1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2015 6WIND S.A.
3 * Copyright 2015 Mellanox Technologies, Ltd
4 */
5
6 #include <stddef.h>
7 #include <errno.h>
8 #include <string.h>
9 #include <stdint.h>
10 #include <fcntl.h>
11 #include <sys/queue.h>
12
13 #include <rte_mbuf.h>
14 #include <rte_malloc.h>
15 #include <rte_ethdev_driver.h>
16 #include <rte_common.h>
17 #include <rte_interrupts.h>
18 #include <rte_debug.h>
19 #include <rte_io.h>
20 #include <rte_eal_paging.h>
21
22 #include <mlx5_glue.h>
23 #include <mlx5_malloc.h>
24
25 #include "mlx5_defs.h"
26 #include "mlx5.h"
27 #include "mlx5_rxtx.h"
28 #include "mlx5_utils.h"
29 #include "mlx5_autoconf.h"
30
31
32 /* Default RSS hash key also used for ConnectX-3. */
33 uint8_t rss_hash_default_key[] = {
34 0x2c, 0xc6, 0x81, 0xd1,
35 0x5b, 0xdb, 0xf4, 0xf7,
36 0xfc, 0xa2, 0x83, 0x19,
37 0xdb, 0x1a, 0x3e, 0x94,
38 0x6b, 0x9e, 0x38, 0xd9,
39 0x2c, 0x9c, 0x03, 0xd1,
40 0xad, 0x99, 0x44, 0xa7,
41 0xd9, 0x56, 0x3d, 0x59,
42 0x06, 0x3c, 0x25, 0xf3,
43 0xfc, 0x1f, 0xdc, 0x2a,
44 };
45
46 /* Length of the default RSS hash key. */
47 static_assert(MLX5_RSS_HASH_KEY_LEN ==
48 (unsigned int)sizeof(rss_hash_default_key),
49 "wrong RSS default key size.");
50
51 /**
52 * Check whether Multi-Packet RQ can be enabled for the device.
53 *
54 * @param dev
55 * Pointer to Ethernet device.
56 *
57 * @return
58 * 1 if supported, negative errno value if not.
59 */
60 inline int
mlx5_check_mprq_support(struct rte_eth_dev * dev)61 mlx5_check_mprq_support(struct rte_eth_dev *dev)
62 {
63 struct mlx5_priv *priv = dev->data->dev_private;
64
65 if (priv->config.mprq.enabled &&
66 priv->rxqs_n >= priv->config.mprq.min_rxqs_num)
67 return 1;
68 return -ENOTSUP;
69 }
70
71 /**
72 * Check whether Multi-Packet RQ is enabled for the Rx queue.
73 *
74 * @param rxq
75 * Pointer to receive queue structure.
76 *
77 * @return
78 * 0 if disabled, otherwise enabled.
79 */
80 inline int
mlx5_rxq_mprq_enabled(struct mlx5_rxq_data * rxq)81 mlx5_rxq_mprq_enabled(struct mlx5_rxq_data *rxq)
82 {
83 return rxq->strd_num_n > 0;
84 }
85
86 /**
87 * Check whether Multi-Packet RQ is enabled for the device.
88 *
89 * @param dev
90 * Pointer to Ethernet device.
91 *
92 * @return
93 * 0 if disabled, otherwise enabled.
94 */
95 inline int
mlx5_mprq_enabled(struct rte_eth_dev * dev)96 mlx5_mprq_enabled(struct rte_eth_dev *dev)
97 {
98 struct mlx5_priv *priv = dev->data->dev_private;
99 uint32_t i;
100 uint16_t n = 0;
101 uint16_t n_ibv = 0;
102
103 if (mlx5_check_mprq_support(dev) < 0)
104 return 0;
105 /* All the configured queues should be enabled. */
106 for (i = 0; i < priv->rxqs_n; ++i) {
107 struct mlx5_rxq_data *rxq = (*priv->rxqs)[i];
108 struct mlx5_rxq_ctrl *rxq_ctrl = container_of
109 (rxq, struct mlx5_rxq_ctrl, rxq);
110
111 if (rxq == NULL || rxq_ctrl->type != MLX5_RXQ_TYPE_STANDARD)
112 continue;
113 n_ibv++;
114 if (mlx5_rxq_mprq_enabled(rxq))
115 ++n;
116 }
117 /* Multi-Packet RQ can't be partially configured. */
118 MLX5_ASSERT(n == 0 || n == n_ibv);
119 return n == n_ibv;
120 }
121
122 /**
123 * Calculate the number of CQEs in CQ for the Rx queue.
124 *
125 * @param rxq_data
126 * Pointer to receive queue structure.
127 *
128 * @return
129 * Number of CQEs in CQ.
130 */
131 unsigned int
mlx5_rxq_cqe_num(struct mlx5_rxq_data * rxq_data)132 mlx5_rxq_cqe_num(struct mlx5_rxq_data *rxq_data)
133 {
134 unsigned int cqe_n;
135 unsigned int wqe_n = 1 << rxq_data->elts_n;
136
137 if (mlx5_rxq_mprq_enabled(rxq_data))
138 cqe_n = wqe_n * (1 << rxq_data->strd_num_n) - 1;
139 else
140 cqe_n = wqe_n - 1;
141 return cqe_n;
142 }
143
144 /**
145 * Allocate RX queue elements for Multi-Packet RQ.
146 *
147 * @param rxq_ctrl
148 * Pointer to RX queue structure.
149 *
150 * @return
151 * 0 on success, a negative errno value otherwise and rte_errno is set.
152 */
153 static int
rxq_alloc_elts_mprq(struct mlx5_rxq_ctrl * rxq_ctrl)154 rxq_alloc_elts_mprq(struct mlx5_rxq_ctrl *rxq_ctrl)
155 {
156 struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq;
157 unsigned int wqe_n = 1 << rxq->elts_n;
158 unsigned int i;
159 int err;
160
161 /* Iterate on segments. */
162 for (i = 0; i <= wqe_n; ++i) {
163 struct mlx5_mprq_buf *buf;
164
165 if (rte_mempool_get(rxq->mprq_mp, (void **)&buf) < 0) {
166 DRV_LOG(ERR, "port %u empty mbuf pool", rxq->port_id);
167 rte_errno = ENOMEM;
168 goto error;
169 }
170 if (i < wqe_n)
171 (*rxq->mprq_bufs)[i] = buf;
172 else
173 rxq->mprq_repl = buf;
174 }
175 DRV_LOG(DEBUG,
176 "port %u MPRQ queue %u allocated and configured %u segments",
177 rxq->port_id, rxq->idx, wqe_n);
178 return 0;
179 error:
180 err = rte_errno; /* Save rte_errno before cleanup. */
181 wqe_n = i;
182 for (i = 0; (i != wqe_n); ++i) {
183 if ((*rxq->mprq_bufs)[i] != NULL)
184 rte_mempool_put(rxq->mprq_mp,
185 (*rxq->mprq_bufs)[i]);
186 (*rxq->mprq_bufs)[i] = NULL;
187 }
188 DRV_LOG(DEBUG, "port %u MPRQ queue %u failed, freed everything",
189 rxq->port_id, rxq->idx);
190 rte_errno = err; /* Restore rte_errno. */
191 return -rte_errno;
192 }
193
194 /**
195 * Allocate RX queue elements for Single-Packet RQ.
196 *
197 * @param rxq_ctrl
198 * Pointer to RX queue structure.
199 *
200 * @return
201 * 0 on success, errno value on failure.
202 */
203 static int
rxq_alloc_elts_sprq(struct mlx5_rxq_ctrl * rxq_ctrl)204 rxq_alloc_elts_sprq(struct mlx5_rxq_ctrl *rxq_ctrl)
205 {
206 const unsigned int sges_n = 1 << rxq_ctrl->rxq.sges_n;
207 unsigned int elts_n = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ?
208 (1 << rxq_ctrl->rxq.elts_n) * (1 << rxq_ctrl->rxq.strd_num_n) :
209 (1 << rxq_ctrl->rxq.elts_n);
210 unsigned int i;
211 int err;
212
213 /* Iterate on segments. */
214 for (i = 0; (i != elts_n); ++i) {
215 struct mlx5_eth_rxseg *seg = &rxq_ctrl->rxq.rxseg[i % sges_n];
216 struct rte_mbuf *buf;
217
218 buf = rte_pktmbuf_alloc(seg->mp);
219 if (buf == NULL) {
220 DRV_LOG(ERR, "port %u empty mbuf pool",
221 PORT_ID(rxq_ctrl->priv));
222 rte_errno = ENOMEM;
223 goto error;
224 }
225 /* Headroom is reserved by rte_pktmbuf_alloc(). */
226 MLX5_ASSERT(DATA_OFF(buf) == RTE_PKTMBUF_HEADROOM);
227 /* Buffer is supposed to be empty. */
228 MLX5_ASSERT(rte_pktmbuf_data_len(buf) == 0);
229 MLX5_ASSERT(rte_pktmbuf_pkt_len(buf) == 0);
230 MLX5_ASSERT(!buf->next);
231 SET_DATA_OFF(buf, seg->offset);
232 PORT(buf) = rxq_ctrl->rxq.port_id;
233 DATA_LEN(buf) = seg->length;
234 PKT_LEN(buf) = seg->length;
235 NB_SEGS(buf) = 1;
236 (*rxq_ctrl->rxq.elts)[i] = buf;
237 }
238 /* If Rx vector is activated. */
239 if (mlx5_rxq_check_vec_support(&rxq_ctrl->rxq) > 0) {
240 struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq;
241 struct rte_mbuf *mbuf_init = &rxq->fake_mbuf;
242 struct rte_pktmbuf_pool_private *priv =
243 (struct rte_pktmbuf_pool_private *)
244 rte_mempool_get_priv(rxq_ctrl->rxq.mp);
245 int j;
246
247 /* Initialize default rearm_data for vPMD. */
248 mbuf_init->data_off = RTE_PKTMBUF_HEADROOM;
249 rte_mbuf_refcnt_set(mbuf_init, 1);
250 mbuf_init->nb_segs = 1;
251 mbuf_init->port = rxq->port_id;
252 if (priv->flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF)
253 mbuf_init->ol_flags = EXT_ATTACHED_MBUF;
254 /*
255 * prevent compiler reordering:
256 * rearm_data covers previous fields.
257 */
258 rte_compiler_barrier();
259 rxq->mbuf_initializer =
260 *(rte_xmm_t *)&mbuf_init->rearm_data;
261 /* Padding with a fake mbuf for vectorized Rx. */
262 for (j = 0; j < MLX5_VPMD_DESCS_PER_LOOP; ++j)
263 (*rxq->elts)[elts_n + j] = &rxq->fake_mbuf;
264 }
265 DRV_LOG(DEBUG,
266 "port %u SPRQ queue %u allocated and configured %u segments"
267 " (max %u packets)",
268 PORT_ID(rxq_ctrl->priv), rxq_ctrl->rxq.idx, elts_n,
269 elts_n / (1 << rxq_ctrl->rxq.sges_n));
270 return 0;
271 error:
272 err = rte_errno; /* Save rte_errno before cleanup. */
273 elts_n = i;
274 for (i = 0; (i != elts_n); ++i) {
275 if ((*rxq_ctrl->rxq.elts)[i] != NULL)
276 rte_pktmbuf_free_seg((*rxq_ctrl->rxq.elts)[i]);
277 (*rxq_ctrl->rxq.elts)[i] = NULL;
278 }
279 DRV_LOG(DEBUG, "port %u SPRQ queue %u failed, freed everything",
280 PORT_ID(rxq_ctrl->priv), rxq_ctrl->rxq.idx);
281 rte_errno = err; /* Restore rte_errno. */
282 return -rte_errno;
283 }
284
285 /**
286 * Allocate RX queue elements.
287 *
288 * @param rxq_ctrl
289 * Pointer to RX queue structure.
290 *
291 * @return
292 * 0 on success, errno value on failure.
293 */
294 int
rxq_alloc_elts(struct mlx5_rxq_ctrl * rxq_ctrl)295 rxq_alloc_elts(struct mlx5_rxq_ctrl *rxq_ctrl)
296 {
297 int ret = 0;
298
299 /**
300 * For MPRQ we need to allocate both MPRQ buffers
301 * for WQEs and simple mbufs for vector processing.
302 */
303 if (mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq))
304 ret = rxq_alloc_elts_mprq(rxq_ctrl);
305 return (ret || rxq_alloc_elts_sprq(rxq_ctrl));
306 }
307
308 /**
309 * Free RX queue elements for Multi-Packet RQ.
310 *
311 * @param rxq_ctrl
312 * Pointer to RX queue structure.
313 */
314 static void
rxq_free_elts_mprq(struct mlx5_rxq_ctrl * rxq_ctrl)315 rxq_free_elts_mprq(struct mlx5_rxq_ctrl *rxq_ctrl)
316 {
317 struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq;
318 uint16_t i;
319
320 DRV_LOG(DEBUG, "port %u Multi-Packet Rx queue %u freeing %d WRs",
321 rxq->port_id, rxq->idx, (1u << rxq->elts_n));
322 if (rxq->mprq_bufs == NULL)
323 return;
324 for (i = 0; (i != (1u << rxq->elts_n)); ++i) {
325 if ((*rxq->mprq_bufs)[i] != NULL)
326 mlx5_mprq_buf_free((*rxq->mprq_bufs)[i]);
327 (*rxq->mprq_bufs)[i] = NULL;
328 }
329 if (rxq->mprq_repl != NULL) {
330 mlx5_mprq_buf_free(rxq->mprq_repl);
331 rxq->mprq_repl = NULL;
332 }
333 }
334
335 /**
336 * Free RX queue elements for Single-Packet RQ.
337 *
338 * @param rxq_ctrl
339 * Pointer to RX queue structure.
