1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * mod_hash: flexible hash table implementation.
28  *
29  * This is a reasonably fast, reasonably flexible hash table implementation
30  * which features pluggable hash algorithms to support storing arbitrary keys
31  * and values.  It is designed to handle small (< 100,000 items) amounts of
32  * data.  The hash uses chaining to resolve collisions, and does not feature a
33  * mechanism to grow the hash.  Care must be taken to pick nchains to be large
34  * enough for the application at hand, or lots of time will be wasted searching
35  * hash chains.
36  *
37  * The client of the hash is required to supply a number of items to support
38  * the various hash functions:
39  *
40  * 	- Destructor functions for the key and value being hashed.
41  *	  A destructor is responsible for freeing an object when the hash
42  *	  table is no longer storing it.  Since keys and values can be of
43  *	  arbitrary type, separate destructors for keys & values are used.
44  *	  These may be mod_hash_null_keydtor and mod_hash_null_valdtor if no
45  *	  destructor is needed for either a key or value.
46  *
47  *	- A hashing algorithm which returns a uint_t representing a hash index
48  *	  The number returned need _not_ be between 0 and nchains.  The mod_hash
49  *	  code will take care of doing that.  The second argument (after the
50  *	  key) to the hashing function is a void * that represents
51  *	  hash_alg_data-- this is provided so that the hashing algorithm can
52  *	  maintain some state across calls, or keep algorithm-specific
53  *	  constants associated with the hash table.
54  *
55  *	  A pointer-hashing and a string-hashing algorithm are supplied in
56  *	  this file.
57  *
58  *	- A key comparator (a la qsort).
59  *	  This is used when searching the hash chain.  The key comparator
60  *	  determines if two keys match.  It should follow the return value
61  *	  semantics of strcmp.
62  *
63  *	  string and pointer comparators are supplied in this file.
64  *
65  * mod_hash_create_strhash() and mod_hash_create_ptrhash() provide good
66  * examples of how to create a customized hash table.
67  *
68  * Basic hash operations:
69  *
70  *   mod_hash_create_strhash(name, nchains, dtor),
71  *	create a hash using strings as keys.
72  *	NOTE: This create a hash which automatically cleans up the string
73  *	      values it is given for keys.
74  *
75  *   mod_hash_create_ptrhash(name, nchains, dtor, key_elem_size):
76  *	create a hash using pointers as keys.
77  *
78  *   mod_hash_create_extended(name, nchains, kdtor, vdtor,
79  *			      hash_alg, hash_alg_data,
80  *			      keycmp, sleep)
81  *	create a customized hash table.
82  *
83  *   mod_hash_destroy_hash(hash):
84  *	destroy the given hash table, calling the key and value destructors
85  *	on each key-value pair stored in the hash.
86  *
87  *   mod_hash_insert(hash, key, val):
88  *	place a key, value pair into the given hash.
89  *	duplicate keys are rejected.
90  *
91  *   mod_hash_insert_reserve(hash, key, val, handle):
92  *	place a key, value pair into the given hash, using handle to indicate
93  *	the reserved storage for the pair.  (no memory allocation is needed
94  *	during a mod_hash_insert_reserve.)  duplicate keys are rejected.
95  *
96  *   mod_hash_reserve(hash, *handle):
97  *      reserve storage for a key-value pair using the memory allocation
98  *      policy of 'hash', returning the storage handle in 'handle'.
99  *
100  *   mod_hash_reserve_nosleep(hash, *handle): reserve storage for a key-value
101  *	pair ignoring the memory allocation policy of 'hash' and always without
102  *	sleep, returning the storage handle in 'handle'.
103  *
104  *   mod_hash_remove(hash, key, *val):
105  *	remove a key-value pair with key 'key' from 'hash', destroying the
106  *	stored key, and returning the value in val.
107  *
108  *   mod_hash_replace(hash, key, val)
109  * 	atomically remove an existing key-value pair from a hash, and replace
110  * 	the key and value with the ones supplied.  The removed key and value
111  * 	(if any) are destroyed.
112  *
113  *   mod_hash_destroy(hash, key):
114  *	remove a key-value pair with key 'key' from 'hash', destroying both
115  *	stored key and stored value.
116  *
117  *   mod_hash_find(hash, key, val):
118  *	find a value in the hash table corresponding to the given key.
119  *
120  *   mod_hash_find_cb(hash, key, val, found_callback)
121  *	find a value in the hash table corresponding to the given key.
