xref: /freebsd-14.2/sys/dev/netmap/netmap_mem2.c (revision 9f984fc6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2014 Matteo Landi
5  * Copyright (C) 2012-2016 Luigi Rizzo
6  * Copyright (C) 2012-2016 Giuseppe Lettieri
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *   1. Redistributions of source code must retain the above copyright
13  *      notice, this list of conditions and the following disclaimer.
14  *   2. Redistributions in binary form must reproduce the above copyright
15  *      notice, this list of conditions and the following disclaimer in the
16  *      documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifdef linux
32 #include "bsd_glue.h"
33 #endif /* linux */
34 
35 #ifdef __APPLE__
36 #include "osx_glue.h"
37 #endif /* __APPLE__ */
38 
39 #ifdef __FreeBSD__
40 #include <sys/param.h>
41 #include <sys/domainset.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>		/* MALLOC_DEFINE */
44 #include <sys/proc.h>
45 #include <vm/vm.h>	/* vtophys */
46 #include <vm/pmap.h>	/* vtophys */
47 #include <sys/socket.h> /* sockaddrs */
48 #include <sys/selinfo.h>
49 #include <sys/sysctl.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/vnet.h>
53 #include <machine/bus.h>	/* bus_dmamap_* */
54 
55 /* M_NETMAP only used in here */
56 MALLOC_DECLARE(M_NETMAP);
57 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
58 
59 #endif /* __FreeBSD__ */
60 
61 #ifdef _WIN32
62 #include <win_glue.h>
63 #endif
64 
65 #include <net/netmap.h>
66 #include <dev/netmap/netmap_kern.h>
67 #include <net/netmap_virt.h>
68 #include "netmap_mem2.h"
69 
70 #ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY
71 #define NETMAP_BUF_MAX_NUM  8*4096      /* if too big takes too much time to allocate */
72 #else
73 #define NETMAP_BUF_MAX_NUM 20*4096*2	/* large machine */
74 #endif
75 
76 #define NETMAP_POOL_MAX_NAMSZ	32
77 
78 
79 enum {
80 	NETMAP_IF_POOL   = 0,
81 	NETMAP_RING_POOL,
82 	NETMAP_BUF_POOL,
83 	NETMAP_POOLS_NR
84 };
85 
86 
87 struct netmap_obj_params {
88 	u_int size;
89 	u_int num;
90 
91 	u_int last_size;
92 	u_int last_num;
93 };
94 
95 struct netmap_obj_pool {
96 	char name[NETMAP_POOL_MAX_NAMSZ];	/* name of the allocator */
97 
98 	/* ---------------------------------------------------*/
99 	/* these are only meaningful if the pool is finalized */
100 	/* (see 'finalized' field in netmap_mem_d)            */
101 	size_t memtotal;	/* actual total memory space */
102 
103 	struct lut_entry *lut;  /* virt,phys addresses, objtotal entries */
104 	uint32_t *bitmap;       /* one bit per buffer, 1 means free */
105 	uint32_t *invalid_bitmap;/* one bit per buffer, 1 means invalid */
106 	uint32_t bitmap_slots;	/* number of uint32 entries in bitmap */
107 
108 	u_int objtotal;         /* actual total number of objects. */
109 	u_int numclusters;	/* actual number of clusters */
110 	u_int objfree;          /* number of free objects. */
111 
112 	int	alloc_done;	/* we have allocated the memory */
113 	/* ---------------------------------------------------*/
114 
115 	/* limits */
116 	u_int objminsize;	/* minimum object size */
117 	u_int objmaxsize;	/* maximum object size */
118 	u_int nummin;		/* minimum number of objects */
119 	u_int nummax;		/* maximum number of objects */
120 
121 	/* these are changed only by config */
122 	u_int _objtotal;	/* total number of objects */
123 	u_int _objsize;		/* object size */
124 	u_int _clustsize;       /* cluster size */
125 	u_int _clustentries;    /* objects per cluster */
126 	u_int _numclusters;	/* number of clusters */
127 
128 	/* requested values */
129 	u_int r_objtotal;
130 	u_int r_objsize;
131 };
132 
133 #define NMA_LOCK_T		NM_MTX_T
134 #define NMA_LOCK_INIT(n)	NM_MTX_INIT((n)->nm_mtx)
135 #define NMA_LOCK_DESTROY(n)	NM_MTX_DESTROY((n)->nm_mtx)
136 #define NMA_LOCK(n)		NM_MTX_LOCK((n)->nm_mtx)
137 #define NMA_SPINLOCK(n)         NM_MTX_SPINLOCK((n)->nm_mtx)
138 #define NMA_UNLOCK(n)		NM_MTX_UNLOCK((n)->nm_mtx)
139 
140 struct netmap_mem_ops {
141 	int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*);
142 	int  (*nmd_get_info)(struct netmap_mem_d *, uint64_t *size,
143 			u_int *memflags, uint16_t *id);
144 
145 	vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t);
146 	int (*nmd_config)(struct netmap_mem_d *);
147 	int (*nmd_finalize)(struct netmap_mem_d *, struct netmap_adapter *);
148 	void (*nmd_deref)(struct netmap_mem_d *, struct netmap_adapter *);
149 	ssize_t  (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr);
150 	void (*nmd_delete)(struct netmap_mem_d *);
151 
152 	struct netmap_if * (*nmd_if_new)(struct netmap_mem_d *,
153 			struct netmap_adapter *, struct netmap_priv_d *);
154 	void (*nmd_if_delete)(struct netmap_mem_d *,
155 			struct netmap_adapter *, struct netmap_if *);
156 	int  (*nmd_rings_create)(struct netmap_mem_d *,
157 			struct netmap_adapter *);
158 	void (*nmd_rings_delete)(struct netmap_mem_d *,
159 			struct netmap_adapter *);
160 };
161 
162 struct netmap_mem_d {
163 	NMA_LOCK_T nm_mtx;  /* protect the allocator */
164 	size_t nm_totalsize; /* shorthand */
165 
166 	u_int flags;
167 #define NETMAP_MEM_FINALIZED	0x1	/* preallocation done */
168 #define NETMAP_MEM_HIDDEN	0x8	/* being prepared */
169 #define NETMAP_MEM_NOMAP	0x10	/* do not map/unmap pdevs */
170 	int lasterr;		/* last error for curr config */
171 	int active;		/* active users */
172 	int refcount;
173 	/* the three allocators */
174 	struct netmap_obj_pool pools[NETMAP_POOLS_NR];
175 
176 	nm_memid_t nm_id;	/* allocator identifier */
177 	int nm_grp;		/* iommu group id */
178 	int nm_numa_domain;	/* local NUMA domain */
179 
180 	/* list of all existing allocators, sorted by nm_id */
181 	struct netmap_mem_d *prev, *next;
182 
183 	const struct netmap_mem_ops *ops;
184 
185 	struct netmap_obj_params params[NETMAP_POOLS_NR];
186 
187 #define NM_MEM_NAMESZ	16
188 	char name[NM_MEM_NAMESZ];
189 };
190 
191 int
netmap_mem_get_lut(struct netmap_mem_d * nmd,struct netmap_lut * lut)192 netmap_mem_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
193 {
194 	int rv;
195 
196 	NMA_LOCK(nmd);
197 	rv = nmd->ops->nmd_get_lut(nmd, lut);
198 	NMA_UNLOCK(nmd);
199 
200 	return rv;
201 }
202 
203 int
netmap_mem_get_info(struct netmap_mem_d * nmd,uint64_t * size,u_int * memflags,nm_memid_t * memid)204 netmap_mem_get_info(struct netmap_mem_d *nmd, uint64_t *size,
205 		u_int *memflags, nm_memid_t *memid)
206 {
207 	int rv;
208 
209 	NMA_LOCK(nmd);
210 	rv = nmd->ops->nmd_get_info(nmd, size, memflags, memid);
211 	NMA_UNLOCK(nmd);
212 
213 	return rv;
214 }
215 
216 vm_paddr_t
netmap_mem_ofstophys(struct netmap_mem_d * nmd,vm_ooffset_t off)217 netmap_mem_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
218 {
219 	vm_paddr_t pa;
220 
221 #if defined(__FreeBSD__)
222 	/* This function is called by netmap_dev_pager_fault(), which holds a
223 	 * non-sleepable lock since FreeBSD 12. Since we cannot sleep, we
224 	 * spin on the trylock. */
225 	NMA_SPINLOCK(nmd);
226 #else
227 	NMA_LOCK(nmd);
228 #endif
229 	pa = nmd->ops->nmd_ofstophys(nmd, off);
230 	NMA_UNLOCK(nmd);
231 
232 	return pa;
233 }
234 
235 static int
netmap_mem_config(struct netmap_mem_d * nmd)236 netmap_mem_config(struct netmap_mem_d *nmd)
237 {
238 	if (nmd->active) {
239 		/* already in use. Not fatal, but we
240 		 * cannot change the configuration
241 		 */
242 		return 0;
243 	}
244 
245 	return nmd->ops->nmd_config(nmd);
246 }
247 
248 ssize_t
netmap_mem_if_offset(struct netmap_mem_d * nmd,const void * off)249 netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *off)
250 {
251 	ssize_t rv;
252 
253 	NMA_LOCK(nmd);
254 	rv = nmd->ops->nmd_if_offset(nmd, off);
255 	NMA_UNLOCK(nmd);
256 
257 	return rv;
258 }
259 
260 static void
netmap_mem_delete(struct netmap_mem_d * nmd)261 netmap_mem_delete(struct netmap_mem_d *nmd)
262 {
263 	nmd->ops->nmd_delete(nmd);
264 }
265 
266 struct netmap_if *
netmap_mem_if_new(struct netmap_adapter * na,struct netmap_priv_d * priv)267 netmap_mem_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
268 {
269 	struct netmap_if *nifp;
270 	struct netmap_mem_d *nmd = na->nm_mem;
271 
272 	NMA_LOCK(nmd);
273 	nifp = nmd->ops->nmd_if_new(nmd, na, priv);
274 	NMA_UNLOCK(nmd);
275 
276 	return nifp;
277 }
278 
279 void
netmap_mem_if_delete(struct netmap_adapter * na,struct netmap_if * nif)280 netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nif)
281 {
282 	struct netmap_mem_d *nmd = na->nm_mem;
283 
284 	NMA_LOCK(nmd);
285 	nmd->ops->nmd_if_delete(nmd, na, nif);
286 	NMA_UNLOCK(nmd);
287 }
288 
289 int
netmap_mem_rings_create(struct netmap_adapter * na)290 netmap_mem_rings_create(struct netmap_adapter *na)
291 {
292 	int rv;
293 	struct netmap_mem_d *nmd = na->nm_mem;
294 
295 	NMA_LOCK(nmd);
296 	rv = nmd->ops->nmd_rings_create(nmd, na);
297 	NMA_UNLOCK(nmd);
298 
299 	return rv;
300 }
301 
302 void
netmap_mem_rings_delete(struct netmap_adapter * na)303 netmap_mem_rings_delete(struct netmap_adapter *na)
304 {
305 	struct netmap_mem_d *nmd = na->nm_mem;
306 
307 	NMA_LOCK(nmd);
308 	nmd->ops->nmd_rings_delete(nmd, na);
309 	NMA_UNLOCK(nmd);
310 }
311 
312 static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *);
313 static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *);
314 static int nm_mem_check_group(struct netmap_mem_d *, void *);
315 static void nm_mem_release_id(struct netmap_mem_d *);
316 
317 nm_memid_t
netmap_mem_get_id(struct netmap_mem_d * nmd)318 netmap_mem_get_id(struct netmap_mem_d *nmd)
319 {
320 	return nmd->nm_id;
321 }
322 
323 #ifdef NM_DEBUG_MEM_PUTGET
324 #define NM_DBG_REFC(nmd, func, line)	\
325 	nm_prinf("%s:%d mem[%d:%d] -> %d", func, line, (nmd)->nm_id, (nmd)->nm_grp, (nmd)->refcount);
326 #else
327 #define NM_DBG_REFC(nmd, func, line)
328 #endif
329 
330 /* circular list of all existing allocators */
331 static struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
332 static NM_MTX_T nm_mem_list_lock;
333 
334 struct netmap_mem_d *
__netmap_mem_get(struct netmap_mem_d * nmd,const char * func,int line)335 __netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line)
336 {
337 	NM_MTX_LOCK(nm_mem_list_lock);
338 	nmd->refcount++;
339 	NM_DBG_REFC(nmd, func, line);
340 	NM_MTX_UNLOCK(nm_mem_list_lock);
341 	return nmd;
342 }
343 
344 void
__netmap_mem_put(struct netmap_mem_d * nmd,const char * func,int line)345 __netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line)
346 {
347 	int last;
348 	NM_MTX_LOCK(nm_mem_list_lock);
349 	last = (--nmd->refcount == 0);
350 	if (last)
351 		nm_mem_release_id(nmd);
352 	NM_DBG_REFC(nmd, func, line);
353 	NM_MTX_UNLOCK(nm_mem_list_lock);
354 	if (last)
355 		netmap_mem_delete(nmd);
356 }
357 
358 int
netmap_mem_finalize(struct netmap_mem_d * nmd,struct netmap_adapter * na)359 netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
360 {
361 	int lasterr = 0;
362 	if (nm_mem_check_group(nmd, na->pdev) < 0) {
363 		return ENOMEM;
364 	}
365 
366 	NMA_LOCK(nmd);
367 
368 	if (netmap_mem_config(nmd))
369 		goto out;
370 
371 	nmd->active++;
372 
373 	nmd->lasterr = nmd->ops->nmd_finalize(nmd, na);
374 
375 	if (!nmd->lasterr && !(nmd->flags & NETMAP_MEM_NOMAP)) {
376 		nmd->lasterr = netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na);
377 	}
378 
379 out:
380 	lasterr = nmd->lasterr;
381 	NMA_UNLOCK(nmd);
382 
383 	if (lasterr)
384 		netmap_mem_deref(nmd, na);
385 
386 	return lasterr;
387 }
388 
389 static int
nm_isset(uint32_t * bitmap,u_int i)390 nm_isset(uint32_t *bitmap, u_int i)
391 {
392 	return bitmap[ (i>>5) ] & ( 1U << (i & 31U) );
393 }
394 
395 
396 static int
netmap_init_obj_allocator_bitmap(struct netmap_obj_pool * p)397 netmap_init_obj_allocator_bitmap(struct netmap_obj_pool *p)
398 {
399 	u_int n, j;
400 
401 	if (p->bitmap == NULL) {
402 		/* Allocate the bitmap */
403 		n = (p->objtotal + 31) / 32;
404 		p->bitmap = nm_os_malloc(sizeof(p->bitmap[0]) * n);
405 		if (p->bitmap == NULL) {
406 			nm_prerr("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
407 			    p->name);
408 			return ENOMEM;
409 		}
410 		p->bitmap_slots = n;
411 	} else {
412 		memset(p->bitmap, 0, p->bitmap_slots * sizeof(p->bitmap[0]));
413 	}
414 
415 	p->objfree = 0;
416 	/*
417 	 * Set all the bits in the bitmap that have
418 	 * corresponding buffers to 1 to indicate they are
419 	 * free.