340 */
341 static void
rxq_free_elts_sprq(struct mlx5_rxq_ctrl * rxq_ctrl)342 rxq_free_elts_sprq(struct mlx5_rxq_ctrl *rxq_ctrl)
343 {
344 struct mlx5_rxq_data *rxq = &rxq_ctrl->rxq;
345 const uint16_t q_n = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ?
346 (1 << rxq->elts_n) * (1 << rxq->strd_num_n) :
347 (1 << rxq->elts_n);
348 const uint16_t q_mask = q_n - 1;
349 uint16_t used = q_n - (rxq->rq_ci - rxq->rq_pi);
350 uint16_t i;
351
352 DRV_LOG(DEBUG, "port %u Rx queue %u freeing %d WRs",
353 PORT_ID(rxq_ctrl->priv), rxq->idx, q_n);
354 if (rxq->elts == NULL)
355 return;
356 /**
357 * Some mbuf in the Ring belongs to the application.
358 * They cannot be freed.
359 */
360 if (mlx5_rxq_check_vec_support(rxq) > 0) {
361 for (i = 0; i < used; ++i)
362 (*rxq->elts)[(rxq->rq_ci + i) & q_mask] = NULL;
363 rxq->rq_pi = rxq->rq_ci;
364 }
365 for (i = 0; i != q_n; ++i) {
366 if ((*rxq->elts)[i] != NULL)
367 rte_pktmbuf_free_seg((*rxq->elts)[i]);
368 (*rxq->elts)[i] = NULL;
369 }
370 }
371
372 /**
373 * Free RX queue elements.
374 *
375 * @param rxq_ctrl
376 * Pointer to RX queue structure.
377 */
378 static void
rxq_free_elts(struct mlx5_rxq_ctrl * rxq_ctrl)379 rxq_free_elts(struct mlx5_rxq_ctrl *rxq_ctrl)
380 {
381 /*
382 * For MPRQ we need to allocate both MPRQ buffers
383 * for WQEs and simple mbufs for vector processing.
384 */
385 if (mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq))
386 rxq_free_elts_mprq(rxq_ctrl);
387 rxq_free_elts_sprq(rxq_ctrl);
388 }
389
390 /**
391 * Returns the per-queue supported offloads.
392 *
393 * @param dev
394 * Pointer to Ethernet device.
395 *
396 * @return
397 * Supported Rx offloads.
398 */
399 uint64_t
mlx5_get_rx_queue_offloads(struct rte_eth_dev * dev)400 mlx5_get_rx_queue_offloads(struct rte_eth_dev *dev)
401 {
402 struct mlx5_priv *priv = dev->data->dev_private;
403 struct mlx5_dev_config *config = &priv->config;
404 uint64_t offloads = (DEV_RX_OFFLOAD_SCATTER |
405 RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT |
406 DEV_RX_OFFLOAD_TIMESTAMP |
407 DEV_RX_OFFLOAD_JUMBO_FRAME |
408 DEV_RX_OFFLOAD_RSS_HASH);
409
410 if (config->hw_fcs_strip)
411 offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
412
413 if (config->hw_csum)
414 offloads |= (DEV_RX_OFFLOAD_IPV4_CKSUM |
415 DEV_RX_OFFLOAD_UDP_CKSUM |
416 DEV_RX_OFFLOAD_TCP_CKSUM);
417 if (config->hw_vlan_strip)
418 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
419 if (MLX5_LRO_SUPPORTED(dev))
420 offloads |= DEV_RX_OFFLOAD_TCP_LRO;
421 return offloads;
422 }
423
424
425 /**
426 * Returns the per-port supported offloads.
427 *
428 * @return
429 * Supported Rx offloads.
430 */
431 uint64_t
mlx5_get_rx_port_offloads(void)432 mlx5_get_rx_port_offloads(void)
433 {
434 uint64_t offloads = DEV_RX_OFFLOAD_VLAN_FILTER;
435
436 return offloads;
437 }
438
439 /**
440 * Verify if the queue can be released.
441 *
442 * @param dev
443 * Pointer to Ethernet device.
444 * @param idx
445 * RX queue index.
446 *
447 * @return
448 * 1 if the queue can be released
449 * 0 if the queue can not be released, there are references to it.
450 * Negative errno and rte_errno is set if queue doesn't exist.
451 */
452 static int
mlx5_rxq_releasable(struct rte_eth_dev * dev,uint16_t idx)453 mlx5_rxq_releasable(struct rte_eth_dev *dev, uint16_t idx)
454 {
455 struct mlx5_priv *priv = dev->data->dev_private;
456 struct mlx5_rxq_ctrl *rxq_ctrl;
457
458 if (!(*priv->rxqs)[idx]) {
459 rte_errno = EINVAL;
460 return -rte_errno;
461 }
462 rxq_ctrl = container_of((*priv->rxqs)[idx], struct mlx5_rxq_ctrl, rxq);
463 return (__atomic_load_n(&rxq_ctrl->refcnt, __ATOMIC_RELAXED) == 1);
464 }
465
466 /* Fetches and drops all SW-owned and error CQEs to synchronize CQ. */
467 static void
rxq_sync_cq(struct mlx5_rxq_data * rxq)468 rxq_sync_cq(struct mlx5_rxq_data *rxq)
469 {
470 const uint16_t cqe_n = 1 << rxq->cqe_n;
471 const uint16_t cqe_mask = cqe_n - 1;
472 volatile struct mlx5_cqe *cqe;
473 int ret, i;
474
475 i = cqe_n;
476 do {
477 cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask];
478 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
479 if (ret == MLX5_CQE_STATUS_HW_OWN)
480 break;
481 if (ret == MLX5_CQE_STATUS_ERR) {
482 rxq->cq_ci++;
483 continue;
484 }
485 MLX5_ASSERT(ret == MLX5_CQE_STATUS_SW_OWN);
486 if (MLX5_CQE_FORMAT(cqe->op_own) != MLX5_COMPRESSED) {
487 rxq->cq_ci++;
488 continue;
489 }
490 /* Compute the next non compressed CQE. */
491 rxq->cq_ci += rte_be_to_cpu_32(cqe->byte_cnt);
492
493 } while (--i);
494 /* Move all CQEs to HW ownership, including possible MiniCQEs. */
495 for (i = 0; i < cqe_n; i++) {
496 cqe = &(*rxq->cqes)[i];
497 cqe->op_own = MLX5_CQE_INVALIDATE;
498 }
499 /* Resync CQE and WQE (WQ in RESET state). */
500 rte_io_wmb();
501 *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
502 rte_io_wmb();
503 *rxq->rq_db = rte_cpu_to_be_32(0);
504 rte_io_wmb();
505 }
506
507 /**
508 * Rx queue stop. Device queue goes to the RESET state,
509 * all involved mbufs are freed from WQ.
510 *
511 * @param dev
512 * Pointer to Ethernet device structure.
513 * @param idx
514 * RX queue index.
515 *
516 * @return
517 * 0 on success, a negative errno value otherwise and rte_errno is set.
518 */
519 int
mlx5_rx_queue_stop_primary(struct rte_eth_dev * dev,uint16_t idx)520 mlx5_rx_queue_stop_primary(struct rte_eth_dev *dev, uint16_t idx)
521 {
522 struct mlx5_priv *priv = dev->data->dev_private;
523 struct mlx5_rxq_data *rxq = (*priv->rxqs)[idx];
524 struct mlx5_rxq_ctrl *rxq_ctrl =
525 container_of(rxq, struct mlx5_rxq_ctrl, rxq);
526 int ret;
527
528 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
529 ret = priv->obj_ops.rxq_obj_modify(rxq_ctrl->obj, MLX5_RXQ_MOD_RDY2RST);
530 if (ret) {
531 DRV_LOG(ERR, "Cannot change Rx WQ state to RESET: %s",
532 strerror(errno));
533 rte_errno = errno;
534 return ret;
535 }
536 /* Remove all processes CQEs. */
537 rxq_sync_cq(rxq);
538 /* Free all involved mbufs. */
539 rxq_free_elts(rxq_ctrl);
540 /* Set the actual queue state. */
541 dev->data->rx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED;
542 return 0;
543 }
544
545 /**
546 * Rx queue stop. Device queue goes to the RESET state,
547 * all involved mbufs are freed from WQ.
548 *
549 * @param dev
550 * Pointer to Ethernet device structure.
551 * @param idx
552 * RX queue index.
553 *
554 * @return
555 * 0 on success, a negative errno value otherwise and rte_errno is set.
556 */
557 int
mlx5_rx_queue_stop(struct rte_eth_dev * dev,uint16_t idx)558 mlx5_rx_queue_stop(struct rte_eth_dev *dev, uint16_t idx)
559 {
560 eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
561 int ret;
562
563 if (rte_eth_dev_is_rx_hairpin_queue(dev, idx)) {
564 DRV_LOG(ERR, "Hairpin queue can't be stopped");
565 rte_errno = EINVAL;
566 return -EINVAL;
567 }
568 if (dev->data->rx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STOPPED)
569 return 0;
570 /*
571 * Vectorized Rx burst requires the CQ and RQ indices
572 * synchronized, that might be broken on RQ restart
573 * and cause Rx malfunction, so queue stopping is
574 * not supported if vectorized Rx burst is engaged.
575 * The routine pointer depends on the process
576 * type, should perform check there.
577 */
578 if (pkt_burst == mlx5_rx_burst_vec) {
579 DRV_LOG(ERR, "Rx queue stop is not supported "
580 "for vectorized Rx");
581 rte_errno = EINVAL;
582 return -EINVAL;
583 }
584 if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
585 ret = mlx5_mp_os_req_queue_control(dev, idx,
586 MLX5_MP_REQ_QUEUE_RX_STOP);
587 } else {
588 ret = mlx5_rx_queue_stop_primary(dev, idx);
589 }
590 return ret;
591 }
592
593 /**
594 * Rx queue start. Device queue goes to the ready state,
595 * all required mbufs are allocated and WQ is replenished.
596 *
597 * @param dev
598 * Pointer to Ethernet device structure.
599 * @param idx
600 * RX queue index.
601 *
602 * @return
603 * 0 on success, a negative errno value otherwise and rte_errno is set.
604 */
605 int
mlx5_rx_queue_start_primary(struct rte_eth_dev * dev,uint16_t idx)606 mlx5_rx_queue_start_primary(struct rte_eth_dev *dev, uint16_t idx)
607 {
608 struct mlx5_priv *priv = dev->data->dev_private;
609 struct mlx5_rxq_data *rxq = (*priv->rxqs)[idx];
610 struct mlx5_rxq_ctrl *rxq_ctrl =
611 container_of(rxq, struct mlx5_rxq_ctrl, rxq);
612 int ret;
613
614 MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
615 /* Allocate needed buffers. */
616 ret = rxq_alloc_elts(rxq_ctrl);
617 if (ret) {
618 DRV_LOG(ERR, "Cannot reallocate buffers for Rx WQ");
619 rte_errno = errno;
620 return ret;
621 }
622 rte_io_wmb();
623 *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
624 rte_io_wmb();
625 /* Reset RQ consumer before moving queue to READY state. */
626 *rxq->rq_db = rte_cpu_to_be_32(0);
627 rte_io_wmb();
628 ret = priv->obj_ops.rxq_obj_modify(rxq_ctrl->obj, MLX5_RXQ_MOD_RST2RDY);
629 if (ret) {
630 DRV_LOG(ERR, "Cannot change Rx WQ state to READY: %s",
631 strerror(errno));
632 rte_errno = errno;
633 return ret;
634 }
635 /* Reinitialize RQ - set WQEs. */
636 mlx5_rxq_initialize(rxq);
637 rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR;
638 /* Set actual queue state. */
639 dev->data->rx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STARTED;
640 return 0;
641 }
642
643 /**
644 * Rx queue start. Device queue goes to the ready state,
645 * all required mbufs are allocated and WQ is replenished.
646 *
647 * @param dev
648 * Pointer to Ethernet device structure.
649 * @param idx
650 * RX queue index.
651 *
652 * @return
653 * 0 on success, a negative errno value otherwise and rte_errno is set.
654 */
655 int
mlx5_rx_queue_start(struct rte_eth_dev * dev,uint16_t idx)656 mlx5_rx_queue_start(struct rte_eth_dev *dev, uint16_t idx)
657 {
658 int ret;
659
660 if (rte_eth_dev_is_rx_hairpin_queue(dev, idx)) {
661 DRV_LOG(ERR, "Hairpin queue can't be started");
662 rte_errno = EINVAL;
663 return -EINVAL;
664 }
665 if (dev->data->rx_queue_state[idx] == RTE_ETH_QUEUE_STATE_STARTED)
666 return 0;
667 if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
668 ret = mlx5_mp_os_req_queue_control(dev, idx,
669 MLX5_MP_REQ_QUEUE_RX_START);
670 } else {
671 ret = mlx5_rx_queue_start_primary(dev, idx);
672 }
673 return ret;
674 }
675
676 /**
677 * Rx queue presetup checks.
678 *
679 * @param dev
680 * Pointer to Ethernet device structure.
681 * @param idx
682 * RX queue index.
683 * @param desc
684 * Number of descriptors to configure in queue.
685 *
686 * @return
687 * 0 on success, a negative errno value otherwise and rte_errno is set.