122  *	If a value is found, call specified callback passing key and val to it.
123  *      The callback is called with the hash lock held.
124  *	It is intended to be used in situations where the act of locating the
125  *	data must also modify it - such as in reference counting schemes.
126  *
127  *   mod_hash_walk(hash, callback(key, elem, arg), arg)
128  * 	walks all the elements in the hashtable and invokes the callback
129  * 	function with the key/value pair for each element.  the hashtable
130  * 	is locked for readers so the callback function should not attempt
131  * 	to do any updates to the hashable.  the callback function should
132  * 	return MH_WALK_CONTINUE to continue walking the hashtable or
133  * 	MH_WALK_TERMINATE to abort the walk of the hashtable.
134  *
135  *   mod_hash_clear(hash):
136  *	clears the given hash table of entries, calling the key and value
137  *	destructors for every element in the hash.
138  */
139 
140 #include <sys/zfs_context.h>
141 #include <sys/bitmap.h>
142 #include <sys/modhash_impl.h>
143 #include <sys/sysmacros.h>
144 
145 /*
146  * MH_KEY_DESTROY()
147  * 	Invoke the key destructor.
148  */
149 #define	MH_KEY_DESTROY(hash, key) ((hash->mh_kdtor)(key))
150 
151 /*
152  * MH_VAL_DESTROY()
153  * 	Invoke the value destructor.
154  */
155 #define	MH_VAL_DESTROY(hash, val) ((hash->mh_vdtor)(val))
156 
157 /*
158  * MH_KEYCMP()
159  * 	Call the key comparator for the given hash keys.
160  */
161 #define	MH_KEYCMP(hash, key1, key2) ((hash->mh_keycmp)(key1, key2))
162 
163 /*
164  * Cache for struct mod_hash_entry
165  */
166 kmem_cache_t *mh_e_cache = NULL;
167 mod_hash_t *mh_head = NULL;
168 kmutex_t mh_head_lock;
169 
170 /*
171  * mod_hash_null_keydtor()
172  * mod_hash_null_valdtor()
173  * 	no-op key and value destructors.
174  */
175 /*ARGSUSED*/
176 void
mod_hash_null_keydtor(mod_hash_key_t key)177 mod_hash_null_keydtor(mod_hash_key_t key)
178 {
179 }
180 
181 /*ARGSUSED*/
182 void
mod_hash_null_valdtor(mod_hash_val_t val)183 mod_hash_null_valdtor(mod_hash_val_t val)
184 {
185 }
186 
187 /*
188  * mod_hash_bystr()
189  * mod_hash_strkey_cmp()
190  * mod_hash_strkey_dtor()
191  * mod_hash_strval_dtor()
192  *	Hash and key comparison routines for hashes with string keys.
193  *
194  * mod_hash_create_strhash()
195  * 	Create a hash using strings as keys
196  *
197  *	The string hashing algorithm is from the "Dragon Book" --
198  *	"Compilers: Principles, Tools & Techniques", by Aho, Sethi, Ullman
199  */
200 
201 /*ARGSUSED*/
202 uint_t
mod_hash_bystr(void * hash_data,mod_hash_key_t key)203 mod_hash_bystr(void *hash_data, mod_hash_key_t key)
204 {
205 	uint_t hash = 0;
206 	uint_t g;
207 	char *p, *k = (char *)key;
208 
209 	ASSERT(k);
210 	for (p = k; *p != '\0'; p++) {
211 		hash = (hash << 4) + *p;
212 		if ((g = (hash & 0xf0000000)) != 0) {
213 			hash ^= (g >> 24);
214 			hash ^= g;
215 		}
216 	}
217 	return (hash);
218 }
219 
220 int
mod_hash_strkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)221 mod_hash_strkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
222 {
223 	return (strcmp((char *)key1, (char *)key2));
224 }
225 
226 void
mod_hash_strkey_dtor(mod_hash_key_t key)227 mod_hash_strkey_dtor(mod_hash_key_t key)
228 {
229 	char *c = (char *)key;
230 	kmem_free(c, strlen(c) + 1);
231 }
232 
233 void
mod_hash_strval_dtor(mod_hash_val_t val)234 mod_hash_strval_dtor(mod_hash_val_t val)
235 {
236 	char *c = (char *)val;
237 	kmem_free(c, strlen(c) + 1);
238 }
239 
240 mod_hash_t *
mod_hash_create_strhash_nodtr(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t))241 mod_hash_create_strhash_nodtr(char *name, size_t nchains,
242     void (*val_dtor)(mod_hash_val_t))
243 {
244 	return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
245 	    val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
246 }
247 
248 mod_hash_t *
mod_hash_create_strhash(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t))249 mod_hash_create_strhash(char *name, size_t nchains,
250     void (*val_dtor)(mod_hash_val_t))
251 {
252 	return mod_hash_create_extended(name, nchains, mod_hash_strkey_dtor,
253 	    val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
254 }
255 
256 void
mod_hash_destroy_strhash(mod_hash_t * strhash)257 mod_hash_destroy_strhash(mod_hash_t *strhash)
258 {
259 	ASSERT(strhash);
260 	mod_hash_destroy_hash(strhash);
261 }
262 
263 
264 /*
265  * mod_hash_byptr()
266  * mod_hash_ptrkey_cmp()
267  *	Hash and key comparison routines for hashes with pointer keys.
