1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4 #include <stdint.h>
5 #include <stddef.h>
6 #include <stdlib.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <sys/queue.h>
10
11 #include <rte_memory.h>
12 #include <rte_errno.h>
13 #include <rte_eal.h>
14 #include <rte_eal_memconfig.h>
15 #include <rte_lcore.h>
16 #include <rte_common.h>
17 #include <rte_string_fns.h>
18 #include <rte_spinlock.h>
19 #include <rte_memzone.h>
20 #include <rte_fbarray.h>
21
22 #include "eal_internal_cfg.h"
23 #include "eal_memalloc.h"
24 #include "eal_memcfg.h"
25 #include "eal_private.h"
26 #include "malloc_elem.h"
27 #include "malloc_heap.h"
28 #include "malloc_mp.h"
29
30 /* start external socket ID's at a very high number */
31 #define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */
32 #define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES))
33
34 static unsigned
check_hugepage_sz(unsigned flags,uint64_t hugepage_sz)35 check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
36 {
37 unsigned check_flag = 0;
38
39 if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
40 return 1;
41
42 switch (hugepage_sz) {
43 case RTE_PGSIZE_256K:
44 check_flag = RTE_MEMZONE_256KB;
45 break;
46 case RTE_PGSIZE_2M:
47 check_flag = RTE_MEMZONE_2MB;
48 break;
49 case RTE_PGSIZE_16M:
50 check_flag = RTE_MEMZONE_16MB;
51 break;
52 case RTE_PGSIZE_256M:
53 check_flag = RTE_MEMZONE_256MB;
54 break;
55 case RTE_PGSIZE_512M:
56 check_flag = RTE_MEMZONE_512MB;
57 break;
58 case RTE_PGSIZE_1G:
59 check_flag = RTE_MEMZONE_1GB;
60 break;
61 case RTE_PGSIZE_4G:
62 check_flag = RTE_MEMZONE_4GB;
63 break;
64 case RTE_PGSIZE_16G:
65 check_flag = RTE_MEMZONE_16GB;
66 }
67
68 return check_flag & flags;
69 }
70
71 int
malloc_socket_to_heap_id(unsigned int socket_id)72 malloc_socket_to_heap_id(unsigned int socket_id)
73 {
74 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
75 int i;
76
77 for (i = 0; i < RTE_MAX_HEAPS; i++) {
78 struct malloc_heap *heap = &mcfg->malloc_heaps[i];
79
80 if (heap->socket_id == socket_id)
81 return i;
82 }
83 return -1;
84 }
85
86 /*
87 * Expand the heap with a memory area.
88 */
89 static struct malloc_elem *
malloc_heap_add_memory(struct malloc_heap * heap,struct rte_memseg_list * msl,void * start,size_t len,bool dirty)90 malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl,
91 void *start, size_t len, bool dirty)
92 {
93 struct malloc_elem *elem = start;
94
95 malloc_elem_init(elem, heap, msl, len, elem, len, dirty);
96
97 malloc_elem_insert(elem);
98
99 elem = malloc_elem_join_adjacent_free(elem);
100
101 malloc_elem_free_list_insert(elem);
102
103 return elem;
104 }
105
106 static int
malloc_add_seg(const struct rte_memseg_list * msl,const struct rte_memseg * ms,size_t len,void * arg __rte_unused)107 malloc_add_seg(const struct rte_memseg_list *msl,
108 const struct rte_memseg *ms, size_t len, void *arg __rte_unused)
109 {
110 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
111 struct rte_memseg_list *found_msl;
112 struct malloc_heap *heap;
113 int msl_idx, heap_idx;
114
115 if (msl->external)
116 return 0;
117
118 heap_idx = malloc_socket_to_heap_id(msl->socket_id);
119 if (heap_idx < 0) {
120 RTE_LOG(ERR, EAL, "Memseg list has invalid socket id\n");
121 return -1;
122 }
123 heap = &mcfg->malloc_heaps[heap_idx];
124
125 /* msl is const, so find it */
126 msl_idx = msl - mcfg->memsegs;
127
128 if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
129 return -1;
130
131 found_msl = &mcfg->memsegs[msl_idx];
132
133 malloc_heap_add_memory(heap, found_msl, ms->addr, len,
134 ms->flags & RTE_MEMSEG_FLAG_DIRTY);
135
136 heap->total_size += len;
137
138 RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20,
139 msl->socket_id);
140 return 0;
141 }
142
143 /*
144 * Iterates through the freelist for a heap to find a free element
145 * which can store data of the required size and with the requested alignment.
146 * If size is 0, find the biggest available elem.
147 * Returns null on failure, or pointer to element on success.
148 */
149 static struct malloc_elem *
find_suitable_element(struct malloc_heap * heap,size_t size,unsigned int flags,size_t align,size_t bound,bool contig)150 find_suitable_element(struct malloc_heap *heap, size_t size,
151 unsigned int flags, size_t align, size_t bound, bool contig)
152 {
153 size_t idx;
154 struct malloc_elem *elem, *alt_elem = NULL;
155
156 for (idx = malloc_elem_free_list_index(size);
157 idx < RTE_HEAP_NUM_FREELISTS; idx++) {
158 for (elem = LIST_FIRST(&heap->free_head[idx]);
159 !!elem; elem = LIST_NEXT(elem, free_list)) {
160 if (malloc_elem_can_hold(elem, size, align, bound,
161 contig)) {
162 if (check_hugepage_sz(flags,
163 elem->msl->page_sz))
164 return elem;
165 if (alt_elem == NULL)
166 alt_elem = elem;
167 }
168 }
169 }
170
171 if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
172 return alt_elem;
173
174 return NULL;
175 }
176
177 /*
178 * Iterates through the freelist for a heap to find a free element with the
179 * biggest size and requested alignment. Will also set size to whatever element
180 * size that was found.
181 * Returns null on failure, or pointer to element on success.
