1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4 #include <stdint.h>
5 #include <stddef.h>
6 #include <stdlib.h>
7 #include <stdio.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <sys/queue.h>
11
12 #include <rte_memory.h>
13 #include <rte_errno.h>
14 #include <rte_eal.h>
15 #include <rte_eal_memconfig.h>
16 #include <rte_launch.h>
17 #include <rte_per_lcore.h>
18 #include <rte_lcore.h>
19 #include <rte_common.h>
20 #include <rte_string_fns.h>
21 #include <rte_spinlock.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_atomic.h>
25 #include <rte_fbarray.h>
26
27 #include "eal_internal_cfg.h"
28 #include "eal_memalloc.h"
29 #include "eal_memcfg.h"
30 #include "eal_private.h"
31 #include "malloc_elem.h"
32 #include "malloc_heap.h"
33 #include "malloc_mp.h"
34
35 /* start external socket ID's at a very high number */
36 #define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */
37 #define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES))
38
39 static unsigned
check_hugepage_sz(unsigned flags,uint64_t hugepage_sz)40 check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
41 {
42 unsigned check_flag = 0;
43
44 if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
45 return 1;
46
47 switch (hugepage_sz) {
48 case RTE_PGSIZE_256K:
49 check_flag = RTE_MEMZONE_256KB;
50 break;
51 case RTE_PGSIZE_2M:
52 check_flag = RTE_MEMZONE_2MB;
53 break;
54 case RTE_PGSIZE_16M:
55 check_flag = RTE_MEMZONE_16MB;
56 break;
57 case RTE_PGSIZE_256M:
58 check_flag = RTE_MEMZONE_256MB;
59 break;
60 case RTE_PGSIZE_512M:
61 check_flag = RTE_MEMZONE_512MB;
62 break;
63 case RTE_PGSIZE_1G:
64 check_flag = RTE_MEMZONE_1GB;
65 break;
66 case RTE_PGSIZE_4G:
67 check_flag = RTE_MEMZONE_4GB;
68 break;
69 case RTE_PGSIZE_16G:
70 check_flag = RTE_MEMZONE_16GB;
71 }
72
73 return check_flag & flags;
74 }
75
76 int
malloc_socket_to_heap_id(unsigned int socket_id)77 malloc_socket_to_heap_id(unsigned int socket_id)
78 {
79 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
80 int i;
81
82 for (i = 0; i < RTE_MAX_HEAPS; i++) {
83 struct malloc_heap *heap = &mcfg->malloc_heaps[i];
84
85 if (heap->socket_id == socket_id)
86 return i;
87 }
88 return -1;
89 }
90
91 /*
92 * Expand the heap with a memory area.
93 */
94 static struct malloc_elem *
malloc_heap_add_memory(struct malloc_heap * heap,struct rte_memseg_list * msl,void * start,size_t len)95 malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl,
96 void *start, size_t len)
97 {
98 struct malloc_elem *elem = start;
99
100 malloc_elem_init(elem, heap, msl, len, elem, len);
101
102 malloc_elem_insert(elem);
103
104 elem = malloc_elem_join_adjacent_free(elem);
105
106 malloc_elem_free_list_insert(elem);
107
108 return elem;
109 }
110
111 static int
malloc_add_seg(const struct rte_memseg_list * msl,const struct rte_memseg * ms,size_t len,void * arg __rte_unused)112 malloc_add_seg(const struct rte_memseg_list *msl,
113 const struct rte_memseg *ms, size_t len, void *arg __rte_unused)
114 {
115 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
116 struct rte_memseg_list *found_msl;
117 struct malloc_heap *heap;
118 int msl_idx, heap_idx;
119
120 if (msl->external)
121 return 0;
122
123 heap_idx = malloc_socket_to_heap_id(msl->socket_id);
124 if (heap_idx < 0) {
125 RTE_LOG(ERR, EAL, "Memseg list has invalid socket id\n");
126 return -1;
127 }
128 heap = &mcfg->malloc_heaps[heap_idx];
129
130 /* msl is const, so find it */
131 msl_idx = msl - mcfg->memsegs;
132
133 if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
134 return -1;
135
136 found_msl = &mcfg->memsegs[msl_idx];
137
138 malloc_heap_add_memory(heap, found_msl, ms->addr, len);
139
140 heap->total_size += len;
141
142 RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20,
143 msl->socket_id);
144 return 0;
145 }
146
147 /*
148 * Iterates through the freelist for a heap to find a free element
149 * which can store data of the required size and with the requested alignment.
150 * If size is 0, find the biggest available elem.
151 * Returns null on failure, or pointer to element on success.
152 */
153 static struct malloc_elem *
find_suitable_element(struct malloc_heap * heap,size_t size,unsigned int flags,size_t align,size_t bound,bool contig)154 find_suitable_element(struct malloc_heap *heap, size_t size,
155 unsigned int flags, size_t align, size_t bound, bool contig)
156 {
157 size_t idx;
158 struct malloc_elem *elem, *alt_elem = NULL;
159
160 for (idx = malloc_elem_free_list_index(size);
161 idx < RTE_HEAP_NUM_FREELISTS; idx++) {
162 for (elem = LIST_FIRST(&heap->free_head[idx]);
163 !!elem; elem = LIST_NEXT(elem, free_list)) {
164 if (malloc_elem_can_hold(elem, size, align, bound,
165 contig)) {
166 if (check_hugepage_sz(flags,
167 elem->msl->page_sz))
168 return elem;
169 if (alt_elem == NULL)
170 alt_elem = elem;
171 }
172 }
173 }
174
175 if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
176 return alt_elem;
177
178 return NULL;
179 }
180
181 /*
182 * Iterates through the freelist for a heap to find a free element with the
183 * biggest size and requested alignment. Will also set size to whatever element
184 * size that was found.
