xref: /f-stack/dpdk/drivers/net/mlx5/mlx5_rxtx.c (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015-2019 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdint.h>
7 #include <string.h>
8 #include <stdlib.h>
9 
10 #include <rte_mbuf.h>
11 #include <rte_mempool.h>
12 #include <rte_prefetch.h>
13 #include <rte_common.h>
14 #include <rte_branch_prediction.h>
15 #include <rte_ether.h>
16 #include <rte_cycles.h>
17 #include <rte_flow.h>
18 
19 #include <mlx5_prm.h>
20 #include <mlx5_common.h>
21 
22 #include "mlx5_autoconf.h"
23 #include "mlx5_defs.h"
24 #include "mlx5.h"
25 #include "mlx5_mr.h"
26 #include "mlx5_utils.h"
27 #include "mlx5_rxtx.h"
28 
29 /* TX burst subroutines return codes. */
30 enum mlx5_txcmp_code {
31 	MLX5_TXCMP_CODE_EXIT = 0,
32 	MLX5_TXCMP_CODE_ERROR,
33 	MLX5_TXCMP_CODE_SINGLE,
34 	MLX5_TXCMP_CODE_MULTI,
35 	MLX5_TXCMP_CODE_TSO,
36 	MLX5_TXCMP_CODE_EMPW,
37 };
38 
39 /*
40  * These defines are used to configure Tx burst routine option set
41  * supported at compile time. The not specified options are optimized out
42  * out due to if conditions can be explicitly calculated at compile time.
43  * The offloads with bigger runtime check (require more CPU cycles to
44  * skip) overhead should have the bigger index - this is needed to
45  * select the better matching routine function if no exact match and
46  * some offloads are not actually requested.
47  */
48 #define MLX5_TXOFF_CONFIG_MULTI (1u << 0) /* Multi-segment packets.*/
49 #define MLX5_TXOFF_CONFIG_TSO (1u << 1) /* TCP send offload supported.*/
50 #define MLX5_TXOFF_CONFIG_SWP (1u << 2) /* Tunnels/SW Parser offloads.*/
51 #define MLX5_TXOFF_CONFIG_CSUM (1u << 3) /* Check Sums offloaded. */
52 #define MLX5_TXOFF_CONFIG_INLINE (1u << 4) /* Data inlining supported. */
53 #define MLX5_TXOFF_CONFIG_VLAN (1u << 5) /* VLAN insertion supported.*/
54 #define MLX5_TXOFF_CONFIG_METADATA (1u << 6) /* Flow metadata. */
55 #define MLX5_TXOFF_CONFIG_EMPW (1u << 8) /* Enhanced MPW supported.*/
56 #define MLX5_TXOFF_CONFIG_MPW (1u << 9) /* Legacy MPW supported.*/
57 #define MLX5_TXOFF_CONFIG_TXPP (1u << 10) /* Scheduling on timestamp.*/
58 
59 /* The most common offloads groups. */
60 #define MLX5_TXOFF_CONFIG_NONE 0
61 #define MLX5_TXOFF_CONFIG_FULL (MLX5_TXOFF_CONFIG_MULTI | \
62 				MLX5_TXOFF_CONFIG_TSO | \
63 				MLX5_TXOFF_CONFIG_SWP | \
64 				MLX5_TXOFF_CONFIG_CSUM | \
65 				MLX5_TXOFF_CONFIG_INLINE | \
66 				MLX5_TXOFF_CONFIG_VLAN | \
67 				MLX5_TXOFF_CONFIG_METADATA)
68 
69 #define MLX5_TXOFF_CONFIG(mask) (olx & MLX5_TXOFF_CONFIG_##mask)
70 
71 #define MLX5_TXOFF_DECL(func, olx) \
72 static uint16_t mlx5_tx_burst_##func(void *txq, \
73 				     struct rte_mbuf **pkts, \
74 				    uint16_t pkts_n) \
75 { \
76 	return mlx5_tx_burst_tmpl((struct mlx5_txq_data *)txq, \
77 		    pkts, pkts_n, (olx)); \
78 }
79 
80 #define MLX5_TXOFF_INFO(func, olx) {mlx5_tx_burst_##func, olx},
81 
82 static __rte_always_inline uint32_t
83 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
84 				   volatile struct mlx5_mini_cqe8 *mcqe);
85 
86 static __rte_always_inline int
87 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
88 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
89 
90 static __rte_always_inline uint32_t
91 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
92 
93 static __rte_always_inline void
94 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
95 	       volatile struct mlx5_cqe *cqe,
96 	       volatile struct mlx5_mini_cqe8 *mcqe);
97 
98 static int
99 mlx5_queue_state_modify(struct rte_eth_dev *dev,
100 			struct mlx5_mp_arg_queue_state_modify *sm);
101 
102 static inline void
103 mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *__rte_restrict tcp,
104 			volatile struct mlx5_cqe *__rte_restrict cqe,
105 			uint32_t phcsum, uint8_t l4_type);
106 
107 static inline void
108 mlx5_lro_update_hdr(uint8_t *__rte_restrict padd,
109 		    volatile struct mlx5_cqe *__rte_restrict cqe,
110 			volatile struct mlx5_mini_cqe8 *mcqe,
111 		    struct mlx5_rxq_data *rxq, uint32_t len);
112 
113 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
114 	[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
115 };
116 
117 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
118 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
119 
120 uint64_t rte_net_mlx5_dynf_inline_mask;
121 #define PKT_TX_DYNF_NOINLINE rte_net_mlx5_dynf_inline_mask
122 
123 /**
124  * Build a table to translate Rx completion flags to packet type.
125  *
126  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
127  */
128 void
mlx5_set_ptype_table(void)129 mlx5_set_ptype_table(void)
130 {
131 	unsigned int i;
132 	uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
133 
134 	/* Last entry must not be overwritten, reserved for errored packet. */
135 	for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
136 		(*p)[i] = RTE_PTYPE_UNKNOWN;
137 	/*
138 	 * The index to the array should have:
139 	 * bit[1:0] = l3_hdr_type
140 	 * bit[4:2] = l4_hdr_type
141 	 * bit[5] = ip_frag
142 	 * bit[6] = tunneled
143 	 * bit[7] = outer_l3_type
144 	 */
145 	/* L2 */
146 	(*p)[0x00] = RTE_PTYPE_L2_ETHER;
147 	/* L3 */
148 	(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
149 		     RTE_PTYPE_L4_NONFRAG;
150 	(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
151 		     RTE_PTYPE_L4_NONFRAG;
152 	/* Fragmented */
153 	(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
154 		     RTE_PTYPE_L4_FRAG;
155 	(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
156 		     RTE_PTYPE_L4_FRAG;
157 	/* TCP */
158 	(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
159 		     RTE_PTYPE_L4_TCP;
160 	(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
161 		     RTE_PTYPE_L4_TCP;
162 	(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163 		     RTE_PTYPE_L4_TCP;
164 	(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
165 		     RTE_PTYPE_L4_TCP;
166 	(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
167 		     RTE_PTYPE_L4_TCP;
168 	(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
169 		     RTE_PTYPE_L4_TCP;
170 	/* UDP */
171 	(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
172 		     RTE_PTYPE_L4_UDP;
173 	(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
174 		     RTE_PTYPE_L4_UDP;
175 	/* Repeat with outer_l3_type being set. Just in case. */
176 	(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
177 		     RTE_PTYPE_L4_NONFRAG;
178 	(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179 		     RTE_PTYPE_L4_NONFRAG;
180 	(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
181 		     RTE_PTYPE_L4_FRAG;
182 	(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
183 		     RTE_PTYPE_L4_FRAG;
184 	(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185 		     RTE_PTYPE_L4_TCP;
186 	(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
187 		     RTE_PTYPE_L4_TCP;
188 	(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
189 		     RTE_PTYPE_L4_TCP;
190 	(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
191 		     RTE_PTYPE_L4_TCP;
192 	(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
193 		     RTE_PTYPE_L4_TCP;
194 	(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195 		     RTE_PTYPE_L4_TCP;
196 	(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197 		     RTE_PTYPE_L4_UDP;
198 	(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
199 		     RTE_PTYPE_L4_UDP;
200 	/* Tunneled - L3 */
201 	(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
202 	(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
203 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
204 		     RTE_PTYPE_INNER_L4_NONFRAG;
205 	(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
206 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
207 		     RTE_PTYPE_INNER_L4_NONFRAG;
208 	(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
209 	(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211 		     RTE_PTYPE_INNER_L4_NONFRAG;
212 	(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214 		     RTE_PTYPE_INNER_L4_NONFRAG;
215 	/* Tunneled - Fragmented */
216 	(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
217 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
218 		     RTE_PTYPE_INNER_L4_FRAG;
219 	(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
220 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
221 		     RTE_PTYPE_INNER_L4_FRAG;
222 	(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
223 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
224 		     RTE_PTYPE_INNER_L4_FRAG;
225 	(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
226 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
227 		     RTE_PTYPE_INNER_L4_FRAG;
228 	/* Tunneled - TCP */
229 	(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
230 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
231 		     RTE_PTYPE_INNER_L4_TCP;
232 	(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
233 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
234 		     RTE_PTYPE_INNER_L4_TCP;
235 	(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
236 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
237 		     RTE_PTYPE_INNER_L4_TCP;
238 	(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
239 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
240 		     RTE_PTYPE_INNER_L4_TCP;
241 	(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
242 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
243 		     RTE_PTYPE_INNER_L4_TCP;
244 	(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
245 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
246 		     RTE_PTYPE_INNER_L4_TCP;
247 	(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
248 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
249 		     RTE_PTYPE_INNER_L4_TCP;
250 	(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
251 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
252 		     RTE_PTYPE_INNER_L4_TCP;
253 	(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
254 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
255 		     RTE_PTYPE_INNER_L4_TCP;
256 	(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
257 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
258 		     RTE_PTYPE_INNER_L4_TCP;
259 	(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
260 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
261 		     RTE_PTYPE_INNER_L4_TCP;
262 	(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
263 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
264 		     RTE_PTYPE_INNER_L4_TCP;
265 	/* Tunneled - UDP */
266 	(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
267 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
268 		     RTE_PTYPE_INNER_L4_UDP;
269 	(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
270 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
271 		     RTE_PTYPE_INNER_L4_UDP;
272 	(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
273 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
274 		     RTE_PTYPE_INNER_L4_UDP;
275 	(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
276 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
277 		     RTE_PTYPE_INNER_L4_UDP;
278 }
279 
280 /**
281  * Build a table to translate packet to checksum type of Verbs.
282  */
283 void
mlx5_set_cksum_table(void)284 mlx5_set_cksum_table(void)
285 {
286 	unsigned int i;
287 	uint8_t v;
288 
289 	/*
290 	 * The index should have:
291 	 * bit[0] = PKT_TX_TCP_SEG
292 	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
293 	 * bit[4] = PKT_TX_IP_CKSUM
294 	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
295 	 * bit[9] = tunnel
296 	 */
297 	for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
298 		v = 0;
299 		if (i & (1 << 9)) {
300 			/* Tunneled packet. */
301 			if (i & (1 << 8)) /* Outer IP. */
302 				v |= MLX5_ETH_WQE_L3_CSUM;
303 			if (i & (1 << 4)) /* Inner IP. */
304 				v |= MLX5_ETH_WQE_L3_INNER_CSUM;
305 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
306 				v |= MLX5_ETH_WQE_L4_INNER_CSUM;
307 		} else {
308 			/* No tunnel. */
309 			if (i & (1 << 4)) /* IP. */
310 				v |= MLX5_ETH_WQE_L3_CSUM;
311 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
312 				v |= MLX5_ETH_WQE_L4_CSUM;
313 		}
314 		mlx5_cksum_table[i] = v;
315 	}
316 }
317 
318 /**
319  * Build a table to translate packet type of mbuf to SWP type of Verbs.
320  */
321 void
mlx5_set_swp_types_table(void)322 mlx5_set_swp_types_table(void)
323 {
324 	unsigned int i;
325 	uint8_t v;
326 
327 	/*
328 	 * The index should have:
329 	 * bit[0:1] = PKT_TX_L4_MASK
330 	 * bit[4] = PKT_TX_IPV6
331 	 * bit[8] = PKT_TX_OUTER_IPV6
332 	 * bit[9] = PKT_TX_OUTER_UDP
333 	 */
334 	for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
335 		v = 0;
336 		if (i & (1 << 8))
337 			v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
338 		if (i & (1 << 9))
339 			v |= MLX5_ETH_WQE_L4_OUTER_UDP;
340 		if (i & (1 << 4))
341 			v |= MLX5_ETH_WQE_L3_INNER_IPV6;
342 		if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
343 			v |= MLX5_ETH_WQE_L4_INNER_UDP;
344 		mlx5_swp_types_table[i] = v;
345 	}
346 }
347 
348 /**
349  * Set Software Parser flags and offsets in Ethernet Segment of WQE.
350  * Flags must be preliminary initialized to zero.
351  *
352  * @param loc
353  *   Pointer to burst routine local context.
354  * @param swp_flags
355  *   Pointer to store Software Parser flags
356  * @param olx
357  *   Configured Tx offloads mask. It is fully defined at
358  *   compile time and may be used for optimization.
359  *
360  * @return
361  *   Software Parser offsets packed in dword.
362  *   Software Parser flags are set by pointer.
363  */
364 static __rte_always_inline uint32_t
txq_mbuf_to_swp(struct mlx5_txq_local * __rte_restrict loc,uint8_t * swp_flags,unsigned int olx)365 txq_mbuf_to_swp(struct mlx5_txq_local *__rte_restrict loc,
366 		uint8_t *swp_flags,
367 		unsigned int olx)
368 {
369 	uint64_t ol, tunnel;
370 	unsigned int idx, off;
371 	uint32_t set;
372 
373 	if (!MLX5_TXOFF_CONFIG(SWP))
374 		return 0;
375 	ol = loc->mbuf->ol_flags;
376 	tunnel = ol & PKT_TX_TUNNEL_MASK;
377 	/*
378 	 * Check whether Software Parser is required.
379 	 * Only customized tunnels may ask for.
380 	 */
381 	if (likely(tunnel != PKT_TX_TUNNEL_UDP && tunnel != PKT_TX_TUNNEL_IP))
382 		return 0;
383 	/*
384 	 * The index should have:
385 	 * bit[0:1] = PKT_TX_L4_MASK
386 	 * bit[4] = PKT_TX_IPV6
387 	 * bit[8] = PKT_TX_OUTER_IPV6
388 	 * bit[9] = PKT_TX_OUTER_UDP
389 	 */
390 	idx = (ol & (PKT_TX_L4_MASK | PKT_TX_IPV6 | PKT_TX_OUTER_IPV6)) >> 52;
391 	idx |= (tunnel == PKT_TX_TUNNEL_UDP) ? (1 << 9) : 0;
392 	*swp_flags = mlx5_swp_types_table[idx];
393 	/*
394 	 * Set offsets for SW parser. Since ConnectX-5, SW parser just
395 	 * complements HW parser. SW parser starts to engage only if HW parser
396 	 * can't reach a header. For the older devices, HW parser will not kick
397 	 * in if any of SWP offsets is set. Therefore, all of the L3 offsets
398 	 * should be set regardless of HW offload.
399 	 */
400 	off = loc->mbuf->outer_l2_len;
401 	if (MLX5_TXOFF_CONFIG(VLAN) && ol & PKT_TX_VLAN_PKT)
402 		off += sizeof(struct rte_vlan_hdr);
403 	set = (off >> 1) << 8; /* Outer L3 offset. */
404 	off += loc->mbuf->outer_l3_len;
405 	if (tunnel == PKT_TX_TUNNEL_UDP)
406 		set |= off >> 1; /* Outer L4 offset. */
407 	if (ol & (PKT_TX_IPV4 | PKT_TX_IPV6)) { /* Inner IP. */
408 		const uint64_t csum = ol & PKT_TX_L4_MASK;
409 			off += loc->mbuf->l2_len;
410 		set |= (off >> 1) << 24; /* Inner L3 offset. */
411 		if (csum == PKT_TX_TCP_CKSUM ||
412 		    csum == PKT_TX_UDP_CKSUM ||
413 		    (MLX5_TXOFF_CONFIG(TSO) && ol & PKT_TX_TCP_SEG)) {
414 			off += loc->mbuf->l3_len;
415 			set |= (off >> 1) << 16; /* Inner L4 offset. */
416 		}
417 	}
418 	set = rte_cpu_to_le_32(set);
419 	return set;
420 }
421 
422 /**
423  * Convert the Checksum offloads to Verbs.
424  *
425  * @param buf
426  *   Pointer to the mbuf.
427  *
428  * @return
429  *   Converted checksum flags.
430  */
431 static __rte_always_inline uint8_t
txq_ol_cksum_to_cs(struct rte_mbuf * buf)432 txq_ol_cksum_to_cs(struct rte_mbuf *buf)
433 {
434 	uint32_t idx;
435 	uint8_t is_tunnel = !!(buf->ol_flags & PKT_TX_TUNNEL_MASK);
436 	const uint64_t ol_flags_mask = PKT_TX_TCP_SEG | PKT_TX_L4_MASK |
437 				       PKT_TX_IP_CKSUM | PKT_TX_OUTER_IP_CKSUM;
438 
439 	/*
440 	 * The index should have:
441 	 * bit[0] = PKT_TX_TCP_SEG
442 	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
443 	 * bit[4] = PKT_TX_IP_CKSUM
444 	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
445 	 * bit[9] = tunnel
446 	 */
447 	idx = ((buf->ol_flags & ol_flags_mask) >> 50) | (!!is_tunnel << 9);
448 	return mlx5_cksum_table[idx];
449 }
450 
451 /**
452  * Internal function to compute the number of used descriptors in an RX queue
453  *
454  * @param rxq
455  *   The Rx queue.
456  *
457  * @return
458  *   The number of used rx descriptor.
459  */
460 static uint32_t
rx_queue_count(struct mlx5_rxq_data * rxq)461 rx_queue_count(struct mlx5_rxq_data *rxq)
462 {
463 	struct rxq_zip *zip = &rxq->zip;
464 	volatile struct mlx5_cqe *cqe;
465 	const unsigned int cqe_n = (1 << rxq->cqe_n);
466 	const unsigned int sges_n = (1 << rxq->sges_n);
467 	const unsigned int elts_n = (1 << rxq->elts_n);
468 	const unsigned int strd_n = (1 << rxq->strd_num_n);
469 	const unsigned int cqe_cnt = cqe_n - 1;
470 	unsigned int cq_ci, used;
471 
472 	/* if we are processing a compressed cqe */
473 	if (zip->ai) {
474 		used = zip->cqe_cnt - zip->ai;
475 		cq_ci = zip->cq_ci;
476 	} else {
477 		used = 0;
478 		cq_ci = rxq->cq_ci;
479 	}
480 	cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
481 	while (check_cqe(cqe, cqe_n, cq_ci) != MLX5_CQE_STATUS_HW_OWN) {
482 		int8_t op_own;
483 		unsigned int n;
484 
485 		op_own = cqe->op_own;
486 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
487 			n = rte_be_to_cpu_32(cqe->byte_cnt);
488 		else
489 			n = 1;
490 		cq_ci += n;
491 		used += n;
492 		cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
493 	}
494 	used = RTE_MIN(used * sges_n, elts_n * strd_n);
495 	return used;
496 }
497 
498 /**
499  * DPDK callback to check the status of a rx descriptor.
500  *
501  * @param rx_queue
502  *   The Rx queue.
503  * @param[in] offset
504  *   The index of the descriptor in the ring.
505  *
506  * @return
507  *   The status of the tx descriptor.
508  */
509 int
mlx5_rx_descriptor_status(void * rx_queue,uint16_t offset)510 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
511 {
512 	struct mlx5_rxq_data *rxq = rx_queue;
513 	struct mlx5_rxq_ctrl *rxq_ctrl =
514 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
515 	struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
516 
517 	if (dev->rx_pkt_burst == NULL ||
518 	    dev->rx_pkt_burst == removed_rx_burst) {
519 		rte_errno = ENOTSUP;
520 		return -rte_errno;
521 	}
522 	if (offset >= (1 << rxq->cqe_n)) {
523 		rte_errno = EINVAL;
524 		return -rte_errno;
525 	}
526 	if (offset < rx_queue_count(rxq))
527 		return RTE_ETH_RX_DESC_DONE;
528 	return RTE_ETH_RX_DESC_AVAIL;
529 }
530 
531 /**
532  * DPDK callback to get the RX queue information
533  *
534  * @param dev
535  *   Pointer to the device structure.
536  *
537  * @param rx_queue_id
538  *   Rx queue identificator.
539  *
540  * @param qinfo
541  *   Pointer to the RX queue information structure.
542  *
543  * @return
544  *   None.
545  */
546 
547 void
mlx5_rxq_info_get(struct rte_eth_dev * dev,uint16_t rx_queue_id,struct rte_eth_rxq_info * qinfo)548 mlx5_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
549 		  struct rte_eth_rxq_info *qinfo)
550 {
551 	struct mlx5_priv *priv = dev->data->dev_private;
552 	struct mlx5_rxq_data *rxq = (*priv->rxqs)[rx_queue_id];
553 	struct mlx5_rxq_ctrl *rxq_ctrl =
554 		container_of(rxq, struct mlx5_rxq_ctrl, rxq);
555 
556 	if (!rxq)
557 		return;
558 	qinfo->mp = mlx5_rxq_mprq_enabled(rxq) ?
559 					rxq->mprq_mp : rxq->mp;
560 	qinfo->conf.rx_thresh.pthresh = 0;
561 	qinfo->conf.rx_thresh.hthresh = 0;
562 	qinfo->conf.rx_thresh.wthresh = 0;
563 	qinfo->conf.rx_free_thresh = rxq->rq_repl_thresh;
564 	qinfo->conf.rx_drop_en = 1;
565 	qinfo->conf.rx_deferred_start = rxq_ctrl ? 0 : 1;
566 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
567 	qinfo->scattered_rx = dev->data->scattered_rx;
568 	qinfo->nb_desc = mlx5_rxq_mprq_enabled(rxq) ?
569 		(1 << rxq->elts_n) * (1 << rxq->strd_num_n) :
570 		(1 << rxq->elts_n);
571 }
572 
573 /**
574  * DPDK callback to get the RX packet burst mode information
575  *
576  * @param dev
577  *   Pointer to the device structure.
578  *
579  * @param rx_queue_id
580  *   Rx queue identificatior.
581  *
582  * @param mode
583  *   Pointer to the burts mode information.
584  *
585  * @return
586  *   0 as success, -EINVAL as failure.
587  */
588 
589 int
mlx5_rx_burst_mode_get(struct rte_eth_dev * dev,uint16_t rx_queue_id __rte_unused,struct rte_eth_burst_mode * mode)590 mlx5_rx_burst_mode_get(struct rte_eth_dev *dev,
591 		       uint16_t rx_queue_id __rte_unused,
592 		       struct rte_eth_burst_mode *mode)
593 {
594 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
595 	struct mlx5_priv *priv = dev->data->dev_private;
596 	struct mlx5_rxq_data *rxq;
597 
598 	rxq = (*priv->rxqs)[rx_queue_id];
599 	if (!rxq) {
600 		rte_errno = EINVAL;
601 		return -rte_errno;
602 	}
603 	if (pkt_burst == mlx5_rx_burst) {
604 		snprintf(mode->info, sizeof(mode->info), "%s", "Scalar");
605 	} else if (pkt_burst == mlx5_rx_burst_mprq) {
606 		snprintf(mode->info, sizeof(mode->info), "%s", "Multi-Packet RQ");
607 	} else if (pkt_burst == mlx5_rx_burst_vec) {
608 #if defined RTE_ARCH_X86_64
609 		snprintf(mode->info, sizeof(mode->info), "%s", "Vector SSE");
610 #elif defined RTE_ARCH_ARM64
611 		snprintf(mode->info, sizeof(mode->info), "%s", "Vector Neon");
612 #elif defined RTE_ARCH_PPC_64
613 		snprintf(mode->info, sizeof(mode->info), "%s", "Vector AltiVec");
614 #else
615 		return -EINVAL;
616 #endif
617 	} else if (pkt_burst == mlx5_rx_burst_mprq_vec) {
618 #if defined RTE_ARCH_X86_64
619 		snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector SSE");
620 #elif defined RTE_ARCH_ARM64
621 		snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector Neon");
622 #elif defined RTE_ARCH_PPC_64
623 		snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector AltiVec");
624 #else
625 		return -EINVAL;
626 #endif
627 	} else {
628 		return -EINVAL;
629 	}
630 	return 0;
631 }
632 
633 /**
634  * DPDK callback to get the number of used descriptors in a RX queue
635  *
636  * @param dev
637  *   Pointer to the device structure.
638  *
639  * @param rx_queue_id
640  *   The Rx queue.
641  *
642  * @return
643  *   The number of used rx descriptor.
644  *   -EINVAL if the queue is invalid
645  */
646 uint32_t
mlx5_rx_queue_count(struct rte_eth_dev * dev,uint16_t rx_queue_id)647 mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
648 {
649 	struct mlx5_priv *priv = dev->data->dev_private;
650 	struct mlx5_rxq_data *rxq;
651 
652 	if (dev->rx_pkt_burst == NULL ||
653 	    dev->rx_pkt_burst == removed_rx_burst) {
654 		rte_errno = ENOTSUP;
655 		return -rte_errno;
656 	}
657 	rxq = (*priv->rxqs)[rx_queue_id];
658 	if (!rxq) {
659 		rte_errno = EINVAL;
660 		return -rte_errno;
661 	}
662 	return rx_queue_count(rxq);
663 }
664 
665 #define MLX5_SYSTEM_LOG_DIR "/var/log"
666 /**
667  * Dump debug information to log file.
668  *
669  * @param fname
670  *   The file name.
671  * @param hex_title
672  *   If not NULL this string is printed as a header to the output
673  *   and the output will be in hexadecimal view.
674  * @param buf
675  *   This is the buffer address to print out.
676  * @param len
677  *   The number of bytes to dump out.
678  */
679 void
mlx5_dump_debug_information(const char * fname,const char * hex_title,const void * buf,unsigned int hex_len)680 mlx5_dump_debug_information(const char *fname, const char *hex_title,
681 			    const void *buf, unsigned int hex_len)
682 {
683 	FILE *fd;
684 
685 	MKSTR(path, "%s/%s", MLX5_SYSTEM_LOG_DIR, fname);
686 	fd = fopen(path, "a+");
687 	if (!fd) {
688 		DRV_LOG(WARNING, "cannot open %s for debug dump", path);
689 		MKSTR(path2, "./%s", fname);
690 		fd = fopen(path2, "a+");
691 		if (!fd) {
692 			DRV_LOG(ERR, "cannot open %s for debug dump", path2);
693 			return;
694 		}
695 		DRV_LOG(INFO, "New debug dump in file %s", path2);
696 	} else {
697 		DRV_LOG(INFO, "New debug dump in file %s", path);
698 	}
699 	if (hex_title)
700 		rte_hexdump(fd, hex_title, buf, hex_len);
701 	else
702 		fprintf(fd, "%s", (const char *)buf);
703 	fprintf(fd, "\n\n\n");
704 	fclose(fd);
705 }
706 
707 /**
708  * Move QP from error state to running state and initialize indexes.
709  *
710  * @param txq_ctrl
711  *   Pointer to TX queue control structure.
712  *
713  * @return
714  *   0 on success, else -1.
715  */
716 static int
tx_recover_qp(struct mlx5_txq_ctrl * txq_ctrl)717 tx_recover_qp(struct mlx5_txq_ctrl *txq_ctrl)
718 {
719 	struct mlx5_mp_arg_queue_state_modify sm = {
720 			.is_wq = 0,
721 			.queue_id = txq_ctrl->txq.idx,
722 	};
723 
724 	if (mlx5_queue_state_modify(ETH_DEV(txq_ctrl->priv), &sm))
725 		return -1;
726 	txq_ctrl->txq.wqe_ci = 0;
727 	txq_ctrl->txq.wqe_pi = 0;
728 	txq_ctrl->txq.elts_comp = 0;
729 	return 0;
730 }
731 
732 /* Return 1 if the error CQE is signed otherwise, sign it and return 0. */
733 static int
check_err_cqe_seen(volatile struct mlx5_err_cqe * err_cqe)734 check_err_cqe_seen(volatile struct mlx5_err_cqe *err_cqe)
735 {
736 	static const uint8_t magic[] = "seen";
737 	int ret = 1;
738 	unsigned int i;
739 
740 	for (i = 0; i < sizeof(magic); ++i)
741 		if (!ret || err_cqe->rsvd1[i] != magic[i]) {
742 			ret = 0;
743 			err_cqe->rsvd1[i] = magic[i];
744 		}
745 	return ret;
746 }
747 
748 /**
749  * Handle error CQE.
750  *
751  * @param txq
752  *   Pointer to TX queue structure.
753  * @param error_cqe
754  *   Pointer to the error CQE.
755  *
756  * @return
757  *   Negative value if queue recovery failed, otherwise
758  *   the error completion entry is handled successfully.
759  */
760 static int
mlx5_tx_error_cqe_handle(struct mlx5_txq_data * __rte_restrict txq,volatile struct mlx5_err_cqe * err_cqe)761 mlx5_tx_error_cqe_handle(struct mlx5_txq_data *__rte_restrict txq,
762 			 volatile struct mlx5_err_cqe *err_cqe)
763 {
764 	if (err_cqe->syndrome != MLX5_CQE_SYNDROME_WR_FLUSH_ERR) {
765 		const uint16_t wqe_m = ((1 << txq->wqe_n) - 1);
766 		struct mlx5_txq_ctrl *txq_ctrl =
767 				container_of(txq, struct mlx5_txq_ctrl, txq);
768 		uint16_t new_wqe_pi = rte_be_to_cpu_16(err_cqe->wqe_counter);
769 		int seen = check_err_cqe_seen(err_cqe);
770 
771 		if (!seen && txq_ctrl->dump_file_n <
772 		    txq_ctrl->priv->config.max_dump_files_num) {
773 			MKSTR(err_str, "Unexpected CQE error syndrome "
774 			      "0x%02x CQN = %u SQN = %u wqe_counter = %u "
775 			      "wq_ci = %u cq_ci = %u", err_cqe->syndrome,
776 			      txq->cqe_s, txq->qp_num_8s >> 8,
777 			      rte_be_to_cpu_16(err_cqe->wqe_counter),
778 			      txq->wqe_ci, txq->cq_ci);
779 			MKSTR(name, "dpdk_mlx5_port_%u_txq_%u_index_%u_%u",
780 			      PORT_ID(txq_ctrl->priv), txq->idx,
781 			      txq_ctrl->dump_file_n, (uint32_t)rte_rdtsc());
782 			mlx5_dump_debug_information(name, NULL, err_str, 0);
783 			mlx5_dump_debug_information(name, "MLX5 Error CQ:",
784 						    (const void *)((uintptr_t)
785 						    txq->cqes),
786 						    sizeof(*err_cqe) *
787 						    (1 << txq->cqe_n));
788 			mlx5_dump_debug_information(name, "MLX5 Error SQ:",
789 						    (const void *)((uintptr_t)
790 						    txq->wqes),
791 						    MLX5_WQE_SIZE *
792 						    (1 << txq->wqe_n));
793 			txq_ctrl->dump_file_n++;
794 		}
795 		if (!seen)
796 			/*
797 			 * Count errors in WQEs units.
