * objects across pages.
516 	 *
517 	 * if our IO addresses are physical, we may get memory from bigger
518 	 * pages, or we might get memory from smaller pages, and how much of it
519 	 * we require depends on whether we want bigger or smaller pages.
520 	 * However, requesting each and every memory size is too much work, so
521 	 * what we'll do instead is walk through the page sizes available, pick
522 	 * the smallest one and set up page shift to match that one. We will be
523 	 * wasting some space this way, but it's much nicer than looping around
524 	 * trying to reserve each and every page size.
525 	 *
526 	 * If we fail to get enough contiguous memory, then we'll go and
527 	 * reserve space in smaller chunks.
528 	 */
529 
530 	need_iova_contig_obj = !(mp->flags & MEMPOOL_F_NO_IOVA_CONTIG);
531 	ret = rte_mempool_get_page_size(mp, &pg_sz);
532 	if (ret < 0)
533 		return ret;
534 
535 	if (pg_sz != 0)
536 		pg_shift = rte_bsf32(pg_sz);
537 
538 	for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
539 		size_t min_chunk_size;
540 
541 		mem_size = rte_mempool_ops_calc_mem_size(
542 			mp, n, pg_shift, &min_chunk_size, &align);
543 
544 		if (mem_size < 0) {
545 			ret = mem_size;
546 			goto fail;
547 		}
548 
549 		ret = snprintf(mz_name, sizeof(mz_name),
550 			RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
551 		if (ret < 0 || ret >= (int)sizeof(mz_name)) {
552 			ret = -ENAMETOOLONG;
553 			goto fail;
554 		}
555 
556 		/* if we're trying to reserve contiguous memory, add appropriate
557 		 * memzone flag.
558 		 */
559 		if (min_chunk_size == (size_t)mem_size)
560 			mz_flags |= RTE_MEMZONE_IOVA_CONTIG;
561 
562 		/* Allocate a memzone, retrying with a smaller area on ENOMEM */
563 		do {
564 			mz = rte_memzone_reserve_aligned(mz_name,
565 				RTE_MIN((size_t)mem_size, max_alloc_size),
566 				mp->socket_id, mz_flags, align);
567 
568 			if (mz != NULL || rte_errno != ENOMEM)
569 				break;
570 
571 			max_alloc_size = RTE_MIN(max_alloc_size,
572 						(size_t)mem_size) / 2;
573 		} while (mz == NULL && max_alloc_size >= min_chunk_size);
574 
575 		if (mz == NULL) {
576 			ret = -rte_errno;
577 			goto fail;
578 		}
579 
580 		if (need_iova_contig_obj)
581 			iova = mz->iova;
582 		else
583 			iova = RTE_BAD_IOVA;
584 
585 		if (pg_sz == 0 || (mz_flags & RTE_MEMZONE_IOVA_CONTIG))
586 			ret = rte_mempool_populate_iova(mp, mz->addr,
587 				iova, mz->len,
588 				rte_mempool_memchunk_mz_free,
589 				(void *)(uintptr_t)mz);
590 		else
591 			ret = rte_mempool_populate_virt(mp, mz->addr,
592 				mz->len, pg_sz,
593 				rte_mempool_memchunk_mz_free,
594 				(void *)(uintptr_t)mz);
595 		if (ret == 0) /* should not happen */
596 			ret = -ENOBUFS;
597 		if (ret < 0) {
598 			rte_memzone_free(mz);
599 			goto fail;
600 		}
601 	}
602 
603 	rte_mempool_trace_populate_default(mp);
604 	return mp->size;
605 
606  fail:
607 	rte_mempool_free_memchunks(mp);
608 	return ret;
609 }
610 
611 /* return the memory size required for mempool objects in anonymous mem */
612 static ssize_t
get_anon_size(const struct rte_mempool * mp)613 get_anon_size(const struct rte_mempool *mp)
614 {
615 	ssize_t size;
616 	size_t pg_sz, pg_shift;
617 	size_t min_chunk_size;
618 	size_t align;
619 
620 	pg_sz = rte_mem_page_size();
621 	pg_shift = rte_bsf32(pg_sz);
622 	size = rte_mempool_ops_calc_mem_size(mp, mp->size, pg_shift,
623 					     &min_chunk_size, &align);
624 
625 	return size;
626 }
627 
628 /* unmap a memory zone mapped by rte_mempool_populate_anon() */
629 static void
rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr * memhdr,void * opaque)630 rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
631 	void *opaque)
632 {
633 	ssize_t size;
634 
635 	/*
636 	 * Calculate size since memhdr->len has contiguous chunk length
637 	 * which may be smaller if anon map is split into many contiguous
638 	 * chunks. Result must be the same as we calculated on populate.
