1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4 #include <inttypes.h>
5 #include <stdint.h>
6 #include <stddef.h>
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <sys/queue.h>
11
12 #include <rte_memory.h>
13 #include <rte_eal.h>
14 #include <rte_launch.h>
15 #include <rte_per_lcore.h>
16 #include <rte_lcore.h>
17 #include <rte_debug.h>
18 #include <rte_common.h>
19 #include <rte_spinlock.h>
20
21 #include "eal_private.h"
22 #include "eal_internal_cfg.h"
23 #include "eal_memalloc.h"
24 #include "malloc_elem.h"
25 #include "malloc_heap.h"
26
27 /*
28 * If debugging is enabled, freed memory is set to poison value
29 * to catch buggy programs. Otherwise, freed memory is set to zero
30 * to avoid having to zero in zmalloc
31 */
32 #ifdef RTE_MALLOC_DEBUG
33 #define MALLOC_POISON 0x6b
34 #else
35 #define MALLOC_POISON 0
36 #endif
37
38 size_t
malloc_elem_find_max_iova_contig(struct malloc_elem * elem,size_t align)39 malloc_elem_find_max_iova_contig(struct malloc_elem *elem, size_t align)
40 {
41 void *cur_page, *contig_seg_start, *page_end, *cur_seg_end;
42 void *data_start, *data_end;
43 rte_iova_t expected_iova;
44 struct rte_memseg *ms;
45 size_t page_sz, cur, max;
46 const struct internal_config *internal_conf =
47 eal_get_internal_configuration();
48
49 page_sz = (size_t)elem->msl->page_sz;
50 data_start = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN);
51 data_end = RTE_PTR_ADD(elem, elem->size - MALLOC_ELEM_TRAILER_LEN);
52 /* segment must start after header and with specified alignment */
53 contig_seg_start = RTE_PTR_ALIGN_CEIL(data_start, align);
54
55 /* return if aligned address is already out of malloc element */
56 if (contig_seg_start > data_end)
57 return 0;
58
59 /* if we're in IOVA as VA mode, or if we're in legacy mode with
60 * hugepages, all elements are IOVA-contiguous. however, we can only
61 * make these assumptions about internal memory - externally allocated
62 * segments have to be checked.
63 */
64 if (!elem->msl->external &&
65 (rte_eal_iova_mode() == RTE_IOVA_VA ||
66 (internal_conf->legacy_mem &&
67 rte_eal_has_hugepages())))
68 return RTE_PTR_DIFF(data_end, contig_seg_start);
69
70 cur_page = RTE_PTR_ALIGN_FLOOR(contig_seg_start, page_sz);
71 ms = rte_mem_virt2memseg(cur_page, elem->msl);
72
73 /* do first iteration outside the loop */
74 page_end = RTE_PTR_ADD(cur_page, page_sz);
75 cur_seg_end = RTE_MIN(page_end, data_end);
76 cur = RTE_PTR_DIFF(cur_seg_end, contig_seg_start) -
77 MALLOC_ELEM_TRAILER_LEN;
78 max = cur;
79 expected_iova = ms->iova + page_sz;
80 /* memsegs are contiguous in memory */
81 ms++;
82
83 cur_page = RTE_PTR_ADD(cur_page, page_sz);
84
85 while (cur_page < data_end) {
86 page_end = RTE_PTR_ADD(cur_page, page_sz);
87 cur_seg_end = RTE_MIN(page_end, data_end);
88
89 /* reset start of contiguous segment if unexpected iova */
90 if (ms->iova != expected_iova) {
91 /* next contiguous segment must start at specified
92 * alignment.
93 */
94 contig_seg_start = RTE_PTR_ALIGN(cur_page, align);
95 /* new segment start may be on a different page, so find
96 * the page and skip to next iteration to make sure
97 * we're not blowing past data end.
98 */
99 ms = rte_mem_virt2memseg(contig_seg_start, elem->msl);
100 cur_page = ms->addr;
101 /* don't trigger another recalculation */
102 expected_iova = ms->iova;
103 continue;
104 }
105 /* cur_seg_end ends on a page boundary or on data end. if we're
106 * looking at data end, then malloc trailer is already included
107 * in the calculations. if we're looking at page end, then we
108 * know there's more data past this page and thus there's space
109 * for malloc element trailer, so don't count it here.