688 */
689 static int
mlx5_rx_queue_pre_setup(struct rte_eth_dev * dev,uint16_t idx,uint16_t * desc)690 mlx5_rx_queue_pre_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t *desc)
691 {
692 struct mlx5_priv *priv = dev->data->dev_private;
693
694 if (!rte_is_power_of_2(*desc)) {
695 *desc = 1 << log2above(*desc);
696 DRV_LOG(WARNING,
697 "port %u increased number of descriptors in Rx queue %u"
698 " to the next power of two (%d)",
699 dev->data->port_id, idx, *desc);
700 }
701 DRV_LOG(DEBUG, "port %u configuring Rx queue %u for %u descriptors",
702 dev->data->port_id, idx, *desc);
703 if (idx >= priv->rxqs_n) {
704 DRV_LOG(ERR, "port %u Rx queue index out of range (%u >= %u)",
705 dev->data->port_id, idx, priv->rxqs_n);
706 rte_errno = EOVERFLOW;
707 return -rte_errno;
708 }
709 if (!mlx5_rxq_releasable(dev, idx)) {
710 DRV_LOG(ERR, "port %u unable to release queue index %u",
711 dev->data->port_id, idx);
712 rte_errno = EBUSY;
713 return -rte_errno;
714 }
715 mlx5_rxq_release(dev, idx);
716 return 0;
717 }
718
719 /**
720 *
721 * @param dev
722 * Pointer to Ethernet device structure.
723 * @param idx
724 * RX queue index.
725 * @param desc
726 * Number of descriptors to configure in queue.
727 * @param socket
728 * NUMA socket on which memory must be allocated.
729 * @param[in] conf
730 * Thresholds parameters.
731 * @param mp
732 * Memory pool for buffer allocations.
733 *
734 * @return
735 * 0 on success, a negative errno value otherwise and rte_errno is set.
736 */
737 int
mlx5_rx_queue_setup(struct rte_eth_dev * dev,uint16_t idx,uint16_t desc,unsigned int socket,const struct rte_eth_rxconf * conf,struct rte_mempool * mp)738 mlx5_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
739 unsigned int socket, const struct rte_eth_rxconf *conf,
740 struct rte_mempool *mp)
741 {
742 struct mlx5_priv *priv = dev->data->dev_private;
743 struct mlx5_rxq_data *rxq = (*priv->rxqs)[idx];
744 struct mlx5_rxq_ctrl *rxq_ctrl =
745 container_of(rxq, struct mlx5_rxq_ctrl, rxq);
746 struct rte_eth_rxseg_split *rx_seg =
747 (struct rte_eth_rxseg_split *)conf->rx_seg;
748 struct rte_eth_rxseg_split rx_single = {.mp = mp};
749 uint16_t n_seg = conf->rx_nseg;
750 int res;
751
752 if (mp) {
753 /*
754 * The parameters should be checked on rte_eth_dev layer.
755 * If mp is specified it means the compatible configuration
756 * without buffer split feature tuning.
757 */
758 rx_seg = &rx_single;
759 n_seg = 1;
760 }
761 if (n_seg > 1) {
762 uint64_t offloads = conf->offloads |
763 dev->data->dev_conf.rxmode.offloads;
764
765 /* The offloads should be checked on rte_eth_dev layer. */
766 MLX5_ASSERT(offloads & DEV_RX_OFFLOAD_SCATTER);
767 if (!(offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
768 DRV_LOG(ERR, "port %u queue index %u split "
769 "offload not configured",
770 dev->data->port_id, idx);
771 rte_errno = ENOSPC;
772 return -rte_errno;
773 }
774 MLX5_ASSERT(n_seg < MLX5_MAX_RXQ_NSEG);
775 }
776 res = mlx5_rx_queue_pre_setup(dev, idx, &desc);
777 if (res)
778 return res;
779 rxq_ctrl = mlx5_rxq_new(dev, idx, desc, socket, conf, rx_seg, n_seg);
780 if (!rxq_ctrl) {
781 DRV_LOG(ERR, "port %u unable to allocate queue index %u",
782 dev->data->port_id, idx);
783 rte_errno = ENOMEM;
784 return -rte_errno;
785 }
786 DRV_LOG(DEBUG, "port %u adding Rx queue %u to list",
787 dev->data->port_id, idx);
788 (*priv->rxqs)[idx] = &rxq_ctrl->rxq;
789 return 0;
790 }
791
792 /**
793 *
794 * @param dev
795 * Pointer to Ethernet device structure.
796 * @param idx
797 * RX queue index.
798 * @param desc
799 * Number of descriptors to configure in queue.
800 * @param hairpin_conf
801 * Hairpin configuration parameters.
802 *
803 * @return
804 * 0 on success, a negative errno value otherwise and rte_errno is set.
805 */
806 int
mlx5_rx_hairpin_queue_setup(struct rte_eth_dev * dev,uint16_t idx,uint16_t desc,const struct rte_eth_hairpin_conf * hairpin_conf)807 mlx5_rx_hairpin_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
808 uint16_t desc,
809 const struct rte_eth_hairpin_conf *hairpin_conf)
810 {
811 struct mlx5_priv *priv = dev->data->dev_private;
812 struct mlx5_rxq_data *rxq = (*priv->rxqs)[idx];
813 struct mlx5_rxq_ctrl *rxq_ctrl =
814 container_of(rxq, struct mlx5_rxq_ctrl, rxq);
815 int res;
816
817 res = mlx5_rx_queue_pre_setup(dev, idx, &desc);
818 if (res)
819 return res;
820 if (hairpin_conf->peer_count != 1) {
821 rte_errno = EINVAL;
822 DRV_LOG(ERR, "port %u unable to setup Rx hairpin queue index %u"
823 " peer count is %u", dev->data->port_id,
824 idx, hairpin_conf->peer_count);
825 return -rte_errno;
826 }
827 if (hairpin_conf->peers[0].port == dev->data->port_id) {
828 if (hairpin_conf->peers[0].queue >= priv->txqs_n) {
829 rte_errno = EINVAL;
830 DRV_LOG(ERR, "port %u unable to setup Rx hairpin queue"
831 " index %u, Tx %u is larger than %u",
832 dev->data->port_id, idx,
833 hairpin_conf->peers[0].queue, priv->txqs_n);
834 return -rte_errno;
835 }
836 } else {
837 if (hairpin_conf->manual_bind == 0 ||
838 hairpin_conf->tx_explicit == 0) {
839 rte_errno = EINVAL;
840 DRV_LOG(ERR, "port %u unable to setup Rx hairpin queue"
841 " index %u peer port %u with attributes %u %u",
842 dev->data->port_id, idx,
843 hairpin_conf->peers[0].port,
844 hairpin_conf->manual_bind,
845 hairpin_conf->tx_explicit);
846 return -rte_errno;
847 }
848 }
849 rxq_ctrl = mlx5_rxq_hairpin_new(dev, idx, desc, hairpin_conf);
850 if (!rxq_ctrl) {
851 DRV_LOG(ERR, "port %u unable to allocate queue index %u",
852 dev->data->port_id, idx);
853 rte_errno = ENOMEM;
854 return -rte_errno;
855 }
856 DRV_LOG(DEBUG, "port %u adding Rx queue %u to list",
857 dev->data->port_id, idx);
858 (*priv->rxqs)[idx] = &rxq_ctrl->rxq;
859 return 0;
860 }
861
862 /**
863 * DPDK callback to release a RX queue.
864 *
865 * @param dpdk_rxq
866 * Generic RX queue pointer.
867 */
868 void
mlx5_rx_queue_release(void * dpdk_rxq)869 mlx5_rx_queue_release(void *dpdk_rxq)
870 {
871 struct mlx5_rxq_data *rxq = (struct mlx5_rxq_data *)dpdk_rxq;
872 struct mlx5_rxq_ctrl *rxq_ctrl;
873 struct mlx5_priv *priv;
874
875 if (rxq == NULL)
876 return;
877 rxq_ctrl = container_of(rxq, struct mlx5_rxq_ctrl, rxq);
878 priv = rxq_ctrl->priv;
879 if (!mlx5_rxq_releasable(ETH_DEV(priv), rxq_ctrl->rxq.idx))
880 rte_panic("port %u Rx queue %u is still used by a flow and"
881 " cannot be removed\n",
882 PORT_ID(priv), rxq->idx);
883 mlx5_rxq_release(ETH_DEV(priv), rxq_ctrl->rxq.idx);
884 }
885
886 /**
887 * Allocate queue vector and fill epoll fd list for Rx interrupts.
888 *
889 * @param dev
890 * Pointer to Ethernet device.
891 *
892 * @return
893 * 0 on success, a negative errno value otherwise and rte_errno is set.
894 */
895 int
mlx5_rx_intr_vec_enable(struct rte_eth_dev * dev)896 mlx5_rx_intr_vec_enable(struct rte_eth_dev *dev)
897 {
898 struct mlx5_priv *priv = dev->data->dev_private;
899 unsigned int i;
900 unsigned int rxqs_n = priv->rxqs_n;
901 unsigned int n = RTE_MIN(rxqs_n, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID);
902 unsigned int count = 0;
903 struct rte_intr_handle *intr_handle = dev->intr_handle;
904
905 /* Representor shares dev->intr_handle with PF. */
906 if (priv->representor)
907 return 0;
908 if (!dev->data->dev_conf.intr_conf.rxq)
909 return 0;
910 mlx5_rx_intr_vec_disable(dev);
911 intr_handle->intr_vec = mlx5_malloc(0,
912 n * sizeof(intr_handle->intr_vec[0]),
913 0, SOCKET_ID_ANY);
914 if (intr_handle->intr_vec == NULL) {
915 DRV_LOG(ERR,
916 "port %u failed to allocate memory for interrupt"
917 " vector, Rx interrupts will not be supported",
918 dev->data->port_id);
919 rte_errno = ENOMEM;
920 return -rte_errno;
921 }
922 intr_handle->type = RTE_INTR_HANDLE_EXT;
923 for (i = 0; i != n; ++i) {
924 /* This rxq obj must not be released in this function. */
925 struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_get(dev, i);
926 struct mlx5_rxq_obj *rxq_obj = rxq_ctrl ? rxq_ctrl->obj : NULL;
927 int rc;
928
929 /* Skip queues that cannot request interrupts. */
930 if (!rxq_obj || (!rxq_obj->ibv_channel &&
931 !rxq_obj->devx_channel)) {
932 /* Use invalid intr_vec[] index to disable entry. */
933 intr_handle->intr_vec[i] =
934 RTE_INTR_VEC_RXTX_OFFSET +
935 RTE_MAX_RXTX_INTR_VEC_ID;
936 /* Decrease the rxq_ctrl's refcnt */
937 if (rxq_ctrl)
938 mlx5_rxq_release(dev, i);
939 continue;
940 }
941 if (count >= RTE_MAX_RXTX_INTR_VEC_ID) {
942 DRV_LOG(ERR,
943 "port %u too many Rx queues for interrupt"
944 " vector size (%d), Rx interrupts cannot be"
945 " enabled",
946 dev->data->port_id, RTE_MAX_RXTX_INTR_VEC_ID);
947 mlx5_rx_intr_vec_disable(dev);
948 rte_errno = ENOMEM;
949 return -rte_errno;
950 }
951 rc = mlx5_os_set_nonblock_channel_fd(rxq_obj->fd);
952 if (rc < 0) {
953 rte_errno = errno;
954 DRV_LOG(ERR,
955 "port %u failed to make Rx interrupt file"
956 " descriptor %d non-blocking for queue index"
957 " %d",
958 dev->data->port_id, rxq_obj->fd, i);
959 mlx5_rx_intr_vec_disable(dev);
960 return -rte_errno;
961 }
962 intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + count;
963 intr_handle->efds[count] = rxq_obj->fd;
964 count++;
965 }
966 if (!count)
967 mlx5_rx_intr_vec_disable(dev);
968 else
969 intr_handle->nb_efd = count;
970 return 0;
971 }
972
973 /**
974 * Clean up Rx interrupts handler.
975 *
976 * @param dev
977 * Pointer to Ethernet device.
978 */
979 void
mlx5_rx_intr_vec_disable(struct rte_eth_dev * dev)980 mlx5_rx_intr_vec_disable(struct rte_eth_dev *dev)
981 {
982 struct mlx5_priv *priv = dev->data->dev_private;
983 struct rte_intr_handle *intr_handle = dev->intr_handle;
984 unsigned int i;
985 unsigned int rxqs_n = priv->rxqs_n;
986 unsigned int n = RTE_MIN(rxqs_n, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID);
987
988 /* Representor shares dev->intr_handle with PF. */
989 if (priv->representor)
990 return;
991 if (!dev->data->dev_conf.intr_conf.rxq)
992 return;
993 if (!intr_handle->intr_vec)
994 goto free;
995 for (i = 0; i != n; ++i) {
996 if (intr_handle->intr_vec[i] == RTE_INTR_VEC_RXTX_OFFSET +
997 RTE_MAX_RXTX_INTR_VEC_ID)
998 continue;
999 /**
1000 * Need to access directly the queue to release the reference
1001 * kept in mlx5_rx_intr_vec_enable().
1002 */
1003 mlx5_rxq_release(dev, i);
1004 }
1005 free:
1006 rte_intr_free_epoll_fd(intr_handle);
1007 if (intr_handle->intr_vec)
1008 mlx5_free(intr_handle->intr_vec);
1009 intr_handle->nb_efd = 0;
1010 intr_handle->intr_vec = NULL;
1011 }
1012
1013 /**
1014 * MLX5 CQ notification .
1015 *
1016 * @param rxq
1017 * Pointer to receive queue structure.
1018 * @param sq_n_rxq
1019 * Sequence number per receive queue .
1020 */
1021 static inline void
mlx5_arm_cq(struct mlx5_rxq_data * rxq,int sq_n_rxq)1022 mlx5_arm_cq(struct mlx5_rxq_data *rxq, int sq_n_rxq)
1023 {
1024 int sq_n = 0;
1025 uint32_t doorbell_hi;
1026 uint64_t doorbell;
1027 void *cq_db_reg = (char *)rxq->cq_uar + MLX5_CQ_DOORBELL;
1028
1029 sq_n = sq_n_rxq & MLX5_CQ_SQN_MASK;
1030 doorbell_hi = sq_n << MLX5_CQ_SQN_OFFSET | (rxq->cq_ci & MLX5_CI_MASK);
1031 doorbell = (uint64_t)doorbell_hi << 32;
1032 doorbell |= rxq->cqn;
1033 rxq->cq_db[MLX5_CQ_ARM_DB] = rte_cpu_to_be_32(doorbell_hi);
1034 mlx5_uar_write64(rte_cpu_to_be_64(doorbell),
1035 cq_db_reg, rxq->uar_lock_cq);
1036 }
1037
1038 /**
1039 * DPDK callback for Rx queue interrupt enable.