420 	 */
421 	for (j = 0; j < p->objtotal; j++) {
422 		if (p->invalid_bitmap && nm_isset(p->invalid_bitmap, j)) {
423 			if (netmap_debug & NM_DEBUG_MEM)
424 				nm_prinf("skipping %s %d", p->name, j);
425 			continue;
426 		}
427 		p->bitmap[ (j>>5) ] |=  ( 1U << (j & 31U) );
428 		p->objfree++;
429 	}
430 
431 	if (netmap_verbose)
432 		nm_prinf("%s free %u", p->name, p->objfree);
433 	if (p->objfree == 0) {
434 		if (netmap_verbose)
435 			nm_prerr("%s: no objects available", p->name);
436 		return ENOMEM;
437 	}
438 
439 	return 0;
440 }
441 
442 static int
netmap_mem_init_bitmaps(struct netmap_mem_d * nmd)443 netmap_mem_init_bitmaps(struct netmap_mem_d *nmd)
444 {
445 	int i, error = 0;
446 
447 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
448 		struct netmap_obj_pool *p = &nmd->pools[i];
449 
450 		error = netmap_init_obj_allocator_bitmap(p);
451 		if (error)
452 			return error;
453 	}
454 
455 	/*
456 	 * buffers 0 and 1 are reserved
457 	 */
458 	if (nmd->pools[NETMAP_BUF_POOL].objfree < 2) {
459 		nm_prerr("%s: not enough buffers", nmd->pools[NETMAP_BUF_POOL].name);
460 		return ENOMEM;
461 	}
462 
463 	nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
464 	if (nmd->pools[NETMAP_BUF_POOL].bitmap) {
465 		/* XXX This check is a workaround that prevents a
466 		 * NULL pointer crash which currently happens only
467 		 * with ptnetmap guests.
468 		 * Removed shared-info --> is the bug still there? */
469 		nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3U;
470 	}
471 	return 0;
472 }
473 
474 int
netmap_mem_deref(struct netmap_mem_d * nmd,struct netmap_adapter * na)475 netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
476 {
477 	int last_user = 0;
478 	NMA_LOCK(nmd);
479 	if (na->active_fds <= 0 && !(nmd->flags & NETMAP_MEM_NOMAP))
480 		netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na);
481 	if (nmd->active == 1) {
482 		last_user = 1;
483 		/*
484 		 * Reset the allocator when it falls out of use so that any
485 		 * pool resources leaked by unclean application exits are
486 		 * reclaimed.
487 		 */
488 		netmap_mem_init_bitmaps(nmd);
489 	}
490 	nmd->ops->nmd_deref(nmd, na);
491 
492 	nmd->active--;
493 	if (last_user) {
494 		nmd->lasterr = 0;
495 	}
496 
497 	NMA_UNLOCK(nmd);
498 	return last_user;
499 }
500 
501 
502 /* accessor functions */
503 static int
netmap_mem2_get_lut(struct netmap_mem_d * nmd,struct netmap_lut * lut)504 netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
505 {
506 	lut->lut = nmd->pools[NETMAP_BUF_POOL].lut;
507 #ifdef __FreeBSD__
508 	lut->plut = lut->lut;
509 #endif
510 	lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
511 	lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
512 
513 	return 0;
514 }
515 
516 static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
517 	[NETMAP_IF_POOL] = {
518 		.size = 1024,
519 		.num  = 2,
520 	},
521 	[NETMAP_RING_POOL] = {
522 		.size = 5*PAGE_SIZE,
523 		.num  = 4,
524 	},
525 	[NETMAP_BUF_POOL] = {
526 		.size = 2048,
527 		.num  = 4098,
528 	},
529 };
530 
531 
532 /*
533  * nm_mem is the memory allocator used for all physical interfaces
534  * running in netmap mode.
535  * Virtual (VALE) ports will have each its own allocator.
536  */
537 extern const struct netmap_mem_ops netmap_mem_global_ops; /* forward */
538 struct netmap_mem_d nm_mem = {	/* Our memory allocator. */
539 	.pools = {
540 		[NETMAP_IF_POOL] = {
541 			.name 	= "netmap_if",
542 			.objminsize = sizeof(struct netmap_if),
543 			.objmaxsize = 4096,
544 			.nummin     = 10,	/* don't be stingy */
545 			.nummax	    = 10000,	/* XXX very large */
546 		},
547 		[NETMAP_RING_POOL] = {
548 			.name 	= "netmap_ring",
549 			.objminsize = sizeof(struct netmap_ring),
550 			.objmaxsize = 32*PAGE_SIZE,
551 			.nummin     = 2,
552 			.nummax	    = 1024,
553 		},
554 		[NETMAP_BUF_POOL] = {
555 			.name	= "netmap_buf",
556 			.objminsize = 64,
557 			.objmaxsize = 65536,
558 			.nummin     = 4,
559 			.nummax	    = 1000000, /* one million! */
560 		},
561 	},
562 
563 	.params = {
564 		[NETMAP_IF_POOL] = {
565 			.size = 1024,
566 			.num  = 100,
567 		},
568 		[NETMAP_RING_POOL] = {
569 			.size = 9*PAGE_SIZE,
570 			.num  = 200,
571 		},
572 		[NETMAP_BUF_POOL] = {
573 			.size = 2048,
574 			.num  = NETMAP_BUF_MAX_NUM,
575 		},
576 	},
577 
578 	.nm_id = 1,
579 	.nm_grp = -1,
580 	.nm_numa_domain = -1,
581 
582 	.prev = &nm_mem,
583 	.next = &nm_mem,
584 
585 	.ops = &netmap_mem_global_ops,
586 
587 	.name = "1"
588 };
589 
590 static struct netmap_mem_d nm_mem_blueprint;
591 
592 /* blueprint for the private memory allocators */
593 /* XXX clang is not happy about using name as a print format */
594 static const struct netmap_mem_d nm_blueprint = {
595 	.pools = {
596 		[NETMAP_IF_POOL] = {
597 			.name 	= "%s_if",
598 			.objminsize = sizeof(struct netmap_if),
599 			.objmaxsize = 4096,
600 			.nummin     = 1,
601 			.nummax	    = 100,
602 		},
603 		[NETMAP_RING_POOL] = {
604 			.name 	= "%s_ring",
605 			.objminsize = sizeof(struct netmap_ring),
606 			.objmaxsize = 32*PAGE_SIZE,
607 			.nummin     = 2,
608 			.nummax	    = 1024,
609 		},
610 		[NETMAP_BUF_POOL] = {
611 			.name	= "%s_buf",
612 			.objminsize = 64,
613 			.objmaxsize = 65536,
614 			.nummin     = 4,
615 			.nummax	    = 1000000, /* one million! */
616 		},
617 	},
618 
619 	.nm_grp = -1,
620 	.nm_numa_domain = -1,
621 
622 	.flags = NETMAP_MEM_PRIVATE,
623 
624 	.ops = &netmap_mem_global_ops,
625 };
626 
627 /* memory allocator related sysctls */
628 
629 #define STRINGIFY(x) #x
630 
631 #define DECLARE_SYSCTLS(id, name) \
632 	SYSBEGIN(mem2_ ## name); \
633 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
634 	    CTLFLAG_RW, &nm_mem.params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
635 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
636 	    CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
637 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
638 	    CTLFLAG_RW, &nm_mem.params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
639 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
640 	    CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
641 	SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
642 	    CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
643 	    "Default size of private netmap " STRINGIFY(name) "s"); \
644 	SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
645 	    CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
646 	    "Default number of private netmap " STRINGIFY(name) "s");	\
647 	SYSEND
648 
649 SYSCTL_DECL(_dev_netmap);
650 DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
651 DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
652 DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
653 
654 int netmap_port_numa_affinity = 0;
655 SYSCTL_INT(_dev_netmap, OID_AUTO, port_numa_affinity,
656     CTLFLAG_RDTUN, &netmap_port_numa_affinity, 0,
657     "Use NUMA-local memory for memory pools when possible");
658 
659 /* call with nm_mem_list_lock held */
660 static int
nm_mem_assign_id_locked(struct netmap_mem_d * nmd,int grp_id,int domain)661 nm_mem_assign_id_locked(struct netmap_mem_d *nmd, int grp_id, int domain)
662 {
663 	nm_memid_t id;
664 	struct netmap_mem_d *scan = netmap_last_mem_d;
665 	int error = ENOMEM;
666 
667 	do {
668 		/* we rely on unsigned wrap around */
669 		id = scan->nm_id + 1;
670 		if (id == 0) /* reserve 0 as error value */
671 			id = 1;
672 		scan = scan->next;
673 		if (id != scan->nm_id) {
674 			nmd->nm_id = id;
675 			nmd->nm_grp = grp_id;
676 			nmd->nm_numa_domain = domain;
677 			nmd->prev = scan->prev;
678 			nmd->next = scan;
679 			scan->prev->next = nmd;
680 			scan->prev = nmd;
681 			netmap_last_mem_d = nmd;
682 			nmd->refcount = 1;
683 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
684 			error = 0;
685 			break;
686 		}
687 	} while (scan != netmap_last_mem_d);
688 
689 	return error;
690 }
691 
692 /* call with nm_mem_list_lock *not* held */
693 static int
nm_mem_assign_id(struct netmap_mem_d * nmd,int grp_id)694 nm_mem_assign_id(struct netmap_mem_d *nmd, int grp_id)
695 {
696 	int ret;
697 
698 	NM_MTX_LOCK(nm_mem_list_lock);
699 	ret = nm_mem_assign_id_locked(nmd, grp_id, -1);
700 	NM_MTX_UNLOCK(nm_mem_list_lock);
701 
702 	return ret;
703 }
704 
705 /* call with nm_mem_list_lock held */
706 static void
nm_mem_release_id(struct netmap_mem_d * nmd)707 nm_mem_release_id(struct netmap_mem_d *nmd)
708 {
709 	nmd->prev->next = nmd->next;
710 	nmd->next->prev = nmd->prev;
711 
712 	if (netmap_last_mem_d == nmd)
713 		netmap_last_mem_d = nmd->prev;
714 
715 	nmd->prev = nmd->next = NULL;
716 }
717 
718 struct netmap_mem_d *
netmap_mem_find(nm_memid_t id)719 netmap_mem_find(nm_memid_t id)
720 {
721 	struct netmap_mem_d *nmd;
722 
723 	NM_MTX_LOCK(nm_mem_list_lock);
724 	nmd = netmap_last_mem_d;
725 	do {
726 		if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_id == id) {
727 			nmd->refcount++;
728 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
729 			NM_MTX_UNLOCK(nm_mem_list_lock);
730 			return nmd;
731 		}
732 		nmd = nmd->next;
733 	} while (nmd != netmap_last_mem_d);
734 	NM_MTX_UNLOCK(nm_mem_list_lock);
735 	return NULL;
736 }
737 
738 static int
nm_mem_check_group(struct netmap_mem_d * nmd,void * dev)739 nm_mem_check_group(struct netmap_mem_d *nmd, void *dev)
740 {
741 	int err = 0, id;
742 
743 	/* Skip not hw adapters.
744 	 * Vale port can use particular allocator through vale-ctl -m option
745 	 */
746 	if (!dev)
747 		return 0;
748 	id = nm_iommu_group_id(dev);
749 	if (netmap_debug & NM_DEBUG_MEM)
750 		nm_prinf("iommu_group %d", id);
751 
752 	NMA_LOCK(nmd);
753 
754 	if (nmd->nm_grp != id) {
755 		if (netmap_verbose)
756 			nm_prerr("iommu group mismatch: %d vs %d",
757 					nmd->nm_grp, id);
758 		nmd->lasterr = err = ENOMEM;
759 	}
760 
761 	NMA_UNLOCK(nmd);
762 	return err;
763 }
764 
765 static struct lut_entry *
nm_alloc_lut(u_int nobj)766 nm_alloc_lut(u_int nobj)
767 {
768 	size_t n = sizeof(struct lut_entry) * nobj;
769 	struct lut_entry *lut;
770 #ifdef linux
771 	lut = vmalloc(n);
772 #else
773 	lut = nm_os_malloc(n);
774 #endif
775 	return lut;
776 }
777 
778 static void
nm_free_lut(struct lut_entry * lut,u_int objtotal)779 nm_free_lut(struct lut_entry *lut, u_int objtotal)
780 {
781 	bzero(lut, sizeof(struct lut_entry) * objtotal);
782 #ifdef linux
783 	vfree(lut);
784 #else
785 	nm_os_free(lut);
786 #endif
787 }
788 
789 #if defined(linux) || defined(_WIN32)
790 static struct plut_entry *
nm_alloc_plut(u_int nobj)791 nm_alloc_plut(u_int nobj)
792 {
793 	size_t n = sizeof(struct plut_entry) * nobj;
794 	struct plut_entry *lut;
795 	lut = vmalloc(n);
796 	return lut;
797 }
798 
799 static void
nm_free_plut(struct plut_entry * lut)800 nm_free_plut(struct plut_entry * lut)
801 {
802 	vfree(lut);
803 }
804 #endif /* linux or _WIN32 */
805 
806 
807 /*
808  * First, find the allocator that contains the requested offset,
809  * then locate the cluster through a lookup table.