185 * Returns null on failure, or pointer to element on success.
186 */
187 static struct malloc_elem *
find_biggest_element(struct malloc_heap * heap,size_t * size,unsigned int flags,size_t align,bool contig)188 find_biggest_element(struct malloc_heap *heap, size_t *size,
189 unsigned int flags, size_t align, bool contig)
190 {
191 struct malloc_elem *elem, *max_elem = NULL;
192 size_t idx, max_size = 0;
193
194 for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
195 for (elem = LIST_FIRST(&heap->free_head[idx]);
196 !!elem; elem = LIST_NEXT(elem, free_list)) {
197 size_t cur_size;
198 if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 &&
199 !check_hugepage_sz(flags,
200 elem->msl->page_sz))
201 continue;
202 if (contig) {
203 cur_size =
204 malloc_elem_find_max_iova_contig(elem,
205 align);
206 } else {
207 void *data_start = RTE_PTR_ADD(elem,
208 MALLOC_ELEM_HEADER_LEN);
209 void *data_end = RTE_PTR_ADD(elem, elem->size -
210 MALLOC_ELEM_TRAILER_LEN);
211 void *aligned = RTE_PTR_ALIGN_CEIL(data_start,
212 align);
213 /* check if aligned data start is beyond end */
214 if (aligned >= data_end)
215 continue;
216 cur_size = RTE_PTR_DIFF(data_end, aligned);
217 }
218 if (cur_size > max_size) {
219 max_size = cur_size;
220 max_elem = elem;
221 }
222 }
223 }
224
225 *size = max_size;
226 return max_elem;
227 }
228
229 /*
230 * Main function to allocate a block of memory from the heap.
231 * It locks the free list, scans it, and adds a new memseg if the
232 * scan fails. Once the new memseg is added, it re-scans and should return
233 * the new element after releasing the lock.
234 */
235 static void *
heap_alloc(struct malloc_heap * heap,const char * type __rte_unused,size_t size,unsigned int flags,size_t align,size_t bound,bool contig)236 heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size,
237 unsigned int flags, size_t align, size_t bound, bool contig)
238 {
239 struct malloc_elem *elem;
240
241 size = RTE_CACHE_LINE_ROUNDUP(size);
242 align = RTE_CACHE_LINE_ROUNDUP(align);
243
244 /* roundup might cause an overflow */
245 if (size == 0)
246 return NULL;
247 elem = find_suitable_element(heap, size, flags, align, bound, contig);
248 if (elem != NULL) {
249 elem = malloc_elem_alloc(elem, size, align, bound, contig);
250
251 /* increase heap's count of allocated elements */
252 heap->alloc_count++;
253 }
254
255 return elem == NULL ? NULL : (void *)(&elem[1]);
256 }
257
258 static void *
heap_alloc_biggest(struct malloc_heap * heap,const char * type __rte_unused,unsigned int flags,size_t align,bool contig)259 heap_alloc_biggest(struct malloc_heap *heap, const char *type __rte_unused,
260 unsigned int flags, size_t align, bool contig)
261 {
262 struct malloc_elem *elem;
263 size_t size;
264
265 align = RTE_CACHE_LINE_ROUNDUP(align);
266
267 elem = find_biggest_element(heap, &size, flags, align, contig);
268 if (elem != NULL) {
269 elem = malloc_elem_alloc(elem, size, align, 0, contig);
270
271 /* increase heap's count of allocated elements */
272 heap->alloc_count++;
273 }
274
275 return elem == NULL ? NULL : (void *)(&elem[1]);
276 }
277
278 /* this function is exposed in malloc_mp.h */
279 void
rollback_expand_heap(struct rte_memseg ** ms,int n_segs,struct malloc_elem * elem,void * map_addr,size_t map_len)280 rollback_expand_heap(struct rte_memseg **ms, int n_segs,
281 struct malloc_elem *elem, void *map_addr, size_t map_len)
282 {
283 if (elem != NULL) {
284 malloc_elem_free_list_remove(elem);
285 malloc_elem_hide_region(elem, map_addr, map_len);
286 }
287
288 eal_memalloc_free_seg_bulk(ms, n_segs);
289 }
290
291 /* this function is exposed in malloc_mp.h */
292 struct malloc_elem *
alloc_pages_on_heap(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig,struct rte_memseg ** ms,int n_segs)293 alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
294 int socket, unsigned int flags, size_t align, size_t bound,
295 bool contig, struct rte_memseg **ms, int n_segs)
296 {
297 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
298 struct rte_memseg_list *msl;
299 struct malloc_elem *elem = NULL;
300 size_t alloc_sz;
301 int allocd_pages;
302 void *ret, *map_addr;
303
304 alloc_sz = (size_t)pg_sz * n_segs;
305
306 /* first, check if we're allowed to allocate this memory */
307 if (eal_memalloc_mem_alloc_validate(socket,
308 heap->total_size + alloc_sz) < 0) {
309 RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n");
310 return NULL;
311 }
312
313 allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz,
314 socket, true);
315
316 /* make sure we've allocated our pages... */
317 if (allocd_pages < 0)
318 return NULL;
319
320 map_addr = ms[0]->addr;
321 msl = rte_mem_virt2memseg_list(map_addr);
322
323 /* check if we wanted contiguous memory but didn't get it */
324 if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) {
325 RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n",
326 __func__);
327 goto fail;
328 }
329
330 /*
331 * Once we have all the memseg lists configured, if there is a dma mask
332 * set, check iova addresses are not out of range. Otherwise the device
333 * setting the dma mask could have problems with the mapped memory.
334 *
335 * There are two situations when this can happen:
336 * 1) memory initialization
337 * 2) dynamic memory allocation
338 *
339 * For 1), an error when checking dma mask implies app can not be
340 * executed. For 2) implies the new memory can not be added.
