1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * mod_hash: flexible hash table implementation.
28 *
29 * This is a reasonably fast, reasonably flexible hash table implementation
30 * which features pluggable hash algorithms to support storing arbitrary keys
31 * and values. It is designed to handle small (< 100,000 items) amounts of
32 * data. The hash uses chaining to resolve collisions, and does not feature a
33 * mechanism to grow the hash. Care must be taken to pick nchains to be large
34 * enough for the application at hand, or lots of time will be wasted searching
35 * hash chains.
36 *
37 * The client of the hash is required to supply a number of items to support
38 * the various hash functions:
39 *
40 * - Destructor functions for the key and value being hashed.
41 * A destructor is responsible for freeing an object when the hash
42 * table is no longer storing it. Since keys and values can be of
43 * arbitrary type, separate destructors for keys & values are used.
44 * These may be mod_hash_null_keydtor and mod_hash_null_valdtor if no
45 * destructor is needed for either a key or value.
46 *
47 * - A hashing algorithm which returns a uint_t representing a hash index
48 * The number returned need _not_ be between 0 and nchains. The mod_hash
49 * code will take care of doing that. The second argument (after the
50 * key) to the hashing function is a void * that represents
51 * hash_alg_data-- this is provided so that the hashing algorithm can
52 * maintain some state across calls, or keep algorithm-specific
53 * constants associated with the hash table.
54 *
55 * A pointer-hashing and a string-hashing algorithm are supplied in
56 * this file.
57 *
58 * - A key comparator (a la qsort).
59 * This is used when searching the hash chain. The key comparator
60 * determines if two keys match. It should follow the return value
61 * semantics of strcmp.
62 *
63 * string and pointer comparators are supplied in this file.
64 *
65 * mod_hash_create_strhash() and mod_hash_create_ptrhash() provide good
66 * examples of how to create a customized hash table.
67 *
68 * Basic hash operations:
69 *
70 * mod_hash_create_strhash(name, nchains, dtor),
71 * create a hash using strings as keys.
72 * NOTE: This create a hash which automatically cleans up the string
73 * values it is given for keys.
74 *
75 * mod_hash_create_ptrhash(name, nchains, dtor, key_elem_size):
76 * create a hash using pointers as keys.
77 *
78 * mod_hash_create_extended(name, nchains, kdtor, vdtor,
79 * hash_alg, hash_alg_data,
80 * keycmp, sleep)
81 * create a customized hash table.
82 *
83 * mod_hash_destroy_hash(hash):
84 * destroy the given hash table, calling the key and value destructors
85 * on each key-value pair stored in the hash.
86 *
87 * mod_hash_insert(hash, key, val):
88 * place a key, value pair into the given hash.
89 * duplicate keys are rejected.
90 *
91 * mod_hash_insert_reserve(hash, key, val, handle):
92 * place a key, value pair into the given hash, using handle to indicate
93 * the reserved storage for the pair. (no memory allocation is needed
94 * during a mod_hash_insert_reserve.) duplicate keys are rejected.
95 *
96 * mod_hash_reserve(hash, *handle):
97 * reserve storage for a key-value pair using the memory allocation
98 * policy of 'hash', returning the storage handle in 'handle'.
99 *
100 * mod_hash_reserve_nosleep(hash, *handle): reserve storage for a key-value
101 * pair ignoring the memory allocation policy of 'hash' and always without
102 * sleep, returning the storage handle in 'handle'.
103 *
104 * mod_hash_remove(hash, key, *val):
105 * remove a key-value pair with key 'key' from 'hash', destroying the
106 * stored key, and returning the value in val.
107 *
108 * mod_hash_replace(hash, key, val)
109 * atomically remove an existing key-value pair from a hash, and replace
110 * the key and value with the ones supplied. The removed key and value
111 * (if any) are destroyed.
112 *
113 * mod_hash_destroy(hash, key):
114 * remove a key-value pair with key 'key' from 'hash', destroying both
115 * stored key and stored value.
116 *
117 * mod_hash_find(hash, key, val):
118 * find a value in the hash table corresponding to the given key.
119 *
120 * mod_hash_find_cb(hash, key, val, found_callback)
121 * find a value in the hash table corresponding to the given key.