810  */
811 static vm_paddr_t
netmap_mem2_ofstophys(struct netmap_mem_d * nmd,vm_ooffset_t offset)812 netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
813 {
814 	int i;
815 	vm_ooffset_t o = offset;
816 	vm_paddr_t pa;
817 	struct netmap_obj_pool *p;
818 
819 	p = nmd->pools;
820 
821 	for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
822 		if (offset >= p[i].memtotal)
823 			continue;
824 		// now lookup the cluster's address
825 #ifndef _WIN32
826 		pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) +
827 			offset % p[i]._objsize;
828 #else
829 		pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr);
830 		pa.QuadPart += offset % p[i]._objsize;
831 #endif
832 		return pa;
833 	}
834 	/* this is only in case of errors */
835 	nm_prerr("invalid ofs 0x%x out of 0x%zx 0x%zx 0x%zx", (u_int)o,
836 		p[NETMAP_IF_POOL].memtotal,
837 		p[NETMAP_IF_POOL].memtotal
838 			+ p[NETMAP_RING_POOL].memtotal,
839 		p[NETMAP_IF_POOL].memtotal
840 			+ p[NETMAP_RING_POOL].memtotal
841 			+ p[NETMAP_BUF_POOL].memtotal);
842 #ifndef _WIN32
843 	return 0; /* bad address */
844 #else
845 	vm_paddr_t res;
846 	res.QuadPart = 0;
847 	return res;
848 #endif
849 }
850 
851 #ifdef _WIN32
852 
853 /*
854  * win32_build_virtual_memory_for_userspace
855  *
856  * This function get all the object making part of the pools and maps
857  * a contiguous virtual memory space for the userspace
858  * It works this way
859  * 1 - allocate a Memory Descriptor List wide as the sum
860  *		of the memory needed for the pools
861  * 2 - cycle all the objects in every pool and for every object do
862  *
863  *		2a - cycle all the objects in every pool, get the list
864  *				of the physical address descriptors
865  *		2b - calculate the offset in the array of pages descriptor in the
866  *				main MDL
867  *		2c - copy the descriptors of the object in the main MDL
868  *
869  * 3 - return the resulting MDL that needs to be mapped in userland
870  *
871  * In this way we will have an MDL that describes all the memory for the
872  * objects in a single object
873 */
874 
875 PMDL
win32_build_user_vm_map(struct netmap_mem_d * nmd)876 win32_build_user_vm_map(struct netmap_mem_d* nmd)
877 {
878 	u_int memflags, ofs = 0;
879 	PMDL mainMdl, tempMdl;
880 	uint64_t memsize;
881 	int i, j;
882 
883 	if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) {
884 		nm_prerr("memory not finalised yet");
885 		return NULL;
886 	}
887 
888 	mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL);
889 	if (mainMdl == NULL) {
890 		nm_prerr("failed to allocate mdl");
891 		return NULL;
892 	}
893 
894 	NMA_LOCK(nmd);
895 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
896 		struct netmap_obj_pool *p = &nmd->pools[i];
897 		int clsz = p->_clustsize;
898 		int clobjs = p->_clustentries; /* objects per cluster */
899 		int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz);
900 		PPFN_NUMBER pSrc, pDst;
901 
902 		/* each pool has a different cluster size so we need to reallocate */
903 		tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL);
904 		if (tempMdl == NULL) {
905 			NMA_UNLOCK(nmd);
906 			nm_prerr("fail to allocate tempMdl");
907 			IoFreeMdl(mainMdl);
908 			return NULL;
909 		}
910 		pSrc = MmGetMdlPfnArray(tempMdl);
911 		/* create one entry per cluster, the lut[] has one entry per object */
912 		for (j = 0; j < p->numclusters; j++, ofs += clsz) {
913 			pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)];
914 			MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz);
915 			MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */
916 			RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */
917 			mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */
918 		}
919 		IoFreeMdl(tempMdl);
920 	}
921 	NMA_UNLOCK(nmd);
922 	return mainMdl;
923 }
924 
925 #endif /* _WIN32 */
926 
927 /*
928  * helper function for OS-specific mmap routines (currently only windows).
929  * Given an nmd and a pool index, returns the cluster size and number of clusters.
930  * Returns 0 if memory is finalised and the pool is valid, otherwise 1.
931  * It should be called under NMA_LOCK(nmd) otherwise the underlying info can change.
932  */
933 
934 int
netmap_mem2_get_pool_info(struct netmap_mem_d * nmd,u_int pool,u_int * clustsize,u_int * numclusters)935 netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters)
936 {
937 	if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR)
938 		return 1; /* invalid arguments */
939 	// NMA_LOCK_ASSERT(nmd);
940 	if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
941 		*clustsize = *numclusters = 0;
942 		return 1; /* not ready yet */
943 	}
944 	*clustsize = nmd->pools[pool]._clustsize;
945 	*numclusters = nmd->pools[pool].numclusters;
946 	return 0; /* success */
947 }
948 
949 static int
netmap_mem2_get_info(struct netmap_mem_d * nmd,uint64_t * size,u_int * memflags,nm_memid_t * id)950 netmap_mem2_get_info(struct netmap_mem_d* nmd, uint64_t* size,
951 			u_int *memflags, nm_memid_t *id)
952 {
953 	int error = 0;
954 	error = netmap_mem_config(nmd);
955 	if (error)
956 		goto out;
957 	if (size) {
958 		if (nmd->flags & NETMAP_MEM_FINALIZED) {
959 			*size = nmd->nm_totalsize;
960 		} else {
961 			int i;
962 			*size = 0;
963 			for (i = 0; i < NETMAP_POOLS_NR; i++) {
964 				struct netmap_obj_pool *p = nmd->pools + i;
965 				*size += ((size_t)p->_numclusters * (size_t)p->_clustsize);
966 			}
967 		}
968 	}
969 	if (memflags)
970 		*memflags = nmd->flags;
971 	if (id)
972 		*id = nmd->nm_id;
973 out:
974 	return error;
975 }
976 
977 /*
978  * we store objects by kernel address, need to find the offset
979  * within the pool to export the value to userspace.
980  * Algorithm: scan until we find the cluster, then add the
981  * actual offset in the cluster
982  */
983 static ssize_t
netmap_obj_offset(struct netmap_obj_pool * p,const void * vaddr)984 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
985 {
986 	int i, k = p->_clustentries, n = p->objtotal;
987 	ssize_t ofs = 0;
988 
989 	for (i = 0; i < n; i += k, ofs += p->_clustsize) {
990 		const char *base = p->lut[i].vaddr;
991 		ssize_t relofs = (const char *) vaddr - base;
992 
993 		if (relofs < 0 || relofs >= p->_clustsize)
994 			continue;
995 
996 		ofs = ofs + relofs;
997 		nm_prdis("%s: return offset %d (cluster %d) for pointer %p",
998 		    p->name, ofs, i, vaddr);
999 		return ofs;
1000 	}
1001 	nm_prerr("address %p is not contained inside any cluster (%s)",
1002 	    vaddr, p->name);
1003 	return 0; /* An error occurred */
1004 }
1005 
1006 /* Helper functions which convert virtual addresses to offsets */
1007 #define netmap_if_offset(n, v)					\
1008 	netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
1009 
1010 #define netmap_ring_offset(n, v)				\
1011     ((n)->pools[NETMAP_IF_POOL].memtotal + 			\
1012 	netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
1013 
1014 static ssize_t
netmap_mem2_if_offset(struct netmap_mem_d * nmd,const void * addr)1015 netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr)
1016 {
1017 	return netmap_if_offset(nmd, addr);
1018 }
1019 
1020 /*
1021  * report the index, and use start position as a hint,
1022  * otherwise buffer allocation becomes terribly expensive.
1023  */
1024 static void *
netmap_obj_malloc(struct netmap_obj_pool * p,u_int len,uint32_t * start,uint32_t * index)1025 netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
1026 {
1027 	uint32_t i = 0;			/* index in the bitmap */
1028 	uint32_t mask, j = 0;		/* slot counter */
1029 	void *vaddr = NULL;
1030 
1031 	if (len > p->_objsize) {
1032 		nm_prerr("%s request size %d too large", p->name, len);
1033 		return NULL;
1034 	}
1035 
1036 	if (p->objfree == 0) {
1037 		nm_prerr("no more %s objects", p->name);
1038 		return NULL;
1039 	}
1040 	if (start)
1041 		i = *start;
1042 
1043 	/* termination is guaranteed by p->free, but better check bounds on i */
1044 	while (vaddr == NULL && i < p->bitmap_slots)  {
1045 		uint32_t cur = p->bitmap[i];
1046 		if (cur == 0) { /* bitmask is fully used */
1047 			i++;
1048 			continue;
1049 		}
1050 		/* locate a slot */
1051 		for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
1052 			;
1053 
1054 		p->bitmap[i] &= ~mask; /* mark object as in use */
1055 		p->objfree--;
1056 
1057 		vaddr = p->lut[i * 32 + j].vaddr;
1058 		if (index)
1059 			*index = i * 32 + j;
1060 	}
1061 	nm_prdis("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr);
1062 
1063 	if (start)
1064 		*start = i;
1065 	return vaddr;
1066 }
1067 
1068 
1069 /*
1070  * free by index, not by address.
1071  * XXX should we also cleanup the content ?
1072  */
1073 static int
netmap_obj_free(struct netmap_obj_pool * p,uint32_t j)1074 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
1075 {
1076 	uint32_t *ptr, mask;
1077 
1078 	if (j >= p->objtotal) {
1079 		nm_prerr("invalid index %u, max %u", j, p->objtotal);
1080 		return 1;
1081 	}
1082 	ptr = &p->bitmap[j / 32];
1083 	mask = (1 << (j % 32));
1084 	if (*ptr & mask) {
1085 		nm_prerr("ouch, double free on buffer %d", j);
1086 		return 1;
1087 	} else {
1088 		*ptr |= mask;
1089 		p->objfree++;
1090 		return 0;
1091 	}
1092 }
1093 
1094 /*
1095  * free by address. This is slow but is only used for a few
1096  * objects (rings, nifp)
1097  */
1098 static void
netmap_obj_free_va(struct netmap_obj_pool * p,void * vaddr)1099 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
1100 {
1101 	u_int i, j, n = p->numclusters;
1102 
1103 	for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
1104 		void *base = p->lut[i * p->_clustentries].vaddr;
1105 		ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
1106 
1107 		/* Given address, is out of the scope of the current cluster.*/
1108 		if (base == NULL || vaddr < base || relofs >= p->_clustsize)
1109 			continue;
1110 
1111 		j = j + relofs / p->_objsize;
1112 		/* KASSERT(j != 0, ("Cannot free object 0")); */
1113 		netmap_obj_free(p, j);
1114 		return;
1115 	}
1116 	nm_prerr("address %p is not contained inside any cluster (%s)",
1117 	    vaddr, p->name);
1118 }
1119 
1120 unsigned
netmap_mem_bufsize(struct netmap_mem_d * nmd)1121 netmap_mem_bufsize(struct netmap_mem_d *nmd)
1122 {
1123 	return nmd->pools[NETMAP_BUF_POOL]._objsize;
1124 }
1125 
1126 #define netmap_if_malloc(n, len)	netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
1127 #define netmap_if_free(n, v)		netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
1128 #define netmap_ring_malloc(n, len)	netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
1129 #define netmap_ring_free(n, v)		netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
1130 #define netmap_buf_malloc(n, _pos, _index)			\
1131 	netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index)
1132 
1133 
1134 #if 0 /* currently unused */
1135 /* Return the index associated to the given packet buffer */
1136 #define netmap_buf_index(n, v)						\
1137     (netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
1138 #endif
1139 
1140 /*
1141  * allocate extra buffers in a linked list.
1142  * returns the actual number.
1143  */
1144 uint32_t
netmap_extra_alloc(struct netmap_adapter * na,uint32_t * head,uint32_t n)1145 netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
1146 {
1147 	struct netmap_mem_d *nmd = na->nm_mem;
1148 	uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
1149 
1150 	NMA_LOCK(nmd);
1151 
1152 	*head = 0;	/* default, 'null' index ie empty list */
1153 	for (i = 0 ; i < n; i++) {
1154 		uint32_t cur = *head;	/* save current head */
1155 		uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
1156 		if (p == NULL) {
1157 			nm_prerr("no more buffers after %d of %d", i, n);
1158 			*head = cur; /* restore */
1159 			break;
1160 		}
1161 		nm_prdis(5, "allocate buffer %d -> %d", *head, cur);
1162 		*p = cur; /* link to previous head */
1163 	}
1164 
1165 	NMA_UNLOCK(nmd);
1166 
1167 	return i;
1168 }
1169 
1170 static void
netmap_extra_free(struct netmap_adapter * na,uint32_t head)1171 netmap_extra_free(struct netmap_adapter *na, uint32_t head)
1172 {
1173 	struct lut_entry *lut = na->na_lut.lut;
1174 	struct netmap_mem_d *nmd = na->nm_mem;
1175 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1176 	uint32_t i, cur, *buf;
1177 
1178 	nm_prdis("freeing the extra list");
1179 	for (i = 0; head >=2 && head < p->objtotal; i++) {
1180 		cur = head;
1181 		buf = lut[head].vaddr;
1182 		head = *buf;
1183 		*buf = 0;
1184 		if (netmap_obj_free(p, cur))
1185 			break;
1186 	}
1187 	if (head != 0)
1188 		nm_prerr("breaking with head %d", head);
1189 	if (netmap_debug & NM_DEBUG_MEM)
1190 		nm_prinf("freed %d buffers", i);
1191 }
1192 
1193 
1194 /* Return nonzero on error */
1195 static int
netmap_new_bufs(struct netmap_mem_d * nmd,struct netmap_slot * slot,u_int n)1196 netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
1197 {
1198 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1199 	u_int i = 0;	/* slot counter */
1200 	uint32_t pos = 0;	/* slot in p->bitmap */
1201 	uint32_t index = 0;	/* buffer index */
1202 
1203 	for (i = 0; i < n; i++) {
1204 		void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
1205 		if (vaddr == NULL) {
1206 			nm_prerr("no more buffers after %d of %d", i, n);
1207 			goto cleanup;
1208 		}
1209 		slot[i].buf_idx = index;
1210 		slot[i].len = p->_objsize;
1211 		slot[i].flags = 0;
1212 		slot[i].ptr = 0;
1213 	}
1214 
1215 	nm_prdis("%s: allocated %d buffers, %d available, first at %d", p->name, n, p->objfree, pos);
1216 	return (0);
1217 
1218 cleanup:
1219 	while (i > 0) {
1220 		i--;
1221 		netmap_obj_free(p, slot[i].buf_idx);
1222 	}
1223 	bzero(slot, n * sizeof(slot[0]));
1224 	return (ENOMEM);
1225 }
1226 
1227 static void
netmap_mem_set_ring(struct netmap_mem_d * nmd,struct netmap_slot * slot,u_int n,uint32_t index)1228 netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
1229 {
1230 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1231 	u_int i;
1232 
1233 	for (i = 0; i < n; i++) {
1234 		slot[i].buf_idx = index;
1235 		slot[i].len = p->_objsize;
1236 		slot[i].flags = 0;
1237 	}
1238 }
1239 
1240 
1241 static void
netmap_free_buf(struct netmap_mem_d * nmd,uint32_t i)1242 netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
1243 {
1244 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1245 
1246 	if (i < 2 || i >= p->objtotal) {
1247 		nm_prerr("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
1248 		return;
1249 	}
1250 	netmap_obj_free(p, i);
1251 }
1252 
1253 
1254 static void
netmap_free_bufs(struct netmap_mem_d * nmd,struct netmap_slot * slot,u_int n)1255 netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
1256 {
1257 	u_int i;
1258 
1259 	for (i = 0; i < n; i++) {
1260 		if (slot[i].buf_idx > 1)
1261 			netmap_free_buf(nmd, slot[i].buf_idx);
1262 	}
1263 	nm_prdis("%s: released some buffers, available: %u",
1264 			p->name, p->objfree);
1265 }
1266 
1267 static void
netmap_reset_obj_allocator(struct netmap_obj_pool * p)1268 netmap_reset_obj_allocator(struct netmap_obj_pool *p)
1269 {
1270 
1271 	if (p == NULL)
1272 		return;
1273 	if (p->bitmap)
1274 		nm_os_free(p->bitmap);
1275 	p->bitmap = NULL;
1276 	if (p->invalid_bitmap)
1277 		nm_os_free(p->invalid_bitmap);
1278 	p->invalid_bitmap = NULL;
1279 	if (!p->alloc_done) {
1280 		/* allocation was done by somebody else.