268  *
269  * mod_hash_create_ptrhash()
270  * mod_hash_destroy_ptrhash()
271  * 	Create a hash that uses pointers as keys.  This hash algorithm
272  * 	picks an appropriate set of middle bits in the address to hash on
273  * 	based on the size of the hash table and a hint about the size of
274  * 	the items pointed at.
275  */
276 uint_t
mod_hash_byptr(void * hash_data,mod_hash_key_t key)277 mod_hash_byptr(void *hash_data, mod_hash_key_t key)
278 {
279 	uintptr_t k = (uintptr_t)key;
280 	k >>= (int)(uintptr_t)hash_data;
281 
282 	return ((uint_t)k);
283 }
284 
285 int
mod_hash_ptrkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)286 mod_hash_ptrkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
287 {
288 	uintptr_t k1 = (uintptr_t)key1;
289 	uintptr_t k2 = (uintptr_t)key2;
290 	if (k1 > k2)
291 		return (-1);
292 	else if (k1 < k2)
293 		return (1);
294 	else
295 		return (0);
296 }
297 
298 mod_hash_t *
mod_hash_create_ptrhash(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t),size_t key_elem_size)299 mod_hash_create_ptrhash(char *name, size_t nchains,
300     void (*val_dtor)(mod_hash_val_t), size_t key_elem_size)
301 {
302 	size_t rshift;
303 
304 	/*
305 	 * We want to hash on the bits in the middle of the address word
306 	 * Bits far to the right in the word have little significance, and
307 	 * are likely to all look the same (for example, an array of
308 	 * 256-byte structures will have the bottom 8 bits of address
309 	 * words the same).  So we want to right-shift each address to
310 	 * ignore the bottom bits.
311 	 *
312 	 * The high bits, which are also unused, will get taken out when
313 	 * mod_hash takes hashkey % nchains.
314 	 */
315 	rshift = highbit64(key_elem_size);
316 
317 	return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
318 	    val_dtor, mod_hash_byptr, (void *)rshift, mod_hash_ptrkey_cmp,
319 	    KM_SLEEP);
320 }
321 
322 void
mod_hash_destroy_ptrhash(mod_hash_t * hash)323 mod_hash_destroy_ptrhash(mod_hash_t *hash)
324 {
325 	ASSERT(hash);
326 	mod_hash_destroy_hash(hash);
327 }
328 
329 /*
330  * mod_hash_byid()
331  * mod_hash_idkey_cmp()
332  *	Hash and key comparison routines for hashes with 32-bit unsigned keys.
333  *
334  * mod_hash_create_idhash()
335  * mod_hash_destroy_idhash()
336  * mod_hash_iddata_gen()
337  * 	Create a hash that uses numeric keys.
338  *
339  *	The hash algorithm is documented in "Introduction to Algorithms"
340  *	(Cormen, Leiserson, Rivest);  when the hash table is created, it
341  *	attempts to find the next largest prime above the number of hash
342  *	slots.  The hash index is then this number times the key modulo
343  *	the hash size, or (key * prime) % nchains.