341 */
342 if (mcfg->dma_maskbits &&
343 rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
344 /*
345 * Currently this can only happen if IOMMU is enabled
346 * and the address width supported by the IOMMU hw is
347 * not enough for using the memory mapped IOVAs.
348 *
349 * If IOVA is VA, advice to try with '--iova-mode pa'
350 * which could solve some situations when IOVA VA is not
351 * really needed.
352 */
353 RTE_LOG(ERR, EAL,
354 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask\n",
355 __func__);
356
357 /*
358 * If IOVA is VA and it is possible to run with IOVA PA,
359 * because user is root, give and advice for solving the
360 * problem.
361 */
362 if ((rte_eal_iova_mode() == RTE_IOVA_VA) &&
363 rte_eal_using_phys_addrs())
364 RTE_LOG(ERR, EAL,
365 "%s(): Please try initializing EAL with --iova-mode=pa parameter\n",
366 __func__);
367 goto fail;
368 }
369
370 /* add newly minted memsegs to malloc heap */
371 elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz);
372
373 /* try once more, as now we have allocated new memory */
374 ret = find_suitable_element(heap, elt_size, flags, align, bound,
375 contig);
376
377 if (ret == NULL)
378 goto fail;
379
380 return elem;
381
382 fail:
383 rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
384 return NULL;
385 }
386
387 static int
try_expand_heap_primary(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)388 try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz,
389 size_t elt_size, int socket, unsigned int flags, size_t align,
390 size_t bound, bool contig)
391 {
392 struct malloc_elem *elem;
393 struct rte_memseg **ms;
394 void *map_addr;
395 size_t alloc_sz;
396 int n_segs;
397 bool callback_triggered = false;
398
399 alloc_sz = RTE_ALIGN_CEIL(align + elt_size +
400 MALLOC_ELEM_TRAILER_LEN, pg_sz);
401 n_segs = alloc_sz / pg_sz;
402
403 /* we can't know in advance how many pages we'll need, so we malloc */
404 ms = malloc(sizeof(*ms) * n_segs);
405 if (ms == NULL)
406 return -1;
407 memset(ms, 0, sizeof(*ms) * n_segs);
408
409 elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align,
410 bound, contig, ms, n_segs);
411
412 if (elem == NULL)
413 goto free_ms;
414
415 map_addr = ms[0]->addr;
416
417 /* notify user about changes in memory map */
418 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz);
419
420 /* notify other processes that this has happened */
421 if (request_sync()) {
422 /* we couldn't ensure all processes have mapped memory,
423 * so free it back and notify everyone that it's been
424 * freed back.
425 *
426 * technically, we could've avoided adding memory addresses to
427 * the map, but that would've led to inconsistent behavior
428 * between primary and secondary processes, as those get
429 * callbacks during sync. therefore, force primary process to
430 * do alloc-and-rollback syncs as well.
431 */
432 callback_triggered = true;
433 goto free_elem;
434 }
435 heap->total_size += alloc_sz;
436
437 RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n",
438 socket, alloc_sz >> 20ULL);
439
440 free(ms);
441
442 return 0;
443
444 free_elem:
445 if (callback_triggered)
446 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
447 map_addr, alloc_sz);
448
449 rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
450
451 request_sync();
452 free_ms:
453 free(ms);
454
455 return -1;
456 }
457
458 static int
try_expand_heap_secondary(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)459 try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz,
460 size_t elt_size, int socket, unsigned int flags, size_t align,
461 size_t bound, bool contig)
462 {
463 struct malloc_mp_req req;
464 int req_result;
465
466 memset(&req, 0, sizeof(req));
467
468 req.t = REQ_TYPE_ALLOC;
469 req.alloc_req.align = align;
470 req.alloc_req.bound = bound;
471 req.alloc_req.contig = contig;
472 req.alloc_req.flags = flags;
473 req.alloc_req.elt_size = elt_size;
474 req.alloc_req.page_sz = pg_sz;
475 req.alloc_req.socket = socket;
476 req.alloc_req.heap = heap; /* it's in shared memory */
477
478 req_result = request_to_primary(&req);
479
480 if (req_result != 0)
481 return -1;
482
483 if (req.result != REQ_RESULT_SUCCESS)
484 return -1;
485
486 return 0;
487 }
488
489 static int
try_expand_heap(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)490 try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
491 int socket, unsigned int flags, size_t align, size_t bound,
492 bool contig)
493 {
494 int ret;
495
496 rte_mcfg_mem_write_lock();
497
498 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
499 ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket,
500 flags, align, bound, contig);
501 } else {
502 ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket,
503 flags, align, bound, contig);
504 }
505
506 rte_mcfg_mem_write_unlock();
507 return ret;
508 }
509
510 static int
compare_pagesz(const void * a,const void * b)511 compare_pagesz(const void *a, const void *b)
512 {
513 const struct rte_memseg_list * const*mpa = a;
514 const struct rte_memseg_list * const*mpb = b;
515 const struct rte_memseg_list *msla = *mpa;
516 const struct rte_memseg_list *mslb = *mpb;
517 uint64_t pg_sz_a = msla->page_sz;
518 uint64_t pg_sz_b = mslb->page_sz;
519
520 if (pg_sz_a < pg_sz_b)
521 return -1;
522 if (pg_sz_a > pg_sz_b)
523 return 1;
524 return 0;
525 }
526
527 static int
alloc_more_mem_on_socket(struct malloc_heap * heap,size_t size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)528 alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket,
529 unsigned int flags, size_t align, size_t bound, bool contig)
530 {
531 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
532 struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS];
533 struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS];
534 uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS];
535 uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS];
536 uint64_t prev_pg_sz;
537 int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz;
538 bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0;
539 unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
540 void *ret;
541
542 memset(requested_msls, 0, sizeof(requested_msls));
543 memset(other_msls, 0, sizeof(other_msls));
544 memset(requested_pg_sz, 0, sizeof(requested_pg_sz));
545 memset(other_pg_sz, 0, sizeof(other_pg_sz));
546
547 /*
548 * go through memseg list and take note of all the page sizes available,
549 * and if any of them were specifically requested by the user.