639 	 */
640 	size = get_anon_size(memhdr->mp);
641 	if (size < 0)
642 		return;
643 
644 	rte_mem_unmap(opaque, size);
645 }
646 
647 /* populate the mempool with an anonymous mapping */
648 int
rte_mempool_populate_anon(struct rte_mempool * mp)649 rte_mempool_populate_anon(struct rte_mempool *mp)
650 {
651 	ssize_t size;
652 	int ret;
653 	char *addr;
654 
655 	/* mempool is already populated, error */
656 	if ((!STAILQ_EMPTY(&mp->mem_list)) || mp->nb_mem_chunks != 0) {
657 		rte_errno = EINVAL;
658 		return 0;
659 	}
660 
661 	ret = mempool_ops_alloc_once(mp);
662 	if (ret < 0) {
663 		rte_errno = -ret;
664 		return 0;
665 	}
666 
667 	size = get_anon_size(mp);
668 	if (size < 0) {
669 		rte_errno = -size;
670 		return 0;
671 	}
672 
673 	/* get chunk of virtually continuous memory */
674 	addr = rte_mem_map(NULL, size, RTE_PROT_READ | RTE_PROT_WRITE,
675 		RTE_MAP_SHARED | RTE_MAP_ANONYMOUS, -1, 0);
676 	if (addr == NULL)
677 		return 0;
678 	/* can't use MMAP_LOCKED, it does not exist on BSD */
679 	if (rte_mem_lock(addr, size) < 0) {
680 		rte_mem_unmap(addr, size);
681 		return 0;
682 	}
683 
684 	ret = rte_mempool_populate_virt(mp, addr, size, rte_mem_page_size(),
685 		rte_mempool_memchunk_anon_free, addr);
686 	if (ret == 0) /* should not happen */
687 		ret = -ENOBUFS;
688 	if (ret < 0) {
689 		rte_errno = -ret;
690 		goto fail;
691 	}
692 
693 	rte_mempool_trace_populate_anon(mp);
694 	return mp->populated_size;
695 
696  fail:
697 	rte_mempool_free_memchunks(mp);
698 	return 0;
699 }
700 
701 /* free a mempool */
702 void
rte_mempool_free(struct rte_mempool * mp)703 rte_mempool_free(struct rte_mempool *mp)
704 {
705 	struct rte_mempool_list *mempool_list = NULL;
706 	struct rte_tailq_entry *te;
707 
708 	if (mp == NULL)
709 		return;
710 
711 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
712 	rte_mcfg_tailq_write_lock();
713 	/* find out tailq entry */
714 	TAILQ_FOREACH(te, mempool_list, next) {
715 		if (te->data == (void *)mp)
716 			break;
717 	}
718 
719 	if (te != NULL) {
720 		TAILQ_REMOVE(mempool_list, te, next);
721 		rte_free(te);
722 	}
723 	rte_mcfg_tailq_write_unlock();
724 
725 	rte_mempool_trace_free(mp);
726 	rte_mempool_free_memchunks(mp);
727 	rte_mempool_ops_free(mp);
728 	rte_memzone_free(mp->mz);
729 }
730 
731 static void
mempool_cache_init(struct rte_mempool_cache * cache,uint32_t size)732 mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
733 {
734 	cache->size = size;
735 	cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
736 	cache->len = 0;
737 }
738 
739 /*
740  * Create and initialize a cache for objects that are retrieved from and
741  * returned to an underlying mempool. This structure is identical to the
742  * local_cache[lcore_id] pointed to by the mempool structure.