182 */
183 static struct malloc_elem *
find_biggest_element(struct malloc_heap * heap,size_t * size,unsigned int flags,size_t align,bool contig)184 find_biggest_element(struct malloc_heap *heap, size_t *size,
185 unsigned int flags, size_t align, bool contig)
186 {
187 struct malloc_elem *elem, *max_elem = NULL;
188 size_t idx, max_size = 0;
189
190 for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
191 for (elem = LIST_FIRST(&heap->free_head[idx]);
192 !!elem; elem = LIST_NEXT(elem, free_list)) {
193 size_t cur_size;
194 if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 &&
195 !check_hugepage_sz(flags,
196 elem->msl->page_sz))
197 continue;
198 if (contig) {
199 cur_size =
200 malloc_elem_find_max_iova_contig(elem,
201 align);
202 } else {
203 void *data_start = RTE_PTR_ADD(elem,
204 MALLOC_ELEM_HEADER_LEN);
205 void *data_end = RTE_PTR_ADD(elem, elem->size -
206 MALLOC_ELEM_TRAILER_LEN);
207 void *aligned = RTE_PTR_ALIGN_CEIL(data_start,
208 align);
209 /* check if aligned data start is beyond end */
210 if (aligned >= data_end)
211 continue;
212 cur_size = RTE_PTR_DIFF(data_end, aligned);
213 }
214 if (cur_size > max_size) {
215 max_size = cur_size;
216 max_elem = elem;
217 }
218 }
219 }
220
221 *size = max_size;
222 return max_elem;
223 }
224
225 /*
226 * Main function to allocate a block of memory from the heap.
227 * It locks the free list, scans it, and adds a new memseg if the
228 * scan fails. Once the new memseg is added, it re-scans and should return
229 * the new element after releasing the lock.
230 */
231 static void *
heap_alloc(struct malloc_heap * heap,const char * type __rte_unused,size_t size,unsigned int flags,size_t align,size_t bound,bool contig)232 heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size,
233 unsigned int flags, size_t align, size_t bound, bool contig)
234 {
235 struct malloc_elem *elem;
236 size_t user_size = size;
237
238 size = RTE_CACHE_LINE_ROUNDUP(size);
239 align = RTE_CACHE_LINE_ROUNDUP(align);
240
241 /* roundup might cause an overflow */
242 if (size == 0)
243 return NULL;
244 elem = find_suitable_element(heap, size, flags, align, bound, contig);
245 if (elem != NULL) {
246 elem = malloc_elem_alloc(elem, size, align, bound, contig);
247
248 /* increase heap's count of allocated elements */
249 heap->alloc_count++;
250
251 asan_set_redzone(elem, user_size);
252 }
253
254 return elem == NULL ? NULL : (void *)(&elem[1]);
255 }
256
257 static void *
heap_alloc_biggest(struct malloc_heap * heap,const char * type __rte_unused,unsigned int flags,size_t align,bool contig)258 heap_alloc_biggest(struct malloc_heap *heap, const char *type __rte_unused,
259 unsigned int flags, size_t align, bool contig)
260 {
261 struct malloc_elem *elem;
262 size_t size;
263
264 align = RTE_CACHE_LINE_ROUNDUP(align);
265
266 elem = find_biggest_element(heap, &size, flags, align, contig);
267 if (elem != NULL) {
268 elem = malloc_elem_alloc(elem, size, align, 0, contig);
269
270 /* increase heap's count of allocated elements */
271 heap->alloc_count++;
272
273 asan_set_redzone(elem, size);
274 }
275
276 return elem == NULL ? NULL : (void *)(&elem[1]);
277 }
278
279 /* this function is exposed in malloc_mp.h */
280 void
rollback_expand_heap(struct rte_memseg ** ms,int n_segs,struct malloc_elem * elem,void * map_addr,size_t map_len)281 rollback_expand_heap(struct rte_memseg **ms, int n_segs,
282 struct malloc_elem *elem, void *map_addr, size_t map_len)
283 {
284 if (elem != NULL) {
285 malloc_elem_free_list_remove(elem);
286 malloc_elem_hide_region(elem, map_addr, map_len);
287 }
288
289 eal_memalloc_free_seg_bulk(ms, n_segs);
290 }
291
292 /* this function is exposed in malloc_mp.h */
293 struct malloc_elem *
alloc_pages_on_heap(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig,struct rte_memseg ** ms,int n_segs)294 alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
295 int socket, unsigned int flags, size_t align, size_t bound,
296 bool contig, struct rte_memseg **ms, int n_segs)
297 {
298 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
299 struct rte_memseg_list *msl;
300 struct malloc_elem *elem = NULL;
301 size_t alloc_sz;
302 int allocd_pages, i;
303 bool dirty = false;
304 void *ret, *map_addr;
305
306 alloc_sz = (size_t)pg_sz * n_segs;
307
308 /* first, check if we're allowed to allocate this memory */
309 if (eal_memalloc_mem_alloc_validate(socket,
310 heap->total_size + alloc_sz) < 0) {
311 RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n");
312 return NULL;
313 }
314
315 allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz,
316 socket, true);
317
318 /* make sure we've allocated our pages... */
319 if (allocd_pages < 0)
320 return NULL;
321
322 map_addr = ms[0]->addr;
323 msl = rte_mem_virt2memseg_list(map_addr);
324
325 /* check if we wanted contiguous memory but didn't get it */
326 if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) {
327 RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n",
328 __func__);
329 goto fail;
330 }
331
332 /*
333 * Once we have all the memseg lists configured, if there is a dma mask
334 * set, check iova addresses are not out of range. Otherwise the device
335 * setting the dma mask could have problems with the mapped memory.
336 *
337 * There are two situations when this can happen:
338 * 1) memory initialization
339 * 2) dynamic memory allocation
340 *
341 * For 1), an error when checking dma mask implies app can not be
342 * executed. For 2) implies the new memory can not be added.
343 */
344 if (mcfg->dma_maskbits &&
345 rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) {
346 /*
347 * Currently this can only happen if IOMMU is enabled
348 * and the address width supported by the IOMMU hw is
349 * not enough for using the memory mapped IOVAs.
350 *
351 * If IOVA is VA, advice to try with '--iova-mode pa'
352 * which could solve some situations when IOVA VA is not
353 * really needed.
354 */
355 RTE_LOG(ERR, EAL,
356 "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask\n",
357 __func__);
358
359 /*
360 * If IOVA is VA and it is possible to run with IOVA PA,
361 * because user is root, give and advice for solving the
362 * problem.