550 */
551 n_requested_msls = 0;
552 n_other_msls = 0;
553 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
554 struct rte_memseg_list *msl = &mcfg->memsegs[i];
555
556 if (msl->socket_id != socket)
557 continue;
558
559 if (msl->base_va == NULL)
560 continue;
561
562 /* if pages of specific size were requested */
563 if (size_flags != 0 && check_hugepage_sz(size_flags,
564 msl->page_sz))
565 requested_msls[n_requested_msls++] = msl;
566 else if (size_flags == 0 || size_hint)
567 other_msls[n_other_msls++] = msl;
568 }
569
570 /* sort the lists, smallest first */
571 qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]),
572 compare_pagesz);
573 qsort(other_msls, n_other_msls, sizeof(other_msls[0]),
574 compare_pagesz);
575
576 /* now, extract page sizes we are supposed to try */
577 prev_pg_sz = 0;
578 n_requested_pg_sz = 0;
579 for (i = 0; i < n_requested_msls; i++) {
580 uint64_t pg_sz = requested_msls[i]->page_sz;
581
582 if (prev_pg_sz != pg_sz) {
583 requested_pg_sz[n_requested_pg_sz++] = pg_sz;
584 prev_pg_sz = pg_sz;
585 }
586 }
587 prev_pg_sz = 0;
588 n_other_pg_sz = 0;
589 for (i = 0; i < n_other_msls; i++) {
590 uint64_t pg_sz = other_msls[i]->page_sz;
591
592 if (prev_pg_sz != pg_sz) {
593 other_pg_sz[n_other_pg_sz++] = pg_sz;
594 prev_pg_sz = pg_sz;
595 }
596 }
597
598 /* finally, try allocating memory of specified page sizes, starting from
599 * the smallest sizes
600 */
601 for (i = 0; i < n_requested_pg_sz; i++) {
602 uint64_t pg_sz = requested_pg_sz[i];
603
604 /*
605 * do not pass the size hint here, as user expects other page
606 * sizes first, before resorting to best effort allocation.
607 */
608 if (!try_expand_heap(heap, pg_sz, size, socket, size_flags,
609 align, bound, contig))
610 return 0;
611 }
612 if (n_other_pg_sz == 0)
613 return -1;
614
615 /* now, check if we can reserve anything with size hint */
616 ret = find_suitable_element(heap, size, flags, align, bound, contig);
617 if (ret != NULL)
618 return 0;
619
620 /*
621 * we still couldn't reserve memory, so try expanding heap with other
622 * page sizes, if there are any
623 */
624 for (i = 0; i < n_other_pg_sz; i++) {
625 uint64_t pg_sz = other_pg_sz[i];
626
627 if (!try_expand_heap(heap, pg_sz, size, socket, flags,
628 align, bound, contig))
629 return 0;
630 }
631 return -1;
632 }
633
634 /* this will try lower page sizes first */
635 static void *
malloc_heap_alloc_on_heap_id(const char * type,size_t size,unsigned int heap_id,unsigned int flags,size_t align,size_t bound,bool contig)636 malloc_heap_alloc_on_heap_id(const char *type, size_t size,
637 unsigned int heap_id, unsigned int flags, size_t align,
638 size_t bound, bool contig)
639 {
640 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
641 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
642 unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
643 int socket_id;
644 void *ret;
645 const struct internal_config *internal_conf =
646 eal_get_internal_configuration();
647
648 rte_spinlock_lock(&(heap->lock));
649
650 align = align == 0 ? 1 : align;
651
652 /* for legacy mode, try once and with all flags */
653 if (internal_conf->legacy_mem) {
654 ret = heap_alloc(heap, type, size, flags, align, bound, contig);
655 goto alloc_unlock;
656 }
657
658 /*
659 * we do not pass the size hint here, because even if allocation fails,
660 * we may still be able to allocate memory from appropriate page sizes,
661 * we just need to request more memory first.
662 */
663
664 socket_id = rte_socket_id_by_idx(heap_id);
665 /*
666 * if socket ID is negative, we cannot find a socket ID for this heap -
667 * which means it's an external heap. those can have unexpected page
668 * sizes, so if the user asked to allocate from there - assume user
669 * knows what they're doing, and allow allocating from there with any
670 * page size flags.
671 */
672 if (socket_id < 0)
673 size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY;
674
675 ret = heap_alloc(heap, type, size, size_flags, align, bound, contig);
676 if (ret != NULL)
677 goto alloc_unlock;
678
679 /* if socket ID is invalid, this is an external heap */
680 if (socket_id < 0)
681 goto alloc_unlock;
682
683 if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align,
684 bound, contig)) {
685 ret = heap_alloc(heap, type, size, flags, align, bound, contig);
686
687 /* this should have succeeded */
688 if (ret == NULL)
689 RTE_LOG(ERR, EAL, "Error allocating from heap\n");
690 }
691 alloc_unlock:
692 rte_spinlock_unlock(&(heap->lock));
693 return ret;
694 }
695
696 void *
malloc_heap_alloc(const char * type,size_t size,int socket_arg,unsigned int flags,size_t align,size_t bound,bool contig)697 malloc_heap_alloc(const char *type, size_t size, int socket_arg,
698 unsigned int flags, size_t align, size_t bound, bool contig)
699 {
700 int socket, heap_id, i;
701 void *ret;
702
703 /* return NULL if size is 0 or alignment is not power-of-2 */
704 if (size == 0 || (align && !rte_is_power_of_2(align)))
705 return NULL;
706
707 if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES)
708 socket_arg = SOCKET_ID_ANY;
709
710 if (socket_arg == SOCKET_ID_ANY)
711 socket = malloc_get_numa_socket();
712 else
713 socket = socket_arg;
714
715 /* turn socket ID into heap ID */
716 heap_id = malloc_socket_to_heap_id(socket);
717 /* if heap id is negative, socket ID was invalid */
718 if (heap_id < 0)
719 return NULL;
720
721 ret = malloc_heap_alloc_on_heap_id(type, size, heap_id, flags, align,
722 bound, contig);
723 if (ret != NULL || socket_arg != SOCKET_ID_ANY)
724 return ret;
725
726 /* try other heaps. we are only iterating through native DPDK sockets,
727 * so external heaps won't be included.