743  */
744 struct rte_mempool_cache *
rte_mempool_cache_create(uint32_t size,int socket_id)745 rte_mempool_cache_create(uint32_t size, int socket_id)
746 {
747 	struct rte_mempool_cache *cache;
748 
749 	if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
750 		rte_errno = EINVAL;
751 		return NULL;
752 	}
753 
754 	cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
755 				  RTE_CACHE_LINE_SIZE, socket_id);
756 	if (cache == NULL) {
757 		RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n");
758 		rte_errno = ENOMEM;
759 		return NULL;
760 	}
761 
762 	mempool_cache_init(cache, size);
763 
764 	rte_mempool_trace_cache_create(size, socket_id, cache);
765 	return cache;
766 }
767 
768 /*
769  * Free a cache. It's the responsibility of the user to make sure that any
770  * remaining objects in the cache are flushed to the corresponding
771  * mempool.
772  */
773 void
rte_mempool_cache_free(struct rte_mempool_cache * cache)774 rte_mempool_cache_free(struct rte_mempool_cache *cache)
775 {
776 	rte_mempool_trace_cache_free(cache);
777 	rte_free(cache);
778 }
779 
780 /* create an empty mempool */
781 struct rte_mempool *
rte_mempool_create_empty(const char * name,unsigned n,unsigned elt_size,unsigned cache_size,unsigned private_data_size,int socket_id,unsigned flags)782 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
783 	unsigned cache_size, unsigned private_data_size,
784 	int socket_id, unsigned flags)
785 {
786 	char mz_name[RTE_MEMZONE_NAMESIZE];
787 	struct rte_mempool_list *mempool_list;
788 	struct rte_mempool *mp = NULL;
789 	struct rte_tailq_entry *te = NULL;
790 	const struct rte_memzone *mz = NULL;
791 	size_t mempool_size;
792 	unsigned int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
793 	struct rte_mempool_objsz objsz;
794 	unsigned lcore_id;
795 	int ret;
796 
797 	/* compilation-time checks */
798 	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
799 			  RTE_CACHE_LINE_MASK) != 0);
800 	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
801 			  RTE_CACHE_LINE_MASK) != 0);
802 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
803 	RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
804 			  RTE_CACHE_LINE_MASK) != 0);
805 	RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
806 			  RTE_CACHE_LINE_MASK) != 0);
807 #endif
808 
809 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
810 
811 	/* asked for zero items */
812 	if (n == 0) {
813 		rte_errno = EINVAL;
814 		return NULL;
815 	}
816 
817 	/* asked cache too big */
818 	if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
819 	    CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
820 		rte_errno = EINVAL;
821 		return NULL;
822 	}
823 
824 	/* "no cache align" imply "no spread" */
825 	if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
826 		flags |= MEMPOOL_F_NO_SPREAD;
827 
828 	/* calculate mempool object sizes. */
829 	if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
830 		rte_errno = EINVAL;
831 		return NULL;
832 	}
833 
834 	rte_mcfg_mempool_write_lock();
835 
836 	/*
837 	 * reserve a memory zone for this mempool: private data is
838 	 * cache-aligned
839 	 */
840 	private_data_size = (private_data_size +
841 			     RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
842 
843 
844 	/* try to allocate tailq entry */
845 	te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
846 	if (te == NULL) {
847 		RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
848 		goto exit_unlock;
849 	}
850 
851 	mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
852 	mempool_size += private_data_size;
853 	mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
854 
855 	ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
856 	if (ret < 0 || ret >= (int)sizeof(mz_name)) {
857 		rte_errno = ENAMETOOLONG;
858 		goto exit_unlock;
859 	}
860 
861 	mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
862 	if (mz == NULL)
863 		goto exit_unlock;
864 
865 	/* init the mempool structure */
866 	mp = mz->addr;
867 	memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size));
868 	ret = strlcpy(mp->name, name, sizeof(mp->name));
869 	if (ret < 0 || ret >= (int)sizeof(mp->name)) {
870 		rte_errno = ENAMETOOLONG;
871 		goto exit_unlock;
872 	}
873 	mp->mz = mz;
874 	mp->size = n;
875 	mp->flags = flags;
876 	mp->socket_id = socket_id;
877 	mp->elt_size = objsz.elt_size;
878 	mp->header_size = objsz.header_size;
879 	mp->trailer_size = objsz.trailer_size;
880 	/* Size of default caches, zero means disabled. */
881 	mp->cache_size = cache_size;
882 	mp->private_data_size = private_data_size;
883 	STAILQ_INIT(&mp->elt_list);
884 	STAILQ_INIT(&mp->mem_list);
885 
886 	/*
887 	 * local_cache pointer is set even if cache_size is zero.