363 */
364 if ((rte_eal_iova_mode() == RTE_IOVA_VA) &&
365 rte_eal_using_phys_addrs())
366 RTE_LOG(ERR, EAL,
367 "%s(): Please try initializing EAL with --iova-mode=pa parameter\n",
368 __func__);
369 goto fail;
370 }
371
372 /* Element is dirty if it contains at least one dirty page. */
373 for (i = 0; i < allocd_pages; i++)
374 dirty |= ms[i]->flags & RTE_MEMSEG_FLAG_DIRTY;
375
376 /* add newly minted memsegs to malloc heap */
377 elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz, dirty);
378
379 /* try once more, as now we have allocated new memory */
380 ret = find_suitable_element(heap, elt_size, flags, align, bound,
381 contig);
382
383 if (ret == NULL)
384 goto fail;
385
386 return elem;
387
388 fail:
389 rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
390 return NULL;
391 }
392
393 static int
try_expand_heap_primary(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)394 try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz,
395 size_t elt_size, int socket, unsigned int flags, size_t align,
396 size_t bound, bool contig)
397 {
398 struct malloc_elem *elem;
399 struct rte_memseg **ms;
400 void *map_addr;
401 size_t alloc_sz;
402 int n_segs;
403 bool callback_triggered = false;
404
405 alloc_sz = RTE_ALIGN_CEIL(align + elt_size +
406 MALLOC_ELEM_TRAILER_LEN, pg_sz);
407 n_segs = alloc_sz / pg_sz;
408
409 /* we can't know in advance how many pages we'll need, so we malloc */
410 ms = malloc(sizeof(*ms) * n_segs);
411 if (ms == NULL)
412 return -1;
413 memset(ms, 0, sizeof(*ms) * n_segs);
414
415 elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align,
416 bound, contig, ms, n_segs);
417
418 if (elem == NULL)
419 goto free_ms;
420
421 map_addr = ms[0]->addr;
422
423 /* notify user about changes in memory map */
424 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz);
425
426 /* notify other processes that this has happened */
427 if (request_sync()) {
428 /* we couldn't ensure all processes have mapped memory,
429 * so free it back and notify everyone that it's been
430 * freed back.
431 *
432 * technically, we could've avoided adding memory addresses to
433 * the map, but that would've led to inconsistent behavior
434 * between primary and secondary processes, as those get
435 * callbacks during sync. therefore, force primary process to
436 * do alloc-and-rollback syncs as well.
437 */
438 callback_triggered = true;
439 goto free_elem;
440 }
441 heap->total_size += alloc_sz;
442
443 RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n",
444 socket, alloc_sz >> 20ULL);
445
446 free(ms);
447
448 return 0;
449
450 free_elem:
451 if (callback_triggered)
452 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
453 map_addr, alloc_sz);
454
455 rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
456
457 request_sync();
458 free_ms:
459 free(ms);
460
461 return -1;
462 }
463
464 static int
try_expand_heap_secondary(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)465 try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz,
466 size_t elt_size, int socket, unsigned int flags, size_t align,
467 size_t bound, bool contig)
468 {
469 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
470 struct malloc_mp_req req;
471 int req_result;
472
473 memset(&req, 0, sizeof(req));
474
475 req.t = REQ_TYPE_ALLOC;
476 req.alloc_req.align = align;
477 req.alloc_req.bound = bound;
478 req.alloc_req.contig = contig;
479 req.alloc_req.flags = flags;
480 req.alloc_req.elt_size = elt_size;
481 req.alloc_req.page_sz = pg_sz;
482 req.alloc_req.socket = socket;
483 req.alloc_req.malloc_heap_idx = heap - mcfg->malloc_heaps;
484
485 req_result = request_to_primary(&req);
486
487 if (req_result != 0)
488 return -1;
489
490 if (req.result != REQ_RESULT_SUCCESS)
491 return -1;
492
493 return 0;
494 }
495
496 static int
try_expand_heap(struct malloc_heap * heap,uint64_t pg_sz,size_t elt_size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)497 try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
498 int socket, unsigned int flags, size_t align, size_t bound,
499 bool contig)
500 {
501 int ret;
502
503 rte_mcfg_mem_write_lock();
504
505 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
506 ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket,
507 flags, align, bound, contig);
508 } else {
509 ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket,
510 flags, align, bound, contig);
511 }
512
513 rte_mcfg_mem_write_unlock();
514 return ret;
515 }
516
517 static int
compare_pagesz(const void * a,const void * b)518 compare_pagesz(const void *a, const void *b)
519 {
520 const struct rte_memseg_list * const*mpa = a;
521 const struct rte_memseg_list * const*mpb = b;
522 const struct rte_memseg_list *msla = *mpa;
523 const struct rte_memseg_list *mslb = *mpb;
524 uint64_t pg_sz_a = msla->page_sz;
525 uint64_t pg_sz_b = mslb->page_sz;
526
527 if (pg_sz_a < pg_sz_b)
528 return -1;
529 if (pg_sz_a > pg_sz_b)
530 return 1;
531 return 0;
532 }
533
534 static int
alloc_more_mem_on_socket(struct malloc_heap * heap,size_t size,int socket,unsigned int flags,size_t align,size_t bound,bool contig)535 alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket,
536 unsigned int flags, size_t align, size_t bound, bool contig)
537 {
538 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
539 struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS];
540 struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS];
541 uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS];
542 uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS];
543 uint64_t prev_pg_sz;
544 int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz;
545 bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0;
546 unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
547 void *ret;
548
549 memset(requested_msls, 0, sizeof(requested_msls));
550 memset(other_msls, 0, sizeof(other_msls));
551 memset(requested_pg_sz, 0, sizeof(requested_pg_sz));
552 memset(other_pg_sz, 0, sizeof(other_pg_sz));
553
554 /*
555 * go through memseg list and take note of all the page sizes available,
556 * and if any of them were specifically requested by the user.