798 			 * Later it can be improved to count error packets,
799 			 * for example, by SQ parsing to find how much packets
800 			 * should be counted for each WQE.
801 			 */
802 			txq->stats.oerrors += ((txq->wqe_ci & wqe_m) -
803 						new_wqe_pi) & wqe_m;
804 		if (tx_recover_qp(txq_ctrl)) {
805 			/* Recovering failed - retry later on the same WQE. */
806 			return -1;
807 		}
808 		/* Release all the remaining buffers. */
809 		txq_free_elts(txq_ctrl);
810 	}
811 	return 0;
812 }
813 
814 /**
815  * Translate RX completion flags to packet type.
816  *
817  * @param[in] rxq
818  *   Pointer to RX queue structure.
819  * @param[in] cqe
820  *   Pointer to CQE.
821  *
822  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
823  *
824  * @return
825  *   Packet type for struct rte_mbuf.
826  */
827 static inline uint32_t
rxq_cq_to_pkt_type(struct mlx5_rxq_data * rxq,volatile struct mlx5_cqe * cqe,volatile struct mlx5_mini_cqe8 * mcqe)828 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
829 				   volatile struct mlx5_mini_cqe8 *mcqe)
830 {
831 	uint8_t idx;
832 	uint8_t ptype;
833 	uint8_t pinfo = (cqe->pkt_info & 0x3) << 6;
834 
835 	/* Get l3/l4 header from mini-CQE in case L3/L4 format*/
836 	if (mcqe == NULL ||
837 	    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
838 		ptype = (cqe->hdr_type_etc & 0xfc00) >> 10;
839 	else
840 		ptype = mcqe->hdr_type >> 2;
841 	/*
842 	 * The index to the array should have:
843 	 * bit[1:0] = l3_hdr_type
844 	 * bit[4:2] = l4_hdr_type
845 	 * bit[5] = ip_frag
846 	 * bit[6] = tunneled
847 	 * bit[7] = outer_l3_type
848 	 */
849 	idx = pinfo | ptype;
850 	return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
851 }
852 
853 /**
854  * Initialize Rx WQ and indexes.
855  *
856  * @param[in] rxq
857  *   Pointer to RX queue structure.
858  */
859 void
mlx5_rxq_initialize(struct mlx5_rxq_data * rxq)860 mlx5_rxq_initialize(struct mlx5_rxq_data *rxq)
861 {
862 	const unsigned int wqe_n = 1 << rxq->elts_n;
863 	unsigned int i;
864 
865 	for (i = 0; (i != wqe_n); ++i) {
866 		volatile struct mlx5_wqe_data_seg *scat;
867 		uintptr_t addr;
868 		uint32_t byte_count;
869 
870 		if (mlx5_rxq_mprq_enabled(rxq)) {
871 			struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[i];
872 
873 			scat = &((volatile struct mlx5_wqe_mprq *)
874 				rxq->wqes)[i].dseg;
875 			addr = (uintptr_t)mlx5_mprq_buf_addr(buf,
876 							 1 << rxq->strd_num_n);
877 			byte_count = (1 << rxq->strd_sz_n) *
878 					(1 << rxq->strd_num_n);
879 		} else {
880 			struct rte_mbuf *buf = (*rxq->elts)[i];
881 
882 			scat = &((volatile struct mlx5_wqe_data_seg *)
883 					rxq->wqes)[i];
884 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
885 			byte_count = DATA_LEN(buf);
886 		}
887 		/* scat->addr must be able to store a pointer. */
888 		MLX5_ASSERT(sizeof(scat->addr) >= sizeof(uintptr_t));
889 		*scat = (struct mlx5_wqe_data_seg){
890 			.addr = rte_cpu_to_be_64(addr),
891 			.byte_count = rte_cpu_to_be_32(byte_count),
892 			.lkey = mlx5_rx_addr2mr(rxq, addr),
893 		};
894 	}
895 	rxq->consumed_strd = 0;
896 	rxq->decompressed = 0;
897 	rxq->rq_pi = 0;
898 	rxq->zip = (struct rxq_zip){
899 		.ai = 0,
900 	};
901 	rxq->elts_ci = mlx5_rxq_mprq_enabled(rxq) ?
902 		(wqe_n >> rxq->sges_n) * (1 << rxq->strd_num_n) : 0;
903 	/* Update doorbell counter. */
904 	rxq->rq_ci = wqe_n >> rxq->sges_n;
905 	rte_io_wmb();
906 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
907 }
908 
909 /**
910  * Modify a Verbs/DevX queue state.
911  * This must be called from the primary process.
912  *
913  * @param dev
914  *   Pointer to Ethernet device.
915  * @param sm
916  *   State modify request parameters.
917  *
918  * @return
919  *   0 in case of success else non-zero value and rte_errno is set.
920  */
921 int
mlx5_queue_state_modify_primary(struct rte_eth_dev * dev,const struct mlx5_mp_arg_queue_state_modify * sm)922 mlx5_queue_state_modify_primary(struct rte_eth_dev *dev,
923 			const struct mlx5_mp_arg_queue_state_modify *sm)
924 {
925 	int ret;
926 	struct mlx5_priv *priv = dev->data->dev_private;
927 
928 	if (sm->is_wq) {
929 		struct mlx5_rxq_data *rxq = (*priv->rxqs)[sm->queue_id];
930 		struct mlx5_rxq_ctrl *rxq_ctrl =
931 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
932 
933 		ret = priv->obj_ops.rxq_obj_modify(rxq_ctrl->obj, sm->state);
934 		if (ret) {
935 			DRV_LOG(ERR, "Cannot change Rx WQ state to %u  - %s",
936 					sm->state, strerror(errno));
937 			rte_errno = errno;
938 			return ret;
939 		}
940 	} else {
941 		struct mlx5_txq_data *txq = (*priv->txqs)[sm->queue_id];
942 		struct mlx5_txq_ctrl *txq_ctrl =
943 			container_of(txq, struct mlx5_txq_ctrl, txq);
944 
945 		ret = priv->obj_ops.txq_obj_modify(txq_ctrl->obj,
946 						   MLX5_TXQ_MOD_ERR2RDY,
947 						   (uint8_t)priv->dev_port);
948 		if (ret)
949 			return ret;
950 	}
951 	return 0;
952 }
953 
954 /**
955  * Modify a Verbs queue state.
956  *
957  * @param dev
958  *   Pointer to Ethernet device.
959  * @param sm
960  *   State modify request parameters.
961  *
962  * @return
963  *   0 in case of success else non-zero value.
964  */
965 static int
mlx5_queue_state_modify(struct rte_eth_dev * dev,struct mlx5_mp_arg_queue_state_modify * sm)966 mlx5_queue_state_modify(struct rte_eth_dev *dev,
967 			struct mlx5_mp_arg_queue_state_modify *sm)
968 {
969 	struct mlx5_priv *priv = dev->data->dev_private;
970 	int ret = 0;
971 
972 	switch (rte_eal_process_type()) {
973 	case RTE_PROC_PRIMARY:
974 		ret = mlx5_queue_state_modify_primary(dev, sm);
975 		break;
976 	case RTE_PROC_SECONDARY:
977 		ret = mlx5_mp_req_queue_state_modify(&priv->mp_id, sm);
978 		break;
979 	default:
980 		break;
981 	}
982 	return ret;
983 }
984 
985 /**
986  * Handle a Rx error.
987  * The function inserts the RQ state to reset when the first error CQE is
988  * shown, then drains the CQ by the caller function loop. When the CQ is empty,
989  * it moves the RQ state to ready and initializes the RQ.
990  * Next CQE identification and error counting are in the caller responsibility.
991  *
992  * @param[in] rxq
993  *   Pointer to RX queue structure.
994  * @param[in] vec
995  *   1 when called from vectorized Rx burst, need to prepare mbufs for the RQ.
996  *   0 when called from non-vectorized Rx burst.
997  *
998  * @return
999  *   -1 in case of recovery error, otherwise the CQE status.
1000  */
1001 int
mlx5_rx_err_handle(struct mlx5_rxq_data * rxq,uint8_t vec)1002 mlx5_rx_err_handle(struct mlx5_rxq_data *rxq, uint8_t vec)
1003 {
1004 	const uint16_t cqe_n = 1 << rxq->cqe_n;
1005 	const uint16_t cqe_mask = cqe_n - 1;
1006 	const uint16_t wqe_n = 1 << rxq->elts_n;
1007 	const uint16_t strd_n = 1 << rxq->strd_num_n;
1008 	struct mlx5_rxq_ctrl *rxq_ctrl =
1009 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
1010 	union {
1011 		volatile struct mlx5_cqe *cqe;
1012 		volatile struct mlx5_err_cqe *err_cqe;
1013 	} u = {
1014 		.cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask],
1015 	};
1016 	struct mlx5_mp_arg_queue_state_modify sm;
1017 	int ret;
1018 
1019 	switch (rxq->err_state) {
1020 	case MLX5_RXQ_ERR_STATE_NO_ERROR:
1021 		rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_RESET;
1022 		/* Fall-through */
1023 	case MLX5_RXQ_ERR_STATE_NEED_RESET:
1024 		sm.is_wq = 1;
1025 		sm.queue_id = rxq->idx;
1026 		sm.state = IBV_WQS_RESET;
1027 		if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv), &sm))
1028 			return -1;
1029 		if (rxq_ctrl->dump_file_n <
1030 		    rxq_ctrl->priv->config.max_dump_files_num) {
1031 			MKSTR(err_str, "Unexpected CQE error syndrome "
1032 			      "0x%02x CQN = %u RQN = %u wqe_counter = %u"
1033 			      " rq_ci = %u cq_ci = %u", u.err_cqe->syndrome,
1034 			      rxq->cqn, rxq_ctrl->wqn,
1035 			      rte_be_to_cpu_16(u.err_cqe->wqe_counter),
1036 			      rxq->rq_ci << rxq->sges_n, rxq->cq_ci);
1037 			MKSTR(name, "dpdk_mlx5_port_%u_rxq_%u_%u",
1038 			      rxq->port_id, rxq->idx, (uint32_t)rte_rdtsc());
1039 			mlx5_dump_debug_information(name, NULL, err_str, 0);
1040 			mlx5_dump_debug_information(name, "MLX5 Error CQ:",
1041 						    (const void *)((uintptr_t)
1042 								    rxq->cqes),
1043 						    sizeof(*u.cqe) * cqe_n);
1044 			mlx5_dump_debug_information(name, "MLX5 Error RQ:",
1045 						    (const void *)((uintptr_t)
1046 								    rxq->wqes),
1047 						    16 * wqe_n);
1048 			rxq_ctrl->dump_file_n++;
1049 		}
1050 		rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_READY;
1051 		/* Fall-through */
1052 	case MLX5_RXQ_ERR_STATE_NEED_READY:
1053 		ret = check_cqe(u.cqe, cqe_n, rxq->cq_ci);
1054 		if (ret == MLX5_CQE_STATUS_HW_OWN) {
1055 			rte_io_wmb();
1056 			*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1057 			rte_io_wmb();
1058 			/*
1059 			 * The RQ consumer index must be zeroed while moving
1060 			 * from RESET state to RDY state.
1061 			 */
1062 			*rxq->rq_db = rte_cpu_to_be_32(0);
1063 			rte_io_wmb();
1064 			sm.is_wq = 1;
1065 			sm.queue_id = rxq->idx;
1066 			sm.state = IBV_WQS_RDY;
1067 			if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv),
1068 						    &sm))
1069 				return -1;
1070 			if (vec) {
1071 				const uint32_t elts_n =
1072 					mlx5_rxq_mprq_enabled(rxq) ?
1073 					wqe_n * strd_n : wqe_n;
1074 				const uint32_t e_mask = elts_n - 1;
1075 				uint32_t elts_ci =
1076 					mlx5_rxq_mprq_enabled(rxq) ?
1077 					rxq->elts_ci : rxq->rq_ci;
1078 				uint32_t elt_idx;
1079 				struct rte_mbuf **elt;
1080 				int i;
1081 				unsigned int n = elts_n - (elts_ci -
1082 							  rxq->rq_pi);
1083 
1084 				for (i = 0; i < (int)n; ++i) {
1085 					elt_idx = (elts_ci + i) & e_mask;
1086 					elt = &(*rxq->elts)[elt_idx];
1087 					*elt = rte_mbuf_raw_alloc(rxq->mp);
1088 					if (!*elt) {
1089 						for (i--; i >= 0; --i) {
1090 							elt_idx = (elts_ci +
1091 								   i) & elts_n;
1092 							elt = &(*rxq->elts)
1093 								[elt_idx];
1094 							rte_pktmbuf_free_seg
1095 								(*elt);
1096 						}
1097 						return -1;
1098 					}
1099 				}
1100 				for (i = 0; i < (int)elts_n; ++i) {
1101 					elt = &(*rxq->elts)[i];
1102 					DATA_LEN(*elt) =
1103 						(uint16_t)((*elt)->buf_len -
1104 						rte_pktmbuf_headroom(*elt));
1105 				}
1106 				/* Padding with a fake mbuf for vec Rx. */
1107 				for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
1108 					(*rxq->elts)[elts_n + i] =
1109 								&rxq->fake_mbuf;
1110 			}
1111 			mlx5_rxq_initialize(rxq);
1112 			rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR;
1113 		}
1114 		return ret;
1115 	default:
1116 		return -1;
1117 	}
1118 }
1119 
1120 /**
1121  * Get size of the next packet for a given CQE. For compressed CQEs, the
1122  * consumer index is updated only once all packets of the current one have
1123  * been processed.
1124  *
1125  * @param rxq
1126  *   Pointer to RX queue.
1127  * @param cqe
1128  *   CQE to process.
1129  * @param[out] mcqe
1130  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1131  *   written.
1132  *
1133  * @return
1134  *   0 in case of empty CQE, otherwise the packet size in bytes.
1135  */
1136 static inline int
mlx5_rx_poll_len(struct mlx5_rxq_data * rxq,volatile struct mlx5_cqe * cqe,uint16_t cqe_cnt,volatile struct mlx5_mini_cqe8 ** mcqe)1137 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1138 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1139 {
1140 	struct rxq_zip *zip = &rxq->zip;
1141 	uint16_t cqe_n = cqe_cnt + 1;
1142 	int len;
1143 	uint16_t idx, end;
1144 
1145 	do {
1146 		len = 0;
1147 		/* Process compressed data in the CQE and mini arrays. */
1148 		if (zip->ai) {
1149 			volatile struct mlx5_mini_cqe8 (*mc)[8] =
1150 				(volatile struct mlx5_mini_cqe8 (*)[8])
1151 				(uintptr_t)(&(*rxq->cqes)[zip->ca &
1152 							  cqe_cnt].pkt_info);
1153 			len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt &
1154 					       rxq->byte_mask);
1155 			*mcqe = &(*mc)[zip->ai & 7];
1156 			if ((++zip->ai & 7) == 0) {
1157 				/* Invalidate consumed CQEs */
1158 				idx = zip->ca;
1159 				end = zip->na;
1160 				while (idx != end) {
1161 					(*rxq->cqes)[idx & cqe_cnt].op_own =
1162 						MLX5_CQE_INVALIDATE;
1163 					++idx;
1164 				}
1165 				/*
1166 				 * Increment consumer index to skip the number
1167 				 * of CQEs consumed. Hardware leaves holes in
1168 				 * the CQ ring for software use.
1169 				 */
1170 				zip->ca = zip->na;
1171 				zip->na += 8;
1172 			}
1173 			if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1174 				/* Invalidate the rest */
1175 				idx = zip->ca;
1176 				end = zip->cq_ci;
1177 
1178 				while (idx != end) {
1179 					(*rxq->cqes)[idx & cqe_cnt].op_own =
1180 						MLX5_CQE_INVALIDATE;
1181 					++idx;
1182 				}
1183 				rxq->cq_ci = zip->cq_ci;
1184 				zip->ai = 0;
1185 			}
1186 		/*
1187 		 * No compressed data, get next CQE and verify if it is
1188 		 * compressed.
1189 		 */
1190 		} else {
1191 			int ret;
1192 			int8_t op_own;
1193 			uint32_t cq_ci;
1194 
1195 			ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1196 			if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
1197 				if (unlikely(ret == MLX5_CQE_STATUS_ERR ||
1198 					     rxq->err_state)) {
1199 					ret = mlx5_rx_err_handle(rxq, 0);
1200 					if (ret == MLX5_CQE_STATUS_HW_OWN ||
1201 					    ret == -1)
1202 						return 0;
1203 				} else {
1204 					return 0;
1205 				}
1206 			}
1207 			/*
1208 			 * Introduce the local variable to have queue cq_ci
1209 			 * index in queue structure always consistent with
1210 			 * actual CQE boundary (not pointing to the middle
1211 			 * of compressed CQE session).
1212 			 */
1213 			cq_ci = rxq->cq_ci + 1;
1214 			op_own = cqe->op_own;
1215 			if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1216 				volatile struct mlx5_mini_cqe8 (*mc)[8] =
1217 					(volatile struct mlx5_mini_cqe8 (*)[8])
1218 					(uintptr_t)(&(*rxq->cqes)
1219 						[cq_ci & cqe_cnt].pkt_info);
1220 
1221 				/* Fix endianness. */
1222 				zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1223 				/*
1224 				 * Current mini array position is the one
1225 				 * returned by check_cqe64().
1226 				 *
1227 				 * If completion comprises several mini arrays,
1228 				 * as a special case the second one is located
1229 				 * 7 CQEs after the initial CQE instead of 8
1230 				 * for subsequent ones.
1231 				 */
1232 				zip->ca = cq_ci;
1233 				zip->na = zip->ca + 7;
1234 				/* Compute the next non compressed CQE. */
1235 				zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1236 				/* Get packet size to return. */
1237 				len = rte_be_to_cpu_32((*mc)[0].byte_cnt &
1238 						       rxq->byte_mask);
1239 				*mcqe = &(*mc)[0];
1240 				zip->ai = 1;
1241 				/* Prefetch all to be invalidated */
1242 				idx = zip->ca;
1243 				end = zip->cq_ci;
1244 				while (idx != end) {
1245 					rte_prefetch0(&(*rxq->cqes)[(idx) &
1246 								    cqe_cnt]);
1247 					++idx;
1248 				}
1249 			} else {
1250 				rxq->cq_ci = cq_ci;
1251 				len = rte_be_to_cpu_32(cqe->byte_cnt);
1252 			}
1253 		}
1254 		if (unlikely(rxq->err_state)) {
1255 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1256 			++rxq->stats.idropped;
1257 		} else {
1258 			return len;
1259 		}
1260 	} while (1);
1261 }
1262 
1263 /**
1264  * Translate RX completion flags to offload flags.
1265  *
1266  * @param[in] cqe
1267  *   Pointer to CQE.
1268  *
1269  * @return
1270  *   Offload flags (ol_flags) for struct rte_mbuf.
1271  */
1272 static inline uint32_t
rxq_cq_to_ol_flags(volatile struct mlx5_cqe * cqe)1273 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1274 {
1275 	uint32_t ol_flags = 0;
1276 	uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1277 
1278 	ol_flags =
1279 		TRANSPOSE(flags,
1280 			  MLX5_CQE_RX_L3_HDR_VALID,
1281 			  PKT_RX_IP_CKSUM_GOOD) |
1282 		TRANSPOSE(flags,
1283 			  MLX5_CQE_RX_L4_HDR_VALID,
1284 			  PKT_RX_L4_CKSUM_GOOD);
1285 	return ol_flags;
1286 }
1287 
1288 /**
1289  * Fill in mbuf fields from RX completion flags.
1290  * Note that pkt->ol_flags should be initialized outside of this function.
1291  *
1292  * @param rxq
1293  *   Pointer to RX queue.
1294  * @param pkt
1295  *   mbuf to fill.
1296  * @param cqe
1297  *   CQE to process.
1298  * @param rss_hash_res
1299  *   Packet RSS Hash result.
1300  */
1301 static inline void
rxq_cq_to_mbuf(struct mlx5_rxq_data * rxq,struct rte_mbuf * pkt,volatile struct mlx5_cqe * cqe,volatile struct mlx5_mini_cqe8 * mcqe)1302 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1303 	       volatile struct mlx5_cqe *cqe,
1304 	       volatile struct mlx5_mini_cqe8 *mcqe)
1305 {
1306 	/* Update packet information. */
1307 	pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe, mcqe);
1308 
1309 	if (rxq->rss_hash) {
1310 		uint32_t rss_hash_res = 0;
1311 
1312 		/* If compressed, take hash result from mini-CQE. */
1313 		if (mcqe == NULL ||
1314 		    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_HASH)
1315 			rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
1316 		else
1317 			rss_hash_res = rte_be_to_cpu_32(mcqe->rx_hash_result);
1318 		if (rss_hash_res) {
1319 			pkt->hash.rss = rss_hash_res;
1320 			pkt->ol_flags |= PKT_RX_RSS_HASH;
1321 		}
1322 	}
1323 	if (rxq->mark) {
1324 		uint32_t mark = 0;
1325 
1326 		/* If compressed, take flow tag from mini-CQE. */
1327 		if (mcqe == NULL ||
1328 		    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_FTAG_STRIDX)
1329 			mark = cqe->sop_drop_qpn;
1330 		else
1331 			mark = ((mcqe->byte_cnt_flow & 0xff) << 8) |
1332 				(mcqe->flow_tag_high << 16);
1333 		if (MLX5_FLOW_MARK_IS_VALID(mark)) {
1334 			pkt->ol_flags |= PKT_RX_FDIR;
1335 			if (mark != RTE_BE32(MLX5_FLOW_MARK_DEFAULT)) {
1336 				pkt->ol_flags |= PKT_RX_FDIR_ID;
1337 				pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1338 			}
1339 		}
1340 	}
1341 	if (rxq->dynf_meta && cqe->flow_table_metadata) {
1342 		pkt->ol_flags |= rxq->flow_meta_mask;
1343 		*RTE_MBUF_DYNFIELD(pkt, rxq->flow_meta_offset, uint32_t *) =
1344 			cqe->flow_table_metadata;
1345 	}
1346 	if (rxq->csum)
1347 		pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1348 	if (rxq->vlan_strip) {
1349 		bool vlan_strip;
1350 
1351 		if (mcqe == NULL ||
1352 		    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
1353 			vlan_strip = cqe->hdr_type_etc &
1354 				     RTE_BE16(MLX5_CQE_VLAN_STRIPPED);
1355 		else
1356 			vlan_strip = mcqe->hdr_type &
1357 				     RTE_BE16(MLX5_CQE_VLAN_STRIPPED);
1358 		if (vlan_strip) {
1359 			pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1360 			pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1361 		}
1362 	}
1363 	if (rxq->hw_timestamp) {
1364 		uint64_t ts = rte_be_to_cpu_64(cqe->timestamp);
1365 
1366 		if (rxq->rt_timestamp)
1367 			ts = mlx5_txpp_convert_rx_ts(rxq->sh, ts);
1368 		mlx5_timestamp_set(pkt, rxq->timestamp_offset, ts);
1369 		pkt->ol_flags |= rxq->timestamp_rx_flag;
1370 	}
1371 }
1372 
1373 /**
1374  * DPDK callback for RX.
1375  *
1376  * @param dpdk_rxq
1377  *   Generic pointer to RX queue structure.
1378  * @param[out] pkts
1379  *   Array to store received packets.
1380  * @param pkts_n
1381  *   Maximum number of packets in array.
1382  *
1383  * @return
1384  *   Number of packets successfully received (<= pkts_n).
1385  */
1386 uint16_t
mlx5_rx_burst(void * dpdk_rxq,struct rte_mbuf ** pkts,uint16_t pkts_n)1387 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1388 {
1389 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1390 	const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1391 	const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1392 	const unsigned int sges_n = rxq->sges_n;
1393 	struct rte_mbuf *pkt = NULL;
1394 	struct rte_mbuf *seg = NULL;
1395 	volatile struct mlx5_cqe *cqe =
1396 		&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1397 	unsigned int i = 0;
1398 	unsigned int rq_ci = rxq->rq_ci << sges_n;
1399 	int len = 0; /* keep its value across iterations. */
1400 
1401 	while (pkts_n) {
1402 		unsigned int idx = rq_ci & wqe_cnt;
1403 		volatile struct mlx5_wqe_data_seg *wqe =
1404 			&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1405 		struct rte_mbuf *rep = (*rxq->elts)[idx];
1406 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1407 
1408 		if (pkt)
1409 			NEXT(seg) = rep;
1410 		seg = rep;
1411 		rte_prefetch0(seg);
1412 		rte_prefetch0(cqe);
1413 		rte_prefetch0(wqe);
1414 		/* Allocate the buf from the same pool. */
1415 		rep = rte_mbuf_raw_alloc(seg->pool);
1416 		if (unlikely(rep == NULL)) {
1417 			++rxq->stats.rx_nombuf;
1418 			if (!pkt) {
1419 				/*
1420 				 * no buffers before we even started,
1421 				 * bail out silently.
1422 				 */
1423 				break;
1424 			}
1425 			while (pkt != seg) {
1426 				MLX5_ASSERT(pkt != (*rxq->elts)[idx]);
1427 				rep = NEXT(pkt);
1428 				NEXT(pkt) = NULL;
1429 				NB_SEGS(pkt) = 1;
1430 				rte_mbuf_raw_free(pkt);
1431 				pkt = rep;
1432 			}
1433 			break;
1434 		}
1435 		if (!pkt) {
1436 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1437 			len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
1438 			if (!len) {
1439 				rte_mbuf_raw_free(rep);
1440 				break;
1441 			}
1442 			pkt = seg;
1443 			MLX5_ASSERT(len >= (rxq->crc_present << 2));
1444 			pkt->ol_flags &= EXT_ATTACHED_MBUF;
1445 			rxq_cq_to_mbuf(rxq, pkt, cqe, mcqe);
1446 			if (rxq->crc_present)
1447 				len -= RTE_ETHER_CRC_LEN;
1448 			PKT_LEN(pkt) = len;
1449 			if (cqe->lro_num_seg > 1) {
1450 				mlx5_lro_update_hdr
1451 					(rte_pktmbuf_mtod(pkt, uint8_t *), cqe,
1452 					 mcqe, rxq, len);
1453 				pkt->ol_flags |= PKT_RX_LRO;
1454 				pkt->tso_segsz = len / cqe->lro_num_seg;
1455 			}
1456 		}
1457 		DATA_LEN(rep) = DATA_LEN(seg);
1458 		PKT_LEN(rep) = PKT_LEN(seg);
1459 		SET_DATA_OFF(rep, DATA_OFF(seg));
1460 		PORT(rep) = PORT(seg);
1461 		(*rxq->elts)[idx] = rep;
1462 		/*
1463 		 * Fill NIC descriptor with the new buffer.  The lkey and size
1464 		 * of the buffers are already known, only the buffer address
1465 		 * changes.
1466 		 */
1467 		wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1468 		/* If there's only one MR, no need to replace LKey in WQE. */
1469 		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
1470 			wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
1471 		if (len > DATA_LEN(seg)) {
1472 			len -= DATA_LEN(seg);
1473 			++NB_SEGS(pkt);
1474 			++rq_ci;
1475 			continue;
1476 		}
1477 		DATA_LEN(seg) = len;
1478 #ifdef MLX5_PMD_SOFT_COUNTERS
1479 		/* Increment bytes counter. */
1480 		rxq->stats.ibytes += PKT_LEN(pkt);
1481 #endif
1482 		/* Return packet. */
1483 		*(pkts++) = pkt;
1484 		pkt = NULL;
1485 		--pkts_n;
1486 		++i;
1487 		/* Align consumer index to the next stride. */
1488 		rq_ci >>= sges_n;
1489 		++rq_ci;
1490 		rq_ci <<= sges_n;
1491 	}
1492 	if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1493 		return 0;
1494 	/* Update the consumer index. */
1495 	rxq->rq_ci = rq_ci >> sges_n;
1496 	rte_io_wmb();
1497 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1498 	rte_io_wmb();
1499 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1500 #ifdef MLX5_PMD_SOFT_COUNTERS
1501 	/* Increment packets counter. */
1502 	rxq->stats.ipackets += i;
1503 #endif
1504 	return i;
1505 }
1506 
1507 /**
1508  * Update LRO packet TCP header.
1509  * The HW LRO feature doesn't update the TCP header after coalescing the
1510  * TCP segments but supplies information in CQE to fill it by SW.
1511  *
1512  * @param tcp
1513  *   Pointer to the TCP header.
1514  * @param cqe
1515  *   Pointer to the completion entry..
1516  * @param phcsum
1517  *   The L3 pseudo-header checksum.
1518  */
1519 static inline void
mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr * __rte_restrict tcp,volatile struct mlx5_cqe * __rte_restrict cqe,uint32_t phcsum,uint8_t l4_type)1520 mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *__rte_restrict tcp,
1521 			volatile struct mlx5_cqe *__rte_restrict cqe,
1522 			uint32_t phcsum, uint8_t l4_type)
1523 {
1524 	/*
1525 	 * The HW calculates only the TCP payload checksum, need to complete
1526 	 * the TCP header checksum and the L3 pseudo-header checksum.
1527 	 */
1528 	uint32_t csum = phcsum + cqe->csum;
1529 
1530 	if (l4_type == MLX5_L4_HDR_TYPE_TCP_EMPTY_ACK ||
1531 	    l4_type == MLX5_L4_HDR_TYPE_TCP_WITH_ACL) {
1532 		tcp->tcp_flags |= RTE_TCP_ACK_FLAG;
1533 		tcp->recv_ack = cqe->lro_ack_seq_num;
1534 		tcp->rx_win = cqe->lro_tcp_win;
1535 	}
1536 	if (cqe->lro_tcppsh_abort_dupack & MLX5_CQE_LRO_PUSH_MASK)
1537 		tcp->tcp_flags |= RTE_TCP_PSH_FLAG;
1538 	tcp->cksum = 0;
1539 	csum += rte_raw_cksum(tcp, (tcp->data_off >> 4) * 4);
1540 	csum = ((csum & 0xffff0000) >> 16) + (csum & 0xffff);
1541 	csum = (~csum) & 0xffff;
1542 	if (csum == 0)
1543 		csum = 0xffff;
1544 	tcp->cksum = csum;
1545 }
1546 
1547 /**
1548  * Update LRO packet headers.