110 */
111 cur = RTE_PTR_DIFF(cur_seg_end, contig_seg_start);
112 /* update max if cur value is bigger */
113 if (cur > max)
114 max = cur;
115
116 /* move to next page */
117 cur_page = page_end;
118 expected_iova = ms->iova + page_sz;
119 /* memsegs are contiguous in memory */
120 ms++;
121 }
122
123 return max;
124 }
125
126 /*
127 * Initialize a general malloc_elem header structure
128 */
129 void
malloc_elem_init(struct malloc_elem * elem,struct malloc_heap * heap,struct rte_memseg_list * msl,size_t size,struct malloc_elem * orig_elem,size_t orig_size)130 malloc_elem_init(struct malloc_elem *elem, struct malloc_heap *heap,
131 struct rte_memseg_list *msl, size_t size,
132 struct malloc_elem *orig_elem, size_t orig_size)
133 {
134 elem->heap = heap;
135 elem->msl = msl;
136 elem->prev = NULL;
137 elem->next = NULL;
138 memset(&elem->free_list, 0, sizeof(elem->free_list));
139 elem->state = ELEM_FREE;
140 elem->size = size;
141 elem->pad = 0;
142 elem->orig_elem = orig_elem;
143 elem->orig_size = orig_size;
144 set_header(elem);
145 set_trailer(elem);
146 }
147
148 void
malloc_elem_insert(struct malloc_elem * elem)149 malloc_elem_insert(struct malloc_elem *elem)
150 {
151 struct malloc_elem *prev_elem, *next_elem;
152 struct malloc_heap *heap = elem->heap;
153
154 /* first and last elements must be both NULL or both non-NULL */
155 if ((heap->first == NULL) != (heap->last == NULL)) {
156 RTE_LOG(ERR, EAL, "Heap is probably corrupt\n");
157 return;
158 }
159
160 if (heap->first == NULL && heap->last == NULL) {
161 /* if empty heap */
162 heap->first = elem;
163 heap->last = elem;
164 prev_elem = NULL;
165 next_elem = NULL;
166 } else if (elem < heap->first) {
167 /* if lower than start */
168 prev_elem = NULL;
169 next_elem = heap->first;
170 heap->first = elem;
171 } else if (elem > heap->last) {
172 /* if higher than end */
173 prev_elem = heap->last;
174 next_elem = NULL;
175 heap->last = elem;
176 } else {
177 /* the new memory is somewhere between start and end */
178 uint64_t dist_from_start, dist_from_end;
179
180 dist_from_end = RTE_PTR_DIFF(heap->last, elem);
181 dist_from_start = RTE_PTR_DIFF(elem, heap->first);
182
183 /* check which is closer, and find closest list entries */
184 if (dist_from_start < dist_from_end) {
185 prev_elem = heap->first;
186 while (prev_elem->next < elem)
187 prev_elem = prev_elem->next;
188 next_elem = prev_elem->next;
189 } else {
190 next_elem = heap->last;
191 while (next_elem->prev > elem)
192 next_elem = next_elem->prev;
193 prev_elem = next_elem->prev;
194 }
195 }
196
197 /* insert new element */
198 elem->prev = prev_elem;
199 elem->next = next_elem;
200 if (prev_elem)
201 prev_elem->next = elem;
202 if (next_elem)
203 next_elem->prev = elem;
204 }
205
206 /*
207 * Attempt to find enough physically contiguous memory in this block to store
208 * our data. Assume that element has at least enough space to fit in the data,
209 * so we just check the page addresses.
210 */
211 static bool
elem_check_phys_contig(const struct rte_memseg_list * msl,void * start,size_t size)212 elem_check_phys_contig(const struct rte_memseg_list *msl,
213 void *start, size_t size)
214 {
215 return eal_memalloc_is_contig(msl, start, size);
216 }
217
218 /*
219 * calculate the starting point of where data of the requested size
220 * and alignment would fit in the current element. If the data doesn't
221 * fit, return NULL.
222 */
223 static void *
elem_start_pt(struct malloc_elem * elem,size_t size,unsigned align,size_t bound,bool contig)224 elem_start_pt(struct malloc_elem *elem, size_t size, unsigned align,
225 size_t bound, bool contig)
226 {
227 size_t elem_size = elem->size;
228
229 /*
230 * we're allocating from the end, so adjust the size of element by
231 * alignment size.