1281 		 * Let them clean up after themselves.
1282 		 */
1283 		return;
1284 	}
1285 	if (p->lut) {
1286 		u_int i;
1287 
1288 		/*
1289 		 * Free each cluster allocated in
1290 		 * netmap_finalize_obj_allocator().  The cluster start
1291 		 * addresses are stored at multiples of p->_clusterentries
1292 		 * in the lut.
1293 		 */
1294 		for (i = 0; i < p->objtotal; i += p->_clustentries) {
1295 			contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
1296 		}
1297 		nm_free_lut(p->lut, p->objtotal);
1298 	}
1299 	p->lut = NULL;
1300 	p->objtotal = 0;
1301 	p->memtotal = 0;
1302 	p->numclusters = 0;
1303 	p->objfree = 0;
1304 	p->alloc_done = 0;
1305 }
1306 
1307 /*
1308  * Free all resources related to an allocator.
1309  */
1310 static void
netmap_destroy_obj_allocator(struct netmap_obj_pool * p)1311 netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
1312 {
1313 	if (p == NULL)
1314 		return;
1315 	netmap_reset_obj_allocator(p);
1316 }
1317 
1318 /*
1319  * We receive a request for objtotal objects, of size objsize each.
1320  * Internally we may round up both numbers, as we allocate objects
1321  * in small clusters multiple of the page size.
1322  * We need to keep track of objtotal and clustentries,
1323  * as they are needed when freeing memory.
1324  *
1325  * XXX note -- userspace needs the buffers to be contiguous,
1326  *	so we cannot afford gaps at the end of a cluster.
1327  */
1328 
1329 
1330 /* call with NMA_LOCK held */
1331 static int
netmap_config_obj_allocator(struct netmap_obj_pool * p,u_int objtotal,u_int objsize)1332 netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
1333 {
1334 	int i;
1335 	u_int clustsize;	/* the cluster size, multiple of page size */
1336 	u_int clustentries;	/* how many objects per entry */
1337 
1338 	/* we store the current request, so we can
1339 	 * detect configuration changes later */
1340 	p->r_objtotal = objtotal;
1341 	p->r_objsize = objsize;
1342 
1343 #define MAX_CLUSTSIZE	(1<<22)		// 4 MB
1344 #define LINE_ROUND	NM_BUF_ALIGN	// 64
1345 	if (objsize >= MAX_CLUSTSIZE) {
1346 		/* we could do it but there is no point */
1347 		nm_prerr("unsupported allocation for %d bytes", objsize);
1348 		return EINVAL;
1349 	}
1350 	/* make sure objsize is a multiple of LINE_ROUND */
1351 	i = (objsize & (LINE_ROUND - 1));
1352 	if (i) {
1353 		nm_prinf("aligning object by %d bytes", LINE_ROUND - i);
1354 		objsize += LINE_ROUND - i;
1355 	}
1356 	if (objsize < p->objminsize || objsize > p->objmaxsize) {
1357 		nm_prerr("requested objsize %d out of range [%d, %d]",
1358 			objsize, p->objminsize, p->objmaxsize);
1359 		return EINVAL;
1360 	}
1361 	if (objtotal < p->nummin || objtotal > p->nummax) {
1362 		nm_prerr("requested objtotal %d out of range [%d, %d]",
1363 			objtotal, p->nummin, p->nummax);
1364 		return EINVAL;
1365 	}
1366 	/*
1367 	 * Compute number of objects using a brute-force approach:
1368 	 * given a max cluster size,
1369 	 * we try to fill it with objects keeping track of the
1370 	 * wasted space to the next page boundary.
1371 	 */
1372 	for (clustentries = 0, i = 1;; i++) {
1373 		u_int delta, used = i * objsize;
1374 		if (used > MAX_CLUSTSIZE)
1375 			break;
1376 		delta = used % PAGE_SIZE;
1377 		if (delta == 0) { // exact solution
1378 			clustentries = i;
1379 			break;
1380 		}
1381 	}
1382 	/* exact solution not found */
1383 	if (clustentries == 0) {
1384 		nm_prerr("unsupported allocation for %d bytes", objsize);
1385 		return EINVAL;
1386 	}
1387 	/* compute clustsize */
1388 	clustsize = clustentries * objsize;
1389 	if (netmap_debug & NM_DEBUG_MEM)
1390 		nm_prinf("objsize %d clustsize %d objects %d",
1391 			objsize, clustsize, clustentries);
1392 
1393 	/*
1394 	 * The number of clusters is n = ceil(objtotal/clustentries)
1395 	 * objtotal' = n * clustentries
1396 	 */
1397 	p->_clustentries = clustentries;
1398 	p->_clustsize = clustsize;
1399 	p->_numclusters = (objtotal + clustentries - 1) / clustentries;
1400 
1401 	/* actual values (may be larger than requested) */
1402 	p->_objsize = objsize;
1403 	p->_objtotal = p->_numclusters * clustentries;
1404 
1405 	return 0;
1406 }
1407 
1408 /* call with NMA_LOCK held */
1409 static int
netmap_finalize_obj_allocator(struct netmap_mem_d * nmd,struct netmap_obj_pool * p)1410 netmap_finalize_obj_allocator(struct netmap_mem_d *nmd, struct netmap_obj_pool *p)
1411 {
1412 	int i; /* must be signed */
1413 	size_t n;
1414 
1415 	if (p->lut) {
1416 		/* if the lut is already there we assume that also all the
1417 		 * clusters have already been allocated, possibly by somebody
1418 		 * else (e.g., extmem). In the latter case, the alloc_done flag
1419 		 * will remain at zero, so that we will not attempt to
1420 		 * deallocate the clusters by ourselves in
1421 		 * netmap_reset_obj_allocator.
1422 		 */
1423 		return 0;
1424 	}
1425 
1426 	/* optimistically assume we have enough memory */
1427 	p->numclusters = p->_numclusters;
1428 	p->objtotal = p->_objtotal;
1429 	p->alloc_done = 1;
1430 
1431 	p->lut = nm_alloc_lut(p->objtotal);
1432 	if (p->lut == NULL) {
1433 		nm_prerr("Unable to create lookup table for '%s'", p->name);
1434 		goto clean;
1435 	}
1436 
1437 	/*
1438 	 * Allocate clusters, init pointers
1439 	 */
1440 
1441 	n = p->_clustsize;
1442 	for (i = 0; i < (int)p->objtotal;) {
1443 		int lim = i + p->_clustentries;
1444 		char *clust;
1445 
1446 		/*
1447 		 * XXX Note, we only need contigmalloc() for buffers attached
1448 		 * to native interfaces. In all other cases (nifp, netmap rings
1449 		 * and even buffers for VALE ports or emulated interfaces) we
1450 		 * can live with standard malloc, because the hardware will not
1451 		 * access the pages directly.
1452 		 */
1453 		if (nmd->nm_numa_domain == -1) {
1454 			clust = contigmalloc(n, M_NETMAP,
1455 			    M_NOWAIT | M_ZERO, (size_t)0, -1UL, PAGE_SIZE, 0);
1456 		} else {
1457 			struct domainset *ds;
1458 
1459 			ds = DOMAINSET_PREF(nmd->nm_numa_domain);
1460 			clust = contigmalloc_domainset(n, M_NETMAP,
1461 			    ds, M_NOWAIT | M_ZERO, (size_t)0, -1UL, PAGE_SIZE, 0);
1462 		}
1463 		if (clust == NULL) {
1464 			/*
1465 			 * If we get here, there is a severe memory shortage,
1466 			 * so halve the allocated memory to reclaim some.
1467 			 */
1468 			nm_prerr("Unable to create cluster at %d for '%s' allocator",
1469 			    i, p->name);
1470 			if (i < 2) /* nothing to halve */
1471 				goto out;
1472 			lim = i / 2;
1473 			for (i--; i >= lim; i--) {
1474 				if (i % p->_clustentries == 0 && p->lut[i].vaddr)
1475 					contigfree(p->lut[i].vaddr,
1476 						n, M_NETMAP);
1477 				p->lut[i].vaddr = NULL;
1478 			}
1479 		out:
1480 			p->objtotal = i;
1481 			/* we may have stopped in the middle of a cluster */
1482 			p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
1483 			break;
1484 		}
1485 		/*
1486 		 * Set lut state for all buffers in the current cluster.
1487 		 *
1488 		 * [i, lim) is the set of buffer indexes that cover the
1489 		 * current cluster.
1490 		 *
1491 		 * 'clust' is really the address of the current buffer in
1492 		 * the current cluster as we index through it with a stride
1493 		 * of p->_objsize.
