1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42
43 #define WITH_DF_BLOCK_ALLOCATOR
44
45 #define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47
48 /*
49 * Metaslab granularity, in bytes. This is roughly similar to what would be
50 * referred to as the "stripe size" in traditional RAID arrays. In normal
51 * operation, we will try to write this amount of data to a top-level vdev
52 * before moving on to the next one.
53 */
54 unsigned long metaslab_aliquot = 512 << 10;
55
56 /*
57 * For testing, make some blocks above a certain size be gang blocks.
58 */
59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60
61 /*
62 * In pools where the log space map feature is not enabled we touch
63 * multiple metaslabs (and their respective space maps) with each
64 * transaction group. Thus, we benefit from having a small space map
65 * block size since it allows us to issue more I/O operations scattered
66 * around the disk. So a sane default for the space map block size
67 * is 8~16K.
68 */
69 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
70
71 /*
72 * When the log space map feature is enabled, we accumulate a lot of
73 * changes per metaslab that are flushed once in a while so we benefit
74 * from a bigger block size like 128K for the metaslab space maps.
75 */
76 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
77
78 /*
79 * The in-core space map representation is more compact than its on-disk form.
80 * The zfs_condense_pct determines how much more compact the in-core
81 * space map representation must be before we compact it on-disk.
82 * Values should be greater than or equal to 100.
83 */
84 int zfs_condense_pct = 200;
85
86 /*
87 * Condensing a metaslab is not guaranteed to actually reduce the amount of
88 * space used on disk. In particular, a space map uses data in increments of
89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
90 * same number of blocks after condensing. Since the goal of condensing is to
91 * reduce the number of IOPs required to read the space map, we only want to
92 * condense when we can be sure we will reduce the number of blocks used by the
93 * space map. Unfortunately, we cannot precisely compute whether or not this is
94 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
95 * we apply the following heuristic: do not condense a spacemap unless the
96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
97 * blocks.
98 */
99 int zfs_metaslab_condense_block_threshold = 4;
100
101 /*
102 * The zfs_mg_noalloc_threshold defines which metaslab groups should
103 * be eligible for allocation. The value is defined as a percentage of
104 * free space. Metaslab groups that have more free space than
105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
106 * a metaslab group's free space is less than or equal to the
107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
110 * groups are allowed to accept allocations. Gang blocks are always
111 * eligible to allocate on any metaslab group. The default value of 0 means
112 * no metaslab group will be excluded based on this criterion.
113 */
114 int zfs_mg_noalloc_threshold = 0;
115
116 /*
117 * Metaslab groups are considered eligible for allocations if their
118 * fragmentation metric (measured as a percentage) is less than or
119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
120 * exceeds this threshold then it will be skipped unless all metaslab
121 * groups within the metaslab class have also crossed this threshold.
122 *
123 * This tunable was introduced to avoid edge cases where we continue
124 * allocating from very fragmented disks in our pool while other, less
125 * fragmented disks, exists. On the other hand, if all disks in the
126 * pool are uniformly approaching the threshold, the threshold can
127 * be a speed bump in performance, where we keep switching the disks
128 * that we allocate from (e.g. we allocate some segments from disk A
129 * making it bypassing the threshold while freeing segments from disk
130 * B getting its fragmentation below the threshold).
131 *
132 * Empirically, we've seen that our vdev selection for allocations is
133 * good enough that fragmentation increases uniformly across all vdevs
134 * the majority of the time. Thus we set the threshold percentage high
135 * enough to avoid hitting the speed bump on pools that are being pushed
136 * to the edge.
137 */
138 int zfs_mg_fragmentation_threshold = 95;
139
140 /*
141 * Allow metaslabs to keep their active state as long as their fragmentation
142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
143 * active metaslab that exceeds this threshold will no longer keep its active
144 * status allowing better metaslabs to be selected.
145 */
146 int zfs_metaslab_fragmentation_threshold = 70;
147
148 /*
149 * When set will load all metaslabs when pool is first opened.
150 */
151 int metaslab_debug_load = 0;
152
153 /*
154 * When set will prevent metaslabs from being unloaded.
155 */
156 int metaslab_debug_unload = 0;
157
158 /*
159 * Minimum size which forces the dynamic allocator to change
160 * it's allocation strategy. Once the space map cannot satisfy
161 * an allocation of this size then it switches to using more
162 * aggressive strategy (i.e search by size rather than offset).
163 */
164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
165
166 /*
167 * The minimum free space, in percent, which must be available
168 * in a space map to continue allocations in a first-fit fashion.
169 * Once the space map's free space drops below this level we dynamically
170 * switch to using best-fit allocations.
171 */
172 int metaslab_df_free_pct = 4;
173
174 /*
175 * Maximum distance to search forward from the last offset. Without this
176 * limit, fragmented pools can see >100,000 iterations and
177 * metaslab_block_picker() becomes the performance limiting factor on
178 * high-performance storage.
179 *
180 * With the default setting of 16MB, we typically see less than 500
181 * iterations, even with very fragmented, ashift=9 pools. The maximum number
182 * of iterations possible is:
183 * metaslab_df_max_search / (2 * (1<<ashift))
184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
185 * 2048 (with ashift=12).
186 */
187 int metaslab_df_max_search = 16 * 1024 * 1024;
188
189 /*
190 * Forces the metaslab_block_picker function to search for at least this many
191 * segments forwards until giving up on finding a segment that the allocation
192 * will fit into.
193 */
194 uint32_t metaslab_min_search_count = 100;
195
196 /*
197 * If we are not searching forward (due to metaslab_df_max_search,
198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
199 * controls what segment is used. If it is set, we will use the largest free
200 * segment. If it is not set, we will use a segment of exactly the requested
201 * size (or larger).
202 */
203 int metaslab_df_use_largest_segment = B_FALSE;
204
205 /*
206 * Percentage of all cpus that can be used by the metaslab taskq.
207 */
208 int metaslab_load_pct = 50;
209
210 /*
211 * These tunables control how long a metaslab will remain loaded after the
212 * last allocation from it. A metaslab can't be unloaded until at least
213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
215 * unloaded sooner. These settings are intended to be generous -- to keep
216 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217 */
218 int metaslab_unload_delay = 32;
219 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220
221 /*
222 * Max number of metaslabs per group to preload.
223 */
224 int metaslab_preload_limit = 10;
225
226 /*
227 * Enable/disable preloading of metaslab.
228 */
229 int metaslab_preload_enabled = B_TRUE;
230
231 /*
232 * Enable/disable fragmentation weighting on metaslabs.
233 */
234 int metaslab_fragmentation_factor_enabled = B_TRUE;
235
236 /*
237 * Enable/disable lba weighting (i.e. outer tracks are given preference).
238 */
239 int metaslab_lba_weighting_enabled = B_TRUE;
240
241 /*
242 * Enable/disable metaslab group biasing.
243 */
244 int metaslab_bias_enabled = B_TRUE;
245
246 /*
247 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
248 */
249 boolean_t zfs_remap_blkptr_enable = B_TRUE;
250
251 /*
252 * Enable/disable segment-based metaslab selection.
253 */
254 int zfs_metaslab_segment_weight_enabled = B_TRUE;
255
256 /*
257 * When using segment-based metaslab selection, we will continue
258 * allocating from the active metaslab until we have exhausted
259 * zfs_metaslab_switch_threshold of its buckets.
260 */
261 int zfs_metaslab_switch_threshold = 2;
262
263 /*
264 * Internal switch to enable/disable the metaslab allocation tracing
265 * facility.
266 */
267 boolean_t metaslab_trace_enabled = B_FALSE;
268
269 /*
270 * Maximum entries that the metaslab allocation tracing facility will keep
271 * in a given list when running in non-debug mode. We limit the number
272 * of entries in non-debug mode to prevent us from using up too much memory.
273 * The limit should be sufficiently large that we don't expect any allocation
274 * to every exceed this value. In debug mode, the system will panic if this
275 * limit is ever reached allowing for further investigation.
276 */
277 uint64_t metaslab_trace_max_entries = 5000;
278
279 /*
280 * Maximum number of metaslabs per group that can be disabled
281 * simultaneously.
282 */
283 int max_disabled_ms = 3;
284
285 /*
286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287 * To avoid 64-bit overflow, don't set above UINT32_MAX.
288 */
289 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */
290
291 /*
292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293 * a metaslab would take it over this percentage, the oldest selected metaslab
294 * is automatically unloaded.
295 */
296 int zfs_metaslab_mem_limit = 75;
297
298 /*
299 * Force the per-metaslab range trees to use 64-bit integers to store
300 * segments. Used for debugging purposes.
301 */
302 boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303
304 /*
305 * By default we only store segments over a certain size in the size-sorted
306 * metaslab trees (ms_allocatable_by_size and
307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308 * improves load and unload times at the cost of causing us to use slightly
309 * larger segments than we would otherwise in some cases.
310 */
311 uint32_t metaslab_by_size_min_shift = 14;
312
313 /*
314 * If not set, we will first try normal allocation. If that fails then
315 * we will do a gang allocation. If that fails then we will do a "try hard"
316 * gang allocation. If that fails then we will have a multi-layer gang
317 * block.
318 *
319 * If set, we will first try normal allocation. If that fails then
320 * we will do a "try hard" allocation. If that fails we will do a gang
321 * allocation. If that fails we will do a "try hard" gang allocation. If
322 * that fails then we will have a multi-layer gang block.
323 */
324 int zfs_metaslab_try_hard_before_gang = B_FALSE;
325
326 /*
327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328 * metaslabs. This improves performance, especially when there are many
329 * metaslabs per vdev and the allocation can't actually be satisfied (so we
330 * would otherwise iterate all the metaslabs). If there is a metaslab with a
331 * worse weight but it can actually satisfy the allocation, we won't find it
332 * until trying hard. This may happen if the worse metaslab is not loaded
333 * (and the true weight is better than we have calculated), or due to weight
334 * bucketization. E.g. we are looking for a 60K segment, and the best
335 * metaslabs all have free segments in the 32-63K bucket, but the best
336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338 * bucket, and therefore a lower weight).
339 */
340 int zfs_metaslab_find_max_tries = 100;
341
342 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
346
347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350 static unsigned int metaslab_idx_func(multilist_t *, void *);
351 static void metaslab_evict(metaslab_t *, uint64_t);
352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353 kmem_cache_t *metaslab_alloc_trace_cache;
354
355 typedef struct metaslab_stats {
356 kstat_named_t metaslabstat_trace_over_limit;
357 kstat_named_t metaslabstat_reload_tree;
358 kstat_named_t metaslabstat_too_many_tries;
359 kstat_named_t metaslabstat_try_hard;
360 } metaslab_stats_t;
361
362 static metaslab_stats_t metaslab_stats = {
363 { "trace_over_limit", KSTAT_DATA_UINT64 },
364 { "reload_tree", KSTAT_DATA_UINT64 },
365 { "too_many_tries", KSTAT_DATA_UINT64 },
366 { "try_hard", KSTAT_DATA_UINT64 },
367 };
368
369 #define METASLABSTAT_BUMP(stat) \
370 atomic_inc_64(&metaslab_stats.stat.value.ui64);
371
372
373 kstat_t *metaslab_ksp;
374
375 void
metaslab_stat_init(void)376 metaslab_stat_init(void)
377 {
378 ASSERT(metaslab_alloc_trace_cache == NULL);
379 metaslab_alloc_trace_cache = kmem_cache_create(
380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381 0, NULL, NULL, NULL, NULL, NULL, 0);
382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385 if (metaslab_ksp != NULL) {
386 metaslab_ksp->ks_data = &metaslab_stats;
387 kstat_install(metaslab_ksp);
388 }
389 }
390
391 void
metaslab_stat_fini(void)392 metaslab_stat_fini(void)
393 {
394 if (metaslab_ksp != NULL) {
395 kstat_delete(metaslab_ksp);
396 metaslab_ksp = NULL;
397 }
398
399 kmem_cache_destroy(metaslab_alloc_trace_cache);
400 metaslab_alloc_trace_cache = NULL;
401 }
402
403 /*
404 * ==========================================================================
405 * Metaslab classes
406 * ==========================================================================
407 */
408 metaslab_class_t *
metaslab_class_create(spa_t * spa,metaslab_ops_t * ops)409 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
410 {
411 metaslab_class_t *mc;
412
413 mc = kmem_zalloc(offsetof(metaslab_class_t,
414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
415
416 mc->mc_spa = spa;
417 mc->mc_ops = ops;
418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
419 mc->mc_metaslab_txg_list = multilist_create(sizeof (metaslab_t),
420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
421 for (int i = 0; i < spa->spa_alloc_count; i++) {
422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
423 mca->mca_rotor = NULL;
424 zfs_refcount_create_tracked(&mca->mca_alloc_slots);
425 }
426
427 return (mc);
428 }
429
430 void
metaslab_class_destroy(metaslab_class_t * mc)431 metaslab_class_destroy(metaslab_class_t *mc)
432 {
433 spa_t *spa = mc->mc_spa;
434
435 ASSERT(mc->mc_alloc == 0);
436 ASSERT(mc->mc_deferred == 0);
437 ASSERT(mc->mc_space == 0);
438 ASSERT(mc->mc_dspace == 0);
439
440 for (int i = 0; i < spa->spa_alloc_count; i++) {
441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
442 ASSERT(mca->mca_rotor == NULL);
443 zfs_refcount_destroy(&mca->mca_alloc_slots);
444 }
445 mutex_destroy(&mc->mc_lock);
446 multilist_destroy(mc->mc_metaslab_txg_list);
447 kmem_free(mc, offsetof(metaslab_class_t,
448 mc_allocator[spa->spa_alloc_count]));
449 }
450
451 int
metaslab_class_validate(metaslab_class_t * mc)452 metaslab_class_validate(metaslab_class_t *mc)
453 {
454 metaslab_group_t *mg;
455 vdev_t *vd;
456
457 /*
458 * Must hold one of the spa_config locks.
459 */
460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
462
463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464 return (0);
465
466 do {
467 vd = mg->mg_vd;
468 ASSERT(vd->vdev_mg != NULL);
469 ASSERT3P(vd->vdev_top, ==, vd);
470 ASSERT3P(mg->mg_class, ==, mc);
471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
473
474 return (0);
475 }
476
477 static void
metaslab_class_space_update(metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta,int64_t dspace_delta)478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
480 {
481 atomic_add_64(&mc->mc_alloc, alloc_delta);
482 atomic_add_64(&mc->mc_deferred, defer_delta);
483 atomic_add_64(&mc->mc_space, space_delta);
484 atomic_add_64(&mc->mc_dspace, dspace_delta);
485 }
486
487 uint64_t
metaslab_class_get_alloc(metaslab_class_t * mc)488 metaslab_class_get_alloc(metaslab_class_t *mc)
489 {
490 return (mc->mc_alloc);
491 }
492
493 uint64_t
metaslab_class_get_deferred(metaslab_class_t * mc)494 metaslab_class_get_deferred(metaslab_class_t *mc)
495 {
496 return (mc->mc_deferred);
497 }
498
499 uint64_t
metaslab_class_get_space(metaslab_class_t * mc)500 metaslab_class_get_space(metaslab_class_t *mc)
501 {
502 return (mc->mc_space);
503 }
504
505 uint64_t
metaslab_class_get_dspace(metaslab_class_t * mc)506 metaslab_class_get_dspace(metaslab_class_t *mc)
507 {
508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509 }
510
511 void
metaslab_class_histogram_verify(metaslab_class_t * mc)512 metaslab_class_histogram_verify(metaslab_class_t *mc)
513 {
514 spa_t *spa = mc->mc_spa;
515 vdev_t *rvd = spa->spa_root_vdev;
516 uint64_t *mc_hist;
517 int i;
518
519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520 return;
521
522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523 KM_SLEEP);
524
525 for (int c = 0; c < rvd->vdev_children; c++) {
526 vdev_t *tvd = rvd->vdev_child[c];
527 metaslab_group_t *mg = tvd->vdev_mg;
528
529 /*
530 * Skip any holes, uninitialized top-levels, or
531 * vdevs that are not in this metalab class.
532 */
533 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
534 mg->mg_class != mc) {
535 continue;
536 }
537
538 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
539 mc_hist[i] += mg->mg_histogram[i];
540 }
541
542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
544
545 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
546 }
547
548 /*
549 * Calculate the metaslab class's fragmentation metric. The metric
550 * is weighted based on the space contribution of each metaslab group.
551 * The return value will be a number between 0 and 100 (inclusive), or
552 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
553 * zfs_frag_table for more information about the metric.
554 */
555 uint64_t
metaslab_class_fragmentation(metaslab_class_t * mc)556 metaslab_class_fragmentation(metaslab_class_t *mc)
557 {
558 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
559 uint64_t fragmentation = 0;
560
561 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
562
563 for (int c = 0; c < rvd->vdev_children; c++) {
564 vdev_t *tvd = rvd->vdev_child[c];
565 metaslab_group_t *mg = tvd->vdev_mg;
566
567 /*
568 * Skip any holes, uninitialized top-levels,
569 * or vdevs that are not in this metalab class.
570 */
571 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
572 mg->mg_class != mc) {
573 continue;
574 }
575
576 /*
577 * If a metaslab group does not contain a fragmentation
578 * metric then just bail out.
579 */
580 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
581 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
582 return (ZFS_FRAG_INVALID);
583 }
584
585 /*
586 * Determine how much this metaslab_group is contributing
587 * to the overall pool fragmentation metric.
588 */
589 fragmentation += mg->mg_fragmentation *
590 metaslab_group_get_space(mg);
591 }
592 fragmentation /= metaslab_class_get_space(mc);
593
594 ASSERT3U(fragmentation, <=, 100);
595 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
596 return (fragmentation);
597 }
598
599 /*
600 * Calculate the amount of expandable space that is available in
601 * this metaslab class. If a device is expanded then its expandable
602 * space will be the amount of allocatable space that is currently not
603 * part of this metaslab class.
604 */
605 uint64_t
metaslab_class_expandable_space(metaslab_class_t * mc)606 metaslab_class_expandable_space(metaslab_class_t *mc)
607 {
608 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
609 uint64_t space = 0;
610
611 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
612 for (int c = 0; c < rvd->vdev_children; c++) {
613 vdev_t *tvd = rvd->vdev_child[c];
614 metaslab_group_t *mg = tvd->vdev_mg;
615
616 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
617 mg->mg_class != mc) {
618 continue;
619 }
620
621 /*
622 * Calculate if we have enough space to add additional
623 * metaslabs. We report the expandable space in terms
624 * of the metaslab size since that's the unit of expansion.
625 */
626 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
627 1ULL << tvd->vdev_ms_shift);
628 }
629 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
630 return (space);
631 }
632
633 void
metaslab_class_evict_old(metaslab_class_t * mc,uint64_t txg)634 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
635 {
636 multilist_t *ml = mc->mc_metaslab_txg_list;
637 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
638 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
639 metaslab_t *msp = multilist_sublist_head(mls);
640 multilist_sublist_unlock(mls);
641 while (msp != NULL) {
642 mutex_enter(&msp->ms_lock);
643
644 /*
645 * If the metaslab has been removed from the list
646 * (which could happen if we were at the memory limit
647 * and it was evicted during this loop), then we can't
648 * proceed and we should restart the sublist.
649 */
650 if (!multilist_link_active(&msp->ms_class_txg_node)) {
651 mutex_exit(&msp->ms_lock);
652 i--;
653 break;
654 }
655 mls = multilist_sublist_lock(ml, i);
656 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
657 multilist_sublist_unlock(mls);
658 if (txg >
659 msp->ms_selected_txg + metaslab_unload_delay &&
660 gethrtime() > msp->ms_selected_time +
661 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
662 metaslab_evict(msp, txg);
663 } else {
664 /*
665 * Once we've hit a metaslab selected too
666 * recently to evict, we're done evicting for
667 * now.
668 */
669 mutex_exit(&msp->ms_lock);
670 break;
671 }
672 mutex_exit(&msp->ms_lock);
673 msp = next_msp;
674 }
675 }
676 }
677
678 static int
metaslab_compare(const void * x1,const void * x2)679 metaslab_compare(const void *x1, const void *x2)
680 {
681 const metaslab_t *m1 = (const metaslab_t *)x1;
682 const metaslab_t *m2 = (const metaslab_t *)x2;
683
684 int sort1 = 0;
685 int sort2 = 0;
686 if (m1->ms_allocator != -1 && m1->ms_primary)
687 sort1 = 1;
688 else if (m1->ms_allocator != -1 && !m1->ms_primary)
689 sort1 = 2;
690 if (m2->ms_allocator != -1 && m2->ms_primary)
691 sort2 = 1;
692 else if (m2->ms_allocator != -1 && !m2->ms_primary)
693 sort2 = 2;
694
695 /*
696 * Sort inactive metaslabs first, then primaries, then secondaries. When
697 * selecting a metaslab to allocate from, an allocator first tries its
698 * primary, then secondary active metaslab. If it doesn't have active
699 * metaslabs, or can't allocate from them, it searches for an inactive
700 * metaslab to activate. If it can't find a suitable one, it will steal
701 * a primary or secondary metaslab from another allocator.
702 */
703 if (sort1 < sort2)
704 return (-1);
705 if (sort1 > sort2)
706 return (1);
707
708 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
709 if (likely(cmp))
710 return (cmp);
711
712 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
713
714 return (TREE_CMP(m1->ms_start, m2->ms_start));
715 }
716
717 /*
718 * ==========================================================================
719 * Metaslab groups
720 * ==========================================================================
721 */
722 /*
723 * Update the allocatable flag and the metaslab group's capacity.
724 * The allocatable flag is set to true if the capacity is below
725 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
726 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
727 * transitions from allocatable to non-allocatable or vice versa then the
728 * metaslab group's class is updated to reflect the transition.
729 */
730 static void
metaslab_group_alloc_update(metaslab_group_t * mg)731 metaslab_group_alloc_update(metaslab_group_t *mg)
732 {
733 vdev_t *vd = mg->mg_vd;
734 metaslab_class_t *mc = mg->mg_class;
735 vdev_stat_t *vs = &vd->vdev_stat;
736 boolean_t was_allocatable;
737 boolean_t was_initialized;
738
739 ASSERT(vd == vd->vdev_top);
740 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
741 SCL_ALLOC);
742
743 mutex_enter(&mg->mg_lock);
744 was_allocatable = mg->mg_allocatable;
745 was_initialized = mg->mg_initialized;
746
747 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
748 (vs->vs_space + 1);
749
750 mutex_enter(&mc->mc_lock);
751
752 /*
753 * If the metaslab group was just added then it won't
754 * have any space until we finish syncing out this txg.
755 * At that point we will consider it initialized and available
756 * for allocations. We also don't consider non-activated
757 * metaslab groups (e.g. vdevs that are in the middle of being removed)
758 * to be initialized, because they can't be used for allocation.
759 */
760 mg->mg_initialized = metaslab_group_initialized(mg);
761 if (!was_initialized && mg->mg_initialized) {
762 mc->mc_groups++;
763 } else if (was_initialized && !mg->mg_initialized) {
764 ASSERT3U(mc->mc_groups, >, 0);
765 mc->mc_groups--;
766 }
767 if (mg->mg_initialized)
768 mg->mg_no_free_space = B_FALSE;
769
770 /*
771 * A metaslab group is considered allocatable if it has plenty
772 * of free space or is not heavily fragmented. We only take
773 * fragmentation into account if the metaslab group has a valid
774 * fragmentation metric (i.e. a value between 0 and 100).
775 */
776 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
777 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
778 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
779 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
780
781 /*
782 * The mc_alloc_groups maintains a count of the number of
783 * groups in this metaslab class that are still above the
784 * zfs_mg_noalloc_threshold. This is used by the allocating
785 * threads to determine if they should avoid allocations to
786 * a given group. The allocator will avoid allocations to a group
787 * if that group has reached or is below the zfs_mg_noalloc_threshold
788 * and there are still other groups that are above the threshold.
789 * When a group transitions from allocatable to non-allocatable or
790 * vice versa we update the metaslab class to reflect that change.
791 * When the mc_alloc_groups value drops to 0 that means that all
792 * groups have reached the zfs_mg_noalloc_threshold making all groups
793 * eligible for allocations. This effectively means that all devices
794 * are balanced again.
795 */
796 if (was_allocatable && !mg->mg_allocatable)
797 mc->mc_alloc_groups--;
798 else if (!was_allocatable && mg->mg_allocatable)
799 mc->mc_alloc_groups++;
800 mutex_exit(&mc->mc_lock);
801
802 mutex_exit(&mg->mg_lock);
803 }
804
805 int
metaslab_sort_by_flushed(const void * va,const void * vb)806 metaslab_sort_by_flushed(const void *va, const void *vb)
807 {
808 const metaslab_t *a = va;
809 const metaslab_t *b = vb;
810
811 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
812 if (likely(cmp))
813 return (cmp);
814
815 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
816 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
817 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
818 if (cmp)
819 return (cmp);
820
821 return (TREE_CMP(a->ms_id, b->ms_id));
822 }
823
824 metaslab_group_t *
metaslab_group_create(metaslab_class_t * mc,vdev_t * vd,int allocators)825 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
826 {
827 metaslab_group_t *mg;
828
829 mg = kmem_zalloc(offsetof(metaslab_group_t,
830 mg_allocator[allocators]), KM_SLEEP);
831 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
832 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
833 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
834 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
835 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
836 mg->mg_vd = vd;
837 mg->mg_class = mc;
838 mg->mg_activation_count = 0;
839 mg->mg_initialized = B_FALSE;
840 mg->mg_no_free_space = B_TRUE;
841 mg->mg_allocators = allocators;
842
843 for (int i = 0; i < allocators; i++) {
844 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
845 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
846 }
847
848 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
849 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
850
851 return (mg);
852 }
853
854 void
metaslab_group_destroy(metaslab_group_t * mg)855 metaslab_group_destroy(metaslab_group_t *mg)
856 {
857 ASSERT(mg->mg_prev == NULL);
858 ASSERT(mg->mg_next == NULL);
859 /*
860 * We may have gone below zero with the activation count
861 * either because we never activated in the first place or
862 * because we're done, and possibly removing the vdev.