122 * If a value is found, call specified callback passing key and val to it.
123 * The callback is called with the hash lock held.
124 * It is intended to be used in situations where the act of locating the
125 * data must also modify it - such as in reference counting schemes.
126 *
127 * mod_hash_walk(hash, callback(key, elem, arg), arg)
128 * walks all the elements in the hashtable and invokes the callback
129 * function with the key/value pair for each element. the hashtable
130 * is locked for readers so the callback function should not attempt
131 * to do any updates to the hashable. the callback function should
132 * return MH_WALK_CONTINUE to continue walking the hashtable or
133 * MH_WALK_TERMINATE to abort the walk of the hashtable.
134 *
135 * mod_hash_clear(hash):
136 * clears the given hash table of entries, calling the key and value
137 * destructors for every element in the hash.
138 */
139
140 #include <sys/zfs_context.h>
141 #include <sys/bitmap.h>
142 #include <sys/modhash_impl.h>
143 #include <sys/sysmacros.h>
144
145 /*
146 * MH_KEY_DESTROY()
147 * Invoke the key destructor.
148 */
149 #define MH_KEY_DESTROY(hash, key) ((hash->mh_kdtor)(key))
150
151 /*
152 * MH_VAL_DESTROY()
153 * Invoke the value destructor.
154 */
155 #define MH_VAL_DESTROY(hash, val) ((hash->mh_vdtor)(val))
156
157 /*
158 * MH_KEYCMP()
159 * Call the key comparator for the given hash keys.
160 */
161 #define MH_KEYCMP(hash, key1, key2) ((hash->mh_keycmp)(key1, key2))
162
163 /*
164 * Cache for struct mod_hash_entry
165 */
166 kmem_cache_t *mh_e_cache = NULL;
167 mod_hash_t *mh_head = NULL;
168 kmutex_t mh_head_lock;
169
170 /*
171 * mod_hash_null_keydtor()
172 * mod_hash_null_valdtor()
173 * no-op key and value destructors.
174 */
175 /*ARGSUSED*/
176 void
mod_hash_null_keydtor(mod_hash_key_t key)177 mod_hash_null_keydtor(mod_hash_key_t key)
178 {
179 }
180
181 /*ARGSUSED*/
182 void
mod_hash_null_valdtor(mod_hash_val_t val)183 mod_hash_null_valdtor(mod_hash_val_t val)
184 {
185 }
186
187 /*
188 * mod_hash_bystr()
189 * mod_hash_strkey_cmp()
190 * mod_hash_strkey_dtor()
191 * mod_hash_strval_dtor()
192 * Hash and key comparison routines for hashes with string keys.
193 *
194 * mod_hash_create_strhash()
195 * Create a hash using strings as keys
196 *
197 * The string hashing algorithm is from the "Dragon Book" --
198 * "Compilers: Principles, Tools & Techniques", by Aho, Sethi, Ullman
199 */
200
201 /*ARGSUSED*/
202 uint_t
mod_hash_bystr(void * hash_data,mod_hash_key_t key)203 mod_hash_bystr(void *hash_data, mod_hash_key_t key)
204 {
205 uint_t hash = 0;
206 uint_t g;
207 char *p, *k = (char *)key;
208
209 ASSERT(k);
210 for (p = k; *p != '\0'; p++) {
211 hash = (hash << 4) + *p;
212 if ((g = (hash & 0xf0000000)) != 0) {
213 hash ^= (g >> 24);
214 hash ^= g;
215 }
216 }
217 return (hash);
218 }
219
220 int
mod_hash_strkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)221 mod_hash_strkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
222 {
223 return (strcmp((char *)key1, (char *)key2));
224 }
225
226 void
mod_hash_strkey_dtor(mod_hash_key_t key)227 mod_hash_strkey_dtor(mod_hash_key_t key)
228 {
229 char *c = (char *)key;
230 kmem_free(c, strlen(c) + 1);
231 }
232
233 void
mod_hash_strval_dtor(mod_hash_val_t val)234 mod_hash_strval_dtor(mod_hash_val_t val)
235 {
236 char *c = (char *)val;
237 kmem_free(c, strlen(c) + 1);
238 }
239
240 mod_hash_t *
mod_hash_create_strhash_nodtr(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t))241 mod_hash_create_strhash_nodtr(char *name, size_t nchains,
242 void (*val_dtor)(mod_hash_val_t))
243 {
244 return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
245 val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
246 }
247
248 mod_hash_t *
mod_hash_create_strhash(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t))249 mod_hash_create_strhash(char *name, size_t nchains,
250 void (*val_dtor)(mod_hash_val_t))
251 {
252 return mod_hash_create_extended(name, nchains, mod_hash_strkey_dtor,
253 val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
254 }
255
256 void
mod_hash_destroy_strhash(mod_hash_t * strhash)257 mod_hash_destroy_strhash(mod_hash_t *strhash)
258 {
259 ASSERT(strhash);
260 mod_hash_destroy_hash(strhash);
261 }
262
263
264 /*
265 * mod_hash_byptr()
266 * mod_hash_ptrkey_cmp()
267 * Hash and key comparison routines for hashes with pointer keys.