1040 *
1041 * @param dev
1042 * Pointer to Ethernet device structure.
1043 * @param rx_queue_id
1044 * Rx queue number.
1045 *
1046 * @return
1047 * 0 on success, a negative errno value otherwise and rte_errno is set.
1048 */
1049 int
mlx5_rx_intr_enable(struct rte_eth_dev * dev,uint16_t rx_queue_id)1050 mlx5_rx_intr_enable(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1051 {
1052 struct mlx5_rxq_ctrl *rxq_ctrl;
1053
1054 rxq_ctrl = mlx5_rxq_get(dev, rx_queue_id);
1055 if (!rxq_ctrl)
1056 goto error;
1057 if (rxq_ctrl->irq) {
1058 if (!rxq_ctrl->obj) {
1059 mlx5_rxq_release(dev, rx_queue_id);
1060 goto error;
1061 }
1062 mlx5_arm_cq(&rxq_ctrl->rxq, rxq_ctrl->rxq.cq_arm_sn);
1063 }
1064 mlx5_rxq_release(dev, rx_queue_id);
1065 return 0;
1066 error:
1067 rte_errno = EINVAL;
1068 return -rte_errno;
1069 }
1070
1071 /**
1072 * DPDK callback for Rx queue interrupt disable.
1073 *
1074 * @param dev
1075 * Pointer to Ethernet device structure.
1076 * @param rx_queue_id
1077 * Rx queue number.
1078 *
1079 * @return
1080 * 0 on success, a negative errno value otherwise and rte_errno is set.
1081 */
1082 int
mlx5_rx_intr_disable(struct rte_eth_dev * dev,uint16_t rx_queue_id)1083 mlx5_rx_intr_disable(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1084 {
1085 struct mlx5_priv *priv = dev->data->dev_private;
1086 struct mlx5_rxq_ctrl *rxq_ctrl;
1087 int ret = 0;
1088
1089 rxq_ctrl = mlx5_rxq_get(dev, rx_queue_id);
1090 if (!rxq_ctrl) {
1091 rte_errno = EINVAL;
1092 return -rte_errno;
1093 }
1094 if (!rxq_ctrl->obj)
1095 goto error;
1096 if (rxq_ctrl->irq) {
1097 ret = priv->obj_ops.rxq_event_get(rxq_ctrl->obj);
1098 if (ret < 0)
1099 goto error;
1100 rxq_ctrl->rxq.cq_arm_sn++;
1101 }
1102 mlx5_rxq_release(dev, rx_queue_id);
1103 return 0;
1104 error:
1105 /**
1106 * The ret variable may be EAGAIN which means the get_event function was
1107 * called before receiving one.
1108 */
1109 if (ret < 0)
1110 rte_errno = errno;
1111 else
1112 rte_errno = EINVAL;
1113 ret = rte_errno; /* Save rte_errno before cleanup. */
1114 mlx5_rxq_release(dev, rx_queue_id);
1115 if (ret != EAGAIN)
1116 DRV_LOG(WARNING, "port %u unable to disable interrupt on Rx queue %d",
1117 dev->data->port_id, rx_queue_id);
1118 rte_errno = ret; /* Restore rte_errno. */
1119 return -rte_errno;
1120 }
1121
1122 /**
1123 * Verify the Rx queue objects list is empty
1124 *
1125 * @param dev
1126 * Pointer to Ethernet device.
1127 *
1128 * @return
1129 * The number of objects not released.
1130 */
1131 int
mlx5_rxq_obj_verify(struct rte_eth_dev * dev)1132 mlx5_rxq_obj_verify(struct rte_eth_dev *dev)
1133 {
1134 struct mlx5_priv *priv = dev->data->dev_private;
1135 int ret = 0;
1136 struct mlx5_rxq_obj *rxq_obj;
1137
1138 LIST_FOREACH(rxq_obj, &priv->rxqsobj, next) {
1139 DRV_LOG(DEBUG, "port %u Rx queue %u still referenced",
1140 dev->data->port_id, rxq_obj->rxq_ctrl->rxq.idx);
1141 ++ret;
1142 }
1143 return ret;
1144 }
1145
1146 /**
1147 * Callback function to initialize mbufs for Multi-Packet RQ.
1148 */
1149 static inline void
mlx5_mprq_buf_init(struct rte_mempool * mp,void * opaque_arg,void * _m,unsigned int i __rte_unused)1150 mlx5_mprq_buf_init(struct rte_mempool *mp, void *opaque_arg,
1151 void *_m, unsigned int i __rte_unused)
1152 {
1153 struct mlx5_mprq_buf *buf = _m;
1154 struct rte_mbuf_ext_shared_info *shinfo;
1155 unsigned int strd_n = (unsigned int)(uintptr_t)opaque_arg;
1156 unsigned int j;
1157
1158 memset(_m, 0, sizeof(*buf));
1159 buf->mp = mp;
1160 __atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED);
1161 for (j = 0; j != strd_n; ++j) {
1162 shinfo = &buf->shinfos[j];
1163 shinfo->free_cb = mlx5_mprq_buf_free_cb;
1164 shinfo->fcb_opaque = buf;
1165 }
1166 }
1167
1168 /**
1169 * Free mempool of Multi-Packet RQ.
1170 *
1171 * @param dev
1172 * Pointer to Ethernet device.
1173 *
1174 * @return
1175 * 0 on success, negative errno value on failure.
1176 */
1177 int
mlx5_mprq_free_mp(struct rte_eth_dev * dev)1178 mlx5_mprq_free_mp(struct rte_eth_dev *dev)
1179 {
1180 struct mlx5_priv *priv = dev->data->dev_private;
1181 struct rte_mempool *mp = priv->mprq_mp;
1182 unsigned int i;
1183
1184 if (mp == NULL)
1185 return 0;
1186 DRV_LOG(DEBUG, "port %u freeing mempool (%s) for Multi-Packet RQ",
1187 dev->data->port_id, mp->name);
1188 /*
1189 * If a buffer in the pool has been externally attached to a mbuf and it
1190 * is still in use by application, destroying the Rx queue can spoil
1191 * the packet. It is unlikely to happen but if application dynamically
1192 * creates and destroys with holding Rx packets, this can happen.
1193 *
1194 * TODO: It is unavoidable for now because the mempool for Multi-Packet
1195 * RQ isn't provided by application but managed by PMD.
1196 */
1197 if (!rte_mempool_full(mp)) {
1198 DRV_LOG(ERR,
1199 "port %u mempool for Multi-Packet RQ is still in use",
1200 dev->data->port_id);
1201 rte_errno = EBUSY;
1202 return -rte_errno;
1203 }
1204 rte_mempool_free(mp);
1205 /* Unset mempool for each Rx queue. */
1206 for (i = 0; i != priv->rxqs_n; ++i) {
1207 struct mlx5_rxq_data *rxq = (*priv->rxqs)[i];
1208
1209 if (rxq == NULL)
1210 continue;
1211 rxq->mprq_mp = NULL;
1212 }
1213 priv->mprq_mp = NULL;
1214 return 0;
1215 }
1216
1217 /**
1218 * Allocate a mempool for Multi-Packet RQ. All configured Rx queues share the
1219 * mempool. If already allocated, reuse it if there're enough elements.
1220 * Otherwise, resize it.
1221 *
1222 * @param dev
1223 * Pointer to Ethernet device.
1224 *
1225 * @return
1226 * 0 on success, negative errno value on failure.
1227 */
1228 int
mlx5_mprq_alloc_mp(struct rte_eth_dev * dev)1229 mlx5_mprq_alloc_mp(struct rte_eth_dev *dev)
1230 {
1231 struct mlx5_priv *priv = dev->data->dev_private;
1232 struct rte_mempool *mp = priv->mprq_mp;
1233 char name[RTE_MEMPOOL_NAMESIZE];
1234 unsigned int desc = 0;
1235 unsigned int buf_len;
1236 unsigned int obj_num;
1237 unsigned int obj_size;
1238 unsigned int strd_num_n = 0;
1239 unsigned int strd_sz_n = 0;
1240 unsigned int i;
1241 unsigned int n_ibv = 0;
1242
1243 if (!mlx5_mprq_enabled(dev))
1244 return 0;
1245 /* Count the total number of descriptors configured. */
1246 for (i = 0; i != priv->rxqs_n; ++i) {
1247 struct mlx5_rxq_data *rxq = (*priv->rxqs)[i];
1248 struct mlx5_rxq_ctrl *rxq_ctrl = container_of
1249 (rxq, struct mlx5_rxq_ctrl, rxq);
1250
1251 if (rxq == NULL || rxq_ctrl->type != MLX5_RXQ_TYPE_STANDARD)
1252 continue;
1253 n_ibv++;
1254 desc += 1 << rxq->elts_n;
1255 /* Get the max number of strides. */
1256 if (strd_num_n < rxq->strd_num_n)
1257 strd_num_n = rxq->strd_num_n;
1258 /* Get the max size of a stride. */
1259 if (strd_sz_n < rxq->strd_sz_n)
1260 strd_sz_n = rxq->strd_sz_n;
1261 }
1262 MLX5_ASSERT(strd_num_n && strd_sz_n);
1263 buf_len = (1 << strd_num_n) * (1 << strd_sz_n);
1264 obj_size = sizeof(struct mlx5_mprq_buf) + buf_len + (1 << strd_num_n) *
1265 sizeof(struct rte_mbuf_ext_shared_info) + RTE_PKTMBUF_HEADROOM;
1266 /*
1267 * Received packets can be either memcpy'd or externally referenced. In
1268 * case that the packet is attached to an mbuf as an external buffer, as
1269 * it isn't possible to predict how the buffers will be queued by
1270 * application, there's no option to exactly pre-allocate needed buffers
1271 * in advance but to speculatively prepares enough buffers.
1272 *
1273 * In the data path, if this Mempool is depleted, PMD will try to memcpy
1274 * received packets to buffers provided by application (rxq->mp) until
1275 * this Mempool gets available again.
1276 */
1277 desc *= 4;
1278 obj_num = desc + MLX5_MPRQ_MP_CACHE_SZ * n_ibv;
1279 /*
1280 * rte_mempool_create_empty() has sanity check to refuse large cache
1281 * size compared to the number of elements.
1282 * CACHE_FLUSHTHRESH_MULTIPLIER is defined in a C file, so using a
1283 * constant number 2 instead.
1284 */
1285 obj_num = RTE_MAX(obj_num, MLX5_MPRQ_MP_CACHE_SZ * 2);
1286 /* Check a mempool is already allocated and if it can be resued. */
1287 if (mp != NULL && mp->elt_size >= obj_size && mp->size >= obj_num) {
1288 DRV_LOG(DEBUG, "port %u mempool %s is being reused",
1289 dev->data->port_id, mp->name);
1290 /* Reuse. */
1291 goto exit;
1292 } else if (mp != NULL) {
1293 DRV_LOG(DEBUG, "port %u mempool %s should be resized, freeing it",
1294 dev->data->port_id, mp->name);
1295 /*
1296 * If failed to free, which means it may be still in use, no way
1297 * but to keep using the existing one. On buffer underrun,
1298 * packets will be memcpy'd instead of external buffer
1299 * attachment.
1300 */
1301 if (mlx5_mprq_free_mp(dev)) {
1302 if (mp->elt_size >= obj_size)
1303 goto exit;
1304 else
1305 return -rte_errno;
1306 }
1307 }
1308 snprintf(name, sizeof(name), "port-%u-mprq", dev->data->port_id);
1309 mp = rte_mempool_create(name, obj_num, obj_size, MLX5_MPRQ_MP_CACHE_SZ,
1310 0, NULL, NULL, mlx5_mprq_buf_init,
1311 (void *)(uintptr_t)(1 << strd_num_n),
1312 dev->device->numa_node, 0);
1313 if (mp == NULL) {
1314 DRV_LOG(ERR,
1315 "port %u failed to allocate a mempool for"
1316 " Multi-Packet RQ, count=%u, size=%u",
1317 dev->data->port_id, obj_num, obj_size);
1318 rte_errno = ENOMEM;
1319 return -rte_errno;
1320 }
1321 priv->mprq_mp = mp;
1322 exit:
1323 /* Set mempool for each Rx queue. */
1324 for (i = 0; i != priv->rxqs_n; ++i) {
1325 struct mlx5_rxq_data *rxq = (*priv->rxqs)[i];
1326 struct mlx5_rxq_ctrl *rxq_ctrl = container_of
1327 (rxq, struct mlx5_rxq_ctrl, rxq);
1328
1329 if (rxq == NULL || rxq_ctrl->type != MLX5_RXQ_TYPE_STANDARD)
1330 continue;
1331 rxq->mprq_mp = mp;
1332 }
1333 DRV_LOG(INFO, "port %u Multi-Packet RQ is configured",
1334 dev->data->port_id);
1335 return 0;
1336 }
1337
1338 #define MLX5_MAX_TCP_HDR_OFFSET ((unsigned int)(sizeof(struct rte_ether_hdr) + \
1339 sizeof(struct rte_vlan_hdr) * 2 + \
1340 sizeof(struct rte_ipv6_hdr)))
1341 #define MAX_TCP_OPTION_SIZE 40u
1342 #define MLX5_MAX_LRO_HEADER_FIX ((unsigned int)(MLX5_MAX_TCP_HDR_OFFSET + \
1343 sizeof(struct rte_tcp_hdr) + \
1344 MAX_TCP_OPTION_SIZE))
1345
1346 /**
1347 * Adjust the maximum LRO massage size.