863 */
864 ASSERT(mg->mg_activation_count <= 0);
865
866 taskq_destroy(mg->mg_taskq);
867 avl_destroy(&mg->mg_metaslab_tree);
868 mutex_destroy(&mg->mg_lock);
869 mutex_destroy(&mg->mg_ms_disabled_lock);
870 cv_destroy(&mg->mg_ms_disabled_cv);
871
872 for (int i = 0; i < mg->mg_allocators; i++) {
873 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
874 zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
875 }
876 kmem_free(mg, offsetof(metaslab_group_t,
877 mg_allocator[mg->mg_allocators]));
878 }
879
880 void
metaslab_group_activate(metaslab_group_t * mg)881 metaslab_group_activate(metaslab_group_t *mg)
882 {
883 metaslab_class_t *mc = mg->mg_class;
884 spa_t *spa = mc->mc_spa;
885 metaslab_group_t *mgprev, *mgnext;
886
887 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
888
889 ASSERT(mg->mg_prev == NULL);
890 ASSERT(mg->mg_next == NULL);
891 ASSERT(mg->mg_activation_count <= 0);
892
893 if (++mg->mg_activation_count <= 0)
894 return;
895
896 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
897 metaslab_group_alloc_update(mg);
898
899 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
900 mg->mg_prev = mg;
901 mg->mg_next = mg;
902 } else {
903 mgnext = mgprev->mg_next;
904 mg->mg_prev = mgprev;
905 mg->mg_next = mgnext;
906 mgprev->mg_next = mg;
907 mgnext->mg_prev = mg;
908 }
909 for (int i = 0; i < spa->spa_alloc_count; i++) {
910 mc->mc_allocator[i].mca_rotor = mg;
911 mg = mg->mg_next;
912 }
913 }
914
915 /*
916 * Passivate a metaslab group and remove it from the allocation rotor.
917 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
918 * a metaslab group. This function will momentarily drop spa_config_locks
919 * that are lower than the SCL_ALLOC lock (see comment below).
920 */
921 void
metaslab_group_passivate(metaslab_group_t * mg)922 metaslab_group_passivate(metaslab_group_t *mg)
923 {
924 metaslab_class_t *mc = mg->mg_class;
925 spa_t *spa = mc->mc_spa;
926 metaslab_group_t *mgprev, *mgnext;
927 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
928
929 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
930 (SCL_ALLOC | SCL_ZIO));
931
932 if (--mg->mg_activation_count != 0) {
933 for (int i = 0; i < spa->spa_alloc_count; i++)
934 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
935 ASSERT(mg->mg_prev == NULL);
936 ASSERT(mg->mg_next == NULL);
937 ASSERT(mg->mg_activation_count < 0);
938 return;
939 }
940
941 /*
942 * The spa_config_lock is an array of rwlocks, ordered as
943 * follows (from highest to lowest):
944 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
945 * SCL_ZIO > SCL_FREE > SCL_VDEV
946 * (For more information about the spa_config_lock see spa_misc.c)
947 * The higher the lock, the broader its coverage. When we passivate
948 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
949 * config locks. However, the metaslab group's taskq might be trying
950 * to preload metaslabs so we must drop the SCL_ZIO lock and any
951 * lower locks to allow the I/O to complete. At a minimum,
952 * we continue to hold the SCL_ALLOC lock, which prevents any future
953 * allocations from taking place and any changes to the vdev tree.
954 */
955 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
956 taskq_wait_outstanding(mg->mg_taskq, 0);
957 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
958 metaslab_group_alloc_update(mg);
959 for (int i = 0; i < mg->mg_allocators; i++) {
960 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
961 metaslab_t *msp = mga->mga_primary;
962 if (msp != NULL) {
963 mutex_enter(&msp->ms_lock);
964 metaslab_passivate(msp,
965 metaslab_weight_from_range_tree(msp));
966 mutex_exit(&msp->ms_lock);
967 }
968 msp = mga->mga_secondary;
969 if (msp != NULL) {
970 mutex_enter(&msp->ms_lock);
971 metaslab_passivate(msp,
972 metaslab_weight_from_range_tree(msp));
973 mutex_exit(&msp->ms_lock);
974 }
975 }
976
977 mgprev = mg->mg_prev;
978 mgnext = mg->mg_next;
979
980 if (mg == mgnext) {
981 mgnext = NULL;
982 } else {
983 mgprev->mg_next = mgnext;
984 mgnext->mg_prev = mgprev;
985 }
986 for (int i = 0; i < spa->spa_alloc_count; i++) {
987 if (mc->mc_allocator[i].mca_rotor == mg)
988 mc->mc_allocator[i].mca_rotor = mgnext;
989 }
990
991 mg->mg_prev = NULL;
992 mg->mg_next = NULL;
993 }
994
995 boolean_t
metaslab_group_initialized(metaslab_group_t * mg)996 metaslab_group_initialized(metaslab_group_t *mg)
997 {
998 vdev_t *vd = mg->mg_vd;
999 vdev_stat_t *vs = &vd->vdev_stat;
1000
1001 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1002 }
1003
1004 uint64_t
metaslab_group_get_space(metaslab_group_t * mg)1005 metaslab_group_get_space(metaslab_group_t *mg)
1006 {
1007 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
1008 }
1009
1010 void
metaslab_group_histogram_verify(metaslab_group_t * mg)1011 metaslab_group_histogram_verify(metaslab_group_t *mg)
1012 {
1013 uint64_t *mg_hist;
1014 vdev_t *vd = mg->mg_vd;
1015 uint64_t ashift = vd->vdev_ashift;
1016 int i;
1017
1018 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1019 return;
1020
1021 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1022 KM_SLEEP);
1023
1024 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1025 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1026
1027 for (int m = 0; m < vd->vdev_ms_count; m++) {
1028 metaslab_t *msp = vd->vdev_ms[m];
1029
1030 /* skip if not active or not a member */
1031 if (msp->ms_sm == NULL || msp->ms_group != mg)
1032 continue;
1033
1034 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
1035 mg_hist[i + ashift] +=
1036 msp->ms_sm->sm_phys->smp_histogram[i];
1037 }
1038
1039 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1040 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1041
1042 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1043 }
1044
1045 static void
metaslab_group_histogram_add(metaslab_group_t * mg,metaslab_t * msp)1046 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1047 {
1048 metaslab_class_t *mc = mg->mg_class;
1049 uint64_t ashift = mg->mg_vd->vdev_ashift;
1050
1051 ASSERT(MUTEX_HELD(&msp->ms_lock));
1052 if (msp->ms_sm == NULL)
1053 return;
1054
1055 mutex_enter(&mg->mg_lock);
1056 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1057 mg->mg_histogram[i + ashift] +=
1058 msp->ms_sm->sm_phys->smp_histogram[i];
1059 mc->mc_histogram[i + ashift] +=
1060 msp->ms_sm->sm_phys->smp_histogram[i];
1061 }
1062 mutex_exit(&mg->mg_lock);
1063 }
1064
1065 void
metaslab_group_histogram_remove(metaslab_group_t * mg,metaslab_t * msp)1066 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1067 {
1068 metaslab_class_t *mc = mg->mg_class;
1069 uint64_t ashift = mg->mg_vd->vdev_ashift;
1070
1071 ASSERT(MUTEX_HELD(&msp->ms_lock));
1072 if (msp->ms_sm == NULL)
1073 return;
1074
1075 mutex_enter(&mg->mg_lock);
1076 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1077 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1078 msp->ms_sm->sm_phys->smp_histogram[i]);
1079 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1080 msp->ms_sm->sm_phys->smp_histogram[i]);
1081
1082 mg->mg_histogram[i + ashift] -=
1083 msp->ms_sm->sm_phys->smp_histogram[i];
1084 mc->mc_histogram[i + ashift] -=
1085 msp->ms_sm->sm_phys->smp_histogram[i];
1086 }
1087 mutex_exit(&mg->mg_lock);
1088 }
1089
1090 static void
metaslab_group_add(metaslab_group_t * mg,metaslab_t * msp)1091 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1092 {
1093 ASSERT(msp->ms_group == NULL);
1094 mutex_enter(&mg->mg_lock);
1095 msp->ms_group = mg;
1096 msp->ms_weight = 0;
1097 avl_add(&mg->mg_metaslab_tree, msp);
1098 mutex_exit(&mg->mg_lock);
1099
1100 mutex_enter(&msp->ms_lock);
1101 metaslab_group_histogram_add(mg, msp);
1102 mutex_exit(&msp->ms_lock);
1103 }
1104
1105 static void
metaslab_group_remove(metaslab_group_t * mg,metaslab_t * msp)1106 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1107 {
1108 mutex_enter(&msp->ms_lock);
1109 metaslab_group_histogram_remove(mg, msp);
1110 mutex_exit(&msp->ms_lock);
1111
1112 mutex_enter(&mg->mg_lock);
1113 ASSERT(msp->ms_group == mg);
1114 avl_remove(&mg->mg_metaslab_tree, msp);
1115
1116 metaslab_class_t *mc = msp->ms_group->mg_class;
1117 multilist_sublist_t *mls =
1118 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
1119 if (multilist_link_active(&msp->ms_class_txg_node))
1120 multilist_sublist_remove(mls, msp);
1121 multilist_sublist_unlock(mls);
1122
1123 msp->ms_group = NULL;
1124 mutex_exit(&mg->mg_lock);
1125 }
1126
1127 static void
metaslab_group_sort_impl(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1128 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1129 {
1130 ASSERT(MUTEX_HELD(&msp->ms_lock));
1131 ASSERT(MUTEX_HELD(&mg->mg_lock));
1132 ASSERT(msp->ms_group == mg);
1133
1134 avl_remove(&mg->mg_metaslab_tree, msp);
1135 msp->ms_weight = weight;
1136 avl_add(&mg->mg_metaslab_tree, msp);
1137
1138 }
1139
1140 static void
metaslab_group_sort(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)1141 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1142 {
1143 /*
1144 * Although in principle the weight can be any value, in
1145 * practice we do not use values in the range [1, 511].
1146 */
1147 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1148 ASSERT(MUTEX_HELD(&msp->ms_lock));
1149
1150 mutex_enter(&mg->mg_lock);
1151 metaslab_group_sort_impl(mg, msp, weight);
1152 mutex_exit(&mg->mg_lock);
1153 }
1154
1155 /*
1156 * Calculate the fragmentation for a given metaslab group. We can use
1157 * a simple average here since all metaslabs within the group must have
1158 * the same size. The return value will be a value between 0 and 100
1159 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1160 * group have a fragmentation metric.
1161 */
1162 uint64_t
metaslab_group_fragmentation(metaslab_group_t * mg)1163 metaslab_group_fragmentation(metaslab_group_t *mg)
1164 {
1165 vdev_t *vd = mg->mg_vd;
1166 uint64_t fragmentation = 0;
1167 uint64_t valid_ms = 0;
1168
1169 for (int m = 0; m < vd->vdev_ms_count; m++) {
1170 metaslab_t *msp = vd->vdev_ms[m];
1171
1172 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1173 continue;
1174 if (msp->ms_group != mg)
1175 continue;
1176
1177 valid_ms++;
1178 fragmentation += msp->ms_fragmentation;
1179 }
1180
1181 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1182 return (ZFS_FRAG_INVALID);
1183
1184 fragmentation /= valid_ms;
1185 ASSERT3U(fragmentation, <=, 100);
1186 return (fragmentation);
1187 }
1188
1189 /*
1190 * Determine if a given metaslab group should skip allocations. A metaslab
1191 * group should avoid allocations if its free capacity is less than the
1192 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1193 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1194 * that can still handle allocations. If the allocation throttle is enabled
1195 * then we skip allocations to devices that have reached their maximum
1196 * allocation queue depth unless the selected metaslab group is the only
1197 * eligible group remaining.
1198 */
1199 static boolean_t
metaslab_group_allocatable(metaslab_group_t * mg,metaslab_group_t * rotor,uint64_t psize,int allocator,int d)1200 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1201 uint64_t psize, int allocator, int d)
1202 {
1203 spa_t *spa = mg->mg_vd->vdev_spa;
1204 metaslab_class_t *mc = mg->mg_class;
1205
1206 /*
1207 * We can only consider skipping this metaslab group if it's
1208 * in the normal metaslab class and there are other metaslab
1209 * groups to select from. Otherwise, we always consider it eligible
1210 * for allocations.
1211 */
1212 if ((mc != spa_normal_class(spa) &&
1213 mc != spa_special_class(spa) &&
1214 mc != spa_dedup_class(spa)) ||
1215 mc->mc_groups <= 1)
1216 return (B_TRUE);
1217
1218 /*
1219 * If the metaslab group's mg_allocatable flag is set (see comments
1220 * in metaslab_group_alloc_update() for more information) and
1221 * the allocation throttle is disabled then allow allocations to this
1222 * device. However, if the allocation throttle is enabled then
1223 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1224 * to determine if we should allow allocations to this metaslab group.
1225 * If all metaslab groups are no longer considered allocatable
1226 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1227 * gang block size then we allow allocations on this metaslab group
1228 * regardless of the mg_allocatable or throttle settings.
1229 */
1230 if (mg->mg_allocatable) {
1231 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1232 int64_t qdepth;
1233 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1234
1235 if (!mc->mc_alloc_throttle_enabled)
1236 return (B_TRUE);
1237
1238 /*
1239 * If this metaslab group does not have any free space, then
1240 * there is no point in looking further.
1241 */
1242 if (mg->mg_no_free_space)
1243 return (B_FALSE);
1244
1245 /*
1246 * Relax allocation throttling for ditto blocks. Due to
1247 * random imbalances in allocation it tends to push copies
1248 * to one vdev, that looks a bit better at the moment.
1249 */
1250 qmax = qmax * (4 + d) / 4;
1251
1252 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1253
1254 /*
1255 * If this metaslab group is below its qmax or it's
1256 * the only allocatable metasable group, then attempt
1257 * to allocate from it.
1258 */
1259 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1260 return (B_TRUE);
1261 ASSERT3U(mc->mc_alloc_groups, >, 1);
1262
1263 /*
1264 * Since this metaslab group is at or over its qmax, we
1265 * need to determine if there are metaslab groups after this
1266 * one that might be able to handle this allocation. This is
1267 * racy since we can't hold the locks for all metaslab
1268 * groups at the same time when we make this check.
1269 */
1270 for (metaslab_group_t *mgp = mg->mg_next;
1271 mgp != rotor; mgp = mgp->mg_next) {
1272 metaslab_group_allocator_t *mgap =
1273 &mgp->mg_allocator[allocator];
1274 qmax = mgap->mga_cur_max_alloc_queue_depth;
1275 qmax = qmax * (4 + d) / 4;
1276 qdepth =
1277 zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1278
1279 /*
1280 * If there is another metaslab group that
1281 * might be able to handle the allocation, then
1282 * we return false so that we skip this group.
1283 */
1284 if (qdepth < qmax && !mgp->mg_no_free_space)
1285 return (B_FALSE);
1286 }
1287
1288 /*
1289 * We didn't find another group to handle the allocation
1290 * so we can't skip this metaslab group even though
1291 * we are at or over our qmax.
1292 */
1293 return (B_TRUE);
1294
1295 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1296 return (B_TRUE);
1297 }
1298 return (B_FALSE);
1299 }
1300
1301 /*
1302 * ==========================================================================
1303 * Range tree callbacks
1304 * ==========================================================================
1305 */
1306
1307 /*
1308 * Comparison function for the private size-ordered tree using 32-bit
1309 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1310 */
1311 static int
metaslab_rangesize32_compare(const void * x1,const void * x2)1312 metaslab_rangesize32_compare(const void *x1, const void *x2)
1313 {
1314 const range_seg32_t *r1 = x1;
1315 const range_seg32_t *r2 = x2;
1316
1317 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1318 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1319
1320 int cmp = TREE_CMP(rs_size1, rs_size2);
1321 if (likely(cmp))
1322 return (cmp);
1323
1324 return (TREE_CMP(r1->rs_start, r2->rs_start));
1325 }
1326
1327 /*
1328 * Comparison function for the private size-ordered tree using 64-bit
1329 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1330 */
1331 static int
metaslab_rangesize64_compare(const void * x1,const void * x2)1332 metaslab_rangesize64_compare(const void *x1, const void *x2)
1333 {
1334 const range_seg64_t *r1 = x1;
1335 const range_seg64_t *r2 = x2;
1336
1337 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1338 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1339
1340 int cmp = TREE_CMP(rs_size1, rs_size2);
1341 if (likely(cmp))
1342 return (cmp);
1343
1344 return (TREE_CMP(r1->rs_start, r2->rs_start));
1345 }
1346 typedef struct metaslab_rt_arg {
1347 zfs_btree_t *mra_bt;
1348 uint32_t mra_floor_shift;
1349 } metaslab_rt_arg_t;
1350
1351 struct mssa_arg {
1352 range_tree_t *rt;
1353 metaslab_rt_arg_t *mra;
1354 };
1355
1356 static void
metaslab_size_sorted_add(void * arg,uint64_t start,uint64_t size)1357 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1358 {
1359 struct mssa_arg *mssap = arg;
1360 range_tree_t *rt = mssap->rt;
1361 metaslab_rt_arg_t *mrap = mssap->mra;
1362 range_seg_max_t seg = {0};
1363 rs_set_start(&seg, rt, start);
1364 rs_set_end(&seg, rt, start + size);
1365 metaslab_rt_add(rt, &seg, mrap);
1366 }
1367
1368 static void
metaslab_size_tree_full_load(range_tree_t * rt)1369 metaslab_size_tree_full_load(range_tree_t *rt)
1370 {
1371 metaslab_rt_arg_t *mrap = rt->rt_arg;
1372 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1373 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1374 mrap->mra_floor_shift = 0;
1375 struct mssa_arg arg = {0};
1376 arg.rt = rt;
1377 arg.mra = mrap;
1378 range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1379 }
1380
1381 /*
1382 * Create any block allocator specific components. The current allocators
1383 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1384 */
1385 /* ARGSUSED */
1386 static void
metaslab_rt_create(range_tree_t * rt,void * arg)1387 metaslab_rt_create(range_tree_t *rt, void *arg)
1388 {
1389 metaslab_rt_arg_t *mrap = arg;
1390 zfs_btree_t *size_tree = mrap->mra_bt;
1391
1392 size_t size;
1393 int (*compare) (const void *, const void *);
1394 switch (rt->rt_type) {
1395 case RANGE_SEG32:
1396 size = sizeof (range_seg32_t);
1397 compare = metaslab_rangesize32_compare;
1398 break;
1399 case RANGE_SEG64:
1400 size = sizeof (range_seg64_t);
1401 compare = metaslab_rangesize64_compare;
1402 break;
1403 default:
1404 panic("Invalid range seg type %d", rt->rt_type);
1405 }
1406 zfs_btree_create(size_tree, compare, size);
1407 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1408 }
1409
1410 /* ARGSUSED */
1411 static void
metaslab_rt_destroy(range_tree_t * rt,void * arg)1412 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1413 {
1414 metaslab_rt_arg_t *mrap = arg;
1415 zfs_btree_t *size_tree = mrap->mra_bt;
1416
1417 zfs_btree_destroy(size_tree);
1418 kmem_free(mrap, sizeof (*mrap));
1419 }
1420
1421 /* ARGSUSED */
1422 static void
metaslab_rt_add(range_tree_t * rt,range_seg_t * rs,void * arg)1423 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1424 {
1425 metaslab_rt_arg_t *mrap = arg;
1426 zfs_btree_t *size_tree = mrap->mra_bt;
1427
1428 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1429 (1 << mrap->mra_floor_shift))
1430 return;
1431
1432 zfs_btree_add(size_tree, rs);
1433 }
1434
1435 /* ARGSUSED */
1436 static void
metaslab_rt_remove(range_tree_t * rt,range_seg_t * rs,void * arg)1437 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1438 {
1439 metaslab_rt_arg_t *mrap = arg;
1440 zfs_btree_t *size_tree = mrap->mra_bt;
1441
1442 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 <<
1443 mrap->mra_floor_shift))
1444 return;
1445
1446 zfs_btree_remove(size_tree, rs);
1447 }
1448
1449 /* ARGSUSED */
1450 static void
metaslab_rt_vacate(range_tree_t * rt,void * arg)1451 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1452 {
1453 metaslab_rt_arg_t *mrap = arg;
1454 zfs_btree_t *size_tree = mrap->mra_bt;
1455 zfs_btree_clear(size_tree);
1456 zfs_btree_destroy(size_tree);
1457
1458 metaslab_rt_create(rt, arg);
1459 }
1460
1461 static range_tree_ops_t metaslab_rt_ops = {
1462 .rtop_create = metaslab_rt_create,
1463 .rtop_destroy = metaslab_rt_destroy,
1464 .rtop_add = metaslab_rt_add,
1465 .rtop_remove = metaslab_rt_remove,
1466 .rtop_vacate = metaslab_rt_vacate
1467 };
1468
1469 /*
1470 * ==========================================================================
1471 * Common allocator routines
1472 * ==========================================================================
1473 */
1474
1475 /*
1476 * Return the maximum contiguous segment within the metaslab.
1477 */
1478 uint64_t
metaslab_largest_allocatable(metaslab_t * msp)1479 metaslab_largest_allocatable(metaslab_t *msp)
1480 {
1481 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1482 range_seg_t *rs;
1483
1484 if (t == NULL)
1485 return (0);
1486 if (zfs_btree_numnodes(t) == 0)
1487 metaslab_size_tree_full_load(msp->ms_allocatable);
1488
1489 rs = zfs_btree_last(t, NULL);
1490 if (rs == NULL)
1491 return (0);
1492
1493 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1494 msp->ms_allocatable));
1495 }
1496
1497 /*
1498 * Return the maximum contiguous segment within the unflushed frees of this
1499 * metaslab.
1500 */
1501 static uint64_t
metaslab_largest_unflushed_free(metaslab_t * msp)1502 metaslab_largest_unflushed_free(metaslab_t *msp)
1503 {
1504 ASSERT(MUTEX_HELD(&msp->ms_lock));
1505
1506 if (msp->ms_unflushed_frees == NULL)
1507 return (0);
1508
1509 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1510 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1511 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1512 NULL);
1513 if (rs == NULL)
1514 return (0);
1515
1516 /*
1517 * When a range is freed from the metaslab, that range is added to
1518 * both the unflushed frees and the deferred frees. While the block
1519 * will eventually be usable, if the metaslab were loaded the range
1520 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1521 * txgs had passed. As a result, when attempting to estimate an upper
1522 * bound for the largest currently-usable free segment in the
1523 * metaslab, we need to not consider any ranges currently in the defer
1524 * trees. This algorithm approximates the largest available chunk in
1525 * the largest range in the unflushed_frees tree by taking the first
1526 * chunk. While this may be a poor estimate, it should only remain so
1527 * briefly and should eventually self-correct as frees are no longer
1528 * deferred. Similar logic applies to the ms_freed tree. See
1529 * metaslab_load() for more details.
1530 *
1531 * There are two primary sources of inaccuracy in this estimate. Both
1532 * are tolerated for performance reasons. The first source is that we
1533 * only check the largest segment for overlaps. Smaller segments may
1534 * have more favorable overlaps with the other trees, resulting in
1535 * larger usable chunks. Second, we only look at the first chunk in
1536 * the largest segment; there may be other usable chunks in the
1537 * largest segment, but we ignore them.
1538 */
1539 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1540 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1541 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1542 uint64_t start = 0;
1543 uint64_t size = 0;
1544 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1545 rsize, &start, &size);
1546 if (found) {
1547 if (rstart == start)
1548 return (0);
1549 rsize = start - rstart;
1550 }
1551 }
1552
1553 uint64_t start = 0;
1554 uint64_t size = 0;
1555 boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1556 rsize, &start, &size);
1557 if (found)
1558 rsize = start - rstart;
1559
1560 return (rsize);
1561 }
1562
1563 static range_seg_t *
metaslab_block_find(zfs_btree_t * t,range_tree_t * rt,uint64_t start,uint64_t size,zfs_btree_index_t * where)1564 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1565 uint64_t size, zfs_btree_index_t *where)
1566 {
1567 range_seg_t *rs;
1568 range_seg_max_t rsearch;
1569
1570 rs_set_start(&rsearch, rt, start);
1571 rs_set_end(&rsearch, rt, start + size);
1572
1573 rs = zfs_btree_find(t, &rsearch, where);
1574 if (rs == NULL) {
1575 rs = zfs_btree_next(t, where, where);
1576 }
1577
1578 return (rs);
1579 }
1580
1581 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1582 defined(WITH_CF_BLOCK_ALLOCATOR)
1583
1584 /*
1585 * This is a helper function that can be used by the allocator to find a
1586 * suitable block to allocate. This will search the specified B-tree looking
1587 * for a block that matches the specified criteria.
1588 */
1589 static uint64_t
metaslab_block_picker(range_tree_t * rt,uint64_t * cursor,uint64_t size,uint64_t max_search)1590 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1591 uint64_t max_search)
1592 {
1593 if (*cursor == 0)
1594 *cursor = rt->rt_start;
1595 zfs_btree_t *bt = &rt->rt_root;
1596 zfs_btree_index_t where;
1597 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1598 uint64_t first_found;
1599 int count_searched = 0;
1600
1601 if (rs != NULL)
1602 first_found = rs_get_start(rs, rt);
1603
1604 while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1605 max_search || count_searched < metaslab_min_search_count)) {
1606 uint64_t offset = rs_get_start(rs, rt);
1607 if (offset + size <= rs_get_end(rs, rt)) {
1608 *cursor = offset + size;
1609 return (offset);
1610 }
1611 rs = zfs_btree_next(bt, &where, &where);
1612 count_searched++;
1613 }
1614
1615 *cursor = 0;
1616 return (-1ULL);
1617 }
1618 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1619
1620 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1621 /*
1622 * ==========================================================================
1623 * Dynamic Fit (df) block allocator
1624 *
1625 * Search for a free chunk of at least this size, starting from the last
1626 * offset (for this alignment of block) looking for up to
1627 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1628 * found within 16MB, then return a free chunk of exactly the requested size (or
1629 * larger).