557 */
558 n_requested_msls = 0;
559 n_other_msls = 0;
560 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
561 struct rte_memseg_list *msl = &mcfg->memsegs[i];
562
563 if (msl->socket_id != socket)
564 continue;
565
566 if (msl->base_va == NULL)
567 continue;
568
569 /* if pages of specific size were requested */
570 if (size_flags != 0 && check_hugepage_sz(size_flags,
571 msl->page_sz))
572 requested_msls[n_requested_msls++] = msl;
573 else if (size_flags == 0 || size_hint)
574 other_msls[n_other_msls++] = msl;
575 }
576
577 /* sort the lists, smallest first */
578 qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]),
579 compare_pagesz);
580 qsort(other_msls, n_other_msls, sizeof(other_msls[0]),
581 compare_pagesz);
582
583 /* now, extract page sizes we are supposed to try */
584 prev_pg_sz = 0;
585 n_requested_pg_sz = 0;
586 for (i = 0; i < n_requested_msls; i++) {
587 uint64_t pg_sz = requested_msls[i]->page_sz;
588
589 if (prev_pg_sz != pg_sz) {
590 requested_pg_sz[n_requested_pg_sz++] = pg_sz;
591 prev_pg_sz = pg_sz;
592 }
593 }
594 prev_pg_sz = 0;
595 n_other_pg_sz = 0;
596 for (i = 0; i < n_other_msls; i++) {
597 uint64_t pg_sz = other_msls[i]->page_sz;
598
599 if (prev_pg_sz != pg_sz) {
600 other_pg_sz[n_other_pg_sz++] = pg_sz;
601 prev_pg_sz = pg_sz;
602 }
603 }
604
605 /* finally, try allocating memory of specified page sizes, starting from
606 * the smallest sizes
607 */
608 for (i = 0; i < n_requested_pg_sz; i++) {
609 uint64_t pg_sz = requested_pg_sz[i];
610
611 /*
612 * do not pass the size hint here, as user expects other page
613 * sizes first, before resorting to best effort allocation.
614 */
615 if (!try_expand_heap(heap, pg_sz, size, socket, size_flags,
616 align, bound, contig))
617 return 0;
618 }
619 if (n_other_pg_sz == 0)
620 return -1;
621
622 /* now, check if we can reserve anything with size hint */
623 ret = find_suitable_element(heap, size, flags, align, bound, contig);
624 if (ret != NULL)
625 return 0;
626
627 /*
628 * we still couldn't reserve memory, so try expanding heap with other
629 * page sizes, if there are any
630 */
631 for (i = 0; i < n_other_pg_sz; i++) {
632 uint64_t pg_sz = other_pg_sz[i];
633
634 if (!try_expand_heap(heap, pg_sz, size, socket, flags,
635 align, bound, contig))
636 return 0;
637 }
638 return -1;
639 }
640
641 /* this will try lower page sizes first */
642 static void *
malloc_heap_alloc_on_heap_id(const char * type,size_t size,unsigned int heap_id,unsigned int flags,size_t align,size_t bound,bool contig)643 malloc_heap_alloc_on_heap_id(const char *type, size_t size,
644 unsigned int heap_id, unsigned int flags, size_t align,
645 size_t bound, bool contig)
646 {
647 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
648 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
649 unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
650 int socket_id;
651 void *ret;
652 const struct internal_config *internal_conf =
653 eal_get_internal_configuration();
654
655 rte_spinlock_lock(&(heap->lock));
656
657 align = align == 0 ? 1 : align;
658
659 /* for legacy mode, try once and with all flags */
660 if (internal_conf->legacy_mem) {
661 ret = heap_alloc(heap, type, size, flags, align, bound, contig);
662 goto alloc_unlock;
663 }
664
665 /*
666 * we do not pass the size hint here, because even if allocation fails,
667 * we may still be able to allocate memory from appropriate page sizes,
668 * we just need to request more memory first.
669 */
670
671 socket_id = rte_socket_id_by_idx(heap_id);
672 /*
673 * if socket ID is negative, we cannot find a socket ID for this heap -
674 * which means it's an external heap. those can have unexpected page
675 * sizes, so if the user asked to allocate from there - assume user
676 * knows what they're doing, and allow allocating from there with any
677 * page size flags.
678 */
679 if (socket_id < 0)
680 size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY;
681
682 ret = heap_alloc(heap, type, size, size_flags, align, bound, contig);
683 if (ret != NULL)
684 goto alloc_unlock;
685
686 /* if socket ID is invalid, this is an external heap */
687 if (socket_id < 0)
688 goto alloc_unlock;
689
690 if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align,
691 bound, contig)) {
692 ret = heap_alloc(heap, type, size, flags, align, bound, contig);
693
694 /* this should have succeeded */
695 if (ret == NULL)
696 RTE_LOG(ERR, EAL, "Error allocating from heap\n");
697 }
698 alloc_unlock:
699 rte_spinlock_unlock(&(heap->lock));
700 return ret;
701 }
702
703 static unsigned int
malloc_get_numa_socket(void)704 malloc_get_numa_socket(void)
705 {
706 const struct internal_config *conf = eal_get_internal_configuration();
707 unsigned int socket_id = rte_socket_id();
708 unsigned int idx;
709
710 if (socket_id != (unsigned int)SOCKET_ID_ANY)
711 return socket_id;
712
713 /* for control threads, return first socket where memory is available */
714 for (idx = 0; idx < rte_socket_count(); idx++) {
715 socket_id = rte_socket_id_by_idx(idx);
716 if (conf->socket_mem[socket_id] != 0)
717 return socket_id;
718 }
719
720 return rte_socket_id_by_idx(0);
721 }
722
723 void *
malloc_heap_alloc(const char * type,size_t size,int socket_arg,unsigned int flags,size_t align,size_t bound,bool contig)724 malloc_heap_alloc(const char *type, size_t size, int socket_arg,
725 unsigned int flags, size_t align, size_t bound, bool contig)
726 {
727 int socket, heap_id, i;
728 void *ret;
729
730 /* return NULL if size is 0 or alignment is not power-of-2 */
731 if (size == 0 || (align && !rte_is_power_of_2(align)))
732 return NULL;
733
734 if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES)
735 socket_arg = SOCKET_ID_ANY;
736
737 if (socket_arg == SOCKET_ID_ANY)
738 socket = malloc_get_numa_socket();
739 else
740 socket = socket_arg;
741
742 /* turn socket ID into heap ID */
743 heap_id = malloc_socket_to_heap_id(socket);
744 /* if heap id is negative, socket ID was invalid */
745 if (heap_id < 0)
746 return NULL;
747
748 ret = malloc_heap_alloc_on_heap_id(type, size, heap_id, flags, align,
749 bound, contig);
750 if (ret != NULL || socket_arg != SOCKET_ID_ANY)
751 return ret;
752
753 /* try other heaps. we are only iterating through native DPDK sockets,
754 * so external heaps won't be included.