728 */
729 for (i = 0; i < (int) rte_socket_count(); i++) {
730 if (i == heap_id)
731 continue;
732 ret = malloc_heap_alloc_on_heap_id(type, size, i, flags, align,
733 bound, contig);
734 if (ret != NULL)
735 return ret;
736 }
737 return NULL;
738 }
739
740 static void *
heap_alloc_biggest_on_heap_id(const char * type,unsigned int heap_id,unsigned int flags,size_t align,bool contig)741 heap_alloc_biggest_on_heap_id(const char *type, unsigned int heap_id,
742 unsigned int flags, size_t align, bool contig)
743 {
744 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
745 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
746 void *ret;
747
748 rte_spinlock_lock(&(heap->lock));
749
750 align = align == 0 ? 1 : align;
751
752 ret = heap_alloc_biggest(heap, type, flags, align, contig);
753
754 rte_spinlock_unlock(&(heap->lock));
755
756 return ret;
757 }
758
759 void *
malloc_heap_alloc_biggest(const char * type,int socket_arg,unsigned int flags,size_t align,bool contig)760 malloc_heap_alloc_biggest(const char *type, int socket_arg, unsigned int flags,
761 size_t align, bool contig)
762 {
763 int socket, i, cur_socket, heap_id;
764 void *ret;
765
766 /* return NULL if align is not power-of-2 */
767 if ((align && !rte_is_power_of_2(align)))
768 return NULL;
769
770 if (!rte_eal_has_hugepages())
771 socket_arg = SOCKET_ID_ANY;
772
773 if (socket_arg == SOCKET_ID_ANY)
774 socket = malloc_get_numa_socket();
775 else
776 socket = socket_arg;
777
778 /* turn socket ID into heap ID */
779 heap_id = malloc_socket_to_heap_id(socket);
780 /* if heap id is negative, socket ID was invalid */
781 if (heap_id < 0)
782 return NULL;
783
784 ret = heap_alloc_biggest_on_heap_id(type, heap_id, flags, align,
785 contig);
786 if (ret != NULL || socket_arg != SOCKET_ID_ANY)
787 return ret;
788
789 /* try other heaps */
790 for (i = 0; i < (int) rte_socket_count(); i++) {
791 cur_socket = rte_socket_id_by_idx(i);
792 if (cur_socket == socket)
793 continue;
794 ret = heap_alloc_biggest_on_heap_id(type, i, flags, align,
795 contig);
796 if (ret != NULL)
797 return ret;
798 }
799 return NULL;
800 }
801
802 /* this function is exposed in malloc_mp.h */
803 int
malloc_heap_free_pages(void * aligned_start,size_t aligned_len)804 malloc_heap_free_pages(void *aligned_start, size_t aligned_len)
805 {
806 int n_segs, seg_idx, max_seg_idx;
807 struct rte_memseg_list *msl;
808 size_t page_sz;
809
810 msl = rte_mem_virt2memseg_list(aligned_start);
811 if (msl == NULL)
812 return -1;
813
814 page_sz = (size_t)msl->page_sz;
815 n_segs = aligned_len / page_sz;
816 seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz;
817 max_seg_idx = seg_idx + n_segs;
818
819 for (; seg_idx < max_seg_idx; seg_idx++) {
820 struct rte_memseg *ms;
821
822 ms = rte_fbarray_get(&msl->memseg_arr, seg_idx);
823 eal_memalloc_free_seg(ms);
824 }
825 return 0;
826 }
827
828 int
malloc_heap_free(struct malloc_elem * elem)829 malloc_heap_free(struct malloc_elem *elem)
830 {
831 struct malloc_heap *heap;
832 void *start, *aligned_start, *end, *aligned_end;
833 size_t len, aligned_len, page_sz;
834 struct rte_memseg_list *msl;
835 unsigned int i, n_segs, before_space, after_space;
836 int ret;
837 const struct internal_config *internal_conf =
838 eal_get_internal_configuration();
839
840 if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
841 return -1;
842
843 /* elem may be merged with previous element, so keep heap address */
844 heap = elem->heap;
845 msl = elem->msl;
846 page_sz = (size_t)msl->page_sz;
847
848 rte_spinlock_lock(&(heap->lock));
849
850 /* mark element as free */
851 elem->state = ELEM_FREE;
852
853 elem = malloc_elem_free(elem);
854
855 /* anything after this is a bonus */
856 ret = 0;
857
858 /* ...of which we can't avail if we are in legacy mode, or if this is an
859 * externally allocated segment.