1348 *
1349 * @param dev
1350 * Pointer to Ethernet device.
1351 * @param idx
1352 * RX queue index.
1353 * @param max_lro_size
1354 * The maximum size for LRO packet.
1355 */
1356 static void
mlx5_max_lro_msg_size_adjust(struct rte_eth_dev * dev,uint16_t idx,uint32_t max_lro_size)1357 mlx5_max_lro_msg_size_adjust(struct rte_eth_dev *dev, uint16_t idx,
1358 uint32_t max_lro_size)
1359 {
1360 struct mlx5_priv *priv = dev->data->dev_private;
1361
1362 if (priv->config.hca_attr.lro_max_msg_sz_mode ==
1363 MLX5_LRO_MAX_MSG_SIZE_START_FROM_L4 && max_lro_size >
1364 MLX5_MAX_TCP_HDR_OFFSET)
1365 max_lro_size -= MLX5_MAX_TCP_HDR_OFFSET;
1366 max_lro_size = RTE_MIN(max_lro_size, MLX5_MAX_LRO_SIZE);
1367 MLX5_ASSERT(max_lro_size >= MLX5_LRO_SEG_CHUNK_SIZE);
1368 max_lro_size /= MLX5_LRO_SEG_CHUNK_SIZE;
1369 if (priv->max_lro_msg_size)
1370 priv->max_lro_msg_size =
1371 RTE_MIN((uint32_t)priv->max_lro_msg_size, max_lro_size);
1372 else
1373 priv->max_lro_msg_size = max_lro_size;
1374 DRV_LOG(DEBUG,
1375 "port %u Rx Queue %u max LRO message size adjusted to %u bytes",
1376 dev->data->port_id, idx,
1377 priv->max_lro_msg_size * MLX5_LRO_SEG_CHUNK_SIZE);
1378 }
1379
1380 /**
1381 * Create a DPDK Rx queue.
1382 *
1383 * @param dev
1384 * Pointer to Ethernet device.
1385 * @param idx
1386 * RX queue index.
1387 * @param desc
1388 * Number of descriptors to configure in queue.
1389 * @param socket
1390 * NUMA socket on which memory must be allocated.
1391 *
1392 * @return
1393 * A DPDK queue object on success, NULL otherwise and rte_errno is set.
1394 */
1395 struct mlx5_rxq_ctrl *
mlx5_rxq_new(struct rte_eth_dev * dev,uint16_t idx,uint16_t desc,unsigned int socket,const struct rte_eth_rxconf * conf,const struct rte_eth_rxseg_split * rx_seg,uint16_t n_seg)1396 mlx5_rxq_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
1397 unsigned int socket, const struct rte_eth_rxconf *conf,
1398 const struct rte_eth_rxseg_split *rx_seg, uint16_t n_seg)
1399 {
1400 struct mlx5_priv *priv = dev->data->dev_private;
1401 struct mlx5_rxq_ctrl *tmpl;
1402 unsigned int mb_len = rte_pktmbuf_data_room_size(rx_seg[0].mp);
1403 struct mlx5_dev_config *config = &priv->config;
1404 uint64_t offloads = conf->offloads |
1405 dev->data->dev_conf.rxmode.offloads;
1406 unsigned int lro_on_queue = !!(offloads & DEV_RX_OFFLOAD_TCP_LRO);
1407 unsigned int max_rx_pkt_len = lro_on_queue ?
1408 dev->data->dev_conf.rxmode.max_lro_pkt_size :
1409 dev->data->dev_conf.rxmode.max_rx_pkt_len;
1410 unsigned int non_scatter_min_mbuf_size = max_rx_pkt_len +
1411 RTE_PKTMBUF_HEADROOM;
1412 unsigned int max_lro_size = 0;
1413 unsigned int first_mb_free_size = mb_len - RTE_PKTMBUF_HEADROOM;
1414 const int mprq_en = mlx5_check_mprq_support(dev) > 0 && n_seg == 1 &&
1415 !rx_seg[0].offset && !rx_seg[0].length;
1416 unsigned int mprq_stride_nums = config->mprq.stride_num_n ?
1417 config->mprq.stride_num_n : MLX5_MPRQ_STRIDE_NUM_N;
1418 unsigned int mprq_stride_size = non_scatter_min_mbuf_size <=
1419 (1U << config->mprq.max_stride_size_n) ?
1420 log2above(non_scatter_min_mbuf_size) : MLX5_MPRQ_STRIDE_SIZE_N;
1421 unsigned int mprq_stride_cap = (config->mprq.stride_num_n ?
1422 (1U << config->mprq.stride_num_n) : (1U << mprq_stride_nums)) *
1423 (config->mprq.stride_size_n ?
1424 (1U << config->mprq.stride_size_n) : (1U << mprq_stride_size));
1425 /*
1426 * Always allocate extra slots, even if eventually
1427 * the vector Rx will not be used.
1428 */
1429 uint16_t desc_n = desc + config->rx_vec_en * MLX5_VPMD_DESCS_PER_LOOP;
1430 const struct rte_eth_rxseg_split *qs_seg = rx_seg;
1431 unsigned int tail_len;
1432
1433 tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
1434 sizeof(*tmpl) + desc_n * sizeof(struct rte_mbuf *) +
1435 (!!mprq_en) *
1436 (desc >> mprq_stride_nums) * sizeof(struct mlx5_mprq_buf *),
1437 0, socket);
1438 if (!tmpl) {
1439 rte_errno = ENOMEM;
1440 return NULL;
1441 }
1442 MLX5_ASSERT(n_seg && n_seg <= MLX5_MAX_RXQ_NSEG);
1443 /*
1444 * Build the array of actual buffer offsets and lengths.
1445 * Pad with the buffers from the last memory pool if
1446 * needed to handle max size packets, replace zero length
1447 * with the buffer length from the pool.
1448 */
1449 tail_len = max_rx_pkt_len;
1450 do {
1451 struct mlx5_eth_rxseg *hw_seg =
1452 &tmpl->rxq.rxseg[tmpl->rxq.rxseg_n];
1453 uint32_t buf_len, offset, seg_len;
1454
1455 /*
1456 * For the buffers beyond descriptions offset is zero,
1457 * the first buffer contains head room.
1458 */
1459 buf_len = rte_pktmbuf_data_room_size(qs_seg->mp);
1460 offset = (tmpl->rxq.rxseg_n >= n_seg ? 0 : qs_seg->offset) +
1461 (tmpl->rxq.rxseg_n ? 0 : RTE_PKTMBUF_HEADROOM);
1462 /*
1463 * For the buffers beyond descriptions the length is
1464 * pool buffer length, zero lengths are replaced with
1465 * pool buffer length either.
1466 */
1467 seg_len = tmpl->rxq.rxseg_n >= n_seg ? buf_len :
1468 qs_seg->length ?
1469 qs_seg->length :
1470 (buf_len - offset);
1471 /* Check is done in long int, now overflows. */
1472 if (buf_len < seg_len + offset) {
1473 DRV_LOG(ERR, "port %u Rx queue %u: Split offset/length "
1474 "%u/%u can't be satisfied",
1475 dev->data->port_id, idx,
1476 qs_seg->length, qs_seg->offset);
1477 rte_errno = EINVAL;
1478 goto error;
1479 }
1480 if (seg_len > tail_len)
1481 seg_len = buf_len - offset;
1482 if (++tmpl->rxq.rxseg_n > MLX5_MAX_RXQ_NSEG) {
1483 DRV_LOG(ERR,
1484 "port %u too many SGEs (%u) needed to handle"
1485 " requested maximum packet size %u, the maximum"
1486 " supported are %u", dev->data->port_id,
1487 tmpl->rxq.rxseg_n, max_rx_pkt_len,
1488 MLX5_MAX_RXQ_NSEG);
1489 rte_errno = ENOTSUP;
1490 goto error;
1491 }
1492 /* Build the actual scattering element in the queue object. */
1493 hw_seg->mp = qs_seg->mp;
1494 MLX5_ASSERT(offset <= UINT16_MAX);
1495 MLX5_ASSERT(seg_len <= UINT16_MAX);
1496 hw_seg->offset = (uint16_t)offset;
1497 hw_seg->length = (uint16_t)seg_len;
1498 /*
1499 * Advance the segment descriptor, the padding is the based
1500 * on the attributes of the last descriptor.
1501 */
1502 if (tmpl->rxq.rxseg_n < n_seg)
1503 qs_seg++;
1504 tail_len -= RTE_MIN(tail_len, seg_len);
1505 } while (tail_len || !rte_is_power_of_2(tmpl->rxq.rxseg_n));
1506 MLX5_ASSERT(tmpl->rxq.rxseg_n &&
1507 tmpl->rxq.rxseg_n <= MLX5_MAX_RXQ_NSEG);
1508 if (tmpl->rxq.rxseg_n > 1 && !(offloads & DEV_RX_OFFLOAD_SCATTER)) {
1509 DRV_LOG(ERR, "port %u Rx queue %u: Scatter offload is not"
1510 " configured and no enough mbuf space(%u) to contain "
1511 "the maximum RX packet length(%u) with head-room(%u)",
1512 dev->data->port_id, idx, mb_len, max_rx_pkt_len,
1513 RTE_PKTMBUF_HEADROOM);
1514 rte_errno = ENOSPC;
1515 goto error;
1516 }
1517 tmpl->type = MLX5_RXQ_TYPE_STANDARD;
1518 if (mlx5_mr_btree_init(&tmpl->rxq.mr_ctrl.cache_bh,
1519 MLX5_MR_BTREE_CACHE_N, socket)) {
1520 /* rte_errno is already set. */
1521 goto error;
1522 }
1523 tmpl->socket = socket;
1524 if (dev->data->dev_conf.intr_conf.rxq)
1525 tmpl->irq = 1;
1526 /*
1527 * This Rx queue can be configured as a Multi-Packet RQ if all of the
1528 * following conditions are met:
1529 * - MPRQ is enabled.
1530 * - The number of descs is more than the number of strides.
1531 * - max_rx_pkt_len plus overhead is less than the max size
1532 * of a stride or mprq_stride_size is specified by a user.
1533 * Need to make sure that there are enough strides to encap
1534 * the maximum packet size in case mprq_stride_size is set.
1535 * Otherwise, enable Rx scatter if necessary.
1536 */
1537 if (mprq_en && desc > (1U << mprq_stride_nums) &&
1538 (non_scatter_min_mbuf_size <=
1539 (1U << config->mprq.max_stride_size_n) ||
1540 (config->mprq.stride_size_n &&
1541 non_scatter_min_mbuf_size <= mprq_stride_cap))) {
1542 /* TODO: Rx scatter isn't supported yet. */
1543 tmpl->rxq.sges_n = 0;
1544 /* Trim the number of descs needed. */
1545 desc >>= mprq_stride_nums;
1546 tmpl->rxq.strd_num_n = config->mprq.stride_num_n ?
1547 config->mprq.stride_num_n : mprq_stride_nums;
1548 tmpl->rxq.strd_sz_n = config->mprq.stride_size_n ?
1549 config->mprq.stride_size_n : mprq_stride_size;
1550 tmpl->rxq.strd_shift_en = MLX5_MPRQ_TWO_BYTE_SHIFT;
1551 tmpl->rxq.strd_scatter_en =
1552 !!(offloads & DEV_RX_OFFLOAD_SCATTER);
1553 tmpl->rxq.mprq_max_memcpy_len = RTE_MIN(first_mb_free_size,
1554 config->mprq.max_memcpy_len);
1555 max_lro_size = RTE_MIN(max_rx_pkt_len,
1556 (1u << tmpl->rxq.strd_num_n) *
1557 (1u << tmpl->rxq.strd_sz_n));
1558 DRV_LOG(DEBUG,
1559 "port %u Rx queue %u: Multi-Packet RQ is enabled"
1560 " strd_num_n = %u, strd_sz_n = %u",
1561 dev->data->port_id, idx,
1562 tmpl->rxq.strd_num_n, tmpl->rxq.strd_sz_n);
1563 } else if (tmpl->rxq.rxseg_n == 1) {
1564 MLX5_ASSERT(max_rx_pkt_len <= first_mb_free_size);
1565 tmpl->rxq.sges_n = 0;
1566 max_lro_size = max_rx_pkt_len;
1567 } else if (offloads & DEV_RX_OFFLOAD_SCATTER) {
1568 unsigned int sges_n;
1569
1570 if (lro_on_queue && first_mb_free_size <
1571 MLX5_MAX_LRO_HEADER_FIX) {
1572 DRV_LOG(ERR, "Not enough space in the first segment(%u)"
1573 " to include the max header size(%u) for LRO",
1574 first_mb_free_size, MLX5_MAX_LRO_HEADER_FIX);
1575 rte_errno = ENOTSUP;
1576 goto error;
1577 }
1578 /*
1579 * Determine the number of SGEs needed for a full packet
1580 * and round it to the next power of two.