232 */
233 while (elem_size >= size) {
234 const size_t bmask = ~(bound - 1);
235 uintptr_t end_pt = (uintptr_t)elem +
236 elem_size - MALLOC_ELEM_TRAILER_LEN;
237 uintptr_t new_data_start = RTE_ALIGN_FLOOR((end_pt - size),
238 align);
239 uintptr_t new_elem_start;
240
241 /* check boundary */
242 if ((new_data_start & bmask) != ((end_pt - 1) & bmask)) {
243 end_pt = RTE_ALIGN_FLOOR(end_pt, bound);
244 new_data_start = RTE_ALIGN_FLOOR((end_pt - size),
245 align);
246 end_pt = new_data_start + size;
247
248 if (((end_pt - 1) & bmask) != (new_data_start & bmask))
249 return NULL;
250 }
251
252 new_elem_start = new_data_start - MALLOC_ELEM_HEADER_LEN;
253
254 /* if the new start point is before the exist start,
255 * it won't fit
256 */
257 if (new_elem_start < (uintptr_t)elem)
258 return NULL;
259
260 if (contig) {
261 size_t new_data_size = end_pt - new_data_start;
262
263 /*
264 * if physical contiguousness was requested and we
265 * couldn't fit all data into one physically contiguous
266 * block, try again with lower addresses.
267 */
268 if (!elem_check_phys_contig(elem->msl,
269 (void *)new_data_start,
270 new_data_size)) {
271 elem_size -= align;
272 continue;
273 }
274 }
275 return (void *)new_elem_start;
276 }
277 return NULL;
278 }
279
280 /*
281 * use elem_start_pt to determine if we get meet the size and
282 * alignment request from the current element
283 */
284 int
malloc_elem_can_hold(struct malloc_elem * elem,size_t size,unsigned align,size_t bound,bool contig)285 malloc_elem_can_hold(struct malloc_elem *elem, size_t size, unsigned align,
286 size_t bound, bool contig)
287 {
288 return elem_start_pt(elem, size, align, bound, contig) != NULL;
289 }
290
291 /*
292 * split an existing element into two smaller elements at the given
293 * split_pt parameter.
294 */
295 static void
split_elem(struct malloc_elem * elem,struct malloc_elem * split_pt)296 split_elem(struct malloc_elem *elem, struct malloc_elem *split_pt)
297 {
298 struct malloc_elem *next_elem = elem->next;
299 const size_t old_elem_size = (uintptr_t)split_pt - (uintptr_t)elem;
300 const size_t new_elem_size = elem->size - old_elem_size;
301
302 malloc_elem_init(split_pt, elem->heap, elem->msl, new_elem_size,
303 elem->orig_elem, elem->orig_size);
304 split_pt->prev = elem;
305 split_pt->next = next_elem;
306 if (next_elem)
307 next_elem->prev = split_pt;
308 else
309 elem->heap->last = split_pt;
310 elem->next = split_pt;
311 elem->size = old_elem_size;
312 set_trailer(elem);
313 if (elem->pad) {
314 /* Update inner padding inner element size. */
315 elem = RTE_PTR_ADD(elem, elem->pad);
316 elem->size = old_elem_size - elem->pad;
317 }
318 }
319
320 /*
321 * our malloc heap is a doubly linked list, so doubly remove our element.
322 */
323 static void __rte_unused
remove_elem(struct malloc_elem * elem)324 remove_elem(struct malloc_elem *elem)
325 {
326 struct malloc_elem *next, *prev;
327 next = elem->next;
328 prev = elem->prev;
329
330 if (next)
331 next->prev = prev;
332 else
333 elem->heap->last = prev;
334 if (prev)
335 prev->next = next;
336 else
337 elem->heap->first = next;
338
339 elem->prev = NULL;
340 elem->next = NULL;
341 }
342
343 static int
next_elem_is_adjacent(struct malloc_elem * elem)344 next_elem_is_adjacent(struct malloc_elem *elem)
345 {
346 const struct internal_config *internal_conf =
347 eal_get_internal_configuration();
348
349 return elem->next == RTE_PTR_ADD(elem, elem->size) &&
350 elem->next->msl == elem->msl &&
351 (!internal_conf->match_allocations ||
352 elem->orig_elem == elem->next->orig_elem);
353 }
354
355 static int
prev_elem_is_adjacent(struct malloc_elem * elem)356 prev_elem_is_adjacent(struct malloc_elem *elem)
357 {
358 const struct internal_config *internal_conf =
359 eal_get_internal_configuration();
360
361 return elem == RTE_PTR_ADD(elem->prev, elem->prev->size) &&
362 elem->prev->msl == elem->msl &&
363 (!internal_conf->match_allocations ||
364 elem->orig_elem == elem->prev->orig_elem);
365 }
366
367 /*
368 * Given an element size, compute its freelist index.