1630 *
1631 * If it seems like searching from the last offset will be unproductive, skip
1632 * that and just return a free chunk of exactly the requested size (or larger).
1633 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1634 * mechanism is probably not very useful and may be removed in the future.
1635 *
1636 * The behavior when not searching can be changed to return the largest free
1637 * chunk, instead of a free chunk of exactly the requested size, by setting
1638 * metaslab_df_use_largest_segment.
1639 * ==========================================================================
1640 */
1641 static uint64_t
metaslab_df_alloc(metaslab_t * msp,uint64_t size)1642 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1643 {
1644 /*
1645 * Find the largest power of 2 block size that evenly divides the
1646 * requested size. This is used to try to allocate blocks with similar
1647 * alignment from the same area of the metaslab (i.e. same cursor
1648 * bucket) but it does not guarantee that other allocations sizes
1649 * may exist in the same region.
1650 */
1651 uint64_t align = size & -size;
1652 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1653 range_tree_t *rt = msp->ms_allocatable;
1654 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1655 uint64_t offset;
1656
1657 ASSERT(MUTEX_HELD(&msp->ms_lock));
1658
1659 /*
1660 * If we're running low on space, find a segment based on size,
1661 * rather than iterating based on offset.
1662 */
1663 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1664 free_pct < metaslab_df_free_pct) {
1665 offset = -1;
1666 } else {
1667 offset = metaslab_block_picker(rt,
1668 cursor, size, metaslab_df_max_search);
1669 }
1670
1671 if (offset == -1) {
1672 range_seg_t *rs;
1673 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1674 metaslab_size_tree_full_load(msp->ms_allocatable);
1675
1676 if (metaslab_df_use_largest_segment) {
1677 /* use largest free segment */
1678 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1679 } else {
1680 zfs_btree_index_t where;
1681 /* use segment of this size, or next largest */
1682 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1683 rt, msp->ms_start, size, &where);
1684 }
1685 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1686 rt)) {
1687 offset = rs_get_start(rs, rt);
1688 *cursor = offset + size;
1689 }
1690 }
1691
1692 return (offset);
1693 }
1694
1695 static metaslab_ops_t metaslab_df_ops = {
1696 metaslab_df_alloc
1697 };
1698
1699 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1700 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1701
1702 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1703 /*
1704 * ==========================================================================
1705 * Cursor fit block allocator -
1706 * Select the largest region in the metaslab, set the cursor to the beginning
1707 * of the range and the cursor_end to the end of the range. As allocations
1708 * are made advance the cursor. Continue allocating from the cursor until
1709 * the range is exhausted and then find a new range.
1710 * ==========================================================================
1711 */
1712 static uint64_t
metaslab_cf_alloc(metaslab_t * msp,uint64_t size)1713 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1714 {
1715 range_tree_t *rt = msp->ms_allocatable;
1716 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1717 uint64_t *cursor = &msp->ms_lbas[0];
1718 uint64_t *cursor_end = &msp->ms_lbas[1];
1719 uint64_t offset = 0;
1720
1721 ASSERT(MUTEX_HELD(&msp->ms_lock));
1722
1723 ASSERT3U(*cursor_end, >=, *cursor);
1724
1725 if ((*cursor + size) > *cursor_end) {
1726 range_seg_t *rs;
1727
1728 if (zfs_btree_numnodes(t) == 0)
1729 metaslab_size_tree_full_load(msp->ms_allocatable);
1730 rs = zfs_btree_last(t, NULL);
1731 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1732 size)
1733 return (-1ULL);
1734
1735 *cursor = rs_get_start(rs, rt);
1736 *cursor_end = rs_get_end(rs, rt);
1737 }
1738
1739 offset = *cursor;
1740 *cursor += size;
1741
1742 return (offset);
1743 }
1744
1745 static metaslab_ops_t metaslab_cf_ops = {
1746 metaslab_cf_alloc
1747 };
1748
1749 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1750 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1751
1752 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1753 /*
1754 * ==========================================================================
1755 * New dynamic fit allocator -
1756 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1757 * contiguous blocks. If no region is found then just use the largest segment
1758 * that remains.
1759 * ==========================================================================
1760 */
1761
1762 /*
1763 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1764 * to request from the allocator.
1765 */
1766 uint64_t metaslab_ndf_clump_shift = 4;
1767
1768 static uint64_t
metaslab_ndf_alloc(metaslab_t * msp,uint64_t size)1769 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1770 {
1771 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1772 range_tree_t *rt = msp->ms_allocatable;
1773 zfs_btree_index_t where;
1774 range_seg_t *rs;
1775 range_seg_max_t rsearch;
1776 uint64_t hbit = highbit64(size);
1777 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1778 uint64_t max_size = metaslab_largest_allocatable(msp);
1779
1780 ASSERT(MUTEX_HELD(&msp->ms_lock));
1781
1782 if (max_size < size)
1783 return (-1ULL);
1784
1785 rs_set_start(&rsearch, rt, *cursor);
1786 rs_set_end(&rsearch, rt, *cursor + size);
1787
1788 rs = zfs_btree_find(t, &rsearch, &where);
1789 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1790 t = &msp->ms_allocatable_by_size;
1791
1792 rs_set_start(&rsearch, rt, 0);
1793 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1794 metaslab_ndf_clump_shift)));
1795
1796 rs = zfs_btree_find(t, &rsearch, &where);
1797 if (rs == NULL)
1798 rs = zfs_btree_next(t, &where, &where);
1799 ASSERT(rs != NULL);
1800 }
1801
1802 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1803 *cursor = rs_get_start(rs, rt) + size;
1804 return (rs_get_start(rs, rt));
1805 }
1806 return (-1ULL);
1807 }
1808
1809 static metaslab_ops_t metaslab_ndf_ops = {
1810 metaslab_ndf_alloc
1811 };
1812
1813 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1814 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1815
1816
1817 /*
1818 * ==========================================================================
1819 * Metaslabs
1820 * ==========================================================================
1821 */
1822
1823 /*
1824 * Wait for any in-progress metaslab loads to complete.
1825 */
1826 static void
metaslab_load_wait(metaslab_t * msp)1827 metaslab_load_wait(metaslab_t *msp)
1828 {
1829 ASSERT(MUTEX_HELD(&msp->ms_lock));
1830
1831 while (msp->ms_loading) {
1832 ASSERT(!msp->ms_loaded);
1833 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1834 }
1835 }
1836
1837 /*
1838 * Wait for any in-progress flushing to complete.
1839 */
1840 static void
metaslab_flush_wait(metaslab_t * msp)1841 metaslab_flush_wait(metaslab_t *msp)
1842 {
1843 ASSERT(MUTEX_HELD(&msp->ms_lock));
1844
1845 while (msp->ms_flushing)
1846 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1847 }
1848
1849 static unsigned int
metaslab_idx_func(multilist_t * ml,void * arg)1850 metaslab_idx_func(multilist_t *ml, void *arg)
1851 {
1852 metaslab_t *msp = arg;
1853 return (msp->ms_id % multilist_get_num_sublists(ml));
1854 }
1855
1856 uint64_t
metaslab_allocated_space(metaslab_t * msp)1857 metaslab_allocated_space(metaslab_t *msp)
1858 {
1859 return (msp->ms_allocated_space);
1860 }
1861
1862 /*
1863 * Verify that the space accounting on disk matches the in-core range_trees.
1864 */
1865 static void
metaslab_verify_space(metaslab_t * msp,uint64_t txg)1866 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1867 {
1868 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1869 uint64_t allocating = 0;
1870 uint64_t sm_free_space, msp_free_space;
1871
1872 ASSERT(MUTEX_HELD(&msp->ms_lock));
1873 ASSERT(!msp->ms_condensing);
1874
1875 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1876 return;
1877
1878 /*
1879 * We can only verify the metaslab space when we're called
1880 * from syncing context with a loaded metaslab that has an
1881 * allocated space map. Calling this in non-syncing context
1882 * does not provide a consistent view of the metaslab since
1883 * we're performing allocations in the future.
1884 */
1885 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1886 !msp->ms_loaded)
1887 return;
1888
1889 /*
1890 * Even though the smp_alloc field can get negative,
1891 * when it comes to a metaslab's space map, that should
1892 * never be the case.
1893 */
1894 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1895
1896 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1897 range_tree_space(msp->ms_unflushed_frees));
1898
1899 ASSERT3U(metaslab_allocated_space(msp), ==,
1900 space_map_allocated(msp->ms_sm) +
1901 range_tree_space(msp->ms_unflushed_allocs) -
1902 range_tree_space(msp->ms_unflushed_frees));
1903
1904 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1905
1906 /*
1907 * Account for future allocations since we would have
1908 * already deducted that space from the ms_allocatable.
1909 */
1910 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1911 allocating +=
1912 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1913 }
1914 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1915 msp->ms_allocating_total);
1916
1917 ASSERT3U(msp->ms_deferspace, ==,
1918 range_tree_space(msp->ms_defer[0]) +
1919 range_tree_space(msp->ms_defer[1]));
1920
1921 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1922 msp->ms_deferspace + range_tree_space(msp->ms_freed);
1923
1924 VERIFY3U(sm_free_space, ==, msp_free_space);
1925 }
1926
1927 static void
metaslab_aux_histograms_clear(metaslab_t * msp)1928 metaslab_aux_histograms_clear(metaslab_t *msp)
1929 {
1930 /*
1931 * Auxiliary histograms are only cleared when resetting them,
1932 * which can only happen while the metaslab is loaded.
1933 */
1934 ASSERT(msp->ms_loaded);
1935
1936 bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1937 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1938 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
1939 }
1940
1941 static void
metaslab_aux_histogram_add(uint64_t * histogram,uint64_t shift,range_tree_t * rt)1942 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1943 range_tree_t *rt)
1944 {
1945 /*
1946 * This is modeled after space_map_histogram_add(), so refer to that
1947 * function for implementation details. We want this to work like
1948 * the space map histogram, and not the range tree histogram, as we
1949 * are essentially constructing a delta that will be later subtracted
1950 * from the space map histogram.
1951 */
1952 int idx = 0;
1953 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1954 ASSERT3U(i, >=, idx + shift);
1955 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1956
1957 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1958 ASSERT3U(idx + shift, ==, i);
1959 idx++;
1960 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1961 }
1962 }
1963 }
1964
1965 /*
1966 * Called at every sync pass that the metaslab gets synced.
1967 *
1968 * The reason is that we want our auxiliary histograms to be updated
1969 * wherever the metaslab's space map histogram is updated. This way
1970 * we stay consistent on which parts of the metaslab space map's
1971 * histogram are currently not available for allocations (e.g because
1972 * they are in the defer, freed, and freeing trees).
1973 */
1974 static void
metaslab_aux_histograms_update(metaslab_t * msp)1975 metaslab_aux_histograms_update(metaslab_t *msp)
1976 {
1977 space_map_t *sm = msp->ms_sm;
1978 ASSERT(sm != NULL);
1979
1980 /*
1981 * This is similar to the metaslab's space map histogram updates
1982 * that take place in metaslab_sync(). The only difference is that
1983 * we only care about segments that haven't made it into the
1984 * ms_allocatable tree yet.
1985 */
1986 if (msp->ms_loaded) {
1987 metaslab_aux_histograms_clear(msp);
1988
1989 metaslab_aux_histogram_add(msp->ms_synchist,
1990 sm->sm_shift, msp->ms_freed);
1991
1992 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1993 metaslab_aux_histogram_add(msp->ms_deferhist[t],
1994 sm->sm_shift, msp->ms_defer[t]);
1995 }
1996 }
1997
1998 metaslab_aux_histogram_add(msp->ms_synchist,
1999 sm->sm_shift, msp->ms_freeing);
2000 }
2001
2002 /*
2003 * Called every time we are done syncing (writing to) the metaslab,
2004 * i.e. at the end of each sync pass.
2005 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2006 */
2007 static void
metaslab_aux_histograms_update_done(metaslab_t * msp,boolean_t defer_allowed)2008 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2009 {
2010 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2011 space_map_t *sm = msp->ms_sm;
2012
2013 if (sm == NULL) {
2014 /*
2015 * We came here from metaslab_init() when creating/opening a
2016 * pool, looking at a metaslab that hasn't had any allocations
2017 * yet.
2018 */
2019 return;
2020 }
2021
2022 /*
2023 * This is similar to the actions that we take for the ms_freed
2024 * and ms_defer trees in metaslab_sync_done().
2025 */
2026 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2027 if (defer_allowed) {
2028 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
2029 sizeof (msp->ms_synchist));
2030 } else {
2031 bzero(msp->ms_deferhist[hist_index],
2032 sizeof (msp->ms_deferhist[hist_index]));
2033 }
2034 bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
2035 }
2036
2037 /*
2038 * Ensure that the metaslab's weight and fragmentation are consistent
2039 * with the contents of the histogram (either the range tree's histogram
2040 * or the space map's depending whether the metaslab is loaded).
2041 */
2042 static void
metaslab_verify_weight_and_frag(metaslab_t * msp)2043 metaslab_verify_weight_and_frag(metaslab_t *msp)
2044 {
2045 ASSERT(MUTEX_HELD(&msp->ms_lock));
2046
2047 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2048 return;
2049
2050 /*
2051 * We can end up here from vdev_remove_complete(), in which case we
2052 * cannot do these assertions because we hold spa config locks and
2053 * thus we are not allowed to read from the DMU.
2054 *
2055 * We check if the metaslab group has been removed and if that's
2056 * the case we return immediately as that would mean that we are
2057 * here from the aforementioned code path.
2058 */
2059 if (msp->ms_group == NULL)
2060 return;
2061
2062 /*
2063 * Devices being removed always return a weight of 0 and leave
2064 * fragmentation and ms_max_size as is - there is nothing for
2065 * us to verify here.
2066 */
2067 vdev_t *vd = msp->ms_group->mg_vd;
2068 if (vd->vdev_removing)
2069 return;
2070
2071 /*
2072 * If the metaslab is dirty it probably means that we've done
2073 * some allocations or frees that have changed our histograms
2074 * and thus the weight.
2075 */
2076 for (int t = 0; t < TXG_SIZE; t++) {
2077 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2078 return;
2079 }
2080
2081 /*
2082 * This verification checks that our in-memory state is consistent
2083 * with what's on disk. If the pool is read-only then there aren't
2084 * any changes and we just have the initially-loaded state.
2085 */
2086 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2087 return;
2088
2089 /* some extra verification for in-core tree if you can */
2090 if (msp->ms_loaded) {
2091 range_tree_stat_verify(msp->ms_allocatable);
2092 VERIFY(space_map_histogram_verify(msp->ms_sm,
2093 msp->ms_allocatable));
2094 }
2095
2096 uint64_t weight = msp->ms_weight;
2097 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2098 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2099 uint64_t frag = msp->ms_fragmentation;
2100 uint64_t max_segsize = msp->ms_max_size;
2101
2102 msp->ms_weight = 0;
2103 msp->ms_fragmentation = 0;
2104
2105 /*
2106 * This function is used for verification purposes and thus should
2107 * not introduce any side-effects/mutations on the system's state.
2108 *
2109 * Regardless of whether metaslab_weight() thinks this metaslab
2110 * should be active or not, we want to ensure that the actual weight
2111 * (and therefore the value of ms_weight) would be the same if it
2112 * was to be recalculated at this point.
2113 *
2114 * In addition we set the nodirty flag so metaslab_weight() does
2115 * not dirty the metaslab for future TXGs (e.g. when trying to
2116 * force condensing to upgrade the metaslab spacemaps).
2117 */
2118 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2119
2120 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2121
2122 /*
2123 * If the weight type changed then there is no point in doing
2124 * verification. Revert fields to their original values.
2125 */
2126 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2127 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2128 msp->ms_fragmentation = frag;
2129 msp->ms_weight = weight;
2130 return;
2131 }
2132
2133 VERIFY3U(msp->ms_fragmentation, ==, frag);
2134 VERIFY3U(msp->ms_weight, ==, weight);
2135 }
2136
2137 /*
2138 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2139 * this class that was used longest ago, and attempt to unload it. We don't
2140 * want to spend too much time in this loop to prevent performance
2141 * degradation, and we expect that most of the time this operation will
2142 * succeed. Between that and the normal unloading processing during txg sync,
2143 * we expect this to keep the metaslab memory usage under control.
2144 */
2145 static void
metaslab_potentially_evict(metaslab_class_t * mc)2146 metaslab_potentially_evict(metaslab_class_t *mc)
2147 {
2148 #ifdef _KERNEL
2149 uint64_t allmem = arc_all_memory();
2150 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2151 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2152 int tries = 0;
2153 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2154 tries < multilist_get_num_sublists(mc->mc_metaslab_txg_list) * 2;
2155 tries++) {
2156 unsigned int idx = multilist_get_random_index(
2157 mc->mc_metaslab_txg_list);
2158 multilist_sublist_t *mls =
2159 multilist_sublist_lock(mc->mc_metaslab_txg_list, idx);
2160 metaslab_t *msp = multilist_sublist_head(mls);
2161 multilist_sublist_unlock(mls);
2162 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2163 inuse * size) {
2164 VERIFY3P(mls, ==, multilist_sublist_lock(
2165 mc->mc_metaslab_txg_list, idx));
2166 ASSERT3U(idx, ==,
2167 metaslab_idx_func(mc->mc_metaslab_txg_list, msp));
2168
2169 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2170 multilist_sublist_unlock(mls);
2171 break;
2172 }
2173 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2174 multilist_sublist_unlock(mls);
2175 /*
2176 * If the metaslab is currently loading there are two
2177 * cases. If it's the metaslab we're evicting, we
2178 * can't continue on or we'll panic when we attempt to
2179 * recursively lock the mutex. If it's another
2180 * metaslab that's loading, it can be safely skipped,
2181 * since we know it's very new and therefore not a
2182 * good eviction candidate. We check later once the
2183 * lock is held that the metaslab is fully loaded
2184 * before actually unloading it.
2185 */
2186 if (msp->ms_loading) {
2187 msp = next_msp;
2188 inuse =
2189 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2190 continue;
2191 }
2192 /*
2193 * We can't unload metaslabs with no spacemap because
2194 * they're not ready to be unloaded yet. We can't
2195 * unload metaslabs with outstanding allocations
2196 * because doing so could cause the metaslab's weight
2197 * to decrease while it's unloaded, which violates an
2198 * invariant that we use to prevent unnecessary
2199 * loading. We also don't unload metaslabs that are
2200 * currently active because they are high-weight
2201 * metaslabs that are likely to be used in the near
2202 * future.
2203 */
2204 mutex_enter(&msp->ms_lock);
2205 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2206 msp->ms_allocating_total == 0) {
2207 metaslab_unload(msp);
2208 }
2209 mutex_exit(&msp->ms_lock);
2210 msp = next_msp;
2211 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2212 }
2213 }
2214 #endif
2215 }
2216
2217 static int
metaslab_load_impl(metaslab_t * msp)2218 metaslab_load_impl(metaslab_t *msp)
2219 {
2220 int error = 0;
2221
2222 ASSERT(MUTEX_HELD(&msp->ms_lock));
2223 ASSERT(msp->ms_loading);
2224 ASSERT(!msp->ms_condensing);
2225
2226 /*
2227 * We temporarily drop the lock to unblock other operations while we
2228 * are reading the space map. Therefore, metaslab_sync() and
2229 * metaslab_sync_done() can run at the same time as we do.
2230 *
2231 * If we are using the log space maps, metaslab_sync() can't write to
2232 * the metaslab's space map while we are loading as we only write to
2233 * it when we are flushing the metaslab, and that can't happen while
2234 * we are loading it.
2235 *
2236 * If we are not using log space maps though, metaslab_sync() can
2237 * append to the space map while we are loading. Therefore we load
2238 * only entries that existed when we started the load. Additionally,
2239 * metaslab_sync_done() has to wait for the load to complete because
2240 * there are potential races like metaslab_load() loading parts of the
2241 * space map that are currently being appended by metaslab_sync(). If
2242 * we didn't, the ms_allocatable would have entries that
2243 * metaslab_sync_done() would try to re-add later.
2244 *
2245 * That's why before dropping the lock we remember the synced length
2246 * of the metaslab and read up to that point of the space map,
2247 * ignoring entries appended by metaslab_sync() that happen after we
2248 * drop the lock.
2249 */
2250 uint64_t length = msp->ms_synced_length;
2251 mutex_exit(&msp->ms_lock);
2252
2253 hrtime_t load_start = gethrtime();
2254 metaslab_rt_arg_t *mrap;
2255 if (msp->ms_allocatable->rt_arg == NULL) {
2256 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2257 } else {
2258 mrap = msp->ms_allocatable->rt_arg;
2259 msp->ms_allocatable->rt_ops = NULL;
2260 msp->ms_allocatable->rt_arg = NULL;
2261 }
2262 mrap->mra_bt = &msp->ms_allocatable_by_size;
2263 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2264
2265 if (msp->ms_sm != NULL) {
2266 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2267 SM_FREE, length);
2268
2269 /* Now, populate the size-sorted tree. */
2270 metaslab_rt_create(msp->ms_allocatable, mrap);
2271 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2272 msp->ms_allocatable->rt_arg = mrap;
2273
2274 struct mssa_arg arg = {0};
2275 arg.rt = msp->ms_allocatable;
2276 arg.mra = mrap;
2277 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2278 &arg);
2279 } else {
2280 /*
2281 * Add the size-sorted tree first, since we don't need to load
2282 * the metaslab from the spacemap.
2283 */
2284 metaslab_rt_create(msp->ms_allocatable, mrap);
2285 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2286 msp->ms_allocatable->rt_arg = mrap;
2287 /*
2288 * The space map has not been allocated yet, so treat
2289 * all the space in the metaslab as free and add it to the
2290 * ms_allocatable tree.
2291 */
2292 range_tree_add(msp->ms_allocatable,
2293 msp->ms_start, msp->ms_size);
2294
2295 if (msp->ms_freed != NULL) {
2296 /*
2297 * If the ms_sm doesn't exist, this means that this
2298 * metaslab hasn't gone through metaslab_sync() and
2299 * thus has never been dirtied. So we shouldn't
2300 * expect any unflushed allocs or frees from previous
2301 * TXGs.
2302 *
2303 * Note: ms_freed and all the other trees except for
2304 * the ms_allocatable, can be NULL at this point only
2305 * if this is a new metaslab of a vdev that just got
2306 * expanded.
2307 */
2308 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2309 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2310 }
2311 }
2312
2313 /*
2314 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2315 * changing the ms_sm (or log_sm) and the metaslab's range trees
2316 * while we are about to use them and populate the ms_allocatable.
2317 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2318 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2319 */
2320 mutex_enter(&msp->ms_sync_lock);
2321 mutex_enter(&msp->ms_lock);
2322
2323 ASSERT(!msp->ms_condensing);
2324 ASSERT(!msp->ms_flushing);
2325
2326 if (error != 0) {
2327 mutex_exit(&msp->ms_sync_lock);
2328 return (error);
2329 }
2330
2331 ASSERT3P(msp->ms_group, !=, NULL);
2332 msp->ms_loaded = B_TRUE;
2333
2334 /*
2335 * Apply all the unflushed changes to ms_allocatable right
2336 * away so any manipulations we do below have a clear view
2337 * of what is allocated and what is free.
2338 */
2339 range_tree_walk(msp->ms_unflushed_allocs,
2340 range_tree_remove, msp->ms_allocatable);
2341 range_tree_walk(msp->ms_unflushed_frees,
2342 range_tree_add, msp->ms_allocatable);
2343
2344 msp->ms_loaded = B_TRUE;
2345
2346 ASSERT3P(msp->ms_group, !=, NULL);
2347 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2348 if (spa_syncing_log_sm(spa) != NULL) {
2349 ASSERT(spa_feature_is_enabled(spa,
2350 SPA_FEATURE_LOG_SPACEMAP));
2351
2352 /*
2353 * If we use a log space map we add all the segments
2354 * that are in ms_unflushed_frees so they are available
2355 * for allocation.
2356 *
2357 * ms_allocatable needs to contain all free segments
2358 * that are ready for allocations (thus not segments
2359 * from ms_freeing, ms_freed, and the ms_defer trees).
2360 * But if we grab the lock in this code path at a sync
2361 * pass later that 1, then it also contains the
2362 * segments of ms_freed (they were added to it earlier
2363 * in this path through ms_unflushed_frees). So we
2364 * need to remove all the segments that exist in
2365 * ms_freed from ms_allocatable as they will be added
2366 * later in metaslab_sync_done().
2367 *
2368 * When there's no log space map, the ms_allocatable
2369 * correctly doesn't contain any segments that exist
2370 * in ms_freed [see ms_synced_length].
2371 */
2372 range_tree_walk(msp->ms_freed,
2373 range_tree_remove, msp->ms_allocatable);
2374 }
2375
2376 /*
2377 * If we are not using the log space map, ms_allocatable
2378 * contains the segments that exist in the ms_defer trees
2379 * [see ms_synced_length]. Thus we need to remove them
2380 * from ms_allocatable as they will be added again in
2381 * metaslab_sync_done().
2382 *
2383 * If we are using the log space map, ms_allocatable still
2384 * contains the segments that exist in the ms_defer trees.
2385 * Not because it read them through the ms_sm though. But
2386 * because these segments are part of ms_unflushed_frees
2387 * whose segments we add to ms_allocatable earlier in this
2388 * code path.
2389 */
2390 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2391 range_tree_walk(msp->ms_defer[t],
2392 range_tree_remove, msp->ms_allocatable);
2393 }
2394
2395 /*
2396 * Call metaslab_recalculate_weight_and_sort() now that the
2397 * metaslab is loaded so we get the metaslab's real weight.