1549  * The HW LRO feature doesn't update the L3/TCP headers after coalescing the
1550  * TCP segments but supply information in CQE to fill it by SW.
1551  *
1552  * @param padd
1553  *   The packet address.
1554  * @param cqe
1555  *   Pointer to the completion entry..
1556  * @param len
1557  *   The packet length.
1558  */
1559 static inline void
mlx5_lro_update_hdr(uint8_t * __rte_restrict padd,volatile struct mlx5_cqe * __rte_restrict cqe,volatile struct mlx5_mini_cqe8 * mcqe,struct mlx5_rxq_data * rxq,uint32_t len)1560 mlx5_lro_update_hdr(uint8_t *__rte_restrict padd,
1561 		    volatile struct mlx5_cqe *__rte_restrict cqe,
1562 		    volatile struct mlx5_mini_cqe8 *mcqe,
1563 		    struct mlx5_rxq_data *rxq, uint32_t len)
1564 {
1565 	union {
1566 		struct rte_ether_hdr *eth;
1567 		struct rte_vlan_hdr *vlan;
1568 		struct rte_ipv4_hdr *ipv4;
1569 		struct rte_ipv6_hdr *ipv6;
1570 		struct rte_tcp_hdr *tcp;
1571 		uint8_t *hdr;
1572 	} h = {
1573 			.hdr = padd,
1574 	};
1575 	uint16_t proto = h.eth->ether_type;
1576 	uint32_t phcsum;
1577 	uint8_t l4_type;
1578 
1579 	h.eth++;
1580 	while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) ||
1581 	       proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) {
1582 		proto = h.vlan->eth_proto;
1583 		h.vlan++;
1584 	}
1585 	if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) {
1586 		h.ipv4->time_to_live = cqe->lro_min_ttl;
1587 		h.ipv4->total_length = rte_cpu_to_be_16(len - (h.hdr - padd));
1588 		h.ipv4->hdr_checksum = 0;
1589 		h.ipv4->hdr_checksum = rte_ipv4_cksum(h.ipv4);
1590 		phcsum = rte_ipv4_phdr_cksum(h.ipv4, 0);
1591 		h.ipv4++;
1592 	} else {
1593 		h.ipv6->hop_limits = cqe->lro_min_ttl;
1594 		h.ipv6->payload_len = rte_cpu_to_be_16(len - (h.hdr - padd) -
1595 						       sizeof(*h.ipv6));
1596 		phcsum = rte_ipv6_phdr_cksum(h.ipv6, 0);
1597 		h.ipv6++;
1598 	}
1599 	if (mcqe == NULL ||
1600 	    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
1601 		l4_type = (rte_be_to_cpu_16(cqe->hdr_type_etc) &
1602 			   MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
1603 	else
1604 		l4_type = (rte_be_to_cpu_16(mcqe->hdr_type) &
1605 			   MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
1606 	mlx5_lro_update_tcp_hdr(h.tcp, cqe, phcsum, l4_type);
1607 }
1608 
1609 void
mlx5_mprq_buf_free_cb(void * addr __rte_unused,void * opaque)1610 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
1611 {
1612 	struct mlx5_mprq_buf *buf = opaque;
1613 
1614 	if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) {
1615 		rte_mempool_put(buf->mp, buf);
1616 	} else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1,
1617 					       __ATOMIC_RELAXED) == 0)) {
1618 		__atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED);
1619 		rte_mempool_put(buf->mp, buf);
1620 	}
1621 }
1622 
1623 void
mlx5_mprq_buf_free(struct mlx5_mprq_buf * buf)1624 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
1625 {
1626 	mlx5_mprq_buf_free_cb(NULL, buf);
1627 }
1628 
1629 /**
1630  * DPDK callback for RX with Multi-Packet RQ support.
1631  *
1632  * @param dpdk_rxq
1633  *   Generic pointer to RX queue structure.
1634  * @param[out] pkts
1635  *   Array to store received packets.
1636  * @param pkts_n
1637  *   Maximum number of packets in array.
1638  *
1639  * @return
1640  *   Number of packets successfully received (<= pkts_n).
1641  */
1642 uint16_t
mlx5_rx_burst_mprq(void * dpdk_rxq,struct rte_mbuf ** pkts,uint16_t pkts_n)1643 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1644 {
1645 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1646 	const uint32_t strd_n = 1 << rxq->strd_num_n;
1647 	const uint32_t strd_sz = 1 << rxq->strd_sz_n;
1648 	const uint32_t cq_mask = (1 << rxq->cqe_n) - 1;
1649 	const uint32_t wq_mask = (1 << rxq->elts_n) - 1;
1650 	volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
1651 	unsigned int i = 0;
1652 	uint32_t rq_ci = rxq->rq_ci;
1653 	uint16_t consumed_strd = rxq->consumed_strd;
1654 	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
1655 
1656 	while (i < pkts_n) {
1657 		struct rte_mbuf *pkt;
1658 		int ret;
1659 		uint32_t len;
1660 		uint16_t strd_cnt;
1661 		uint16_t strd_idx;
1662 		uint32_t byte_cnt;
1663 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1664 		enum mlx5_rqx_code rxq_code;
1665 
1666 		if (consumed_strd == strd_n) {
1667 			/* Replace WQE if the buffer is still in use. */
1668 			mprq_buf_replace(rxq, rq_ci & wq_mask);
1669 			/* Advance to the next WQE. */
1670 			consumed_strd = 0;
1671 			++rq_ci;
1672 			buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
1673 		}
1674 		cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
1675 		ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
1676 		if (!ret)
1677 			break;
1678 		byte_cnt = ret;
1679 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
1680 		MLX5_ASSERT((int)len >= (rxq->crc_present << 2));
1681 		if (rxq->crc_present)
1682 			len -= RTE_ETHER_CRC_LEN;
1683 		if (mcqe &&
1684 		    rxq->mcqe_format == MLX5_CQE_RESP_FORMAT_FTAG_STRIDX)
1685 			strd_cnt = (len / strd_sz) + !!(len % strd_sz);
1686 		else
1687 			strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
1688 				   MLX5_MPRQ_STRIDE_NUM_SHIFT;
1689 		MLX5_ASSERT(strd_cnt);
1690 		consumed_strd += strd_cnt;
1691 		if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
1692 			continue;
1693 		strd_idx = rte_be_to_cpu_16(mcqe == NULL ?
1694 					cqe->wqe_counter :
1695 					mcqe->stride_idx);
1696 		MLX5_ASSERT(strd_idx < strd_n);
1697 		MLX5_ASSERT(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) &
1698 			    wq_mask));
1699 		pkt = rte_pktmbuf_alloc(rxq->mp);
1700 		if (unlikely(pkt == NULL)) {
1701 			++rxq->stats.rx_nombuf;
1702 			break;
1703 		}
1704 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
1705 		MLX5_ASSERT((int)len >= (rxq->crc_present << 2));
1706 		if (rxq->crc_present)
1707 			len -= RTE_ETHER_CRC_LEN;
1708 		rxq_code = mprq_buf_to_pkt(rxq, pkt, len, buf,
1709 					   strd_idx, strd_cnt);
1710 		if (unlikely(rxq_code != MLX5_RXQ_CODE_EXIT)) {
1711 			rte_pktmbuf_free_seg(pkt);
1712 			if (rxq_code == MLX5_RXQ_CODE_DROPPED) {
1713 				++rxq->stats.idropped;
1714 				continue;
1715 			}
1716 			if (rxq_code == MLX5_RXQ_CODE_NOMBUF) {
1717 				++rxq->stats.rx_nombuf;
1718 				break;
1719 			}
1720 		}
1721 		rxq_cq_to_mbuf(rxq, pkt, cqe, mcqe);
1722 		if (cqe->lro_num_seg > 1) {
1723 			mlx5_lro_update_hdr(rte_pktmbuf_mtod(pkt, uint8_t *),
1724 					    cqe, mcqe, rxq, len);
1725 			pkt->ol_flags |= PKT_RX_LRO;
1726 			pkt->tso_segsz = len / cqe->lro_num_seg;
1727 		}
1728 		PKT_LEN(pkt) = len;
1729 		PORT(pkt) = rxq->port_id;
1730 #ifdef MLX5_PMD_SOFT_COUNTERS
1731 		/* Increment bytes counter. */
1732 		rxq->stats.ibytes += PKT_LEN(pkt);
1733 #endif
1734 		/* Return packet. */
1735 		*(pkts++) = pkt;
1736 		++i;
1737 	}
1738 	/* Update the consumer indexes. */
1739 	rxq->consumed_strd = consumed_strd;
1740 	rte_io_wmb();
1741 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1742 	if (rq_ci != rxq->rq_ci) {
1743 		rxq->rq_ci = rq_ci;
1744 		rte_io_wmb();
1745 		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1746 	}
1747 #ifdef MLX5_PMD_SOFT_COUNTERS
1748 	/* Increment packets counter. */
1749 	rxq->stats.ipackets += i;
1750 #endif
1751 	return i;
1752 }
1753 
1754 /**
1755  * Dummy DPDK callback for TX.
1756  *
1757  * This function is used to temporarily replace the real callback during
1758  * unsafe control operations on the queue, or in case of error.
1759  *
1760  * @param dpdk_txq
1761  *   Generic pointer to TX queue structure.
1762  * @param[in] pkts
1763  *   Packets to transmit.
1764  * @param pkts_n
1765  *   Number of packets in array.
1766  *
1767  * @return
1768  *   Number of packets successfully transmitted (<= pkts_n).
1769  */
1770 uint16_t
removed_tx_burst(void * dpdk_txq __rte_unused,struct rte_mbuf ** pkts __rte_unused,uint16_t pkts_n __rte_unused)1771 removed_tx_burst(void *dpdk_txq __rte_unused,
1772 		 struct rte_mbuf **pkts __rte_unused,
1773 		 uint16_t pkts_n __rte_unused)
1774 {
1775 	rte_mb();
1776 	return 0;
1777 }
1778 
1779 /**
1780  * Dummy DPDK callback for RX.
1781  *
1782  * This function is used to temporarily replace the real callback during
1783  * unsafe control operations on the queue, or in case of error.
1784  *
1785  * @param dpdk_rxq
1786  *   Generic pointer to RX queue structure.
1787  * @param[out] pkts
1788  *   Array to store received packets.
1789  * @param pkts_n
1790  *   Maximum number of packets in array.
1791  *
1792  * @return
1793  *   Number of packets successfully received (<= pkts_n).
1794  */
1795 uint16_t
removed_rx_burst(void * dpdk_txq __rte_unused,struct rte_mbuf ** pkts __rte_unused,uint16_t pkts_n __rte_unused)1796 removed_rx_burst(void *dpdk_txq __rte_unused,
1797 		 struct rte_mbuf **pkts __rte_unused,
1798 		 uint16_t pkts_n __rte_unused)
1799 {
1800 	rte_mb();
1801 	return 0;
1802 }
1803 
1804 /*
1805  * Vectorized Rx/Tx routines are not compiled in when required vector
1806  * instructions are not supported on a target architecture. The following null
1807  * stubs are needed for linkage when those are not included outside of this file
1808  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
1809  */
1810 
1811 __rte_weak uint16_t
mlx5_rx_burst_vec(void * dpdk_txq __rte_unused,struct rte_mbuf ** pkts __rte_unused,uint16_t pkts_n __rte_unused)1812 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
1813 		  struct rte_mbuf **pkts __rte_unused,
1814 		  uint16_t pkts_n __rte_unused)
1815 {
1816 	return 0;
1817 }
1818 
1819 __rte_weak uint16_t
mlx5_rx_burst_mprq_vec(void * dpdk_txq __rte_unused,struct rte_mbuf ** pkts __rte_unused,uint16_t pkts_n __rte_unused)1820 mlx5_rx_burst_mprq_vec(void *dpdk_txq __rte_unused,
1821 		       struct rte_mbuf **pkts __rte_unused,
1822 		       uint16_t pkts_n __rte_unused)
1823 {
1824 	return 0;
1825 }
1826 
1827 __rte_weak int
mlx5_rxq_check_vec_support(struct mlx5_rxq_data * rxq __rte_unused)1828 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
1829 {
1830 	return -ENOTSUP;
1831 }
1832 
1833 __rte_weak int
mlx5_check_vec_rx_support(struct rte_eth_dev * dev __rte_unused)1834 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
1835 {
1836 	return -ENOTSUP;
1837 }
1838 
1839 /**
1840  * Free the mbufs from the linear array of pointers.
1841  *
1842  * @param pkts
1843  *   Pointer to array of packets to be free.
1844  * @param pkts_n
1845  *   Number of packets to be freed.
1846  * @param olx
1847  *   Configured Tx offloads mask. It is fully defined at
1848  *   compile time and may be used for optimization.
1849  */
1850 static __rte_always_inline void
mlx5_tx_free_mbuf(struct rte_mbuf ** __rte_restrict pkts,unsigned int pkts_n,unsigned int olx __rte_unused)1851 mlx5_tx_free_mbuf(struct rte_mbuf **__rte_restrict pkts,
1852 		  unsigned int pkts_n,
1853 		  unsigned int olx __rte_unused)
1854 {
1855 	struct rte_mempool *pool = NULL;
1856 	struct rte_mbuf **p_free = NULL;
1857 	struct rte_mbuf *mbuf;
1858 	unsigned int n_free = 0;
1859 
1860 	/*
1861 	 * The implemented algorithm eliminates
1862 	 * copying pointers to temporary array
1863 	 * for rte_mempool_put_bulk() calls.
1864 	 */
1865 	MLX5_ASSERT(pkts);
1866 	MLX5_ASSERT(pkts_n);
1867 	for (;;) {
1868 		for (;;) {
1869 			/*
1870 			 * Decrement mbuf reference counter, detach
1871 			 * indirect and external buffers if needed.
1872 			 */
1873 			mbuf = rte_pktmbuf_prefree_seg(*pkts);
1874 			if (likely(mbuf != NULL)) {
1875 				MLX5_ASSERT(mbuf == *pkts);
1876 				if (likely(n_free != 0)) {
1877 					if (unlikely(pool != mbuf->pool))
1878 						/* From different pool. */
1879 						break;
1880 				} else {
1881 					/* Start new scan array. */
1882 					pool = mbuf->pool;
1883 					p_free = pkts;
1884 				}
1885 				++n_free;
1886 				++pkts;
1887 				--pkts_n;
1888 				if (unlikely(pkts_n == 0)) {
1889 					mbuf = NULL;
1890 					break;
1891 				}
1892 			} else {
1893 				/*
1894 				 * This happens if mbuf is still referenced.
1895 				 * We can't put it back to the pool, skip.
1896 				 */
1897 				++pkts;
1898 				--pkts_n;
1899 				if (unlikely(n_free != 0))
1900 					/* There is some array to free.*/
1901 					break;
1902 				if (unlikely(pkts_n == 0))
1903 					/* Last mbuf, nothing to free. */
1904 					return;
1905 			}
1906 		}
1907 		for (;;) {
1908 			/*
1909 			 * This loop is implemented to avoid multiple
1910 			 * inlining of rte_mempool_put_bulk().
1911 			 */
1912 			MLX5_ASSERT(pool);
1913 			MLX5_ASSERT(p_free);
1914 			MLX5_ASSERT(n_free);
1915 			/*
1916 			 * Free the array of pre-freed mbufs
1917 			 * belonging to the same memory pool.
1918 			 */
1919 			rte_mempool_put_bulk(pool, (void *)p_free, n_free);
1920 			if (unlikely(mbuf != NULL)) {
1921 				/* There is the request to start new scan. */
1922 				pool = mbuf->pool;
1923 				p_free = pkts++;
1924 				n_free = 1;
1925 				--pkts_n;
1926 				if (likely(pkts_n != 0))
1927 					break;
1928 				/*
1929 				 * This is the last mbuf to be freed.
1930 				 * Do one more loop iteration to complete.
1931 				 * This is rare case of the last unique mbuf.
1932 				 */
1933 				mbuf = NULL;
1934 				continue;
1935 			}
1936 			if (likely(pkts_n == 0))
1937 				return;
1938 			n_free = 0;
1939 			break;
1940 		}
1941 	}
1942 }
1943 
1944 /**
1945  * Free the mbuf from the elts ring buffer till new tail.
1946  *
1947  * @param txq
1948  *   Pointer to Tx queue structure.
1949  * @param tail
1950  *   Index in elts to free up to, becomes new elts tail.
1951  * @param olx
1952  *   Configured Tx offloads mask. It is fully defined at
1953  *   compile time and may be used for optimization.
1954  */
1955 static __rte_always_inline void
mlx5_tx_free_elts(struct mlx5_txq_data * __rte_restrict txq,uint16_t tail,unsigned int olx __rte_unused)1956 mlx5_tx_free_elts(struct mlx5_txq_data *__rte_restrict txq,
1957 		  uint16_t tail,
1958 		  unsigned int olx __rte_unused)
1959 {
1960 	uint16_t n_elts = tail - txq->elts_tail;
1961 
1962 	MLX5_ASSERT(n_elts);
1963 	MLX5_ASSERT(n_elts <= txq->elts_s);
1964 	/*
1965 	 * Implement a loop to support ring buffer wraparound
1966 	 * with single inlining of mlx5_tx_free_mbuf().
1967 	 */
1968 	do {
1969 		unsigned int part;
1970 
1971 		part = txq->elts_s - (txq->elts_tail & txq->elts_m);
1972 		part = RTE_MIN(part, n_elts);
1973 		MLX5_ASSERT(part);
1974 		MLX5_ASSERT(part <= txq->elts_s);
1975 		mlx5_tx_free_mbuf(&txq->elts[txq->elts_tail & txq->elts_m],
1976 				  part, olx);
1977 		txq->elts_tail += part;
1978 		n_elts -= part;
1979 	} while (n_elts);
1980 }
1981 
1982 /**
1983  * Store the mbuf being sent into elts ring buffer.
1984  * On Tx completion these mbufs will be freed.
1985  *
1986  * @param txq
1987  *   Pointer to Tx queue structure.
1988  * @param pkts
1989  *   Pointer to array of packets to be stored.
1990  * @param pkts_n
1991  *   Number of packets to be stored.
1992  * @param olx
1993  *   Configured Tx offloads mask. It is fully defined at
1994  *   compile time and may be used for optimization.
1995  */
1996 static __rte_always_inline void
mlx5_tx_copy_elts(struct mlx5_txq_data * __rte_restrict txq,struct rte_mbuf ** __rte_restrict pkts,unsigned int pkts_n,unsigned int olx __rte_unused)1997 mlx5_tx_copy_elts(struct mlx5_txq_data *__rte_restrict txq,
1998 		  struct rte_mbuf **__rte_restrict pkts,
1999 		  unsigned int pkts_n,
2000 		  unsigned int olx __rte_unused)
2001 {
2002 	unsigned int part;
2003 	struct rte_mbuf **elts = (struct rte_mbuf **)txq->elts;
2004 
2005 	MLX5_ASSERT(pkts);
2006 	MLX5_ASSERT(pkts_n);
2007 	part = txq->elts_s - (txq->elts_head & txq->elts_m);
2008 	MLX5_ASSERT(part);
2009 	MLX5_ASSERT(part <= txq->elts_s);
2010 	/* This code is a good candidate for vectorizing with SIMD. */
2011 	rte_memcpy((void *)(elts + (txq->elts_head & txq->elts_m)),
2012 		   (void *)pkts,
2013 		   RTE_MIN(part, pkts_n) * sizeof(struct rte_mbuf *));
2014 	txq->elts_head += pkts_n;
2015 	if (unlikely(part < pkts_n))
2016 		/* The copy is wrapping around the elts array. */
2017 		rte_memcpy((void *)elts, (void *)(pkts + part),
2018 			   (pkts_n - part) * sizeof(struct rte_mbuf *));
2019 }
2020 
2021 /**
2022  * Update completion queue consuming index via doorbell
2023  * and flush the completed data buffers.
2024  *
2025  * @param txq
2026  *   Pointer to TX queue structure.
2027  * @param valid CQE pointer
2028  *   if not NULL update txq->wqe_pi and flush the buffers
2029  * @param olx
2030  *   Configured Tx offloads mask. It is fully defined at
2031  *   compile time and may be used for optimization.
2032  */
2033 static __rte_always_inline void
mlx5_tx_comp_flush(struct mlx5_txq_data * __rte_restrict txq,volatile struct mlx5_cqe * last_cqe,unsigned int olx __rte_unused)2034 mlx5_tx_comp_flush(struct mlx5_txq_data *__rte_restrict txq,
2035 		   volatile struct mlx5_cqe *last_cqe,
2036 		   unsigned int olx __rte_unused)
2037 {
2038 	if (likely(last_cqe != NULL)) {
2039 		uint16_t tail;
2040 
2041 		txq->wqe_pi = rte_be_to_cpu_16(last_cqe->wqe_counter);
2042 		tail = txq->fcqs[(txq->cq_ci - 1) & txq->cqe_m];
2043 		if (likely(tail != txq->elts_tail)) {
2044 			mlx5_tx_free_elts(txq, tail, olx);
2045 			MLX5_ASSERT(tail == txq->elts_tail);
2046 		}
2047 	}
2048 }
2049 
2050 /**
2051  * Manage TX completions. This routine checks the CQ for
2052  * arrived CQEs, deduces the last accomplished WQE in SQ,
2053  * updates SQ producing index and frees all completed mbufs.
2054  *
2055  * @param txq
2056  *   Pointer to TX queue structure.
2057  * @param olx
2058  *   Configured Tx offloads mask. It is fully defined at
2059  *   compile time and may be used for optimization.
2060  *
2061  * NOTE: not inlined intentionally, it makes tx_burst
2062  * routine smaller, simple and faster - from experiments.
2063  */
2064 static void
mlx5_tx_handle_completion(struct mlx5_txq_data * __rte_restrict txq,unsigned int olx __rte_unused)2065 mlx5_tx_handle_completion(struct mlx5_txq_data *__rte_restrict txq,
2066 			  unsigned int olx __rte_unused)
2067 {
2068 	unsigned int count = MLX5_TX_COMP_MAX_CQE;
2069 	volatile struct mlx5_cqe *last_cqe = NULL;
2070 	bool ring_doorbell = false;
2071 	int ret;
2072 
2073 	static_assert(MLX5_CQE_STATUS_HW_OWN < 0, "Must be negative value");
2074 	static_assert(MLX5_CQE_STATUS_SW_OWN < 0, "Must be negative value");
2075 	do {
2076 		volatile struct mlx5_cqe *cqe;
2077 
2078 		cqe = &txq->cqes[txq->cq_ci & txq->cqe_m];
2079 		ret = check_cqe(cqe, txq->cqe_s, txq->cq_ci);
2080 		if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
2081 			if (likely(ret != MLX5_CQE_STATUS_ERR)) {
2082 				/* No new CQEs in completion queue. */
2083 				MLX5_ASSERT(ret == MLX5_CQE_STATUS_HW_OWN);
2084 				break;
2085 			}
2086 			/*
2087 			 * Some error occurred, try to restart.
2088 			 * We have no barrier after WQE related Doorbell
2089 			 * written, make sure all writes are completed
2090 			 * here, before we might perform SQ reset.
2091 			 */
2092 			rte_wmb();
2093 			ret = mlx5_tx_error_cqe_handle
2094 				(txq, (volatile struct mlx5_err_cqe *)cqe);
2095 			if (unlikely(ret < 0)) {
2096 				/*
2097 				 * Some error occurred on queue error
2098 				 * handling, we do not advance the index
2099 				 * here, allowing to retry on next call.
2100 				 */
2101 				return;
2102 			}
2103 			/*
2104 			 * We are going to fetch all entries with
2105 			 * MLX5_CQE_SYNDROME_WR_FLUSH_ERR status.
2106 			 * The send queue is supposed to be empty.
2107 			 */
2108 			ring_doorbell = true;
2109 			++txq->cq_ci;
2110 			txq->cq_pi = txq->cq_ci;
2111 			last_cqe = NULL;
2112 			continue;
2113 		}
2114 		/* Normal transmit completion. */
2115 		MLX5_ASSERT(txq->cq_ci != txq->cq_pi);
2116 #ifdef RTE_LIBRTE_MLX5_DEBUG
2117 		MLX5_ASSERT((txq->fcqs[txq->cq_ci & txq->cqe_m] >> 16) ==
2118 			    cqe->wqe_counter);
2119 #endif
2120 		ring_doorbell = true;
2121 		++txq->cq_ci;
2122 		last_cqe = cqe;
2123 		/*
2124 		 * We have to restrict the amount of processed CQEs
2125 		 * in one tx_burst routine call. The CQ may be large
2126 		 * and many CQEs may be updated by the NIC in one
2127 		 * transaction. Buffers freeing is time consuming,
2128 		 * multiple iterations may introduce significant
2129 		 * latency.
2130 		 */
2131 		if (likely(--count == 0))
2132 			break;
2133 	} while (true);
2134 	if (likely(ring_doorbell)) {
2135 		/* Ring doorbell to notify hardware. */
2136 		rte_compiler_barrier();
2137 		*txq->cq_db = rte_cpu_to_be_32(txq->cq_ci);
2138 		mlx5_tx_comp_flush(txq, last_cqe, olx);
2139 	}
2140 }
2141 
2142 /**
2143  * Check if the completion request flag should be set in the last WQE.
2144  * Both pushed mbufs and WQEs are monitored and the completion request
2145  * flag is set if any of thresholds is reached.
2146  *
2147  * @param txq
2148  *   Pointer to TX queue structure.
2149  * @param loc
2150  *   Pointer to burst routine local context.
2151  * @param olx
2152  *   Configured Tx offloads mask. It is fully defined at
2153  *   compile time and may be used for optimization.
2154  */
2155 static __rte_always_inline void
mlx5_tx_request_completion(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)2156 mlx5_tx_request_completion(struct mlx5_txq_data *__rte_restrict txq,
2157 			   struct mlx5_txq_local *__rte_restrict loc,
2158 			   unsigned int olx)
2159 {
2160 	uint16_t head = txq->elts_head;
2161 	unsigned int part;
2162 
2163 	part = MLX5_TXOFF_CONFIG(INLINE) ?
2164 	       0 : loc->pkts_sent - loc->pkts_copy;
2165 	head += part;
2166 	if ((uint16_t)(head - txq->elts_comp) >= MLX5_TX_COMP_THRESH ||
2167 	     (MLX5_TXOFF_CONFIG(INLINE) &&
2168 	     (uint16_t)(txq->wqe_ci - txq->wqe_comp) >= txq->wqe_thres)) {
2169 		volatile struct mlx5_wqe *last = loc->wqe_last;
2170 
2171 		MLX5_ASSERT(last);
2172 		txq->elts_comp = head;
2173 		if (MLX5_TXOFF_CONFIG(INLINE))
2174 			txq->wqe_comp = txq->wqe_ci;
2175 		/* Request unconditional completion on last WQE. */
2176 		last->cseg.flags = RTE_BE32(MLX5_COMP_ALWAYS <<
2177 					    MLX5_COMP_MODE_OFFSET);
2178 		/* Save elts_head in dedicated free on completion queue. */
2179 #ifdef RTE_LIBRTE_MLX5_DEBUG
2180 		txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head |
2181 			  (last->cseg.opcode >> 8) << 16;
2182 #else
2183 		txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head;
2184 #endif
2185 		/* A CQE slot must always be available. */
2186 		MLX5_ASSERT((txq->cq_pi - txq->cq_ci) <= txq->cqe_s);
2187 	}
2188 }
2189 
2190 /**
2191  * DPDK callback to check the status of a tx descriptor.
2192  *
2193  * @param tx_queue
2194  *   The tx queue.
2195  * @param[in] offset
2196  *   The index of the descriptor in the ring.
2197  *
2198  * @return
2199  *   The status of the tx descriptor.
2200  */
2201 int
mlx5_tx_descriptor_status(void * tx_queue,uint16_t offset)2202 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
2203 {
2204 	struct mlx5_txq_data *__rte_restrict txq = tx_queue;
2205 	uint16_t used;
2206 
2207 	mlx5_tx_handle_completion(txq, 0);
2208 	used = txq->elts_head - txq->elts_tail;
2209 	if (offset < used)
2210 		return RTE_ETH_TX_DESC_FULL;
2211 	return RTE_ETH_TX_DESC_DONE;
2212 }
2213 
2214 /**
2215  * Build the Control Segment with specified opcode:
2216  * - MLX5_OPCODE_SEND
2217  * - MLX5_OPCODE_ENHANCED_MPSW
2218  * - MLX5_OPCODE_TSO
2219  *
2220  * @param txq
2221  *   Pointer to TX queue structure.
2222  * @param loc
2223  *   Pointer to burst routine local context.
2224  * @param wqe
2225  *   Pointer to WQE to fill with built Control Segment.
2226  * @param ds
2227  *   Supposed length of WQE in segments.
2228  * @param opcode
2229  *   SQ WQE opcode to put into Control Segment.
2230  * @param olx
2231  *   Configured Tx offloads mask. It is fully defined at
2232  *   compile time and may be used for optimization.
2233  */
2234 static __rte_always_inline void
mlx5_tx_cseg_init(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc __rte_unused,struct mlx5_wqe * __rte_restrict wqe,unsigned int ds,unsigned int opcode,unsigned int olx __rte_unused)2235 mlx5_tx_cseg_init(struct mlx5_txq_data *__rte_restrict txq,
2236 		  struct mlx5_txq_local *__rte_restrict loc __rte_unused,
2237 		  struct mlx5_wqe *__rte_restrict wqe,
2238 		  unsigned int ds,
2239 		  unsigned int opcode,
2240 		  unsigned int olx __rte_unused)
2241 {
2242 	struct mlx5_wqe_cseg *__rte_restrict cs = &wqe->cseg;
2243 
2244 	/* For legacy MPW replace the EMPW by TSO with modifier. */
2245 	if (MLX5_TXOFF_CONFIG(MPW) && opcode == MLX5_OPCODE_ENHANCED_MPSW)
2246 		opcode = MLX5_OPCODE_TSO | MLX5_OPC_MOD_MPW << 24;
2247 	cs->opcode = rte_cpu_to_be_32((txq->wqe_ci << 8) | opcode);
2248 	cs->sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
2249 	cs->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
2250 			     MLX5_COMP_MODE_OFFSET);
2251 	cs->misc = RTE_BE32(0);
2252 }
2253 
2254 /**
2255  * Build the Synchronize Queue Segment with specified completion index.