860 */
861 if (internal_conf->legacy_mem || (msl->external > 0))
862 goto free_unlock;
863
864 /* check if we can free any memory back to the system */
865 if (elem->size < page_sz)
866 goto free_unlock;
867
868 /* if user requested to match allocations, the sizes must match - if not,
869 * we will defer freeing these hugepages until the entire original allocation
870 * can be freed
871 */
872 if (internal_conf->match_allocations && elem->size != elem->orig_size)
873 goto free_unlock;
874
875 /* probably, but let's make sure, as we may not be using up full page */
876 start = elem;
877 len = elem->size;
878 aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz);
879 end = RTE_PTR_ADD(elem, len);
880 aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz);
881
882 aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
883
884 /* can't free anything */
885 if (aligned_len < page_sz)
886 goto free_unlock;
887
888 /* we can free something. however, some of these pages may be marked as
889 * unfreeable, so also check that as well
890 */
891 n_segs = aligned_len / page_sz;
892 for (i = 0; i < n_segs; i++) {
893 const struct rte_memseg *tmp =
894 rte_mem_virt2memseg(aligned_start, msl);
895
896 if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
897 /* this is an unfreeable segment, so move start */
898 aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len);
899 }
900 }
901
902 /* recalculate length and number of segments */
903 aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
904 n_segs = aligned_len / page_sz;
905
906 /* check if we can still free some pages */
907 if (n_segs == 0)
908 goto free_unlock;
909
910 /* We're not done yet. We also have to check if by freeing space we will
911 * be leaving free elements that are too small to store new elements.
912 * Check if we have enough space in the beginning and at the end, or if
913 * start/end are exactly page aligned.
914 */
915 before_space = RTE_PTR_DIFF(aligned_start, elem);
916 after_space = RTE_PTR_DIFF(end, aligned_end);
917 if (before_space != 0 &&
918 before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
919 /* There is not enough space before start, but we may be able to
920 * move the start forward by one page.
921 */
922 if (n_segs == 1)
923 goto free_unlock;
924
925 /* move start */
926 aligned_start = RTE_PTR_ADD(aligned_start, page_sz);
927 aligned_len -= page_sz;
928 n_segs--;
929 }
930 if (after_space != 0 && after_space <
931 MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
932 /* There is not enough space after end, but we may be able to
933 * move the end backwards by one page.
934 */
935 if (n_segs == 1)
936 goto free_unlock;
937
938 /* move end */
939 aligned_end = RTE_PTR_SUB(aligned_end, page_sz);
940 aligned_len -= page_sz;
941 n_segs--;
942 }
943
944 /* now we can finally free us some pages */
945
946 rte_mcfg_mem_write_lock();
947
948 /*
949 * we allow secondary processes to clear the heap of this allocated
950 * memory because it is safe to do so, as even if notifications about
951 * unmapped pages don't make it to other processes, heap is shared
952 * across all processes, and will become empty of this memory anyway,
953 * and nothing can allocate it back unless primary process will be able
954 * to deliver allocation message to every single running process.
955 */
956
957 malloc_elem_free_list_remove(elem);
958
959 malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len);
960
961 heap->total_size -= aligned_len;
962
963 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
964 /* notify user about changes in memory map */
965 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
966 aligned_start, aligned_len);
967
968 /* don't care if any of this fails */
969 malloc_heap_free_pages(aligned_start, aligned_len);
970
971 request_sync();
972 } else {
973 struct malloc_mp_req req;
974
975 memset(&req, 0, sizeof(req));
976
977 req.t = REQ_TYPE_FREE;
978 req.free_req.addr = aligned_start;
979 req.free_req.len = aligned_len;
980
981 /*
982 * we request primary to deallocate pages, but we don't do it
983 * in this thread. instead, we notify primary that we would like
984 * to deallocate pages, and this process will receive another
985 * request (in parallel) that will do it for us on another
986 * thread.
987 *
988 * we also don't really care if this succeeds - the data is
989 * already removed from the heap, so it is, for all intents and
990 * purposes, hidden from the rest of DPDK even if some other
991 * process (including this one) may have these pages mapped.
992 *
993 * notifications about deallocated memory happen during sync.
994 */
995 request_to_primary(&req);
996 }
997
998 RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n",
999 msl->socket_id, aligned_len >> 20ULL);
1000
1001 rte_mcfg_mem_write_unlock();
1002 free_unlock:
1003 rte_spinlock_unlock(&(heap->lock));
1004 return ret;
1005 }
1006
1007 int
malloc_heap_resize(struct malloc_elem * elem,size_t size)1008 malloc_heap_resize(struct malloc_elem *elem, size_t size)
1009 {
1010 int ret;
1011
1012 if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
1013 return -1;
1014
1015 rte_spinlock_lock(&(elem->heap->lock));
1016
1017 ret = malloc_elem_resize(elem, size);
1018
1019 rte_spinlock_unlock(&(elem->heap->lock));
1020
1021 return ret;
1022 }
1023
1024 /*
1025 * Function to retrieve data for a given heap
1026 */
1027 int