2398 *
2399 * Unless this metaslab was created with older software and
2400 * has not yet been converted to use segment-based weight, we
2401 * expect the new weight to be better or equal to the weight
2402 * that the metaslab had while it was not loaded. This is
2403 * because the old weight does not take into account the
2404 * consolidation of adjacent segments between TXGs. [see
2405 * comment for ms_synchist and ms_deferhist[] for more info]
2406 */
2407 uint64_t weight = msp->ms_weight;
2408 uint64_t max_size = msp->ms_max_size;
2409 metaslab_recalculate_weight_and_sort(msp);
2410 if (!WEIGHT_IS_SPACEBASED(weight))
2411 ASSERT3U(weight, <=, msp->ms_weight);
2412 msp->ms_max_size = metaslab_largest_allocatable(msp);
2413 ASSERT3U(max_size, <=, msp->ms_max_size);
2414 hrtime_t load_end = gethrtime();
2415 msp->ms_load_time = load_end;
2416 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2417 "ms_id %llu, smp_length %llu, "
2418 "unflushed_allocs %llu, unflushed_frees %llu, "
2419 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2420 "loading_time %lld ms, ms_max_size %llu, "
2421 "max size error %lld, "
2422 "old_weight %llx, new_weight %llx",
2423 spa_syncing_txg(spa), spa_name(spa),
2424 msp->ms_group->mg_vd->vdev_id, msp->ms_id,
2425 space_map_length(msp->ms_sm),
2426 range_tree_space(msp->ms_unflushed_allocs),
2427 range_tree_space(msp->ms_unflushed_frees),
2428 range_tree_space(msp->ms_freed),
2429 range_tree_space(msp->ms_defer[0]),
2430 range_tree_space(msp->ms_defer[1]),
2431 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2432 (longlong_t)((load_end - load_start) / 1000000),
2433 msp->ms_max_size, msp->ms_max_size - max_size,
2434 weight, msp->ms_weight);
2435
2436 metaslab_verify_space(msp, spa_syncing_txg(spa));
2437 mutex_exit(&msp->ms_sync_lock);
2438 return (0);
2439 }
2440
2441 int
metaslab_load(metaslab_t * msp)2442 metaslab_load(metaslab_t *msp)
2443 {
2444 ASSERT(MUTEX_HELD(&msp->ms_lock));
2445
2446 /*
2447 * There may be another thread loading the same metaslab, if that's
2448 * the case just wait until the other thread is done and return.
2449 */
2450 metaslab_load_wait(msp);
2451 if (msp->ms_loaded)
2452 return (0);
2453 VERIFY(!msp->ms_loading);
2454 ASSERT(!msp->ms_condensing);
2455
2456 /*
2457 * We set the loading flag BEFORE potentially dropping the lock to
2458 * wait for an ongoing flush (see ms_flushing below). This way other
2459 * threads know that there is already a thread that is loading this
2460 * metaslab.
2461 */
2462 msp->ms_loading = B_TRUE;
2463
2464 /*
2465 * Wait for any in-progress flushing to finish as we drop the ms_lock
2466 * both here (during space_map_load()) and in metaslab_flush() (when
2467 * we flush our changes to the ms_sm).
2468 */
2469 if (msp->ms_flushing)
2470 metaslab_flush_wait(msp);
2471
2472 /*
2473 * In the possibility that we were waiting for the metaslab to be
2474 * flushed (where we temporarily dropped the ms_lock), ensure that
2475 * no one else loaded the metaslab somehow.
2476 */
2477 ASSERT(!msp->ms_loaded);
2478
2479 /*
2480 * If we're loading a metaslab in the normal class, consider evicting
2481 * another one to keep our memory usage under the limit defined by the
2482 * zfs_metaslab_mem_limit tunable.
2483 */
2484 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2485 msp->ms_group->mg_class) {
2486 metaslab_potentially_evict(msp->ms_group->mg_class);
2487 }
2488
2489 int error = metaslab_load_impl(msp);
2490
2491 ASSERT(MUTEX_HELD(&msp->ms_lock));
2492 msp->ms_loading = B_FALSE;
2493 cv_broadcast(&msp->ms_load_cv);
2494
2495 return (error);
2496 }
2497
2498 void
metaslab_unload(metaslab_t * msp)2499 metaslab_unload(metaslab_t *msp)
2500 {
2501 ASSERT(MUTEX_HELD(&msp->ms_lock));
2502
2503 /*
2504 * This can happen if a metaslab is selected for eviction (in
2505 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2506 * metaslab_class_evict_old).
2507 */
2508 if (!msp->ms_loaded)
2509 return;
2510
2511 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2512 msp->ms_loaded = B_FALSE;
2513 msp->ms_unload_time = gethrtime();
2514
2515 msp->ms_activation_weight = 0;
2516 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2517
2518 if (msp->ms_group != NULL) {
2519 metaslab_class_t *mc = msp->ms_group->mg_class;
2520 multilist_sublist_t *mls =
2521 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
2522 if (multilist_link_active(&msp->ms_class_txg_node))
2523 multilist_sublist_remove(mls, msp);
2524 multilist_sublist_unlock(mls);
2525
2526 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2527 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2528 "ms_id %llu, weight %llx, "
2529 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2530 "loaded %llu ms ago, max_size %llu",
2531 spa_syncing_txg(spa), spa_name(spa),
2532 msp->ms_group->mg_vd->vdev_id, msp->ms_id,
2533 msp->ms_weight,
2534 msp->ms_selected_txg,
2535 (msp->ms_unload_time - msp->ms_selected_time) / 1000 / 1000,
2536 msp->ms_alloc_txg,
2537 (msp->ms_unload_time - msp->ms_load_time) / 1000 / 1000,
2538 msp->ms_max_size);
2539 }
2540
2541 /*
2542 * We explicitly recalculate the metaslab's weight based on its space
2543 * map (as it is now not loaded). We want unload metaslabs to always
2544 * have their weights calculated from the space map histograms, while
2545 * loaded ones have it calculated from their in-core range tree
2546 * [see metaslab_load()]. This way, the weight reflects the information
2547 * available in-core, whether it is loaded or not.
2548 *
2549 * If ms_group == NULL means that we came here from metaslab_fini(),
2550 * at which point it doesn't make sense for us to do the recalculation
2551 * and the sorting.
2552 */
2553 if (msp->ms_group != NULL)
2554 metaslab_recalculate_weight_and_sort(msp);
2555 }
2556
2557 /*
2558 * We want to optimize the memory use of the per-metaslab range
2559 * trees. To do this, we store the segments in the range trees in
2560 * units of sectors, zero-indexing from the start of the metaslab. If
2561 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2562 * the ranges using two uint32_ts, rather than two uint64_ts.
2563 */
2564 range_seg_type_t
metaslab_calculate_range_tree_type(vdev_t * vdev,metaslab_t * msp,uint64_t * start,uint64_t * shift)2565 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2566 uint64_t *start, uint64_t *shift)
2567 {
2568 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2569 !zfs_metaslab_force_large_segs) {
2570 *shift = vdev->vdev_ashift;
2571 *start = msp->ms_start;
2572 return (RANGE_SEG32);
2573 } else {
2574 *shift = 0;
2575 *start = 0;
2576 return (RANGE_SEG64);
2577 }
2578 }
2579
2580 void
metaslab_set_selected_txg(metaslab_t * msp,uint64_t txg)2581 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2582 {
2583 ASSERT(MUTEX_HELD(&msp->ms_lock));
2584 metaslab_class_t *mc = msp->ms_group->mg_class;
2585 multilist_sublist_t *mls =
2586 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
2587 if (multilist_link_active(&msp->ms_class_txg_node))
2588 multilist_sublist_remove(mls, msp);
2589 msp->ms_selected_txg = txg;
2590 msp->ms_selected_time = gethrtime();
2591 multilist_sublist_insert_tail(mls, msp);
2592 multilist_sublist_unlock(mls);
2593 }
2594
2595 void
metaslab_space_update(vdev_t * vd,metaslab_class_t * mc,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)2596 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2597 int64_t defer_delta, int64_t space_delta)
2598 {
2599 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2600
2601 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2602 ASSERT(vd->vdev_ms_count != 0);
2603
2604 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2605 vdev_deflated_space(vd, space_delta));
2606 }
2607
2608 int
metaslab_init(metaslab_group_t * mg,uint64_t id,uint64_t object,uint64_t txg,metaslab_t ** msp)2609 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2610 uint64_t txg, metaslab_t **msp)
2611 {
2612 vdev_t *vd = mg->mg_vd;
2613 spa_t *spa = vd->vdev_spa;
2614 objset_t *mos = spa->spa_meta_objset;
2615 metaslab_t *ms;
2616 int error;
2617
2618 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2619 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2620 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2621 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2622 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2623 multilist_link_init(&ms->ms_class_txg_node);
2624
2625 ms->ms_id = id;
2626 ms->ms_start = id << vd->vdev_ms_shift;
2627 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2628 ms->ms_allocator = -1;
2629 ms->ms_new = B_TRUE;
2630
2631 vdev_ops_t *ops = vd->vdev_ops;
2632 if (ops->vdev_op_metaslab_init != NULL)
2633 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2634
2635 /*
2636 * We only open space map objects that already exist. All others
2637 * will be opened when we finally allocate an object for it.
2638 *
2639 * Note:
2640 * When called from vdev_expand(), we can't call into the DMU as
2641 * we are holding the spa_config_lock as a writer and we would
2642 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2643 * that case, the object parameter is zero though, so we won't
2644 * call into the DMU.
2645 */
2646 if (object != 0) {
2647 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2648 ms->ms_size, vd->vdev_ashift);
2649
2650 if (error != 0) {
2651 kmem_free(ms, sizeof (metaslab_t));
2652 return (error);
2653 }
2654
2655 ASSERT(ms->ms_sm != NULL);
2656 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2657 }
2658
2659 range_seg_type_t type;
2660 uint64_t shift, start;
2661 type = metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2662
2663 /*
2664 * We create the ms_allocatable here, but we don't create the
2665 * other range trees until metaslab_sync_done(). This serves
2666 * two purposes: it allows metaslab_sync_done() to detect the
2667 * addition of new space; and for debugging, it ensures that
2668 * we'd data fault on any attempt to use this metaslab before
2669 * it's ready.
2670 */
2671 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2672
2673 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2674
2675 metaslab_group_add(mg, ms);
2676 metaslab_set_fragmentation(ms, B_FALSE);
2677
2678 /*
2679 * If we're opening an existing pool (txg == 0) or creating
2680 * a new one (txg == TXG_INITIAL), all space is available now.
2681 * If we're adding space to an existing pool, the new space
2682 * does not become available until after this txg has synced.
2683 * The metaslab's weight will also be initialized when we sync
2684 * out this txg. This ensures that we don't attempt to allocate
2685 * from it before we have initialized it completely.
2686 */
2687 if (txg <= TXG_INITIAL) {
2688 metaslab_sync_done(ms, 0);
2689 metaslab_space_update(vd, mg->mg_class,
2690 metaslab_allocated_space(ms), 0, 0);
2691 }
2692
2693 if (txg != 0) {
2694 vdev_dirty(vd, 0, NULL, txg);
2695 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2696 }
2697
2698 *msp = ms;
2699
2700 return (0);
2701 }
2702
2703 static void
metaslab_fini_flush_data(metaslab_t * msp)2704 metaslab_fini_flush_data(metaslab_t *msp)
2705 {
2706 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2707
2708 if (metaslab_unflushed_txg(msp) == 0) {
2709 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2710 ==, NULL);
2711 return;
2712 }
2713 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2714
2715 mutex_enter(&spa->spa_flushed_ms_lock);
2716 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2717 mutex_exit(&spa->spa_flushed_ms_lock);
2718
2719 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2720 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2721 }
2722
2723 uint64_t
metaslab_unflushed_changes_memused(metaslab_t * ms)2724 metaslab_unflushed_changes_memused(metaslab_t *ms)
2725 {
2726 return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2727 range_tree_numsegs(ms->ms_unflushed_frees)) *
2728 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2729 }
2730
2731 void
metaslab_fini(metaslab_t * msp)2732 metaslab_fini(metaslab_t *msp)
2733 {
2734 metaslab_group_t *mg = msp->ms_group;
2735 vdev_t *vd = mg->mg_vd;
2736 spa_t *spa = vd->vdev_spa;
2737
2738 metaslab_fini_flush_data(msp);
2739
2740 metaslab_group_remove(mg, msp);
2741
2742 mutex_enter(&msp->ms_lock);
2743 VERIFY(msp->ms_group == NULL);
2744 metaslab_space_update(vd, mg->mg_class,
2745 -metaslab_allocated_space(msp), 0, -msp->ms_size);
2746
2747 space_map_close(msp->ms_sm);
2748 msp->ms_sm = NULL;
2749
2750 metaslab_unload(msp);
2751 range_tree_destroy(msp->ms_allocatable);
2752 range_tree_destroy(msp->ms_freeing);
2753 range_tree_destroy(msp->ms_freed);
2754
2755 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2756 metaslab_unflushed_changes_memused(msp));
2757 spa->spa_unflushed_stats.sus_memused -=
2758 metaslab_unflushed_changes_memused(msp);
2759 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2760 range_tree_destroy(msp->ms_unflushed_allocs);
2761 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2762 range_tree_destroy(msp->ms_unflushed_frees);
2763
2764 for (int t = 0; t < TXG_SIZE; t++) {
2765 range_tree_destroy(msp->ms_allocating[t]);
2766 }
2767
2768 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2769 range_tree_destroy(msp->ms_defer[t]);
2770 }
2771 ASSERT0(msp->ms_deferspace);
2772
2773 range_tree_destroy(msp->ms_checkpointing);
2774
2775 for (int t = 0; t < TXG_SIZE; t++)
2776 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2777
2778 range_tree_vacate(msp->ms_trim, NULL, NULL);
2779 range_tree_destroy(msp->ms_trim);
2780
2781 mutex_exit(&msp->ms_lock);
2782 cv_destroy(&msp->ms_load_cv);
2783 cv_destroy(&msp->ms_flush_cv);
2784 mutex_destroy(&msp->ms_lock);
2785 mutex_destroy(&msp->ms_sync_lock);
2786 ASSERT3U(msp->ms_allocator, ==, -1);
2787
2788 kmem_free(msp, sizeof (metaslab_t));
2789 }
2790
2791 #define FRAGMENTATION_TABLE_SIZE 17
2792
2793 /*
2794 * This table defines a segment size based fragmentation metric that will
2795 * allow each metaslab to derive its own fragmentation value. This is done
2796 * by calculating the space in each bucket of the spacemap histogram and
2797 * multiplying that by the fragmentation metric in this table. Doing
2798 * this for all buckets and dividing it by the total amount of free
2799 * space in this metaslab (i.e. the total free space in all buckets) gives
2800 * us the fragmentation metric. This means that a high fragmentation metric
2801 * equates to most of the free space being comprised of small segments.
2802 * Conversely, if the metric is low, then most of the free space is in
2803 * large segments. A 10% change in fragmentation equates to approximately
2804 * double the number of segments.
2805 *
2806 * This table defines 0% fragmented space using 16MB segments. Testing has
2807 * shown that segments that are greater than or equal to 16MB do not suffer
2808 * from drastic performance problems. Using this value, we derive the rest
2809 * of the table. Since the fragmentation value is never stored on disk, it
2810 * is possible to change these calculations in the future.
2811 */
2812 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2813 100, /* 512B */
2814 100, /* 1K */
2815 98, /* 2K */
2816 95, /* 4K */
2817 90, /* 8K */
2818 80, /* 16K */
2819 70, /* 32K */
2820 60, /* 64K */
2821 50, /* 128K */
2822 40, /* 256K */
2823 30, /* 512K */
2824 20, /* 1M */
2825 15, /* 2M */
2826 10, /* 4M */
2827 5, /* 8M */
2828 0 /* 16M */
2829 };
2830
2831 /*
2832 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2833 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2834 * been upgraded and does not support this metric. Otherwise, the return
2835 * value should be in the range [0, 100].
2836 */
2837 static void
metaslab_set_fragmentation(metaslab_t * msp,boolean_t nodirty)2838 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2839 {
2840 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2841 uint64_t fragmentation = 0;
2842 uint64_t total = 0;
2843 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2844 SPA_FEATURE_SPACEMAP_HISTOGRAM);
2845
2846 if (!feature_enabled) {
2847 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2848 return;
2849 }
2850
2851 /*
2852 * A null space map means that the entire metaslab is free
2853 * and thus is not fragmented.
2854 */
2855 if (msp->ms_sm == NULL) {
2856 msp->ms_fragmentation = 0;
2857 return;
2858 }
2859
2860 /*
2861 * If this metaslab's space map has not been upgraded, flag it
2862 * so that we upgrade next time we encounter it.
2863 */
2864 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2865 uint64_t txg = spa_syncing_txg(spa);
2866 vdev_t *vd = msp->ms_group->mg_vd;
2867
2868 /*
2869 * If we've reached the final dirty txg, then we must
2870 * be shutting down the pool. We don't want to dirty
2871 * any data past this point so skip setting the condense
2872 * flag. We can retry this action the next time the pool
2873 * is imported. We also skip marking this metaslab for
2874 * condensing if the caller has explicitly set nodirty.
2875 */
2876 if (!nodirty &&
2877 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2878 msp->ms_condense_wanted = B_TRUE;
2879 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2880 zfs_dbgmsg("txg %llu, requesting force condense: "
2881 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
2882 vd->vdev_id);
2883 }
2884 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2885 return;
2886 }
2887
2888 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2889 uint64_t space = 0;
2890 uint8_t shift = msp->ms_sm->sm_shift;
2891
2892 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2893 FRAGMENTATION_TABLE_SIZE - 1);
2894
2895 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2896 continue;
2897
2898 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2899 total += space;
2900
2901 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2902 fragmentation += space * zfs_frag_table[idx];
2903 }
2904
2905 if (total > 0)
2906 fragmentation /= total;
2907 ASSERT3U(fragmentation, <=, 100);
2908
2909 msp->ms_fragmentation = fragmentation;
2910 }
2911
2912 /*
2913 * Compute a weight -- a selection preference value -- for the given metaslab.
2914 * This is based on the amount of free space, the level of fragmentation,
2915 * the LBA range, and whether the metaslab is loaded.
2916 */
2917 static uint64_t
metaslab_space_weight(metaslab_t * msp)2918 metaslab_space_weight(metaslab_t *msp)
2919 {
2920 metaslab_group_t *mg = msp->ms_group;
2921 vdev_t *vd = mg->mg_vd;
2922 uint64_t weight, space;
2923
2924 ASSERT(MUTEX_HELD(&msp->ms_lock));
2925
2926 /*
2927 * The baseline weight is the metaslab's free space.
2928 */
2929 space = msp->ms_size - metaslab_allocated_space(msp);
2930
2931 if (metaslab_fragmentation_factor_enabled &&
2932 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2933 /*
2934 * Use the fragmentation information to inversely scale
2935 * down the baseline weight. We need to ensure that we
2936 * don't exclude this metaslab completely when it's 100%
2937 * fragmented. To avoid this we reduce the fragmented value
2938 * by 1.
2939 */
2940 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2941
2942 /*
2943 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2944 * this metaslab again. The fragmentation metric may have
2945 * decreased the space to something smaller than
2946 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2947 * so that we can consume any remaining space.
2948 */
2949 if (space > 0 && space < SPA_MINBLOCKSIZE)
2950 space = SPA_MINBLOCKSIZE;
2951 }
2952 weight = space;
2953
2954 /*
2955 * Modern disks have uniform bit density and constant angular velocity.
2956 * Therefore, the outer recording zones are faster (higher bandwidth)
2957 * than the inner zones by the ratio of outer to inner track diameter,
2958 * which is typically around 2:1. We account for this by assigning
2959 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
2960 * In effect, this means that we'll select the metaslab with the most
2961 * free bandwidth rather than simply the one with the most free space.
2962 */
2963 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
2964 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
2965 ASSERT(weight >= space && weight <= 2 * space);
2966 }
2967
2968 /*
2969 * If this metaslab is one we're actively using, adjust its
2970 * weight to make it preferable to any inactive metaslab so
2971 * we'll polish it off. If the fragmentation on this metaslab
2972 * has exceed our threshold, then don't mark it active.
2973 */
2974 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
2975 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
2976 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
2977 }
2978
2979 WEIGHT_SET_SPACEBASED(weight);
2980 return (weight);
2981 }
2982
2983 /*
2984 * Return the weight of the specified metaslab, according to the segment-based
2985 * weighting algorithm. The metaslab must be loaded. This function can
2986 * be called within a sync pass since it relies only on the metaslab's
2987 * range tree which is always accurate when the metaslab is loaded.
2988 */
2989 static uint64_t
metaslab_weight_from_range_tree(metaslab_t * msp)2990 metaslab_weight_from_range_tree(metaslab_t *msp)
2991 {
2992 uint64_t weight = 0;
2993 uint32_t segments = 0;
2994
2995 ASSERT(msp->ms_loaded);
2996
2997 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
2998 i--) {
2999 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3000 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3001
3002 segments <<= 1;
3003 segments += msp->ms_allocatable->rt_histogram[i];
3004
3005 /*
3006 * The range tree provides more precision than the space map
3007 * and must be downgraded so that all values fit within the
3008 * space map's histogram. This allows us to compare loaded
3009 * vs. unloaded metaslabs to determine which metaslab is
3010 * considered "best".
3011 */
3012 if (i > max_idx)
3013 continue;
3014
3015 if (segments != 0) {
3016 WEIGHT_SET_COUNT(weight, segments);
3017 WEIGHT_SET_INDEX(weight, i);
3018 WEIGHT_SET_ACTIVE(weight, 0);
3019 break;
3020 }
3021 }
3022 return (weight);
3023 }
3024
3025 /*
3026 * Calculate the weight based on the on-disk histogram. Should be applied
3027 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3028 * give results consistent with the on-disk state
3029 */
3030 static uint64_t
metaslab_weight_from_spacemap(metaslab_t * msp)3031 metaslab_weight_from_spacemap(metaslab_t *msp)
3032 {
3033 space_map_t *sm = msp->ms_sm;
3034 ASSERT(!msp->ms_loaded);
3035 ASSERT(sm != NULL);
3036 ASSERT3U(space_map_object(sm), !=, 0);
3037 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3038
3039 /*
3040 * Create a joint histogram from all the segments that have made
3041 * it to the metaslab's space map histogram, that are not yet
3042 * available for allocation because they are still in the freeing
3043 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3044 * these segments from the space map's histogram to get a more
3045 * accurate weight.
3046 */
3047 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3048 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3049 deferspace_histogram[i] += msp->ms_synchist[i];
3050 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3051 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3052 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3053 }
3054 }
3055
3056 uint64_t weight = 0;
3057 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3058 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3059 deferspace_histogram[i]);
3060 uint64_t count =
3061 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3062 if (count != 0) {
3063 WEIGHT_SET_COUNT(weight, count);
3064 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3065 WEIGHT_SET_ACTIVE(weight, 0);
3066 break;
3067 }
3068 }
3069 return (weight);
3070 }
3071
3072 /*
3073 * Compute a segment-based weight for the specified metaslab. The weight
3074 * is determined by highest bucket in the histogram. The information
3075 * for the highest bucket is encoded into the weight value.
3076 */
3077 static uint64_t
metaslab_segment_weight(metaslab_t * msp)3078 metaslab_segment_weight(metaslab_t *msp)
3079 {
3080 metaslab_group_t *mg = msp->ms_group;
3081 uint64_t weight = 0;
3082 uint8_t shift = mg->mg_vd->vdev_ashift;
3083
3084 ASSERT(MUTEX_HELD(&msp->ms_lock));
3085
3086 /*
3087 * The metaslab is completely free.
3088 */
3089 if (metaslab_allocated_space(msp) == 0) {
3090 int idx = highbit64(msp->ms_size) - 1;
3091 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3092
3093 if (idx < max_idx) {
3094 WEIGHT_SET_COUNT(weight, 1ULL);
3095 WEIGHT_SET_INDEX(weight, idx);
3096 } else {
3097 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3098 WEIGHT_SET_INDEX(weight, max_idx);
3099 }
3100 WEIGHT_SET_ACTIVE(weight, 0);
3101 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3102 return (weight);
3103 }
3104
3105 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3106
3107 /*
3108 * If the metaslab is fully allocated then just make the weight 0.
3109 */
3110 if (metaslab_allocated_space(msp) == msp->ms_size)
3111 return (0);
3112 /*
3113 * If the metaslab is already loaded, then use the range tree to
3114 * determine the weight. Otherwise, we rely on the space map information
3115 * to generate the weight.
3116 */
3117 if (msp->ms_loaded) {
3118 weight = metaslab_weight_from_range_tree(msp);
3119 } else {
3120 weight = metaslab_weight_from_spacemap(msp);
3121 }
3122
3123 /*
3124 * If the metaslab was active the last time we calculated its weight
3125 * then keep it active. We want to consume the entire region that
3126 * is associated with this weight.
3127 */
3128 if (msp->ms_activation_weight != 0 && weight != 0)
3129 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3130 return (weight);
3131 }
3132
3133 /*
3134 * Determine if we should attempt to allocate from this metaslab. If the
3135 * metaslab is loaded, then we can determine if the desired allocation
3136 * can be satisfied by looking at the size of the maximum free segment
3137 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3138 * weight. For segment-based weighting we can determine the maximum
3139 * allocation based on the index encoded in its value. For space-based
3140 * weights we rely on the entire weight (excluding the weight-type bit).
3141 */
3142 static boolean_t
metaslab_should_allocate(metaslab_t * msp,uint64_t asize,boolean_t try_hard)3143 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3144 {
3145 /*
3146 * If the metaslab is loaded, ms_max_size is definitive and we can use
3147 * the fast check. If it's not, the ms_max_size is a lower bound (once
3148 * set), and we should use the fast check as long as we're not in
3149 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3150 * seconds since the metaslab was unloaded.