268 *
269 * mod_hash_create_ptrhash()
270 * mod_hash_destroy_ptrhash()
271 * Create a hash that uses pointers as keys. This hash algorithm
272 * picks an appropriate set of middle bits in the address to hash on
273 * based on the size of the hash table and a hint about the size of
274 * the items pointed at.
275 */
276 uint_t
mod_hash_byptr(void * hash_data,mod_hash_key_t key)277 mod_hash_byptr(void *hash_data, mod_hash_key_t key)
278 {
279 uintptr_t k = (uintptr_t)key;
280 k >>= (int)(uintptr_t)hash_data;
281
282 return ((uint_t)k);
283 }
284
285 int
mod_hash_ptrkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)286 mod_hash_ptrkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
287 {
288 uintptr_t k1 = (uintptr_t)key1;
289 uintptr_t k2 = (uintptr_t)key2;
290 if (k1 > k2)
291 return (-1);
292 else if (k1 < k2)
293 return (1);
294 else
295 return (0);
296 }
297
298 mod_hash_t *
mod_hash_create_ptrhash(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t),size_t key_elem_size)299 mod_hash_create_ptrhash(char *name, size_t nchains,
300 void (*val_dtor)(mod_hash_val_t), size_t key_elem_size)
301 {
302 size_t rshift;
303
304 /*
305 * We want to hash on the bits in the middle of the address word
306 * Bits far to the right in the word have little significance, and
307 * are likely to all look the same (for example, an array of
308 * 256-byte structures will have the bottom 8 bits of address
309 * words the same). So we want to right-shift each address to
310 * ignore the bottom bits.
311 *
312 * The high bits, which are also unused, will get taken out when
313 * mod_hash takes hashkey % nchains.
314 */
315 rshift = highbit64(key_elem_size);
316
317 return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
318 val_dtor, mod_hash_byptr, (void *)rshift, mod_hash_ptrkey_cmp,
319 KM_SLEEP);
320 }
321
322 void
mod_hash_destroy_ptrhash(mod_hash_t * hash)323 mod_hash_destroy_ptrhash(mod_hash_t *hash)
324 {
325 ASSERT(hash);
326 mod_hash_destroy_hash(hash);
327 }
328
329 /*
330 * mod_hash_byid()
331 * mod_hash_idkey_cmp()
332 * Hash and key comparison routines for hashes with 32-bit unsigned keys.
333 *
334 * mod_hash_create_idhash()
335 * mod_hash_destroy_idhash()
336 * mod_hash_iddata_gen()
337 * Create a hash that uses numeric keys.
338 *
339 * The hash algorithm is documented in "Introduction to Algorithms"
340 * (Cormen, Leiserson, Rivest); when the hash table is created, it
341 * attempts to find the next largest prime above the number of hash
342 * slots. The hash index is then this number times the key modulo
343 * the hash size, or (key * prime) % nchains.