1494 		 */
1495 		for (; i < lim; i++, clust += p->_objsize) {
1496 			p->lut[i].vaddr = clust;
1497 #if !defined(linux) && !defined(_WIN32)
1498 			p->lut[i].paddr = vtophys(clust);
1499 #endif
1500 		}
1501 	}
1502 	p->memtotal = (size_t)p->numclusters * (size_t)p->_clustsize;
1503 	if (netmap_verbose)
1504 		nm_prinf("Pre-allocated %d clusters (%d/%zuKB) for '%s'",
1505 		    p->numclusters, p->_clustsize >> 10,
1506 		    p->memtotal >> 10, p->name);
1507 
1508 	return 0;
1509 
1510 clean:
1511 	netmap_reset_obj_allocator(p);
1512 	return ENOMEM;
1513 }
1514 
1515 /* call with lock held */
1516 static int
netmap_mem_params_changed(struct netmap_obj_params * p)1517 netmap_mem_params_changed(struct netmap_obj_params* p)
1518 {
1519 	int i, rv = 0;
1520 
1521 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1522 		if (p[i].last_size != p[i].size || p[i].last_num != p[i].num) {
1523 			p[i].last_size = p[i].size;
1524 			p[i].last_num = p[i].num;
1525 			rv = 1;
1526 		}
1527 	}
1528 	return rv;
1529 }
1530 
1531 static void
netmap_mem_reset_all(struct netmap_mem_d * nmd)1532 netmap_mem_reset_all(struct netmap_mem_d *nmd)
1533 {
1534 	int i;
1535 
1536 	if (netmap_debug & NM_DEBUG_MEM)
1537 		nm_prinf("resetting %p", nmd);
1538 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1539 		netmap_reset_obj_allocator(&nmd->pools[i]);
1540 	}
1541 	nmd->flags  &= ~NETMAP_MEM_FINALIZED;
1542 }
1543 
1544 static int
netmap_mem_unmap(struct netmap_obj_pool * p,struct netmap_adapter * na)1545 netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na)
1546 {
1547 	int i, lim = p->objtotal;
1548 	struct netmap_lut *lut;
1549 	if (na == NULL || na->pdev == NULL)
1550 		return 0;
1551 
1552 	lut = &na->na_lut;
1553 
1554 
1555 
1556 #if defined(__FreeBSD__)
1557 	/* On FreeBSD mapping and unmapping is performed by the txsync
1558 	 * and rxsync routine, packet by packet. */
1559 	(void)i;
1560 	(void)lim;
1561 	(void)lut;
1562 #elif defined(_WIN32)
1563 	(void)i;
1564 	(void)lim;
1565 	(void)lut;
1566 	nm_prerr("unsupported on Windows");
1567 #else /* linux */
1568 	nm_prdis("unmapping and freeing plut for %s", na->name);
1569 	if (lut->plut == NULL || na->pdev == NULL)
1570 		return 0;
1571 	for (i = 0; i < lim; i += p->_clustentries) {
1572 		if (lut->plut[i].paddr)
1573 			netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr, p->_clustsize);
1574 	}
1575 	nm_free_plut(lut->plut);
1576 	lut->plut = NULL;
1577 #endif /* linux */
1578 
1579 	return 0;
1580 }
1581 
1582 static int
netmap_mem_map(struct netmap_obj_pool * p,struct netmap_adapter * na)1583 netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na)
1584 {
1585 	int error = 0;
1586 	int i, lim = p->objtotal;
1587 	struct netmap_lut *lut = &na->na_lut;
1588 
1589 	if (na->pdev == NULL)
1590 		return 0;
1591 
1592 #if defined(__FreeBSD__)
1593 	/* On FreeBSD mapping and unmapping is performed by the txsync
1594 	 * and rxsync routine, packet by packet. */
1595 	(void)i;
1596 	(void)lim;
1597 	(void)lut;
1598 #elif defined(_WIN32)
1599 	(void)i;
1600 	(void)lim;
1601 	(void)lut;
1602 	nm_prerr("unsupported on Windows");
1603 #else /* linux */
1604 
1605 	if (lut->plut != NULL) {
1606 		nm_prdis("plut already allocated for %s", na->name);
1607 		return 0;
1608 	}
1609 
1610 	nm_prdis("allocating physical lut for %s", na->name);
1611 	lut->plut = nm_alloc_plut(lim);
1612 	if (lut->plut == NULL) {
1613 		nm_prerr("Failed to allocate physical lut for %s", na->name);
1614 		return ENOMEM;
1615 	}
1616 
1617 	for (i = 0; i < lim; i += p->_clustentries) {
1618 		lut->plut[i].paddr = 0;
1619 	}
1620 
1621 	for (i = 0; i < lim; i += p->_clustentries) {
1622 		int j;
1623 
1624 		if (p->lut[i].vaddr == NULL)
1625 			continue;
1626 
1627 		error = netmap_load_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr,
1628 				p->lut[i].vaddr, p->_clustsize);
1629 		if (error) {
1630 			nm_prerr("Failed to map cluster #%d from the %s pool", i, p->name);
1631 			break;
1632 		}
1633 
1634 		for (j = 1; j < p->_clustentries; j++) {
1635 			lut->plut[i + j].paddr = lut->plut[i + j - 1].paddr + p->_objsize;
1636 		}
1637 	}
1638 
1639 	if (error)
1640 		netmap_mem_unmap(p, na);
1641 
1642 #endif /* linux */
1643 
1644 	return error;
1645 }
1646 
1647 static int
netmap_mem_finalize_all(struct netmap_mem_d * nmd)1648 netmap_mem_finalize_all(struct netmap_mem_d *nmd)
1649 {
1650 	int i;
1651 	if (nmd->flags & NETMAP_MEM_FINALIZED)
1652 		return 0;
1653 	nmd->lasterr = 0;
1654 	nmd->nm_totalsize = 0;
1655 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1656 		nmd->lasterr = netmap_finalize_obj_allocator(nmd, &nmd->pools[i]);
1657 		if (nmd->lasterr)
1658 			goto error;
1659 		nmd->nm_totalsize += nmd->pools[i].memtotal;
1660 	}
1661 	nmd->nm_totalsize = (nmd->nm_totalsize + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1662 	nmd->lasterr = netmap_mem_init_bitmaps(nmd);
1663 	if (nmd->lasterr)
1664 		goto error;
1665 
1666 	nmd->flags |= NETMAP_MEM_FINALIZED;
1667 
1668 	if (netmap_verbose)
1669 		nm_prinf("interfaces %zd KB, rings %zd KB, buffers %zd MB",
1670 		    nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
1671 		    nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
1672 		    nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
1673 
1674 	if (netmap_verbose)
1675 		nm_prinf("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
1676 
1677 
1678 	return 0;
1679 error:
1680 	netmap_mem_reset_all(nmd);
1681 	return nmd->lasterr;
1682 }
1683 
1684 /*
1685  * allocator for private memory
1686  */
1687 static void *
_netmap_mem_private_new(size_t size,struct netmap_obj_params * p,int grp_id,const struct netmap_mem_ops * ops,uint64_t memtotal,int * perr)1688 _netmap_mem_private_new(size_t size, struct netmap_obj_params *p, int grp_id,
1689 		const struct netmap_mem_ops *ops, uint64_t memtotal, int *perr)
1690 {
1691 	struct netmap_mem_d *d = NULL;
1692 	int i, err = 0;
1693 	int checksz = 0;
1694 
1695 	/* if memtotal is !=0 we check that the request fits the available
1696 	 * memory. Moreover, any surprlus memory is assigned to buffers.
1697 	 */
1698 	checksz = (memtotal > 0);
1699 
1700 	d = nm_os_malloc(size);
1701 	if (d == NULL) {
1702 		err = ENOMEM;
1703 		goto error;
1704 	}
1705 
1706 	*d = nm_blueprint;
1707 	d->ops = ops;
1708 
1709 	err = nm_mem_assign_id(d, grp_id);
1710 	if (err)
1711 		goto error_free;
1712 	snprintf(d->name, NM_MEM_NAMESZ, "%d", d->nm_id);
1713 
1714 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1715 		snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
1716 				nm_blueprint.pools[i].name,
1717 				d->name);
1718 		if (checksz) {
1719 			uint64_t poolsz = (uint64_t)p[i].num * p[i].size;
1720 			if (memtotal < poolsz) {
1721 				nm_prerr("%s: request too large", d->pools[i].name);
1722 				err = ENOMEM;
1723 				goto error_rel_id;
1724 			}
1725 			memtotal -= poolsz;
1726 		}
1727 		d->params[i].num = p[i].num;
1728 		d->params[i].size = p[i].size;
1729 	}
1730 	if (checksz && memtotal > 0) {
1731 		uint64_t sz = d->params[NETMAP_BUF_POOL].size;
1732 		uint64_t n = (memtotal + sz - 1) / sz;
1733 
1734 		if (n) {
1735 			if (netmap_verbose) {
1736 				nm_prinf("%s: adding %llu more buffers",
1737 				    d->pools[NETMAP_BUF_POOL].name,
1738 				    (unsigned long long)n);
1739 			}
1740 			d->params[NETMAP_BUF_POOL].num += n;
1741 		}
1742 	}
1743 
1744 	NMA_LOCK_INIT(d);
1745 
1746 	err = netmap_mem_config(d);
1747 	if (err)
1748 		goto error_destroy_lock;
1749 
1750 	d->flags &= ~NETMAP_MEM_FINALIZED;
1751 
1752 	return d;
1753 
1754 error_destroy_lock:
1755 	NMA_LOCK_DESTROY(d);
1756 error_rel_id:
1757 	nm_mem_release_id(d);
1758 error_free:
1759 	nm_os_free(d);
1760 error:
1761 	if (perr)
1762 		*perr = err;
1763 	return NULL;
1764 }
1765 
1766 struct netmap_mem_d *
netmap_mem_private_new(u_int txr,u_int txd,u_int rxr,u_int rxd,u_int extra_bufs,u_int npipes,int * perr)1767 netmap_mem_private_new(u_int txr, u_int txd, u_int rxr, u_int rxd,
1768 		u_int extra_bufs, u_int npipes, int *perr)
1769 {
1770 	struct netmap_mem_d *d = NULL;
1771 	struct netmap_obj_params p[NETMAP_POOLS_NR];
1772 	int i;
1773 	u_int v, maxd;
1774 	/* account for the fake host rings */
1775 	txr++;
1776 	rxr++;
1777 
1778 	/* copy the min values */
1779 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1780 		p[i] = netmap_min_priv_params[i];
1781 	}
1782 
1783 	/* possibly increase them to fit user request */
1784 	v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
1785 	if (p[NETMAP_IF_POOL].size < v)
1786 		p[NETMAP_IF_POOL].size = v;
1787 	v = 2 + 4 * npipes;
1788 	if (p[NETMAP_IF_POOL].num < v)
1789 		p[NETMAP_IF_POOL].num = v;
1790 	maxd = (txd > rxd) ? txd : rxd;
1791 	v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
1792 	if (p[NETMAP_RING_POOL].size < v)
1793 		p[NETMAP_RING_POOL].size = v;
1794 	/* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
1795 	 * and two rx rings (again, 1 normal and 1 fake host)
1796 	 */
1797 	v = txr + rxr + 8 * npipes;
1798 	if (p[NETMAP_RING_POOL].num < v)
1799 		p[NETMAP_RING_POOL].num = v;
1800 	/* for each pipe we only need the buffers for the 4 "real" rings.
1801 	 * On the other end, the pipe ring dimension may be different from
1802 	 * the parent port ring dimension. As a compromise, we allocate twice the
1803 	 * space actually needed if the pipe rings were the same size as the parent rings
1804 	 */
1805 	v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
1806 		/* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
1807 	if (p[NETMAP_BUF_POOL].num < v)
1808 		p[NETMAP_BUF_POOL].num = v;
1809 
1810 	if (netmap_verbose)
1811 		nm_prinf("req if %d*%d ring %d*%d buf %d*%d",
1812 			p[NETMAP_IF_POOL].num,
1813 			p[NETMAP_IF_POOL].size,
1814 			p[NETMAP_RING_POOL].num,
1815 			p[NETMAP_RING_POOL].size,
1816 			p[NETMAP_BUF_POOL].num,
1817 			p[NETMAP_BUF_POOL].size);
1818 
1819 	d = _netmap_mem_private_new(sizeof(*d), p, -1, &netmap_mem_global_ops, 0, perr);
1820 
1821 	return d;
1822 }
1823 
1824 /* Reference IOMMU and NUMA local allocator - find existing or create new,
1825  * for non-hw adapters, fall back to global allocator.
1826  */
1827 struct netmap_mem_d *
netmap_mem_get_allocator(struct netmap_adapter * na)1828 netmap_mem_get_allocator(struct netmap_adapter *na)
1829 {
1830 	int i, domain, err, grp_id;
1831 	struct netmap_mem_d *nmd;
1832 
1833 	if (na == NULL || na->pdev == NULL)
1834 		return netmap_mem_get(&nm_mem);
1835 
1836 	domain = nm_numa_domain(na->pdev);
1837 	grp_id = nm_iommu_group_id(na->pdev);
1838 
1839 	NM_MTX_LOCK(nm_mem_list_lock);
1840 	nmd = netmap_last_mem_d;
1841 	do {
1842 		if (!(nmd->flags & NETMAP_MEM_HIDDEN) &&
1843 		    nmd->nm_grp == grp_id && nmd->nm_numa_domain == domain) {
1844 			nmd->refcount++;
1845 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
1846 			NM_MTX_UNLOCK(nm_mem_list_lock);
1847 			return nmd;
1848 		}
1849 		nmd = nmd->next;
1850 	} while (nmd != netmap_last_mem_d);
1851 
1852 	nmd = nm_os_malloc(sizeof(*nmd));
1853 	if (nmd == NULL)
1854 		goto error;
1855 
1856 	*nmd = nm_mem_blueprint;
1857 
1858 	err = nm_mem_assign_id_locked(nmd, grp_id, domain);
1859 	if (err)
1860 		goto error_free;
1861 
1862 	snprintf(nmd->name, sizeof(nmd->name), "%d", nmd->nm_id);
1863 
1864 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1865 		snprintf(nmd->pools[i].name, NETMAP_POOL_MAX_NAMSZ, "%s-%s",
1866 			nm_mem_blueprint.pools[i].name, nmd->name);
1867 	}
1868 
1869 	NMA_LOCK_INIT(nmd);
1870 
1871 	NM_MTX_UNLOCK(nm_mem_list_lock);
1872 	return nmd;
1873 
1874 error_free:
1875 	nm_os_free(nmd);
1876 error:
1877 	NM_MTX_UNLOCK(nm_mem_list_lock);
1878 	return NULL;
1879 }
1880 
1881 /* call with lock held */
1882 static int
netmap_mem2_config(struct netmap_mem_d * nmd)1883 netmap_mem2_config(struct netmap_mem_d *nmd)
1884 {
1885 	int i;
1886 
1887 	if (!netmap_mem_params_changed(nmd->params))
1888 		goto out;
1889 
1890 	nm_prdis("reconfiguring");
1891 
1892 	if (nmd->flags & NETMAP_MEM_FINALIZED) {
1893 		/* reset previous allocation */
1894 		for (i = 0; i < NETMAP_POOLS_NR; i++) {
1895 			netmap_reset_obj_allocator(&nmd->pools[i]);
1896 		}
1897 		nmd->flags &= ~NETMAP_MEM_FINALIZED;
1898 	}
1899 
1900 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1901 		nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
1902 				nmd->params[i].num, nmd->params[i].size);
1903 		if (nmd->lasterr)
1904 			goto out;
1905 	}
1906 
1907 out:
1908 
1909 	return nmd->lasterr;
1910 }
1911 
1912 static int
netmap_mem2_finalize(struct netmap_mem_d * nmd,struct netmap_adapter * na)1913 netmap_mem2_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
1914 {
1915 	if (nmd->flags & NETMAP_MEM_FINALIZED)
1916 		goto out;
1917 
1918 	if (netmap_mem_finalize_all(nmd))
1919 		goto out;
1920 
1921 	nmd->lasterr = 0;
1922 
1923 out:
1924 	return nmd->lasterr;
1925 }
1926 
1927 static void
netmap_mem2_delete(struct netmap_mem_d * nmd)1928 netmap_mem2_delete(struct netmap_mem_d *nmd)
1929 {
1930 	int i;
1931 
1932 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1933 	    netmap_destroy_obj_allocator(&nmd->pools[i]);
1934 	}
1935 
1936 	NMA_LOCK_DESTROY(nmd);
1937 	if (nmd != &nm_mem)
1938 		nm_os_free(nmd);
1939 }
1940 
1941 #ifdef WITH_EXTMEM
1942 /* doubly linekd list of all existing external allocators */
1943 static struct netmap_mem_ext *netmap_mem_ext_list = NULL;
1944 NM_MTX_T nm_mem_ext_list_lock;
1945 #endif /* WITH_EXTMEM */
1946 
1947 int
netmap_mem_init(void)1948 netmap_mem_init(void)
1949 {
1950 	nm_mem_blueprint = nm_mem;
1951 	NM_MTX_INIT(nm_mem_list_lock);
1952 	NMA_LOCK_INIT(&nm_mem);
1953 	netmap_mem_get(&nm_mem);
1954 #ifdef WITH_EXTMEM
1955 	NM_MTX_INIT(nm_mem_ext_list_lock);
1956 #endif /* WITH_EXTMEM */
1957 	return (0);
1958 }
1959 
1960 void
netmap_mem_fini(void)1961 netmap_mem_fini(void)
1962 {
1963 	netmap_mem_put(&nm_mem);
1964 }
1965 
1966 static int
netmap_mem_ring_needed(struct netmap_kring * kring)1967 netmap_mem_ring_needed(struct netmap_kring *kring)
1968 {
1969 	return kring->ring == NULL &&
1970 		(kring->users > 0 ||
1971 		 (kring->nr_kflags & NKR_NEEDRING));
1972 }
1973 
1974 static int
netmap_mem_ring_todelete(struct netmap_kring * kring)1975 netmap_mem_ring_todelete(struct netmap_kring *kring)
1976 {
1977 	return kring->ring != NULL &&
1978 		kring->users == 0 &&
1979 		!(kring->nr_kflags & NKR_NEEDRING);
1980 }
1981 
1982 
1983 /* call with NMA_LOCK held *
1984  *
1985  * Allocate netmap rings and buffers for this card
1986  * The rings are contiguous, but have variable size.