344  */
345 uint_t
mod_hash_byid(void * hash_data,mod_hash_key_t key)346 mod_hash_byid(void *hash_data, mod_hash_key_t key)
347 {
348 	uint_t kval = (uint_t)(uintptr_t)hash_data;
349 	return ((uint_t)(uintptr_t)key * (uint_t)kval);
350 }
351 
352 int
mod_hash_idkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)353 mod_hash_idkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
354 {
355 	return ((uint_t)(uintptr_t)key1 - (uint_t)(uintptr_t)key2);
356 }
357 
358 /*
359  * Generate the next largest prime number greater than nchains; this value
360  * is intended to be later passed in to mod_hash_create_extended() as the
361  * hash_data.
362  */
363 uint_t
mod_hash_iddata_gen(size_t nchains)364 mod_hash_iddata_gen(size_t nchains)
365 {
366 	uint_t kval, i, prime;
367 
368 	/*
369 	 * Pick the first (odd) prime greater than nchains.  Make sure kval is
370 	 * odd (so start with nchains +1 or +2 as appropriate).
371 	 */
372 	kval = (nchains % 2 == 0) ? nchains + 1 : nchains + 2;
373 
374 	for (;;) {
375 		prime = 1;
376 		for (i = 3; i * i <= kval; i += 2) {
377 			if (kval % i == 0)
378 				prime = 0;
379 		}
380 		if (prime == 1)
381 			break;
382 		kval += 2;
383 	}
384 	return (kval);
385 }
386 
387 mod_hash_t *
mod_hash_create_idhash(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t))388 mod_hash_create_idhash(char *name, size_t nchains,
389     void (*val_dtor)(mod_hash_val_t))
390 {
391 	uint_t kval = mod_hash_iddata_gen(nchains);
392 
393 	return (mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
394 	    val_dtor, mod_hash_byid, (void *)(uintptr_t)kval,
395 	    mod_hash_idkey_cmp, KM_SLEEP));
396 }
397 
398 void
mod_hash_destroy_idhash(mod_hash_t * hash)399 mod_hash_destroy_idhash(mod_hash_t *hash)
400 {
401 	ASSERT(hash);
402 	mod_hash_destroy_hash(hash);
403 }
404 
405 void
mod_hash_fini(void)406 mod_hash_fini(void)
407 {
408 	mutex_destroy(&mh_head_lock);
409 
410 	if (mh_e_cache) {
411 		kmem_cache_destroy(mh_e_cache);
412 		mh_e_cache = NULL;
413 	}
414 }
415 
416 /*
417  * mod_hash_init()
418  * 	sets up globals, etc for mod_hash_*
419  */
420 void
mod_hash_init(void)421 mod_hash_init(void)
422 {
423 	ASSERT(mh_e_cache == NULL);
424 	mh_e_cache = kmem_cache_create("mod_hash_entries",
425 	    sizeof (struct mod_hash_entry), 0, NULL, NULL, NULL, NULL,
426 	    NULL, 0);
427 
428 	mutex_init(&mh_head_lock, NULL, MUTEX_DEFAULT, NULL);
429 }
430 
431 /*
432  * mod_hash_create_extended()
433  * 	The full-blown hash creation function.
434  *
435  * notes:
436  * 	nchains		- how many hash slots to create.  More hash slots will
437  *			  result in shorter hash chains, but will consume
438  *			  slightly more memory up front.
439  *	sleep		- should be KM_SLEEP or KM_NOSLEEP, to indicate whether
440  *			  to sleep for memory, or fail in low-memory conditions.
441  *
442  * 	Fails only if KM_NOSLEEP was specified, and no memory was available.