2256  *
2257  * @param txq
2258  *   Pointer to TX queue structure.
2259  * @param loc
2260  *   Pointer to burst routine local context.
2261  * @param wqe
2262  *   Pointer to WQE to fill with built Control Segment.
2263  * @param wci
2264  *   Completion index in Clock Queue to wait.
2265  * @param olx
2266  *   Configured Tx offloads mask. It is fully defined at
2267  *   compile time and may be used for optimization.
2268  */
2269 static __rte_always_inline void
mlx5_tx_wseg_init(struct mlx5_txq_data * restrict txq,struct mlx5_txq_local * restrict loc __rte_unused,struct mlx5_wqe * restrict wqe,unsigned int wci,unsigned int olx __rte_unused)2270 mlx5_tx_wseg_init(struct mlx5_txq_data *restrict txq,
2271 		  struct mlx5_txq_local *restrict loc __rte_unused,
2272 		  struct mlx5_wqe *restrict wqe,
2273 		  unsigned int wci,
2274 		  unsigned int olx __rte_unused)
2275 {
2276 	struct mlx5_wqe_qseg *qs;
2277 
2278 	qs = RTE_PTR_ADD(wqe, MLX5_WSEG_SIZE);
2279 	qs->max_index = rte_cpu_to_be_32(wci);
2280 	qs->qpn_cqn = rte_cpu_to_be_32(txq->sh->txpp.clock_queue.cq->id);
2281 	qs->reserved0 = RTE_BE32(0);
2282 	qs->reserved1 = RTE_BE32(0);
2283 }
2284 
2285 /**
2286  * Build the Ethernet Segment without inlined data.
2287  * Supports Software Parser, Checksums and VLAN
2288  * insertion Tx offload features.
2289  *
2290  * @param txq
2291  *   Pointer to TX queue structure.
2292  * @param loc
2293  *   Pointer to burst routine local context.
2294  * @param wqe
2295  *   Pointer to WQE to fill with built Ethernet Segment.
2296  * @param olx
2297  *   Configured Tx offloads mask. It is fully defined at
2298  *   compile time and may be used for optimization.
2299  */
2300 static __rte_always_inline void
mlx5_tx_eseg_none(struct mlx5_txq_data * __rte_restrict txq __rte_unused,struct mlx5_txq_local * __rte_restrict loc,struct mlx5_wqe * __rte_restrict wqe,unsigned int olx)2301 mlx5_tx_eseg_none(struct mlx5_txq_data *__rte_restrict txq __rte_unused,
2302 		  struct mlx5_txq_local *__rte_restrict loc,
2303 		  struct mlx5_wqe *__rte_restrict wqe,
2304 		  unsigned int olx)
2305 {
2306 	struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
2307 	uint32_t csum;
2308 
2309 	/*
2310 	 * Calculate and set check sum flags first, dword field
2311 	 * in segment may be shared with Software Parser flags.
2312 	 */
2313 	csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
2314 	es->flags = rte_cpu_to_le_32(csum);
2315 	/*
2316 	 * Calculate and set Software Parser offsets and flags.
2317 	 * These flags a set for custom UDP and IP tunnel packets.
2318 	 */
2319 	es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
2320 	/* Fill metadata field if needed. */
2321 	es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
2322 		       loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
2323 		       *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
2324 	/* Engage VLAN tag insertion feature if requested. */
2325 	if (MLX5_TXOFF_CONFIG(VLAN) &&
2326 	    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
2327 		/*
2328 		 * We should get here only if device support
2329 		 * this feature correctly.
2330 		 */
2331 		MLX5_ASSERT(txq->vlan_en);
2332 		es->inline_hdr = rte_cpu_to_be_32(MLX5_ETH_WQE_VLAN_INSERT |
2333 						  loc->mbuf->vlan_tci);
2334 	} else {
2335 		es->inline_hdr = RTE_BE32(0);
2336 	}
2337 }
2338 
2339 /**
2340  * Build the Ethernet Segment with minimal inlined data
2341  * of MLX5_ESEG_MIN_INLINE_SIZE bytes length. This is
2342  * used to fill the gap in single WQEBB WQEs.
2343  * Supports Software Parser, Checksums and VLAN
2344  * insertion Tx offload features.
2345  *
2346  * @param txq
2347  *   Pointer to TX queue structure.
2348  * @param loc
2349  *   Pointer to burst routine local context.
2350  * @param wqe
2351  *   Pointer to WQE to fill with built Ethernet Segment.
2352  * @param vlan
2353  *   Length of VLAN tag insertion if any.
2354  * @param olx
2355  *   Configured Tx offloads mask. It is fully defined at
2356  *   compile time and may be used for optimization.
2357  */
2358 static __rte_always_inline void
mlx5_tx_eseg_dmin(struct mlx5_txq_data * __rte_restrict txq __rte_unused,struct mlx5_txq_local * __rte_restrict loc,struct mlx5_wqe * __rte_restrict wqe,unsigned int vlan,unsigned int olx)2359 mlx5_tx_eseg_dmin(struct mlx5_txq_data *__rte_restrict txq __rte_unused,
2360 		  struct mlx5_txq_local *__rte_restrict loc,
2361 		  struct mlx5_wqe *__rte_restrict wqe,
2362 		  unsigned int vlan,
2363 		  unsigned int olx)
2364 {
2365 	struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
2366 	uint32_t csum;
2367 	uint8_t *psrc, *pdst;
2368 
2369 	/*
2370 	 * Calculate and set check sum flags first, dword field
2371 	 * in segment may be shared with Software Parser flags.
2372 	 */
2373 	csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
2374 	es->flags = rte_cpu_to_le_32(csum);
2375 	/*
2376 	 * Calculate and set Software Parser offsets and flags.
2377 	 * These flags a set for custom UDP and IP tunnel packets.
2378 	 */
2379 	es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
2380 	/* Fill metadata field if needed. */
2381 	es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
2382 		       loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
2383 		       *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
2384 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2385 				(sizeof(uint16_t) +
2386 				 sizeof(rte_v128u32_t)),
2387 		      "invalid Ethernet Segment data size");
2388 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2389 				(sizeof(uint16_t) +
2390 				 sizeof(struct rte_vlan_hdr) +
2391 				 2 * RTE_ETHER_ADDR_LEN),
2392 		      "invalid Ethernet Segment data size");
2393 	psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
2394 	es->inline_hdr_sz = RTE_BE16(MLX5_ESEG_MIN_INLINE_SIZE);
2395 	es->inline_data = *(unaligned_uint16_t *)psrc;
2396 	psrc +=	sizeof(uint16_t);
2397 	pdst = (uint8_t *)(es + 1);
2398 	if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
2399 		/* Implement VLAN tag insertion as part inline data. */
2400 		memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
2401 		pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
2402 		psrc +=	2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
2403 		/* Insert VLAN ethertype + VLAN tag. */
2404 		*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
2405 						((RTE_ETHER_TYPE_VLAN << 16) |
2406 						 loc->mbuf->vlan_tci);
2407 		pdst += sizeof(struct rte_vlan_hdr);
2408 		/* Copy the rest two bytes from packet data. */
2409 		MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
2410 		*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
2411 	} else {
2412 		/* Fill the gap in the title WQEBB with inline data. */
2413 		rte_mov16(pdst, psrc);
2414 	}
2415 }
2416 
2417 /**
2418  * Build the Ethernet Segment with entire packet
2419  * data inlining. Checks the boundary of WQEBB and
2420  * ring buffer wrapping, supports Software Parser,
2421  * Checksums and VLAN insertion Tx offload features.
2422  *
2423  * @param txq
2424  *   Pointer to TX queue structure.
2425  * @param loc
2426  *   Pointer to burst routine local context.
2427  * @param wqe
2428  *   Pointer to WQE to fill with built Ethernet Segment.
2429  * @param vlan
2430  *   Length of VLAN tag insertion if any.
2431  * @param inlen
2432  *   Length of data to inline (VLAN included, if any).
2433  * @param tso
2434  *   TSO flag, set mss field from the packet.
2435  * @param olx
2436  *   Configured Tx offloads mask. It is fully defined at
2437  *   compile time and may be used for optimization.
2438  *
2439  * @return
2440  *   Pointer to the next Data Segment (aligned and wrapped around).
2441  */
2442 static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_eseg_data(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,struct mlx5_wqe * __rte_restrict wqe,unsigned int vlan,unsigned int inlen,unsigned int tso,unsigned int olx)2443 mlx5_tx_eseg_data(struct mlx5_txq_data *__rte_restrict txq,
2444 		  struct mlx5_txq_local *__rte_restrict loc,
2445 		  struct mlx5_wqe *__rte_restrict wqe,
2446 		  unsigned int vlan,
2447 		  unsigned int inlen,
2448 		  unsigned int tso,
2449 		  unsigned int olx)
2450 {
2451 	struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
2452 	uint32_t csum;
2453 	uint8_t *psrc, *pdst;
2454 	unsigned int part;
2455 
2456 	/*
2457 	 * Calculate and set check sum flags first, dword field
2458 	 * in segment may be shared with Software Parser flags.
2459 	 */
2460 	csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
2461 	if (tso) {
2462 		csum <<= 24;
2463 		csum |= loc->mbuf->tso_segsz;
2464 		es->flags = rte_cpu_to_be_32(csum);
2465 	} else {
2466 		es->flags = rte_cpu_to_le_32(csum);
2467 	}
2468 	/*
2469 	 * Calculate and set Software Parser offsets and flags.
2470 	 * These flags a set for custom UDP and IP tunnel packets.
2471 	 */
2472 	es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
2473 	/* Fill metadata field if needed. */
2474 	es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
2475 		       loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
2476 		       *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
2477 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2478 				(sizeof(uint16_t) +
2479 				 sizeof(rte_v128u32_t)),
2480 		      "invalid Ethernet Segment data size");
2481 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2482 				(sizeof(uint16_t) +
2483 				 sizeof(struct rte_vlan_hdr) +
2484 				 2 * RTE_ETHER_ADDR_LEN),
2485 		      "invalid Ethernet Segment data size");
2486 	psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
2487 	es->inline_hdr_sz = rte_cpu_to_be_16(inlen);
2488 	es->inline_data = *(unaligned_uint16_t *)psrc;
2489 	psrc +=	sizeof(uint16_t);
2490 	pdst = (uint8_t *)(es + 1);
2491 	if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
2492 		/* Implement VLAN tag insertion as part inline data. */
2493 		memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
2494 		pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
2495 		psrc +=	2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
2496 		/* Insert VLAN ethertype + VLAN tag. */
2497 		*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
2498 						((RTE_ETHER_TYPE_VLAN << 16) |
2499 						 loc->mbuf->vlan_tci);
2500 		pdst += sizeof(struct rte_vlan_hdr);
2501 		/* Copy the rest two bytes from packet data. */
2502 		MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
2503 		*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
2504 		psrc += sizeof(uint16_t);
2505 	} else {
2506 		/* Fill the gap in the title WQEBB with inline data. */
2507 		rte_mov16(pdst, psrc);
2508 		psrc += sizeof(rte_v128u32_t);
2509 	}
2510 	pdst = (uint8_t *)(es + 2);
2511 	MLX5_ASSERT(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
2512 	MLX5_ASSERT(pdst < (uint8_t *)txq->wqes_end);
2513 	inlen -= MLX5_ESEG_MIN_INLINE_SIZE;
2514 	if (!inlen) {
2515 		MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
2516 		return (struct mlx5_wqe_dseg *)pdst;
2517 	}
2518 	/*
2519 	 * The WQEBB space availability is checked by caller.
2520 	 * Here we should be aware of WQE ring buffer wraparound only.
2521 	 */
2522 	part = (uint8_t *)txq->wqes_end - pdst;
2523 	part = RTE_MIN(part, inlen);
2524 	do {
2525 		rte_memcpy(pdst, psrc, part);
2526 		inlen -= part;
2527 		if (likely(!inlen)) {
2528 			/*
2529 			 * If return value is not used by the caller
2530 			 * the code below will be optimized out.
2531 			 */
2532 			pdst += part;
2533 			pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
2534 			if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
2535 				pdst = (uint8_t *)txq->wqes;
2536 			return (struct mlx5_wqe_dseg *)pdst;
2537 		}
2538 		pdst = (uint8_t *)txq->wqes;
2539 		psrc += part;
2540 		part = inlen;
2541 	} while (true);
2542 }
2543 
2544 /**
2545  * Copy data from chain of mbuf to the specified linear buffer.
2546  * Checksums and VLAN insertion Tx offload features. If data
2547  * from some mbuf copied completely this mbuf is freed. Local
2548  * structure is used to keep the byte stream state.
2549  *
2550  * @param pdst
2551  *   Pointer to the destination linear buffer.
2552  * @param loc
2553  *   Pointer to burst routine local context.
2554  * @param len
2555  *   Length of data to be copied.
2556  * @param must
2557  *   Length of data to be copied ignoring no inline hint.
2558  * @param olx
2559  *   Configured Tx offloads mask. It is fully defined at
2560  *   compile time and may be used for optimization.
2561  *
2562  * @return
2563  *   Number of actual copied data bytes. This is always greater than or
2564  *   equal to must parameter and might be lesser than len in no inline
2565  *   hint flag is encountered.
2566  */
2567 static __rte_always_inline unsigned int
mlx5_tx_mseg_memcpy(uint8_t * pdst,struct mlx5_txq_local * __rte_restrict loc,unsigned int len,unsigned int must,unsigned int olx __rte_unused)2568 mlx5_tx_mseg_memcpy(uint8_t *pdst,
2569 		    struct mlx5_txq_local *__rte_restrict loc,
2570 		    unsigned int len,
2571 		    unsigned int must,
2572 		    unsigned int olx __rte_unused)
2573 {
2574 	struct rte_mbuf *mbuf;
2575 	unsigned int part, dlen, copy = 0;
2576 	uint8_t *psrc;
2577 
2578 	MLX5_ASSERT(len);
2579 	MLX5_ASSERT(must <= len);
2580 	do {
2581 		/* Allow zero length packets, must check first. */
2582 		dlen = rte_pktmbuf_data_len(loc->mbuf);
2583 		if (dlen <= loc->mbuf_off) {
2584 			/* Exhausted packet, just free. */
2585 			mbuf = loc->mbuf;
2586 			loc->mbuf = mbuf->next;
2587 			rte_pktmbuf_free_seg(mbuf);
2588 			loc->mbuf_off = 0;
2589 			MLX5_ASSERT(loc->mbuf_nseg > 1);
2590 			MLX5_ASSERT(loc->mbuf);
2591 			--loc->mbuf_nseg;
2592 			if (loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE) {
2593 				unsigned int diff;
2594 
2595 				if (copy >= must) {
2596 					/*
2597 					 * We already copied the minimal
2598 					 * requested amount of data.
2599 					 */
2600 					return copy;
2601 				}
2602 				diff = must - copy;
2603 				if (diff <= rte_pktmbuf_data_len(loc->mbuf)) {
2604 					/*
2605 					 * Copy only the minimal required
2606 					 * part of the data buffer.
2607 					 */
2608 					len = diff;
2609 				}
2610 			}
2611 			continue;
2612 		}
2613 		dlen -= loc->mbuf_off;
2614 		psrc = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
2615 					       loc->mbuf_off);
2616 		part = RTE_MIN(len, dlen);
2617 		rte_memcpy(pdst, psrc, part);
2618 		copy += part;
2619 		loc->mbuf_off += part;
2620 		len -= part;
2621 		if (!len) {
2622 			if (loc->mbuf_off >= rte_pktmbuf_data_len(loc->mbuf)) {
2623 				loc->mbuf_off = 0;
2624 				/* Exhausted packet, just free. */
2625 				mbuf = loc->mbuf;
2626 				loc->mbuf = mbuf->next;
2627 				rte_pktmbuf_free_seg(mbuf);
2628 				loc->mbuf_off = 0;
2629 				MLX5_ASSERT(loc->mbuf_nseg >= 1);
2630 				--loc->mbuf_nseg;
2631 			}
2632 			return copy;
2633 		}
2634 		pdst += part;
2635 	} while (true);
2636 }
2637 
2638 /**
2639  * Build the Ethernet Segment with inlined data from
2640  * multi-segment packet. Checks the boundary of WQEBB
2641  * and ring buffer wrapping, supports Software Parser,
2642  * Checksums and VLAN insertion Tx offload features.
2643  *
2644  * @param txq
2645  *   Pointer to TX queue structure.
2646  * @param loc
2647  *   Pointer to burst routine local context.
2648  * @param wqe
2649  *   Pointer to WQE to fill with built Ethernet Segment.
2650  * @param vlan
2651  *   Length of VLAN tag insertion if any.
2652  * @param inlen
2653  *   Length of data to inline (VLAN included, if any).
2654  * @param tso
2655  *   TSO flag, set mss field from the packet.
2656  * @param olx
2657  *   Configured Tx offloads mask. It is fully defined at
2658  *   compile time and may be used for optimization.
2659  *
2660  * @return
2661  *   Pointer to the next Data Segment (aligned and
2662  *   possible NOT wrapped around - caller should do
2663  *   wrapping check on its own).
2664  */
2665 static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_eseg_mdat(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,struct mlx5_wqe * __rte_restrict wqe,unsigned int vlan,unsigned int inlen,unsigned int tso,unsigned int olx)2666 mlx5_tx_eseg_mdat(struct mlx5_txq_data *__rte_restrict txq,
2667 		  struct mlx5_txq_local *__rte_restrict loc,
2668 		  struct mlx5_wqe *__rte_restrict wqe,
2669 		  unsigned int vlan,
2670 		  unsigned int inlen,
2671 		  unsigned int tso,
2672 		  unsigned int olx)
2673 {
2674 	struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
2675 	uint32_t csum;
2676 	uint8_t *pdst;
2677 	unsigned int part, tlen = 0;
2678 
2679 	/*
2680 	 * Calculate and set check sum flags first, uint32_t field
2681 	 * in segment may be shared with Software Parser flags.
2682 	 */
2683 	csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
2684 	if (tso) {
2685 		csum <<= 24;
2686 		csum |= loc->mbuf->tso_segsz;
2687 		es->flags = rte_cpu_to_be_32(csum);
2688 	} else {
2689 		es->flags = rte_cpu_to_le_32(csum);
2690 	}
2691 	/*
2692 	 * Calculate and set Software Parser offsets and flags.
2693 	 * These flags a set for custom UDP and IP tunnel packets.
2694 	 */
2695 	es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
2696 	/* Fill metadata field if needed. */
2697 	es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
2698 		       loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
2699 		       *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
2700 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2701 				(sizeof(uint16_t) +
2702 				 sizeof(rte_v128u32_t)),
2703 		      "invalid Ethernet Segment data size");
2704 	static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
2705 				(sizeof(uint16_t) +
2706 				 sizeof(struct rte_vlan_hdr) +
2707 				 2 * RTE_ETHER_ADDR_LEN),
2708 		      "invalid Ethernet Segment data size");
2709 	MLX5_ASSERT(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
2710 	pdst = (uint8_t *)&es->inline_data;
2711 	if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
2712 		/* Implement VLAN tag insertion as part inline data. */
2713 		mlx5_tx_mseg_memcpy(pdst, loc,
2714 				    2 * RTE_ETHER_ADDR_LEN,
2715 				    2 * RTE_ETHER_ADDR_LEN, olx);
2716 		pdst += 2 * RTE_ETHER_ADDR_LEN;
2717 		*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
2718 						((RTE_ETHER_TYPE_VLAN << 16) |
2719 						 loc->mbuf->vlan_tci);
2720 		pdst += sizeof(struct rte_vlan_hdr);
2721 		tlen += 2 * RTE_ETHER_ADDR_LEN + sizeof(struct rte_vlan_hdr);
2722 	}
2723 	MLX5_ASSERT(pdst < (uint8_t *)txq->wqes_end);
2724 	/*
2725 	 * The WQEBB space availability is checked by caller.
2726 	 * Here we should be aware of WQE ring buffer wraparound only.
2727 	 */
2728 	part = (uint8_t *)txq->wqes_end - pdst;
2729 	part = RTE_MIN(part, inlen - tlen);
2730 	MLX5_ASSERT(part);
2731 	do {
2732 		unsigned int copy;
2733 
2734 		/*
2735 		 * Copying may be interrupted inside the routine
2736 		 * if run into no inline hint flag.
2737 		 */
2738 		copy = tlen >= txq->inlen_mode ? 0 : (txq->inlen_mode - tlen);
2739 		copy = mlx5_tx_mseg_memcpy(pdst, loc, part, copy, olx);
2740 		tlen += copy;
2741 		if (likely(inlen <= tlen) || copy < part) {
2742 			es->inline_hdr_sz = rte_cpu_to_be_16(tlen);
2743 			pdst += copy;
2744 			pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
2745 			return (struct mlx5_wqe_dseg *)pdst;
2746 		}
2747 		pdst = (uint8_t *)txq->wqes;
2748 		part = inlen - tlen;
2749 	} while (true);
2750 }
2751 
2752 /**
2753  * Build the Data Segment of pointer type.
2754  *
2755  * @param txq
2756  *   Pointer to TX queue structure.
2757  * @param loc
2758  *   Pointer to burst routine local context.
2759  * @param dseg
2760  *   Pointer to WQE to fill with built Data Segment.
2761  * @param buf
2762  *   Data buffer to point.
2763  * @param len
2764  *   Data buffer length.
2765  * @param olx
2766  *   Configured Tx offloads mask. It is fully defined at
2767  *   compile time and may be used for optimization.
2768  */
2769 static __rte_always_inline void
mlx5_tx_dseg_ptr(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,struct mlx5_wqe_dseg * __rte_restrict dseg,uint8_t * buf,unsigned int len,unsigned int olx __rte_unused)2770 mlx5_tx_dseg_ptr(struct mlx5_txq_data *__rte_restrict txq,
2771 		 struct mlx5_txq_local *__rte_restrict loc,
2772 		 struct mlx5_wqe_dseg *__rte_restrict dseg,
2773 		 uint8_t *buf,
2774 		 unsigned int len,
2775 		 unsigned int olx __rte_unused)
2776 
2777 {
2778 	MLX5_ASSERT(len);
2779 	dseg->bcount = rte_cpu_to_be_32(len);
2780 	dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
2781 	dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
2782 }
2783 
2784 /**
2785  * Build the Data Segment of pointer type or inline
2786  * if data length is less than buffer in minimal
2787  * Data Segment size.
2788  *
2789  * @param txq
2790  *   Pointer to TX queue structure.
2791  * @param loc
2792  *   Pointer to burst routine local context.
2793  * @param dseg
2794  *   Pointer to WQE to fill with built Data Segment.
2795  * @param buf
2796  *   Data buffer to point.
2797  * @param len
2798  *   Data buffer length.
2799  * @param olx
2800  *   Configured Tx offloads mask. It is fully defined at
2801  *   compile time and may be used for optimization.
2802  */
2803 static __rte_always_inline void
mlx5_tx_dseg_iptr(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,struct mlx5_wqe_dseg * __rte_restrict dseg,uint8_t * buf,unsigned int len,unsigned int olx __rte_unused)2804 mlx5_tx_dseg_iptr(struct mlx5_txq_data *__rte_restrict txq,
2805 		  struct mlx5_txq_local *__rte_restrict loc,
2806 		  struct mlx5_wqe_dseg *__rte_restrict dseg,
2807 		  uint8_t *buf,
2808 		  unsigned int len,
2809 		  unsigned int olx __rte_unused)
2810 
2811 {
2812 	uintptr_t dst, src;
2813 
2814 	MLX5_ASSERT(len);
2815 	if (len > MLX5_DSEG_MIN_INLINE_SIZE) {
2816 		dseg->bcount = rte_cpu_to_be_32(len);
2817 		dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
2818 		dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
2819 
2820 		return;
2821 	}
2822 	dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
2823 	/* Unrolled implementation of generic rte_memcpy. */
2824 	dst = (uintptr_t)&dseg->inline_data[0];
2825 	src = (uintptr_t)buf;
2826 	if (len & 0x08) {
2827 #ifdef RTE_ARCH_STRICT_ALIGN
2828 		MLX5_ASSERT(dst == RTE_PTR_ALIGN(dst, sizeof(uint32_t)));
2829 		*(uint32_t *)dst = *(unaligned_uint32_t *)src;
2830 		dst += sizeof(uint32_t);
2831 		src += sizeof(uint32_t);
2832 		*(uint32_t *)dst = *(unaligned_uint32_t *)src;
2833 		dst += sizeof(uint32_t);
2834 		src += sizeof(uint32_t);
2835 #else
2836 		*(uint64_t *)dst = *(unaligned_uint64_t *)src;
2837 		dst += sizeof(uint64_t);
2838 		src += sizeof(uint64_t);
2839 #endif
2840 	}
2841 	if (len & 0x04) {
2842 		*(uint32_t *)dst = *(unaligned_uint32_t *)src;
2843 		dst += sizeof(uint32_t);
2844 		src += sizeof(uint32_t);
2845 	}
2846 	if (len & 0x02) {
2847 		*(uint16_t *)dst = *(unaligned_uint16_t *)src;
2848 		dst += sizeof(uint16_t);
2849 		src += sizeof(uint16_t);
2850 	}
2851 	if (len & 0x01)
2852 		*(uint8_t *)dst = *(uint8_t *)src;
2853 }
2854 
2855 /**
2856  * Build the Data Segment of inlined data from single
2857  * segment packet, no VLAN insertion.
2858  *
2859  * @param txq
2860  *   Pointer to TX queue structure.
2861  * @param loc
2862  *   Pointer to burst routine local context.
2863  * @param dseg
2864  *   Pointer to WQE to fill with built Data Segment.
2865  * @param buf
2866  *   Data buffer to point.
2867  * @param len
2868  *   Data buffer length.
2869  * @param olx
2870  *   Configured Tx offloads mask. It is fully defined at
2871  *   compile time and may be used for optimization.
2872  *
2873  * @return
2874  *   Pointer to the next Data Segment after inlined data.
2875  *   Ring buffer wraparound check is needed. We do not
2876  *   do it here because it may not be needed for the
2877  *   last packet in the eMPW session.
2878  */
2879 static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_dseg_empw(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc __rte_unused,struct mlx5_wqe_dseg * __rte_restrict dseg,uint8_t * buf,unsigned int len,unsigned int olx __rte_unused)2880 mlx5_tx_dseg_empw(struct mlx5_txq_data *__rte_restrict txq,
2881 		  struct mlx5_txq_local *__rte_restrict loc __rte_unused,
2882 		  struct mlx5_wqe_dseg *__rte_restrict dseg,
2883 		  uint8_t *buf,
2884 		  unsigned int len,
2885 		  unsigned int olx __rte_unused)
2886 {
2887 	unsigned int part;
2888 	uint8_t *pdst;
2889 
2890 	if (!MLX5_TXOFF_CONFIG(MPW)) {
2891 		/* Store the descriptor byte counter for eMPW sessions. */
2892 		dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
2893 		pdst = &dseg->inline_data[0];
2894 	} else {
2895 		/* The entire legacy MPW session counter is stored on close. */
2896 		pdst = (uint8_t *)dseg;
2897 	}
2898 	/*
2899 	 * The WQEBB space availability is checked by caller.
2900 	 * Here we should be aware of WQE ring buffer wraparound only.
2901 	 */
2902 	part = (uint8_t *)txq->wqes_end - pdst;
2903 	part = RTE_MIN(part, len);
2904 	do {
2905 		rte_memcpy(pdst, buf, part);
2906 		len -= part;
2907 		if (likely(!len)) {
2908 			pdst += part;
2909 			if (!MLX5_TXOFF_CONFIG(MPW))
2910 				pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
2911 			/* Note: no final wraparound check here. */
2912 			return (struct mlx5_wqe_dseg *)pdst;
2913 		}
2914 		pdst = (uint8_t *)txq->wqes;
2915 		buf += part;
2916 		part = len;
2917 	} while (true);
2918 }
2919 
2920 /**
2921  * Build the Data Segment of inlined data from single
2922  * segment packet with VLAN insertion.
2923  *
2924  * @param txq
2925  *   Pointer to TX queue structure.
2926  * @param loc
2927  *   Pointer to burst routine local context.
2928  * @param dseg
2929  *   Pointer to the dseg fill with built Data Segment.
2930  * @param buf
2931  *   Data buffer to point.
2932  * @param len
2933  *   Data buffer length.
2934  * @param olx
2935  *   Configured Tx offloads mask. It is fully defined at
2936  *   compile time and may be used for optimization.
2937  *
2938  * @return
2939  *   Pointer to the next Data Segment after inlined data.
2940  *   Ring buffer wraparound check is needed.
2941  */
2942 static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_dseg_vlan(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc __rte_unused,struct mlx5_wqe_dseg * __rte_restrict dseg,uint8_t * buf,unsigned int len,unsigned int olx __rte_unused)2943 mlx5_tx_dseg_vlan(struct mlx5_txq_data *__rte_restrict txq,
2944 		  struct mlx5_txq_local *__rte_restrict loc __rte_unused,
2945 		  struct mlx5_wqe_dseg *__rte_restrict dseg,
2946 		  uint8_t *buf,
2947 		  unsigned int len,
2948 		  unsigned int olx __rte_unused)
2949 
2950 {
2951 	unsigned int part;
2952 	uint8_t *pdst;
2953 
2954 	MLX5_ASSERT(len > MLX5_ESEG_MIN_INLINE_SIZE);
2955 	static_assert(MLX5_DSEG_MIN_INLINE_SIZE ==
2956 				 (2 * RTE_ETHER_ADDR_LEN),
2957 		      "invalid Data Segment data size");
2958 	if (!MLX5_TXOFF_CONFIG(MPW)) {
2959 		/* Store the descriptor byte counter for eMPW sessions. */
2960 		dseg->bcount = rte_cpu_to_be_32
2961 				((len + sizeof(struct rte_vlan_hdr)) |
2962 				 MLX5_ETH_WQE_DATA_INLINE);
2963 		pdst = &dseg->inline_data[0];
2964 	} else {
2965 		/* The entire legacy MPW session counter is stored on close. */
2966 		pdst = (uint8_t *)dseg;
2967 	}
2968 	memcpy(pdst, buf, MLX5_DSEG_MIN_INLINE_SIZE);
2969 	buf += MLX5_DSEG_MIN_INLINE_SIZE;
2970 	pdst += MLX5_DSEG_MIN_INLINE_SIZE;
2971 	len -= MLX5_DSEG_MIN_INLINE_SIZE;
2972 	/* Insert VLAN ethertype + VLAN tag. Pointer is aligned. */
2973 	MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
2974 	if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
2975 		pdst = (uint8_t *)txq->wqes;
2976 	*(uint32_t *)pdst = rte_cpu_to_be_32((RTE_ETHER_TYPE_VLAN << 16) |
2977 					      loc->mbuf->vlan_tci);
2978 	pdst += sizeof(struct rte_vlan_hdr);
2979 	/*
2980 	 * The WQEBB space availability is checked by caller.