344 */
345 uint_t
mod_hash_byid(void * hash_data,mod_hash_key_t key)346 mod_hash_byid(void *hash_data, mod_hash_key_t key)
347 {
348 uint_t kval = (uint_t)(uintptr_t)hash_data;
349 return ((uint_t)(uintptr_t)key * (uint_t)kval);
350 }
351
352 int
mod_hash_idkey_cmp(mod_hash_key_t key1,mod_hash_key_t key2)353 mod_hash_idkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
354 {
355 return ((uint_t)(uintptr_t)key1 - (uint_t)(uintptr_t)key2);
356 }
357
358 /*
359 * Generate the next largest prime number greater than nchains; this value
360 * is intended to be later passed in to mod_hash_create_extended() as the
361 * hash_data.
362 */
363 uint_t
mod_hash_iddata_gen(size_t nchains)364 mod_hash_iddata_gen(size_t nchains)
365 {
366 uint_t kval, i, prime;
367
368 /*
369 * Pick the first (odd) prime greater than nchains. Make sure kval is
370 * odd (so start with nchains +1 or +2 as appropriate).
371 */
372 kval = (nchains % 2 == 0) ? nchains + 1 : nchains + 2;
373
374 for (;;) {
375 prime = 1;
376 for (i = 3; i * i <= kval; i += 2) {
377 if (kval % i == 0)
378 prime = 0;
379 }
380 if (prime == 1)
381 break;
382 kval += 2;
383 }
384 return (kval);
385 }
386
387 mod_hash_t *
mod_hash_create_idhash(char * name,size_t nchains,void (* val_dtor)(mod_hash_val_t))388 mod_hash_create_idhash(char *name, size_t nchains,
389 void (*val_dtor)(mod_hash_val_t))
390 {
391 uint_t kval = mod_hash_iddata_gen(nchains);
392
393 return (mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
394 val_dtor, mod_hash_byid, (void *)(uintptr_t)kval,
395 mod_hash_idkey_cmp, KM_SLEEP));
396 }
397
398 void
mod_hash_destroy_idhash(mod_hash_t * hash)399 mod_hash_destroy_idhash(mod_hash_t *hash)
400 {
401 ASSERT(hash);
402 mod_hash_destroy_hash(hash);
403 }
404
405 void
mod_hash_fini(void)406 mod_hash_fini(void)
407 {
408 mutex_destroy(&mh_head_lock);
409
410 if (mh_e_cache) {
411 kmem_cache_destroy(mh_e_cache);
412 mh_e_cache = NULL;
413 }
414 }
415
416 /*
417 * mod_hash_init()
418 * sets up globals, etc for mod_hash_*
419 */
420 void
mod_hash_init(void)421 mod_hash_init(void)
422 {
423 ASSERT(mh_e_cache == NULL);
424 mh_e_cache = kmem_cache_create("mod_hash_entries",
425 sizeof (struct mod_hash_entry), 0, NULL, NULL, NULL, NULL,
426 NULL, 0);
427
428 mutex_init(&mh_head_lock, NULL, MUTEX_DEFAULT, NULL);
429 }
430
431 /*
432 * mod_hash_create_extended()
433 * The full-blown hash creation function.
434 *
435 * notes:
436 * nchains - how many hash slots to create. More hash slots will
437 * result in shorter hash chains, but will consume
438 * slightly more memory up front.
439 * sleep - should be KM_SLEEP or KM_NOSLEEP, to indicate whether
440 * to sleep for memory, or fail in low-memory conditions.
441 *
442 * Fails only if KM_NOSLEEP was specified, and no memory was available.