888 	 * The local_cache points to just past the elt_pa[] array.
889 	 */
890 	mp->local_cache = (struct rte_mempool_cache *)
891 		RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));
892 
893 	/* Init all default caches. */
894 	if (cache_size != 0) {
895 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
896 			mempool_cache_init(&mp->local_cache[lcore_id],
897 					   cache_size);
898 	}
899 
900 	te->data = mp;
901 
902 	rte_mcfg_tailq_write_lock();
903 	TAILQ_INSERT_TAIL(mempool_list, te, next);
904 	rte_mcfg_tailq_write_unlock();
905 	rte_mcfg_mempool_write_unlock();
906 
907 	rte_mempool_trace_create_empty(name, n, elt_size, cache_size,
908 		private_data_size, flags, mp);
909 	return mp;
910 
911 exit_unlock:
912 	rte_mcfg_mempool_write_unlock();
913 	rte_free(te);
914 	rte_mempool_free(mp);
915 	return NULL;
916 }
917 
918 /* create the mempool */
919 struct rte_mempool *
rte_mempool_create(const char * name,unsigned n,unsigned elt_size,unsigned cache_size,unsigned private_data_size,rte_mempool_ctor_t * mp_init,void * mp_init_arg,rte_mempool_obj_cb_t * obj_init,void * obj_init_arg,int socket_id,unsigned flags)920 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
921 	unsigned cache_size, unsigned private_data_size,
922 	rte_mempool_ctor_t *mp_init, void *mp_init_arg,
923 	rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
924 	int socket_id, unsigned flags)
925 {
926 	int ret;
927 	struct rte_mempool *mp;
928 
929 	mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
930 		private_data_size, socket_id, flags);
931 	if (mp == NULL)
932 		return NULL;
933 
934 	/*
935 	 * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
936 	 * set the correct index into the table of ops structs.
937 	 */
938 	if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET))
939 		ret = rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
940 	else if (flags & MEMPOOL_F_SP_PUT)
941 		ret = rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
942 	else if (flags & MEMPOOL_F_SC_GET)
943 		ret = rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
944 	else
945 		ret = rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
946 
947 	if (ret)
948 		goto fail;
949 
950 	/* call the mempool priv initializer */
951 	if (mp_init)
952 		mp_init(mp, mp_init_arg);
953 
954 	if (rte_mempool_populate_default(mp) < 0)
955 		goto fail;
956 
957 	/* call the object initializers */
958 	if (obj_init)
959 		rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
960 
961 	rte_mempool_trace_create(name, n, elt_size, cache_size,
962 		private_data_size, mp_init, mp_init_arg, obj_init,
963 		obj_init_arg, flags, mp);
964 	return mp;
965 
966  fail:
967 	rte_mempool_free(mp);
968 	return NULL;
969 }
970 
971 /* Return the number of entries in the mempool */
972 unsigned int
rte_mempool_avail_count(const struct rte_mempool * mp)973 rte_mempool_avail_count(const struct rte_mempool *mp)
974 {
975 	unsigned count;
976 	unsigned lcore_id;
977 
978 	count = rte_mempool_ops_get_count(mp);
979 
980 	if (mp->cache_size == 0)
981 		return count;
982 
983 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
984 		count += mp->local_cache[lcore_id].len;
985 
986 	/*
987 	 * due to race condition (access to len is not locked), the
988 	 * total can be greater than size... so fix the result
989 	 */
990 	if (count > mp->size)
991 		return mp->size;
992 	return count;
993 }
994 
995 /* return the number of entries allocated from the mempool */
996 unsigned int
rte_mempool_in_use_count(const struct rte_mempool * mp)997 rte_mempool_in_use_count(const struct rte_mempool *mp)
998 {
999 	return mp->size - rte_mempool_avail_count(mp);
1000 }
1001 
1002 /* dump the cache status */
1003 static unsigned
rte_mempool_dump_cache(FILE * f,const struct rte_mempool * mp)1004 rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