2981 	 * Here we should be aware of WQE ring buffer wraparound only.
2982 	 */
2983 	part = (uint8_t *)txq->wqes_end - pdst;
2984 	part = RTE_MIN(part, len);
2985 	do {
2986 		rte_memcpy(pdst, buf, part);
2987 		len -= part;
2988 		if (likely(!len)) {
2989 			pdst += part;
2990 			if (!MLX5_TXOFF_CONFIG(MPW))
2991 				pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
2992 			/* Note: no final wraparound check here. */
2993 			return (struct mlx5_wqe_dseg *)pdst;
2994 		}
2995 		pdst = (uint8_t *)txq->wqes;
2996 		buf += part;
2997 		part = len;
2998 	} while (true);
2999 }
3000 
3001 /**
3002  * Build the Ethernet Segment with optionally inlined data with
3003  * VLAN insertion and following Data Segments (if any) from
3004  * multi-segment packet. Used by ordinary send and TSO.
3005  *
3006  * @param txq
3007  *   Pointer to TX queue structure.
3008  * @param loc
3009  *   Pointer to burst routine local context.
3010  * @param wqe
3011  *   Pointer to WQE to fill with built Ethernet/Data Segments.
3012  * @param vlan
3013  *   Length of VLAN header to insert, 0 means no VLAN insertion.
3014  * @param inlen
3015  *   Data length to inline. For TSO this parameter specifies
3016  *   exact value, for ordinary send routine can be aligned by
3017  *   caller to provide better WQE space saving and data buffer
3018  *   start address alignment. This length includes VLAN header
3019  *   being inserted.
3020  * @param tso
3021  *   Zero means ordinary send, inlined data can be extended,
3022  *   otherwise this is TSO, inlined data length is fixed.
3023  * @param olx
3024  *   Configured Tx offloads mask. It is fully defined at
3025  *   compile time and may be used for optimization.
3026  *
3027  * @return
3028  *   Actual size of built WQE in segments.
3029  */
3030 static __rte_always_inline unsigned int
mlx5_tx_mseg_build(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,struct mlx5_wqe * __rte_restrict wqe,unsigned int vlan,unsigned int inlen,unsigned int tso,unsigned int olx __rte_unused)3031 mlx5_tx_mseg_build(struct mlx5_txq_data *__rte_restrict txq,
3032 		   struct mlx5_txq_local *__rte_restrict loc,
3033 		   struct mlx5_wqe *__rte_restrict wqe,
3034 		   unsigned int vlan,
3035 		   unsigned int inlen,
3036 		   unsigned int tso,
3037 		   unsigned int olx __rte_unused)
3038 {
3039 	struct mlx5_wqe_dseg *__rte_restrict dseg;
3040 	unsigned int ds;
3041 
3042 	MLX5_ASSERT((rte_pktmbuf_pkt_len(loc->mbuf) + vlan) >= inlen);
3043 	loc->mbuf_nseg = NB_SEGS(loc->mbuf);
3044 	loc->mbuf_off = 0;
3045 
3046 	dseg = mlx5_tx_eseg_mdat(txq, loc, wqe, vlan, inlen, tso, olx);
3047 	if (!loc->mbuf_nseg)
3048 		goto dseg_done;
3049 	/*
3050 	 * There are still some mbuf remaining, not inlined.
3051 	 * The first mbuf may be partially inlined and we
3052 	 * must process the possible non-zero data offset.
3053 	 */
3054 	if (loc->mbuf_off) {
3055 		unsigned int dlen;
3056 		uint8_t *dptr;
3057 
3058 		/*
3059 		 * Exhausted packets must be dropped before.
3060 		 * Non-zero offset means there are some data
3061 		 * remained in the packet.
3062 		 */
3063 		MLX5_ASSERT(loc->mbuf_off < rte_pktmbuf_data_len(loc->mbuf));
3064 		MLX5_ASSERT(rte_pktmbuf_data_len(loc->mbuf));
3065 		dptr = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
3066 					       loc->mbuf_off);
3067 		dlen = rte_pktmbuf_data_len(loc->mbuf) - loc->mbuf_off;
3068 		/*
3069 		 * Build the pointer/minimal data Data Segment.
3070 		 * Do ring buffer wrapping check in advance.
3071 		 */
3072 		if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
3073 			dseg = (struct mlx5_wqe_dseg *)txq->wqes;
3074 		mlx5_tx_dseg_iptr(txq, loc, dseg, dptr, dlen, olx);
3075 		/* Store the mbuf to be freed on completion. */
3076 		MLX5_ASSERT(loc->elts_free);
3077 		txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
3078 		--loc->elts_free;
3079 		++dseg;
3080 		if (--loc->mbuf_nseg == 0)
3081 			goto dseg_done;
3082 		loc->mbuf = loc->mbuf->next;
3083 		loc->mbuf_off = 0;
3084 	}
3085 	do {
3086 		if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
3087 			struct rte_mbuf *mbuf;
3088 
3089 			/* Zero length segment found, just skip. */
3090 			mbuf = loc->mbuf;
3091 			loc->mbuf = loc->mbuf->next;
3092 			rte_pktmbuf_free_seg(mbuf);
3093 			if (--loc->mbuf_nseg == 0)
3094 				break;
3095 		} else {
3096 			if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
3097 				dseg = (struct mlx5_wqe_dseg *)txq->wqes;
3098 			mlx5_tx_dseg_iptr
3099 				(txq, loc, dseg,
3100 				 rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
3101 				 rte_pktmbuf_data_len(loc->mbuf), olx);
3102 			MLX5_ASSERT(loc->elts_free);
3103 			txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
3104 			--loc->elts_free;
3105 			++dseg;
3106 			if (--loc->mbuf_nseg == 0)
3107 				break;
3108 			loc->mbuf = loc->mbuf->next;
3109 		}
3110 	} while (true);
3111 
3112 dseg_done:
3113 	/* Calculate actual segments used from the dseg pointer. */
3114 	if ((uintptr_t)wqe < (uintptr_t)dseg)
3115 		ds = ((uintptr_t)dseg - (uintptr_t)wqe) / MLX5_WSEG_SIZE;
3116 	else
3117 		ds = (((uintptr_t)dseg - (uintptr_t)wqe) +
3118 		      txq->wqe_s * MLX5_WQE_SIZE) / MLX5_WSEG_SIZE;
3119 	return ds;
3120 }
3121 
3122 /**
3123  * The routine checks timestamp flag in the current packet,
3124  * and push WAIT WQE into the queue if scheduling is required.
3125  *
3126  * @param txq
3127  *   Pointer to TX queue structure.
3128  * @param loc
3129  *   Pointer to burst routine local context.
3130  * @param olx
3131  *   Configured Tx offloads mask. It is fully defined at
3132  *   compile time and may be used for optimization.
3133  *
3134  * @return
3135  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3136  *   MLX5_TXCMP_CODE_SINGLE - continue processing with the packet.
3137  *   MLX5_TXCMP_CODE_MULTI - the WAIT inserted, continue processing.
3138  * Local context variables partially updated.
3139  */
3140 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_schedule_send(struct mlx5_txq_data * restrict txq,struct mlx5_txq_local * restrict loc,unsigned int olx)3141 mlx5_tx_schedule_send(struct mlx5_txq_data *restrict txq,
3142 		      struct mlx5_txq_local *restrict loc,
3143 		      unsigned int olx)
3144 {
3145 	if (MLX5_TXOFF_CONFIG(TXPP) &&
3146 	    loc->mbuf->ol_flags & txq->ts_mask) {
3147 		struct mlx5_wqe *wqe;
3148 		uint64_t ts;
3149 		int32_t wci;
3150 
3151 		/*
3152 		 * Estimate the required space quickly and roughly.
3153 		 * We would like to ensure the packet can be pushed
3154 		 * to the queue and we won't get the orphan WAIT WQE.
3155 		 */
3156 		if (loc->wqe_free <= MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE ||
3157 		    loc->elts_free < NB_SEGS(loc->mbuf))
3158 			return MLX5_TXCMP_CODE_EXIT;
3159 		/* Convert the timestamp into completion to wait. */
3160 		ts = *RTE_MBUF_DYNFIELD(loc->mbuf, txq->ts_offset, uint64_t *);
3161 		wci = mlx5_txpp_convert_tx_ts(txq->sh, ts);
3162 		if (unlikely(wci < 0))
3163 			return MLX5_TXCMP_CODE_SINGLE;
3164 		/* Build the WAIT WQE with specified completion. */
3165 		wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3166 		mlx5_tx_cseg_init(txq, loc, wqe, 2, MLX5_OPCODE_WAIT, olx);
3167 		mlx5_tx_wseg_init(txq, loc, wqe, wci, olx);
3168 		++txq->wqe_ci;
3169 		--loc->wqe_free;
3170 		return MLX5_TXCMP_CODE_MULTI;
3171 	}
3172 	return MLX5_TXCMP_CODE_SINGLE;
3173 }
3174 
3175 /**
3176  * Tx one packet function for multi-segment TSO. Supports all
3177  * types of Tx offloads, uses MLX5_OPCODE_TSO to build WQEs,
3178  * sends one packet per WQE.
3179  *
3180  * This routine is responsible for storing processed mbuf
3181  * into elts ring buffer and update elts_head.
3182  *
3183  * @param txq
3184  *   Pointer to TX queue structure.
3185  * @param loc
3186  *   Pointer to burst routine local context.
3187  * @param olx
3188  *   Configured Tx offloads mask. It is fully defined at
3189  *   compile time and may be used for optimization.
3190  *
3191  * @return
3192  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3193  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3194  * Local context variables partially updated.
3195  */
3196 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_tso(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)3197 mlx5_tx_packet_multi_tso(struct mlx5_txq_data *__rte_restrict txq,
3198 			struct mlx5_txq_local *__rte_restrict loc,
3199 			unsigned int olx)
3200 {
3201 	struct mlx5_wqe *__rte_restrict wqe;
3202 	unsigned int ds, dlen, inlen, ntcp, vlan = 0;
3203 
3204 	if (MLX5_TXOFF_CONFIG(TXPP)) {
3205 		enum mlx5_txcmp_code wret;
3206 
3207 		/* Generate WAIT for scheduling if requested. */
3208 		wret = mlx5_tx_schedule_send(txq, loc, olx);
3209 		if (wret == MLX5_TXCMP_CODE_EXIT)
3210 			return MLX5_TXCMP_CODE_EXIT;
3211 		if (wret == MLX5_TXCMP_CODE_ERROR)
3212 			return MLX5_TXCMP_CODE_ERROR;
3213 	}
3214 	/*
3215 	 * Calculate data length to be inlined to estimate
3216 	 * the required space in WQE ring buffer.
3217 	 */
3218 	dlen = rte_pktmbuf_pkt_len(loc->mbuf);
3219 	if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
3220 		vlan = sizeof(struct rte_vlan_hdr);
3221 	inlen = loc->mbuf->l2_len + vlan +
3222 		loc->mbuf->l3_len + loc->mbuf->l4_len;
3223 	if (unlikely((!inlen || !loc->mbuf->tso_segsz)))
3224 		return MLX5_TXCMP_CODE_ERROR;
3225 	if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
3226 		inlen += loc->mbuf->outer_l2_len + loc->mbuf->outer_l3_len;
3227 	/* Packet must contain all TSO headers. */
3228 	if (unlikely(inlen > MLX5_MAX_TSO_HEADER ||
3229 		     inlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
3230 		     inlen > (dlen + vlan)))
3231 		return MLX5_TXCMP_CODE_ERROR;
3232 	MLX5_ASSERT(inlen >= txq->inlen_mode);
3233 	/*
3234 	 * Check whether there are enough free WQEBBs:
3235 	 * - Control Segment
3236 	 * - Ethernet Segment
3237 	 * - First Segment of inlined Ethernet data
3238 	 * - ... data continued ...
3239 	 * - Data Segments of pointer/min inline type
3240 	 */
3241 	ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
3242 				       MLX5_ESEG_MIN_INLINE_SIZE +
3243 				       MLX5_WSEG_SIZE +
3244 				       MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
3245 	if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
3246 		return MLX5_TXCMP_CODE_EXIT;
3247 	/* Check for maximal WQE size. */
3248 	if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
3249 		return MLX5_TXCMP_CODE_ERROR;
3250 #ifdef MLX5_PMD_SOFT_COUNTERS
3251 	/* Update sent data bytes/packets counters. */
3252 	ntcp = (dlen - (inlen - vlan) + loc->mbuf->tso_segsz - 1) /
3253 		loc->mbuf->tso_segsz;
3254 	/*
3255 	 * One will be added for mbuf itself
3256 	 * at the end of the mlx5_tx_burst from
3257 	 * loc->pkts_sent field.
3258 	 */
3259 	--ntcp;
3260 	txq->stats.opackets += ntcp;
3261 	txq->stats.obytes += dlen + vlan + ntcp * inlen;
3262 #endif
3263 	wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3264 	loc->wqe_last = wqe;
3265 	mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_TSO, olx);
3266 	ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 1, olx);
3267 	wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
3268 	txq->wqe_ci += (ds + 3) / 4;
3269 	loc->wqe_free -= (ds + 3) / 4;
3270 	return MLX5_TXCMP_CODE_MULTI;
3271 }
3272 
3273 /**
3274  * Tx one packet function for multi-segment SEND. Supports all
3275  * types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
3276  * sends one packet per WQE, without any data inlining in
3277  * Ethernet Segment.
3278  *
3279  * This routine is responsible for storing processed mbuf
3280  * into elts ring buffer and update elts_head.
3281  *
3282  * @param txq
3283  *   Pointer to TX queue structure.
3284  * @param loc
3285  *   Pointer to burst routine local context.
3286  * @param olx
3287  *   Configured Tx offloads mask. It is fully defined at
3288  *   compile time and may be used for optimization.
3289  *
3290  * @return
3291  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3292  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3293  * Local context variables partially updated.
3294  */
3295 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_send(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)3296 mlx5_tx_packet_multi_send(struct mlx5_txq_data *__rte_restrict txq,
3297 			  struct mlx5_txq_local *__rte_restrict loc,
3298 			  unsigned int olx)
3299 {
3300 	struct mlx5_wqe_dseg *__rte_restrict dseg;
3301 	struct mlx5_wqe *__rte_restrict wqe;
3302 	unsigned int ds, nseg;
3303 
3304 	MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
3305 	if (MLX5_TXOFF_CONFIG(TXPP)) {
3306 		enum mlx5_txcmp_code wret;
3307 
3308 		/* Generate WAIT for scheduling if requested. */
3309 		wret = mlx5_tx_schedule_send(txq, loc, olx);
3310 		if (wret == MLX5_TXCMP_CODE_EXIT)
3311 			return MLX5_TXCMP_CODE_EXIT;
3312 		if (wret == MLX5_TXCMP_CODE_ERROR)
3313 			return MLX5_TXCMP_CODE_ERROR;
3314 	}
3315 	/*
3316 	 * No inline at all, it means the CPU cycles saving
3317 	 * is prioritized at configuration, we should not
3318 	 * copy any packet data to WQE.
3319 	 */
3320 	nseg = NB_SEGS(loc->mbuf);
3321 	ds = 2 + nseg;
3322 	if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
3323 		return MLX5_TXCMP_CODE_EXIT;
3324 	/* Check for maximal WQE size. */
3325 	if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
3326 		return MLX5_TXCMP_CODE_ERROR;
3327 	/*
3328 	 * Some Tx offloads may cause an error if
3329 	 * packet is not long enough, check against
3330 	 * assumed minimal length.
3331 	 */
3332 	if (rte_pktmbuf_pkt_len(loc->mbuf) <= MLX5_ESEG_MIN_INLINE_SIZE)
3333 		return MLX5_TXCMP_CODE_ERROR;
3334 #ifdef MLX5_PMD_SOFT_COUNTERS
3335 	/* Update sent data bytes counter. */
3336 	txq->stats.obytes += rte_pktmbuf_pkt_len(loc->mbuf);
3337 	if (MLX5_TXOFF_CONFIG(VLAN) &&
3338 	    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
3339 		txq->stats.obytes += sizeof(struct rte_vlan_hdr);
3340 #endif
3341 	/*
3342 	 * SEND WQE, one WQEBB:
3343 	 * - Control Segment, SEND opcode
3344 	 * - Ethernet Segment, optional VLAN, no inline
3345 	 * - Data Segments, pointer only type
3346 	 */
3347 	wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3348 	loc->wqe_last = wqe;
3349 	mlx5_tx_cseg_init(txq, loc, wqe, ds, MLX5_OPCODE_SEND, olx);
3350 	mlx5_tx_eseg_none(txq, loc, wqe, olx);
3351 	dseg = &wqe->dseg[0];
3352 	do {
3353 		if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
3354 			struct rte_mbuf *mbuf;
3355 
3356 			/*
3357 			 * Zero length segment found, have to
3358 			 * correct total size of WQE in segments.
3359 			 * It is supposed to be rare occasion, so
3360 			 * in normal case (no zero length segments)
3361 			 * we avoid extra writing to the Control
3362 			 * Segment.
3363 			 */
3364 			--ds;
3365 			wqe->cseg.sq_ds -= RTE_BE32(1);
3366 			mbuf = loc->mbuf;
3367 			loc->mbuf = mbuf->next;
3368 			rte_pktmbuf_free_seg(mbuf);
3369 			if (--nseg == 0)
3370 				break;
3371 		} else {
3372 			mlx5_tx_dseg_ptr
3373 				(txq, loc, dseg,
3374 				 rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
3375 				 rte_pktmbuf_data_len(loc->mbuf), olx);
3376 			txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
3377 			--loc->elts_free;
3378 			if (--nseg == 0)
3379 				break;
3380 			++dseg;
3381 			if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
3382 				dseg = (struct mlx5_wqe_dseg *)txq->wqes;
3383 			loc->mbuf = loc->mbuf->next;
3384 		}
3385 	} while (true);
3386 	txq->wqe_ci += (ds + 3) / 4;
3387 	loc->wqe_free -= (ds + 3) / 4;
3388 	return MLX5_TXCMP_CODE_MULTI;
3389 }
3390 
3391 /**
3392  * Tx one packet function for multi-segment SEND. Supports all
3393  * types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
3394  * sends one packet per WQE, with data inlining in
3395  * Ethernet Segment and minimal Data Segments.
3396  *
3397  * This routine is responsible for storing processed mbuf
3398  * into elts ring buffer and update elts_head.
3399  *
3400  * @param txq
3401  *   Pointer to TX queue structure.
3402  * @param loc
3403  *   Pointer to burst routine local context.
3404  * @param olx
3405  *   Configured Tx offloads mask. It is fully defined at
3406  *   compile time and may be used for optimization.
3407  *
3408  * @return
3409  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3410  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3411  * Local context variables partially updated.
3412  */
3413 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_inline(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)3414 mlx5_tx_packet_multi_inline(struct mlx5_txq_data *__rte_restrict txq,
3415 			    struct mlx5_txq_local *__rte_restrict loc,
3416 			    unsigned int olx)
3417 {
3418 	struct mlx5_wqe *__rte_restrict wqe;
3419 	unsigned int ds, inlen, dlen, vlan = 0;
3420 
3421 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
3422 	MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
3423 	if (MLX5_TXOFF_CONFIG(TXPP)) {
3424 		enum mlx5_txcmp_code wret;
3425 
3426 		/* Generate WAIT for scheduling if requested. */
3427 		wret = mlx5_tx_schedule_send(txq, loc, olx);
3428 		if (wret == MLX5_TXCMP_CODE_EXIT)
3429 			return MLX5_TXCMP_CODE_EXIT;
3430 		if (wret == MLX5_TXCMP_CODE_ERROR)
3431 			return MLX5_TXCMP_CODE_ERROR;
3432 	}
3433 	/*
3434 	 * First calculate data length to be inlined
3435 	 * to estimate the required space for WQE.
3436 	 */
3437 	dlen = rte_pktmbuf_pkt_len(loc->mbuf);
3438 	if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
3439 		vlan = sizeof(struct rte_vlan_hdr);
3440 	inlen = dlen + vlan;
3441 	/* Check against minimal length. */
3442 	if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
3443 		return MLX5_TXCMP_CODE_ERROR;
3444 	MLX5_ASSERT(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
3445 	if (inlen > txq->inlen_send ||
3446 	    loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE) {
3447 		struct rte_mbuf *mbuf;
3448 		unsigned int nxlen;
3449 		uintptr_t start;
3450 
3451 		/*
3452 		 * Packet length exceeds the allowed inline
3453 		 * data length, check whether the minimal
3454 		 * inlining is required.
3455 		 */
3456 		if (txq->inlen_mode) {
3457 			MLX5_ASSERT(txq->inlen_mode >=
3458 				    MLX5_ESEG_MIN_INLINE_SIZE);
3459 			MLX5_ASSERT(txq->inlen_mode <= txq->inlen_send);
3460 			inlen = txq->inlen_mode;
3461 		} else {
3462 			if (loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE ||
3463 			    !vlan || txq->vlan_en) {
3464 				/*
3465 				 * VLAN insertion will be done inside by HW.
3466 				 * It is not utmost effective - VLAN flag is
3467 				 * checked twice, but we should proceed the
3468 				 * inlining length correctly and take into
3469 				 * account the VLAN header being inserted.
3470 				 */
3471 				return mlx5_tx_packet_multi_send
3472 							(txq, loc, olx);
3473 			}
3474 			inlen = MLX5_ESEG_MIN_INLINE_SIZE;
3475 		}
3476 		/*
3477 		 * Now we know the minimal amount of data is requested
3478 		 * to inline. Check whether we should inline the buffers
3479 		 * from the chain beginning to eliminate some mbufs.
3480 		 */
3481 		mbuf = loc->mbuf;
3482 		nxlen = rte_pktmbuf_data_len(mbuf);
3483 		if (unlikely(nxlen <= txq->inlen_send)) {
3484 			/* We can inline first mbuf at least. */
3485 			if (nxlen < inlen) {
3486 				unsigned int smlen;
3487 
3488 				/* Scan mbufs till inlen filled. */
3489 				do {
3490 					smlen = nxlen;
3491 					mbuf = NEXT(mbuf);
3492 					MLX5_ASSERT(mbuf);
3493 					nxlen = rte_pktmbuf_data_len(mbuf);
3494 					nxlen += smlen;
3495 				} while (unlikely(nxlen < inlen));
3496 				if (unlikely(nxlen > txq->inlen_send)) {
3497 					/* We cannot inline entire mbuf. */
3498 					smlen = inlen - smlen;
3499 					start = rte_pktmbuf_mtod_offset
3500 						    (mbuf, uintptr_t, smlen);
3501 					goto do_align;
3502 				}
3503 			}
3504 			do {
3505 				inlen = nxlen;
3506 				mbuf = NEXT(mbuf);
3507 				/* There should be not end of packet. */
3508 				MLX5_ASSERT(mbuf);
3509 				nxlen = inlen + rte_pktmbuf_data_len(mbuf);
3510 			} while (unlikely(nxlen < txq->inlen_send));
3511 		}
3512 		start = rte_pktmbuf_mtod(mbuf, uintptr_t);
3513 		/*
3514 		 * Check whether we can do inline to align start
3515 		 * address of data buffer to cacheline.
3516 		 */
3517 do_align:
3518 		start = (~start + 1) & (RTE_CACHE_LINE_SIZE - 1);
3519 		if (unlikely(start)) {
3520 			start += inlen;
3521 			if (start <= txq->inlen_send)
3522 				inlen = start;
3523 		}
3524 	}
3525 	/*
3526 	 * Check whether there are enough free WQEBBs:
3527 	 * - Control Segment
3528 	 * - Ethernet Segment
3529 	 * - First Segment of inlined Ethernet data
3530 	 * - ... data continued ...
3531 	 * - Data Segments of pointer/min inline type
3532 	 *
3533 	 * Estimate the number of Data Segments conservatively,
3534 	 * supposing no any mbufs is being freed during inlining.
3535 	 */
3536 	MLX5_ASSERT(inlen <= txq->inlen_send);
3537 	ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
3538 				       MLX5_ESEG_MIN_INLINE_SIZE +
3539 				       MLX5_WSEG_SIZE +
3540 				       MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
3541 	if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
3542 		return MLX5_TXCMP_CODE_EXIT;
3543 	/* Check for maximal WQE size. */
3544 	if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
3545 		return MLX5_TXCMP_CODE_ERROR;
3546 #ifdef MLX5_PMD_SOFT_COUNTERS
3547 	/* Update sent data bytes/packets counters. */
3548 	txq->stats.obytes += dlen + vlan;
3549 #endif
3550 	wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3551 	loc->wqe_last = wqe;
3552 	mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_SEND, olx);
3553 	ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 0, olx);
3554 	wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
3555 	txq->wqe_ci += (ds + 3) / 4;
3556 	loc->wqe_free -= (ds + 3) / 4;
3557 	return MLX5_TXCMP_CODE_MULTI;
3558 }
3559 
3560 /**
3561  * Tx burst function for multi-segment packets. Supports all
3562  * types of Tx offloads, uses MLX5_OPCODE_SEND/TSO to build WQEs,
3563  * sends one packet per WQE. Function stops sending if it
3564  * encounters the single-segment packet.
3565  *
3566  * This routine is responsible for storing processed mbuf
3567  * into elts ring buffer and update elts_head.
3568  *
3569  * @param txq
3570  *   Pointer to TX queue structure.
3571  * @param[in] pkts
3572  *   Packets to transmit.
3573  * @param pkts_n
3574  *   Number of packets in array.
3575  * @param loc
3576  *   Pointer to burst routine local context.
3577  * @param olx
3578  *   Configured Tx offloads mask. It is fully defined at
3579  *   compile time and may be used for optimization.
3580  *
3581  * @return
3582  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3583  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3584  *   MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
3585  *   MLX5_TXCMP_CODE_TSO - TSO single-segment packet encountered.
3586  * Local context variables updated.
3587  */
3588 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_mseg(struct mlx5_txq_data * __rte_restrict txq,struct rte_mbuf ** __rte_restrict pkts,unsigned int pkts_n,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)3589 mlx5_tx_burst_mseg(struct mlx5_txq_data *__rte_restrict txq,
3590 		   struct rte_mbuf **__rte_restrict pkts,
3591 		   unsigned int pkts_n,
3592 		   struct mlx5_txq_local *__rte_restrict loc,
3593 		   unsigned int olx)
3594 {
3595 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
3596 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
3597 	pkts += loc->pkts_sent + 1;
3598 	pkts_n -= loc->pkts_sent;
3599 	for (;;) {
3600 		enum mlx5_txcmp_code ret;
3601 
3602 		MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
3603 		/*
3604 		 * Estimate the number of free elts quickly but
3605 		 * conservatively. Some segment may be fully inlined
3606 		 * and freed, ignore this here - precise estimation
3607 		 * is costly.
3608 		 */
3609 		if (loc->elts_free < NB_SEGS(loc->mbuf))
3610 			return MLX5_TXCMP_CODE_EXIT;
3611 		if (MLX5_TXOFF_CONFIG(TSO) &&
3612 		    unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)) {
3613 			/* Proceed with multi-segment TSO. */
3614 			ret = mlx5_tx_packet_multi_tso(txq, loc, olx);
3615 		} else if (MLX5_TXOFF_CONFIG(INLINE)) {
3616 			/* Proceed with multi-segment SEND with inlining. */
3617 			ret = mlx5_tx_packet_multi_inline(txq, loc, olx);
3618 		} else {
3619 			/* Proceed with multi-segment SEND w/o inlining. */
3620 			ret = mlx5_tx_packet_multi_send(txq, loc, olx);
3621 		}
3622 		if (ret == MLX5_TXCMP_CODE_EXIT)
3623 			return MLX5_TXCMP_CODE_EXIT;
3624 		if (ret == MLX5_TXCMP_CODE_ERROR)
3625 			return MLX5_TXCMP_CODE_ERROR;
3626 		/* WQE is built, go to the next packet. */
3627 		++loc->pkts_sent;
3628 		--pkts_n;
3629 		if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
3630 			return MLX5_TXCMP_CODE_EXIT;
3631 		loc->mbuf = *pkts++;
3632 		if (pkts_n > 1)
3633 			rte_prefetch0(*pkts);
3634 		if (likely(NB_SEGS(loc->mbuf) > 1))
3635 			continue;
3636 		/* Here ends the series of multi-segment packets. */
3637 		if (MLX5_TXOFF_CONFIG(TSO) &&
3638 		    unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
3639 			return MLX5_TXCMP_CODE_TSO;
3640 		return MLX5_TXCMP_CODE_SINGLE;
3641 	}
3642 	MLX5_ASSERT(false);
3643 }
3644 
3645 /**
3646  * Tx burst function for single-segment packets with TSO.
3647  * Supports all types of Tx offloads, except multi-packets.
3648  * Uses MLX5_OPCODE_TSO to build WQEs, sends one packet per WQE.
3649  * Function stops sending if it encounters the multi-segment
3650  * packet or packet without TSO requested.
3651  *
3652  * The routine is responsible for storing processed mbuf
3653  * into elts ring buffer and update elts_head if inline
3654  * offloads is requested due to possible early freeing
3655  * of the inlined mbufs (can not store pkts array in elts
3656  * as a batch).
3657  *
3658  * @param txq
3659  *   Pointer to TX queue structure.
3660  * @param[in] pkts
3661  *   Packets to transmit.
3662  * @param pkts_n
3663  *   Number of packets in array.
3664  * @param loc
3665  *   Pointer to burst routine local context.
3666  * @param olx
3667  *   Configured Tx offloads mask. It is fully defined at
3668  *   compile time and may be used for optimization.
3669  *
3670  * @return
3671  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
3672  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
3673  *   MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
3674  *   MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
3675  * Local context variables updated.