1581 */
1582 sges_n = log2above(tmpl->rxq.rxseg_n);
1583 if (sges_n > MLX5_MAX_LOG_RQ_SEGS) {
1584 DRV_LOG(ERR,
1585 "port %u too many SGEs (%u) needed to handle"
1586 " requested maximum packet size %u, the maximum"
1587 " supported are %u", dev->data->port_id,
1588 1 << sges_n, max_rx_pkt_len,
1589 1u << MLX5_MAX_LOG_RQ_SEGS);
1590 rte_errno = ENOTSUP;
1591 goto error;
1592 }
1593 tmpl->rxq.sges_n = sges_n;
1594 max_lro_size = max_rx_pkt_len;
1595 }
1596 if (config->mprq.enabled && !mlx5_rxq_mprq_enabled(&tmpl->rxq))
1597 DRV_LOG(WARNING,
1598 "port %u MPRQ is requested but cannot be enabled\n"
1599 " (requested: pkt_sz = %u, desc_num = %u,"
1600 " rxq_num = %u, stride_sz = %u, stride_num = %u\n"
1601 " supported: min_rxqs_num = %u,"
1602 " min_stride_sz = %u, max_stride_sz = %u).",
1603 dev->data->port_id, non_scatter_min_mbuf_size,
1604 desc, priv->rxqs_n,
1605 config->mprq.stride_size_n ?
1606 (1U << config->mprq.stride_size_n) :
1607 (1U << mprq_stride_size),
1608 config->mprq.stride_num_n ?
1609 (1U << config->mprq.stride_num_n) :
1610 (1U << mprq_stride_nums),
1611 config->mprq.min_rxqs_num,
1612 (1U << config->mprq.min_stride_size_n),
1613 (1U << config->mprq.max_stride_size_n));
1614 DRV_LOG(DEBUG, "port %u maximum number of segments per packet: %u",
1615 dev->data->port_id, 1 << tmpl->rxq.sges_n);
1616 if (desc % (1 << tmpl->rxq.sges_n)) {
1617 DRV_LOG(ERR,
1618 "port %u number of Rx queue descriptors (%u) is not a"
1619 " multiple of SGEs per packet (%u)",
1620 dev->data->port_id,
1621 desc,
1622 1 << tmpl->rxq.sges_n);
1623 rte_errno = EINVAL;
1624 goto error;
1625 }
1626 mlx5_max_lro_msg_size_adjust(dev, idx, max_lro_size);
1627 /* Toggle RX checksum offload if hardware supports it. */
1628 tmpl->rxq.csum = !!(offloads & DEV_RX_OFFLOAD_CHECKSUM);
1629 /* Configure Rx timestamp. */
1630 tmpl->rxq.hw_timestamp = !!(offloads & DEV_RX_OFFLOAD_TIMESTAMP);
1631 tmpl->rxq.timestamp_rx_flag = 0;
1632 if (tmpl->rxq.hw_timestamp && rte_mbuf_dyn_rx_timestamp_register(
1633 &tmpl->rxq.timestamp_offset,
1634 &tmpl->rxq.timestamp_rx_flag) != 0) {
1635 DRV_LOG(ERR, "Cannot register Rx timestamp field/flag");
1636 goto error;
1637 }
1638 /* Configure VLAN stripping. */
1639 tmpl->rxq.vlan_strip = !!(offloads & DEV_RX_OFFLOAD_VLAN_STRIP);
1640 /* By default, FCS (CRC) is stripped by hardware. */
1641 tmpl->rxq.crc_present = 0;
1642 tmpl->rxq.lro = lro_on_queue;
1643 if (offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
1644 if (config->hw_fcs_strip) {
1645 /*
1646 * RQs used for LRO-enabled TIRs should not be
1647 * configured to scatter the FCS.
1648 */
1649 if (lro_on_queue)
1650 DRV_LOG(WARNING,
1651 "port %u CRC stripping has been "
1652 "disabled but will still be performed "
1653 "by hardware, because LRO is enabled",
1654 dev->data->port_id);
1655 else
1656 tmpl->rxq.crc_present = 1;
1657 } else {
1658 DRV_LOG(WARNING,
1659 "port %u CRC stripping has been disabled but will"
1660 " still be performed by hardware, make sure MLNX_OFED"
1661 " and firmware are up to date",
1662 dev->data->port_id);
1663 }
1664 }
1665 DRV_LOG(DEBUG,
1666 "port %u CRC stripping is %s, %u bytes will be subtracted from"
1667 " incoming frames to hide it",
1668 dev->data->port_id,
1669 tmpl->rxq.crc_present ? "disabled" : "enabled",
1670 tmpl->rxq.crc_present << 2);
1671 /* Save port ID. */
1672 tmpl->rxq.rss_hash = !!priv->rss_conf.rss_hf &&
1673 (!!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS));
1674 tmpl->rxq.port_id = dev->data->port_id;
1675 tmpl->priv = priv;
1676 tmpl->rxq.mp = rx_seg[0].mp;
1677 tmpl->rxq.elts_n = log2above(desc);
1678 tmpl->rxq.rq_repl_thresh =
1679 MLX5_VPMD_RXQ_RPLNSH_THRESH(desc_n);
1680 tmpl->rxq.elts =
1681 (struct rte_mbuf *(*)[desc_n])(tmpl + 1);
1682 tmpl->rxq.mprq_bufs =
1683 (struct mlx5_mprq_buf *(*)[desc])(*tmpl->rxq.elts + desc_n);
1684 #ifndef RTE_ARCH_64
1685 tmpl->rxq.uar_lock_cq = &priv->sh->uar_lock_cq;
1686 #endif
1687 tmpl->rxq.idx = idx;
1688 __atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED);
1689 LIST_INSERT_HEAD(&priv->rxqsctrl, tmpl, next);
1690 return tmpl;
1691 error:
1692 mlx5_free(tmpl);
1693 return NULL;
1694 }
1695
1696 /**
1697 * Create a DPDK Rx hairpin queue.
1698 *
1699 * @param dev
1700 * Pointer to Ethernet device.
1701 * @param idx
1702 * RX queue index.
1703 * @param desc
1704 * Number of descriptors to configure in queue.
1705 * @param hairpin_conf
1706 * The hairpin binding configuration.
1707 *
1708 * @return
1709 * A DPDK queue object on success, NULL otherwise and rte_errno is set.
1710 */
1711 struct mlx5_rxq_ctrl *
mlx5_rxq_hairpin_new(struct rte_eth_dev * dev,uint16_t idx,uint16_t desc,const struct rte_eth_hairpin_conf * hairpin_conf)1712 mlx5_rxq_hairpin_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
1713 const struct rte_eth_hairpin_conf *hairpin_conf)
1714 {
1715 struct mlx5_priv *priv = dev->data->dev_private;
1716 struct mlx5_rxq_ctrl *tmpl;
1717
1718 tmpl = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, sizeof(*tmpl), 0,
1719 SOCKET_ID_ANY);
1720 if (!tmpl) {
1721 rte_errno = ENOMEM;
1722 return NULL;
1723 }
1724 tmpl->type = MLX5_RXQ_TYPE_HAIRPIN;
1725 tmpl->socket = SOCKET_ID_ANY;
1726 tmpl->rxq.rss_hash = 0;
1727 tmpl->rxq.port_id = dev->data->port_id;
1728 tmpl->priv = priv;
1729 tmpl->rxq.mp = NULL;
1730 tmpl->rxq.elts_n = log2above(desc);
1731 tmpl->rxq.elts = NULL;
1732 tmpl->rxq.mr_ctrl.cache_bh = (struct mlx5_mr_btree) { 0 };
1733 tmpl->hairpin_conf = *hairpin_conf;
1734 tmpl->rxq.idx = idx;
1735 __atomic_fetch_add(&tmpl->refcnt, 1, __ATOMIC_RELAXED);
1736 LIST_INSERT_HEAD(&priv->rxqsctrl, tmpl, next);
1737 return tmpl;
1738 }
1739
1740 /**
1741 * Get a Rx queue.
1742 *
1743 * @param dev
1744 * Pointer to Ethernet device.
1745 * @param idx
1746 * RX queue index.
1747 *
1748 * @return
1749 * A pointer to the queue if it exists, NULL otherwise.
1750 */
1751 struct mlx5_rxq_ctrl *
mlx5_rxq_get(struct rte_eth_dev * dev,uint16_t idx)1752 mlx5_rxq_get(struct rte_eth_dev *dev, uint16_t idx)
1753 {
1754 struct mlx5_priv *priv = dev->data->dev_private;
1755 struct mlx5_rxq_data *rxq_data = (*priv->rxqs)[idx];
1756 struct mlx5_rxq_ctrl *rxq_ctrl = NULL;
1757
1758 if (rxq_data) {
1759 rxq_ctrl = container_of(rxq_data, struct mlx5_rxq_ctrl, rxq);
1760 __atomic_fetch_add(&rxq_ctrl->refcnt, 1, __ATOMIC_RELAXED);
1761 }
1762 return rxq_ctrl;
1763 }
1764
1765 /**
1766 * Release a Rx queue.
1767 *
1768 * @param dev
1769 * Pointer to Ethernet device.
1770 * @param idx
1771 * RX queue index.
1772 *
1773 * @return
1774 * 1 while a reference on it exists, 0 when freed.
1775 */
1776 int
mlx5_rxq_release(struct rte_eth_dev * dev,uint16_t idx)1777 mlx5_rxq_release(struct rte_eth_dev *dev, uint16_t idx)
1778 {
1779 struct mlx5_priv *priv = dev->data->dev_private;
1780 struct mlx5_rxq_ctrl *rxq_ctrl;
1781
1782 if (!(*priv->rxqs)[idx])
1783 return 0;
1784 rxq_ctrl = container_of((*priv->rxqs)[idx], struct mlx5_rxq_ctrl, rxq);
1785 if (__atomic_sub_fetch(&rxq_ctrl->refcnt, 1, __ATOMIC_RELAXED) > 1)
1786 return 1;
1787 if (rxq_ctrl->obj) {
1788 priv->obj_ops.rxq_obj_release(rxq_ctrl->obj);
1789 LIST_REMOVE(rxq_ctrl->obj, next);
1790 mlx5_free(rxq_ctrl->obj);
1791 rxq_ctrl->obj = NULL;
1792 }
1793 if (rxq_ctrl->type == MLX5_RXQ_TYPE_STANDARD) {
1794 rxq_free_elts(rxq_ctrl);
1795 dev->data->rx_queue_state[idx] = RTE_ETH_QUEUE_STATE_STOPPED;
1796 }
1797 if (!__atomic_load_n(&rxq_ctrl->refcnt, __ATOMIC_RELAXED)) {
1798 if (rxq_ctrl->type == MLX5_RXQ_TYPE_STANDARD)
1799 mlx5_mr_btree_free(&rxq_ctrl->rxq.mr_ctrl.cache_bh);
1800 LIST_REMOVE(rxq_ctrl, next);
1801 mlx5_free(rxq_ctrl);
1802 (*priv->rxqs)[idx] = NULL;
1803 }
1804 return 0;
1805 }
1806
1807 /**
1808 * Verify the Rx Queue list is empty
1809 *
1810 * @param dev
1811 * Pointer to Ethernet device.
1812 *
1813 * @return
1814 * The number of object not released.
1815 */
1816 int
mlx5_rxq_verify(struct rte_eth_dev * dev)1817 mlx5_rxq_verify(struct rte_eth_dev *dev)
1818 {
1819 struct mlx5_priv *priv = dev->data->dev_private;
1820 struct mlx5_rxq_ctrl *rxq_ctrl;
1821 int ret = 0;
1822
1823 LIST_FOREACH(rxq_ctrl, &priv->rxqsctrl, next) {
1824 DRV_LOG(DEBUG, "port %u Rx Queue %u still referenced",
1825 dev->data->port_id, rxq_ctrl->rxq.idx);
1826 ++ret;
1827 }
1828 return ret;
1829 }
1830
1831 /**
1832 * Get a Rx queue type.
1833 *
1834 * @param dev
1835 * Pointer to Ethernet device.
1836 * @param idx
1837 * Rx queue index.
1838 *
1839 * @return
1840 * The Rx queue type.
1841 */
1842 enum mlx5_rxq_type
mlx5_rxq_get_type(struct rte_eth_dev * dev,uint16_t idx)1843 mlx5_rxq_get_type(struct rte_eth_dev *dev, uint16_t idx)
1844 {
1845 struct mlx5_priv *priv = dev->data->dev_private;
1846 struct mlx5_rxq_ctrl *rxq_ctrl = NULL;
1847
1848 if (idx < priv->rxqs_n && (*priv->rxqs)[idx]) {
1849 rxq_ctrl = container_of((*priv->rxqs)[idx],
1850 struct mlx5_rxq_ctrl,
1851 rxq);
1852 return rxq_ctrl->type;
1853 }
1854 return MLX5_RXQ_TYPE_UNDEFINED;
1855 }
1856
1857 /*
1858 * Get a Rx hairpin queue configuration.
1859 *
1860 * @param dev
1861 * Pointer to Ethernet device.
1862 * @param idx
1863 * Rx queue index.
1864 *
1865 * @return
1866 * Pointer to the configuration if a hairpin RX queue, otherwise NULL.
1867 */
1868 const struct rte_eth_hairpin_conf *
mlx5_rxq_get_hairpin_conf(struct rte_eth_dev * dev,uint16_t idx)1869 mlx5_rxq_get_hairpin_conf(struct rte_eth_dev *dev, uint16_t idx)
1870 {
1871 struct mlx5_priv *priv = dev->data->dev_private;
1872 struct mlx5_rxq_ctrl *rxq_ctrl = NULL;
1873
1874 if (idx < priv->rxqs_n && (*priv->rxqs)[idx]) {
1875 rxq_ctrl = container_of((*priv->rxqs)[idx],
1876 struct mlx5_rxq_ctrl,
1877 rxq);
1878 if (rxq_ctrl->type == MLX5_RXQ_TYPE_HAIRPIN)
1879 return &rxq_ctrl->hairpin_conf;
1880 }
1881 return NULL;
1882 }
1883
1884 /**
1885 * Match queues listed in arguments to queues contained in indirection table
1886 * object.
1887 *
1888 * @param ind_tbl
1889 * Pointer to indirection table to match.
1890 * @param queues
1891 * Queues to match to ques in indirection table.
1892 * @param queues_n
1893 * Number of queues in the array.