443  */
444 mod_hash_t *
mod_hash_create_extended(char * hname,size_t nchains,void (* kdtor)(mod_hash_key_t),void (* vdtor)(mod_hash_val_t),uint_t (* hash_alg)(void *,mod_hash_key_t),void * hash_alg_data,int (* keycmp)(mod_hash_key_t,mod_hash_key_t),int sleep)445 mod_hash_create_extended(
446     char *hname,			/* descriptive name for hash */
447     size_t nchains,			/* number of hash slots */
448     void (*kdtor)(mod_hash_key_t),	/* key destructor */
449     void (*vdtor)(mod_hash_val_t),	/* value destructor */
450     uint_t (*hash_alg)(void *, mod_hash_key_t), /* hash algorithm */
451     void *hash_alg_data,		/* pass-thru arg for hash_alg */
452     int (*keycmp)(mod_hash_key_t, mod_hash_key_t), /* key comparator */
453     int sleep)				/* whether to sleep for mem */
454 {
455 	mod_hash_t *mod_hash;
456 	size_t size;
457 	ASSERT(hname && keycmp && hash_alg && vdtor && kdtor);
458 
459 	if ((mod_hash = kmem_zalloc(MH_SIZE(nchains), sleep)) == NULL)
460 		return (NULL);
461 
462 	size = strlen(hname) + 1;
463 	mod_hash->mh_name = kmem_alloc(size, sleep);
464 	if (mod_hash->mh_name == NULL) {
465 		kmem_free(mod_hash, MH_SIZE(nchains));
466 		return (NULL);
467 	}
468 	(void) strlcpy(mod_hash->mh_name, hname, size);
469 
470 	rw_init(&mod_hash->mh_contents, NULL, RW_DEFAULT, NULL);
471 	mod_hash->mh_sleep = sleep;
472 	mod_hash->mh_nchains = nchains;
473 	mod_hash->mh_kdtor = kdtor;
474 	mod_hash->mh_vdtor = vdtor;
475 	mod_hash->mh_hashalg = hash_alg;
476 	mod_hash->mh_hashalg_data = hash_alg_data;
477 	mod_hash->mh_keycmp = keycmp;
478 
479 	/*
480 	 * Link the hash up on the list of hashes
481 	 */
482 	mutex_enter(&mh_head_lock);
483 	mod_hash->mh_next = mh_head;
484 	mh_head = mod_hash;
485 	mutex_exit(&mh_head_lock);
486 
487 	return (mod_hash);
488 }
489 
490 /*
491  * mod_hash_destroy_hash()
492  * 	destroy a hash table, destroying all of its stored keys and values
493  * 	as well.
494  */
495 void
mod_hash_destroy_hash(mod_hash_t * hash)496 mod_hash_destroy_hash(mod_hash_t *hash)
497 {
498 	mod_hash_t *mhp, *mhpp;
499 
500 	mutex_enter(&mh_head_lock);
501 	/*
502 	 * Remove the hash from the hash list
503 	 */
504 	if (hash == mh_head) {		/* removing 1st list elem */
505 		mh_head = mh_head->mh_next;
506 	} else {
507 		/*
508 		 * mhpp can start out NULL since we know the 1st elem isn't the
509 		 * droid we're looking for.
510 		 */
511 		mhpp = NULL;
512 		for (mhp = mh_head; mhp != NULL; mhp = mhp->mh_next) {
513 			if (mhp == hash) {
514 				mhpp->mh_next = mhp->mh_next;
515 				break;
516 			}
517 			mhpp = mhp;
518 		}
519 	}
520 	mutex_exit(&mh_head_lock);
521 
522 	/*
523 	 * Clean out keys and values.
524 	 */
525 	mod_hash_clear(hash);
526 
527 	rw_destroy(&hash->mh_contents);
528 	kmem_free(hash->mh_name, strlen(hash->mh_name) + 1);
529 	kmem_free(hash, MH_SIZE(hash->mh_nchains));
530 }
531 
532 /*
533  * i_mod_hash()
534  * 	Call the hashing algorithm for this hash table, with the given key.
535  */
536 uint_t
i_mod_hash(mod_hash_t * hash,mod_hash_key_t key)537 i_mod_hash(mod_hash_t *hash, mod_hash_key_t key)
538 {
539 	uint_t h;
540 	/*
541 	 * Prevent div by 0 problems;
542 	 * Also a nice shortcut when using a hash as a list
543 	 */
544 	if (hash->mh_nchains == 1)
545 		return (0);
546 
547 	h = (hash->mh_hashalg)(hash->mh_hashalg_data, key);
548 	return (h % (hash->mh_nchains - 1));
549 }
550 
551 /*
552  * i_mod_hash_insert_nosync()
553  * mod_hash_insert()
554  * mod_hash_insert_reserve()
555  * 	insert 'val' into the hash table, using 'key' as its key.  If 'key' is
556  * 	already a key in the hash, an error will be returned, and the key-val
557  * 	pair will not be inserted.  i_mod_hash_insert_nosync() supports a simple
558  * 	handle abstraction, allowing hash entry allocation to be separated from
559  * 	the hash insertion.  this abstraction allows simple use of the mod_hash
560  * 	structure in situations where mod_hash_insert() with a KM_SLEEP
561  * 	allocation policy would otherwise be unsafe.