1005 {
1006 	unsigned lcore_id;
1007 	unsigned count = 0;
1008 	unsigned cache_count;
1009 
1010 	fprintf(f, "  internal cache infos:\n");
1011 	fprintf(f, "    cache_size=%"PRIu32"\n", mp->cache_size);
1012 
1013 	if (mp->cache_size == 0)
1014 		return count;
1015 
1016 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1017 		cache_count = mp->local_cache[lcore_id].len;
1018 		fprintf(f, "    cache_count[%u]=%"PRIu32"\n",
1019 			lcore_id, cache_count);
1020 		count += cache_count;
1021 	}
1022 	fprintf(f, "    total_cache_count=%u\n", count);
1023 	return count;
1024 }
1025 
1026 #ifndef __INTEL_COMPILER
1027 #pragma GCC diagnostic ignored "-Wcast-qual"
1028 #endif
1029 
1030 /* check and update cookies or panic (internal) */
rte_mempool_check_cookies(const struct rte_mempool * mp,void * const * obj_table_const,unsigned n,int free)1031 void rte_mempool_check_cookies(const struct rte_mempool *mp,
1032 	void * const *obj_table_const, unsigned n, int free)
1033 {
1034 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1035 	struct rte_mempool_objhdr *hdr;
1036 	struct rte_mempool_objtlr *tlr;
1037 	uint64_t cookie;
1038 	void *tmp;
1039 	void *obj;
1040 	void **obj_table;
1041 
1042 	/* Force to drop the "const" attribute. This is done only when
1043 	 * DEBUG is enabled */
1044 	tmp = (void *) obj_table_const;
1045 	obj_table = tmp;
1046 
1047 	while (n--) {
1048 		obj = obj_table[n];
1049 
1050 		if (rte_mempool_from_obj(obj) != mp)
1051 			rte_panic("MEMPOOL: object is owned by another "
1052 				  "mempool\n");
1053 
1054 		hdr = __mempool_get_header(obj);
1055 		cookie = hdr->cookie;
1056 
1057 		if (free == 0) {
1058 			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
1059 				RTE_LOG(CRIT, MEMPOOL,
1060 					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1061 					obj, (const void *) mp, cookie);
1062 				rte_panic("MEMPOOL: bad header cookie (put)\n");
1063 			}
1064 			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
1065 		} else if (free == 1) {
1066 			if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1067 				RTE_LOG(CRIT, MEMPOOL,
1068 					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1069 					obj, (const void *) mp, cookie);
1070 				rte_panic("MEMPOOL: bad header cookie (get)\n");
1071 			}
1072 			hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
1073 		} else if (free == 2) {
1074 			if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
1075 			    cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1076 				RTE_LOG(CRIT, MEMPOOL,
1077 					"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1078 					obj, (const void *) mp, cookie);
1079 				rte_panic("MEMPOOL: bad header cookie (audit)\n");
1080 			}
1081 		}
1082 		tlr = __mempool_get_trailer(obj);
1083 		cookie = tlr->cookie;
1084 		if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
1085 			RTE_LOG(CRIT, MEMPOOL,
1086 				"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1087 				obj, (const void *) mp, cookie);
1088 			rte_panic("MEMPOOL: bad trailer cookie\n");
1089 		}
1090 	}
1091 #else
1092 	RTE_SET_USED(mp);
1093 	RTE_SET_USED(obj_table_const);
1094 	RTE_SET_USED(n);
1095 	RTE_SET_USED(free);
1096 #endif
1097 }
1098 
1099 void
rte_mempool_contig_blocks_check_cookies(const struct rte_mempool * mp,void * const * first_obj_table_const,unsigned int n,int free)1100 rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
1101 	void * const *first_obj_table_const, unsigned int n, int free)
1102 {
1103 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1104 	struct rte_mempool_info info;
1105 	const size_t total_elt_sz =
1106 		mp->header_size + mp->elt_size + mp->trailer_size;
1107 	unsigned int i, j;
1108 
1109 	rte_mempool_ops_get_info(mp, &info);
1110 
1111 	for (i = 0; i < n; ++i) {
1112 		void *first_obj = first_obj_table_const[i];
1113 