3676  */
3677 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_tso(struct mlx5_txq_data * __rte_restrict txq,struct rte_mbuf ** __rte_restrict pkts,unsigned int pkts_n,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)3678 mlx5_tx_burst_tso(struct mlx5_txq_data *__rte_restrict txq,
3679 		  struct rte_mbuf **__rte_restrict pkts,
3680 		  unsigned int pkts_n,
3681 		  struct mlx5_txq_local *__rte_restrict loc,
3682 		  unsigned int olx)
3683 {
3684 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
3685 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
3686 	pkts += loc->pkts_sent + 1;
3687 	pkts_n -= loc->pkts_sent;
3688 	for (;;) {
3689 		struct mlx5_wqe_dseg *__rte_restrict dseg;
3690 		struct mlx5_wqe *__rte_restrict wqe;
3691 		unsigned int ds, dlen, hlen, ntcp, vlan = 0;
3692 		uint8_t *dptr;
3693 
3694 		MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
3695 		if (MLX5_TXOFF_CONFIG(TXPP)) {
3696 			enum mlx5_txcmp_code wret;
3697 
3698 			/* Generate WAIT for scheduling if requested. */
3699 			wret = mlx5_tx_schedule_send(txq, loc, olx);
3700 			if (wret == MLX5_TXCMP_CODE_EXIT)
3701 				return MLX5_TXCMP_CODE_EXIT;
3702 			if (wret == MLX5_TXCMP_CODE_ERROR)
3703 				return MLX5_TXCMP_CODE_ERROR;
3704 		}
3705 		dlen = rte_pktmbuf_data_len(loc->mbuf);
3706 		if (MLX5_TXOFF_CONFIG(VLAN) &&
3707 		    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
3708 			vlan = sizeof(struct rte_vlan_hdr);
3709 		}
3710 		/*
3711 		 * First calculate the WQE size to check
3712 		 * whether we have enough space in ring buffer.
3713 		 */
3714 		hlen = loc->mbuf->l2_len + vlan +
3715 		       loc->mbuf->l3_len + loc->mbuf->l4_len;
3716 		if (unlikely((!hlen || !loc->mbuf->tso_segsz)))
3717 			return MLX5_TXCMP_CODE_ERROR;
3718 		if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
3719 			hlen += loc->mbuf->outer_l2_len +
3720 				loc->mbuf->outer_l3_len;
3721 		/* Segment must contain all TSO headers. */
3722 		if (unlikely(hlen > MLX5_MAX_TSO_HEADER ||
3723 			     hlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
3724 			     hlen > (dlen + vlan)))
3725 			return MLX5_TXCMP_CODE_ERROR;
3726 		/*
3727 		 * Check whether there are enough free WQEBBs:
3728 		 * - Control Segment
3729 		 * - Ethernet Segment
3730 		 * - First Segment of inlined Ethernet data
3731 		 * - ... data continued ...
3732 		 * - Finishing Data Segment of pointer type
3733 		 */
3734 		ds = 4 + (hlen - MLX5_ESEG_MIN_INLINE_SIZE +
3735 			  MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
3736 		if (loc->wqe_free < ((ds + 3) / 4))
3737 			return MLX5_TXCMP_CODE_EXIT;
3738 #ifdef MLX5_PMD_SOFT_COUNTERS
3739 		/* Update sent data bytes/packets counters. */
3740 		ntcp = (dlen + vlan - hlen +
3741 			loc->mbuf->tso_segsz - 1) /
3742 			loc->mbuf->tso_segsz;
3743 		/*
3744 		 * One will be added for mbuf itself at the end
3745 		 * of the mlx5_tx_burst from loc->pkts_sent field.
3746 		 */
3747 		--ntcp;
3748 		txq->stats.opackets += ntcp;
3749 		txq->stats.obytes += dlen + vlan + ntcp * hlen;
3750 #endif
3751 		/*
3752 		 * Build the TSO WQE:
3753 		 * - Control Segment
3754 		 * - Ethernet Segment with hlen bytes inlined
3755 		 * - Data Segment of pointer type
3756 		 */
3757 		wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
3758 		loc->wqe_last = wqe;
3759 		mlx5_tx_cseg_init(txq, loc, wqe, ds,
3760 				  MLX5_OPCODE_TSO, olx);
3761 		dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan, hlen, 1, olx);
3762 		dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) + hlen - vlan;
3763 		dlen -= hlen - vlan;
3764 		mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
3765 		/*
3766 		 * WQE is built, update the loop parameters
3767 		 * and go to the next packet.
3768 		 */
3769 		txq->wqe_ci += (ds + 3) / 4;
3770 		loc->wqe_free -= (ds + 3) / 4;
3771 		if (MLX5_TXOFF_CONFIG(INLINE))
3772 			txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
3773 		--loc->elts_free;
3774 		++loc->pkts_sent;
3775 		--pkts_n;
3776 		if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
3777 			return MLX5_TXCMP_CODE_EXIT;
3778 		loc->mbuf = *pkts++;
3779 		if (pkts_n > 1)
3780 			rte_prefetch0(*pkts);
3781 		if (MLX5_TXOFF_CONFIG(MULTI) &&
3782 		    unlikely(NB_SEGS(loc->mbuf) > 1))
3783 			return MLX5_TXCMP_CODE_MULTI;
3784 		if (likely(!(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)))
3785 			return MLX5_TXCMP_CODE_SINGLE;
3786 		/* Continue with the next TSO packet. */
3787 	}
3788 	MLX5_ASSERT(false);
3789 }
3790 
3791 /**
3792  * Analyze the packet and select the best method to send.
3793  *
3794  * @param txq
3795  *   Pointer to TX queue structure.
3796  * @param loc
3797  *   Pointer to burst routine local context.
3798  * @param olx
3799  *   Configured Tx offloads mask. It is fully defined at
3800  *   compile time and may be used for optimization.
3801  * @param newp
3802  *   The predefined flag whether do complete check for
3803  *   multi-segment packets and TSO.
3804  *
3805  * @return
3806  *  MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
3807  *  MLX5_TXCMP_CODE_TSO - TSO required, use TSO/LSO.
3808  *  MLX5_TXCMP_CODE_SINGLE - single-segment packet, use SEND.
3809  *  MLX5_TXCMP_CODE_EMPW - single-segment packet, use MPW.
3810  */
3811 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_able_to_empw(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx,bool newp)3812 mlx5_tx_able_to_empw(struct mlx5_txq_data *__rte_restrict txq,
3813 		     struct mlx5_txq_local *__rte_restrict loc,
3814 		     unsigned int olx,
3815 		     bool newp)
3816 {
3817 	/* Check for multi-segment packet. */
3818 	if (newp &&
3819 	    MLX5_TXOFF_CONFIG(MULTI) &&
3820 	    unlikely(NB_SEGS(loc->mbuf) > 1))
3821 		return MLX5_TXCMP_CODE_MULTI;
3822 	/* Check for TSO packet. */
3823 	if (newp &&
3824 	    MLX5_TXOFF_CONFIG(TSO) &&
3825 	    unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
3826 		return MLX5_TXCMP_CODE_TSO;
3827 	/* Check if eMPW is enabled at all. */
3828 	if (!MLX5_TXOFF_CONFIG(EMPW))
3829 		return MLX5_TXCMP_CODE_SINGLE;
3830 	/* Check if eMPW can be engaged. */
3831 	if (MLX5_TXOFF_CONFIG(VLAN) &&
3832 	    unlikely(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) &&
3833 		(!MLX5_TXOFF_CONFIG(INLINE) ||
3834 		 unlikely((rte_pktmbuf_data_len(loc->mbuf) +
3835 			   sizeof(struct rte_vlan_hdr)) > txq->inlen_empw))) {
3836 		/*
3837 		 * eMPW does not support VLAN insertion offload,
3838 		 * we have to inline the entire packet but
3839 		 * packet is too long for inlining.
3840 		 */
3841 		return MLX5_TXCMP_CODE_SINGLE;
3842 	}
3843 	return MLX5_TXCMP_CODE_EMPW;
3844 }
3845 
3846 /**
3847  * Check the next packet attributes to match with the eMPW batch ones.
3848  * In addition, for legacy MPW the packet length is checked either.
3849  *
3850  * @param txq
3851  *   Pointer to TX queue structure.
3852  * @param es
3853  *   Pointer to Ethernet Segment of eMPW batch.
3854  * @param loc
3855  *   Pointer to burst routine local context.
3856  * @param dlen
3857  *   Length of previous packet in MPW descriptor.
3858  * @param olx
3859  *   Configured Tx offloads mask. It is fully defined at
3860  *   compile time and may be used for optimization.
3861  *
3862  * @return
3863  *  true - packet match with eMPW batch attributes.
3864  *  false - no match, eMPW should be restarted.
3865  */
3866 static __rte_always_inline bool
mlx5_tx_match_empw(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_wqe_eseg * __rte_restrict es,struct mlx5_txq_local * __rte_restrict loc,uint32_t dlen,unsigned int olx)3867 mlx5_tx_match_empw(struct mlx5_txq_data *__rte_restrict txq,
3868 		   struct mlx5_wqe_eseg *__rte_restrict es,
3869 		   struct mlx5_txq_local *__rte_restrict loc,
3870 		   uint32_t dlen,
3871 		   unsigned int olx)
3872 {
3873 	uint8_t swp_flags = 0;
3874 
3875 	/* Compare the checksum flags, if any. */
3876 	if (MLX5_TXOFF_CONFIG(CSUM) &&
3877 	    txq_ol_cksum_to_cs(loc->mbuf) != es->cs_flags)
3878 		return false;
3879 	/* Compare the Software Parser offsets and flags. */
3880 	if (MLX5_TXOFF_CONFIG(SWP) &&
3881 	    (es->swp_offs != txq_mbuf_to_swp(loc, &swp_flags, olx) ||
3882 	     es->swp_flags != swp_flags))
3883 		return false;
3884 	/* Fill metadata field if needed. */
3885 	if (MLX5_TXOFF_CONFIG(METADATA) &&
3886 		es->metadata != (loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
3887 				 *RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0))
3888 		return false;
3889 	/* Legacy MPW can send packets with the same lengt only. */
3890 	if (MLX5_TXOFF_CONFIG(MPW) &&
3891 	    dlen != rte_pktmbuf_data_len(loc->mbuf))
3892 		return false;
3893 	/* There must be no VLAN packets in eMPW loop. */
3894 	if (MLX5_TXOFF_CONFIG(VLAN))
3895 		MLX5_ASSERT(!(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT));
3896 	/* Check if the scheduling is requested. */
3897 	if (MLX5_TXOFF_CONFIG(TXPP) &&
3898 	    loc->mbuf->ol_flags & txq->ts_mask)
3899 		return false;
3900 	return true;
3901 }
3902 
3903 /*
3904  * Update send loop variables and WQE for eMPW loop
3905  * without data inlining. Number of Data Segments is
3906  * equal to the number of sent packets.
3907  *
3908  * @param txq
3909  *   Pointer to TX queue structure.
3910  * @param loc
3911  *   Pointer to burst routine local context.
3912  * @param ds
3913  *   Number of packets/Data Segments/Packets.
3914  * @param slen
3915  *   Accumulated statistics, bytes sent
3916  * @param olx
3917  *   Configured Tx offloads mask. It is fully defined at
3918  *   compile time and may be used for optimization.
3919  *
3920  * @return
3921  *  true - packet match with eMPW batch attributes.
3922  *  false - no match, eMPW should be restarted.
3923  */
3924 static __rte_always_inline void
mlx5_tx_sdone_empw(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,unsigned int ds,unsigned int slen,unsigned int olx __rte_unused)3925 mlx5_tx_sdone_empw(struct mlx5_txq_data *__rte_restrict txq,
3926 		   struct mlx5_txq_local *__rte_restrict loc,
3927 		   unsigned int ds,
3928 		   unsigned int slen,
3929 		   unsigned int olx __rte_unused)
3930 {
3931 	MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
3932 #ifdef MLX5_PMD_SOFT_COUNTERS
3933 	/* Update sent data bytes counter. */
3934 	 txq->stats.obytes += slen;
3935 #else
3936 	(void)slen;
3937 #endif
3938 	loc->elts_free -= ds;
3939 	loc->pkts_sent += ds;
3940 	ds += 2;
3941 	loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
3942 	txq->wqe_ci += (ds + 3) / 4;
3943 	loc->wqe_free -= (ds + 3) / 4;
3944 }
3945 
3946 /*
3947  * Update send loop variables and WQE for eMPW loop
3948  * with data inlining. Gets the size of pushed descriptors
3949  * and data to the WQE.
3950  *
3951  * @param txq
3952  *   Pointer to TX queue structure.
3953  * @param loc
3954  *   Pointer to burst routine local context.
3955  * @param len
3956  *   Total size of descriptor/data in bytes.
3957  * @param slen
3958  *   Accumulated statistics, data bytes sent.
3959  * @param wqem
3960  *   The base WQE for the eMPW/MPW descriptor.
3961  * @param olx
3962  *   Configured Tx offloads mask. It is fully defined at
3963  *   compile time and may be used for optimization.
3964  *
3965  * @return
3966  *  true - packet match with eMPW batch attributes.
3967  *  false - no match, eMPW should be restarted.
3968  */
3969 static __rte_always_inline void
mlx5_tx_idone_empw(struct mlx5_txq_data * __rte_restrict txq,struct mlx5_txq_local * __rte_restrict loc,unsigned int len,unsigned int slen,struct mlx5_wqe * __rte_restrict wqem,unsigned int olx __rte_unused)3970 mlx5_tx_idone_empw(struct mlx5_txq_data *__rte_restrict txq,
3971 		   struct mlx5_txq_local *__rte_restrict loc,
3972 		   unsigned int len,
3973 		   unsigned int slen,
3974 		   struct mlx5_wqe *__rte_restrict wqem,
3975 		   unsigned int olx __rte_unused)
3976 {
3977 	struct mlx5_wqe_dseg *dseg = &wqem->dseg[0];
3978 
3979 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
3980 #ifdef MLX5_PMD_SOFT_COUNTERS
3981 	/* Update sent data bytes counter. */
3982 	 txq->stats.obytes += slen;
3983 #else
3984 	(void)slen;
3985 #endif
3986 	if (MLX5_TXOFF_CONFIG(MPW) && dseg->bcount == RTE_BE32(0)) {
3987 		/*
3988 		 * If the legacy MPW session contains the inline packets
3989 		 * we should set the only inline data segment length
3990 		 * and align the total length to the segment size.
3991 		 */
3992 		MLX5_ASSERT(len > sizeof(dseg->bcount));
3993 		dseg->bcount = rte_cpu_to_be_32((len - sizeof(dseg->bcount)) |
3994 						MLX5_ETH_WQE_DATA_INLINE);
3995 		len = (len + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE + 2;
3996 	} else {
3997 		/*
3998 		 * The session is not legacy MPW or contains the
3999 		 * data buffer pointer segments.
4000 		 */
4001 		MLX5_ASSERT((len % MLX5_WSEG_SIZE) == 0);
4002 		len = len / MLX5_WSEG_SIZE + 2;
4003 	}
4004 	wqem->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | len);
4005 	txq->wqe_ci += (len + 3) / 4;
4006 	loc->wqe_free -= (len + 3) / 4;
4007 	loc->wqe_last = wqem;
4008 }
4009 
4010 /**
4011  * The set of Tx burst functions for single-segment packets
4012  * without TSO and with Multi-Packet Writing feature support.
4013  * Supports all types of Tx offloads, except multi-packets
4014  * and TSO.
4015  *
4016  * Uses MLX5_OPCODE_EMPW to build WQEs if possible and sends
4017  * as many packet per WQE as it can. If eMPW is not configured
4018  * or packet can not be sent with eMPW (VLAN insertion) the
4019  * ordinary SEND opcode is used and only one packet placed
4020  * in WQE.
4021  *
4022  * Functions stop sending if it encounters the multi-segment
4023  * packet or packet with TSO requested.
4024  *
4025  * The routines are responsible for storing processed mbuf
4026  * into elts ring buffer and update elts_head if inlining
4027  * offload is requested. Otherwise the copying mbufs to elts
4028  * can be postponed and completed at the end of burst routine.
4029  *
4030  * @param txq
4031  *   Pointer to TX queue structure.
4032  * @param[in] pkts
4033  *   Packets to transmit.
4034  * @param pkts_n
4035  *   Number of packets in array.
4036  * @param loc
4037  *   Pointer to burst routine local context.
4038  * @param olx
4039  *   Configured Tx offloads mask. It is fully defined at
4040  *   compile time and may be used for optimization.
4041  *
4042  * @return
4043  *   MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
4044  *   MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
4045  *   MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
4046  *   MLX5_TXCMP_CODE_TSO - TSO packet encountered.
4047  *   MLX5_TXCMP_CODE_SINGLE - used inside functions set.
4048  *   MLX5_TXCMP_CODE_EMPW - used inside functions set.
4049  *
4050  * Local context variables updated.
4051  *
4052  *
4053  * The routine sends packets with MLX5_OPCODE_EMPW
4054  * without inlining, this is dedicated optimized branch.
4055  * No VLAN insertion is supported.
4056  */
4057 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_empw_simple(struct mlx5_txq_data * __rte_restrict txq,struct rte_mbuf ** __rte_restrict pkts,unsigned int pkts_n,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)4058 mlx5_tx_burst_empw_simple(struct mlx5_txq_data *__rte_restrict txq,
4059 			  struct rte_mbuf **__rte_restrict pkts,
4060 			  unsigned int pkts_n,
4061 			  struct mlx5_txq_local *__rte_restrict loc,
4062 			  unsigned int olx)
4063 {
4064 	/*
4065 	 * Subroutine is the part of mlx5_tx_burst_single()
4066 	 * and sends single-segment packet with eMPW opcode
4067 	 * without data inlining.
4068 	 */
4069 	MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
4070 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(EMPW));
4071 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4072 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
4073 	static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
4074 	pkts += loc->pkts_sent + 1;
4075 	pkts_n -= loc->pkts_sent;
4076 	for (;;) {
4077 		struct mlx5_wqe_dseg *__rte_restrict dseg;
4078 		struct mlx5_wqe_eseg *__rte_restrict eseg;
4079 		enum mlx5_txcmp_code ret;
4080 		unsigned int part, loop;
4081 		unsigned int slen = 0;
4082 
4083 next_empw:
4084 		MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4085 		if (MLX5_TXOFF_CONFIG(TXPP)) {
4086 			enum mlx5_txcmp_code wret;
4087 
4088 			/* Generate WAIT for scheduling if requested. */
4089 			wret = mlx5_tx_schedule_send(txq, loc, olx);
4090 			if (wret == MLX5_TXCMP_CODE_EXIT)
4091 				return MLX5_TXCMP_CODE_EXIT;
4092 			if (wret == MLX5_TXCMP_CODE_ERROR)
4093 				return MLX5_TXCMP_CODE_ERROR;
4094 		}
4095 		part = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ?
4096 				       MLX5_MPW_MAX_PACKETS :
4097 				       MLX5_EMPW_MAX_PACKETS);
4098 		if (unlikely(loc->elts_free < part)) {
4099 			/* We have no enough elts to save all mbufs. */
4100 			if (unlikely(loc->elts_free < MLX5_EMPW_MIN_PACKETS))
4101 				return MLX5_TXCMP_CODE_EXIT;
4102 			/* But we still able to send at least minimal eMPW. */
4103 			part = loc->elts_free;
4104 		}
4105 		/* Check whether we have enough WQEs */
4106 		if (unlikely(loc->wqe_free < ((2 + part + 3) / 4))) {
4107 			if (unlikely(loc->wqe_free <
4108 				((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
4109 				return MLX5_TXCMP_CODE_EXIT;
4110 			part = (loc->wqe_free * 4) - 2;
4111 		}
4112 		if (likely(part > 1))
4113 			rte_prefetch0(*pkts);
4114 		loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4115 		/*
4116 		 * Build eMPW title WQEBB:
4117 		 * - Control Segment, eMPW opcode
4118 		 * - Ethernet Segment, no inline
4119 		 */
4120 		mlx5_tx_cseg_init(txq, loc, loc->wqe_last, part + 2,
4121 				  MLX5_OPCODE_ENHANCED_MPSW, olx);
4122 		mlx5_tx_eseg_none(txq, loc, loc->wqe_last,
4123 				  olx & ~MLX5_TXOFF_CONFIG_VLAN);
4124 		eseg = &loc->wqe_last->eseg;
4125 		dseg = &loc->wqe_last->dseg[0];
4126 		loop = part;
4127 		/* Store the packet length for legacy MPW. */
4128 		if (MLX5_TXOFF_CONFIG(MPW))
4129 			eseg->mss = rte_cpu_to_be_16
4130 					(rte_pktmbuf_data_len(loc->mbuf));
4131 		for (;;) {
4132 			uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
4133 #ifdef MLX5_PMD_SOFT_COUNTERS
4134 			/* Update sent data bytes counter. */
4135 			slen += dlen;
4136 #endif
4137 			mlx5_tx_dseg_ptr
4138 				(txq, loc, dseg,
4139 				 rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
4140 				 dlen, olx);
4141 			if (unlikely(--loop == 0))
4142 				break;
4143 			loc->mbuf = *pkts++;
4144 			if (likely(loop > 1))
4145 				rte_prefetch0(*pkts);
4146 			ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
4147 			/*
4148 			 * Unroll the completion code to avoid
4149 			 * returning variable value - it results in
4150 			 * unoptimized sequent checking in caller.
4151 			 */
4152 			if (ret == MLX5_TXCMP_CODE_MULTI) {
4153 				part -= loop;
4154 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4155 				if (unlikely(!loc->elts_free ||
4156 					     !loc->wqe_free))
4157 					return MLX5_TXCMP_CODE_EXIT;
4158 				return MLX5_TXCMP_CODE_MULTI;
4159 			}
4160 			MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4161 			if (ret == MLX5_TXCMP_CODE_TSO) {
4162 				part -= loop;
4163 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4164 				if (unlikely(!loc->elts_free ||
4165 					     !loc->wqe_free))
4166 					return MLX5_TXCMP_CODE_EXIT;
4167 				return MLX5_TXCMP_CODE_TSO;
4168 			}
4169 			if (ret == MLX5_TXCMP_CODE_SINGLE) {
4170 				part -= loop;
4171 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4172 				if (unlikely(!loc->elts_free ||
4173 					     !loc->wqe_free))
4174 					return MLX5_TXCMP_CODE_EXIT;
4175 				return MLX5_TXCMP_CODE_SINGLE;
4176 			}
4177 			if (ret != MLX5_TXCMP_CODE_EMPW) {
4178 				MLX5_ASSERT(false);
4179 				part -= loop;
4180 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4181 				return MLX5_TXCMP_CODE_ERROR;
4182 			}
4183 			/*
4184 			 * Check whether packet parameters coincide
4185 			 * within assumed eMPW batch:
4186 			 * - check sum settings
4187 			 * - metadata value
4188 			 * - software parser settings
4189 			 * - packets length (legacy MPW only)
4190 			 * - scheduling is not required
4191 			 */
4192 			if (!mlx5_tx_match_empw(txq, eseg, loc, dlen, olx)) {
4193 				MLX5_ASSERT(loop);
4194 				part -= loop;
4195 				mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
4196 				if (unlikely(!loc->elts_free ||
4197 					     !loc->wqe_free))
4198 					return MLX5_TXCMP_CODE_EXIT;
4199 				pkts_n -= part;
4200 				goto next_empw;
4201 			}
4202 			/* Packet attributes match, continue the same eMPW. */
4203 			++dseg;
4204 			if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
4205 				dseg = (struct mlx5_wqe_dseg *)txq->wqes;
4206 		}
4207 		/* eMPW is built successfully, update loop parameters. */
4208 		MLX5_ASSERT(!loop);
4209 		MLX5_ASSERT(pkts_n >= part);
4210 #ifdef MLX5_PMD_SOFT_COUNTERS
4211 		/* Update sent data bytes counter. */
4212 		txq->stats.obytes += slen;
4213 #endif
4214 		loc->elts_free -= part;
4215 		loc->pkts_sent += part;
4216 		txq->wqe_ci += (2 + part + 3) / 4;
4217 		loc->wqe_free -= (2 + part + 3) / 4;
4218 		pkts_n -= part;
4219 		if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
4220 			return MLX5_TXCMP_CODE_EXIT;
4221 		loc->mbuf = *pkts++;
4222 		ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
4223 		if (unlikely(ret != MLX5_TXCMP_CODE_EMPW))
4224 			return ret;
4225 		/* Continue sending eMPW batches. */
4226 	}
4227 	MLX5_ASSERT(false);
4228 }
4229 
4230 /**
4231  * The routine sends packets with MLX5_OPCODE_EMPW
4232  * with inlining, optionally supports VLAN insertion.
4233  */
4234 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_empw_inline(struct mlx5_txq_data * __rte_restrict txq,struct rte_mbuf ** __rte_restrict pkts,unsigned int pkts_n,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)4235 mlx5_tx_burst_empw_inline(struct mlx5_txq_data *__rte_restrict txq,
4236 			  struct rte_mbuf **__rte_restrict pkts,
4237 			  unsigned int pkts_n,
4238 			  struct mlx5_txq_local *__rte_restrict loc,
4239 			  unsigned int olx)
4240 {
4241 	/*
4242 	 * Subroutine is the part of mlx5_tx_burst_single()
4243 	 * and sends single-segment packet with eMPW opcode
4244 	 * with data inlining.
4245 	 */
4246 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
4247 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(EMPW));
4248 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4249 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
4250 	static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
4251 	pkts += loc->pkts_sent + 1;
4252 	pkts_n -= loc->pkts_sent;
4253 	for (;;) {
4254 		struct mlx5_wqe_dseg *__rte_restrict dseg;
4255 		struct mlx5_wqe *__rte_restrict wqem;
4256 		enum mlx5_txcmp_code ret;
4257 		unsigned int room, part, nlim;
4258 		unsigned int slen = 0;
4259 
4260 		MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4261 		if (MLX5_TXOFF_CONFIG(TXPP)) {
4262 			enum mlx5_txcmp_code wret;
4263 
4264 			/* Generate WAIT for scheduling if requested. */
4265 			wret = mlx5_tx_schedule_send(txq, loc, olx);
4266 			if (wret == MLX5_TXCMP_CODE_EXIT)
4267 				return MLX5_TXCMP_CODE_EXIT;
4268 			if (wret == MLX5_TXCMP_CODE_ERROR)
4269 				return MLX5_TXCMP_CODE_ERROR;
4270 		}
4271 		/*
4272 		 * Limits the amount of packets in one WQE
4273 		 * to improve CQE latency generation.
4274 		 */
4275 		nlim = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ?
4276 				       MLX5_MPW_INLINE_MAX_PACKETS :
4277 				       MLX5_EMPW_MAX_PACKETS);
4278 		/* Check whether we have minimal amount WQEs */
4279 		if (unlikely(loc->wqe_free <
4280 			    ((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
4281 			return MLX5_TXCMP_CODE_EXIT;
4282 		if (likely(pkts_n > 1))
4283 			rte_prefetch0(*pkts);
4284 		wqem = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4285 		/*
4286 		 * Build eMPW title WQEBB:
4287 		 * - Control Segment, eMPW opcode, zero DS
4288 		 * - Ethernet Segment, no inline
4289 		 */
4290 		mlx5_tx_cseg_init(txq, loc, wqem, 0,
4291 				  MLX5_OPCODE_ENHANCED_MPSW, olx);
4292 		mlx5_tx_eseg_none(txq, loc, wqem,
4293 				  olx & ~MLX5_TXOFF_CONFIG_VLAN);
4294 		dseg = &wqem->dseg[0];
4295 		/* Store the packet length for legacy MPW. */
4296 		if (MLX5_TXOFF_CONFIG(MPW))
4297 			wqem->eseg.mss = rte_cpu_to_be_16
4298 					 (rte_pktmbuf_data_len(loc->mbuf));
4299 		room = RTE_MIN(MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE,
4300 			       loc->wqe_free) * MLX5_WQE_SIZE -
4301 					MLX5_WQE_CSEG_SIZE -
4302 					MLX5_WQE_ESEG_SIZE;
4303 		/* Limit the room for legacy MPW sessions for performance. */
4304 		if (MLX5_TXOFF_CONFIG(MPW))
4305 			room = RTE_MIN(room,
4306 				       RTE_MAX(txq->inlen_empw +
4307 					       sizeof(dseg->bcount) +
4308 					       (MLX5_TXOFF_CONFIG(VLAN) ?
4309 					       sizeof(struct rte_vlan_hdr) : 0),
4310 					       MLX5_MPW_INLINE_MAX_PACKETS *
4311 					       MLX5_WQE_DSEG_SIZE));
4312 		/* Build WQE till we have space, packets and resources. */
4313 		part = room;
4314 		for (;;) {
4315 			uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
4316 			uint8_t *dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
4317 			unsigned int tlen;
4318 
4319 			MLX5_ASSERT(room >= MLX5_WQE_DSEG_SIZE);
4320 			MLX5_ASSERT((room % MLX5_WQE_DSEG_SIZE) == 0);
4321 			MLX5_ASSERT((uintptr_t)dseg < (uintptr_t)txq->wqes_end);
4322 			/*
4323 			 * Some Tx offloads may cause an error if
4324 			 * packet is not long enough, check against
4325 			 * assumed minimal length.
4326 			 */
4327 			if (unlikely(dlen <= MLX5_ESEG_MIN_INLINE_SIZE)) {
4328 				part -= room;
4329 				if (unlikely(!part))
4330 					return MLX5_TXCMP_CODE_ERROR;
4331 				/*
4332 				 * We have some successfully built
4333 				 * packet Data Segments to send.
4334 				 */
4335 				mlx5_tx_idone_empw(txq, loc, part,
4336 						   slen, wqem, olx);
4337 				return MLX5_TXCMP_CODE_ERROR;
4338 			}
4339 			/* Inline or not inline - that's the Question. */
4340 			if (dlen > txq->inlen_empw ||
4341 			    loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE)
4342 				goto pointer_empw;
4343 			if (MLX5_TXOFF_CONFIG(MPW)) {
4344 				if (dlen > txq->inlen_send)
4345 					goto pointer_empw;
4346 				tlen = dlen;
4347 				if (part == room) {
4348 					/* Open new inline MPW session. */
4349 					tlen += sizeof(dseg->bcount);
4350 					dseg->bcount = RTE_BE32(0);
4351 					dseg = RTE_PTR_ADD
4352 						(dseg, sizeof(dseg->bcount));
4353 				} else {
4354 					/*
4355 					 * No pointer and inline descriptor
4356 					 * intermix for legacy MPW sessions.