755 */
756 for (i = 0; i < (int) rte_socket_count(); i++) {
757 if (i == heap_id)
758 continue;
759 ret = malloc_heap_alloc_on_heap_id(type, size, i, flags, align,
760 bound, contig);
761 if (ret != NULL)
762 return ret;
763 }
764 return NULL;
765 }
766
767 static void *
heap_alloc_biggest_on_heap_id(const char * type,unsigned int heap_id,unsigned int flags,size_t align,bool contig)768 heap_alloc_biggest_on_heap_id(const char *type, unsigned int heap_id,
769 unsigned int flags, size_t align, bool contig)
770 {
771 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
772 struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id];
773 void *ret;
774
775 rte_spinlock_lock(&(heap->lock));
776
777 align = align == 0 ? 1 : align;
778
779 ret = heap_alloc_biggest(heap, type, flags, align, contig);
780
781 rte_spinlock_unlock(&(heap->lock));
782
783 return ret;
784 }
785
786 void *
malloc_heap_alloc_biggest(const char * type,int socket_arg,unsigned int flags,size_t align,bool contig)787 malloc_heap_alloc_biggest(const char *type, int socket_arg, unsigned int flags,
788 size_t align, bool contig)
789 {
790 int socket, i, cur_socket, heap_id;
791 void *ret;
792
793 /* return NULL if align is not power-of-2 */
794 if ((align && !rte_is_power_of_2(align)))
795 return NULL;
796
797 if (!rte_eal_has_hugepages())
798 socket_arg = SOCKET_ID_ANY;
799
800 if (socket_arg == SOCKET_ID_ANY)
801 socket = malloc_get_numa_socket();
802 else
803 socket = socket_arg;
804
805 /* turn socket ID into heap ID */
806 heap_id = malloc_socket_to_heap_id(socket);
807 /* if heap id is negative, socket ID was invalid */
808 if (heap_id < 0)
809 return NULL;
810
811 ret = heap_alloc_biggest_on_heap_id(type, heap_id, flags, align,
812 contig);
813 if (ret != NULL || socket_arg != SOCKET_ID_ANY)
814 return ret;
815
816 /* try other heaps */
817 for (i = 0; i < (int) rte_socket_count(); i++) {
818 cur_socket = rte_socket_id_by_idx(i);
819 if (cur_socket == socket)
820 continue;
821 ret = heap_alloc_biggest_on_heap_id(type, i, flags, align,
822 contig);
823 if (ret != NULL)
824 return ret;
825 }
826 return NULL;
827 }
828
829 /* this function is exposed in malloc_mp.h */
830 int
malloc_heap_free_pages(void * aligned_start,size_t aligned_len)831 malloc_heap_free_pages(void *aligned_start, size_t aligned_len)
832 {
833 int n_segs, seg_idx, max_seg_idx;
834 struct rte_memseg_list *msl;
835 size_t page_sz;
836
837 msl = rte_mem_virt2memseg_list(aligned_start);
838 if (msl == NULL)
839 return -1;
840
841 page_sz = (size_t)msl->page_sz;
842 n_segs = aligned_len / page_sz;
843 seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz;
844 max_seg_idx = seg_idx + n_segs;
845
846 for (; seg_idx < max_seg_idx; seg_idx++) {
847 struct rte_memseg *ms;
848
849 ms = rte_fbarray_get(&msl->memseg_arr, seg_idx);
850 eal_memalloc_free_seg(ms);
851 }
852 return 0;
853 }
854
855 int
malloc_heap_free(struct malloc_elem * elem)856 malloc_heap_free(struct malloc_elem *elem)
857 {
858 struct malloc_heap *heap;
859 void *start, *aligned_start, *end, *aligned_end;
860 size_t len, aligned_len, page_sz;
861 struct rte_memseg_list *msl;
862 unsigned int i, n_segs, before_space, after_space;
863 int ret;
864 bool unmapped = false;
865 const struct internal_config *internal_conf =
866 eal_get_internal_configuration();
867
868 if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
869 return -1;
870
871 asan_clear_redzone(elem);
872
873 /* elem may be merged with previous element, so keep heap address */
874 heap = elem->heap;
875 msl = elem->msl;
876 page_sz = (size_t)msl->page_sz;
877
878 rte_spinlock_lock(&(heap->lock));
879
880 void *asan_ptr = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN + elem->pad);
881 size_t asan_data_len = elem->size - MALLOC_ELEM_OVERHEAD - elem->pad;
882
883 /* mark element as free */
884 elem->state = ELEM_FREE;
885
886 elem = malloc_elem_free(elem);
887
888 /* anything after this is a bonus */
889 ret = 0;
890
891 /* ...of which we can't avail if we are in legacy mode, or if this is an
892 * externally allocated segment.
893 */
894 if (internal_conf->legacy_mem || (msl->external > 0))
895 goto free_unlock;
896
897 /* check if we can free any memory back to the system */
898 if (elem->size < page_sz)
899 goto free_unlock;
900
901 /* if user requested to match allocations, the sizes must match - if not,
902 * we will defer freeing these hugepages until the entire original allocation
903 * can be freed
904 */
905 if (internal_conf->match_allocations && elem->size != elem->orig_size)
906 goto free_unlock;
907
908 /* probably, but let's make sure, as we may not be using up full page */
909 start = elem;
910 len = elem->size;
911 aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz);
912 end = RTE_PTR_ADD(elem, len);
913 aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz);
914
915 aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
916
917 /* can't free anything */
918 if (aligned_len < page_sz)
919 goto free_unlock;
920
921 /* we can free something. however, some of these pages may be marked as
922 * unfreeable, so also check that as well
923 */
924 n_segs = aligned_len / page_sz;
925 for (i = 0; i < n_segs; i++) {
926 const struct rte_memseg *tmp =
927 rte_mem_virt2memseg(aligned_start, msl);
928
929 if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
930 /* this is an unfreeable segment, so move start */
931 aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len);
932 }
933 }
934
935 /* recalculate length and number of segments */
936 aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
937 n_segs = aligned_len / page_sz;
938
939 /* check if we can still free some pages */
940 if (n_segs == 0)
941 goto free_unlock;
942
943 /* We're not done yet. We also have to check if by freeing space we will
944 * be leaving free elements that are too small to store new elements.