3151 */
3152 if (msp->ms_loaded ||
3153 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3154 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3155 return (msp->ms_max_size >= asize);
3156
3157 boolean_t should_allocate;
3158 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3159 /*
3160 * The metaslab segment weight indicates segments in the
3161 * range [2^i, 2^(i+1)), where i is the index in the weight.
3162 * Since the asize might be in the middle of the range, we
3163 * should attempt the allocation if asize < 2^(i+1).
3164 */
3165 should_allocate = (asize <
3166 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3167 } else {
3168 should_allocate = (asize <=
3169 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3170 }
3171
3172 return (should_allocate);
3173 }
3174
3175 static uint64_t
metaslab_weight(metaslab_t * msp,boolean_t nodirty)3176 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3177 {
3178 vdev_t *vd = msp->ms_group->mg_vd;
3179 spa_t *spa = vd->vdev_spa;
3180 uint64_t weight;
3181
3182 ASSERT(MUTEX_HELD(&msp->ms_lock));
3183
3184 metaslab_set_fragmentation(msp, nodirty);
3185
3186 /*
3187 * Update the maximum size. If the metaslab is loaded, this will
3188 * ensure that we get an accurate maximum size if newly freed space
3189 * has been added back into the free tree. If the metaslab is
3190 * unloaded, we check if there's a larger free segment in the
3191 * unflushed frees. This is a lower bound on the largest allocatable
3192 * segment size. Coalescing of adjacent entries may reveal larger
3193 * allocatable segments, but we aren't aware of those until loading
3194 * the space map into a range tree.
3195 */
3196 if (msp->ms_loaded) {
3197 msp->ms_max_size = metaslab_largest_allocatable(msp);
3198 } else {
3199 msp->ms_max_size = MAX(msp->ms_max_size,
3200 metaslab_largest_unflushed_free(msp));
3201 }
3202
3203 /*
3204 * Segment-based weighting requires space map histogram support.
3205 */
3206 if (zfs_metaslab_segment_weight_enabled &&
3207 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3208 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3209 sizeof (space_map_phys_t))) {
3210 weight = metaslab_segment_weight(msp);
3211 } else {
3212 weight = metaslab_space_weight(msp);
3213 }
3214 return (weight);
3215 }
3216
3217 void
metaslab_recalculate_weight_and_sort(metaslab_t * msp)3218 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3219 {
3220 ASSERT(MUTEX_HELD(&msp->ms_lock));
3221
3222 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3223 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3224 metaslab_group_sort(msp->ms_group, msp,
3225 metaslab_weight(msp, B_FALSE) | was_active);
3226 }
3227
3228 static int
metaslab_activate_allocator(metaslab_group_t * mg,metaslab_t * msp,int allocator,uint64_t activation_weight)3229 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3230 int allocator, uint64_t activation_weight)
3231 {
3232 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3233 ASSERT(MUTEX_HELD(&msp->ms_lock));
3234
3235 /*
3236 * If we're activating for the claim code, we don't want to actually
3237 * set the metaslab up for a specific allocator.
3238 */
3239 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3240 ASSERT0(msp->ms_activation_weight);
3241 msp->ms_activation_weight = msp->ms_weight;
3242 metaslab_group_sort(mg, msp, msp->ms_weight |
3243 activation_weight);
3244 return (0);
3245 }
3246
3247 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3248 &mga->mga_primary : &mga->mga_secondary);
3249
3250 mutex_enter(&mg->mg_lock);
3251 if (*mspp != NULL) {
3252 mutex_exit(&mg->mg_lock);
3253 return (EEXIST);
3254 }
3255
3256 *mspp = msp;
3257 ASSERT3S(msp->ms_allocator, ==, -1);
3258 msp->ms_allocator = allocator;
3259 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3260
3261 ASSERT0(msp->ms_activation_weight);
3262 msp->ms_activation_weight = msp->ms_weight;
3263 metaslab_group_sort_impl(mg, msp,
3264 msp->ms_weight | activation_weight);
3265 mutex_exit(&mg->mg_lock);
3266
3267 return (0);
3268 }
3269
3270 static int
metaslab_activate(metaslab_t * msp,int allocator,uint64_t activation_weight)3271 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3272 {
3273 ASSERT(MUTEX_HELD(&msp->ms_lock));
3274
3275 /*
3276 * The current metaslab is already activated for us so there
3277 * is nothing to do. Already activated though, doesn't mean
3278 * that this metaslab is activated for our allocator nor our
3279 * requested activation weight. The metaslab could have started
3280 * as an active one for our allocator but changed allocators
3281 * while we were waiting to grab its ms_lock or we stole it
3282 * [see find_valid_metaslab()]. This means that there is a
3283 * possibility of passivating a metaslab of another allocator
3284 * or from a different activation mask, from this thread.
3285 */
3286 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3287 ASSERT(msp->ms_loaded);
3288 return (0);
3289 }
3290
3291 int error = metaslab_load(msp);
3292 if (error != 0) {
3293 metaslab_group_sort(msp->ms_group, msp, 0);
3294 return (error);
3295 }
3296
3297 /*
3298 * When entering metaslab_load() we may have dropped the
3299 * ms_lock because we were loading this metaslab, or we
3300 * were waiting for another thread to load it for us. In
3301 * that scenario, we recheck the weight of the metaslab
3302 * to see if it was activated by another thread.
3303 *
3304 * If the metaslab was activated for another allocator or
3305 * it was activated with a different activation weight (e.g.
3306 * we wanted to make it a primary but it was activated as
3307 * secondary) we return error (EBUSY).
3308 *
3309 * If the metaslab was activated for the same allocator
3310 * and requested activation mask, skip activating it.
3311 */
3312 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3313 if (msp->ms_allocator != allocator)
3314 return (EBUSY);
3315
3316 if ((msp->ms_weight & activation_weight) == 0)
3317 return (SET_ERROR(EBUSY));
3318
3319 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3320 msp->ms_primary);
3321 return (0);
3322 }
3323
3324 /*
3325 * If the metaslab has literally 0 space, it will have weight 0. In
3326 * that case, don't bother activating it. This can happen if the
3327 * metaslab had space during find_valid_metaslab, but another thread
3328 * loaded it and used all that space while we were waiting to grab the
3329 * lock.
3330 */
3331 if (msp->ms_weight == 0) {
3332 ASSERT0(range_tree_space(msp->ms_allocatable));
3333 return (SET_ERROR(ENOSPC));
3334 }
3335
3336 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3337 allocator, activation_weight)) != 0) {
3338 return (error);
3339 }
3340
3341 ASSERT(msp->ms_loaded);
3342 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3343
3344 return (0);
3345 }
3346
3347 static void
metaslab_passivate_allocator(metaslab_group_t * mg,metaslab_t * msp,uint64_t weight)3348 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3349 uint64_t weight)
3350 {
3351 ASSERT(MUTEX_HELD(&msp->ms_lock));
3352 ASSERT(msp->ms_loaded);
3353
3354 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3355 metaslab_group_sort(mg, msp, weight);
3356 return;
3357 }
3358
3359 mutex_enter(&mg->mg_lock);
3360 ASSERT3P(msp->ms_group, ==, mg);
3361 ASSERT3S(0, <=, msp->ms_allocator);
3362 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3363
3364 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3365 if (msp->ms_primary) {
3366 ASSERT3P(mga->mga_primary, ==, msp);
3367 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3368 mga->mga_primary = NULL;
3369 } else {
3370 ASSERT3P(mga->mga_secondary, ==, msp);
3371 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3372 mga->mga_secondary = NULL;
3373 }
3374 msp->ms_allocator = -1;
3375 metaslab_group_sort_impl(mg, msp, weight);
3376 mutex_exit(&mg->mg_lock);
3377 }
3378
3379 static void
metaslab_passivate(metaslab_t * msp,uint64_t weight)3380 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3381 {
3382 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3383
3384 /*
3385 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3386 * this metaslab again. In that case, it had better be empty,
3387 * or we would be leaving space on the table.
3388 */
3389 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3390 size >= SPA_MINBLOCKSIZE ||
3391 range_tree_space(msp->ms_allocatable) == 0);
3392 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3393
3394 ASSERT(msp->ms_activation_weight != 0);
3395 msp->ms_activation_weight = 0;
3396 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3397 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3398 }
3399
3400 /*
3401 * Segment-based metaslabs are activated once and remain active until
3402 * we either fail an allocation attempt (similar to space-based metaslabs)
3403 * or have exhausted the free space in zfs_metaslab_switch_threshold
3404 * buckets since the metaslab was activated. This function checks to see
3405 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3406 * metaslab and passivates it proactively. This will allow us to select a
3407 * metaslab with a larger contiguous region, if any, remaining within this
3408 * metaslab group. If we're in sync pass > 1, then we continue using this
3409 * metaslab so that we don't dirty more block and cause more sync passes.
3410 */
3411 static void
metaslab_segment_may_passivate(metaslab_t * msp)3412 metaslab_segment_may_passivate(metaslab_t *msp)
3413 {
3414 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3415
3416 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3417 return;
3418
3419 /*
3420 * Since we are in the middle of a sync pass, the most accurate
3421 * information that is accessible to us is the in-core range tree
3422 * histogram; calculate the new weight based on that information.
3423 */
3424 uint64_t weight = metaslab_weight_from_range_tree(msp);
3425 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3426 int current_idx = WEIGHT_GET_INDEX(weight);
3427
3428 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3429 metaslab_passivate(msp, weight);
3430 }
3431
3432 static void
metaslab_preload(void * arg)3433 metaslab_preload(void *arg)
3434 {
3435 metaslab_t *msp = arg;
3436 metaslab_class_t *mc = msp->ms_group->mg_class;
3437 spa_t *spa = mc->mc_spa;
3438 fstrans_cookie_t cookie = spl_fstrans_mark();
3439
3440 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3441
3442 mutex_enter(&msp->ms_lock);
3443 (void) metaslab_load(msp);
3444 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3445 mutex_exit(&msp->ms_lock);
3446 spl_fstrans_unmark(cookie);
3447 }
3448
3449 static void
metaslab_group_preload(metaslab_group_t * mg)3450 metaslab_group_preload(metaslab_group_t *mg)
3451 {
3452 spa_t *spa = mg->mg_vd->vdev_spa;
3453 metaslab_t *msp;
3454 avl_tree_t *t = &mg->mg_metaslab_tree;
3455 int m = 0;
3456
3457 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3458 taskq_wait_outstanding(mg->mg_taskq, 0);
3459 return;
3460 }
3461
3462 mutex_enter(&mg->mg_lock);
3463
3464 /*
3465 * Load the next potential metaslabs
3466 */
3467 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3468 ASSERT3P(msp->ms_group, ==, mg);
3469
3470 /*
3471 * We preload only the maximum number of metaslabs specified
3472 * by metaslab_preload_limit. If a metaslab is being forced
3473 * to condense then we preload it too. This will ensure
3474 * that force condensing happens in the next txg.
3475 */
3476 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3477 continue;
3478 }
3479
3480 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3481 msp, TQ_SLEEP) != TASKQID_INVALID);
3482 }
3483 mutex_exit(&mg->mg_lock);
3484 }
3485
3486 /*
3487 * Determine if the space map's on-disk footprint is past our tolerance for
3488 * inefficiency. We would like to use the following criteria to make our
3489 * decision:
3490 *
3491 * 1. Do not condense if the size of the space map object would dramatically
3492 * increase as a result of writing out the free space range tree.
3493 *
3494 * 2. Condense if the on on-disk space map representation is at least
3495 * zfs_condense_pct/100 times the size of the optimal representation
3496 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3497 *
3498 * 3. Do not condense if the on-disk size of the space map does not actually
3499 * decrease.
3500 *
3501 * Unfortunately, we cannot compute the on-disk size of the space map in this
3502 * context because we cannot accurately compute the effects of compression, etc.
3503 * Instead, we apply the heuristic described in the block comment for
3504 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3505 * is greater than a threshold number of blocks.
3506 */
3507 static boolean_t
metaslab_should_condense(metaslab_t * msp)3508 metaslab_should_condense(metaslab_t *msp)
3509 {
3510 space_map_t *sm = msp->ms_sm;
3511 vdev_t *vd = msp->ms_group->mg_vd;
3512 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
3513
3514 ASSERT(MUTEX_HELD(&msp->ms_lock));
3515 ASSERT(msp->ms_loaded);
3516 ASSERT(sm != NULL);
3517 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3518
3519 /*
3520 * We always condense metaslabs that are empty and metaslabs for
3521 * which a condense request has been made.
3522 */
3523 if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3524 msp->ms_condense_wanted)
3525 return (B_TRUE);
3526
3527 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3528 uint64_t object_size = space_map_length(sm);
3529 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3530 msp->ms_allocatable, SM_NO_VDEVID);
3531
3532 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3533 object_size > zfs_metaslab_condense_block_threshold * record_size);
3534 }
3535
3536 /*
3537 * Condense the on-disk space map representation to its minimized form.
3538 * The minimized form consists of a small number of allocations followed
3539 * by the entries of the free range tree (ms_allocatable). The condensed
3540 * spacemap contains all the entries of previous TXGs (including those in
3541 * the pool-wide log spacemaps; thus this is effectively a superset of
3542 * metaslab_flush()), but this TXG's entries still need to be written.
3543 */
3544 static void
metaslab_condense(metaslab_t * msp,dmu_tx_t * tx)3545 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3546 {
3547 range_tree_t *condense_tree;
3548 space_map_t *sm = msp->ms_sm;
3549 uint64_t txg = dmu_tx_get_txg(tx);
3550 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3551
3552 ASSERT(MUTEX_HELD(&msp->ms_lock));
3553 ASSERT(msp->ms_loaded);
3554 ASSERT(msp->ms_sm != NULL);
3555
3556 /*
3557 * In order to condense the space map, we need to change it so it
3558 * only describes which segments are currently allocated and free.
3559 *
3560 * All the current free space resides in the ms_allocatable, all
3561 * the ms_defer trees, and all the ms_allocating trees. We ignore
3562 * ms_freed because it is empty because we're in sync pass 1. We
3563 * ignore ms_freeing because these changes are not yet reflected
3564 * in the spacemap (they will be written later this txg).
3565 *
3566 * So to truncate the space map to represent all the entries of
3567 * previous TXGs we do the following:
3568 *
3569 * 1] We create a range tree (condense tree) that is 100% empty.
3570 * 2] We add to it all segments found in the ms_defer trees
3571 * as those segments are marked as free in the original space
3572 * map. We do the same with the ms_allocating trees for the same
3573 * reason. Adding these segments should be a relatively
3574 * inexpensive operation since we expect these trees to have a
3575 * small number of nodes.
3576 * 3] We vacate any unflushed allocs, since they are not frees we
3577 * need to add to the condense tree. Then we vacate any
3578 * unflushed frees as they should already be part of ms_allocatable.
3579 * 4] At this point, we would ideally like to add all segments
3580 * in the ms_allocatable tree from the condense tree. This way
3581 * we would write all the entries of the condense tree as the
3582 * condensed space map, which would only contain freed
3583 * segments with everything else assumed to be allocated.
3584 *
3585 * Doing so can be prohibitively expensive as ms_allocatable can
3586 * be large, and therefore computationally expensive to add to
3587 * the condense_tree. Instead we first sync out an entry marking
3588 * everything as allocated, then the condense_tree and then the
3589 * ms_allocatable, in the condensed space map. While this is not
3590 * optimal, it is typically close to optimal and more importantly
3591 * much cheaper to compute.
3592 *
3593 * 5] Finally, as both of the unflushed trees were written to our
3594 * new and condensed metaslab space map, we basically flushed
3595 * all the unflushed changes to disk, thus we call
3596 * metaslab_flush_update().
3597 */
3598 ASSERT3U(spa_sync_pass(spa), ==, 1);
3599 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3600
3601 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3602 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
3603 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
3604 spa->spa_name, space_map_length(msp->ms_sm),
3605 range_tree_numsegs(msp->ms_allocatable),
3606 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3607
3608 msp->ms_condense_wanted = B_FALSE;
3609
3610 range_seg_type_t type;
3611 uint64_t shift, start;
3612 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3613 &start, &shift);
3614
3615 condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3616
3617 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3618 range_tree_walk(msp->ms_defer[t],
3619 range_tree_add, condense_tree);
3620 }
3621
3622 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3623 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3624 range_tree_add, condense_tree);
3625 }
3626
3627 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3628 metaslab_unflushed_changes_memused(msp));
3629 spa->spa_unflushed_stats.sus_memused -=
3630 metaslab_unflushed_changes_memused(msp);
3631 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3632 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3633
3634 /*
3635 * We're about to drop the metaslab's lock thus allowing other
3636 * consumers to change it's content. Set the metaslab's ms_condensing
3637 * flag to ensure that allocations on this metaslab do not occur
3638 * while we're in the middle of committing it to disk. This is only
3639 * critical for ms_allocatable as all other range trees use per TXG
3640 * views of their content.
3641 */
3642 msp->ms_condensing = B_TRUE;
3643
3644 mutex_exit(&msp->ms_lock);
3645 uint64_t object = space_map_object(msp->ms_sm);
3646 space_map_truncate(sm,
3647 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3648 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3649
3650 /*
3651 * space_map_truncate() may have reallocated the spacemap object.
3652 * If so, update the vdev_ms_array.
3653 */
3654 if (space_map_object(msp->ms_sm) != object) {
3655 object = space_map_object(msp->ms_sm);
3656 dmu_write(spa->spa_meta_objset,
3657 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3658 msp->ms_id, sizeof (uint64_t), &object, tx);
3659 }
3660
3661 /*
3662 * Note:
3663 * When the log space map feature is enabled, each space map will
3664 * always have ALLOCS followed by FREES for each sync pass. This is
3665 * typically true even when the log space map feature is disabled,
3666 * except from the case where a metaslab goes through metaslab_sync()
3667 * and gets condensed. In that case the metaslab's space map will have
3668 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3669 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3670 * sync pass 1.
3671 */
3672 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3673 shift);
3674 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3675 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3676 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3677 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3678
3679 range_tree_vacate(condense_tree, NULL, NULL);
3680 range_tree_destroy(condense_tree);
3681 range_tree_vacate(tmp_tree, NULL, NULL);
3682 range_tree_destroy(tmp_tree);
3683 mutex_enter(&msp->ms_lock);
3684
3685 msp->ms_condensing = B_FALSE;
3686 metaslab_flush_update(msp, tx);
3687 }
3688
3689 /*
3690 * Called when the metaslab has been flushed (its own spacemap now reflects
3691 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3692 * metadata and any pool-wide related log space map data (e.g. summary,
3693 * obsolete logs, etc..) to reflect that.
3694 */
3695 static void
metaslab_flush_update(metaslab_t * msp,dmu_tx_t * tx)3696 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3697 {
3698 metaslab_group_t *mg = msp->ms_group;
3699 spa_t *spa = mg->mg_vd->vdev_spa;
3700
3701 ASSERT(MUTEX_HELD(&msp->ms_lock));
3702
3703 ASSERT3U(spa_sync_pass(spa), ==, 1);
3704 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3705 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3706
3707 /*
3708 * Just because a metaslab got flushed, that doesn't mean that
3709 * it will pass through metaslab_sync_done(). Thus, make sure to
3710 * update ms_synced_length here in case it doesn't.
3711 */
3712 msp->ms_synced_length = space_map_length(msp->ms_sm);
3713
3714 /*
3715 * We may end up here from metaslab_condense() without the
3716 * feature being active. In that case this is a no-op.
3717 */
3718 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
3719 return;
3720
3721 ASSERT(spa_syncing_log_sm(spa) != NULL);
3722 ASSERT(msp->ms_sm != NULL);
3723 ASSERT(metaslab_unflushed_txg(msp) != 0);
3724 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3725
3726 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3727
3728 /* update metaslab's position in our flushing tree */
3729 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3730 mutex_enter(&spa->spa_flushed_ms_lock);
3731 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3732 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3733 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3734 mutex_exit(&spa->spa_flushed_ms_lock);
3735
3736 /* update metaslab counts of spa_log_sm_t nodes */
3737 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3738 spa_log_sm_increment_current_mscount(spa);
3739
3740 /* cleanup obsolete logs if any */
3741 uint64_t log_blocks_before = spa_log_sm_nblocks(spa);
3742 spa_cleanup_old_sm_logs(spa, tx);
3743 uint64_t log_blocks_after = spa_log_sm_nblocks(spa);
3744 VERIFY3U(log_blocks_after, <=, log_blocks_before);
3745
3746 /* update log space map summary */
3747 uint64_t blocks_gone = log_blocks_before - log_blocks_after;
3748 spa_log_summary_add_flushed_metaslab(spa);
3749 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg);
3750 spa_log_summary_decrement_blkcount(spa, blocks_gone);
3751 }
3752
3753 boolean_t
metaslab_flush(metaslab_t * msp,dmu_tx_t * tx)3754 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3755 {
3756 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3757
3758 ASSERT(MUTEX_HELD(&msp->ms_lock));
3759 ASSERT3U(spa_sync_pass(spa), ==, 1);
3760 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3761
3762 ASSERT(msp->ms_sm != NULL);
3763 ASSERT(metaslab_unflushed_txg(msp) != 0);
3764 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3765
3766 /*
3767 * There is nothing wrong with flushing the same metaslab twice, as
3768 * this codepath should work on that case. However, the current
3769 * flushing scheme makes sure to avoid this situation as we would be
3770 * making all these calls without having anything meaningful to write
3771 * to disk. We assert this behavior here.
3772 */
3773 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3774
3775 /*
3776 * We can not flush while loading, because then we would
3777 * not load the ms_unflushed_{allocs,frees}.
3778 */
3779 if (msp->ms_loading)
3780 return (B_FALSE);
3781
3782 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3783 metaslab_verify_weight_and_frag(msp);
3784
3785 /*
3786 * Metaslab condensing is effectively flushing. Therefore if the
3787 * metaslab can be condensed we can just condense it instead of
3788 * flushing it.
3789 *
3790 * Note that metaslab_condense() does call metaslab_flush_update()
3791 * so we can just return immediately after condensing. We also
3792 * don't need to care about setting ms_flushing or broadcasting
3793 * ms_flush_cv, even if we temporarily drop the ms_lock in
3794 * metaslab_condense(), as the metaslab is already loaded.
3795 */
3796 if (msp->ms_loaded && metaslab_should_condense(msp)) {
3797 metaslab_group_t *mg = msp->ms_group;
3798
3799 /*
3800 * For all histogram operations below refer to the
3801 * comments of metaslab_sync() where we follow a
3802 * similar procedure.
3803 */
3804 metaslab_group_histogram_verify(mg);
3805 metaslab_class_histogram_verify(mg->mg_class);
3806 metaslab_group_histogram_remove(mg, msp);
3807
3808 metaslab_condense(msp, tx);
3809
3810 space_map_histogram_clear(msp->ms_sm);
3811 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3812 ASSERT(range_tree_is_empty(msp->ms_freed));
3813 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3814 space_map_histogram_add(msp->ms_sm,
3815 msp->ms_defer[t], tx);
3816 }
3817 metaslab_aux_histograms_update(msp);
3818
3819 metaslab_group_histogram_add(mg, msp);
3820 metaslab_group_histogram_verify(mg);
3821 metaslab_class_histogram_verify(mg->mg_class);
3822
3823 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3824
3825 /*
3826 * Since we recreated the histogram (and potentially
3827 * the ms_sm too while condensing) ensure that the
3828 * weight is updated too because we are not guaranteed
3829 * that this metaslab is dirty and will go through
3830 * metaslab_sync_done().
3831 */
3832 metaslab_recalculate_weight_and_sort(msp);
3833 return (B_TRUE);
3834 }
3835
3836 msp->ms_flushing = B_TRUE;
3837 uint64_t sm_len_before = space_map_length(msp->ms_sm);
3838
3839 mutex_exit(&msp->ms_lock);
3840 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3841 SM_NO_VDEVID, tx);
3842 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3843 SM_NO_VDEVID, tx);
3844 mutex_enter(&msp->ms_lock);
3845
3846 uint64_t sm_len_after = space_map_length(msp->ms_sm);
3847 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3848 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3849 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3850 "appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa),
3851 msp->ms_group->mg_vd->vdev_id, msp->ms_id,
3852 range_tree_space(msp->ms_unflushed_allocs),
3853 range_tree_space(msp->ms_unflushed_frees),
3854 (sm_len_after - sm_len_before));
3855 }
3856
3857 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3858 metaslab_unflushed_changes_memused(msp));
3859 spa->spa_unflushed_stats.sus_memused -=
3860 metaslab_unflushed_changes_memused(msp);
3861 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3862 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3863
3864 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3865 metaslab_verify_weight_and_frag(msp);
3866
3867 metaslab_flush_update(msp, tx);
3868
3869 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3870 metaslab_verify_weight_and_frag(msp);
3871
3872 msp->ms_flushing = B_FALSE;
3873 cv_broadcast(&msp->ms_flush_cv);
3874 return (B_TRUE);
3875 }
3876
3877 /*
3878 * Write a metaslab to disk in the context of the specified transaction group.
3879 */
3880 void
metaslab_sync(metaslab_t * msp,uint64_t txg)3881 metaslab_sync(metaslab_t *msp, uint64_t txg)
3882 {
3883 metaslab_group_t *mg = msp->ms_group;
3884 vdev_t *vd = mg->mg_vd;
3885 spa_t *spa = vd->vdev_spa;
3886 objset_t *mos = spa_meta_objset(spa);
3887 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3888 dmu_tx_t *tx;
3889
3890 ASSERT(!vd->vdev_ishole);
3891
3892 /*
3893 * This metaslab has just been added so there's no work to do now.