1114 		for (j = 0; j < info.contig_block_size; ++j) {
1115 			void *obj;
1116 
1117 			obj = (void *)((uintptr_t)first_obj + j * total_elt_sz);
1118 			rte_mempool_check_cookies(mp, &obj, 1, free);
1119 		}
1120 	}
1121 #else
1122 	RTE_SET_USED(mp);
1123 	RTE_SET_USED(first_obj_table_const);
1124 	RTE_SET_USED(n);
1125 	RTE_SET_USED(free);
1126 #endif
1127 }
1128 
1129 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1130 static void
mempool_obj_audit(struct rte_mempool * mp,__rte_unused void * opaque,void * obj,__rte_unused unsigned idx)1131 mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
1132 	void *obj, __rte_unused unsigned idx)
1133 {
1134 	__mempool_check_cookies(mp, &obj, 1, 2);
1135 }
1136 
1137 static void
mempool_audit_cookies(struct rte_mempool * mp)1138 mempool_audit_cookies(struct rte_mempool *mp)
1139 {
1140 	unsigned num;
1141 
1142 	num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
1143 	if (num != mp->size) {
1144 		rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
1145 			"iterated only over %u elements\n",
1146 			mp, mp->size, num);
1147 	}
1148 }
1149 #else
1150 #define mempool_audit_cookies(mp) do {} while(0)
1151 #endif
1152 
1153 #ifndef __INTEL_COMPILER
1154 #pragma GCC diagnostic error "-Wcast-qual"
1155 #endif
1156 
1157 /* check cookies before and after objects */
1158 static void
mempool_audit_cache(const struct rte_mempool * mp)1159 mempool_audit_cache(const struct rte_mempool *mp)
1160 {
1161 	/* check cache size consistency */
1162 	unsigned lcore_id;
1163 
1164 	if (mp->cache_size == 0)
1165 		return;
1166 
1167 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1168 		const struct rte_mempool_cache *cache;
1169 		cache = &mp->local_cache[lcore_id];
1170 		if (cache->len > cache->flushthresh) {
1171 			RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
1172 				lcore_id);
1173 			rte_panic("MEMPOOL: invalid cache len\n");
1174 		}
1175 	}
1176 }
1177 
1178 /* check the consistency of mempool (size, cookies, ...) */
1179 void
rte_mempool_audit(struct rte_mempool * mp)1180 rte_mempool_audit(struct rte_mempool *mp)
1181 {
1182 	mempool_audit_cache(mp);
1183 	mempool_audit_cookies(mp);
1184 
1185 	/* For case where mempool DEBUG is not set, and cache size is 0 */
1186 	RTE_SET_USED(mp);
1187 }
1188 
1189 /* dump the status of the mempool on the console */
1190 void
rte_mempool_dump(FILE * f,struct rte_mempool * mp)1191 rte_mempool_dump(FILE *f, struct rte_mempool *mp)
1192 {
1193 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1194 	struct rte_mempool_info info;
1195 	struct rte_mempool_debug_stats sum;
1196 	unsigned lcore_id;
1197 #endif
1198 	struct rte_mempool_memhdr *memhdr;
1199 	struct rte_mempool_ops *ops;
1200 	unsigned common_count;
1201 	unsigned cache_count;
1202 	size_t mem_len = 0;
1203 
1204 	RTE_ASSERT(f != NULL);
1205 	RTE_ASSERT(mp != NULL);
1206 
1207 	fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
1208 	fprintf(f, "  flags=%x\n", mp->flags);
1209 	fprintf(f, "  socket_id=%d\n", mp->socket_id);
1210 	fprintf(f, "  pool=%p\n", mp->pool_data);
1211 	fprintf(f, "  iova=0x%" PRIx64 "\n", mp->mz->iova);
1212 	fprintf(f, "  nb_mem_chunks=%u\n", mp->nb_mem_chunks);
1213 	fprintf(f, "  size=%"PRIu32"\n", mp->size);
1214 	fprintf(f, "  populated_size=%"PRIu32"\n", mp->populated_size);
1215 	fprintf(f, "  header_size=%"PRIu32"\n", mp->header_size);
1216 	fprintf(f, "  elt_size=%"PRIu32"\n", mp->elt_size);
1217 	fprintf(f, "  trailer_size=%"PRIu32"\n", mp->trailer_size);
1218 	fprintf(f, "  total_obj_size=%"PRIu32"\n",
1219 	       mp->header_size + mp->elt_size + mp->trailer_size);
1220 
1221 	fprintf(f, "  private_data_size=%"PRIu32"\n", mp->private_data_size);
1222 
1223 	fprintf(f, "  ops_index=%d\n", mp->ops_index);
1224 	ops = rte_mempool_get_ops(mp->ops_index);
1225 	fprintf(f, "  ops_name: <%s>\n", (ops != NULL) ? ops->name : "NA");