1894 *
1895 * @return
1896 * 1 if all queues in indirection table match 0 othrwise.
1897 */
1898 static int
mlx5_ind_table_obj_match_queues(const struct mlx5_ind_table_obj * ind_tbl,const uint16_t * queues,uint32_t queues_n)1899 mlx5_ind_table_obj_match_queues(const struct mlx5_ind_table_obj *ind_tbl,
1900 const uint16_t *queues, uint32_t queues_n)
1901 {
1902 return (ind_tbl->queues_n == queues_n) &&
1903 (!memcmp(ind_tbl->queues, queues,
1904 ind_tbl->queues_n * sizeof(ind_tbl->queues[0])));
1905 }
1906
1907 /**
1908 * Get an indirection table.
1909 *
1910 * @param dev
1911 * Pointer to Ethernet device.
1912 * @param queues
1913 * Queues entering in the indirection table.
1914 * @param queues_n
1915 * Number of queues in the array.
1916 *
1917 * @return
1918 * An indirection table if found.
1919 */
1920 struct mlx5_ind_table_obj *
mlx5_ind_table_obj_get(struct rte_eth_dev * dev,const uint16_t * queues,uint32_t queues_n)1921 mlx5_ind_table_obj_get(struct rte_eth_dev *dev, const uint16_t *queues,
1922 uint32_t queues_n)
1923 {
1924 struct mlx5_priv *priv = dev->data->dev_private;
1925 struct mlx5_ind_table_obj *ind_tbl;
1926
1927 LIST_FOREACH(ind_tbl, &priv->ind_tbls, next) {
1928 if ((ind_tbl->queues_n == queues_n) &&
1929 (memcmp(ind_tbl->queues, queues,
1930 ind_tbl->queues_n * sizeof(ind_tbl->queues[0]))
1931 == 0))
1932 break;
1933 }
1934 if (ind_tbl) {
1935 unsigned int i;
1936
1937 __atomic_fetch_add(&ind_tbl->refcnt, 1, __ATOMIC_RELAXED);
1938 for (i = 0; i != ind_tbl->queues_n; ++i)
1939 mlx5_rxq_get(dev, ind_tbl->queues[i]);
1940 }
1941 return ind_tbl;
1942 }
1943
1944 /**
1945 * Release an indirection table.
1946 *
1947 * @param dev
1948 * Pointer to Ethernet device.
1949 * @param ind_table
1950 * Indirection table to release.
1951 * @param standalone
1952 * Indirection table for Standalone queue.
1953 *
1954 * @return
1955 * 1 while a reference on it exists, 0 when freed.
1956 */
1957 int
mlx5_ind_table_obj_release(struct rte_eth_dev * dev,struct mlx5_ind_table_obj * ind_tbl,bool standalone)1958 mlx5_ind_table_obj_release(struct rte_eth_dev *dev,
1959 struct mlx5_ind_table_obj *ind_tbl,
1960 bool standalone)
1961 {
1962 struct mlx5_priv *priv = dev->data->dev_private;
1963 unsigned int i;
1964
1965 if (__atomic_sub_fetch(&ind_tbl->refcnt, 1, __ATOMIC_RELAXED) == 0)
1966 priv->obj_ops.ind_table_destroy(ind_tbl);
1967 for (i = 0; i != ind_tbl->queues_n; ++i)
1968 claim_nonzero(mlx5_rxq_release(dev, ind_tbl->queues[i]));
1969 if (__atomic_load_n(&ind_tbl->refcnt, __ATOMIC_RELAXED) == 0) {
1970 if (!standalone)
1971 LIST_REMOVE(ind_tbl, next);
1972 mlx5_free(ind_tbl);
1973 return 0;
1974 }
1975 return 1;
1976 }
1977
1978 /**
1979 * Verify the Rx Queue list is empty
1980 *
1981 * @param dev
1982 * Pointer to Ethernet device.
1983 *
1984 * @return
1985 * The number of object not released.
1986 */
1987 int
mlx5_ind_table_obj_verify(struct rte_eth_dev * dev)1988 mlx5_ind_table_obj_verify(struct rte_eth_dev *dev)
1989 {
1990 struct mlx5_priv *priv = dev->data->dev_private;
1991 struct mlx5_ind_table_obj *ind_tbl;
1992 int ret = 0;
1993
1994 LIST_FOREACH(ind_tbl, &priv->ind_tbls, next) {
1995 DRV_LOG(DEBUG,
1996 "port %u indirection table obj %p still referenced",
1997 dev->data->port_id, (void *)ind_tbl);
1998 ++ret;
1999 }
2000 return ret;
2001 }
2002
2003 /**
2004 * Setup an indirection table structure fields.
2005 *
2006 * @param dev
2007 * Pointer to Ethernet device.
2008 * @param ind_table
2009 * Indirection table to modify.
2010 *
2011 * @return
2012 * 0 on success, a negative errno value otherwise and rte_errno is set.
2013 */
2014 int
mlx5_ind_table_obj_setup(struct rte_eth_dev * dev,struct mlx5_ind_table_obj * ind_tbl)2015 mlx5_ind_table_obj_setup(struct rte_eth_dev *dev,
2016 struct mlx5_ind_table_obj *ind_tbl)
2017 {
2018 struct mlx5_priv *priv = dev->data->dev_private;
2019 uint32_t queues_n = ind_tbl->queues_n;
2020 uint16_t *queues = ind_tbl->queues;
2021 unsigned int i, j;
2022 int ret = 0, err;
2023 const unsigned int n = rte_is_power_of_2(queues_n) ?
2024 log2above(queues_n) :
2025 log2above(priv->config.ind_table_max_size);
2026
2027 for (i = 0; i != queues_n; ++i) {
2028 if (!mlx5_rxq_get(dev, queues[i])) {
2029 ret = -rte_errno;
2030 goto error;
2031 }
2032 }
2033 ret = priv->obj_ops.ind_table_new(dev, n, ind_tbl);
2034 if (ret)
2035 goto error;
2036 __atomic_fetch_add(&ind_tbl->refcnt, 1, __ATOMIC_RELAXED);
2037 return 0;
2038 error:
2039 err = rte_errno;
2040 for (j = 0; j < i; j++)
2041 mlx5_rxq_release(dev, ind_tbl->queues[j]);
2042 rte_errno = err;
2043 DEBUG("Port %u cannot setup indirection table.", dev->data->port_id);
2044 return ret;
2045 }
2046
2047 /**
2048 * Create an indirection table.
2049 *
2050 * @param dev
2051 * Pointer to Ethernet device.
2052 * @param queues
2053 * Queues entering in the indirection table.
2054 * @param queues_n
2055 * Number of queues in the array.
2056 * @param standalone
2057 * Indirection table for Standalone queue.
2058 *
2059 * @return
2060 * The Verbs/DevX object initialized, NULL otherwise and rte_errno is set.
2061 */
2062 static struct mlx5_ind_table_obj *
mlx5_ind_table_obj_new(struct rte_eth_dev * dev,const uint16_t * queues,uint32_t queues_n,bool standalone)2063 mlx5_ind_table_obj_new(struct rte_eth_dev *dev, const uint16_t *queues,
2064 uint32_t queues_n, bool standalone)
2065 {
2066 struct mlx5_priv *priv = dev->data->dev_private;
2067 struct mlx5_ind_table_obj *ind_tbl;
2068 int ret;
2069
2070 ind_tbl = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*ind_tbl) +
2071 queues_n * sizeof(uint16_t), 0, SOCKET_ID_ANY);
2072 if (!ind_tbl) {
2073 rte_errno = ENOMEM;
2074 return NULL;
2075 }
2076 ind_tbl->queues_n = queues_n;
2077 ind_tbl->queues = (uint16_t *)(ind_tbl + 1);
2078 memcpy(ind_tbl->queues, queues, queues_n * sizeof(*queues));
2079 ret = mlx5_ind_table_obj_setup(dev, ind_tbl);
2080 if (ret < 0) {
2081 mlx5_free(ind_tbl);
2082 return NULL;
2083 }
2084 if (!standalone)
2085 LIST_INSERT_HEAD(&priv->ind_tbls, ind_tbl, next);
2086 return ind_tbl;
2087 }
2088
2089 /**
2090 * Modify an indirection table.
2091 *
2092 * @param dev
2093 * Pointer to Ethernet device.
2094 * @param ind_table
2095 * Indirection table to modify.
2096 * @param queues
2097 * Queues replacement for the indirection table.
2098 * @param queues_n
2099 * Number of queues in the array.
2100 * @param standalone
2101 * Indirection table for Standalone queue.
2102 *
2103 * @return
2104 * 0 on success, a negative errno value otherwise and rte_errno is set.
2105 */
2106 int
mlx5_ind_table_obj_modify(struct rte_eth_dev * dev,struct mlx5_ind_table_obj * ind_tbl,uint16_t * queues,const uint32_t queues_n,bool standalone)2107 mlx5_ind_table_obj_modify(struct rte_eth_dev *dev,
2108 struct mlx5_ind_table_obj *ind_tbl,
2109 uint16_t *queues, const uint32_t queues_n,
2110 bool standalone)
2111 {
2112 struct mlx5_priv *priv = dev->data->dev_private;
2113 unsigned int i, j;
2114 int ret = 0, err;
2115 const unsigned int n = rte_is_power_of_2(queues_n) ?
2116 log2above(queues_n) :
2117 log2above(priv->config.ind_table_max_size);
2118
2119 MLX5_ASSERT(standalone);
2120 RTE_SET_USED(standalone);
2121 if (__atomic_load_n(&ind_tbl->refcnt, __ATOMIC_RELAXED) > 1) {
2122 /*
2123 * Modification of indirection ntables having more than 1
2124 * reference unsupported. Intended for standalone indirection
2125 * tables only.
2126 */
2127 DEBUG("Port %u cannot modify indirection table (refcnt> 1).",
2128 dev->data->port_id);
2129 rte_errno = EINVAL;
2130 return -rte_errno;
2131 }
2132 for (i = 0; i != queues_n; ++i) {
2133 if (!mlx5_rxq_get(dev, queues[i])) {
2134 ret = -rte_errno;
2135 goto error;
2136 }
2137 }
2138 MLX5_ASSERT(priv->obj_ops.ind_table_modify);
2139 ret = priv->obj_ops.ind_table_modify(dev, n, queues, queues_n, ind_tbl);
2140 if (ret)
2141 goto error;
2142 for (j = 0; j < ind_tbl->queues_n; j++)
2143 mlx5_rxq_release(dev, ind_tbl->queues[j]);
2144 ind_tbl->queues_n = queues_n;
2145 ind_tbl->queues = queues;
2146 return 0;
2147 error:
2148 err = rte_errno;
2149 for (j = 0; j < i; j++)
2150 mlx5_rxq_release(dev, ind_tbl->queues[j]);
2151 rte_errno = err;
2152 DEBUG("Port %u cannot setup indirection table.", dev->data->port_id);
2153 return ret;
2154 }
2155
2156 /**
2157 * Match an Rx Hash queue.
2158 *
2159 * @param list
2160 * Cache list pointer.
2161 * @param entry
2162 * Hash queue entry pointer.
2163 * @param cb_ctx
2164 * Context of the callback function.
2165 *
2166 * @return
2167 * 0 if match, none zero if not match.
2168 */
2169 int
mlx5_hrxq_match_cb(struct mlx5_cache_list * list,struct mlx5_cache_entry * entry,void * cb_ctx)2170 mlx5_hrxq_match_cb(struct mlx5_cache_list *list,
2171 struct mlx5_cache_entry *entry,
2172 void *cb_ctx)
2173 {
2174 struct rte_eth_dev *dev = list->ctx;
2175 struct mlx5_flow_cb_ctx *ctx = cb_ctx;
2176 struct mlx5_flow_rss_desc *rss_desc = ctx->data;
2177 struct mlx5_hrxq *hrxq = container_of(entry, typeof(*hrxq), entry);
2178 struct mlx5_ind_table_obj *ind_tbl;
2179
2180 if (hrxq->rss_key_len != rss_desc->key_len ||
2181 memcmp(hrxq->rss_key, rss_desc->key, rss_desc->key_len) ||
2182 hrxq->hash_fields != rss_desc->hash_fields)
2183 return 1;
2184 ind_tbl = mlx5_ind_table_obj_get(dev, rss_desc->queue,
2185 rss_desc->queue_num);
2186 if (ind_tbl)
2187 mlx5_ind_table_obj_release(dev, ind_tbl, hrxq->standalone);
2188 return ind_tbl != hrxq->ind_table;
2189 }
2190
2191 /**
2192 * Modify an Rx Hash queue configuration.
2193 *
2194 * @param dev
2195 * Pointer to Ethernet device.
2196 * @param hrxq
2197 * Index to Hash Rx queue to modify.
2198 * @param rss_key
2199 * RSS key for the Rx hash queue.
2200 * @param rss_key_len
2201 * RSS key length.
2202 * @param hash_fields
2203 * Verbs protocol hash field to make the RSS on.
2204 * @param queues
2205 * Queues entering in hash queue. In case of empty hash_fields only the
2206 * first queue index will be taken for the indirection table.
2207 * @param queues_n
2208 * Number of queues.
2209 *
2210 * @return
2211 * 0 on success, a negative errno value otherwise and rte_errno is set.