443 */
444 mod_hash_t *
mod_hash_create_extended(char * hname,size_t nchains,void (* kdtor)(mod_hash_key_t),void (* vdtor)(mod_hash_val_t),uint_t (* hash_alg)(void *,mod_hash_key_t),void * hash_alg_data,int (* keycmp)(mod_hash_key_t,mod_hash_key_t),int sleep)445 mod_hash_create_extended(
446 char *hname, /* descriptive name for hash */
447 size_t nchains, /* number of hash slots */
448 void (*kdtor)(mod_hash_key_t), /* key destructor */
449 void (*vdtor)(mod_hash_val_t), /* value destructor */
450 uint_t (*hash_alg)(void *, mod_hash_key_t), /* hash algorithm */
451 void *hash_alg_data, /* pass-thru arg for hash_alg */
452 int (*keycmp)(mod_hash_key_t, mod_hash_key_t), /* key comparator */
453 int sleep) /* whether to sleep for mem */
454 {
455 mod_hash_t *mod_hash;
456 size_t size;
457 ASSERT(hname && keycmp && hash_alg && vdtor && kdtor);
458
459 if ((mod_hash = kmem_zalloc(MH_SIZE(nchains), sleep)) == NULL)
460 return (NULL);
461
462 size = strlen(hname) + 1;
463 mod_hash->mh_name = kmem_alloc(size, sleep);
464 if (mod_hash->mh_name == NULL) {
465 kmem_free(mod_hash, MH_SIZE(nchains));
466 return (NULL);
467 }
468 (void) strlcpy(mod_hash->mh_name, hname, size);
469
470 rw_init(&mod_hash->mh_contents, NULL, RW_DEFAULT, NULL);
471 mod_hash->mh_sleep = sleep;
472 mod_hash->mh_nchains = nchains;
473 mod_hash->mh_kdtor = kdtor;
474 mod_hash->mh_vdtor = vdtor;
475 mod_hash->mh_hashalg = hash_alg;
476 mod_hash->mh_hashalg_data = hash_alg_data;
477 mod_hash->mh_keycmp = keycmp;
478
479 /*
480 * Link the hash up on the list of hashes
481 */
482 mutex_enter(&mh_head_lock);
483 mod_hash->mh_next = mh_head;
484 mh_head = mod_hash;
485 mutex_exit(&mh_head_lock);
486
487 return (mod_hash);
488 }
489
490 /*
491 * mod_hash_destroy_hash()
492 * destroy a hash table, destroying all of its stored keys and values
493 * as well.
494 */
495 void
mod_hash_destroy_hash(mod_hash_t * hash)496 mod_hash_destroy_hash(mod_hash_t *hash)
497 {
498 mod_hash_t *mhp, *mhpp;
499
500 mutex_enter(&mh_head_lock);
501 /*
502 * Remove the hash from the hash list
503 */
504 if (hash == mh_head) { /* removing 1st list elem */
505 mh_head = mh_head->mh_next;
506 } else {
507 /*
508 * mhpp can start out NULL since we know the 1st elem isn't the
509 * droid we're looking for.
510 */
511 mhpp = NULL;
512 for (mhp = mh_head; mhp != NULL; mhp = mhp->mh_next) {
513 if (mhp == hash) {
514 mhpp->mh_next = mhp->mh_next;
515 break;
516 }
517 mhpp = mhp;
518 }
519 }
520 mutex_exit(&mh_head_lock);
521
522 /*
523 * Clean out keys and values.
524 */
525 mod_hash_clear(hash);
526
527 rw_destroy(&hash->mh_contents);
528 kmem_free(hash->mh_name, strlen(hash->mh_name) + 1);
529 kmem_free(hash, MH_SIZE(hash->mh_nchains));
530 }
531
532 /*
533 * i_mod_hash()
534 * Call the hashing algorithm for this hash table, with the given key.
535 */
536 uint_t
i_mod_hash(mod_hash_t * hash,mod_hash_key_t key)537 i_mod_hash(mod_hash_t *hash, mod_hash_key_t key)
538 {
539 uint_t h;
540 /*
541 * Prevent div by 0 problems;
542 * Also a nice shortcut when using a hash as a list
543 */
544 if (hash->mh_nchains == 1)
545 return (0);
546
547 h = (hash->mh_hashalg)(hash->mh_hashalg_data, key);
548 return (h % (hash->mh_nchains - 1));
549 }
550
551 /*
552 * i_mod_hash_insert_nosync()
553 * mod_hash_insert()
554 * mod_hash_insert_reserve()
555 * insert 'val' into the hash table, using 'key' as its key. If 'key' is
556 * already a key in the hash, an error will be returned, and the key-val
557 * pair will not be inserted. i_mod_hash_insert_nosync() supports a simple
558 * handle abstraction, allowing hash entry allocation to be separated from
559 * the hash insertion. this abstraction allows simple use of the mod_hash
560 * structure in situations where mod_hash_insert() with a KM_SLEEP
561 * allocation policy would otherwise be unsafe.