562  */
563 int
i_mod_hash_insert_nosync(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val,mod_hash_hndl_t handle)564 i_mod_hash_insert_nosync(mod_hash_t *hash, mod_hash_key_t key,
565     mod_hash_val_t val, mod_hash_hndl_t handle)
566 {
567 	uint_t hashidx;
568 	struct mod_hash_entry *entry;
569 
570 	ASSERT(hash);
571 
572 	/*
573 	 * If we've not been given reserved storage, allocate storage directly,
574 	 * using the hash's allocation policy.
575 	 */
576 	if (handle == (mod_hash_hndl_t)0) {
577 		entry = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
578 		if (entry == NULL) {
579 			hash->mh_stat.mhs_nomem++;
580 			return (MH_ERR_NOMEM);
581 		}
582 	} else {
583 		entry = (struct mod_hash_entry *)handle;
584 	}
585 
586 	hashidx = i_mod_hash(hash, key);
587 	entry->mhe_key = key;
588 	entry->mhe_val = val;
589 	entry->mhe_next = hash->mh_entries[hashidx];
590 
591 	hash->mh_entries[hashidx] = entry;
592 	hash->mh_stat.mhs_nelems++;
593 
594 	return (0);
595 }
596 
597 int
mod_hash_insert(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val)598 mod_hash_insert(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
599 {
600 	int res;
601 	mod_hash_val_t v;
602 
603 	rw_enter(&hash->mh_contents, RW_WRITER);
604 
605 	/*
606 	 * Disallow duplicate keys in the hash
607 	 */
608 	if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
609 		rw_exit(&hash->mh_contents);
610 		hash->mh_stat.mhs_coll++;
611 		return (MH_ERR_DUPLICATE);
612 	}
613 
614 	res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
615 	rw_exit(&hash->mh_contents);
616 
617 	return (res);
618 }
619 
620 int
mod_hash_insert_reserve(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val,mod_hash_hndl_t handle)621 mod_hash_insert_reserve(mod_hash_t *hash, mod_hash_key_t key,
622     mod_hash_val_t val, mod_hash_hndl_t handle)
623 {
624 	int res;
625 	mod_hash_val_t v;
626 
627 	rw_enter(&hash->mh_contents, RW_WRITER);
628 
629 	/*
630 	 * Disallow duplicate keys in the hash
631 	 */
632 	if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
633 		rw_exit(&hash->mh_contents);
634 		hash->mh_stat.mhs_coll++;
635 		return (MH_ERR_DUPLICATE);
636 	}
637 	res = i_mod_hash_insert_nosync(hash, key, val, handle);
638 	rw_exit(&hash->mh_contents);
639 
640 	return (res);
641 }
642 
643 /*
644  * mod_hash_reserve()
645  * mod_hash_reserve_nosleep()
646  * mod_hash_cancel()
647  *   Make or cancel a mod_hash_entry_t reservation.  Reservations are used in
648  *   mod_hash_insert_reserve() above.
649  */
650 int
mod_hash_reserve(mod_hash_t * hash,mod_hash_hndl_t * handlep)651 mod_hash_reserve(mod_hash_t *hash, mod_hash_hndl_t *handlep)
652 {
653 	*handlep = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
654 	if (*handlep == NULL) {
655 		hash->mh_stat.mhs_nomem++;
656 		return (MH_ERR_NOMEM);
657 	}
658 
659 	return (0);
660 }
661 
662 int
mod_hash_reserve_nosleep(mod_hash_t * hash,mod_hash_hndl_t * handlep)663 mod_hash_reserve_nosleep(mod_hash_t *hash, mod_hash_hndl_t *handlep)
664 {
665 	*handlep = kmem_cache_alloc(mh_e_cache, KM_NOSLEEP);
666 	if (*handlep == NULL) {
667 		hash->mh_stat.mhs_nomem++;
668 		return (MH_ERR_NOMEM);
669 	}
670 
671 	return (0);
672 
673 }
674 
675 /*ARGSUSED*/
676 void
mod_hash_cancel(mod_hash_t * hash,mod_hash_hndl_t * handlep)677 mod_hash_cancel(mod_hash_t *hash, mod_hash_hndl_t *handlep)
678 {
679 	kmem_cache_free(mh_e_cache, *handlep);
680 	*handlep = (mod_hash_hndl_t)0;
681 }
682 
683 /*
684  * i_mod_hash_remove_nosync()
685  * mod_hash_remove()
686  * 	Remove an element from the hash table.