4357 					 */
4358 					if (wqem->dseg[0].bcount)
4359 						break;
4360 				}
4361 			} else {
4362 				tlen = sizeof(dseg->bcount) + dlen;
4363 			}
4364 			/* Inline entire packet, optional VLAN insertion. */
4365 			if (MLX5_TXOFF_CONFIG(VLAN) &&
4366 			    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
4367 				/*
4368 				 * The packet length must be checked in
4369 				 * mlx5_tx_able_to_empw() and packet
4370 				 * fits into inline length guaranteed.
4371 				 */
4372 				MLX5_ASSERT((dlen +
4373 					     sizeof(struct rte_vlan_hdr)) <=
4374 					    txq->inlen_empw);
4375 				tlen += sizeof(struct rte_vlan_hdr);
4376 				if (room < tlen)
4377 					break;
4378 				dseg = mlx5_tx_dseg_vlan(txq, loc, dseg,
4379 							 dptr, dlen, olx);
4380 #ifdef MLX5_PMD_SOFT_COUNTERS
4381 				/* Update sent data bytes counter. */
4382 				slen +=	sizeof(struct rte_vlan_hdr);
4383 #endif
4384 			} else {
4385 				if (room < tlen)
4386 					break;
4387 				dseg = mlx5_tx_dseg_empw(txq, loc, dseg,
4388 							 dptr, dlen, olx);
4389 			}
4390 			if (!MLX5_TXOFF_CONFIG(MPW))
4391 				tlen = RTE_ALIGN(tlen, MLX5_WSEG_SIZE);
4392 			MLX5_ASSERT(room >= tlen);
4393 			room -= tlen;
4394 			/*
4395 			 * Packet data are completely inlined,
4396 			 * free the packet immediately.
4397 			 */
4398 			rte_pktmbuf_free_seg(loc->mbuf);
4399 			goto next_mbuf;
4400 pointer_empw:
4401 			/*
4402 			 * No pointer and inline descriptor
4403 			 * intermix for legacy MPW sessions.
4404 			 */
4405 			if (MLX5_TXOFF_CONFIG(MPW) &&
4406 			    part != room &&
4407 			    wqem->dseg[0].bcount == RTE_BE32(0))
4408 				break;
4409 			/*
4410 			 * Not inlinable VLAN packets are
4411 			 * proceeded outside of this routine.
4412 			 */
4413 			MLX5_ASSERT(room >= MLX5_WQE_DSEG_SIZE);
4414 			if (MLX5_TXOFF_CONFIG(VLAN))
4415 				MLX5_ASSERT(!(loc->mbuf->ol_flags &
4416 					    PKT_TX_VLAN_PKT));
4417 			mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
4418 			/* We have to store mbuf in elts.*/
4419 			txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
4420 			room -= MLX5_WQE_DSEG_SIZE;
4421 			/* Ring buffer wraparound is checked at the loop end.*/
4422 			++dseg;
4423 next_mbuf:
4424 #ifdef MLX5_PMD_SOFT_COUNTERS
4425 			/* Update sent data bytes counter. */
4426 			slen += dlen;
4427 #endif
4428 			loc->pkts_sent++;
4429 			loc->elts_free--;
4430 			pkts_n--;
4431 			if (unlikely(!pkts_n || !loc->elts_free)) {
4432 				/*
4433 				 * We have no resources/packets to
4434 				 * continue build descriptors.
4435 				 */
4436 				part -= room;
4437 				mlx5_tx_idone_empw(txq, loc, part,
4438 						   slen, wqem, olx);
4439 				return MLX5_TXCMP_CODE_EXIT;
4440 			}
4441 			loc->mbuf = *pkts++;
4442 			if (likely(pkts_n > 1))
4443 				rte_prefetch0(*pkts);
4444 			ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
4445 			/*
4446 			 * Unroll the completion code to avoid
4447 			 * returning variable value - it results in
4448 			 * unoptimized sequent checking in caller.
4449 			 */
4450 			if (ret == MLX5_TXCMP_CODE_MULTI) {
4451 				part -= room;
4452 				mlx5_tx_idone_empw(txq, loc, part,
4453 						   slen, wqem, olx);
4454 				if (unlikely(!loc->elts_free ||
4455 					     !loc->wqe_free))
4456 					return MLX5_TXCMP_CODE_EXIT;
4457 				return MLX5_TXCMP_CODE_MULTI;
4458 			}
4459 			MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4460 			if (ret == MLX5_TXCMP_CODE_TSO) {
4461 				part -= room;
4462 				mlx5_tx_idone_empw(txq, loc, part,
4463 						   slen, wqem, olx);
4464 				if (unlikely(!loc->elts_free ||
4465 					     !loc->wqe_free))
4466 					return MLX5_TXCMP_CODE_EXIT;
4467 				return MLX5_TXCMP_CODE_TSO;
4468 			}
4469 			if (ret == MLX5_TXCMP_CODE_SINGLE) {
4470 				part -= room;
4471 				mlx5_tx_idone_empw(txq, loc, part,
4472 						   slen, wqem, olx);
4473 				if (unlikely(!loc->elts_free ||
4474 					     !loc->wqe_free))
4475 					return MLX5_TXCMP_CODE_EXIT;
4476 				return MLX5_TXCMP_CODE_SINGLE;
4477 			}
4478 			if (ret != MLX5_TXCMP_CODE_EMPW) {
4479 				MLX5_ASSERT(false);
4480 				part -= room;
4481 				mlx5_tx_idone_empw(txq, loc, part,
4482 						   slen, wqem, olx);
4483 				return MLX5_TXCMP_CODE_ERROR;
4484 			}
4485 			/* Check if we have minimal room left. */
4486 			nlim--;
4487 			if (unlikely(!nlim || room < MLX5_WQE_DSEG_SIZE))
4488 				break;
4489 			/*
4490 			 * Check whether packet parameters coincide
4491 			 * within assumed eMPW batch:
4492 			 * - check sum settings
4493 			 * - metadata value
4494 			 * - software parser settings
4495 			 * - packets length (legacy MPW only)
4496 			 * - scheduling is not required
4497 			 */
4498 			if (!mlx5_tx_match_empw(txq, &wqem->eseg,
4499 						loc, dlen, olx))
4500 				break;
4501 			/* Packet attributes match, continue the same eMPW. */
4502 			if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
4503 				dseg = (struct mlx5_wqe_dseg *)txq->wqes;
4504 		}
4505 		/*
4506 		 * We get here to close an existing eMPW
4507 		 * session and start the new one.
4508 		 */
4509 		MLX5_ASSERT(pkts_n);
4510 		part -= room;
4511 		if (unlikely(!part))
4512 			return MLX5_TXCMP_CODE_EXIT;
4513 		mlx5_tx_idone_empw(txq, loc, part, slen, wqem, olx);
4514 		if (unlikely(!loc->elts_free ||
4515 			     !loc->wqe_free))
4516 			return MLX5_TXCMP_CODE_EXIT;
4517 		/* Continue the loop with new eMPW session. */
4518 	}
4519 	MLX5_ASSERT(false);
4520 }
4521 
4522 /**
4523  * The routine sends packets with ordinary MLX5_OPCODE_SEND.
4524  * Data inlining and VLAN insertion are supported.
4525  */
4526 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_single_send(struct mlx5_txq_data * __rte_restrict txq,struct rte_mbuf ** __rte_restrict pkts,unsigned int pkts_n,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)4527 mlx5_tx_burst_single_send(struct mlx5_txq_data *__rte_restrict txq,
4528 			  struct rte_mbuf **__rte_restrict pkts,
4529 			  unsigned int pkts_n,
4530 			  struct mlx5_txq_local *__rte_restrict loc,
4531 			  unsigned int olx)
4532 {
4533 	/*
4534 	 * Subroutine is the part of mlx5_tx_burst_single()
4535 	 * and sends single-segment packet with SEND opcode.
4536 	 */
4537 	MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4538 	MLX5_ASSERT(pkts_n > loc->pkts_sent);
4539 	pkts += loc->pkts_sent + 1;
4540 	pkts_n -= loc->pkts_sent;
4541 	for (;;) {
4542 		struct mlx5_wqe *__rte_restrict wqe;
4543 		enum mlx5_txcmp_code ret;
4544 
4545 		MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
4546 		if (MLX5_TXOFF_CONFIG(TXPP)) {
4547 			enum mlx5_txcmp_code wret;
4548 
4549 			/* Generate WAIT for scheduling if requested. */
4550 			wret = mlx5_tx_schedule_send(txq, loc, olx);
4551 			if (wret == MLX5_TXCMP_CODE_EXIT)
4552 				return MLX5_TXCMP_CODE_EXIT;
4553 			if (wret == MLX5_TXCMP_CODE_ERROR)
4554 				return MLX5_TXCMP_CODE_ERROR;
4555 		}
4556 		if (MLX5_TXOFF_CONFIG(INLINE)) {
4557 			unsigned int inlen, vlan = 0;
4558 
4559 			inlen = rte_pktmbuf_data_len(loc->mbuf);
4560 			if (MLX5_TXOFF_CONFIG(VLAN) &&
4561 			    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
4562 				vlan = sizeof(struct rte_vlan_hdr);
4563 				inlen += vlan;
4564 				static_assert((sizeof(struct rte_vlan_hdr) +
4565 					       sizeof(struct rte_ether_hdr)) ==
4566 					       MLX5_ESEG_MIN_INLINE_SIZE,
4567 					       "invalid min inline data size");
4568 			}
4569 			/*
4570 			 * If inlining is enabled at configuration time
4571 			 * the limit must be not less than minimal size.
4572 			 * Otherwise we would do extra check for data
4573 			 * size to avoid crashes due to length overflow.
4574 			 */
4575 			MLX5_ASSERT(txq->inlen_send >=
4576 				    MLX5_ESEG_MIN_INLINE_SIZE);
4577 			if (inlen <= txq->inlen_send) {
4578 				unsigned int seg_n, wqe_n;
4579 
4580 				rte_prefetch0(rte_pktmbuf_mtod
4581 						(loc->mbuf, uint8_t *));
4582 				/* Check against minimal length. */
4583 				if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
4584 					return MLX5_TXCMP_CODE_ERROR;
4585 				if (loc->mbuf->ol_flags &
4586 				    PKT_TX_DYNF_NOINLINE) {
4587 					/*
4588 					 * The hint flag not to inline packet
4589 					 * data is set. Check whether we can
4590 					 * follow the hint.
4591 					 */
4592 					if ((!MLX5_TXOFF_CONFIG(EMPW) &&
4593 					      txq->inlen_mode) ||
4594 					    (MLX5_TXOFF_CONFIG(MPW) &&
4595 					     txq->inlen_mode)) {
4596 						if (inlen <= txq->inlen_send)
4597 							goto single_inline;
4598 						/*
4599 						 * The hardware requires the
4600 						 * minimal inline data header.
4601 						 */
4602 						goto single_min_inline;
4603 					}
4604 					if (MLX5_TXOFF_CONFIG(VLAN) &&
4605 					    vlan && !txq->vlan_en) {
4606 						/*
4607 						 * We must insert VLAN tag
4608 						 * by software means.
4609 						 */
4610 						goto single_part_inline;
4611 					}
4612 					goto single_no_inline;
4613 				}
4614 single_inline:
4615 				/*
4616 				 * Completely inlined packet data WQE:
4617 				 * - Control Segment, SEND opcode
4618 				 * - Ethernet Segment, no VLAN insertion
4619 				 * - Data inlined, VLAN optionally inserted
4620 				 * - Alignment to MLX5_WSEG_SIZE
4621 				 * Have to estimate amount of WQEBBs
4622 				 */
4623 				seg_n = (inlen + 3 * MLX5_WSEG_SIZE -
4624 					 MLX5_ESEG_MIN_INLINE_SIZE +
4625 					 MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
4626 				/* Check if there are enough WQEBBs. */
4627 				wqe_n = (seg_n + 3) / 4;
4628 				if (wqe_n > loc->wqe_free)
4629 					return MLX5_TXCMP_CODE_EXIT;
4630 				wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4631 				loc->wqe_last = wqe;
4632 				mlx5_tx_cseg_init(txq, loc, wqe, seg_n,
4633 						  MLX5_OPCODE_SEND, olx);
4634 				mlx5_tx_eseg_data(txq, loc, wqe,
4635 						  vlan, inlen, 0, olx);
4636 				txq->wqe_ci += wqe_n;
4637 				loc->wqe_free -= wqe_n;
4638 				/*
4639 				 * Packet data are completely inlined,
4640 				 * free the packet immediately.
4641 				 */
4642 				rte_pktmbuf_free_seg(loc->mbuf);
4643 			} else if ((!MLX5_TXOFF_CONFIG(EMPW) ||
4644 				     MLX5_TXOFF_CONFIG(MPW)) &&
4645 					txq->inlen_mode) {
4646 				/*
4647 				 * If minimal inlining is requested the eMPW
4648 				 * feature should be disabled due to data is
4649 				 * inlined into Ethernet Segment, which can
4650 				 * not contain inlined data for eMPW due to
4651 				 * segment shared for all packets.
4652 				 */
4653 				struct mlx5_wqe_dseg *__rte_restrict dseg;
4654 				unsigned int ds;
4655 				uint8_t *dptr;
4656 
4657 				/*
4658 				 * The inline-mode settings require
4659 				 * to inline the specified amount of
4660 				 * data bytes to the Ethernet Segment.
4661 				 * We should check the free space in
4662 				 * WQE ring buffer to inline partially.
4663 				 */
4664 single_min_inline:
4665 				MLX5_ASSERT(txq->inlen_send >= txq->inlen_mode);
4666 				MLX5_ASSERT(inlen > txq->inlen_mode);
4667 				MLX5_ASSERT(txq->inlen_mode >=
4668 					    MLX5_ESEG_MIN_INLINE_SIZE);
4669 				/*
4670 				 * Check whether there are enough free WQEBBs:
4671 				 * - Control Segment
4672 				 * - Ethernet Segment
4673 				 * - First Segment of inlined Ethernet data
4674 				 * - ... data continued ...
4675 				 * - Finishing Data Segment of pointer type
4676 				 */
4677 				ds = (MLX5_WQE_CSEG_SIZE +
4678 				      MLX5_WQE_ESEG_SIZE +
4679 				      MLX5_WQE_DSEG_SIZE +
4680 				      txq->inlen_mode -
4681 				      MLX5_ESEG_MIN_INLINE_SIZE +
4682 				      MLX5_WQE_DSEG_SIZE +
4683 				      MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
4684 				if (loc->wqe_free < ((ds + 3) / 4))
4685 					return MLX5_TXCMP_CODE_EXIT;
4686 				/*
4687 				 * Build the ordinary SEND WQE:
4688 				 * - Control Segment
4689 				 * - Ethernet Segment, inline inlen_mode bytes
4690 				 * - Data Segment of pointer type
4691 				 */
4692 				wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4693 				loc->wqe_last = wqe;
4694 				mlx5_tx_cseg_init(txq, loc, wqe, ds,
4695 						  MLX5_OPCODE_SEND, olx);
4696 				dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan,
4697 							 txq->inlen_mode,
4698 							 0, olx);
4699 				dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
4700 				       txq->inlen_mode - vlan;
4701 				inlen -= txq->inlen_mode;
4702 				mlx5_tx_dseg_ptr(txq, loc, dseg,
4703 						 dptr, inlen, olx);
4704 				/*
4705 				 * WQE is built, update the loop parameters
4706 				 * and got to the next packet.
4707 				 */
4708 				txq->wqe_ci += (ds + 3) / 4;
4709 				loc->wqe_free -= (ds + 3) / 4;
4710 				/* We have to store mbuf in elts.*/
4711 				MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
4712 				txq->elts[txq->elts_head++ & txq->elts_m] =
4713 						loc->mbuf;
4714 				--loc->elts_free;
4715 			} else {
4716 				uint8_t *dptr;
4717 				unsigned int dlen;
4718 
4719 				/*
4720 				 * Partially inlined packet data WQE, we have
4721 				 * some space in title WQEBB, we can fill it
4722 				 * with some packet data. It takes one WQEBB,
4723 				 * it is available, no extra space check:
4724 				 * - Control Segment, SEND opcode
4725 				 * - Ethernet Segment, no VLAN insertion
4726 				 * - MLX5_ESEG_MIN_INLINE_SIZE bytes of Data
4727 				 * - Data Segment, pointer type
4728 				 *
4729 				 * We also get here if VLAN insertion is not
4730 				 * supported by HW, the inline is enabled.
4731 				 */
4732 single_part_inline:
4733 				wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4734 				loc->wqe_last = wqe;
4735 				mlx5_tx_cseg_init(txq, loc, wqe, 4,
4736 						  MLX5_OPCODE_SEND, olx);
4737 				mlx5_tx_eseg_dmin(txq, loc, wqe, vlan, olx);
4738 				dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
4739 				       MLX5_ESEG_MIN_INLINE_SIZE - vlan;
4740 				/*
4741 				 * The length check is performed above, by
4742 				 * comparing with txq->inlen_send. We should
4743 				 * not get overflow here.
4744 				 */
4745 				MLX5_ASSERT(inlen > MLX5_ESEG_MIN_INLINE_SIZE);
4746 				dlen = inlen - MLX5_ESEG_MIN_INLINE_SIZE;
4747 				mlx5_tx_dseg_ptr(txq, loc, &wqe->dseg[1],
4748 						 dptr, dlen, olx);
4749 				++txq->wqe_ci;
4750 				--loc->wqe_free;
4751 				/* We have to store mbuf in elts.*/
4752 				MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
4753 				txq->elts[txq->elts_head++ & txq->elts_m] =
4754 						loc->mbuf;
4755 				--loc->elts_free;
4756 			}
4757 #ifdef MLX5_PMD_SOFT_COUNTERS
4758 			/* Update sent data bytes counter. */
4759 			txq->stats.obytes += vlan +
4760 					rte_pktmbuf_data_len(loc->mbuf);
4761 #endif
4762 		} else {
4763 			/*
4764 			 * No inline at all, it means the CPU cycles saving
4765 			 * is prioritized at configuration, we should not
4766 			 * copy any packet data to WQE.
4767 			 *
4768 			 * SEND WQE, one WQEBB:
4769 			 * - Control Segment, SEND opcode
4770 			 * - Ethernet Segment, optional VLAN, no inline
4771 			 * - Data Segment, pointer type
4772 			 */
4773 single_no_inline:
4774 			wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
4775 			loc->wqe_last = wqe;
4776 			mlx5_tx_cseg_init(txq, loc, wqe, 3,
4777 					  MLX5_OPCODE_SEND, olx);
4778 			mlx5_tx_eseg_none(txq, loc, wqe, olx);
4779 			mlx5_tx_dseg_ptr
4780 				(txq, loc, &wqe->dseg[0],
4781 				 rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
4782 				 rte_pktmbuf_data_len(loc->mbuf), olx);
4783 			++txq->wqe_ci;
4784 			--loc->wqe_free;
4785 			/*
4786 			 * We should not store mbuf pointer in elts
4787 			 * if no inlining is configured, this is done
4788 			 * by calling routine in a batch copy.
4789 			 */
4790 			MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
4791 			--loc->elts_free;
4792 #ifdef MLX5_PMD_SOFT_COUNTERS
4793 			/* Update sent data bytes counter. */
4794 			txq->stats.obytes += rte_pktmbuf_data_len(loc->mbuf);
4795 			if (MLX5_TXOFF_CONFIG(VLAN) &&
4796 			    loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
4797 				txq->stats.obytes +=
4798 					sizeof(struct rte_vlan_hdr);
4799 #endif
4800 		}
4801 		++loc->pkts_sent;
4802 		--pkts_n;
4803 		if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
4804 			return MLX5_TXCMP_CODE_EXIT;
4805 		loc->mbuf = *pkts++;
4806 		if (pkts_n > 1)
4807 			rte_prefetch0(*pkts);
4808 		ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
4809 		if (unlikely(ret != MLX5_TXCMP_CODE_SINGLE))
4810 			return ret;
4811 	}
4812 	MLX5_ASSERT(false);
4813 }
4814 
4815 static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_single(struct mlx5_txq_data * __rte_restrict txq,struct rte_mbuf ** __rte_restrict pkts,unsigned int pkts_n,struct mlx5_txq_local * __rte_restrict loc,unsigned int olx)4816 mlx5_tx_burst_single(struct mlx5_txq_data *__rte_restrict txq,
4817 		     struct rte_mbuf **__rte_restrict pkts,
4818 		     unsigned int pkts_n,
4819 		     struct mlx5_txq_local *__rte_restrict loc,
4820 		     unsigned int olx)
4821 {
4822 	enum mlx5_txcmp_code ret;
4823 
4824 	ret = mlx5_tx_able_to_empw(txq, loc, olx, false);
4825 	if (ret == MLX5_TXCMP_CODE_SINGLE)
4826 		goto ordinary_send;
4827 	MLX5_ASSERT(ret == MLX5_TXCMP_CODE_EMPW);
4828 	for (;;) {
4829 		/* Optimize for inline/no inline eMPW send. */
4830 		ret = (MLX5_TXOFF_CONFIG(INLINE)) ?
4831 			mlx5_tx_burst_empw_inline
4832 				(txq, pkts, pkts_n, loc, olx) :
4833 			mlx5_tx_burst_empw_simple
4834 				(txq, pkts, pkts_n, loc, olx);
4835 		if (ret != MLX5_TXCMP_CODE_SINGLE)
4836 			return ret;
4837 		/* The resources to send one packet should remain. */
4838 		MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4839 ordinary_send:
4840 		ret = mlx5_tx_burst_single_send(txq, pkts, pkts_n, loc, olx);
4841 		MLX5_ASSERT(ret != MLX5_TXCMP_CODE_SINGLE);
4842 		if (ret != MLX5_TXCMP_CODE_EMPW)
4843 			return ret;
4844 		/* The resources to send one packet should remain. */
4845 		MLX5_ASSERT(loc->elts_free && loc->wqe_free);
4846 	}
4847 }
4848 
4849 /**
4850  * DPDK Tx callback template. This is configured template
4851  * used to generate routines optimized for specified offload setup.
4852  * One of this generated functions is chosen at SQ configuration
4853  * time.
4854  *
4855  * @param txq
4856  *   Generic pointer to TX queue structure.
4857  * @param[in] pkts
4858  *   Packets to transmit.
4859  * @param pkts_n
4860  *   Number of packets in array.
4861  * @param olx
4862  *   Configured offloads mask, presents the bits of MLX5_TXOFF_CONFIG_xxx
4863  *   values. Should be static to take compile time static configuration
4864  *   advantages.
4865  *
4866  * @return
4867  *   Number of packets successfully transmitted (<= pkts_n).
4868  */
4869 static __rte_always_inline uint16_t
mlx5_tx_burst_tmpl(struct mlx5_txq_data * __rte_restrict txq,struct rte_mbuf ** __rte_restrict pkts,uint16_t pkts_n,unsigned int olx)4870 mlx5_tx_burst_tmpl(struct mlx5_txq_data *__rte_restrict txq,
4871 		   struct rte_mbuf **__rte_restrict pkts,
4872 		   uint16_t pkts_n,
4873 		   unsigned int olx)
4874 {
4875 	struct mlx5_txq_local loc;
4876 	enum mlx5_txcmp_code ret;
4877 	unsigned int part;
4878 
4879 	MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
4880 	MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
4881 	if (unlikely(!pkts_n))
4882 		return 0;
4883 	loc.pkts_sent = 0;
4884 	loc.pkts_copy = 0;
4885 	loc.wqe_last = NULL;
4886 
4887 send_loop:
4888 	loc.pkts_loop = loc.pkts_sent;
4889 	/*
4890 	 * Check if there are some CQEs, if any:
4891 	 * - process an encountered errors
4892 	 * - process the completed WQEs
4893 	 * - free related mbufs
4894 	 * - doorbell the NIC about processed CQEs
4895 	 */
4896 	rte_prefetch0(*(pkts + loc.pkts_sent));
4897 	mlx5_tx_handle_completion(txq, olx);
4898 	/*
4899 	 * Calculate the number of available resources - elts and WQEs.
4900 	 * There are two possible different scenarios:
4901 	 * - no data inlining into WQEs, one WQEBB may contains up to
4902 	 *   four packets, in this case elts become scarce resource
4903 	 * - data inlining into WQEs, one packet may require multiple
4904 	 *   WQEBBs, the WQEs become the limiting factor.
4905 	 */
4906 	MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
4907 	loc.elts_free = txq->elts_s -
4908 				(uint16_t)(txq->elts_head - txq->elts_tail);
4909 	MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
4910 	loc.wqe_free = txq->wqe_s -
4911 				(uint16_t)(txq->wqe_ci - txq->wqe_pi);
4912 	if (unlikely(!loc.elts_free || !loc.wqe_free))
4913 		goto burst_exit;
4914 	for (;;) {
4915 		/*
4916 		 * Fetch the packet from array. Usually this is
4917 		 * the first packet in series of multi/single
4918 		 * segment packets.
4919 		 */
4920 		loc.mbuf = *(pkts + loc.pkts_sent);
4921 		/* Dedicated branch for multi-segment packets. */
4922 		if (MLX5_TXOFF_CONFIG(MULTI) &&
4923 		    unlikely(NB_SEGS(loc.mbuf) > 1)) {
4924 			/*
4925 			 * Multi-segment packet encountered.
4926 			 * Hardware is able to process it only
4927 			 * with SEND/TSO opcodes, one packet
4928 			 * per WQE, do it in dedicated routine.
4929 			 */
4930 enter_send_multi:
4931 			MLX5_ASSERT(loc.pkts_sent >= loc.pkts_copy);
4932 			part = loc.pkts_sent - loc.pkts_copy;
4933 			if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
4934 				/*
4935 				 * There are some single-segment mbufs not
4936 				 * stored in elts. The mbufs must be in the
4937 				 * same order as WQEs, so we must copy the
4938 				 * mbufs to elts here, before the coming
4939 				 * multi-segment packet mbufs is appended.
4940 				 */
4941 				mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy,
4942 						  part, olx);
4943 				loc.pkts_copy = loc.pkts_sent;
4944 			}
4945 			MLX5_ASSERT(pkts_n > loc.pkts_sent);
4946 			ret = mlx5_tx_burst_mseg(txq, pkts, pkts_n, &loc, olx);
4947 			if (!MLX5_TXOFF_CONFIG(INLINE))
4948 				loc.pkts_copy = loc.pkts_sent;
4949 			/*
4950 			 * These returned code checks are supposed
4951 			 * to be optimized out due to routine inlining.
4952 			 */
4953 			if (ret == MLX5_TXCMP_CODE_EXIT) {
4954 				/*
4955 				 * The routine returns this code when
4956 				 * all packets are sent or there is no
4957 				 * enough resources to complete request.
4958 				 */
4959 				break;
4960 			}
4961 			if (ret == MLX5_TXCMP_CODE_ERROR) {
4962 				/*
4963 				 * The routine returns this code when
4964 				 * some error in the incoming packets
4965 				 * format occurred.
4966 				 */
4967 				txq->stats.oerrors++;
4968 				break;
4969 			}
4970 			if (ret == MLX5_TXCMP_CODE_SINGLE) {
4971 				/*
4972 				 * The single-segment packet was encountered
4973 				 * in the array, try to send it with the
4974 				 * best optimized way, possible engaging eMPW.
4975 				 */
4976 				goto enter_send_single;
4977 			}
4978 			if (MLX5_TXOFF_CONFIG(TSO) &&
4979 			    ret == MLX5_TXCMP_CODE_TSO) {
4980 				/*
4981 				 * The single-segment TSO packet was
4982 				 * encountered in the array.
4983 				 */
4984 				goto enter_send_tso;
4985 			}
4986 			/* We must not get here. Something is going wrong. */
4987 			MLX5_ASSERT(false);
4988 			txq->stats.oerrors++;
4989 			break;
4990 		}
4991 		/* Dedicated branch for single-segment TSO packets. */
4992 		if (MLX5_TXOFF_CONFIG(TSO) &&
4993 		    unlikely(loc.mbuf->ol_flags & PKT_TX_TCP_SEG)) {
4994 			/*
4995 			 * TSO might require special way for inlining
4996 			 * (dedicated parameters) and is sent with
4997 			 * MLX5_OPCODE_TSO opcode only, provide this
4998 			 * in dedicated branch.
4999 			 */
5000 enter_send_tso:
5001 			MLX5_ASSERT(NB_SEGS(loc.mbuf) == 1);
5002 			MLX5_ASSERT(pkts_n > loc.pkts_sent);
5003 			ret = mlx5_tx_burst_tso(txq, pkts, pkts_n, &loc, olx);
5004 			/*
5005 			 * These returned code checks are supposed
5006 			 * to be optimized out due to routine inlining.
5007 			 */
5008 			if (ret == MLX5_TXCMP_CODE_EXIT)
5009 				break;
5010 			if (ret == MLX5_TXCMP_CODE_ERROR) {
5011 				txq->stats.oerrors++;
5012 				break;
5013 			}
5014 			if (ret == MLX5_TXCMP_CODE_SINGLE)
5015 				goto enter_send_single;
5016 			if (MLX5_TXOFF_CONFIG(MULTI) &&
5017 			    ret == MLX5_TXCMP_CODE_MULTI) {
5018 				/*
5019 				 * The multi-segment packet was
5020 				 * encountered in the array.
5021 				 */
5022 				goto enter_send_multi;
5023 			}
5024 			/* We must not get here. Something is going wrong. */
5025 			MLX5_ASSERT(false);
5026 			txq->stats.oerrors++;
5027 			break;
5028 		}
5029 		/*
5030 		 * The dedicated branch for the single-segment packets
5031 		 * without TSO. Often these ones can be sent using
5032 		 * MLX5_OPCODE_EMPW with multiple packets in one WQE.
5033 		 * The routine builds the WQEs till it encounters
5034 		 * the TSO or multi-segment packet (in case if these
5035 		 * offloads are requested at SQ configuration time).
5036 		 */
5037 enter_send_single:
5038 		MLX5_ASSERT(pkts_n > loc.pkts_sent);
5039 		ret = mlx5_tx_burst_single(txq, pkts, pkts_n, &loc, olx);
5040 		/*
5041 		 * These returned code checks are supposed
5042 		 * to be optimized out due to routine inlining.
5043 		 */
5044 		if (ret == MLX5_TXCMP_CODE_EXIT)
5045 			break;
5046 		if (ret == MLX5_TXCMP_CODE_ERROR) {
5047 			txq->stats.oerrors++;
5048 			break;
5049 		}
5050 		if (MLX5_TXOFF_CONFIG(MULTI) &&
5051 		    ret == MLX5_TXCMP_CODE_MULTI) {
5052 			/*
5053 			 * The multi-segment packet was
5054 			 * encountered in the array.