malloc_heap_get_stats(struct malloc_heap * heap,struct rte_malloc_socket_stats * socket_stats)1028 malloc_heap_get_stats(struct malloc_heap *heap,
1029 struct rte_malloc_socket_stats *socket_stats)
1030 {
1031 size_t idx;
1032 struct malloc_elem *elem;
1033
1034 rte_spinlock_lock(&heap->lock);
1035
1036 /* Initialise variables for heap */
1037 socket_stats->free_count = 0;
1038 socket_stats->heap_freesz_bytes = 0;
1039 socket_stats->greatest_free_size = 0;
1040
1041 /* Iterate through free list */
1042 for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
1043 for (elem = LIST_FIRST(&heap->free_head[idx]);
1044 !!elem; elem = LIST_NEXT(elem, free_list))
1045 {
1046 socket_stats->free_count++;
1047 socket_stats->heap_freesz_bytes += elem->size;
1048 if (elem->size > socket_stats->greatest_free_size)
1049 socket_stats->greatest_free_size = elem->size;
1050 }
1051 }
1052 /* Get stats on overall heap and allocated memory on this heap */
1053 socket_stats->heap_totalsz_bytes = heap->total_size;
1054 socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
1055 socket_stats->heap_freesz_bytes);
1056 socket_stats->alloc_count = heap->alloc_count;
1057
1058 rte_spinlock_unlock(&heap->lock);
1059 return 0;
1060 }
1061
1062 /*
1063 * Function to retrieve data for a given heap
1064 */
1065 void
malloc_heap_dump(struct malloc_heap * heap,FILE * f)1066 malloc_heap_dump(struct malloc_heap *heap, FILE *f)
1067 {
1068 struct malloc_elem *elem;
1069
1070 rte_spinlock_lock(&heap->lock);
1071
1072 fprintf(f, "Heap size: 0x%zx\n", heap->total_size);
1073 fprintf(f, "Heap alloc count: %u\n", heap->alloc_count);
1074
1075 elem = heap->first;
1076 while (elem) {
1077 malloc_elem_dump(elem, f);
1078 elem = elem->next;
1079 }
1080
1081 rte_spinlock_unlock(&heap->lock);
1082 }
1083
1084 static int
destroy_elem(struct malloc_elem * elem,size_t len)1085 destroy_elem(struct malloc_elem *elem, size_t len)
1086 {
1087 struct malloc_heap *heap = elem->heap;
1088
1089 /* notify all subscribers that a memory area is going to be removed */
1090 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len);
1091
1092 /* this element can be removed */
1093 malloc_elem_free_list_remove(elem);
1094 malloc_elem_hide_region(elem, elem, len);
1095
1096 heap->total_size -= len;
1097
1098 memset(elem, 0, sizeof(*elem));
1099
1100 return 0;
1101 }
1102
1103 struct rte_memseg_list *
malloc_heap_create_external_seg(void * va_addr,rte_iova_t iova_addrs[],unsigned int n_pages,size_t page_sz,const char * seg_name,unsigned int socket_id)1104 malloc_heap_create_external_seg(void *va_addr, rte_iova_t iova_addrs[],
1105 unsigned int n_pages, size_t page_sz, const char *seg_name,
1106 unsigned int socket_id)
1107 {
1108 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1109 char fbarray_name[RTE_FBARRAY_NAME_LEN];
1110 struct rte_memseg_list *msl = NULL;
1111 struct rte_fbarray *arr;
1112 size_t seg_len = n_pages * page_sz;
1113 unsigned int i;
1114
1115 /* first, find a free memseg list */
1116 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1117 struct rte_memseg_list *tmp = &mcfg->memsegs[i];
1118 if (tmp->base_va == NULL) {
1119 msl = tmp;
1120 break;
1121 }
1122 }
1123 if (msl == NULL) {
1124 RTE_LOG(ERR, EAL, "Couldn't find empty memseg list\n");
1125 rte_errno = ENOSPC;
1126 return NULL;
1127 }
1128
1129 snprintf(fbarray_name, sizeof(fbarray_name), "%s_%p",
1130 seg_name, va_addr);
1131
1132 /* create the backing fbarray */
1133 if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages,
1134 sizeof(struct rte_memseg)) < 0) {
1135 RTE_LOG(ERR, EAL, "Couldn't create fbarray backing the memseg list\n");
1136 return NULL;
1137 }
1138 arr = &msl->memseg_arr;
1139
1140 /* fbarray created, fill it up */
1141 for (i = 0; i < n_pages; i++) {
1142 struct rte_memseg *ms;
1143
1144 rte_fbarray_set_used(arr, i);
1145 ms = rte_fbarray_get(arr, i);
1146 ms->addr = RTE_PTR_ADD(va_addr, i * page_sz);
1147 ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i];
1148 ms->hugepage_sz = page_sz;
1149 ms->len = page_sz;
1150 ms->nchannel = rte_memory_get_nchannel();
1151 ms->nrank = rte_memory_get_nrank();
1152 ms->socket_id = socket_id;
1153 }
1154
1155 /* set up the memseg list */
1156 msl->base_va = va_addr;
1157 msl->page_sz = page_sz;
1158 msl->socket_id = socket_id;
1159 msl->len = seg_len;
1160 msl->version = 0;
1161 msl->external = 1;
1162
1163 return msl;
1164 }
1165
1166 struct extseg_walk_arg {
1167 void *va_addr;
1168 size_t len;
1169 struct rte_memseg_list *msl;
1170 };
1171
1172 static int
extseg_walk(const struct rte_memseg_list * msl,void * arg)1173 extseg_walk(const struct rte_memseg_list *msl, void *arg)
1174 {
1175 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1176 struct extseg_walk_arg *wa = arg;
1177
1178 if (msl->base_va == wa->va_addr && msl->len == wa->len) {
1179 unsigned int found_idx;
1180
1181 /* msl is const */
1182 found_idx = msl - mcfg->memsegs;
1183 wa->msl = &mcfg->memsegs[found_idx];
1184 return 1;
1185 }
1186 return 0;
1187 }
1188
1189 struct rte_memseg_list *
malloc_heap_find_external_seg(void * va_addr,size_t len)1190 malloc_heap_find_external_seg(void *va_addr, size_t len)
1191 {
1192 struct extseg_walk_arg wa;
1193 int res;
1194
1195 wa.va_addr = va_addr;
1196 wa.len = len;
1197
1198 res = rte_memseg_list_walk_thread_unsafe(extseg_walk, &wa);
1199
1200 if (res != 1) {
1201 /* 0 means nothing was found, -1 shouldn't happen */