3894 */
3895 if (msp->ms_freeing == NULL) {
3896 ASSERT3P(alloctree, ==, NULL);
3897 return;
3898 }
3899
3900 ASSERT3P(alloctree, !=, NULL);
3901 ASSERT3P(msp->ms_freeing, !=, NULL);
3902 ASSERT3P(msp->ms_freed, !=, NULL);
3903 ASSERT3P(msp->ms_checkpointing, !=, NULL);
3904 ASSERT3P(msp->ms_trim, !=, NULL);
3905
3906 /*
3907 * Normally, we don't want to process a metaslab if there are no
3908 * allocations or frees to perform. However, if the metaslab is being
3909 * forced to condense, it's loaded and we're not beyond the final
3910 * dirty txg, we need to let it through. Not condensing beyond the
3911 * final dirty txg prevents an issue where metaslabs that need to be
3912 * condensed but were loaded for other reasons could cause a panic
3913 * here. By only checking the txg in that branch of the conditional,
3914 * we preserve the utility of the VERIFY statements in all other
3915 * cases.
3916 */
3917 if (range_tree_is_empty(alloctree) &&
3918 range_tree_is_empty(msp->ms_freeing) &&
3919 range_tree_is_empty(msp->ms_checkpointing) &&
3920 !(msp->ms_loaded && msp->ms_condense_wanted &&
3921 txg <= spa_final_dirty_txg(spa)))
3922 return;
3923
3924
3925 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
3926
3927 /*
3928 * The only state that can actually be changing concurrently
3929 * with metaslab_sync() is the metaslab's ms_allocatable. No
3930 * other thread can be modifying this txg's alloc, freeing,
3931 * freed, or space_map_phys_t. We drop ms_lock whenever we
3932 * could call into the DMU, because the DMU can call down to
3933 * us (e.g. via zio_free()) at any time.
3934 *
3935 * The spa_vdev_remove_thread() can be reading metaslab state
3936 * concurrently, and it is locked out by the ms_sync_lock.
3937 * Note that the ms_lock is insufficient for this, because it
3938 * is dropped by space_map_write().
3939 */
3940 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3941
3942 /*
3943 * Generate a log space map if one doesn't exist already.
3944 */
3945 spa_generate_syncing_log_sm(spa, tx);
3946
3947 if (msp->ms_sm == NULL) {
3948 uint64_t new_object = space_map_alloc(mos,
3949 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3950 zfs_metaslab_sm_blksz_with_log :
3951 zfs_metaslab_sm_blksz_no_log, tx);
3952 VERIFY3U(new_object, !=, 0);
3953
3954 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
3955 msp->ms_id, sizeof (uint64_t), &new_object, tx);
3956
3957 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
3958 msp->ms_start, msp->ms_size, vd->vdev_ashift));
3959 ASSERT(msp->ms_sm != NULL);
3960
3961 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3962 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3963 ASSERT0(metaslab_allocated_space(msp));
3964 }
3965
3966 if (metaslab_unflushed_txg(msp) == 0 &&
3967 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
3968 ASSERT(spa_syncing_log_sm(spa) != NULL);
3969
3970 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3971 spa_log_sm_increment_current_mscount(spa);
3972 spa_log_summary_add_flushed_metaslab(spa);
3973
3974 ASSERT(msp->ms_sm != NULL);
3975 mutex_enter(&spa->spa_flushed_ms_lock);
3976 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3977 mutex_exit(&spa->spa_flushed_ms_lock);
3978
3979 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3980 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3981 }
3982
3983 if (!range_tree_is_empty(msp->ms_checkpointing) &&
3984 vd->vdev_checkpoint_sm == NULL) {
3985 ASSERT(spa_has_checkpoint(spa));
3986
3987 uint64_t new_object = space_map_alloc(mos,
3988 zfs_vdev_standard_sm_blksz, tx);
3989 VERIFY3U(new_object, !=, 0);
3990
3991 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
3992 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
3993 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3994
3995 /*
3996 * We save the space map object as an entry in vdev_top_zap
3997 * so it can be retrieved when the pool is reopened after an
3998 * export or through zdb.
3999 */
4000 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4001 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4002 sizeof (new_object), 1, &new_object, tx));
4003 }
4004
4005 mutex_enter(&msp->ms_sync_lock);
4006 mutex_enter(&msp->ms_lock);
4007
4008 /*
4009 * Note: metaslab_condense() clears the space map's histogram.
4010 * Therefore we must verify and remove this histogram before
4011 * condensing.
4012 */
4013 metaslab_group_histogram_verify(mg);
4014 metaslab_class_histogram_verify(mg->mg_class);
4015 metaslab_group_histogram_remove(mg, msp);
4016
4017 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4018 metaslab_should_condense(msp))
4019 metaslab_condense(msp, tx);
4020
4021 /*
4022 * We'll be going to disk to sync our space accounting, thus we
4023 * drop the ms_lock during that time so allocations coming from
4024 * open-context (ZIL) for future TXGs do not block.
4025 */
4026 mutex_exit(&msp->ms_lock);
4027 space_map_t *log_sm = spa_syncing_log_sm(spa);
4028 if (log_sm != NULL) {
4029 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4030
4031 space_map_write(log_sm, alloctree, SM_ALLOC,
4032 vd->vdev_id, tx);
4033 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4034 vd->vdev_id, tx);
4035 mutex_enter(&msp->ms_lock);
4036
4037 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4038 metaslab_unflushed_changes_memused(msp));
4039 spa->spa_unflushed_stats.sus_memused -=
4040 metaslab_unflushed_changes_memused(msp);
4041 range_tree_remove_xor_add(alloctree,
4042 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4043 range_tree_remove_xor_add(msp->ms_freeing,
4044 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4045 spa->spa_unflushed_stats.sus_memused +=
4046 metaslab_unflushed_changes_memused(msp);
4047 } else {
4048 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4049
4050 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4051 SM_NO_VDEVID, tx);
4052 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4053 SM_NO_VDEVID, tx);
4054 mutex_enter(&msp->ms_lock);
4055 }
4056
4057 msp->ms_allocated_space += range_tree_space(alloctree);
4058 ASSERT3U(msp->ms_allocated_space, >=,
4059 range_tree_space(msp->ms_freeing));
4060 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4061
4062 if (!range_tree_is_empty(msp->ms_checkpointing)) {
4063 ASSERT(spa_has_checkpoint(spa));
4064 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4065
4066 /*
4067 * Since we are doing writes to disk and the ms_checkpointing
4068 * tree won't be changing during that time, we drop the
4069 * ms_lock while writing to the checkpoint space map, for the
4070 * same reason mentioned above.
4071 */
4072 mutex_exit(&msp->ms_lock);
4073 space_map_write(vd->vdev_checkpoint_sm,
4074 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4075 mutex_enter(&msp->ms_lock);
4076
4077 spa->spa_checkpoint_info.sci_dspace +=
4078 range_tree_space(msp->ms_checkpointing);
4079 vd->vdev_stat.vs_checkpoint_space +=
4080 range_tree_space(msp->ms_checkpointing);
4081 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4082 -space_map_allocated(vd->vdev_checkpoint_sm));
4083
4084 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4085 }
4086
4087 if (msp->ms_loaded) {
4088 /*
4089 * When the space map is loaded, we have an accurate
4090 * histogram in the range tree. This gives us an opportunity
4091 * to bring the space map's histogram up-to-date so we clear
4092 * it first before updating it.
4093 */
4094 space_map_histogram_clear(msp->ms_sm);
4095 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4096
4097 /*
4098 * Since we've cleared the histogram we need to add back
4099 * any free space that has already been processed, plus
4100 * any deferred space. This allows the on-disk histogram
4101 * to accurately reflect all free space even if some space
4102 * is not yet available for allocation (i.e. deferred).
4103 */
4104 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4105
4106 /*
4107 * Add back any deferred free space that has not been
4108 * added back into the in-core free tree yet. This will
4109 * ensure that we don't end up with a space map histogram
4110 * that is completely empty unless the metaslab is fully
4111 * allocated.
4112 */
4113 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4114 space_map_histogram_add(msp->ms_sm,
4115 msp->ms_defer[t], tx);
4116 }
4117 }
4118
4119 /*
4120 * Always add the free space from this sync pass to the space
4121 * map histogram. We want to make sure that the on-disk histogram
4122 * accounts for all free space. If the space map is not loaded,
4123 * then we will lose some accuracy but will correct it the next
4124 * time we load the space map.
4125 */
4126 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4127 metaslab_aux_histograms_update(msp);
4128
4129 metaslab_group_histogram_add(mg, msp);
4130 metaslab_group_histogram_verify(mg);
4131 metaslab_class_histogram_verify(mg->mg_class);
4132
4133 /*
4134 * For sync pass 1, we avoid traversing this txg's free range tree
4135 * and instead will just swap the pointers for freeing and freed.
4136 * We can safely do this since the freed_tree is guaranteed to be
4137 * empty on the initial pass.
4138 *
4139 * Keep in mind that even if we are currently using a log spacemap
4140 * we want current frees to end up in the ms_allocatable (but not
4141 * get appended to the ms_sm) so their ranges can be reused as usual.
4142 */
4143 if (spa_sync_pass(spa) == 1) {
4144 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4145 ASSERT0(msp->ms_allocated_this_txg);
4146 } else {
4147 range_tree_vacate(msp->ms_freeing,
4148 range_tree_add, msp->ms_freed);
4149 }
4150 msp->ms_allocated_this_txg += range_tree_space(alloctree);
4151 range_tree_vacate(alloctree, NULL, NULL);
4152
4153 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4154 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4155 & TXG_MASK]));
4156 ASSERT0(range_tree_space(msp->ms_freeing));
4157 ASSERT0(range_tree_space(msp->ms_checkpointing));
4158
4159 mutex_exit(&msp->ms_lock);
4160
4161 /*
4162 * Verify that the space map object ID has been recorded in the
4163 * vdev_ms_array.
4164 */
4165 uint64_t object;
4166 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4167 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4168 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4169
4170 mutex_exit(&msp->ms_sync_lock);
4171 dmu_tx_commit(tx);
4172 }
4173
4174 static void
metaslab_evict(metaslab_t * msp,uint64_t txg)4175 metaslab_evict(metaslab_t *msp, uint64_t txg)
4176 {
4177 if (!msp->ms_loaded || msp->ms_disabled != 0)
4178 return;
4179
4180 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4181 VERIFY0(range_tree_space(
4182 msp->ms_allocating[(txg + t) & TXG_MASK]));
4183 }
4184 if (msp->ms_allocator != -1)
4185 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4186
4187 if (!metaslab_debug_unload)
4188 metaslab_unload(msp);
4189 }
4190
4191 /*
4192 * Called after a transaction group has completely synced to mark
4193 * all of the metaslab's free space as usable.
4194 */
4195 void
metaslab_sync_done(metaslab_t * msp,uint64_t txg)4196 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4197 {
4198 metaslab_group_t *mg = msp->ms_group;
4199 vdev_t *vd = mg->mg_vd;
4200 spa_t *spa = vd->vdev_spa;
4201 range_tree_t **defer_tree;
4202 int64_t alloc_delta, defer_delta;
4203 boolean_t defer_allowed = B_TRUE;
4204
4205 ASSERT(!vd->vdev_ishole);
4206
4207 mutex_enter(&msp->ms_lock);
4208
4209 /*
4210 * If this metaslab is just becoming available, initialize its
4211 * range trees and add its capacity to the vdev.
4212 */
4213 if (msp->ms_freed == NULL) {
4214 range_seg_type_t type;
4215 uint64_t shift, start;
4216 type = metaslab_calculate_range_tree_type(vd, msp, &start,
4217 &shift);
4218
4219 for (int t = 0; t < TXG_SIZE; t++) {
4220 ASSERT(msp->ms_allocating[t] == NULL);
4221
4222 msp->ms_allocating[t] = range_tree_create(NULL, type,
4223 NULL, start, shift);
4224 }
4225
4226 ASSERT3P(msp->ms_freeing, ==, NULL);
4227 msp->ms_freeing = range_tree_create(NULL, type, NULL, start,
4228 shift);
4229
4230 ASSERT3P(msp->ms_freed, ==, NULL);
4231 msp->ms_freed = range_tree_create(NULL, type, NULL, start,
4232 shift);
4233
4234 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4235 ASSERT3P(msp->ms_defer[t], ==, NULL);
4236 msp->ms_defer[t] = range_tree_create(NULL, type, NULL,
4237 start, shift);
4238 }
4239
4240 ASSERT3P(msp->ms_checkpointing, ==, NULL);
4241 msp->ms_checkpointing = range_tree_create(NULL, type, NULL,
4242 start, shift);
4243
4244 ASSERT3P(msp->ms_unflushed_allocs, ==, NULL);
4245 msp->ms_unflushed_allocs = range_tree_create(NULL, type, NULL,
4246 start, shift);
4247
4248 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
4249 mrap->mra_bt = &msp->ms_unflushed_frees_by_size;
4250 mrap->mra_floor_shift = metaslab_by_size_min_shift;
4251 ASSERT3P(msp->ms_unflushed_frees, ==, NULL);
4252 msp->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
4253 type, mrap, start, shift);
4254
4255 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4256 }
4257 ASSERT0(range_tree_space(msp->ms_freeing));
4258 ASSERT0(range_tree_space(msp->ms_checkpointing));
4259
4260 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4261
4262 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4263 metaslab_class_get_alloc(spa_normal_class(spa));
4264 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4265 defer_allowed = B_FALSE;
4266 }
4267
4268 defer_delta = 0;
4269 alloc_delta = msp->ms_allocated_this_txg -
4270 range_tree_space(msp->ms_freed);
4271
4272 if (defer_allowed) {
4273 defer_delta = range_tree_space(msp->ms_freed) -
4274 range_tree_space(*defer_tree);
4275 } else {
4276 defer_delta -= range_tree_space(*defer_tree);
4277 }
4278 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4279 defer_delta, 0);
4280
4281 if (spa_syncing_log_sm(spa) == NULL) {
4282 /*
4283 * If there's a metaslab_load() in progress and we don't have
4284 * a log space map, it means that we probably wrote to the
4285 * metaslab's space map. If this is the case, we need to
4286 * make sure that we wait for the load to complete so that we
4287 * have a consistent view at the in-core side of the metaslab.
4288 */
4289 metaslab_load_wait(msp);
4290 } else {
4291 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4292 }
4293
4294 /*
4295 * When auto-trimming is enabled, free ranges which are added to
4296 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4297 * periodically consumed by the vdev_autotrim_thread() which issues
4298 * trims for all ranges and then vacates the tree. The ms_trim tree
4299 * can be discarded at any time with the sole consequence of recent
4300 * frees not being trimmed.
4301 */
4302 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4303 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4304 if (!defer_allowed) {
4305 range_tree_walk(msp->ms_freed, range_tree_add,
4306 msp->ms_trim);
4307 }
4308 } else {
4309 range_tree_vacate(msp->ms_trim, NULL, NULL);
4310 }
4311
4312 /*
4313 * Move the frees from the defer_tree back to the free
4314 * range tree (if it's loaded). Swap the freed_tree and
4315 * the defer_tree -- this is safe to do because we've
4316 * just emptied out the defer_tree.
4317 */
4318 range_tree_vacate(*defer_tree,
4319 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4320 if (defer_allowed) {
4321 range_tree_swap(&msp->ms_freed, defer_tree);
4322 } else {
4323 range_tree_vacate(msp->ms_freed,
4324 msp->ms_loaded ? range_tree_add : NULL,
4325 msp->ms_allocatable);
4326 }
4327
4328 msp->ms_synced_length = space_map_length(msp->ms_sm);
4329
4330 msp->ms_deferspace += defer_delta;
4331 ASSERT3S(msp->ms_deferspace, >=, 0);
4332 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4333 if (msp->ms_deferspace != 0) {
4334 /*
4335 * Keep syncing this metaslab until all deferred frees
4336 * are back in circulation.
4337 */
4338 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4339 }
4340 metaslab_aux_histograms_update_done(msp, defer_allowed);
4341
4342 if (msp->ms_new) {
4343 msp->ms_new = B_FALSE;
4344 mutex_enter(&mg->mg_lock);
4345 mg->mg_ms_ready++;
4346 mutex_exit(&mg->mg_lock);
4347 }
4348
4349 /*
4350 * Re-sort metaslab within its group now that we've adjusted
4351 * its allocatable space.
4352 */
4353 metaslab_recalculate_weight_and_sort(msp);
4354
4355 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4356 ASSERT0(range_tree_space(msp->ms_freeing));
4357 ASSERT0(range_tree_space(msp->ms_freed));
4358 ASSERT0(range_tree_space(msp->ms_checkpointing));
4359 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4360 msp->ms_allocated_this_txg = 0;
4361 mutex_exit(&msp->ms_lock);
4362 }
4363
4364 void
metaslab_sync_reassess(metaslab_group_t * mg)4365 metaslab_sync_reassess(metaslab_group_t *mg)
4366 {
4367 spa_t *spa = mg->mg_class->mc_spa;
4368
4369 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4370 metaslab_group_alloc_update(mg);
4371 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4372
4373 /*
4374 * Preload the next potential metaslabs but only on active
4375 * metaslab groups. We can get into a state where the metaslab
4376 * is no longer active since we dirty metaslabs as we remove a
4377 * a device, thus potentially making the metaslab group eligible
4378 * for preloading.
4379 */
4380 if (mg->mg_activation_count > 0) {
4381 metaslab_group_preload(mg);
4382 }
4383 spa_config_exit(spa, SCL_ALLOC, FTAG);
4384 }
4385
4386 /*
4387 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4388 * the same vdev as an existing DVA of this BP, then try to allocate it
4389 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4390 */
4391 static boolean_t
metaslab_is_unique(metaslab_t * msp,dva_t * dva)4392 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4393 {
4394 uint64_t dva_ms_id;
4395
4396 if (DVA_GET_ASIZE(dva) == 0)
4397 return (B_TRUE);
4398
4399 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4400 return (B_TRUE);
4401
4402 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4403
4404 return (msp->ms_id != dva_ms_id);
4405 }
4406
4407 /*
4408 * ==========================================================================
4409 * Metaslab allocation tracing facility
4410 * ==========================================================================
4411 */
4412
4413 /*
4414 * Add an allocation trace element to the allocation tracing list.
4415 */
4416 static void
metaslab_trace_add(zio_alloc_list_t * zal,metaslab_group_t * mg,metaslab_t * msp,uint64_t psize,uint32_t dva_id,uint64_t offset,int allocator)4417 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4418 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4419 int allocator)
4420 {
4421 metaslab_alloc_trace_t *mat;
4422
4423 if (!metaslab_trace_enabled)
4424 return;
4425
4426 /*
4427 * When the tracing list reaches its maximum we remove
4428 * the second element in the list before adding a new one.
4429 * By removing the second element we preserve the original
4430 * entry as a clue to what allocations steps have already been
4431 * performed.
4432 */
4433 if (zal->zal_size == metaslab_trace_max_entries) {
4434 metaslab_alloc_trace_t *mat_next;
4435 #ifdef ZFS_DEBUG
4436 panic("too many entries in allocation list");
4437 #endif
4438 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4439 zal->zal_size--;
4440 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4441 list_remove(&zal->zal_list, mat_next);
4442 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4443 }
4444
4445 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4446 list_link_init(&mat->mat_list_node);
4447 mat->mat_mg = mg;
4448 mat->mat_msp = msp;
4449 mat->mat_size = psize;
4450 mat->mat_dva_id = dva_id;
4451 mat->mat_offset = offset;
4452 mat->mat_weight = 0;
4453 mat->mat_allocator = allocator;
4454
4455 if (msp != NULL)
4456 mat->mat_weight = msp->ms_weight;
4457
4458 /*
4459 * The list is part of the zio so locking is not required. Only
4460 * a single thread will perform allocations for a given zio.
4461 */
4462 list_insert_tail(&zal->zal_list, mat);
4463 zal->zal_size++;
4464
4465 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4466 }
4467
4468 void
metaslab_trace_init(zio_alloc_list_t * zal)4469 metaslab_trace_init(zio_alloc_list_t *zal)
4470 {
4471 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4472 offsetof(metaslab_alloc_trace_t, mat_list_node));
4473 zal->zal_size = 0;
4474 }
4475
4476 void
metaslab_trace_fini(zio_alloc_list_t * zal)4477 metaslab_trace_fini(zio_alloc_list_t *zal)
4478 {
4479 metaslab_alloc_trace_t *mat;
4480
4481 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4482 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4483 list_destroy(&zal->zal_list);
4484 zal->zal_size = 0;
4485 }
4486
4487 /*
4488 * ==========================================================================
4489 * Metaslab block operations
4490 * ==========================================================================
4491 */
4492
4493 static void
metaslab_group_alloc_increment(spa_t * spa,uint64_t vdev,void * tag,int flags,int allocator)4494 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
4495 int allocator)
4496 {
4497 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4498 (flags & METASLAB_DONT_THROTTLE))
4499 return;
4500
4501 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4502 if (!mg->mg_class->mc_alloc_throttle_enabled)
4503 return;
4504
4505 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4506 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4507 }
4508
4509 static void
metaslab_group_increment_qdepth(metaslab_group_t * mg,int allocator)4510 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4511 {
4512 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4513 metaslab_class_allocator_t *mca =
4514 &mg->mg_class->mc_allocator[allocator];
4515 uint64_t max = mg->mg_max_alloc_queue_depth;
4516 uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4517 while (cur < max) {
4518 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4519 cur, cur + 1) == cur) {
4520 atomic_inc_64(&mca->mca_alloc_max_slots);
4521 return;
4522 }
4523 cur = mga->mga_cur_max_alloc_queue_depth;
4524 }
4525 }
4526
4527 void
metaslab_group_alloc_decrement(spa_t * spa,uint64_t vdev,void * tag,int flags,int allocator,boolean_t io_complete)4528 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
4529 int allocator, boolean_t io_complete)
4530 {
4531 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4532 (flags & METASLAB_DONT_THROTTLE))
4533 return;
4534
4535 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4536 if (!mg->mg_class->mc_alloc_throttle_enabled)
4537 return;
4538
4539 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4540 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4541 if (io_complete)
4542 metaslab_group_increment_qdepth(mg, allocator);
4543 }
4544
4545 void
metaslab_group_alloc_verify(spa_t * spa,const blkptr_t * bp,void * tag,int allocator)4546 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
4547 int allocator)
4548 {
4549 #ifdef ZFS_DEBUG
4550 const dva_t *dva = bp->blk_dva;
4551 int ndvas = BP_GET_NDVAS(bp);
4552
4553 for (int d = 0; d < ndvas; d++) {
4554 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4555 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4556 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4557 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4558 }
4559 #endif
4560 }
4561
4562 static uint64_t
metaslab_block_alloc(metaslab_t * msp,uint64_t size,uint64_t txg)4563 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4564 {
4565 uint64_t start;
4566 range_tree_t *rt = msp->ms_allocatable;
4567 metaslab_class_t *mc = msp->ms_group->mg_class;
4568
4569 ASSERT(MUTEX_HELD(&msp->ms_lock));
4570 VERIFY(!msp->ms_condensing);
4571 VERIFY0(msp->ms_disabled);
4572
4573 start = mc->mc_ops->msop_alloc(msp, size);
4574 if (start != -1ULL) {
4575 metaslab_group_t *mg = msp->ms_group;
4576 vdev_t *vd = mg->mg_vd;
4577
4578 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4579 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4580 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4581 range_tree_remove(rt, start, size);
4582 range_tree_clear(msp->ms_trim, start, size);
4583
4584 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4585 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4586
4587 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4588 msp->ms_allocating_total += size;
4589
4590 /* Track the last successful allocation */
4591 msp->ms_alloc_txg = txg;
4592 metaslab_verify_space(msp, txg);
4593 }
4594
4595 /*
4596 * Now that we've attempted the allocation we need to update the
4597 * metaslab's maximum block size since it may have changed.
4598 */
4599 msp->ms_max_size = metaslab_largest_allocatable(msp);
4600 return (start);
4601 }
4602
4603 /*
4604 * Find the metaslab with the highest weight that is less than what we've
4605 * already tried. In the common case, this means that we will examine each
4606 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4607 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4608 * activated by another thread, and we fail to allocate from the metaslab we
4609 * have selected, we may not try the newly-activated metaslab, and instead
4610 * activate another metaslab. This is not optimal, but generally does not cause
4611 * any problems (a possible exception being if every metaslab is completely full
4612 * except for the newly-activated metaslab which we fail to examine).
4613 */
4614 static metaslab_t *
find_valid_metaslab(metaslab_group_t * mg,uint64_t activation_weight,dva_t * dva,int d,boolean_t want_unique,uint64_t asize,int allocator,boolean_t try_hard,zio_alloc_list_t * zal,metaslab_t * search,boolean_t * was_active)4615 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4616 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4617 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4618 boolean_t *was_active)
4619 {
4620 avl_index_t idx;
4621 avl_tree_t *t = &mg->mg_metaslab_tree;
4622 metaslab_t *msp = avl_find(t, search, &idx);
4623 if (msp == NULL)
4624 msp = avl_nearest(t, idx, AVL_AFTER);
4625
4626 int tries = 0;
4627 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4628 int i;
4629
4630 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4631 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4632 return (NULL);
4633 }
4634 tries++;
4635
4636 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4637 metaslab_trace_add(zal, mg, msp, asize, d,
4638 TRACE_TOO_SMALL, allocator);
4639 continue;
4640 }
4641
4642 /*
4643 * If the selected metaslab is condensing or disabled,
4644 * skip it.
4645 */
4646 if (msp->ms_condensing || msp->ms_disabled > 0)
4647 continue;
4648
4649 *was_active = msp->ms_allocator != -1;
4650 /*
4651 * If we're activating as primary, this is our first allocation
4652 * from this disk, so we don't need to check how close we are.
4653 * If the metaslab under consideration was already active,
4654 * we're getting desperate enough to steal another allocator's
4655 * metaslab, so we still don't care about distances.