1987  * The kring array must follow the layout described
1988  * in netmap_krings_create().
1989  */
1990 static int
netmap_mem2_rings_create(struct netmap_mem_d * nmd,struct netmap_adapter * na)1991 netmap_mem2_rings_create(struct netmap_mem_d *nmd, struct netmap_adapter *na)
1992 {
1993 	enum txrx t;
1994 
1995 	for_rx_tx(t) {
1996 		u_int i;
1997 
1998 		for (i = 0; i < netmap_all_rings(na, t); i++) {
1999 			struct netmap_kring *kring = NMR(na, t)[i];
2000 			struct netmap_ring *ring = kring->ring;
2001 			u_int len, ndesc;
2002 
2003 			if (!netmap_mem_ring_needed(kring)) {
2004 				/* unneeded, or already created by somebody else */
2005 				if (netmap_debug & NM_DEBUG_MEM)
2006 					nm_prinf("NOT creating ring %s (ring %p, users %d neekring %d)",
2007 						kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
2008 				continue;
2009 			}
2010 			if (netmap_debug & NM_DEBUG_MEM)
2011 				nm_prinf("creating %s", kring->name);
2012 			ndesc = kring->nkr_num_slots;
2013 			len = sizeof(struct netmap_ring) +
2014 				  ndesc * sizeof(struct netmap_slot);
2015 			ring = netmap_ring_malloc(nmd, len);
2016 			if (ring == NULL) {
2017 				nm_prerr("Cannot allocate %s_ring", nm_txrx2str(t));
2018 				goto cleanup;
2019 			}
2020 			nm_prdis("txring at %p", ring);
2021 			kring->ring = ring;
2022 			*(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
2023 			*(int64_t *)(uintptr_t)&ring->buf_ofs =
2024 			    (nmd->pools[NETMAP_IF_POOL].memtotal +
2025 				nmd->pools[NETMAP_RING_POOL].memtotal) -
2026 				netmap_ring_offset(nmd, ring);
2027 
2028 			/* copy values from kring */
2029 			ring->head = kring->rhead;
2030 			ring->cur = kring->rcur;
2031 			ring->tail = kring->rtail;
2032 			*(uint32_t *)(uintptr_t)&ring->nr_buf_size =
2033 				netmap_mem_bufsize(nmd);
2034 			nm_prdis("%s h %d c %d t %d", kring->name,
2035 				ring->head, ring->cur, ring->tail);
2036 			nm_prdis("initializing slots for %s_ring", nm_txrx2str(t));
2037 			if (!(kring->nr_kflags & NKR_FAKERING)) {
2038 				/* this is a real ring */
2039 				if (netmap_debug & NM_DEBUG_MEM)
2040 					nm_prinf("allocating buffers for %s", kring->name);
2041 				if (netmap_new_bufs(nmd, ring->slot, ndesc)) {
2042 					nm_prerr("Cannot allocate buffers for %s_ring", nm_txrx2str(t));
2043 					goto cleanup;
2044 				}
2045 			} else {
2046 				/* this is a fake ring, set all indices to 0 */
2047 				if (netmap_debug & NM_DEBUG_MEM)
2048 					nm_prinf("NOT allocating buffers for %s", kring->name);
2049 				netmap_mem_set_ring(nmd, ring->slot, ndesc, 0);
2050 			}
2051 		        /* ring info */
2052 		        *(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id;
2053 		        *(uint16_t *)(uintptr_t)&ring->dir = kring->tx;
2054 		}
2055 	}
2056 
2057 	return 0;
2058 
2059 cleanup:
2060 	/* we cannot actually cleanup here, since we don't own kring->users
2061 	 * and kring->nr_klags & NKR_NEEDRING. The caller must decrement
2062 	 * the first or zero-out the second, then call netmap_free_rings()
2063 	 * to do the cleanup
2064 	 */
2065 
2066 	return ENOMEM;
2067 }
2068 
2069 static void
netmap_mem2_rings_delete(struct netmap_mem_d * nmd,struct netmap_adapter * na)2070 netmap_mem2_rings_delete(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2071 {
2072 	enum txrx t;
2073 
2074 	for_rx_tx(t) {
2075 		u_int i;
2076 		for (i = 0; i < netmap_all_rings(na, t); i++) {
2077 			struct netmap_kring *kring = NMR(na, t)[i];
2078 			struct netmap_ring *ring = kring->ring;
2079 
2080 			if (!netmap_mem_ring_todelete(kring)) {
2081 				if (netmap_debug & NM_DEBUG_MEM)
2082 					nm_prinf("NOT deleting ring %s (ring %p, users %d neekring %d)",
2083 						kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
2084 				continue;
2085 			}
2086 			if (netmap_debug & NM_DEBUG_MEM)
2087 				nm_prinf("deleting ring %s", kring->name);
2088 			if (!(kring->nr_kflags & NKR_FAKERING)) {
2089 				nm_prdis("freeing bufs for %s", kring->name);
2090 				netmap_free_bufs(nmd, ring->slot, kring->nkr_num_slots);
2091 			} else {
2092 				nm_prdis("NOT freeing bufs for %s", kring->name);
2093 			}
2094 			netmap_ring_free(nmd, ring);
2095 			kring->ring = NULL;
2096 		}
2097 	}
2098 }
2099 
2100 /* call with NMA_LOCK held */
2101 /*
2102  * Allocate the per-fd structure netmap_if.
2103  *
2104  * We assume that the configuration stored in na
2105  * (number of tx/rx rings and descs) does not change while
2106  * the interface is in netmap mode.
2107  */
2108 static struct netmap_if *
netmap_mem2_if_new(struct netmap_mem_d * nmd,struct netmap_adapter * na,struct netmap_priv_d * priv)2109 netmap_mem2_if_new(struct netmap_mem_d *nmd,
2110 		struct netmap_adapter *na, struct netmap_priv_d *priv)
2111 {
2112 	struct netmap_if *nifp;
2113 	ssize_t base; /* handy for relative offsets between rings and nifp */
2114 	u_int i, len, n[NR_TXRX], ntot;
2115 	enum txrx t;
2116 
2117 	ntot = 0;
2118 	for_rx_tx(t) {
2119 		/* account for the (eventually fake) host rings */
2120 		n[t] = netmap_all_rings(na, t);
2121 		ntot += n[t];
2122 	}
2123 	/*
2124 	 * the descriptor is followed inline by an array of offsets
2125 	 * to the tx and rx rings in the shared memory region.
2126 	 */
2127 
2128 	len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t));
2129 	nifp = netmap_if_malloc(nmd, len);
2130 	if (nifp == NULL) {
2131 		return NULL;
2132 	}
2133 
2134 	/* initialize base fields -- override const */
2135 	*(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
2136 	*(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
2137 	*(u_int *)(uintptr_t)&nifp->ni_host_tx_rings =
2138 		(na->num_host_tx_rings ? na->num_host_tx_rings : 1);
2139 	*(u_int *)(uintptr_t)&nifp->ni_host_rx_rings =
2140 		(na->num_host_rx_rings ? na->num_host_rx_rings : 1);
2141 	strlcpy(nifp->ni_name, na->name, sizeof(nifp->ni_name));
2142 
2143 	/*
2144 	 * fill the slots for the rx and tx rings. They contain the offset
2145 	 * between the ring and nifp, so the information is usable in
2146 	 * userspace to reach the ring from the nifp.
2147 	 */
2148 	base = netmap_if_offset(nmd, nifp);
2149 	for (i = 0; i < n[NR_TX]; i++) {
2150 		/* XXX instead of ofs == 0 maybe use the offset of an error
2151 		 * ring, like we do for buffers? */
2152 		ssize_t ofs = 0;
2153 
2154 		if (na->tx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_TX]
2155 				&& i < priv->np_qlast[NR_TX]) {
2156 			ofs = netmap_ring_offset(nmd,
2157 						 na->tx_rings[i]->ring) - base;
2158 		}
2159 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = ofs;
2160 	}
2161 	for (i = 0; i < n[NR_RX]; i++) {
2162 		/* XXX instead of ofs == 0 maybe use the offset of an error
2163 		 * ring, like we do for buffers? */
2164 		ssize_t ofs = 0;
2165 
2166 		if (na->rx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_RX]
2167 				&& i < priv->np_qlast[NR_RX]) {
2168 			ofs = netmap_ring_offset(nmd,
2169 						 na->rx_rings[i]->ring) - base;
2170 		}
2171 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = ofs;
2172 	}
2173 
2174 	return (nifp);
2175 }
2176 
2177 static void
netmap_mem2_if_delete(struct netmap_mem_d * nmd,struct netmap_adapter * na,struct netmap_if * nifp)2178 netmap_mem2_if_delete(struct netmap_mem_d *nmd,
2179 		struct netmap_adapter *na, struct netmap_if *nifp)
2180 {
2181 	if (nifp == NULL)
2182 		/* nothing to do */
2183 		return;
2184 	if (nifp->ni_bufs_head)
2185 		netmap_extra_free(na, nifp->ni_bufs_head);
2186 	netmap_if_free(nmd, nifp);
2187 }
2188 
2189 static void
netmap_mem2_deref(struct netmap_mem_d * nmd,struct netmap_adapter * na)2190 netmap_mem2_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2191 {
2192 
2193 	if (netmap_debug & NM_DEBUG_MEM)
2194 		nm_prinf("active = %d", nmd->active);
2195 
2196 }
2197 
2198 const struct netmap_mem_ops netmap_mem_global_ops = {
2199 	.nmd_get_lut = netmap_mem2_get_lut,
2200 	.nmd_get_info = netmap_mem2_get_info,
2201 	.nmd_ofstophys = netmap_mem2_ofstophys,
2202 	.nmd_config = netmap_mem2_config,
2203 	.nmd_finalize = netmap_mem2_finalize,
2204 	.nmd_deref = netmap_mem2_deref,
2205 	.nmd_delete = netmap_mem2_delete,
2206 	.nmd_if_offset = netmap_mem2_if_offset,
2207 	.nmd_if_new = netmap_mem2_if_new,
2208 	.nmd_if_delete = netmap_mem2_if_delete,
2209 	.nmd_rings_create = netmap_mem2_rings_create,
2210 	.nmd_rings_delete = netmap_mem2_rings_delete
2211 };
2212 
2213 int
netmap_mem_pools_info_get(struct nmreq_pools_info * req,struct netmap_mem_d * nmd)2214 netmap_mem_pools_info_get(struct nmreq_pools_info *req,
2215 				struct netmap_mem_d *nmd)
2216 {
2217 	int ret;
2218 
2219 	ret = netmap_mem_get_info(nmd, &req->nr_memsize, NULL,
2220 					&req->nr_mem_id);
2221 	if (ret) {
2222 		return ret;
2223 	}
2224 
2225 	NMA_LOCK(nmd);
2226 	req->nr_if_pool_offset = 0;
2227 	req->nr_if_pool_objtotal = nmd->pools[NETMAP_IF_POOL].objtotal;
2228 	req->nr_if_pool_objsize = nmd->pools[NETMAP_IF_POOL]._objsize;
2229 
2230 	req->nr_ring_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal;
2231 	req->nr_ring_pool_objtotal = nmd->pools[NETMAP_RING_POOL].objtotal;
2232 	req->nr_ring_pool_objsize = nmd->pools[NETMAP_RING_POOL]._objsize;
2233 
2234 	req->nr_buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal +
2235 			     nmd->pools[NETMAP_RING_POOL].memtotal;
2236 	req->nr_buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
2237 	req->nr_buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
2238 	NMA_UNLOCK(nmd);
2239 
2240 	return 0;
2241 }
2242 
2243 #ifdef WITH_EXTMEM
2244 struct netmap_mem_ext {
2245 	struct netmap_mem_d up;
2246 
2247 	struct nm_os_extmem *os;
2248 	struct netmap_mem_ext *next, *prev;
2249 };
2250 
2251 /* call with nm_mem_list_lock held */
2252 static void
netmap_mem_ext_register(struct netmap_mem_ext * e)2253 netmap_mem_ext_register(struct netmap_mem_ext *e)
2254 {
2255 	NM_MTX_LOCK(nm_mem_ext_list_lock);
2256 	if (netmap_mem_ext_list)
2257 		netmap_mem_ext_list->prev = e;
2258 	e->next = netmap_mem_ext_list;
2259 	netmap_mem_ext_list = e;
2260 	e->prev = NULL;
2261 	NM_MTX_UNLOCK(nm_mem_ext_list_lock);
2262 }
2263 
2264 /* call with nm_mem_list_lock held */
2265 static void
netmap_mem_ext_unregister(struct netmap_mem_ext * e)2266 netmap_mem_ext_unregister(struct netmap_mem_ext *e)
2267 {
2268 	if (e->prev)
2269 		e->prev->next = e->next;
2270 	else
2271 		netmap_mem_ext_list = e->next;
2272 	if (e->next)
2273 		e->next->prev = e->prev;
2274 	e->prev = e->next = NULL;
2275 }
2276 
2277 static struct netmap_mem_ext *
netmap_mem_ext_search(struct nm_os_extmem * os)2278 netmap_mem_ext_search(struct nm_os_extmem *os)
2279 {
2280 	struct netmap_mem_ext *e;
2281 
2282 	NM_MTX_LOCK(nm_mem_ext_list_lock);
2283 	for (e = netmap_mem_ext_list; e; e = e->next) {
2284 		if (nm_os_extmem_isequal(e->os, os)) {
2285 			netmap_mem_get(&e->up);
2286 			break;
2287 		}
2288 	}
2289 	NM_MTX_UNLOCK(nm_mem_ext_list_lock);
2290 	return e;
2291 }
2292 
2293 
2294 static void
netmap_mem_ext_delete(struct netmap_mem_d * d)2295 netmap_mem_ext_delete(struct netmap_mem_d *d)
2296 {
2297 	int i;
2298 	struct netmap_mem_ext *e =
2299 		(struct netmap_mem_ext *)d;
2300 
2301 	netmap_mem_ext_unregister(e);
2302 
2303 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
2304 		struct netmap_obj_pool *p = &d->pools[i];
2305 
2306 		if (p->lut) {
2307 			nm_free_lut(p->lut, p->objtotal);
2308 			p->lut = NULL;
2309 		}
2310 	}
2311 	if (e->os)
2312 		nm_os_extmem_delete(e->os);
2313 	netmap_mem2_delete(d);
2314 }
2315 
2316 static int
netmap_mem_ext_config(struct netmap_mem_d * nmd)2317 netmap_mem_ext_config(struct netmap_mem_d *nmd)
2318 {
2319 	return 0;
2320 }
2321 
2322 struct netmap_mem_ops netmap_mem_ext_ops = {
2323 	.nmd_get_lut = netmap_mem2_get_lut,
2324 	.nmd_get_info = netmap_mem2_get_info,
2325 	.nmd_ofstophys = netmap_mem2_ofstophys,
2326 	.nmd_config = netmap_mem_ext_config,
2327 	.nmd_finalize = netmap_mem2_finalize,
2328 	.nmd_deref = netmap_mem2_deref,