687  */
688 int
i_mod_hash_remove_nosync(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)689 i_mod_hash_remove_nosync(mod_hash_t *hash, mod_hash_key_t key,
690     mod_hash_val_t *val)
691 {
692 	int hashidx;
693 	struct mod_hash_entry *e, *ep;
694 
695 	hashidx = i_mod_hash(hash, key);
696 	ep = NULL; /* e's parent */
697 
698 	for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
699 		if (MH_KEYCMP(hash, e->mhe_key, key) == 0)
700 			break;
701 		ep = e;
702 	}
703 
704 	if (e == NULL) {	/* not found */
705 		return (MH_ERR_NOTFOUND);
706 	}
707 
708 	if (ep == NULL) 	/* special case 1st element in bucket */
709 		hash->mh_entries[hashidx] = e->mhe_next;
710 	else
711 		ep->mhe_next = e->mhe_next;
712 
713 	/*
714 	 * Clean up resources used by the node's key.
715 	 */
716 	MH_KEY_DESTROY(hash, e->mhe_key);
717 
718 	*val = e->mhe_val;
719 	kmem_cache_free(mh_e_cache, e);
720 	hash->mh_stat.mhs_nelems--;
721 
722 	return (0);
723 }
724 
725 int
mod_hash_remove(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)726 mod_hash_remove(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
727 {
728 	int res;
729 
730 	rw_enter(&hash->mh_contents, RW_WRITER);
731 	res = i_mod_hash_remove_nosync(hash, key, val);
732 	rw_exit(&hash->mh_contents);
733 
734 	return (res);
735 }
736 
737 /*
738  * mod_hash_replace()
739  * 	atomically remove an existing key-value pair from a hash, and replace
740  * 	the key and value with the ones supplied.  The removed key and value
741  * 	(if any) are destroyed.
742  */
743 int
mod_hash_replace(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val)744 mod_hash_replace(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
745 {
746 	int res;
747 	mod_hash_val_t v;
748 
749 	rw_enter(&hash->mh_contents, RW_WRITER);
750 
751 	if (i_mod_hash_remove_nosync(hash, key, &v) == 0) {
752 		/*
753 		 * mod_hash_remove() takes care of freeing up the key resources.
754 		 */
755 		MH_VAL_DESTROY(hash, v);
756 	}
757 	res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
758 
759 	rw_exit(&hash->mh_contents);
760 
761 	return (res);
762 }
763 
764 /*
765  * mod_hash_destroy()
766  * 	Remove an element from the hash table matching 'key', and destroy it.
767  */
768 int
mod_hash_destroy(mod_hash_t * hash,mod_hash_key_t key)769 mod_hash_destroy(mod_hash_t *hash, mod_hash_key_t key)
770 {
771 	mod_hash_val_t val;
772 	int rv;
773 
774 	rw_enter(&hash->mh_contents, RW_WRITER);
775 
776 	if ((rv = i_mod_hash_remove_nosync(hash, key, &val)) == 0) {
777 		/*
778 		 * mod_hash_remove() takes care of freeing up the key resources.
779 		 */
780 		MH_VAL_DESTROY(hash, val);
781 	}
782 
783 	rw_exit(&hash->mh_contents);
784 	return (rv);
785 }
786 
787 /*
788  * i_mod_hash_find_nosync()
789  * mod_hash_find()
790  * 	Find a value in the hash table corresponding to the given key.