2212 */
2213 int
mlx5_hrxq_modify(struct rte_eth_dev * dev,uint32_t hrxq_idx,const uint8_t * rss_key,uint32_t rss_key_len,uint64_t hash_fields,const uint16_t * queues,uint32_t queues_n)2214 mlx5_hrxq_modify(struct rte_eth_dev *dev, uint32_t hrxq_idx,
2215 const uint8_t *rss_key, uint32_t rss_key_len,
2216 uint64_t hash_fields,
2217 const uint16_t *queues, uint32_t queues_n)
2218 {
2219 int err;
2220 struct mlx5_ind_table_obj *ind_tbl = NULL;
2221 struct mlx5_priv *priv = dev->data->dev_private;
2222 struct mlx5_hrxq *hrxq =
2223 mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq_idx);
2224 int ret;
2225
2226 if (!hrxq) {
2227 rte_errno = EINVAL;
2228 return -rte_errno;
2229 }
2230 /* validations */
2231 if (hrxq->rss_key_len != rss_key_len) {
2232 /* rss_key_len is fixed size 40 byte & not supposed to change */
2233 rte_errno = EINVAL;
2234 return -rte_errno;
2235 }
2236 queues_n = hash_fields ? queues_n : 1;
2237 if (mlx5_ind_table_obj_match_queues(hrxq->ind_table,
2238 queues, queues_n)) {
2239 ind_tbl = hrxq->ind_table;
2240 } else {
2241 if (hrxq->standalone) {
2242 /*
2243 * Replacement of indirection table unsupported for
2244 * stanalone hrxq objects (used by shared RSS).
2245 */
2246 rte_errno = ENOTSUP;
2247 return -rte_errno;
2248 }
2249 ind_tbl = mlx5_ind_table_obj_get(dev, queues, queues_n);
2250 if (!ind_tbl)
2251 ind_tbl = mlx5_ind_table_obj_new(dev, queues, queues_n,
2252 hrxq->standalone);
2253 }
2254 if (!ind_tbl) {
2255 rte_errno = ENOMEM;
2256 return -rte_errno;
2257 }
2258 MLX5_ASSERT(priv->obj_ops.hrxq_modify);
2259 ret = priv->obj_ops.hrxq_modify(dev, hrxq, rss_key,
2260 hash_fields, ind_tbl);
2261 if (ret) {
2262 rte_errno = errno;
2263 goto error;
2264 }
2265 if (ind_tbl != hrxq->ind_table) {
2266 MLX5_ASSERT(!hrxq->standalone);
2267 mlx5_ind_table_obj_release(dev, hrxq->ind_table,
2268 hrxq->standalone);
2269 hrxq->ind_table = ind_tbl;
2270 }
2271 hrxq->hash_fields = hash_fields;
2272 memcpy(hrxq->rss_key, rss_key, rss_key_len);
2273 return 0;
2274 error:
2275 err = rte_errno;
2276 if (ind_tbl != hrxq->ind_table) {
2277 MLX5_ASSERT(!hrxq->standalone);
2278 mlx5_ind_table_obj_release(dev, ind_tbl, hrxq->standalone);
2279 }
2280 rte_errno = err;
2281 return -rte_errno;
2282 }
2283
2284 static void
__mlx5_hrxq_remove(struct rte_eth_dev * dev,struct mlx5_hrxq * hrxq)2285 __mlx5_hrxq_remove(struct rte_eth_dev *dev, struct mlx5_hrxq *hrxq)
2286 {
2287 struct mlx5_priv *priv = dev->data->dev_private;
2288
2289 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
2290 mlx5_glue->destroy_flow_action(hrxq->action);
2291 #endif
2292 priv->obj_ops.hrxq_destroy(hrxq);
2293 if (!hrxq->standalone) {
2294 mlx5_ind_table_obj_release(dev, hrxq->ind_table,
2295 hrxq->standalone);
2296 }
2297 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq->idx);
2298 }
2299
2300 /**
2301 * Release the hash Rx queue.
2302 *
2303 * @param dev
2304 * Pointer to Ethernet device.
2305 * @param hrxq
2306 * Index to Hash Rx queue to release.
2307 *
2308 * @param list
2309 * Cache list pointer.
2310 * @param entry
2311 * Hash queue entry pointer.
2312 */
2313 void
mlx5_hrxq_remove_cb(struct mlx5_cache_list * list,struct mlx5_cache_entry * entry)2314 mlx5_hrxq_remove_cb(struct mlx5_cache_list *list,
2315 struct mlx5_cache_entry *entry)
2316 {
2317 struct rte_eth_dev *dev = list->ctx;
2318 struct mlx5_hrxq *hrxq = container_of(entry, typeof(*hrxq), entry);
2319
2320 __mlx5_hrxq_remove(dev, hrxq);
2321 }
2322
2323 static struct mlx5_hrxq *
__mlx5_hrxq_create(struct rte_eth_dev * dev,struct mlx5_flow_rss_desc * rss_desc)2324 __mlx5_hrxq_create(struct rte_eth_dev *dev,
2325 struct mlx5_flow_rss_desc *rss_desc)
2326 {
2327 struct mlx5_priv *priv = dev->data->dev_private;
2328 const uint8_t *rss_key = rss_desc->key;
2329 uint32_t rss_key_len = rss_desc->key_len;
2330 bool standalone = !!rss_desc->shared_rss;
2331 const uint16_t *queues =
2332 standalone ? rss_desc->const_q : rss_desc->queue;
2333 uint32_t queues_n = rss_desc->queue_num;
2334 struct mlx5_hrxq *hrxq = NULL;
2335 uint32_t hrxq_idx = 0;
2336 struct mlx5_ind_table_obj *ind_tbl = rss_desc->ind_tbl;
2337 int ret;
2338
2339 queues_n = rss_desc->hash_fields ? queues_n : 1;
2340 if (!ind_tbl)
2341 ind_tbl = mlx5_ind_table_obj_get(dev, queues, queues_n);
2342 if (!ind_tbl)
2343 ind_tbl = mlx5_ind_table_obj_new(dev, queues, queues_n,
2344 standalone);
2345 if (!ind_tbl)
2346 return NULL;
2347 hrxq = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_HRXQ], &hrxq_idx);
2348 if (!hrxq)
2349 goto error;
2350 hrxq->standalone = standalone;
2351 hrxq->idx = hrxq_idx;
2352 hrxq->ind_table = ind_tbl;
2353 hrxq->rss_key_len = rss_key_len;
2354 hrxq->hash_fields = rss_desc->hash_fields;
2355 memcpy(hrxq->rss_key, rss_key, rss_key_len);
2356 ret = priv->obj_ops.hrxq_new(dev, hrxq, rss_desc->tunnel);
2357 if (ret < 0)
2358 goto error;
2359 return hrxq;
2360 error:
2361 if (!rss_desc->ind_tbl)
2362 mlx5_ind_table_obj_release(dev, ind_tbl, standalone);
2363 if (hrxq)
2364 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq_idx);
2365 return NULL;
2366 }
2367
2368 /**
2369 * Create an Rx Hash queue.
2370 *
2371 * @param list
2372 * Cache list pointer.
2373 * @param entry
2374 * Hash queue entry pointer.
2375 * @param cb_ctx
2376 * Context of the callback function.
2377 *
2378 * @return
2379 * queue entry on success, NULL otherwise.
2380 */
2381 struct mlx5_cache_entry *
mlx5_hrxq_create_cb(struct mlx5_cache_list * list,struct mlx5_cache_entry * entry __rte_unused,void * cb_ctx)2382 mlx5_hrxq_create_cb(struct mlx5_cache_list *list,
2383 struct mlx5_cache_entry *entry __rte_unused,
2384 void *cb_ctx)
2385 {
2386 struct rte_eth_dev *dev = list->ctx;
2387 struct mlx5_flow_cb_ctx *ctx = cb_ctx;
2388 struct mlx5_flow_rss_desc *rss_desc = ctx->data;
2389 struct mlx5_hrxq *hrxq;
2390
2391 hrxq = __mlx5_hrxq_create(dev, rss_desc);
2392 return hrxq ? &hrxq->entry : NULL;
2393 }
2394
2395 /**
2396 * Get an Rx Hash queue.
2397 *
2398 * @param dev
2399 * Pointer to Ethernet device.
2400 * @param rss_desc
2401 * RSS configuration for the Rx hash queue.
2402 *
2403 * @return
2404 * An hash Rx queue index on success.
2405 */
mlx5_hrxq_get(struct rte_eth_dev * dev,struct mlx5_flow_rss_desc * rss_desc)2406 uint32_t mlx5_hrxq_get(struct rte_eth_dev *dev,
2407 struct mlx5_flow_rss_desc *rss_desc)
2408 {
2409 struct mlx5_priv *priv = dev->data->dev_private;
2410 struct mlx5_hrxq *hrxq;
2411 struct mlx5_cache_entry *entry;
2412 struct mlx5_flow_cb_ctx ctx = {
2413 .data = rss_desc,
2414 };
2415
2416 if (rss_desc->shared_rss) {
2417 hrxq = __mlx5_hrxq_create(dev, rss_desc);
2418 } else {
2419 entry = mlx5_cache_register(&priv->hrxqs, &ctx);
2420 if (!entry)
2421 return 0;
2422 hrxq = container_of(entry, typeof(*hrxq), entry);
2423 }
2424 return hrxq->idx;
2425 }
2426
2427 /**
2428 * Release the hash Rx queue.
2429 *
2430 * @param dev
2431 * Pointer to Ethernet device.
2432 * @param hrxq_idx
2433 * Index to Hash Rx queue to release.
2434 *
2435 * @return
2436 * 1 while a reference on it exists, 0 when freed.
2437 */
mlx5_hrxq_release(struct rte_eth_dev * dev,uint32_t hrxq_idx)2438 int mlx5_hrxq_release(struct rte_eth_dev *dev, uint32_t hrxq_idx)
2439 {
2440 struct mlx5_priv *priv = dev->data->dev_private;
2441 struct mlx5_hrxq *hrxq;
2442
2443 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], hrxq_idx);
2444 if (!hrxq)
2445 return 0;
2446 if (!hrxq->standalone)
2447 return mlx5_cache_unregister(&priv->hrxqs, &hrxq->entry);
2448 __mlx5_hrxq_remove(dev, hrxq);
2449 return 0;
2450 }
2451
2452 /**
2453 * Create a drop Rx Hash queue.
2454 *
2455 * @param dev
2456 * Pointer to Ethernet device.
2457 *
2458 * @return
2459 * The Verbs/DevX object initialized, NULL otherwise and rte_errno is set.
2460 */
2461 struct mlx5_hrxq *
mlx5_drop_action_create(struct rte_eth_dev * dev)2462 mlx5_drop_action_create(struct rte_eth_dev *dev)
2463 {
2464 struct mlx5_priv *priv = dev->data->dev_private;
2465 struct mlx5_hrxq *hrxq = NULL;
2466 int ret;
2467
2468 if (priv->drop_queue.hrxq)
2469 return priv->drop_queue.hrxq;
2470 hrxq = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*hrxq), 0, SOCKET_ID_ANY);
2471 if (!hrxq) {
2472 DRV_LOG(WARNING,
2473 "Port %u cannot allocate memory for drop queue.",
2474 dev->data->port_id);
2475 rte_errno = ENOMEM;
2476 goto error;
2477 }
2478 priv->drop_queue.hrxq = hrxq;
2479 hrxq->ind_table = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*hrxq->ind_table),
2480 0, SOCKET_ID_ANY);
2481 if (!hrxq->ind_table) {
2482 rte_errno = ENOMEM;
2483 goto error;
2484 }
2485 ret = priv->obj_ops.drop_action_create(dev);
2486 if (ret < 0)
2487 goto error;
2488 return hrxq;
2489 error:
2490 if (hrxq) {
2491 if (hrxq->ind_table)
2492 mlx5_free(hrxq->ind_table);
2493 priv->drop_queue.hrxq = NULL;
2494 mlx5_free(hrxq);
2495 }
2496 return NULL;
2497 }
2498
2499 /**
2500 * Release a drop hash Rx queue.
2501 *
2502 * @param dev
2503 * Pointer to Ethernet device.
2504 */
2505 void
mlx5_drop_action_destroy(struct rte_eth_dev * dev)2506 mlx5_drop_action_destroy(struct rte_eth_dev *dev)
2507 {
2508 struct mlx5_priv *priv = dev->data->dev_private;
2509 struct mlx5_hrxq *hrxq = priv->drop_queue.hrxq;
2510
2511 if (!priv->drop_queue.hrxq)
2512 return;
2513 priv->obj_ops.drop_action_destroy(dev);
2514 mlx5_free(priv->drop_queue.rxq);
2515 mlx5_free(hrxq->ind_table);
2516 mlx5_free(hrxq);
2517 priv->drop_queue.rxq = NULL;
2518 priv->drop_queue.hrxq = NULL;
2519 }
2520
2521 /**
2522 * Verify the Rx Queue list is empty
2523 *
2524 * @param dev
2525 * Pointer to Ethernet device.
2526 *
2527 * @return
2528 * The number of object not released.
2529 */
2530 uint32_t
mlx5_hrxq_verify(struct rte_eth_dev * dev)2531 mlx5_hrxq_verify(struct rte_eth_dev *dev)
2532 {
2533 struct mlx5_priv *priv = dev->data->dev_private;
2534
2535 return mlx5_cache_list_get_entry_num(&priv->hrxqs);
2536 }
2537
2538 /**
2539 * Set the Rx queue timestamp conversion parameters
2540 *
2541 * @param[in] dev
2542 * Pointer to the Ethernet device structure.
2543 */
2544 void
mlx5_rxq_timestamp_set(struct rte_eth_dev * dev)2545 mlx5_rxq_timestamp_set(struct rte_eth_dev *dev)
2546 {
2547 struct mlx5_priv *priv = dev->data->dev_private;
2548 struct mlx5_dev_ctx_shared *sh = priv->sh;
2549 struct mlx5_rxq_data *data;
2550 unsigned int i;
2551
2552 for (i = 0; i != priv->rxqs_n; ++i) {
2553 if (!(*priv->rxqs)[i])
2554 continue;
2555 data = (*priv->rxqs)[i];
2556 data->sh = sh;
2557 data->rt_timestamp = priv->config.rt_timestamp;
2558 }
2559 }
2560