5055 			 */
5056 			goto enter_send_multi;
5057 		}
5058 		if (MLX5_TXOFF_CONFIG(TSO) &&
5059 		    ret == MLX5_TXCMP_CODE_TSO) {
5060 			/*
5061 			 * The single-segment TSO packet was
5062 			 * encountered in the array.
5063 			 */
5064 			goto enter_send_tso;
5065 		}
5066 		/* We must not get here. Something is going wrong. */
5067 		MLX5_ASSERT(false);
5068 		txq->stats.oerrors++;
5069 		break;
5070 	}
5071 	/*
5072 	 * Main Tx loop is completed, do the rest:
5073 	 * - set completion request if thresholds are reached
5074 	 * - doorbell the hardware
5075 	 * - copy the rest of mbufs to elts (if any)
5076 	 */
5077 	MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE) ||
5078 		    loc.pkts_sent >= loc.pkts_copy);
5079 	/* Take a shortcut if nothing is sent. */
5080 	if (unlikely(loc.pkts_sent == loc.pkts_loop))
5081 		goto burst_exit;
5082 	/* Request CQE generation if limits are reached. */
5083 	mlx5_tx_request_completion(txq, &loc, olx);
5084 	/*
5085 	 * Ring QP doorbell immediately after WQE building completion
5086 	 * to improve latencies. The pure software related data treatment
5087 	 * can be completed after doorbell. Tx CQEs for this SQ are
5088 	 * processed in this thread only by the polling.
5089 	 *
5090 	 * The rdma core library can map doorbell register in two ways,
5091 	 * depending on the environment variable "MLX5_SHUT_UP_BF":
5092 	 *
5093 	 * - as regular cached memory, the variable is either missing or
5094 	 *   set to zero. This type of mapping may cause the significant
5095 	 *   doorbell register writing latency and requires explicit
5096 	 *   memory write barrier to mitigate this issue and prevent
5097 	 *   write combining.
5098 	 *
5099 	 * - as non-cached memory, the variable is present and set to
5100 	 *   not "0" value. This type of mapping may cause performance
5101 	 *   impact under heavy loading conditions but the explicit write
5102 	 *   memory barrier is not required and it may improve core
5103 	 *   performance.
5104 	 *
5105 	 * - the legacy behaviour (prior 19.08 release) was to use some
5106 	 *   heuristics to decide whether write memory barrier should
5107 	 *   be performed. This behavior is supported with specifying
5108 	 *   tx_db_nc=2, write barrier is skipped if application
5109 	 *   provides the full recommended burst of packets, it
5110 	 *   supposes the next packets are coming and the write barrier
5111 	 *   will be issued on the next burst (after descriptor writing,
5112 	 *   at least).
5113 	 */
5114 	mlx5_tx_dbrec_cond_wmb(txq, loc.wqe_last, !txq->db_nc &&
5115 			(!txq->db_heu || pkts_n % MLX5_TX_DEFAULT_BURST));
5116 	/* Not all of the mbufs may be stored into elts yet. */
5117 	part = MLX5_TXOFF_CONFIG(INLINE) ? 0 : loc.pkts_sent - loc.pkts_copy;
5118 	if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
5119 		/*
5120 		 * There are some single-segment mbufs not stored in elts.
5121 		 * It can be only if the last packet was single-segment.
5122 		 * The copying is gathered into one place due to it is
5123 		 * a good opportunity to optimize that with SIMD.
5124 		 * Unfortunately if inlining is enabled the gaps in
5125 		 * pointer array may happen due to early freeing of the
5126 		 * inlined mbufs.
5127 		 */
5128 		mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy, part, olx);
5129 		loc.pkts_copy = loc.pkts_sent;
5130 	}
5131 	MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
5132 	MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
5133 	if (pkts_n > loc.pkts_sent) {
5134 		/*
5135 		 * If burst size is large there might be no enough CQE
5136 		 * fetched from completion queue and no enough resources
5137 		 * freed to send all the packets.
5138 		 */
5139 		goto send_loop;
5140 	}
5141 burst_exit:
5142 #ifdef MLX5_PMD_SOFT_COUNTERS
5143 	/* Increment sent packets counter. */
5144 	txq->stats.opackets += loc.pkts_sent;
5145 #endif
5146 	return loc.pkts_sent;
5147 }
5148 
5149 /* Generate routines with Enhanced Multi-Packet Write support. */
5150 MLX5_TXOFF_DECL(full_empw,
5151 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_EMPW)
5152 
5153 MLX5_TXOFF_DECL(none_empw,
5154 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW)
5155 
5156 MLX5_TXOFF_DECL(md_empw,
5157 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5158 
5159 MLX5_TXOFF_DECL(mt_empw,
5160 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5161 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5162 
5163 MLX5_TXOFF_DECL(mtsc_empw,
5164 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5165 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5166 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5167 
5168 MLX5_TXOFF_DECL(mti_empw,
5169 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5170 		MLX5_TXOFF_CONFIG_INLINE |
5171 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5172 
5173 MLX5_TXOFF_DECL(mtv_empw,
5174 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5175 		MLX5_TXOFF_CONFIG_VLAN |
5176 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5177 
5178 MLX5_TXOFF_DECL(mtiv_empw,
5179 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5180 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5181 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5182 
5183 MLX5_TXOFF_DECL(sc_empw,
5184 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5185 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5186 
5187 MLX5_TXOFF_DECL(sci_empw,
5188 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5189 		MLX5_TXOFF_CONFIG_INLINE |
5190 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5191 
5192 MLX5_TXOFF_DECL(scv_empw,
5193 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5194 		MLX5_TXOFF_CONFIG_VLAN |
5195 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5196 
5197 MLX5_TXOFF_DECL(sciv_empw,
5198 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5199 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5200 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5201 
5202 MLX5_TXOFF_DECL(i_empw,
5203 		MLX5_TXOFF_CONFIG_INLINE |
5204 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5205 
5206 MLX5_TXOFF_DECL(v_empw,
5207 		MLX5_TXOFF_CONFIG_VLAN |
5208 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5209 
5210 MLX5_TXOFF_DECL(iv_empw,
5211 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5212 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5213 
5214 /* Generate routines without Enhanced Multi-Packet Write support. */
5215 MLX5_TXOFF_DECL(full,
5216 		MLX5_TXOFF_CONFIG_FULL)
5217 
5218 MLX5_TXOFF_DECL(none,
5219 		MLX5_TXOFF_CONFIG_NONE)
5220 
5221 MLX5_TXOFF_DECL(md,
5222 		MLX5_TXOFF_CONFIG_METADATA)
5223 
5224 MLX5_TXOFF_DECL(mt,
5225 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5226 		MLX5_TXOFF_CONFIG_METADATA)
5227 
5228 MLX5_TXOFF_DECL(mtsc,
5229 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5230 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5231 		MLX5_TXOFF_CONFIG_METADATA)
5232 
5233 MLX5_TXOFF_DECL(mti,
5234 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5235 		MLX5_TXOFF_CONFIG_INLINE |
5236 		MLX5_TXOFF_CONFIG_METADATA)
5237 
5238 
5239 MLX5_TXOFF_DECL(mtv,
5240 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5241 		MLX5_TXOFF_CONFIG_VLAN |
5242 		MLX5_TXOFF_CONFIG_METADATA)
5243 
5244 
5245 MLX5_TXOFF_DECL(mtiv,
5246 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5247 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5248 		MLX5_TXOFF_CONFIG_METADATA)
5249 
5250 MLX5_TXOFF_DECL(sc,
5251 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5252 		MLX5_TXOFF_CONFIG_METADATA)
5253 
5254 MLX5_TXOFF_DECL(sci,
5255 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5256 		MLX5_TXOFF_CONFIG_INLINE |
5257 		MLX5_TXOFF_CONFIG_METADATA)
5258 
5259 
5260 MLX5_TXOFF_DECL(scv,
5261 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5262 		MLX5_TXOFF_CONFIG_VLAN |
5263 		MLX5_TXOFF_CONFIG_METADATA)
5264 
5265 
5266 MLX5_TXOFF_DECL(sciv,
5267 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5268 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5269 		MLX5_TXOFF_CONFIG_METADATA)
5270 
5271 MLX5_TXOFF_DECL(i,
5272 		MLX5_TXOFF_CONFIG_INLINE |
5273 		MLX5_TXOFF_CONFIG_METADATA)
5274 
5275 MLX5_TXOFF_DECL(v,
5276 		MLX5_TXOFF_CONFIG_VLAN |
5277 		MLX5_TXOFF_CONFIG_METADATA)
5278 
5279 MLX5_TXOFF_DECL(iv,
5280 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5281 		MLX5_TXOFF_CONFIG_METADATA)
5282 
5283 /* Generate routines with timestamp scheduling. */
5284 MLX5_TXOFF_DECL(full_ts_nompw,
5285 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_TXPP)
5286 
5287 MLX5_TXOFF_DECL(full_ts_nompwi,
5288 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5289 		MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
5290 		MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA |
5291 		MLX5_TXOFF_CONFIG_TXPP)
5292 
5293 MLX5_TXOFF_DECL(full_ts,
5294 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_TXPP |
5295 		MLX5_TXOFF_CONFIG_EMPW)
5296 
5297 MLX5_TXOFF_DECL(full_ts_noi,
5298 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5299 		MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
5300 		MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA |
5301 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5302 
5303 MLX5_TXOFF_DECL(none_ts,
5304 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_TXPP |
5305 		MLX5_TXOFF_CONFIG_EMPW)
5306 
5307 MLX5_TXOFF_DECL(mdi_ts,
5308 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA |
5309 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5310 
5311 MLX5_TXOFF_DECL(mti_ts,
5312 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5313 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA |
5314 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5315 
5316 MLX5_TXOFF_DECL(mtiv_ts,
5317 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5318 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5319 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_TXPP |
5320 		MLX5_TXOFF_CONFIG_EMPW)
5321 
5322 /*
5323  * Generate routines with Legacy Multi-Packet Write support.
5324  * This mode is supported by ConnectX-4 Lx only and imposes
5325  * offload limitations, not supported:
5326  *   - ACL/Flows (metadata are becoming meaningless)
5327  *   - WQE Inline headers
5328  *   - SRIOV (E-Switch offloads)
5329  *   - VLAN insertion
5330  *   - tunnel encapsulation/decapsulation
5331  *   - TSO
5332  */
5333 MLX5_TXOFF_DECL(none_mpw,
5334 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW |
5335 		MLX5_TXOFF_CONFIG_MPW)
5336 
5337 MLX5_TXOFF_DECL(mci_mpw,
5338 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
5339 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
5340 		MLX5_TXOFF_CONFIG_MPW)
5341 
5342 MLX5_TXOFF_DECL(mc_mpw,
5343 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
5344 		MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW)
5345 
5346 MLX5_TXOFF_DECL(i_mpw,
5347 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
5348 		MLX5_TXOFF_CONFIG_MPW)
5349 
5350 /*
5351  * Array of declared and compiled Tx burst function and corresponding
5352  * supported offloads set. The array is used to select the Tx burst
5353  * function for specified offloads set at Tx queue configuration time.
5354  */
5355 const struct {
5356 	eth_tx_burst_t func;
5357 	unsigned int olx;
5358 } txoff_func[] = {
5359 MLX5_TXOFF_INFO(full_empw,
5360 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5361 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5362 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5363 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5364 
5365 MLX5_TXOFF_INFO(none_empw,
5366 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW)
5367 
5368 MLX5_TXOFF_INFO(md_empw,
5369 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5370 
5371 MLX5_TXOFF_INFO(mt_empw,
5372 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5373 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5374 
5375 MLX5_TXOFF_INFO(mtsc_empw,
5376 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5377 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5378 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5379 
5380 MLX5_TXOFF_INFO(mti_empw,
5381 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5382 		MLX5_TXOFF_CONFIG_INLINE |
5383 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5384 
5385 MLX5_TXOFF_INFO(mtv_empw,
5386 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5387 		MLX5_TXOFF_CONFIG_VLAN |
5388 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5389 
5390 MLX5_TXOFF_INFO(mtiv_empw,
5391 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5392 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5393 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5394 
5395 MLX5_TXOFF_INFO(sc_empw,
5396 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5397 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5398 
5399 MLX5_TXOFF_INFO(sci_empw,
5400 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5401 		MLX5_TXOFF_CONFIG_INLINE |
5402 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5403 
5404 MLX5_TXOFF_INFO(scv_empw,
5405 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5406 		MLX5_TXOFF_CONFIG_VLAN |
5407 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5408 
5409 MLX5_TXOFF_INFO(sciv_empw,
5410 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5411 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5412 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5413 
5414 MLX5_TXOFF_INFO(i_empw,
5415 		MLX5_TXOFF_CONFIG_INLINE |
5416 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5417 
5418 MLX5_TXOFF_INFO(v_empw,
5419 		MLX5_TXOFF_CONFIG_VLAN |
5420 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5421 
5422 MLX5_TXOFF_INFO(iv_empw,
5423 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5424 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
5425 
5426 MLX5_TXOFF_INFO(full_ts_nompw,
5427 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_TXPP)
5428 
5429 MLX5_TXOFF_INFO(full_ts_nompwi,
5430 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5431 		MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
5432 		MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA |
5433 		MLX5_TXOFF_CONFIG_TXPP)
5434 
5435 MLX5_TXOFF_INFO(full_ts,
5436 		MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_TXPP |
5437 		MLX5_TXOFF_CONFIG_EMPW)
5438 
5439 MLX5_TXOFF_INFO(full_ts_noi,
5440 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5441 		MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
5442 		MLX5_TXOFF_CONFIG_VLAN | MLX5_TXOFF_CONFIG_METADATA |
5443 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5444 
5445 MLX5_TXOFF_INFO(none_ts,
5446 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_TXPP |
5447 		MLX5_TXOFF_CONFIG_EMPW)
5448 
5449 MLX5_TXOFF_INFO(mdi_ts,
5450 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA |
5451 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5452 
5453 MLX5_TXOFF_INFO(mti_ts,
5454 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5455 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_METADATA |
5456 		MLX5_TXOFF_CONFIG_TXPP | MLX5_TXOFF_CONFIG_EMPW)
5457 
5458 MLX5_TXOFF_INFO(mtiv_ts,
5459 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5460 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5461 		MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_TXPP |
5462 		MLX5_TXOFF_CONFIG_EMPW)
5463 
5464 MLX5_TXOFF_INFO(full,
5465 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5466 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5467 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5468 		MLX5_TXOFF_CONFIG_METADATA)
5469 
5470 MLX5_TXOFF_INFO(none,
5471 		MLX5_TXOFF_CONFIG_NONE)
5472 
5473 MLX5_TXOFF_INFO(md,
5474 		MLX5_TXOFF_CONFIG_METADATA)
5475 
5476 MLX5_TXOFF_INFO(mt,
5477 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5478 		MLX5_TXOFF_CONFIG_METADATA)
5479 
5480 MLX5_TXOFF_INFO(mtsc,
5481 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5482 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5483 		MLX5_TXOFF_CONFIG_METADATA)
5484 
5485 MLX5_TXOFF_INFO(mti,
5486 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5487 		MLX5_TXOFF_CONFIG_INLINE |
5488 		MLX5_TXOFF_CONFIG_METADATA)
5489 
5490 MLX5_TXOFF_INFO(mtv,
5491 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5492 		MLX5_TXOFF_CONFIG_VLAN |
5493 		MLX5_TXOFF_CONFIG_METADATA)
5494 
5495 MLX5_TXOFF_INFO(mtiv,
5496 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
5497 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5498 		MLX5_TXOFF_CONFIG_METADATA)
5499 
5500 MLX5_TXOFF_INFO(sc,
5501 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5502 		MLX5_TXOFF_CONFIG_METADATA)
5503 
5504 MLX5_TXOFF_INFO(sci,
5505 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5506 		MLX5_TXOFF_CONFIG_INLINE |
5507 		MLX5_TXOFF_CONFIG_METADATA)
5508 
5509 MLX5_TXOFF_INFO(scv,
5510 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5511 		MLX5_TXOFF_CONFIG_VLAN |
5512 		MLX5_TXOFF_CONFIG_METADATA)
5513 
5514 MLX5_TXOFF_INFO(sciv,
5515 		MLX5_TXOFF_CONFIG_SWP |	MLX5_TXOFF_CONFIG_CSUM |
5516 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5517 		MLX5_TXOFF_CONFIG_METADATA)
5518 
5519 MLX5_TXOFF_INFO(i,
5520 		MLX5_TXOFF_CONFIG_INLINE |
5521 		MLX5_TXOFF_CONFIG_METADATA)
5522 
5523 MLX5_TXOFF_INFO(v,
5524 		MLX5_TXOFF_CONFIG_VLAN |
5525 		MLX5_TXOFF_CONFIG_METADATA)
5526 
5527 MLX5_TXOFF_INFO(iv,
5528 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
5529 		MLX5_TXOFF_CONFIG_METADATA)
5530 
5531 MLX5_TXOFF_INFO(none_mpw,
5532 		MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW |
5533 		MLX5_TXOFF_CONFIG_MPW)
5534 
5535 MLX5_TXOFF_INFO(mci_mpw,
5536 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
5537 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
5538 		MLX5_TXOFF_CONFIG_MPW)
5539 
5540 MLX5_TXOFF_INFO(mc_mpw,
5541 		MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
5542 		MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW)
5543 
5544 MLX5_TXOFF_INFO(i_mpw,
5545 		MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
5546 		MLX5_TXOFF_CONFIG_MPW)
5547 };
5548 
5549 /**
5550  * Configure the Tx function to use. The routine checks configured
5551  * Tx offloads for the device and selects appropriate Tx burst
5552  * routine. There are multiple Tx burst routines compiled from
5553  * the same template in the most optimal way for the dedicated
5554  * Tx offloads set.
5555  *
5556  * @param dev
5557  *   Pointer to private data structure.
5558  *
5559  * @return
5560  *   Pointer to selected Tx burst function.
5561  */
5562 eth_tx_burst_t
mlx5_select_tx_function(struct rte_eth_dev * dev)5563 mlx5_select_tx_function(struct rte_eth_dev *dev)
5564 {
5565 	struct mlx5_priv *priv = dev->data->dev_private;
5566 	struct mlx5_dev_config *config = &priv->config;
5567 	uint64_t tx_offloads = dev->data->dev_conf.txmode.offloads;
5568 	unsigned int diff = 0, olx = 0, i, m;
5569 
5570 	static_assert(MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE <=
5571 		      MLX5_DSEG_MAX, "invalid WQE max size");
5572 	static_assert(MLX5_WQE_CSEG_SIZE == MLX5_WSEG_SIZE,
5573 		      "invalid WQE Control Segment size");
5574 	static_assert(MLX5_WQE_ESEG_SIZE == MLX5_WSEG_SIZE,
5575 		      "invalid WQE Ethernet Segment size");
5576 	static_assert(MLX5_WQE_DSEG_SIZE == MLX5_WSEG_SIZE,
5577 		      "invalid WQE Data Segment size");
5578 	static_assert(MLX5_WQE_SIZE == 4 * MLX5_WSEG_SIZE,
5579 		      "invalid WQE size");
5580 	MLX5_ASSERT(priv);
5581 	if (tx_offloads & DEV_TX_OFFLOAD_MULTI_SEGS) {
5582 		/* We should support Multi-Segment Packets. */
5583 		olx |= MLX5_TXOFF_CONFIG_MULTI;
5584 	}
5585 	if (tx_offloads & (DEV_TX_OFFLOAD_TCP_TSO |
5586 			   DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
5587 			   DEV_TX_OFFLOAD_GRE_TNL_TSO |
5588 			   DEV_TX_OFFLOAD_IP_TNL_TSO |
5589 			   DEV_TX_OFFLOAD_UDP_TNL_TSO)) {
5590 		/* We should support TCP Send Offload. */
5591 		olx |= MLX5_TXOFF_CONFIG_TSO;
5592 	}
5593 	if (tx_offloads & (DEV_TX_OFFLOAD_IP_TNL_TSO |
5594 			   DEV_TX_OFFLOAD_UDP_TNL_TSO |
5595 			   DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) {
5596 		/* We should support Software Parser for Tunnels. */
5597 		olx |= MLX5_TXOFF_CONFIG_SWP;
5598 	}
5599 	if (tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
5600 			   DEV_TX_OFFLOAD_UDP_CKSUM |
5601 			   DEV_TX_OFFLOAD_TCP_CKSUM |
5602 			   DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) {
5603 		/* We should support IP/TCP/UDP Checksums. */
5604 		olx |= MLX5_TXOFF_CONFIG_CSUM;
5605 	}
5606 	if (tx_offloads & DEV_TX_OFFLOAD_VLAN_INSERT) {
5607 		/* We should support VLAN insertion. */
5608 		olx |= MLX5_TXOFF_CONFIG_VLAN;
5609 	}
5610 	if (tx_offloads & DEV_TX_OFFLOAD_SEND_ON_TIMESTAMP &&
5611 	    rte_mbuf_dynflag_lookup
5612 			(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL) >= 0 &&
5613 	    rte_mbuf_dynfield_lookup
5614 			(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL) >= 0) {
5615 		/* Offload configured, dynamic entities registered. */
5616 		olx |= MLX5_TXOFF_CONFIG_TXPP;
5617 	}
5618 	if (priv->txqs_n && (*priv->txqs)[0]) {
5619 		struct mlx5_txq_data *txd = (*priv->txqs)[0];
5620 
5621 		if (txd->inlen_send) {
5622 			/*
5623 			 * Check the data inline requirements. Data inline
5624 			 * is enabled on per device basis, we can check
5625 			 * the first Tx queue only.
5626 			 *
5627 			 * If device does not support VLAN insertion in WQE
5628 			 * and some queues are requested to perform VLAN
5629 			 * insertion offload than inline must be enabled.
5630 			 */
5631 			olx |= MLX5_TXOFF_CONFIG_INLINE;
5632 		}
5633 	}
5634 	if (config->mps == MLX5_MPW_ENHANCED &&
5635 	    config->txq_inline_min <= 0) {
5636 		/*
5637 		 * The NIC supports Enhanced Multi-Packet Write
5638 		 * and does not require minimal inline data.
5639 		 */
5640 		olx |= MLX5_TXOFF_CONFIG_EMPW;
5641 	}
5642 	if (rte_flow_dynf_metadata_avail()) {
5643 		/* We should support Flow metadata. */
5644 		olx |= MLX5_TXOFF_CONFIG_METADATA;
5645 	}
5646 	if (config->mps == MLX5_MPW) {
5647 		/*
5648 		 * The NIC supports Legacy Multi-Packet Write.
5649 		 * The MLX5_TXOFF_CONFIG_MPW controls the
5650 		 * descriptor building method in combination
5651 		 * with MLX5_TXOFF_CONFIG_EMPW.
5652 		 */
5653 		if (!(olx & (MLX5_TXOFF_CONFIG_TSO |
5654 			     MLX5_TXOFF_CONFIG_SWP |
5655 			     MLX5_TXOFF_CONFIG_VLAN |
5656 			     MLX5_TXOFF_CONFIG_METADATA)))
5657 			olx |= MLX5_TXOFF_CONFIG_EMPW |
5658 			       MLX5_TXOFF_CONFIG_MPW;
5659 	}
5660 	/*
5661 	 * Scan the routines table to find the minimal
5662 	 * satisfying routine with requested offloads.
5663 	 */
5664 	m = RTE_DIM(txoff_func);
5665 	for (i = 0; i < RTE_DIM(txoff_func); i++) {
5666 		unsigned int tmp;
5667 
5668 		tmp = txoff_func[i].olx;
5669 		if (tmp == olx) {
5670 			/* Meets requested offloads exactly.*/
5671 			m = i;
5672 			break;
5673 		}
5674 		if ((tmp & olx) != olx) {
5675 			/* Does not meet requested offloads at all. */
5676 			continue;
5677 		}
5678 		if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_MPW)
5679 			/* Do not enable legacy MPW if not configured. */
5680 			continue;
5681 		if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_EMPW)
5682 			/* Do not enable eMPW if not configured. */
5683 			continue;
5684 		if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_INLINE)
5685 			/* Do not enable inlining if not configured. */
5686 			continue;
5687 		if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_TXPP)
5688 			/* Do not enable scheduling if not configured. */
5689 			continue;
5690 		/*
5691 		 * Some routine meets the requirements.
5692 		 * Check whether it has minimal amount
5693 		 * of not requested offloads.
5694 		 */
5695 		tmp = __builtin_popcountl(tmp & ~olx);
5696 		if (m >= RTE_DIM(txoff_func) || tmp < diff) {
5697 			/* First or better match, save and continue. */
5698 			m = i;
5699 			diff = tmp;
5700 			continue;
5701 		}
5702 		if (tmp == diff) {
5703 			tmp = txoff_func[i].olx ^ txoff_func[m].olx;
5704 			if (__builtin_ffsl(txoff_func[i].olx & ~tmp) <
5705 			    __builtin_ffsl(txoff_func[m].olx & ~tmp)) {
5706 				/* Lighter not requested offload. */
5707 				m = i;
5708 			}
5709 		}
5710 	}
5711 	if (m >= RTE_DIM(txoff_func)) {
5712 		DRV_LOG(DEBUG, "port %u has no selected Tx function"
5713 			       " for requested offloads %04X",
5714 				dev->data->port_id, olx);
5715 		return NULL;
5716 	}
5717 	DRV_LOG(DEBUG, "port %u has selected Tx function"
5718 		       " supporting offloads %04X/%04X",
5719 			dev->data->port_id, olx, txoff_func[m].olx);
5720 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_MULTI)
5721 		DRV_LOG(DEBUG, "\tMULTI (multi segment)");
5722 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_TSO)
5723 		DRV_LOG(DEBUG, "\tTSO   (TCP send offload)");
5724 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_SWP)
5725 		DRV_LOG(DEBUG, "\tSWP   (software parser)");
5726 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_CSUM)
5727 		DRV_LOG(DEBUG, "\tCSUM  (checksum offload)");
5728 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_INLINE)
5729 		DRV_LOG(DEBUG, "\tINLIN (inline data)");
5730 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_VLAN)
5731 		DRV_LOG(DEBUG, "\tVLANI (VLAN insertion)");
5732 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_METADATA)
5733 		DRV_LOG(DEBUG, "\tMETAD (tx Flow metadata)");
5734 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_TXPP)
5735 		DRV_LOG(DEBUG, "\tMETAD (tx Scheduling)");
5736 	if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_EMPW) {
5737 		if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_MPW)
5738 			DRV_LOG(DEBUG, "\tMPW   (Legacy MPW)");
5739 		else
5740 			DRV_LOG(DEBUG, "\tEMPW  (Enhanced MPW)");
5741 	}
5742 	return txoff_func[m].func;
5743 }
5744 
5745 /**
5746  * DPDK callback to get the TX queue information
5747  *
5748  * @param dev
5749  *   Pointer to the device structure.
5750  *
5751  * @param tx_queue_id
5752  *   Tx queue identificator.
5753  *
5754  * @param qinfo
5755  *   Pointer to the TX queue information structure.
5756  *
5757  * @return
5758  *   None.
5759  */
5760 
5761 void
mlx5_txq_info_get(struct rte_eth_dev * dev,uint16_t tx_queue_id,struct rte_eth_txq_info * qinfo)5762 mlx5_txq_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
5763 		  struct rte_eth_txq_info *qinfo)
5764 {
5765 	struct mlx5_priv *priv = dev->data->dev_private;
5766 	struct mlx5_txq_data *txq = (*priv->txqs)[tx_queue_id];
5767 	struct mlx5_txq_ctrl *txq_ctrl =
5768 			container_of(txq, struct mlx5_txq_ctrl, txq);
5769 
5770 	if (!txq)
5771 		return;
5772 	qinfo->nb_desc = txq->elts_s;
5773 	qinfo->conf.tx_thresh.pthresh = 0;
5774 	qinfo->conf.tx_thresh.hthresh = 0;
5775 	qinfo->conf.tx_thresh.wthresh = 0;
5776 	qinfo->conf.tx_rs_thresh = 0;
5777 	qinfo->conf.tx_free_thresh = 0;
5778 	qinfo->conf.tx_deferred_start = txq_ctrl ? 0 : 1;
5779 	qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
5780 }
5781 
5782 /**
5783  * DPDK callback to get the TX packet burst mode information
5784  *
5785  * @param dev
5786  *   Pointer to the device structure.
5787  *
5788  * @param tx_queue_id
5789  *   Tx queue identificatior.
5790  *
5791  * @param mode
5792  *   Pointer to the burts mode information.
5793  *
5794  * @return
5795  *   0 as success, -EINVAL as failure.
5796  */
5797 
5798 int
mlx5_tx_burst_mode_get(struct rte_eth_dev * dev,uint16_t tx_queue_id __rte_unused,struct rte_eth_burst_mode * mode)5799 mlx5_tx_burst_mode_get(struct rte_eth_dev *dev,
5800 		       uint16_t tx_queue_id __rte_unused,
5801 		       struct rte_eth_burst_mode *mode)
5802 {
5803 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
5804 	unsigned int i, olx;
5805 
5806 	for (i = 0; i < RTE_DIM(txoff_func); i++) {
5807 		if (pkt_burst == txoff_func[i].func) {
5808 			olx = txoff_func[i].olx;
5809 			snprintf(mode->info, sizeof(mode->info),
5810 				 "%s%s%s%s%s%s%s%s%s",
5811 				 (olx & MLX5_TXOFF_CONFIG_EMPW) ?
5812 				 ((olx & MLX5_TXOFF_CONFIG_MPW) ?
5813 				 "Legacy MPW" : "Enhanced MPW") : "No MPW",
5814 				 (olx & MLX5_TXOFF_CONFIG_MULTI) ?
5815 				 " + MULTI" : "",
5816 				 (olx & MLX5_TXOFF_CONFIG_TSO) ?
5817 				 " + TSO" : "",
5818 				 (olx & MLX5_TXOFF_CONFIG_SWP) ?
5819 				 " + SWP" : "",
5820 				 (olx & MLX5_TXOFF_CONFIG_CSUM) ?
5821 				 "  + CSUM" : "",
5822 				 (olx & MLX5_TXOFF_CONFIG_INLINE) ?
5823 				 " + INLINE" : "",
5824 				 (olx & MLX5_TXOFF_CONFIG_VLAN) ?
5825 				 " + VLAN" : "",
5826 				 (olx & MLX5_TXOFF_CONFIG_METADATA) ?
5827 				 " + METADATA" : "",
5828 				 (olx & MLX5_TXOFF_CONFIG_TXPP) ?
5829 				 " + TXPP" : "");
5830 			return 0;
5831 		}
5832 	}
5833 	return -EINVAL;
5834 }
5835