562 */
563 int
i_mod_hash_insert_nosync(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val,mod_hash_hndl_t handle)564 i_mod_hash_insert_nosync(mod_hash_t *hash, mod_hash_key_t key,
565 mod_hash_val_t val, mod_hash_hndl_t handle)
566 {
567 uint_t hashidx;
568 struct mod_hash_entry *entry;
569
570 ASSERT(hash);
571
572 /*
573 * If we've not been given reserved storage, allocate storage directly,
574 * using the hash's allocation policy.
575 */
576 if (handle == (mod_hash_hndl_t)0) {
577 entry = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
578 if (entry == NULL) {
579 hash->mh_stat.mhs_nomem++;
580 return (MH_ERR_NOMEM);
581 }
582 } else {
583 entry = (struct mod_hash_entry *)handle;
584 }
585
586 hashidx = i_mod_hash(hash, key);
587 entry->mhe_key = key;
588 entry->mhe_val = val;
589 entry->mhe_next = hash->mh_entries[hashidx];
590
591 hash->mh_entries[hashidx] = entry;
592 hash->mh_stat.mhs_nelems++;
593
594 return (0);
595 }
596
597 int
mod_hash_insert(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val)598 mod_hash_insert(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
599 {
600 int res;
601 mod_hash_val_t v;
602
603 rw_enter(&hash->mh_contents, RW_WRITER);
604
605 /*
606 * Disallow duplicate keys in the hash
607 */
608 if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
609 rw_exit(&hash->mh_contents);
610 hash->mh_stat.mhs_coll++;
611 return (MH_ERR_DUPLICATE);
612 }
613
614 res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
615 rw_exit(&hash->mh_contents);
616
617 return (res);
618 }
619
620 int
mod_hash_insert_reserve(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val,mod_hash_hndl_t handle)621 mod_hash_insert_reserve(mod_hash_t *hash, mod_hash_key_t key,
622 mod_hash_val_t val, mod_hash_hndl_t handle)
623 {
624 int res;
625 mod_hash_val_t v;
626
627 rw_enter(&hash->mh_contents, RW_WRITER);
628
629 /*
630 * Disallow duplicate keys in the hash
631 */
632 if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
633 rw_exit(&hash->mh_contents);
634 hash->mh_stat.mhs_coll++;
635 return (MH_ERR_DUPLICATE);
636 }
637 res = i_mod_hash_insert_nosync(hash, key, val, handle);
638 rw_exit(&hash->mh_contents);
639
640 return (res);
641 }
642
643 /*
644 * mod_hash_reserve()
645 * mod_hash_reserve_nosleep()
646 * mod_hash_cancel()
647 * Make or cancel a mod_hash_entry_t reservation. Reservations are used in
648 * mod_hash_insert_reserve() above.
649 */
650 int
mod_hash_reserve(mod_hash_t * hash,mod_hash_hndl_t * handlep)651 mod_hash_reserve(mod_hash_t *hash, mod_hash_hndl_t *handlep)
652 {
653 *handlep = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
654 if (*handlep == NULL) {
655 hash->mh_stat.mhs_nomem++;
656 return (MH_ERR_NOMEM);
657 }
658
659 return (0);
660 }
661
662 int
mod_hash_reserve_nosleep(mod_hash_t * hash,mod_hash_hndl_t * handlep)663 mod_hash_reserve_nosleep(mod_hash_t *hash, mod_hash_hndl_t *handlep)
664 {
665 *handlep = kmem_cache_alloc(mh_e_cache, KM_NOSLEEP);
666 if (*handlep == NULL) {
667 hash->mh_stat.mhs_nomem++;
668 return (MH_ERR_NOMEM);
669 }
670
671 return (0);
672
673 }
674
675 /*ARGSUSED*/
676 void
mod_hash_cancel(mod_hash_t * hash,mod_hash_hndl_t * handlep)677 mod_hash_cancel(mod_hash_t *hash, mod_hash_hndl_t *handlep)
678 {
679 kmem_cache_free(mh_e_cache, *handlep);
680 *handlep = (mod_hash_hndl_t)0;
681 }
682
683 /*
684 * i_mod_hash_remove_nosync()
685 * mod_hash_remove()
686 * Remove an element from the hash table.