2329 	.nmd_delete = netmap_mem_ext_delete,
2330 	.nmd_if_offset = netmap_mem2_if_offset,
2331 	.nmd_if_new = netmap_mem2_if_new,
2332 	.nmd_if_delete = netmap_mem2_if_delete,
2333 	.nmd_rings_create = netmap_mem2_rings_create,
2334 	.nmd_rings_delete = netmap_mem2_rings_delete
2335 };
2336 
2337 struct netmap_mem_d *
netmap_mem_ext_create(uint64_t usrptr,struct nmreq_pools_info * pi,int * perror)2338 netmap_mem_ext_create(uint64_t usrptr, struct nmreq_pools_info *pi, int *perror)
2339 {
2340 	int error = 0;
2341 	int i, j;
2342 	struct netmap_mem_ext *nme;
2343 	char *clust;
2344 	size_t off;
2345 	struct nm_os_extmem *os = NULL;
2346 	int nr_pages;
2347 
2348 	// XXX sanity checks
2349 	if (pi->nr_if_pool_objtotal == 0)
2350 		pi->nr_if_pool_objtotal = netmap_min_priv_params[NETMAP_IF_POOL].num;
2351 	if (pi->nr_if_pool_objsize == 0)
2352 		pi->nr_if_pool_objsize = netmap_min_priv_params[NETMAP_IF_POOL].size;
2353 	if (pi->nr_ring_pool_objtotal == 0)
2354 		pi->nr_ring_pool_objtotal = netmap_min_priv_params[NETMAP_RING_POOL].num;
2355 	if (pi->nr_ring_pool_objsize == 0)
2356 		pi->nr_ring_pool_objsize = netmap_min_priv_params[NETMAP_RING_POOL].size;
2357 	if (pi->nr_buf_pool_objtotal == 0)
2358 		pi->nr_buf_pool_objtotal = netmap_min_priv_params[NETMAP_BUF_POOL].num;
2359 	if (pi->nr_buf_pool_objsize == 0)
2360 		pi->nr_buf_pool_objsize = netmap_min_priv_params[NETMAP_BUF_POOL].size;
2361 	if (netmap_verbose & NM_DEBUG_MEM)
2362 		nm_prinf("if %d %d ring %d %d buf %d %d",
2363 			pi->nr_if_pool_objtotal, pi->nr_if_pool_objsize,
2364 			pi->nr_ring_pool_objtotal, pi->nr_ring_pool_objsize,
2365 			pi->nr_buf_pool_objtotal, pi->nr_buf_pool_objsize);
2366 
2367 	os = nm_os_extmem_create(usrptr, pi, &error);
2368 	if (os == NULL) {
2369 		nm_prerr("os extmem creation failed");
2370 		goto out;
2371 	}
2372 
2373 	nme = netmap_mem_ext_search(os);
2374 	if (nme) {
2375 		nm_os_extmem_delete(os);
2376 		return &nme->up;
2377 	}
2378 	if (netmap_verbose & NM_DEBUG_MEM)
2379 		nm_prinf("not found, creating new");
2380 
2381 	nme = _netmap_mem_private_new(sizeof(*nme),
2382 
2383 			(struct netmap_obj_params[]){
2384 				{ pi->nr_if_pool_objsize, pi->nr_if_pool_objtotal },
2385 				{ pi->nr_ring_pool_objsize, pi->nr_ring_pool_objtotal },
2386 				{ pi->nr_buf_pool_objsize, pi->nr_buf_pool_objtotal }},
2387 			-1,
2388 			&netmap_mem_ext_ops,
2389 			pi->nr_memsize,
2390 			&error);
2391 	if (nme == NULL)
2392 		goto out_unmap;
2393 
2394 	nr_pages = nm_os_extmem_nr_pages(os);
2395 
2396 	/* from now on pages will be released by nme destructor;
2397 	 * we let res = 0 to prevent release in out_unmap below
2398 	 */
2399 	nme->os = os;
2400 	os = NULL; /* pass ownership */
2401 
2402 	clust = nm_os_extmem_nextpage(nme->os);
2403 	off = 0;
2404 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
2405 		struct netmap_obj_pool *p = &nme->up.pools[i];
2406 		struct netmap_obj_params *o = &nme->up.params[i];
2407 
2408 		p->_objsize = o->size;
2409 		p->_clustsize = o->size;
2410 		p->_clustentries = 1;
2411 
2412 		p->lut = nm_alloc_lut(o->num);
2413 		if (p->lut == NULL) {
2414 			error = ENOMEM;
2415 			goto out_delete;
2416 		}
2417 
2418 		p->bitmap_slots = (o->num + sizeof(uint32_t) - 1) / sizeof(uint32_t);
2419 		p->invalid_bitmap = nm_os_malloc(sizeof(uint32_t) * p->bitmap_slots);
2420 		if (p->invalid_bitmap == NULL) {
2421 			error = ENOMEM;
2422 			goto out_delete;
2423 		}
2424 
2425 		if (nr_pages == 0) {
2426 			p->objtotal = 0;
2427 			p->memtotal = 0;
2428 			p->objfree = 0;
2429 			continue;
2430 		}
2431 
2432 		for (j = 0; j < o->num && nr_pages > 0; j++) {
2433 			size_t noff;
2434 
2435 			p->lut[j].vaddr = clust + off;
2436 #if !defined(linux) && !defined(_WIN32)
2437 			p->lut[j].paddr = vtophys(p->lut[j].vaddr);
2438 #endif
2439 			nm_prdis("%s %d at %p", p->name, j, p->lut[j].vaddr);
2440 			noff = off + p->_objsize;
2441 			if (noff < PAGE_SIZE) {
2442 				off = noff;
2443 				continue;
2444 			}
2445 			nm_prdis("too big, recomputing offset...");
2446 			while (noff >= PAGE_SIZE) {
2447 				char *old_clust = clust;
2448 				noff -= PAGE_SIZE;
2449 				clust = nm_os_extmem_nextpage(nme->os);
2450 				nr_pages--;
2451 				nm_prdis("noff %zu page %p nr_pages %d", noff,
2452 						page_to_virt(*pages), nr_pages);
2453 				if (noff > 0 && !nm_isset(p->invalid_bitmap, j) &&
2454 					(nr_pages == 0 ||
2455 					 old_clust + PAGE_SIZE != clust))
2456 				{
2457 					/* out of space or non contiguous,
2458 					 * drop this object
2459 					 * */
2460 					p->invalid_bitmap[ (j>>5) ] |= 1U << (j & 31U);
2461 					nm_prdis("non contiguous at off %zu, drop", noff);
2462 				}
2463 				if (nr_pages == 0)
2464 					break;
2465 			}
2466 			off = noff;
2467 		}
2468 		p->objtotal = j;
2469 		p->numclusters = p->objtotal;
2470 		p->memtotal = j * (size_t)p->_objsize;
2471 		nm_prdis("%d memtotal %zu", j, p->memtotal);
2472 	}
2473 
2474 	netmap_mem_ext_register(nme);
2475 
2476 	return &nme->up;
2477 
2478 out_delete:
2479 	netmap_mem_put(&nme->up);
2480 out_unmap:
2481 	if (os)
2482 		nm_os_extmem_delete(os);
2483 out:
2484 	if (perror)
2485 		*perror = error;
2486 	return NULL;
2487 
2488 }
2489 #endif /* WITH_EXTMEM */
2490 
2491 
2492 #ifdef WITH_PTNETMAP
2493 struct mem_pt_if {
2494 	struct mem_pt_if *next;
2495 	if_t ifp;
2496 	unsigned int nifp_offset;
2497 };
2498 
2499 /* Netmap allocator for ptnetmap guests. */
2500 struct netmap_mem_ptg {
2501 	struct netmap_mem_d up;
2502 
2503 	vm_paddr_t nm_paddr;            /* physical address in the guest */
2504 	void *nm_addr;                  /* virtual address in the guest */
2505 	struct netmap_lut buf_lut;      /* lookup table for BUF pool in the guest */
2506 	nm_memid_t host_mem_id;         /* allocator identifier in the host */
2507 	struct ptnetmap_memdev *ptn_dev;/* ptnetmap memdev */
2508 	struct mem_pt_if *pt_ifs;	/* list of interfaces in passthrough */
2509 };
2510 
2511 /* Link a passthrough interface to a passthrough netmap allocator. */
2512 static int
netmap_mem_pt_guest_ifp_add(struct netmap_mem_d * nmd,if_t ifp,unsigned int nifp_offset)2513 netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, if_t ifp,
2514 			    unsigned int nifp_offset)
2515 {
2516 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2517 	struct mem_pt_if *ptif = nm_os_malloc(sizeof(*ptif));
2518 
2519 	if (!ptif) {
2520 		return ENOMEM;
2521 	}
2522 
2523 	NMA_LOCK(nmd);
2524 
2525 	ptif->ifp = ifp;
2526 	ptif->nifp_offset = nifp_offset;
2527 
2528 	if (ptnmd->pt_ifs) {
2529 		ptif->next = ptnmd->pt_ifs;
2530 	}
2531 	ptnmd->pt_ifs = ptif;
2532 
2533 	NMA_UNLOCK(nmd);
2534 
2535 	nm_prinf("ifp=%s,nifp_offset=%u",
2536 		if_name(ptif->ifp), ptif->nifp_offset);
2537 
2538 	return 0;
2539 }
2540 
2541 /* Called with NMA_LOCK(nmd) held. */
2542 static struct mem_pt_if *
netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d * nmd,if_t ifp)2543 netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, if_t ifp)
2544 {
2545 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2546 	struct mem_pt_if *curr;
2547 
2548 	for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
2549 		if (curr->ifp == ifp) {
2550 			return curr;
2551 		}
2552 	}
2553 
2554 	return NULL;
2555 }
2556 
2557 /* Unlink a passthrough interface from a passthrough netmap allocator. */
2558 int
netmap_mem_pt_guest_ifp_del(struct netmap_mem_d * nmd,if_t ifp)2559 netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, if_t ifp)
2560 {
2561 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2562 	struct mem_pt_if *prev = NULL;
2563 	struct mem_pt_if *curr;
2564 	int ret = -1;
2565 
2566 	NMA_LOCK(nmd);
2567 
2568 	for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
2569 		if (curr->ifp == ifp) {
2570 			if (prev) {
2571 				prev->next = curr->next;
2572 			} else {
2573 				ptnmd->pt_ifs = curr->next;
2574 			}
2575 			nm_prinf("removed (ifp=%s,nifp_offset=%u)",
2576 			  if_name(curr->ifp), curr->nifp_offset);
2577 			nm_os_free(curr);
2578 			ret = 0;
2579 			break;
2580 		}
2581 		prev = curr;
2582 	}
2583 
2584 	NMA_UNLOCK(nmd);
2585 
2586 	return ret;
2587 }
2588 
2589 static int
netmap_mem_pt_guest_get_lut(struct netmap_mem_d * nmd,struct netmap_lut * lut)2590 netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
2591 {
2592 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2593 
2594 	if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
2595 		return EINVAL;
2596 	}
2597 
2598 	*lut = ptnmd->buf_lut;
2599 	return 0;
2600 }
2601 
2602 static int
netmap_mem_pt_guest_get_info(struct netmap_mem_d * nmd,uint64_t * size,u_int * memflags,uint16_t * id)2603 netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, uint64_t *size,
2604 			     u_int *memflags, uint16_t *id)
2605 {
2606 	int error = 0;
2607 
2608 	error = nmd->ops->nmd_config(nmd);
2609 	if (error)
2610 		goto out;
2611 
2612 	if (size)
2613 		*size = nmd->nm_totalsize;
2614 	if (memflags)
2615 		*memflags = nmd->flags;
2616 	if (id)
2617 		*id = nmd->nm_id;
2618 
2619 out:
2620 
2621 	return error;
2622 }
2623 
2624 static vm_paddr_t
netmap_mem_pt_guest_ofstophys(struct netmap_mem_d * nmd,vm_ooffset_t off)2625 netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
2626 {
2627 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2628 	vm_paddr_t paddr;
2629 	/* if the offset is valid, just return csb->base_addr + off */
2630 	paddr = (vm_paddr_t)(ptnmd->nm_paddr + off);
2631 	nm_prdis("off %lx padr %lx", off, (unsigned long)paddr);
2632 	return paddr;
2633 }
2634 
2635 static int
netmap_mem_pt_guest_config(struct netmap_mem_d * nmd)2636 netmap_mem_pt_guest_config(struct netmap_mem_d *nmd)
2637 {
2638 	/* nothing to do, we are configured on creation
2639 	 * and configuration never changes thereafter
2640 	 */
2641 	return 0;
2642 }
2643 
2644 static int
netmap_mem_pt_guest_finalize(struct netmap_mem_d * nmd,struct netmap_adapter * na)2645 netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2646 {
2647 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2648 	uint64_t mem_size;
2649 	uint32_t bufsize;
2650 	uint32_t nbuffers;
2651 	uint32_t poolofs;
2652 	vm_paddr_t paddr;
2653 	char *vaddr;
2654 	int i;
2655 	int error = 0;
2656 
2657 	if (nmd->flags & NETMAP_MEM_FINALIZED)
2658 		goto out;
2659 
2660 	if (ptnmd->ptn_dev == NULL) {
2661 		nm_prerr("ptnetmap memdev not attached");
2662 		error = ENOMEM;
2663 		goto out;
2664 	}
2665 	/* Map memory through ptnetmap-memdev BAR. */
2666 	error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr,
2667 				      &ptnmd->nm_addr, &mem_size);
2668 	if (error)
2669 		goto out;
2670 
2671 	/* Initialize the lut using the information contained in the
2672 	 * ptnetmap memory device. */
2673 	bufsize = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2674 					 PTNET_MDEV_IO_BUF_POOL_OBJSZ);
2675 	nbuffers = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2676 					 PTNET_MDEV_IO_BUF_POOL_OBJNUM);
2677 
2678 	/* allocate the lut */
2679 	if (ptnmd->buf_lut.lut == NULL) {
2680 		nm_prinf("allocating lut");
2681 		ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers);
2682 		if (ptnmd->buf_lut.lut == NULL) {
2683 			nm_prerr("lut allocation failed");
2684 			return ENOMEM;
2685 		}
2686 	}
2687 
2688 	/* we have physically contiguous memory mapped through PCI BAR */
2689 	poolofs = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2690 					 PTNET_MDEV_IO_BUF_POOL_OFS);
2691 	vaddr = (char *)(ptnmd->nm_addr) + poolofs;
2692 	paddr = ptnmd->nm_paddr + poolofs;
2693 
2694 	for (i = 0; i < nbuffers; i++) {
2695 		ptnmd->buf_lut.lut[i].vaddr = vaddr;
2696 		vaddr += bufsize;
2697 		paddr += bufsize;
2698 	}
2699 
2700 	ptnmd->buf_lut.objtotal = nbuffers;
2701 	ptnmd->buf_lut.objsize = bufsize;
2702 	nmd->nm_totalsize = mem_size;
2703 
2704 	/* Initialize these fields as are needed by
2705 	 * netmap_mem_bufsize().