1226 
1227 	STAILQ_FOREACH(memhdr, &mp->mem_list, next)
1228 		mem_len += memhdr->len;
1229 	if (mem_len != 0) {
1230 		fprintf(f, "  avg bytes/object=%#Lf\n",
1231 			(long double)mem_len / mp->size);
1232 	}
1233 
1234 	cache_count = rte_mempool_dump_cache(f, mp);
1235 	common_count = rte_mempool_ops_get_count(mp);
1236 	if ((cache_count + common_count) > mp->size)
1237 		common_count = mp->size - cache_count;
1238 	fprintf(f, "  common_pool_count=%u\n", common_count);
1239 
1240 	/* sum and dump statistics */
1241 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1242 	rte_mempool_ops_get_info(mp, &info);
1243 	memset(&sum, 0, sizeof(sum));
1244 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1245 		sum.put_bulk += mp->stats[lcore_id].put_bulk;
1246 		sum.put_objs += mp->stats[lcore_id].put_objs;
1247 		sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
1248 		sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
1249 		sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
1250 		sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
1251 		sum.get_success_blks += mp->stats[lcore_id].get_success_blks;
1252 		sum.get_fail_blks += mp->stats[lcore_id].get_fail_blks;
1253 	}
1254 	fprintf(f, "  stats:\n");
1255 	fprintf(f, "    put_bulk=%"PRIu64"\n", sum.put_bulk);
1256 	fprintf(f, "    put_objs=%"PRIu64"\n", sum.put_objs);
1257 	fprintf(f, "    get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
1258 	fprintf(f, "    get_success_objs=%"PRIu64"\n", sum.get_success_objs);
1259 	fprintf(f, "    get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
1260 	fprintf(f, "    get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
1261 	if (info.contig_block_size > 0) {
1262 		fprintf(f, "    get_success_blks=%"PRIu64"\n",
1263 			sum.get_success_blks);
1264 		fprintf(f, "    get_fail_blks=%"PRIu64"\n", sum.get_fail_blks);
1265 	}
1266 #else
1267 	fprintf(f, "  no statistics available\n");
1268 #endif
1269 
1270 	rte_mempool_audit(mp);
1271 }
1272 
1273 /* dump the status of all mempools on the console */
1274 void
rte_mempool_list_dump(FILE * f)1275 rte_mempool_list_dump(FILE *f)
1276 {
1277 	struct rte_mempool *mp = NULL;
1278 	struct rte_tailq_entry *te;
1279 	struct rte_mempool_list *mempool_list;
1280 
1281 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1282 
1283 	rte_mcfg_mempool_read_lock();
1284 
1285 	TAILQ_FOREACH(te, mempool_list, next) {
1286 		mp = (struct rte_mempool *) te->data;
1287 		rte_mempool_dump(f, mp);
1288 	}
1289 
1290 	rte_mcfg_mempool_read_unlock();
1291 }
1292 
1293 /* search a mempool from its name */
1294 struct rte_mempool *
rte_mempool_lookup(const char * name)1295 rte_mempool_lookup(const char *name)
1296 {
1297 	struct rte_mempool *mp = NULL;
1298 	struct rte_tailq_entry *te;
1299 	struct rte_mempool_list *mempool_list;
1300 
1301 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1302 
1303 	rte_mcfg_mempool_read_lock();
1304 
1305 	TAILQ_FOREACH(te, mempool_list, next) {
1306 		mp = (struct rte_mempool *) te->data;
1307 		if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
1308 			break;
1309 	}
1310 
1311 	rte_mcfg_mempool_read_unlock();
1312 
1313 	if (te == NULL) {
1314 		rte_errno = ENOENT;
1315 		return NULL;
1316 	}
1317 
1318 	return mp;
1319 }
1320 
rte_mempool_walk(void (* func)(struct rte_mempool *,void *),void * arg)1321 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
1322 		      void *arg)
1323 {
1324 	struct rte_tailq_entry *te = NULL;
1325 	struct rte_mempool_list *mempool_list;
1326 	void *tmp_te;
1327 
1328 	mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1329 
1330 	rte_mcfg_mempool_read_lock();
1331 
1332 	TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
1333 		(*func)((struct rte_mempool *) te->data, arg);
1334 	}
1335 
1336 	rte_mcfg_mempool_read_unlock();
1337 }
1338