687 */
688 int
i_mod_hash_remove_nosync(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)689 i_mod_hash_remove_nosync(mod_hash_t *hash, mod_hash_key_t key,
690 mod_hash_val_t *val)
691 {
692 int hashidx;
693 struct mod_hash_entry *e, *ep;
694
695 hashidx = i_mod_hash(hash, key);
696 ep = NULL; /* e's parent */
697
698 for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
699 if (MH_KEYCMP(hash, e->mhe_key, key) == 0)
700 break;
701 ep = e;
702 }
703
704 if (e == NULL) { /* not found */
705 return (MH_ERR_NOTFOUND);
706 }
707
708 if (ep == NULL) /* special case 1st element in bucket */
709 hash->mh_entries[hashidx] = e->mhe_next;
710 else
711 ep->mhe_next = e->mhe_next;
712
713 /*
714 * Clean up resources used by the node's key.
715 */
716 MH_KEY_DESTROY(hash, e->mhe_key);
717
718 *val = e->mhe_val;
719 kmem_cache_free(mh_e_cache, e);
720 hash->mh_stat.mhs_nelems--;
721
722 return (0);
723 }
724
725 int
mod_hash_remove(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)726 mod_hash_remove(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
727 {
728 int res;
729
730 rw_enter(&hash->mh_contents, RW_WRITER);
731 res = i_mod_hash_remove_nosync(hash, key, val);
732 rw_exit(&hash->mh_contents);
733
734 return (res);
735 }
736
737 /*
738 * mod_hash_replace()
739 * atomically remove an existing key-value pair from a hash, and replace
740 * the key and value with the ones supplied. The removed key and value
741 * (if any) are destroyed.
742 */
743 int
mod_hash_replace(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t val)744 mod_hash_replace(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
745 {
746 int res;
747 mod_hash_val_t v;
748
749 rw_enter(&hash->mh_contents, RW_WRITER);
750
751 if (i_mod_hash_remove_nosync(hash, key, &v) == 0) {
752 /*
753 * mod_hash_remove() takes care of freeing up the key resources.
754 */
755 MH_VAL_DESTROY(hash, v);
756 }
757 res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
758
759 rw_exit(&hash->mh_contents);
760
761 return (res);
762 }
763
764 /*
765 * mod_hash_destroy()
766 * Remove an element from the hash table matching 'key', and destroy it.
767 */
768 int
mod_hash_destroy(mod_hash_t * hash,mod_hash_key_t key)769 mod_hash_destroy(mod_hash_t *hash, mod_hash_key_t key)
770 {
771 mod_hash_val_t val;
772 int rv;
773
774 rw_enter(&hash->mh_contents, RW_WRITER);
775
776 if ((rv = i_mod_hash_remove_nosync(hash, key, &val)) == 0) {
777 /*
778 * mod_hash_remove() takes care of freeing up the key resources.
779 */
780 MH_VAL_DESTROY(hash, val);
781 }
782
783 rw_exit(&hash->mh_contents);
784 return (rv);
785 }
786
787 /*
788 * i_mod_hash_find_nosync()
789 * mod_hash_find()
790 * Find a value in the hash table corresponding to the given key.