1202 if (res == 0)
1203 rte_errno = ENOENT;
1204 return NULL;
1205 }
1206 return wa.msl;
1207 }
1208
1209 int
malloc_heap_destroy_external_seg(struct rte_memseg_list * msl)1210 malloc_heap_destroy_external_seg(struct rte_memseg_list *msl)
1211 {
1212 /* destroy the fbarray backing this memory */
1213 if (rte_fbarray_destroy(&msl->memseg_arr) < 0)
1214 return -1;
1215
1216 /* reset the memseg list */
1217 memset(msl, 0, sizeof(*msl));
1218
1219 return 0;
1220 }
1221
1222 int
malloc_heap_add_external_memory(struct malloc_heap * heap,struct rte_memseg_list * msl)1223 malloc_heap_add_external_memory(struct malloc_heap *heap,
1224 struct rte_memseg_list *msl)
1225 {
1226 /* erase contents of new memory */
1227 memset(msl->base_va, 0, msl->len);
1228
1229 /* now, add newly minted memory to the malloc heap */
1230 malloc_heap_add_memory(heap, msl, msl->base_va, msl->len);
1231
1232 heap->total_size += msl->len;
1233
1234 /* all done! */
1235 RTE_LOG(DEBUG, EAL, "Added segment for heap %s starting at %p\n",
1236 heap->name, msl->base_va);
1237
1238 /* notify all subscribers that a new memory area has been added */
1239 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
1240 msl->base_va, msl->len);
1241
1242 return 0;
1243 }
1244
1245 int
malloc_heap_remove_external_memory(struct malloc_heap * heap,void * va_addr,size_t len)1246 malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr,
1247 size_t len)
1248 {
1249 struct malloc_elem *elem = heap->first;
1250
1251 /* find element with specified va address */
1252 while (elem != NULL && elem != va_addr) {
1253 elem = elem->next;
1254 /* stop if we've blown past our VA */
1255 if (elem > (struct malloc_elem *)va_addr) {
1256 rte_errno = ENOENT;
1257 return -1;
1258 }
1259 }
1260 /* check if element was found */
1261 if (elem == NULL || elem->msl->len != len) {
1262 rte_errno = ENOENT;
1263 return -1;
1264 }
1265 /* if element's size is not equal to segment len, segment is busy */
1266 if (elem->state == ELEM_BUSY || elem->size != len) {
1267 rte_errno = EBUSY;
1268 return -1;
1269 }
1270 return destroy_elem(elem, len);
1271 }
1272
1273 int
malloc_heap_create(struct malloc_heap * heap,const char * heap_name)1274 malloc_heap_create(struct malloc_heap *heap, const char *heap_name)
1275 {
1276 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1277 uint32_t next_socket_id = mcfg->next_socket_id;
1278
1279 /* prevent overflow. did you really create 2 billion heaps??? */
1280 if (next_socket_id > INT32_MAX) {
1281 RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
1282 rte_errno = ENOSPC;
1283 return -1;
1284 }
1285
1286 /* initialize empty heap */
1287 heap->alloc_count = 0;
1288 heap->first = NULL;
1289 heap->last = NULL;
1290 LIST_INIT(heap->free_head);
1291 rte_spinlock_init(&heap->lock);
1292 heap->total_size = 0;
1293 heap->socket_id = next_socket_id;
1294
1295 /* we hold a global mem hotplug writelock, so it's safe to increment */
1296 mcfg->next_socket_id++;
1297
1298 /* set up name */
1299 strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
1300 return 0;
1301 }
1302
1303 int
malloc_heap_destroy(struct malloc_heap * heap)1304 malloc_heap_destroy(struct malloc_heap *heap)
1305 {
1306 if (heap->alloc_count != 0) {
1307 RTE_LOG(ERR, EAL, "Heap is still in use\n");
1308 rte_errno = EBUSY;
1309 return -1;
1310 }
1311 if (heap->first != NULL || heap->last != NULL) {
1312 RTE_LOG(ERR, EAL, "Heap still contains memory segments\n");
1313 rte_errno = EBUSY;
1314 return -1;
1315 }
1316 if (heap->total_size != 0)
1317 RTE_LOG(ERR, EAL, "Total size not zero, heap is likely corrupt\n");
1318
1319 /* after this, the lock will be dropped */
1320 memset(heap, 0, sizeof(*heap));
1321
1322 return 0;
1323 }
1324
1325 int
rte_eal_malloc_heap_init(void)1326 rte_eal_malloc_heap_init(void)
1327 {
1328 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1329 unsigned int i;
1330 const struct internal_config *internal_conf =
1331 eal_get_internal_configuration();
1332
1333 if (internal_conf->match_allocations)
1334 RTE_LOG(DEBUG, EAL, "Hugepages will be freed exactly as allocated.\n");
1335
1336 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
1337 /* assign min socket ID to external heaps */
1338 mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID;
1339
1340 /* assign names to default DPDK heaps */
1341 for (i = 0; i < rte_socket_count(); i++) {
1342 struct malloc_heap *heap = &mcfg->malloc_heaps[i];
1343 char heap_name[RTE_HEAP_NAME_MAX_LEN];
1344 int socket_id = rte_socket_id_by_idx(i);
1345
1346 snprintf(heap_name, sizeof(heap_name),
1347 "socket_%i", socket_id);
1348 strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
1349 heap->socket_id = socket_id;
1350 }
1351 }
1352
1353
1354 if (register_mp_requests()) {
1355 RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n");
1356 rte_mcfg_mem_read_unlock();
1357 return -1;
1358 }
1359
1360 /* unlock mem hotplug here. it's safe for primary as no requests can
1361 * even come before primary itself is fully initialized, and secondaries
1362 * do not need to initialize the heap.
1363 */
1364 rte_mcfg_mem_read_unlock();
1365
1366 /* secondary process does not need to initialize anything */
1367 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1368 return 0;
1369
1370 /* add all IOVA-contiguous areas to the heap */
1371 return rte_memseg_contig_walk(malloc_add_seg, NULL);
1372 }
1373