4656 */
4657 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4658 break;
4659
4660 for (i = 0; i < d; i++) {
4661 if (want_unique &&
4662 !metaslab_is_unique(msp, &dva[i]))
4663 break; /* try another metaslab */
4664 }
4665 if (i == d)
4666 break;
4667 }
4668
4669 if (msp != NULL) {
4670 search->ms_weight = msp->ms_weight;
4671 search->ms_start = msp->ms_start + 1;
4672 search->ms_allocator = msp->ms_allocator;
4673 search->ms_primary = msp->ms_primary;
4674 }
4675 return (msp);
4676 }
4677
4678 static void
metaslab_active_mask_verify(metaslab_t * msp)4679 metaslab_active_mask_verify(metaslab_t *msp)
4680 {
4681 ASSERT(MUTEX_HELD(&msp->ms_lock));
4682
4683 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4684 return;
4685
4686 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4687 return;
4688
4689 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4690 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4691 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4692 VERIFY3S(msp->ms_allocator, !=, -1);
4693 VERIFY(msp->ms_primary);
4694 return;
4695 }
4696
4697 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4698 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4699 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4700 VERIFY3S(msp->ms_allocator, !=, -1);
4701 VERIFY(!msp->ms_primary);
4702 return;
4703 }
4704
4705 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4706 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4707 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4708 VERIFY3S(msp->ms_allocator, ==, -1);
4709 return;
4710 }
4711 }
4712
4713 /* ARGSUSED */
4714 static uint64_t
metaslab_group_alloc_normal(metaslab_group_t * mg,zio_alloc_list_t * zal,uint64_t asize,uint64_t txg,boolean_t want_unique,dva_t * dva,int d,int allocator,boolean_t try_hard)4715 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4716 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4717 int allocator, boolean_t try_hard)
4718 {
4719 metaslab_t *msp = NULL;
4720 uint64_t offset = -1ULL;
4721
4722 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4723 for (int i = 0; i < d; i++) {
4724 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4725 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4726 activation_weight = METASLAB_WEIGHT_SECONDARY;
4727 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4728 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4729 activation_weight = METASLAB_WEIGHT_CLAIM;
4730 break;
4731 }
4732 }
4733
4734 /*
4735 * If we don't have enough metaslabs active to fill the entire array, we
4736 * just use the 0th slot.
4737 */
4738 if (mg->mg_ms_ready < mg->mg_allocators * 3)
4739 allocator = 0;
4740 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4741
4742 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4743
4744 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4745 search->ms_weight = UINT64_MAX;
4746 search->ms_start = 0;
4747 /*
4748 * At the end of the metaslab tree are the already-active metaslabs,
4749 * first the primaries, then the secondaries. When we resume searching
4750 * through the tree, we need to consider ms_allocator and ms_primary so
4751 * we start in the location right after where we left off, and don't
4752 * accidentally loop forever considering the same metaslabs.
4753 */
4754 search->ms_allocator = -1;
4755 search->ms_primary = B_TRUE;
4756 for (;;) {
4757 boolean_t was_active = B_FALSE;
4758
4759 mutex_enter(&mg->mg_lock);
4760
4761 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4762 mga->mga_primary != NULL) {
4763 msp = mga->mga_primary;
4764
4765 /*
4766 * Even though we don't hold the ms_lock for the
4767 * primary metaslab, those fields should not
4768 * change while we hold the mg_lock. Thus it is
4769 * safe to make assertions on them.
4770 */
4771 ASSERT(msp->ms_primary);
4772 ASSERT3S(msp->ms_allocator, ==, allocator);
4773 ASSERT(msp->ms_loaded);
4774
4775 was_active = B_TRUE;
4776 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4777 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4778 mga->mga_secondary != NULL) {
4779 msp = mga->mga_secondary;
4780
4781 /*
4782 * See comment above about the similar assertions
4783 * for the primary metaslab.
4784 */
4785 ASSERT(!msp->ms_primary);
4786 ASSERT3S(msp->ms_allocator, ==, allocator);
4787 ASSERT(msp->ms_loaded);
4788
4789 was_active = B_TRUE;
4790 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4791 } else {
4792 msp = find_valid_metaslab(mg, activation_weight, dva, d,
4793 want_unique, asize, allocator, try_hard, zal,
4794 search, &was_active);
4795 }
4796
4797 mutex_exit(&mg->mg_lock);
4798 if (msp == NULL) {
4799 kmem_free(search, sizeof (*search));
4800 return (-1ULL);
4801 }
4802 mutex_enter(&msp->ms_lock);
4803
4804 metaslab_active_mask_verify(msp);
4805
4806 /*
4807 * This code is disabled out because of issues with
4808 * tracepoints in non-gpl kernel modules.
4809 */
4810 #if 0
4811 DTRACE_PROBE3(ms__activation__attempt,
4812 metaslab_t *, msp, uint64_t, activation_weight,
4813 boolean_t, was_active);
4814 #endif
4815
4816 /*
4817 * Ensure that the metaslab we have selected is still
4818 * capable of handling our request. It's possible that
4819 * another thread may have changed the weight while we
4820 * were blocked on the metaslab lock. We check the
4821 * active status first to see if we need to set_selected_txg
4822 * a new metaslab.
4823 */
4824 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4825 ASSERT3S(msp->ms_allocator, ==, -1);
4826 mutex_exit(&msp->ms_lock);
4827 continue;
4828 }
4829
4830 /*
4831 * If the metaslab was activated for another allocator
4832 * while we were waiting in the ms_lock above, or it's
4833 * a primary and we're seeking a secondary (or vice versa),
4834 * we go back and select a new metaslab.
4835 */
4836 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4837 (msp->ms_allocator != -1) &&
4838 (msp->ms_allocator != allocator || ((activation_weight ==
4839 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4840 ASSERT(msp->ms_loaded);
4841 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4842 msp->ms_allocator != -1);
4843 mutex_exit(&msp->ms_lock);
4844 continue;
4845 }
4846
4847 /*
4848 * This metaslab was used for claiming regions allocated
4849 * by the ZIL during pool import. Once these regions are
4850 * claimed we don't need to keep the CLAIM bit set
4851 * anymore. Passivate this metaslab to zero its activation
4852 * mask.
4853 */
4854 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4855 activation_weight != METASLAB_WEIGHT_CLAIM) {
4856 ASSERT(msp->ms_loaded);
4857 ASSERT3S(msp->ms_allocator, ==, -1);
4858 metaslab_passivate(msp, msp->ms_weight &
4859 ~METASLAB_WEIGHT_CLAIM);
4860 mutex_exit(&msp->ms_lock);
4861 continue;
4862 }
4863
4864 metaslab_set_selected_txg(msp, txg);
4865
4866 int activation_error =
4867 metaslab_activate(msp, allocator, activation_weight);
4868 metaslab_active_mask_verify(msp);
4869
4870 /*
4871 * If the metaslab was activated by another thread for
4872 * another allocator or activation_weight (EBUSY), or it
4873 * failed because another metaslab was assigned as primary
4874 * for this allocator (EEXIST) we continue using this
4875 * metaslab for our allocation, rather than going on to a
4876 * worse metaslab (we waited for that metaslab to be loaded
4877 * after all).
4878 *
4879 * If the activation failed due to an I/O error or ENOSPC we
4880 * skip to the next metaslab.
4881 */
4882 boolean_t activated;
4883 if (activation_error == 0) {
4884 activated = B_TRUE;
4885 } else if (activation_error == EBUSY ||
4886 activation_error == EEXIST) {
4887 activated = B_FALSE;
4888 } else {
4889 mutex_exit(&msp->ms_lock);
4890 continue;
4891 }
4892 ASSERT(msp->ms_loaded);
4893
4894 /*
4895 * Now that we have the lock, recheck to see if we should
4896 * continue to use this metaslab for this allocation. The
4897 * the metaslab is now loaded so metaslab_should_allocate()
4898 * can accurately determine if the allocation attempt should
4899 * proceed.
4900 */
4901 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4902 /* Passivate this metaslab and select a new one. */
4903 metaslab_trace_add(zal, mg, msp, asize, d,
4904 TRACE_TOO_SMALL, allocator);
4905 goto next;
4906 }
4907
4908 /*
4909 * If this metaslab is currently condensing then pick again
4910 * as we can't manipulate this metaslab until it's committed
4911 * to disk. If this metaslab is being initialized, we shouldn't
4912 * allocate from it since the allocated region might be
4913 * overwritten after allocation.
4914 */
4915 if (msp->ms_condensing) {
4916 metaslab_trace_add(zal, mg, msp, asize, d,
4917 TRACE_CONDENSING, allocator);
4918 if (activated) {
4919 metaslab_passivate(msp, msp->ms_weight &
4920 ~METASLAB_ACTIVE_MASK);
4921 }
4922 mutex_exit(&msp->ms_lock);
4923 continue;
4924 } else if (msp->ms_disabled > 0) {
4925 metaslab_trace_add(zal, mg, msp, asize, d,
4926 TRACE_DISABLED, allocator);
4927 if (activated) {
4928 metaslab_passivate(msp, msp->ms_weight &
4929 ~METASLAB_ACTIVE_MASK);
4930 }
4931 mutex_exit(&msp->ms_lock);
4932 continue;
4933 }
4934
4935 offset = metaslab_block_alloc(msp, asize, txg);
4936 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4937
4938 if (offset != -1ULL) {
4939 /* Proactively passivate the metaslab, if needed */
4940 if (activated)
4941 metaslab_segment_may_passivate(msp);
4942 break;
4943 }
4944 next:
4945 ASSERT(msp->ms_loaded);
4946
4947 /*
4948 * This code is disabled out because of issues with
4949 * tracepoints in non-gpl kernel modules.
4950 */
4951 #if 0
4952 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4953 uint64_t, asize);
4954 #endif
4955
4956 /*
4957 * We were unable to allocate from this metaslab so determine
4958 * a new weight for this metaslab. Now that we have loaded
4959 * the metaslab we can provide a better hint to the metaslab
4960 * selector.
4961 *
4962 * For space-based metaslabs, we use the maximum block size.
4963 * This information is only available when the metaslab
4964 * is loaded and is more accurate than the generic free
4965 * space weight that was calculated by metaslab_weight().
4966 * This information allows us to quickly compare the maximum
4967 * available allocation in the metaslab to the allocation
4968 * size being requested.
4969 *
4970 * For segment-based metaslabs, determine the new weight
4971 * based on the highest bucket in the range tree. We
4972 * explicitly use the loaded segment weight (i.e. the range
4973 * tree histogram) since it contains the space that is
4974 * currently available for allocation and is accurate
4975 * even within a sync pass.
4976 */
4977 uint64_t weight;
4978 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
4979 weight = metaslab_largest_allocatable(msp);
4980 WEIGHT_SET_SPACEBASED(weight);
4981 } else {
4982 weight = metaslab_weight_from_range_tree(msp);
4983 }
4984
4985 if (activated) {
4986 metaslab_passivate(msp, weight);
4987 } else {
4988 /*
4989 * For the case where we use the metaslab that is
4990 * active for another allocator we want to make
4991 * sure that we retain the activation mask.
4992 *
4993 * Note that we could attempt to use something like
4994 * metaslab_recalculate_weight_and_sort() that
4995 * retains the activation mask here. That function
4996 * uses metaslab_weight() to set the weight though
4997 * which is not as accurate as the calculations
4998 * above.
4999 */
5000 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5001 metaslab_group_sort(mg, msp, weight);
5002 }
5003 metaslab_active_mask_verify(msp);
5004
5005 /*
5006 * We have just failed an allocation attempt, check
5007 * that metaslab_should_allocate() agrees. Otherwise,
5008 * we may end up in an infinite loop retrying the same
5009 * metaslab.
5010 */
5011 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5012
5013 mutex_exit(&msp->ms_lock);
5014 }
5015 mutex_exit(&msp->ms_lock);
5016 kmem_free(search, sizeof (*search));
5017 return (offset);
5018 }
5019
5020 static uint64_t
metaslab_group_alloc(metaslab_group_t * mg,zio_alloc_list_t * zal,uint64_t asize,uint64_t txg,boolean_t want_unique,dva_t * dva,int d,int allocator,boolean_t try_hard)5021 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5022 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5023 int allocator, boolean_t try_hard)
5024 {
5025 uint64_t offset;
5026 ASSERT(mg->mg_initialized);
5027
5028 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5029 dva, d, allocator, try_hard);
5030
5031 mutex_enter(&mg->mg_lock);
5032 if (offset == -1ULL) {
5033 mg->mg_failed_allocations++;
5034 metaslab_trace_add(zal, mg, NULL, asize, d,
5035 TRACE_GROUP_FAILURE, allocator);
5036 if (asize == SPA_GANGBLOCKSIZE) {
5037 /*
5038 * This metaslab group was unable to allocate
5039 * the minimum gang block size so it must be out of
5040 * space. We must notify the allocation throttle
5041 * to start skipping allocation attempts to this
5042 * metaslab group until more space becomes available.
5043 * Note: this failure cannot be caused by the
5044 * allocation throttle since the allocation throttle
5045 * is only responsible for skipping devices and
5046 * not failing block allocations.
5047 */
5048 mg->mg_no_free_space = B_TRUE;
5049 }
5050 }
5051 mg->mg_allocations++;
5052 mutex_exit(&mg->mg_lock);
5053 return (offset);
5054 }
5055
5056 /*
5057 * Allocate a block for the specified i/o.
5058 */
5059 int
metaslab_alloc_dva(spa_t * spa,metaslab_class_t * mc,uint64_t psize,dva_t * dva,int d,dva_t * hintdva,uint64_t txg,int flags,zio_alloc_list_t * zal,int allocator)5060 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5061 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5062 zio_alloc_list_t *zal, int allocator)
5063 {
5064 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5065 metaslab_group_t *mg, *fast_mg, *rotor;
5066 vdev_t *vd;
5067 boolean_t try_hard = B_FALSE;
5068
5069 ASSERT(!DVA_IS_VALID(&dva[d]));
5070
5071 /*
5072 * For testing, make some blocks above a certain size be gang blocks.
5073 * This will result in more split blocks when using device removal,
5074 * and a large number of split blocks coupled with ztest-induced
5075 * damage can result in extremely long reconstruction times. This
5076 * will also test spilling from special to normal.
5077 */
5078 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
5079 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5080 allocator);
5081 return (SET_ERROR(ENOSPC));
5082 }
5083
5084 /*
5085 * Start at the rotor and loop through all mgs until we find something.
5086 * Note that there's no locking on mca_rotor or mca_aliquot because
5087 * nothing actually breaks if we miss a few updates -- we just won't
5088 * allocate quite as evenly. It all balances out over time.
5089 *
5090 * If we are doing ditto or log blocks, try to spread them across
5091 * consecutive vdevs. If we're forced to reuse a vdev before we've
5092 * allocated all of our ditto blocks, then try and spread them out on
5093 * that vdev as much as possible. If it turns out to not be possible,
5094 * gradually lower our standards until anything becomes acceptable.
5095 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5096 * gives us hope of containing our fault domains to something we're
5097 * able to reason about. Otherwise, any two top-level vdev failures
5098 * will guarantee the loss of data. With consecutive allocation,
5099 * only two adjacent top-level vdev failures will result in data loss.
5100 *
5101 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5102 * ourselves on the same vdev as our gang block header. That
5103 * way, we can hope for locality in vdev_cache, plus it makes our
5104 * fault domains something tractable.
5105 */
5106 if (hintdva) {
5107 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5108
5109 /*
5110 * It's possible the vdev we're using as the hint no
5111 * longer exists or its mg has been closed (e.g. by
5112 * device removal). Consult the rotor when
5113 * all else fails.
5114 */
5115 if (vd != NULL && vd->vdev_mg != NULL) {
5116 mg = vd->vdev_mg;
5117
5118 if (flags & METASLAB_HINTBP_AVOID &&
5119 mg->mg_next != NULL)
5120 mg = mg->mg_next;
5121 } else {
5122 mg = mca->mca_rotor;
5123 }
5124 } else if (d != 0) {
5125 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5126 mg = vd->vdev_mg->mg_next;
5127 } else if (flags & METASLAB_FASTWRITE) {
5128 mg = fast_mg = mca->mca_rotor;
5129
5130 do {
5131 if (fast_mg->mg_vd->vdev_pending_fastwrite <
5132 mg->mg_vd->vdev_pending_fastwrite)
5133 mg = fast_mg;
5134 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);
5135
5136 } else {
5137 ASSERT(mca->mca_rotor != NULL);
5138 mg = mca->mca_rotor;
5139 }
5140
5141 /*
5142 * If the hint put us into the wrong metaslab class, or into a
5143 * metaslab group that has been passivated, just follow the rotor.
5144 */
5145 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5146 mg = mca->mca_rotor;
5147
5148 rotor = mg;
5149 top:
5150 do {
5151 boolean_t allocatable;
5152
5153 ASSERT(mg->mg_activation_count == 1);
5154 vd = mg->mg_vd;
5155
5156 /*
5157 * Don't allocate from faulted devices.
5158 */
5159 if (try_hard) {
5160 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5161 allocatable = vdev_allocatable(vd);
5162 spa_config_exit(spa, SCL_ZIO, FTAG);
5163 } else {
5164 allocatable = vdev_allocatable(vd);
5165 }
5166
5167 /*
5168 * Determine if the selected metaslab group is eligible
5169 * for allocations. If we're ganging then don't allow
5170 * this metaslab group to skip allocations since that would
5171 * inadvertently return ENOSPC and suspend the pool
5172 * even though space is still available.
5173 */
5174 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5175 allocatable = metaslab_group_allocatable(mg, rotor,
5176 psize, allocator, d);
5177 }
5178
5179 if (!allocatable) {
5180 metaslab_trace_add(zal, mg, NULL, psize, d,
5181 TRACE_NOT_ALLOCATABLE, allocator);
5182 goto next;
5183 }
5184
5185 ASSERT(mg->mg_initialized);
5186
5187 /*
5188 * Avoid writing single-copy data to a failing,
5189 * non-redundant vdev, unless we've already tried all
5190 * other vdevs.
5191 */
5192 if ((vd->vdev_stat.vs_write_errors > 0 ||
5193 vd->vdev_state < VDEV_STATE_HEALTHY) &&
5194 d == 0 && !try_hard && vd->vdev_children == 0) {
5195 metaslab_trace_add(zal, mg, NULL, psize, d,
5196 TRACE_VDEV_ERROR, allocator);
5197 goto next;
5198 }
5199
5200 ASSERT(mg->mg_class == mc);
5201
5202 uint64_t asize = vdev_psize_to_asize(vd, psize);
5203 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5204
5205 /*
5206 * If we don't need to try hard, then require that the
5207 * block be on a different metaslab from any other DVAs
5208 * in this BP (unique=true). If we are trying hard, then
5209 * allow any metaslab to be used (unique=false).
5210 */
5211 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5212 !try_hard, dva, d, allocator, try_hard);
5213
5214 if (offset != -1ULL) {
5215 /*
5216 * If we've just selected this metaslab group,
5217 * figure out whether the corresponding vdev is
5218 * over- or under-used relative to the pool,
5219 * and set an allocation bias to even it out.
5220 *
5221 * Bias is also used to compensate for unequally
5222 * sized vdevs so that space is allocated fairly.
5223 */
5224 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5225 vdev_stat_t *vs = &vd->vdev_stat;
5226 int64_t vs_free = vs->vs_space - vs->vs_alloc;
5227 int64_t mc_free = mc->mc_space - mc->mc_alloc;
5228 int64_t ratio;
5229
5230 /*
5231 * Calculate how much more or less we should
5232 * try to allocate from this device during
5233 * this iteration around the rotor.
5234 *
5235 * This basically introduces a zero-centered
5236 * bias towards the devices with the most
5237 * free space, while compensating for vdev
5238 * size differences.
5239 *
5240 * Examples:
5241 * vdev V1 = 16M/128M
5242 * vdev V2 = 16M/128M
5243 * ratio(V1) = 100% ratio(V2) = 100%
5244 *
5245 * vdev V1 = 16M/128M
5246 * vdev V2 = 64M/128M
5247 * ratio(V1) = 127% ratio(V2) = 72%
5248 *
5249 * vdev V1 = 16M/128M
5250 * vdev V2 = 64M/512M
5251 * ratio(V1) = 40% ratio(V2) = 160%
5252 */
5253 ratio = (vs_free * mc->mc_alloc_groups * 100) /
5254 (mc_free + 1);
5255 mg->mg_bias = ((ratio - 100) *
5256 (int64_t)mg->mg_aliquot) / 100;
5257 } else if (!metaslab_bias_enabled) {
5258 mg->mg_bias = 0;
5259 }
5260
5261 if ((flags & METASLAB_FASTWRITE) ||
5262 atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5263 mg->mg_aliquot + mg->mg_bias) {
5264 mca->mca_rotor = mg->mg_next;
5265 mca->mca_aliquot = 0;
5266 }
5267
5268 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5269 DVA_SET_OFFSET(&dva[d], offset);
5270 DVA_SET_GANG(&dva[d],
5271 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5272 DVA_SET_ASIZE(&dva[d], asize);
5273
5274 if (flags & METASLAB_FASTWRITE) {
5275 atomic_add_64(&vd->vdev_pending_fastwrite,
5276 psize);
5277 }
5278
5279 return (0);
5280 }
5281 next:
5282 mca->mca_rotor = mg->mg_next;
5283 mca->mca_aliquot = 0;
5284 } while ((mg = mg->mg_next) != rotor);
5285
5286 /*
5287 * If we haven't tried hard, perhaps do so now.
5288 */
5289 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5290 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5291 psize <= 1 << spa->spa_min_ashift)) {
5292 METASLABSTAT_BUMP(metaslabstat_try_hard);
5293 try_hard = B_TRUE;
5294 goto top;
5295 }
5296
5297 bzero(&dva[d], sizeof (dva_t));
5298
5299 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5300 return (SET_ERROR(ENOSPC));
5301 }
5302
5303 void
metaslab_free_concrete(vdev_t * vd,uint64_t offset,uint64_t asize,boolean_t checkpoint)5304 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5305 boolean_t checkpoint)
5306 {
5307 metaslab_t *msp;
5308 spa_t *spa = vd->vdev_spa;
5309
5310 ASSERT(vdev_is_concrete(vd));
5311 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5312 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5313
5314 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5315
5316 VERIFY(!msp->ms_condensing);
5317 VERIFY3U(offset, >=, msp->ms_start);
5318 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5319 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5320 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5321
5322 metaslab_check_free_impl(vd, offset, asize);
5323
5324 mutex_enter(&msp->ms_lock);
5325 if (range_tree_is_empty(msp->ms_freeing) &&
5326 range_tree_is_empty(msp->ms_checkpointing)) {
5327 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5328 }
5329
5330 if (checkpoint) {
5331 ASSERT(spa_has_checkpoint(spa));
5332 range_tree_add(msp->ms_checkpointing, offset, asize);
5333 } else {
5334 range_tree_add(msp->ms_freeing, offset, asize);
5335 }
5336 mutex_exit(&msp->ms_lock);
5337 }
5338
5339 /* ARGSUSED */
5340 void
metaslab_free_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5341 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5342 uint64_t size, void *arg)
5343 {
5344 boolean_t *checkpoint = arg;
5345
5346 ASSERT3P(checkpoint, !=, NULL);
5347
5348 if (vd->vdev_ops->vdev_op_remap != NULL)
5349 vdev_indirect_mark_obsolete(vd, offset, size);
5350 else
5351 metaslab_free_impl(vd, offset, size, *checkpoint);
5352 }
5353
5354 static void
metaslab_free_impl(vdev_t * vd,uint64_t offset,uint64_t size,boolean_t checkpoint)5355 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5356 boolean_t checkpoint)
5357 {
5358 spa_t *spa = vd->vdev_spa;
5359
5360 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5361
5362 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5363 return;
5364
5365 if (spa->spa_vdev_removal != NULL &&
5366 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5367 vdev_is_concrete(vd)) {
5368 /*
5369 * Note: we check if the vdev is concrete because when
5370 * we complete the removal, we first change the vdev to be
5371 * an indirect vdev (in open context), and then (in syncing
5372 * context) clear spa_vdev_removal.
5373 */
5374 free_from_removing_vdev(vd, offset, size);
5375 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5376 vdev_indirect_mark_obsolete(vd, offset, size);
5377 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5378 metaslab_free_impl_cb, &checkpoint);
5379 } else {
5380 metaslab_free_concrete(vd, offset, size, checkpoint);
5381 }
5382 }
5383
5384 typedef struct remap_blkptr_cb_arg {
5385 blkptr_t *rbca_bp;
5386 spa_remap_cb_t rbca_cb;
5387 vdev_t *rbca_remap_vd;
5388 uint64_t rbca_remap_offset;
5389 void *rbca_cb_arg;
5390 } remap_blkptr_cb_arg_t;
5391
5392 static void
remap_blkptr_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5393 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5394 uint64_t size, void *arg)
5395 {
5396 remap_blkptr_cb_arg_t *rbca = arg;
5397 blkptr_t *bp = rbca->rbca_bp;
5398
5399 /* We can not remap split blocks. */
5400 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5401 return;
5402 ASSERT0(inner_offset);
5403
5404 if (rbca->rbca_cb != NULL) {
5405 /*
5406 * At this point we know that we are not handling split
5407 * blocks and we invoke the callback on the previous
5408 * vdev which must be indirect.
5409 */
5410 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5411
5412 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5413 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5414
5415 /* set up remap_blkptr_cb_arg for the next call */
5416 rbca->rbca_remap_vd = vd;
5417 rbca->rbca_remap_offset = offset;
5418 }
5419
5420 /*
5421 * The phys birth time is that of dva[0]. This ensures that we know
5422 * when each dva was written, so that resilver can determine which
5423 * blocks need to be scrubbed (i.e. those written during the time
5424 * the vdev was offline). It also ensures that the key used in
5425 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5426 * we didn't change the phys_birth, a lookup in the ARC for a
5427 * remapped BP could find the data that was previously stored at
5428 * this vdev + offset.
5429 */
5430 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5431 DVA_GET_VDEV(&bp->blk_dva[0]));
5432 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5433 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5434 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5435
5436 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5437 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5438 }
5439
5440 /*
5441 * If the block pointer contains any indirect DVAs, modify them to refer to
5442 * concrete DVAs. Note that this will sometimes not be possible, leaving
5443 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5444 * segments in the mapping (i.e. it is a "split block").