2706 	 * XXX please improve this, why do we need this
2707 	 * replication? maybe we nmd->pools[] should no be
2708 	 * there for the guest allocator? */
2709 	nmd->pools[NETMAP_BUF_POOL]._objsize = bufsize;
2710 	nmd->pools[NETMAP_BUF_POOL]._objtotal = nbuffers;
2711 
2712 	nmd->flags |= NETMAP_MEM_FINALIZED;
2713 out:
2714 	return error;
2715 }
2716 
2717 static void
netmap_mem_pt_guest_deref(struct netmap_mem_d * nmd,struct netmap_adapter * na)2718 netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2719 {
2720 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2721 
2722 	if (nmd->active == 1 &&
2723 		(nmd->flags & NETMAP_MEM_FINALIZED)) {
2724 	    nmd->flags  &= ~NETMAP_MEM_FINALIZED;
2725 	    /* unmap ptnetmap-memdev memory */
2726 	    if (ptnmd->ptn_dev) {
2727 		nm_os_pt_memdev_iounmap(ptnmd->ptn_dev);
2728 	    }
2729 	    ptnmd->nm_addr = NULL;
2730 	    ptnmd->nm_paddr = 0;
2731 	}
2732 }
2733 
2734 static ssize_t
netmap_mem_pt_guest_if_offset(struct netmap_mem_d * nmd,const void * vaddr)2735 netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr)
2736 {
2737 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2738 
2739 	return (const char *)(vaddr) - (char *)(ptnmd->nm_addr);
2740 }
2741 
2742 static void
netmap_mem_pt_guest_delete(struct netmap_mem_d * nmd)2743 netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd)
2744 {
2745 	if (nmd == NULL)
2746 		return;
2747 	if (netmap_verbose)
2748 		nm_prinf("deleting %p", nmd);
2749 	if (nmd->active > 0)
2750 		nm_prerr("bug: deleting mem allocator with active=%d!", nmd->active);
2751 	if (netmap_verbose)
2752 		nm_prinf("done deleting %p", nmd);
2753 	NMA_LOCK_DESTROY(nmd);
2754 	nm_os_free(nmd);
2755 }
2756 
2757 static struct netmap_if *
netmap_mem_pt_guest_if_new(struct netmap_mem_d * nmd,struct netmap_adapter * na,struct netmap_priv_d * priv)2758 netmap_mem_pt_guest_if_new(struct netmap_mem_d *nmd,
2759 		struct netmap_adapter *na, struct netmap_priv_d *priv)
2760 {
2761 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2762 	struct mem_pt_if *ptif;
2763 	struct netmap_if *nifp = NULL;
2764 
2765 	ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp);
2766 	if (ptif == NULL) {
2767 		nm_prerr("interface %s is not in passthrough", na->name);
2768 		goto out;
2769 	}
2770 
2771 	nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) +
2772 				    ptif->nifp_offset);
2773 out:
2774 	return nifp;
2775 }
2776 
2777 static void
netmap_mem_pt_guest_if_delete(struct netmap_mem_d * nmd,struct netmap_adapter * na,struct netmap_if * nifp)2778 netmap_mem_pt_guest_if_delete(struct netmap_mem_d * nmd,
2779 		struct netmap_adapter *na, struct netmap_if *nifp)
2780 {
2781 	struct mem_pt_if *ptif;
2782 
2783 	ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp);
2784 	if (ptif == NULL) {
2785 		nm_prerr("interface %s is not in passthrough", na->name);
2786 	}
2787 }
2788 
2789 static int
netmap_mem_pt_guest_rings_create(struct netmap_mem_d * nmd,struct netmap_adapter * na)2790 netmap_mem_pt_guest_rings_create(struct netmap_mem_d *nmd,
2791 		struct netmap_adapter *na)
2792 {
2793 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2794 	struct mem_pt_if *ptif;
2795 	struct netmap_if *nifp;
2796 	int i, error = -1;
2797 
2798 	ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp);
2799 	if (ptif == NULL) {
2800 		nm_prerr("interface %s is not in passthrough", na->name);
2801 		goto out;
2802 	}
2803 
2804 
2805 	/* point each kring to the corresponding backend ring */
2806 	nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset);
2807 	for (i = 0; i < netmap_all_rings(na, NR_TX); i++) {
2808 		struct netmap_kring *kring = na->tx_rings[i];
2809 		if (kring->ring)
2810 			continue;
2811 		kring->ring = (struct netmap_ring *)
2812 			((char *)nifp + nifp->ring_ofs[i]);
2813 	}
2814 	for (i = 0; i < netmap_all_rings(na, NR_RX); i++) {
2815 		struct netmap_kring *kring = na->rx_rings[i];
2816 		if (kring->ring)
2817 			continue;
2818 		kring->ring = (struct netmap_ring *)
2819 			((char *)nifp +
2820 			 nifp->ring_ofs[netmap_all_rings(na, NR_TX) + i]);
2821 	}
2822 
2823 	error = 0;
2824 out:
2825 	return error;
2826 }
2827 
2828 static void
netmap_mem_pt_guest_rings_delete(struct netmap_mem_d * nmd,struct netmap_adapter * na)2829 netmap_mem_pt_guest_rings_delete(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2830 {
2831 #if 0
2832 	enum txrx t;
2833 
2834 	for_rx_tx(t) {
2835 		u_int i;
2836 		for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
2837 			struct netmap_kring *kring = &NMR(na, t)[i];
2838 
2839 			kring->ring = NULL;
2840 		}
2841 	}
2842 #endif
2843 	(void)nmd;
2844 	(void)na;
2845 }
2846 
2847 static struct netmap_mem_ops netmap_mem_pt_guest_ops = {
2848 	.nmd_get_lut = netmap_mem_pt_guest_get_lut,
2849 	.nmd_get_info = netmap_mem_pt_guest_get_info,
2850 	.nmd_ofstophys = netmap_mem_pt_guest_ofstophys,
2851 	.nmd_config = netmap_mem_pt_guest_config,
2852 	.nmd_finalize = netmap_mem_pt_guest_finalize,
2853 	.nmd_deref = netmap_mem_pt_guest_deref,
2854 	.nmd_if_offset = netmap_mem_pt_guest_if_offset,
2855 	.nmd_delete = netmap_mem_pt_guest_delete,
2856 	.nmd_if_new = netmap_mem_pt_guest_if_new,
2857 	.nmd_if_delete = netmap_mem_pt_guest_if_delete,
2858 	.nmd_rings_create = netmap_mem_pt_guest_rings_create,
2859 	.nmd_rings_delete = netmap_mem_pt_guest_rings_delete
2860 };
2861 
2862 /* Called with nm_mem_list_lock held. */
2863 static struct netmap_mem_d *
netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)2864 netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)
2865 {
2866 	struct netmap_mem_d *mem = NULL;
2867 	struct netmap_mem_d *scan = netmap_last_mem_d;
2868 
2869 	do {
2870 		/* find ptnetmap allocator through host ID */
2871 		if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref &&
2872 			((struct netmap_mem_ptg *)(scan))->host_mem_id == mem_id) {
2873 			mem = scan;
2874 			mem->refcount++;
2875 			NM_DBG_REFC(mem, __FUNCTION__, __LINE__);
2876 			break;
2877 		}
2878 		scan = scan->next;
2879 	} while (scan != netmap_last_mem_d);
2880 
2881 	return mem;
2882 }
2883 
2884 /* Called with nm_mem_list_lock held. */
2885 static struct netmap_mem_d *
netmap_mem_pt_guest_create(nm_memid_t mem_id)2886 netmap_mem_pt_guest_create(nm_memid_t mem_id)
2887 {
2888 	struct netmap_mem_ptg *ptnmd;
2889 	int err = 0;
2890 
2891 	ptnmd = nm_os_malloc(sizeof(struct netmap_mem_ptg));
2892 	if (ptnmd == NULL) {
2893 		err = ENOMEM;
2894 		goto error;
2895 	}
2896 
2897 	ptnmd->up.ops = &netmap_mem_pt_guest_ops;
2898 	ptnmd->host_mem_id = mem_id;
2899 	ptnmd->pt_ifs = NULL;
2900 
2901 	/* Assign new id in the guest (We have the lock) */
2902 	err = nm_mem_assign_id_locked(&ptnmd->up, -1, -1);
2903 	if (err)
2904 		goto error;
2905 
2906 	ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED;
2907 	ptnmd->up.flags |= NETMAP_MEM_IO;
2908 
2909 	NMA_LOCK_INIT(&ptnmd->up);
2910 
2911 	snprintf(ptnmd->up.name, NM_MEM_NAMESZ, "%d", ptnmd->up.nm_id);
2912 
2913 
2914 	return &ptnmd->up;
2915 error:
2916 	netmap_mem_pt_guest_delete(&ptnmd->up);
2917 	return NULL;
2918 }
2919 
2920 /*
2921  * find host id in guest allocators and create guest allocator
2922  * if it is not there
2923  */
2924 static struct netmap_mem_d *
netmap_mem_pt_guest_get(nm_memid_t mem_id)2925 netmap_mem_pt_guest_get(nm_memid_t mem_id)
2926 {
2927 	struct netmap_mem_d *nmd;
2928 
2929 	NM_MTX_LOCK(nm_mem_list_lock);
2930 	nmd = netmap_mem_pt_guest_find_memid(mem_id);
2931 	if (nmd == NULL) {
2932 		nmd = netmap_mem_pt_guest_create(mem_id);
2933 	}
2934 	NM_MTX_UNLOCK(nm_mem_list_lock);
2935 
2936 	return nmd;
2937 }
2938 
2939 /*
2940  * The guest allocator can be created by ptnetmap_memdev (during the device
2941  * attach) or by ptnetmap device (ptnet), during the netmap_attach.
2942  *
2943  * The order is not important (we have different order in LINUX and FreeBSD).
2944  * The first one, creates the device, and the second one simply attaches it.
2945  */
2946 
2947 /* Called when ptnetmap_memdev is attaching, to attach a new allocator in
2948  * the guest */
2949 struct netmap_mem_d *
netmap_mem_pt_guest_attach(struct ptnetmap_memdev * ptn_dev,nm_memid_t mem_id)2950 netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t mem_id)
2951 {
2952 	struct netmap_mem_d *nmd;
2953 	struct netmap_mem_ptg *ptnmd;
2954 
2955 	nmd = netmap_mem_pt_guest_get(mem_id);
2956 
2957 	/* assign this device to the guest allocator */
2958 	if (nmd) {
2959 		ptnmd = (struct netmap_mem_ptg *)nmd;
2960 		ptnmd->ptn_dev = ptn_dev;
2961 	}
2962 
2963 	return nmd;
2964 }
2965 
2966 /* Called when ptnet device is attaching */
2967 struct netmap_mem_d *
netmap_mem_pt_guest_new(if_t ifp,unsigned int nifp_offset,unsigned int memid)2968 netmap_mem_pt_guest_new(if_t ifp,
2969 			unsigned int nifp_offset,
2970 			unsigned int memid)
2971 {
2972 	struct netmap_mem_d *nmd;
2973 
2974 	if (ifp == NULL) {
2975 		return NULL;
2976 	}
2977 
2978 	nmd = netmap_mem_pt_guest_get((nm_memid_t)memid);
2979 
2980 	if (nmd) {
2981 		netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset);
2982 	}
2983 
2984 	return nmd;
2985 }
2986 
2987 #endif /* WITH_PTNETMAP */
2988