945 * Check if we have enough space in the beginning and at the end, or if
946 * start/end are exactly page aligned.
947 */
948 before_space = RTE_PTR_DIFF(aligned_start, elem);
949 after_space = RTE_PTR_DIFF(end, aligned_end);
950 if (before_space != 0 &&
951 before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
952 /* There is not enough space before start, but we may be able to
953 * move the start forward by one page.
954 */
955 if (n_segs == 1)
956 goto free_unlock;
957
958 /* move start */
959 aligned_start = RTE_PTR_ADD(aligned_start, page_sz);
960 aligned_len -= page_sz;
961 n_segs--;
962 }
963 if (after_space != 0 && after_space <
964 MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
965 /* There is not enough space after end, but we may be able to
966 * move the end backwards by one page.
967 */
968 if (n_segs == 1)
969 goto free_unlock;
970
971 /* move end */
972 aligned_end = RTE_PTR_SUB(aligned_end, page_sz);
973 aligned_len -= page_sz;
974 n_segs--;
975 }
976
977 /* now we can finally free us some pages */
978
979 rte_mcfg_mem_write_lock();
980
981 /*
982 * we allow secondary processes to clear the heap of this allocated
983 * memory because it is safe to do so, as even if notifications about
984 * unmapped pages don't make it to other processes, heap is shared
985 * across all processes, and will become empty of this memory anyway,
986 * and nothing can allocate it back unless primary process will be able
987 * to deliver allocation message to every single running process.
988 */
989
990 malloc_elem_free_list_remove(elem);
991
992 malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len);
993
994 heap->total_size -= aligned_len;
995
996 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
997 /* notify user about changes in memory map */
998 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
999 aligned_start, aligned_len);
1000
1001 /* don't care if any of this fails */
1002 malloc_heap_free_pages(aligned_start, aligned_len);
1003
1004 request_sync();
1005 } else {
1006 struct malloc_mp_req req;
1007
1008 memset(&req, 0, sizeof(req));
1009
1010 req.t = REQ_TYPE_FREE;
1011 req.free_req.addr = aligned_start;
1012 req.free_req.len = aligned_len;
1013
1014 /*
1015 * we request primary to deallocate pages, but we don't do it
1016 * in this thread. instead, we notify primary that we would like
1017 * to deallocate pages, and this process will receive another
1018 * request (in parallel) that will do it for us on another
1019 * thread.
1020 *
1021 * we also don't really care if this succeeds - the data is
1022 * already removed from the heap, so it is, for all intents and
1023 * purposes, hidden from the rest of DPDK even if some other
1024 * process (including this one) may have these pages mapped.
1025 *
1026 * notifications about deallocated memory happen during sync.
1027 */
1028 request_to_primary(&req);
1029 }
1030
1031 /* we didn't exit early, meaning we have unmapped some pages */
1032 unmapped = true;
1033
1034 RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n",
1035 msl->socket_id, aligned_len >> 20ULL);
1036
1037 rte_mcfg_mem_write_unlock();
1038 free_unlock:
1039 asan_set_freezone(asan_ptr, asan_data_len);
1040
1041 /* if we unmapped some memory, we need to do additional work for ASan */
1042 if (unmapped) {
1043 void *asan_end = RTE_PTR_ADD(asan_ptr, asan_data_len);
1044 void *aligned_end = RTE_PTR_ADD(aligned_start, aligned_len);
1045 void *aligned_trailer = RTE_PTR_SUB(aligned_start,
1046 MALLOC_ELEM_TRAILER_LEN);
1047
1048 /*
1049 * There was a memory area that was unmapped. This memory area
1050 * will have to be marked as available for ASan, because we will
1051 * want to use it next time it gets mapped again. The OS memory
1052 * protection should trigger a fault on access to these areas
1053 * anyway, so we are not giving up any protection.
1054 */
1055 asan_set_zone(aligned_start, aligned_len, 0x00);
1056
1057 /*
1058 * ...however, when we unmap pages, we create new free elements
1059 * which might have been marked as "freed" with an earlier
1060 * `asan_set_freezone` call. So, if there is an area past the
1061 * unmapped space that was marked as freezone for ASan, we need
1062 * to mark the malloc header as available.