791  */
792 int
i_mod_hash_find_nosync(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)793 i_mod_hash_find_nosync(mod_hash_t *hash, mod_hash_key_t key,
794     mod_hash_val_t *val)
795 {
796 	uint_t hashidx;
797 	struct mod_hash_entry *e;
798 
799 	hashidx = i_mod_hash(hash, key);
800 
801 	for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
802 		if (MH_KEYCMP(hash, e->mhe_key, key) == 0) {
803 			*val = e->mhe_val;
804 			hash->mh_stat.mhs_hit++;
805 			return (0);
806 		}
807 	}
808 	hash->mh_stat.mhs_miss++;
809 	return (MH_ERR_NOTFOUND);
810 }
811 
812 int
mod_hash_find(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)813 mod_hash_find(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
814 {
815 	int res;
816 
817 	rw_enter(&hash->mh_contents, RW_READER);
818 	res = i_mod_hash_find_nosync(hash, key, val);
819 	rw_exit(&hash->mh_contents);
820 
821 	return (res);
822 }
823 
824 int
mod_hash_find_cb(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val,void (* find_cb)(mod_hash_key_t,mod_hash_val_t))825 mod_hash_find_cb(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
826     void (*find_cb)(mod_hash_key_t, mod_hash_val_t))
827 {
828 	int res;
829 
830 	rw_enter(&hash->mh_contents, RW_READER);
831 	res = i_mod_hash_find_nosync(hash, key, val);
832 	if (res == 0) {
833 		find_cb(key, *val);
834 	}
835 	rw_exit(&hash->mh_contents);
836 
837 	return (res);
838 }
839 
840 int
mod_hash_find_cb_rval(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val,int (* find_cb)(mod_hash_key_t,mod_hash_val_t),int * cb_rval)841 mod_hash_find_cb_rval(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
842     int (*find_cb)(mod_hash_key_t, mod_hash_val_t), int *cb_rval)
843 {
844 	int res;
845 
846 	rw_enter(&hash->mh_contents, RW_READER);
847 	res = i_mod_hash_find_nosync(hash, key, val);
848 	if (res == 0) {
849 		*cb_rval = find_cb(key, *val);
850 	}
851 	rw_exit(&hash->mh_contents);
852 
853 	return (res);
854 }
855 
856 void
i_mod_hash_walk_nosync(mod_hash_t * hash,uint_t (* callback)(mod_hash_key_t,mod_hash_val_t *,void *),void * arg)857 i_mod_hash_walk_nosync(mod_hash_t *hash,
858     uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
859 {
860 	struct mod_hash_entry	*e;
861 	uint_t			hashidx;
862 	int			res = MH_WALK_CONTINUE;
863 
864 	for (hashidx = 0;
865 	    (hashidx < (hash->mh_nchains - 1)) && (res == MH_WALK_CONTINUE);
866 	    hashidx++) {
867 		e = hash->mh_entries[hashidx];
868 		while ((e != NULL) && (res == MH_WALK_CONTINUE)) {
869 			res = callback(e->mhe_key, e->mhe_val, arg);
870 			e = e->mhe_next;
871 		}
872 	}
873 }
874 
875 /*
876  * mod_hash_walk()
877  * 	Walks all the elements in the hashtable and invokes the callback
878  * 	function with the key/value pair for each element.  The hashtable
879  * 	is locked for readers so the callback function should not attempt
880  * 	to do any updates to the hashable.  The callback function should
881  * 	return MH_WALK_CONTINUE to continue walking the hashtable or
882  * 	MH_WALK_TERMINATE to abort the walk of the hashtable.
883  */
884 void
mod_hash_walk(mod_hash_t * hash,uint_t (* callback)(mod_hash_key_t,mod_hash_val_t *,void *),void * arg)885 mod_hash_walk(mod_hash_t *hash,
886     uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
887 {
888 	rw_enter(&hash->mh_contents, RW_READER);
889 	i_mod_hash_walk_nosync(hash, callback, arg);
890 	rw_exit(&hash->mh_contents);
891 }
892 
893 
894 /*
895  * i_mod_hash_clear_nosync()
896  * mod_hash_clear()
897  *	Clears the given hash table by calling the destructor of every hash
898  *	element and freeing up all mod_hash_entry's.
899  */
900 void
i_mod_hash_clear_nosync(mod_hash_t * hash)901 i_mod_hash_clear_nosync(mod_hash_t *hash)
902 {
903 	int i;
904 	struct mod_hash_entry *e, *old_e;
905 
906 	for (i = 0; i < hash->mh_nchains; i++) {
907 		e = hash->mh_entries[i];
908 		while (e != NULL) {
909 			MH_KEY_DESTROY(hash, e->mhe_key);
910 			MH_VAL_DESTROY(hash, e->mhe_val);
911 			old_e = e;
912 			e = e->mhe_next;
913 			kmem_cache_free(mh_e_cache, old_e);
914 		}
915 		hash->mh_entries[i] = NULL;
916 	}
917 	hash->mh_stat.mhs_nelems = 0;
918 }
919 
920 void
mod_hash_clear(mod_hash_t * hash)921 mod_hash_clear(mod_hash_t *hash)
922 {
923 	ASSERT(hash);
924 	rw_enter(&hash->mh_contents, RW_WRITER);
925 	i_mod_hash_clear_nosync(hash);
926 	rw_exit(&hash->mh_contents);
927 }
928