791 */
792 int
i_mod_hash_find_nosync(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)793 i_mod_hash_find_nosync(mod_hash_t *hash, mod_hash_key_t key,
794 mod_hash_val_t *val)
795 {
796 uint_t hashidx;
797 struct mod_hash_entry *e;
798
799 hashidx = i_mod_hash(hash, key);
800
801 for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
802 if (MH_KEYCMP(hash, e->mhe_key, key) == 0) {
803 *val = e->mhe_val;
804 hash->mh_stat.mhs_hit++;
805 return (0);
806 }
807 }
808 hash->mh_stat.mhs_miss++;
809 return (MH_ERR_NOTFOUND);
810 }
811
812 int
mod_hash_find(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val)813 mod_hash_find(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
814 {
815 int res;
816
817 rw_enter(&hash->mh_contents, RW_READER);
818 res = i_mod_hash_find_nosync(hash, key, val);
819 rw_exit(&hash->mh_contents);
820
821 return (res);
822 }
823
824 int
mod_hash_find_cb(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val,void (* find_cb)(mod_hash_key_t,mod_hash_val_t))825 mod_hash_find_cb(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
826 void (*find_cb)(mod_hash_key_t, mod_hash_val_t))
827 {
828 int res;
829
830 rw_enter(&hash->mh_contents, RW_READER);
831 res = i_mod_hash_find_nosync(hash, key, val);
832 if (res == 0) {
833 find_cb(key, *val);
834 }
835 rw_exit(&hash->mh_contents);
836
837 return (res);
838 }
839
840 int
mod_hash_find_cb_rval(mod_hash_t * hash,mod_hash_key_t key,mod_hash_val_t * val,int (* find_cb)(mod_hash_key_t,mod_hash_val_t),int * cb_rval)841 mod_hash_find_cb_rval(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
842 int (*find_cb)(mod_hash_key_t, mod_hash_val_t), int *cb_rval)
843 {
844 int res;
845
846 rw_enter(&hash->mh_contents, RW_READER);
847 res = i_mod_hash_find_nosync(hash, key, val);
848 if (res == 0) {
849 *cb_rval = find_cb(key, *val);
850 }
851 rw_exit(&hash->mh_contents);
852
853 return (res);
854 }
855
856 void
i_mod_hash_walk_nosync(mod_hash_t * hash,uint_t (* callback)(mod_hash_key_t,mod_hash_val_t *,void *),void * arg)857 i_mod_hash_walk_nosync(mod_hash_t *hash,
858 uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
859 {
860 struct mod_hash_entry *e;
861 uint_t hashidx;
862 int res = MH_WALK_CONTINUE;
863
864 for (hashidx = 0;
865 (hashidx < (hash->mh_nchains - 1)) && (res == MH_WALK_CONTINUE);
866 hashidx++) {
867 e = hash->mh_entries[hashidx];
868 while ((e != NULL) && (res == MH_WALK_CONTINUE)) {
869 res = callback(e->mhe_key, e->mhe_val, arg);
870 e = e->mhe_next;
871 }
872 }
873 }
874
875 /*
876 * mod_hash_walk()
877 * Walks all the elements in the hashtable and invokes the callback
878 * function with the key/value pair for each element. The hashtable
879 * is locked for readers so the callback function should not attempt
880 * to do any updates to the hashable. The callback function should
881 * return MH_WALK_CONTINUE to continue walking the hashtable or
882 * MH_WALK_TERMINATE to abort the walk of the hashtable.
883 */
884 void
mod_hash_walk(mod_hash_t * hash,uint_t (* callback)(mod_hash_key_t,mod_hash_val_t *,void *),void * arg)885 mod_hash_walk(mod_hash_t *hash,
886 uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
887 {
888 rw_enter(&hash->mh_contents, RW_READER);
889 i_mod_hash_walk_nosync(hash, callback, arg);
890 rw_exit(&hash->mh_contents);
891 }
892
893
894 /*
895 * i_mod_hash_clear_nosync()
896 * mod_hash_clear()
897 * Clears the given hash table by calling the destructor of every hash
898 * element and freeing up all mod_hash_entry's.
899 */
900 void
i_mod_hash_clear_nosync(mod_hash_t * hash)901 i_mod_hash_clear_nosync(mod_hash_t *hash)
902 {
903 int i;
904 struct mod_hash_entry *e, *old_e;
905
906 for (i = 0; i < hash->mh_nchains; i++) {
907 e = hash->mh_entries[i];
908 while (e != NULL) {
909 MH_KEY_DESTROY(hash, e->mhe_key);
910 MH_VAL_DESTROY(hash, e->mhe_val);
911 old_e = e;
912 e = e->mhe_next;
913 kmem_cache_free(mh_e_cache, old_e);
914 }
915 hash->mh_entries[i] = NULL;
916 }
917 hash->mh_stat.mhs_nelems = 0;
918 }
919
920 void
mod_hash_clear(mod_hash_t * hash)921 mod_hash_clear(mod_hash_t *hash)
922 {
923 ASSERT(hash);
924 rw_enter(&hash->mh_contents, RW_WRITER);
925 i_mod_hash_clear_nosync(hash);
926 rw_exit(&hash->mh_contents);
927 }
928