1063 */
1064 if (asan_end > aligned_end)
1065 asan_set_zone(aligned_end, MALLOC_ELEM_HEADER_LEN, 0x00);
1066
1067 /* if there's space before unmapped memory, mark as available */
1068 if (asan_ptr < aligned_start)
1069 asan_set_zone(aligned_trailer, MALLOC_ELEM_TRAILER_LEN, 0x00);
1070 }
1071
1072 rte_spinlock_unlock(&(heap->lock));
1073 return ret;
1074 }
1075
1076 int
malloc_heap_resize(struct malloc_elem * elem,size_t size)1077 malloc_heap_resize(struct malloc_elem *elem, size_t size)
1078 {
1079 int ret;
1080
1081 if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
1082 return -1;
1083
1084 rte_spinlock_lock(&(elem->heap->lock));
1085
1086 ret = malloc_elem_resize(elem, size);
1087
1088 rte_spinlock_unlock(&(elem->heap->lock));
1089
1090 return ret;
1091 }
1092
1093 /*
1094 * Function to retrieve data for a given heap
1095 */
1096 int
malloc_heap_get_stats(struct malloc_heap * heap,struct rte_malloc_socket_stats * socket_stats)1097 malloc_heap_get_stats(struct malloc_heap *heap,
1098 struct rte_malloc_socket_stats *socket_stats)
1099 {
1100 size_t idx;
1101 struct malloc_elem *elem;
1102
1103 rte_spinlock_lock(&heap->lock);
1104
1105 /* Initialise variables for heap */
1106 socket_stats->free_count = 0;
1107 socket_stats->heap_freesz_bytes = 0;
1108 socket_stats->greatest_free_size = 0;
1109
1110 /* Iterate through free list */
1111 for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
1112 for (elem = LIST_FIRST(&heap->free_head[idx]);
1113 !!elem; elem = LIST_NEXT(elem, free_list))
1114 {
1115 socket_stats->free_count++;
1116 socket_stats->heap_freesz_bytes += elem->size;
1117 if (elem->size > socket_stats->greatest_free_size)
1118 socket_stats->greatest_free_size = elem->size;
1119 }
1120 }
1121 /* Get stats on overall heap and allocated memory on this heap */
1122 socket_stats->heap_totalsz_bytes = heap->total_size;
1123 socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
1124 socket_stats->heap_freesz_bytes);
1125 socket_stats->alloc_count = heap->alloc_count;
1126
1127 rte_spinlock_unlock(&heap->lock);
1128 return 0;
1129 }
1130
1131 /*
1132 * Function to retrieve data for a given heap
1133 */
1134 void
malloc_heap_dump(struct malloc_heap * heap,FILE * f)1135 malloc_heap_dump(struct malloc_heap *heap, FILE *f)
1136 {
1137 struct malloc_elem *elem;
1138
1139 rte_spinlock_lock(&heap->lock);
1140
1141 fprintf(f, "Heap size: 0x%zx\n", heap->total_size);
1142 fprintf(f, "Heap alloc count: %u\n", heap->alloc_count);
1143
1144 elem = heap->first;
1145 while (elem) {
1146 malloc_elem_dump(elem, f);
1147 elem = elem->next;
1148 }
1149
1150 rte_spinlock_unlock(&heap->lock);
1151 }
1152
1153 static int
destroy_elem(struct malloc_elem * elem,size_t len)1154 destroy_elem(struct malloc_elem *elem, size_t len)
1155 {
1156 struct malloc_heap *heap = elem->heap;
1157
1158 /* notify all subscribers that a memory area is going to be removed */
1159 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len);
1160
1161 /* this element can be removed */
1162 malloc_elem_free_list_remove(elem);
1163 malloc_elem_hide_region(elem, elem, len);
1164
1165 heap->total_size -= len;
1166
1167 memset(elem, 0, sizeof(*elem));
1168
1169 return 0;
1170 }
1171
1172 struct rte_memseg_list *
malloc_heap_create_external_seg(void * va_addr,rte_iova_t iova_addrs[],unsigned int n_pages,size_t page_sz,const char * seg_name,unsigned int socket_id)1173 malloc_heap_create_external_seg(void *va_addr, rte_iova_t iova_addrs[],
1174 unsigned int n_pages, size_t page_sz, const char *seg_name,
1175 unsigned int socket_id)
1176 {
1177 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1178 char fbarray_name[RTE_FBARRAY_NAME_LEN];
1179 struct rte_memseg_list *msl = NULL;
1180 struct rte_fbarray *arr;
1181 size_t seg_len = n_pages * page_sz;
1182 unsigned int i;
1183
1184 /* first, find a free memseg list */
1185 for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
1186 struct rte_memseg_list *tmp = &mcfg->memsegs[i];
1187 if (tmp->base_va == NULL) {
1188 msl = tmp;
1189 break;
1190 }
1191 }
1192 if (msl == NULL) {
1193 RTE_LOG(ERR, EAL, "Couldn't find empty memseg list\n");
1194 rte_errno = ENOSPC;
1195 return NULL;
1196 }
1197
1198 snprintf(fbarray_name, sizeof(fbarray_name), "%s_%p",
1199 seg_name, va_addr);
1200
1201 /* create the backing fbarray */
1202 if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages,
1203 sizeof(struct rte_memseg)) < 0) {
1204 RTE_LOG(ERR, EAL, "Couldn't create fbarray backing the memseg list\n");
1205 return NULL;
1206 }
1207 arr = &msl->memseg_arr;
1208
1209 /* fbarray created, fill it up */
1210 for (i = 0; i < n_pages; i++) {
1211 struct rte_memseg *ms;
1212
1213 rte_fbarray_set_used(arr, i);
1214 ms = rte_fbarray_get(arr, i);
1215 ms->addr = RTE_PTR_ADD(va_addr, i * page_sz);
1216 ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i];
1217 ms->hugepage_sz = page_sz;
1218 ms->len = page_sz;
1219 ms->nchannel = rte_memory_get_nchannel();
1220 ms->nrank = rte_memory_get_nrank();
1221 ms->socket_id = socket_id;
1222 }
1223
1224 /* set up the memseg list */
1225 msl->base_va = va_addr;
1226 msl->page_sz = page_sz;
1227 msl->socket_id = socket_id;
1228 msl->len = seg_len;
1229 msl->version = 0;
1230 msl->external = 1;
1231
1232 return msl;
1233 }
1234
1235 struct extseg_walk_arg {
1236 void *va_addr;
1237 size_t len;
1238 struct rte_memseg_list *msl;
1239 };
1240
1241 static int
extseg_walk(const struct rte_memseg_list * msl,void * arg)1242 extseg_walk(const struct rte_memseg_list *msl, void *arg)
1243 {
1244 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1245 struct extseg_walk_arg *wa = arg;
1246
1247 if (msl->base_va == wa->va_addr && msl->len == wa->len) {
1248 unsigned int found_idx;
1249
1250 /* msl is const */
1251 found_idx = msl - mcfg->memsegs;
1252 wa->msl = &mcfg->memsegs[found_idx];
1253 return 1;
1254 }
1255 return 0;
1256 }
1257
1258 struct rte_memseg_list *