5445 *
5446 * If the BP was remapped, calls the callback on the original dva (note the
5447 * callback can be called multiple times if the original indirect DVA refers
5448 * to another indirect DVA, etc).
5449 *
5450 * Returns TRUE if the BP was remapped.
5451 */
5452 boolean_t
spa_remap_blkptr(spa_t * spa,blkptr_t * bp,spa_remap_cb_t callback,void * arg)5453 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5454 {
5455 remap_blkptr_cb_arg_t rbca;
5456
5457 if (!zfs_remap_blkptr_enable)
5458 return (B_FALSE);
5459
5460 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5461 return (B_FALSE);
5462
5463 /*
5464 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5465 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5466 */
5467 if (BP_GET_DEDUP(bp))
5468 return (B_FALSE);
5469
5470 /*
5471 * Gang blocks can not be remapped, because
5472 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5473 * the BP used to read the gang block header (GBH) being the same
5474 * as the DVA[0] that we allocated for the GBH.
5475 */
5476 if (BP_IS_GANG(bp))
5477 return (B_FALSE);
5478
5479 /*
5480 * Embedded BP's have no DVA to remap.
5481 */
5482 if (BP_GET_NDVAS(bp) < 1)
5483 return (B_FALSE);
5484
5485 /*
5486 * Note: we only remap dva[0]. If we remapped other dvas, we
5487 * would no longer know what their phys birth txg is.
5488 */
5489 dva_t *dva = &bp->blk_dva[0];
5490
5491 uint64_t offset = DVA_GET_OFFSET(dva);
5492 uint64_t size = DVA_GET_ASIZE(dva);
5493 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5494
5495 if (vd->vdev_ops->vdev_op_remap == NULL)
5496 return (B_FALSE);
5497
5498 rbca.rbca_bp = bp;
5499 rbca.rbca_cb = callback;
5500 rbca.rbca_remap_vd = vd;
5501 rbca.rbca_remap_offset = offset;
5502 rbca.rbca_cb_arg = arg;
5503
5504 /*
5505 * remap_blkptr_cb() will be called in order for each level of
5506 * indirection, until a concrete vdev is reached or a split block is
5507 * encountered. old_vd and old_offset are updated within the callback
5508 * as we go from the one indirect vdev to the next one (either concrete
5509 * or indirect again) in that order.
5510 */
5511 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5512
5513 /* Check if the DVA wasn't remapped because it is a split block */
5514 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5515 return (B_FALSE);
5516
5517 return (B_TRUE);
5518 }
5519
5520 /*
5521 * Undo the allocation of a DVA which happened in the given transaction group.
5522 */
5523 void
metaslab_unalloc_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5524 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5525 {
5526 metaslab_t *msp;
5527 vdev_t *vd;
5528 uint64_t vdev = DVA_GET_VDEV(dva);
5529 uint64_t offset = DVA_GET_OFFSET(dva);
5530 uint64_t size = DVA_GET_ASIZE(dva);
5531
5532 ASSERT(DVA_IS_VALID(dva));
5533 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5534
5535 if (txg > spa_freeze_txg(spa))
5536 return;
5537
5538 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5539 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5540 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5541 (u_longlong_t)vdev, (u_longlong_t)offset,
5542 (u_longlong_t)size);
5543 return;
5544 }
5545
5546 ASSERT(!vd->vdev_removing);
5547 ASSERT(vdev_is_concrete(vd));
5548 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5549 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5550
5551 if (DVA_GET_GANG(dva))
5552 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5553
5554 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5555
5556 mutex_enter(&msp->ms_lock);
5557 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5558 offset, size);
5559 msp->ms_allocating_total -= size;
5560
5561 VERIFY(!msp->ms_condensing);
5562 VERIFY3U(offset, >=, msp->ms_start);
5563 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5564 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5565 msp->ms_size);
5566 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5567 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5568 range_tree_add(msp->ms_allocatable, offset, size);
5569 mutex_exit(&msp->ms_lock);
5570 }
5571
5572 /*
5573 * Free the block represented by the given DVA.
5574 */
5575 void
metaslab_free_dva(spa_t * spa,const dva_t * dva,boolean_t checkpoint)5576 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5577 {
5578 uint64_t vdev = DVA_GET_VDEV(dva);
5579 uint64_t offset = DVA_GET_OFFSET(dva);
5580 uint64_t size = DVA_GET_ASIZE(dva);
5581 vdev_t *vd = vdev_lookup_top(spa, vdev);
5582
5583 ASSERT(DVA_IS_VALID(dva));
5584 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5585
5586 if (DVA_GET_GANG(dva)) {
5587 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5588 }
5589
5590 metaslab_free_impl(vd, offset, size, checkpoint);
5591 }
5592
5593 /*
5594 * Reserve some allocation slots. The reservation system must be called
5595 * before we call into the allocator. If there aren't any available slots
5596 * then the I/O will be throttled until an I/O completes and its slots are
5597 * freed up. The function returns true if it was successful in placing
5598 * the reservation.
5599 */
5600 boolean_t
metaslab_class_throttle_reserve(metaslab_class_t * mc,int slots,int allocator,zio_t * zio,int flags)5601 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5602 zio_t *zio, int flags)
5603 {
5604 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5605 uint64_t available_slots = 0;
5606 boolean_t slot_reserved = B_FALSE;
5607 uint64_t max = mca->mca_alloc_max_slots;
5608
5609 ASSERT(mc->mc_alloc_throttle_enabled);
5610 mutex_enter(&mc->mc_lock);
5611
5612 uint64_t reserved_slots = zfs_refcount_count(&mca->mca_alloc_slots);
5613 if (reserved_slots < max)
5614 available_slots = max - reserved_slots;
5615
5616 if (slots <= available_slots || GANG_ALLOCATION(flags) ||
5617 flags & METASLAB_MUST_RESERVE) {
5618 /*
5619 * We reserve the slots individually so that we can unreserve
5620 * them individually when an I/O completes.
5621 */
5622 for (int d = 0; d < slots; d++)
5623 zfs_refcount_add(&mca->mca_alloc_slots, zio);
5624 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5625 slot_reserved = B_TRUE;
5626 }
5627
5628 mutex_exit(&mc->mc_lock);
5629 return (slot_reserved);
5630 }
5631
5632 void
metaslab_class_throttle_unreserve(metaslab_class_t * mc,int slots,int allocator,zio_t * zio)5633 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5634 int allocator, zio_t *zio)
5635 {
5636 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5637
5638 ASSERT(mc->mc_alloc_throttle_enabled);
5639 mutex_enter(&mc->mc_lock);
5640 for (int d = 0; d < slots; d++)
5641 zfs_refcount_remove(&mca->mca_alloc_slots, zio);
5642 mutex_exit(&mc->mc_lock);
5643 }
5644
5645 static int
metaslab_claim_concrete(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5646 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5647 uint64_t txg)
5648 {
5649 metaslab_t *msp;
5650 spa_t *spa = vd->vdev_spa;
5651 int error = 0;
5652
5653 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5654 return (SET_ERROR(ENXIO));
5655
5656 ASSERT3P(vd->vdev_ms, !=, NULL);
5657 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5658
5659 mutex_enter(&msp->ms_lock);
5660
5661 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5662 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5663 if (error == EBUSY) {
5664 ASSERT(msp->ms_loaded);
5665 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5666 error = 0;
5667 }
5668 }
5669
5670 if (error == 0 &&
5671 !range_tree_contains(msp->ms_allocatable, offset, size))
5672 error = SET_ERROR(ENOENT);
5673
5674 if (error || txg == 0) { /* txg == 0 indicates dry run */
5675 mutex_exit(&msp->ms_lock);
5676 return (error);
5677 }
5678
5679 VERIFY(!msp->ms_condensing);
5680 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5681 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5682 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5683 msp->ms_size);
5684 range_tree_remove(msp->ms_allocatable, offset, size);
5685 range_tree_clear(msp->ms_trim, offset, size);
5686
5687 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5688 metaslab_class_t *mc = msp->ms_group->mg_class;
5689 multilist_sublist_t *mls =
5690 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
5691 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5692 msp->ms_selected_txg = txg;
5693 multilist_sublist_insert_head(mls, msp);
5694 }
5695 multilist_sublist_unlock(mls);
5696
5697 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5698 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5699 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5700 offset, size);
5701 msp->ms_allocating_total += size;
5702 }
5703
5704 mutex_exit(&msp->ms_lock);
5705
5706 return (0);
5707 }
5708
5709 typedef struct metaslab_claim_cb_arg_t {
5710 uint64_t mcca_txg;
5711 int mcca_error;
5712 } metaslab_claim_cb_arg_t;
5713
5714 /* ARGSUSED */
5715 static void
metaslab_claim_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5716 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5717 uint64_t size, void *arg)
5718 {
5719 metaslab_claim_cb_arg_t *mcca_arg = arg;
5720
5721 if (mcca_arg->mcca_error == 0) {
5722 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5723 size, mcca_arg->mcca_txg);
5724 }
5725 }
5726
5727 int
metaslab_claim_impl(vdev_t * vd,uint64_t offset,uint64_t size,uint64_t txg)5728 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5729 {
5730 if (vd->vdev_ops->vdev_op_remap != NULL) {
5731 metaslab_claim_cb_arg_t arg;
5732
5733 /*
5734 * Only zdb(8) can claim on indirect vdevs. This is used
5735 * to detect leaks of mapped space (that are not accounted
5736 * for in the obsolete counts, spacemap, or bpobj).
5737 */
5738 ASSERT(!spa_writeable(vd->vdev_spa));
5739 arg.mcca_error = 0;
5740 arg.mcca_txg = txg;
5741
5742 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5743 metaslab_claim_impl_cb, &arg);
5744
5745 if (arg.mcca_error == 0) {
5746 arg.mcca_error = metaslab_claim_concrete(vd,
5747 offset, size, txg);
5748 }
5749 return (arg.mcca_error);
5750 } else {
5751 return (metaslab_claim_concrete(vd, offset, size, txg));
5752 }
5753 }
5754
5755 /*
5756 * Intent log support: upon opening the pool after a crash, notify the SPA
5757 * of blocks that the intent log has allocated for immediate write, but
5758 * which are still considered free by the SPA because the last transaction
5759 * group didn't commit yet.
5760 */
5761 static int
metaslab_claim_dva(spa_t * spa,const dva_t * dva,uint64_t txg)5762 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5763 {
5764 uint64_t vdev = DVA_GET_VDEV(dva);
5765 uint64_t offset = DVA_GET_OFFSET(dva);
5766 uint64_t size = DVA_GET_ASIZE(dva);
5767 vdev_t *vd;
5768
5769 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5770 return (SET_ERROR(ENXIO));
5771 }
5772
5773 ASSERT(DVA_IS_VALID(dva));
5774
5775 if (DVA_GET_GANG(dva))
5776 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5777
5778 return (metaslab_claim_impl(vd, offset, size, txg));
5779 }
5780
5781 int
metaslab_alloc(spa_t * spa,metaslab_class_t * mc,uint64_t psize,blkptr_t * bp,int ndvas,uint64_t txg,blkptr_t * hintbp,int flags,zio_alloc_list_t * zal,zio_t * zio,int allocator)5782 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5783 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5784 zio_alloc_list_t *zal, zio_t *zio, int allocator)
5785 {
5786 dva_t *dva = bp->blk_dva;
5787 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5788 int error = 0;
5789
5790 ASSERT(bp->blk_birth == 0);
5791 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5792
5793 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5794
5795 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5796 /* no vdevs in this class */
5797 spa_config_exit(spa, SCL_ALLOC, FTAG);
5798 return (SET_ERROR(ENOSPC));
5799 }
5800
5801 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5802 ASSERT(BP_GET_NDVAS(bp) == 0);
5803 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5804 ASSERT3P(zal, !=, NULL);
5805
5806 for (int d = 0; d < ndvas; d++) {
5807 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5808 txg, flags, zal, allocator);
5809 if (error != 0) {
5810 for (d--; d >= 0; d--) {
5811 metaslab_unalloc_dva(spa, &dva[d], txg);
5812 metaslab_group_alloc_decrement(spa,
5813 DVA_GET_VDEV(&dva[d]), zio, flags,
5814 allocator, B_FALSE);
5815 bzero(&dva[d], sizeof (dva_t));
5816 }
5817 spa_config_exit(spa, SCL_ALLOC, FTAG);
5818 return (error);
5819 } else {
5820 /*
5821 * Update the metaslab group's queue depth
5822 * based on the newly allocated dva.
5823 */
5824 metaslab_group_alloc_increment(spa,
5825 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5826 }
5827 }
5828 ASSERT(error == 0);
5829 ASSERT(BP_GET_NDVAS(bp) == ndvas);
5830
5831 spa_config_exit(spa, SCL_ALLOC, FTAG);
5832
5833 BP_SET_BIRTH(bp, txg, 0);
5834
5835 return (0);
5836 }
5837
5838 void
metaslab_free(spa_t * spa,const blkptr_t * bp,uint64_t txg,boolean_t now)5839 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5840 {
5841 const dva_t *dva = bp->blk_dva;
5842 int ndvas = BP_GET_NDVAS(bp);
5843
5844 ASSERT(!BP_IS_HOLE(bp));
5845 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5846
5847 /*
5848 * If we have a checkpoint for the pool we need to make sure that
5849 * the blocks that we free that are part of the checkpoint won't be
5850 * reused until the checkpoint is discarded or we revert to it.
5851 *
5852 * The checkpoint flag is passed down the metaslab_free code path
5853 * and is set whenever we want to add a block to the checkpoint's
5854 * accounting. That is, we "checkpoint" blocks that existed at the
5855 * time the checkpoint was created and are therefore referenced by
5856 * the checkpointed uberblock.
5857 *
5858 * Note that, we don't checkpoint any blocks if the current
5859 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5860 * normally as they will be referenced by the checkpointed uberblock.
5861 */
5862 boolean_t checkpoint = B_FALSE;
5863 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5864 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5865 /*
5866 * At this point, if the block is part of the checkpoint
5867 * there is no way it was created in the current txg.
5868 */
5869 ASSERT(!now);
5870 ASSERT3U(spa_syncing_txg(spa), ==, txg);
5871 checkpoint = B_TRUE;
5872 }
5873
5874 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5875
5876 for (int d = 0; d < ndvas; d++) {
5877 if (now) {
5878 metaslab_unalloc_dva(spa, &dva[d], txg);
5879 } else {
5880 ASSERT3U(txg, ==, spa_syncing_txg(spa));
5881 metaslab_free_dva(spa, &dva[d], checkpoint);
5882 }
5883 }
5884
5885 spa_config_exit(spa, SCL_FREE, FTAG);
5886 }
5887
5888 int
metaslab_claim(spa_t * spa,const blkptr_t * bp,uint64_t txg)5889 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5890 {
5891 const dva_t *dva = bp->blk_dva;
5892 int ndvas = BP_GET_NDVAS(bp);
5893 int error = 0;
5894
5895 ASSERT(!BP_IS_HOLE(bp));
5896
5897 if (txg != 0) {
5898 /*
5899 * First do a dry run to make sure all DVAs are claimable,
5900 * so we don't have to unwind from partial failures below.
5901 */
5902 if ((error = metaslab_claim(spa, bp, 0)) != 0)
5903 return (error);
5904 }
5905
5906 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5907
5908 for (int d = 0; d < ndvas; d++) {
5909 error = metaslab_claim_dva(spa, &dva[d], txg);
5910 if (error != 0)
5911 break;
5912 }
5913
5914 spa_config_exit(spa, SCL_ALLOC, FTAG);
5915
5916 ASSERT(error == 0 || txg == 0);
5917
5918 return (error);
5919 }
5920
5921 void
metaslab_fastwrite_mark(spa_t * spa,const blkptr_t * bp)5922 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5923 {
5924 const dva_t *dva = bp->blk_dva;
5925 int ndvas = BP_GET_NDVAS(bp);
5926 uint64_t psize = BP_GET_PSIZE(bp);
5927 int d;
5928 vdev_t *vd;
5929
5930 ASSERT(!BP_IS_HOLE(bp));
5931 ASSERT(!BP_IS_EMBEDDED(bp));
5932 ASSERT(psize > 0);
5933
5934 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5935
5936 for (d = 0; d < ndvas; d++) {
5937 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5938 continue;
5939 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5940 }
5941
5942 spa_config_exit(spa, SCL_VDEV, FTAG);
5943 }
5944
5945 void
metaslab_fastwrite_unmark(spa_t * spa,const blkptr_t * bp)5946 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5947 {
5948 const dva_t *dva = bp->blk_dva;
5949 int ndvas = BP_GET_NDVAS(bp);
5950 uint64_t psize = BP_GET_PSIZE(bp);
5951 int d;
5952 vdev_t *vd;
5953
5954 ASSERT(!BP_IS_HOLE(bp));
5955 ASSERT(!BP_IS_EMBEDDED(bp));
5956 ASSERT(psize > 0);
5957
5958 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5959
5960 for (d = 0; d < ndvas; d++) {
5961 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5962 continue;
5963 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5964 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5965 }
5966
5967 spa_config_exit(spa, SCL_VDEV, FTAG);
5968 }
5969
5970 /* ARGSUSED */
5971 static void
metaslab_check_free_impl_cb(uint64_t inner,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)5972 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5973 uint64_t size, void *arg)
5974 {
5975 if (vd->vdev_ops == &vdev_indirect_ops)
5976 return;
5977
5978 metaslab_check_free_impl(vd, offset, size);
5979 }
5980
5981 static void
metaslab_check_free_impl(vdev_t * vd,uint64_t offset,uint64_t size)5982 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5983 {
5984 metaslab_t *msp;
5985 spa_t *spa __maybe_unused = vd->vdev_spa;
5986
5987 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5988 return;
5989
5990 if (vd->vdev_ops->vdev_op_remap != NULL) {
5991 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5992 metaslab_check_free_impl_cb, NULL);
5993 return;
5994 }
5995
5996 ASSERT(vdev_is_concrete(vd));
5997 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5998 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5999
6000 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6001
6002 mutex_enter(&msp->ms_lock);
6003 if (msp->ms_loaded) {
6004 range_tree_verify_not_present(msp->ms_allocatable,
6005 offset, size);
6006 }
6007
6008 /*
6009 * Check all segments that currently exist in the freeing pipeline.
6010 *
6011 * It would intuitively make sense to also check the current allocating
6012 * tree since metaslab_unalloc_dva() exists for extents that are
6013 * allocated and freed in the same sync pass within the same txg.
6014 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6015 * segment but then we free part of it within the same txg
6016 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6017 * current allocating tree.
6018 */
6019 range_tree_verify_not_present(msp->ms_freeing, offset, size);
6020 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6021 range_tree_verify_not_present(msp->ms_freed, offset, size);
6022 for (int j = 0; j < TXG_DEFER_SIZE; j++)
6023 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6024 range_tree_verify_not_present(msp->ms_trim, offset, size);
6025 mutex_exit(&msp->ms_lock);
6026 }
6027
6028 void
metaslab_check_free(spa_t * spa,const blkptr_t * bp)6029 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6030 {
6031 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6032 return;
6033
6034 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6035 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6036 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6037 vdev_t *vd = vdev_lookup_top(spa, vdev);
6038 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6039 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6040
6041 if (DVA_GET_GANG(&bp->blk_dva[i]))
6042 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
6043
6044 ASSERT3P(vd, !=, NULL);
6045
6046 metaslab_check_free_impl(vd, offset, size);
6047 }
6048 spa_config_exit(spa, SCL_VDEV, FTAG);
6049 }
6050
6051 static void
metaslab_group_disable_wait(metaslab_group_t * mg)6052 metaslab_group_disable_wait(metaslab_group_t *mg)
6053 {
6054 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6055 while (mg->mg_disabled_updating) {
6056 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6057 }
6058 }
6059
6060 static void
metaslab_group_disabled_increment(metaslab_group_t * mg)6061 metaslab_group_disabled_increment(metaslab_group_t *mg)
6062 {
6063 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6064 ASSERT(mg->mg_disabled_updating);
6065
6066 while (mg->mg_ms_disabled >= max_disabled_ms) {
6067 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6068 }
6069 mg->mg_ms_disabled++;
6070 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6071 }
6072
6073 /*
6074 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6075 * We must also track how many metaslabs are currently disabled within a
6076 * metaslab group and limit them to prevent allocation failures from
6077 * occurring because all metaslabs are disabled.
6078 */
6079 void
metaslab_disable(metaslab_t * msp)6080 metaslab_disable(metaslab_t *msp)
6081 {
6082 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6083 metaslab_group_t *mg = msp->ms_group;
6084
6085 mutex_enter(&mg->mg_ms_disabled_lock);
6086
6087 /*
6088 * To keep an accurate count of how many threads have disabled
6089 * a specific metaslab group, we only allow one thread to mark
6090 * the metaslab group at a time. This ensures that the value of
6091 * ms_disabled will be accurate when we decide to mark a metaslab
6092 * group as disabled. To do this we force all other threads
6093 * to wait till the metaslab's mg_disabled_updating flag is no
6094 * longer set.
6095 */
6096 metaslab_group_disable_wait(mg);
6097 mg->mg_disabled_updating = B_TRUE;
6098 if (msp->ms_disabled == 0) {
6099 metaslab_group_disabled_increment(mg);
6100 }
6101 mutex_enter(&msp->ms_lock);
6102 msp->ms_disabled++;
6103 mutex_exit(&msp->ms_lock);
6104
6105 mg->mg_disabled_updating = B_FALSE;
6106 cv_broadcast(&mg->mg_ms_disabled_cv);
6107 mutex_exit(&mg->mg_ms_disabled_lock);
6108 }
6109
6110 void
metaslab_enable(metaslab_t * msp,boolean_t sync,boolean_t unload)6111 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6112 {
6113 metaslab_group_t *mg = msp->ms_group;
6114 spa_t *spa = mg->mg_vd->vdev_spa;
6115
6116 /*
6117 * Wait for the outstanding IO to be synced to prevent newly
6118 * allocated blocks from being overwritten. This used by
6119 * initialize and TRIM which are modifying unallocated space.
6120 */
6121 if (sync)
6122 txg_wait_synced(spa_get_dsl(spa), 0);
6123
6124 mutex_enter(&mg->mg_ms_disabled_lock);
6125 mutex_enter(&msp->ms_lock);
6126 if (--msp->ms_disabled == 0) {
6127 mg->mg_ms_disabled--;
6128 cv_broadcast(&mg->mg_ms_disabled_cv);
6129 if (unload)
6130 metaslab_unload(msp);
6131 }
6132 mutex_exit(&msp->ms_lock);
6133 mutex_exit(&mg->mg_ms_disabled_lock);
6134 }
6135
6136 static void
metaslab_update_ondisk_flush_data(metaslab_t * ms,dmu_tx_t * tx)6137 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6138 {
6139 vdev_t *vd = ms->ms_group->mg_vd;
6140 spa_t *spa = vd->vdev_spa;
6141 objset_t *mos = spa_meta_objset(spa);
6142
6143 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6144
6145 metaslab_unflushed_phys_t entry = {
6146 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6147 };
6148 uint64_t entry_size = sizeof (entry);
6149 uint64_t entry_offset = ms->ms_id * entry_size;
6150
6151 uint64_t object = 0;
6152 int err = zap_lookup(mos, vd->vdev_top_zap,
6153 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6154 &object);
6155 if (err == ENOENT) {
6156 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6157 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6158 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6159 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6160 &object, tx));
6161 } else {
6162 VERIFY0(err);
6163 }
6164
6165 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6166 &entry, tx);
6167 }
6168
6169 void
metaslab_set_unflushed_txg(metaslab_t * ms,uint64_t txg,dmu_tx_t * tx)6170 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6171 {
6172 spa_t *spa = ms->ms_group->mg_vd->vdev_spa;
6173
6174 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
6175 return;
6176
6177 ms->ms_unflushed_txg = txg;
6178 metaslab_update_ondisk_flush_data(ms, tx);
6179 }
6180
6181 uint64_t
metaslab_unflushed_txg(metaslab_t * ms)6182 metaslab_unflushed_txg(metaslab_t *ms)
6183 {
6184 return (ms->ms_unflushed_txg);
6185 }
6186
6187 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW,
6188 "Allocation granularity (a.k.a. stripe size)");
6189
6190 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6191 "Load all metaslabs when pool is first opened");
6192
6193 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6194 "Prevent metaslabs from being unloaded");
6195
6196 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6197 "Preload potential metaslabs during reassessment");
6198
6199 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW,
6200 "Delay in txgs after metaslab was last used before unloading");
6201
6202 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW,
6203 "Delay in milliseconds after metaslab was last used before unloading");
6204
6205 /* BEGIN CSTYLED */
6206 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW,
6207 "Percentage of metaslab group size that should be free to make it "
6208 "eligible for allocation");
6209
6210 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW,
6211 "Percentage of metaslab group size that should be considered eligible "
6212 "for allocations unless all metaslab groups within the metaslab class "
6213 "have also crossed this threshold");
6214
6215 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT,
6216 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6217
6218 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW,
6219 "Use the fragmentation metric to prefer less fragmented metaslabs");
6220 /* END CSTYLED */
6221
6222 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6223 "Prefer metaslabs with lower LBAs");
6224
6225 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6226 "Enable metaslab group biasing");
6227
6228 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6229 ZMOD_RW, "Enable segment-based metaslab selection");
6230
6231 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6232 "Segment-based metaslab selection maximum buckets before switching");
6233
6234 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW,
6235 "Blocks larger than this size are forced to be gang blocks");
6236
6237 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW,
6238 "Max distance (bytes) to search forward before using size tree");
6239
6240 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6241 "When looking in size tree, use largest segment instead of exact fit");
6242
6243 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG,
6244 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6245
6246 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW,
6247 "Percentage of memory that can be used to store metaslab range trees");
6248
6249 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6250 ZMOD_RW, "Try hard to allocate before ganging");
6251
6252 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW,
6253 "Normally only consider this many of the best metaslabs in each vdev");
6254