malloc_heap_find_external_seg(void * va_addr,size_t len)1259 malloc_heap_find_external_seg(void *va_addr, size_t len)
1260 {
1261 struct extseg_walk_arg wa;
1262 int res;
1263
1264 wa.va_addr = va_addr;
1265 wa.len = len;
1266
1267 res = rte_memseg_list_walk_thread_unsafe(extseg_walk, &wa);
1268
1269 if (res != 1) {
1270 /* 0 means nothing was found, -1 shouldn't happen */
1271 if (res == 0)
1272 rte_errno = ENOENT;
1273 return NULL;
1274 }
1275 return wa.msl;
1276 }
1277
1278 int
malloc_heap_destroy_external_seg(struct rte_memseg_list * msl)1279 malloc_heap_destroy_external_seg(struct rte_memseg_list *msl)
1280 {
1281 /* destroy the fbarray backing this memory */
1282 if (rte_fbarray_destroy(&msl->memseg_arr) < 0)
1283 return -1;
1284
1285 /* reset the memseg list */
1286 memset(msl, 0, sizeof(*msl));
1287
1288 return 0;
1289 }
1290
1291 int
malloc_heap_add_external_memory(struct malloc_heap * heap,struct rte_memseg_list * msl)1292 malloc_heap_add_external_memory(struct malloc_heap *heap,
1293 struct rte_memseg_list *msl)
1294 {
1295 /* erase contents of new memory */
1296 memset(msl->base_va, 0, msl->len);
1297
1298 /* now, add newly minted memory to the malloc heap */
1299 malloc_heap_add_memory(heap, msl, msl->base_va, msl->len, false);
1300
1301 heap->total_size += msl->len;
1302
1303 /* all done! */
1304 RTE_LOG(DEBUG, EAL, "Added segment for heap %s starting at %p\n",
1305 heap->name, msl->base_va);
1306
1307 /* notify all subscribers that a new memory area has been added */
1308 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
1309 msl->base_va, msl->len);
1310
1311 return 0;
1312 }
1313
1314 int
malloc_heap_remove_external_memory(struct malloc_heap * heap,void * va_addr,size_t len)1315 malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr,
1316 size_t len)
1317 {
1318 struct malloc_elem *elem = heap->first;
1319
1320 /* find element with specified va address */
1321 while (elem != NULL && elem != va_addr) {
1322 elem = elem->next;
1323 /* stop if we've blown past our VA */
1324 if (elem > (struct malloc_elem *)va_addr) {
1325 rte_errno = ENOENT;
1326 return -1;
1327 }
1328 }
1329 /* check if element was found */
1330 if (elem == NULL || elem->msl->len != len) {
1331 rte_errno = ENOENT;
1332 return -1;
1333 }
1334 /* if element's size is not equal to segment len, segment is busy */
1335 if (elem->state == ELEM_BUSY || elem->size != len) {
1336 rte_errno = EBUSY;
1337 return -1;
1338 }
1339 return destroy_elem(elem, len);
1340 }
1341
1342 int
malloc_heap_create(struct malloc_heap * heap,const char * heap_name)1343 malloc_heap_create(struct malloc_heap *heap, const char *heap_name)
1344 {
1345 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1346 uint32_t next_socket_id = mcfg->next_socket_id;
1347
1348 /* prevent overflow. did you really create 2 billion heaps??? */
1349 if (next_socket_id > INT32_MAX) {
1350 RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
1351 rte_errno = ENOSPC;
1352 return -1;
1353 }
1354
1355 /* initialize empty heap */
1356 heap->alloc_count = 0;
1357 heap->first = NULL;
1358 heap->last = NULL;
1359 LIST_INIT(heap->free_head);
1360 rte_spinlock_init(&heap->lock);
1361 heap->total_size = 0;
1362 heap->socket_id = next_socket_id;
1363
1364 /* we hold a global mem hotplug writelock, so it's safe to increment */
1365 mcfg->next_socket_id++;
1366
1367 /* set up name */
1368 strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
1369 return 0;
1370 }
1371
1372 int
malloc_heap_destroy(struct malloc_heap * heap)1373 malloc_heap_destroy(struct malloc_heap *heap)
1374 {
1375 if (heap->alloc_count != 0) {
1376 RTE_LOG(ERR, EAL, "Heap is still in use\n");
1377 rte_errno = EBUSY;
1378 return -1;
1379 }
1380 if (heap->first != NULL || heap->last != NULL) {
1381 RTE_LOG(ERR, EAL, "Heap still contains memory segments\n");
1382 rte_errno = EBUSY;
1383 return -1;
1384 }
1385 if (heap->total_size != 0)
1386 RTE_LOG(ERR, EAL, "Total size not zero, heap is likely corrupt\n");
1387
1388 /* after this, the lock will be dropped */
1389 memset(heap, 0, sizeof(*heap));
1390
1391 return 0;
1392 }
1393
1394 int
rte_eal_malloc_heap_init(void)1395 rte_eal_malloc_heap_init(void)
1396 {
1397 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1398 unsigned int i;
1399 const struct internal_config *internal_conf =
1400 eal_get_internal_configuration();
1401
1402 if (internal_conf->match_allocations)
1403 RTE_LOG(DEBUG, EAL, "Hugepages will be freed exactly as allocated.\n");
1404
1405 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
1406 /* assign min socket ID to external heaps */
1407 mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID;
1408
1409 /* assign names to default DPDK heaps */
1410 for (i = 0; i < rte_socket_count(); i++) {
1411 struct malloc_heap *heap = &mcfg->malloc_heaps[i];
1412 char heap_name[RTE_HEAP_NAME_MAX_LEN];
1413 int socket_id = rte_socket_id_by_idx(i);
1414
1415 snprintf(heap_name, sizeof(heap_name),
1416 "socket_%i", socket_id);
1417 strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN);
1418 heap->socket_id = socket_id;
1419 }
1420 }
1421
1422
1423 if (register_mp_requests()) {
1424 RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n");
1425 rte_mcfg_mem_read_unlock();
1426 return -1;
1427 }
1428
1429 /* unlock mem hotplug here. it's safe for primary as no requests can
1430 * even come before primary itself is fully initialized, and secondaries
1431 * do not need to initialize the heap.
1432 */
1433 rte_mcfg_mem_read_unlock();
1434
1435 /* secondary process does not need to initialize anything */
1436 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1437 return 0;
1438
1439 /* add all IOVA-contiguous areas to the heap */
1440 return rte_memseg_contig_walk(malloc_add_seg, NULL);
1441 }
1442
1443 void
rte_eal_malloc_heap_cleanup(void)1444 rte_eal_malloc_heap_cleanup(void)
1445 {
1446 unregister_mp_requests();
1447 }
1448