369 * We free an element into the freelist containing similarly-sized elements.
370 * We try to allocate elements starting with the freelist containing
371 * similarly-sized elements, and if necessary, we search freelists
372 * containing larger elements.
373 *
374 * Example element size ranges for a heap with five free lists:
375 * heap->free_head[0] - (0 , 2^8]
376 * heap->free_head[1] - (2^8 , 2^10]
377 * heap->free_head[2] - (2^10 ,2^12]
378 * heap->free_head[3] - (2^12, 2^14]
379 * heap->free_head[4] - (2^14, MAX_SIZE]
380 */
381 size_t
malloc_elem_free_list_index(size_t size)382 malloc_elem_free_list_index(size_t size)
383 {
384 #define MALLOC_MINSIZE_LOG2 8
385 #define MALLOC_LOG2_INCREMENT 2
386
387 size_t log2;
388 size_t index;
389
390 if (size <= (1UL << MALLOC_MINSIZE_LOG2))
391 return 0;
392
393 /* Find next power of 2 >= size. */
394 log2 = sizeof(size) * 8 - __builtin_clzl(size - 1);
395
396 /* Compute freelist index, based on log2(size). */
397 index = (log2 - MALLOC_MINSIZE_LOG2 + MALLOC_LOG2_INCREMENT - 1) /
398 MALLOC_LOG2_INCREMENT;
399
400 return index <= RTE_HEAP_NUM_FREELISTS - 1 ?
401 index : RTE_HEAP_NUM_FREELISTS - 1;
402 }
403
404 /*
405 * Add the specified element to its heap's free list.
406 */
407 void
malloc_elem_free_list_insert(struct malloc_elem * elem)408 malloc_elem_free_list_insert(struct malloc_elem *elem)
409 {
410 size_t idx;
411
412 idx = malloc_elem_free_list_index(elem->size - MALLOC_ELEM_HEADER_LEN);
413 elem->state = ELEM_FREE;
414 LIST_INSERT_HEAD(&elem->heap->free_head[idx], elem, free_list);
415 }
416
417 /*
418 * Remove the specified element from its heap's free list.
419 */
420 void
malloc_elem_free_list_remove(struct malloc_elem * elem)421 malloc_elem_free_list_remove(struct malloc_elem *elem)
422 {
423 LIST_REMOVE(elem, free_list);
424 }
425
426 /*
427 * reserve a block of data in an existing malloc_elem. If the malloc_elem
428 * is much larger than the data block requested, we split the element in two.
429 * This function is only called from malloc_heap_alloc so parameter checking
430 * is not done here, as it's done there previously.
431 */
432 struct malloc_elem *
malloc_elem_alloc(struct malloc_elem * elem,size_t size,unsigned align,size_t bound,bool contig)433 malloc_elem_alloc(struct malloc_elem *elem, size_t size, unsigned align,
434 size_t bound, bool contig)
435 {
436 struct malloc_elem *new_elem = elem_start_pt(elem, size, align, bound,
437 contig);
438 const size_t old_elem_size = (uintptr_t)new_elem - (uintptr_t)elem;
439 const size_t trailer_size = elem->size - old_elem_size - size -
440 MALLOC_ELEM_OVERHEAD;
441
442 malloc_elem_free_list_remove(elem);
443
444 if (trailer_size > MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
445 /* split it, too much free space after elem */
446 struct malloc_elem *new_free_elem =
447 RTE_PTR_ADD(new_elem, size + MALLOC_ELEM_OVERHEAD);
448
449 split_elem(elem, new_free_elem);
450 malloc_elem_free_list_insert(new_free_elem);
451
452 if (elem == elem->heap->last)
453 elem->heap->last = new_free_elem;
454 }
455
456 if (old_elem_size < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
457 /* don't split it, pad the element instead */
458 elem->state = ELEM_BUSY;
459 elem->pad = old_elem_size;
460
461 /* put a dummy header in padding, to point to real element header */
462 if (elem->pad > 0) { /* pad will be at least 64-bytes, as everything
463 * is cache-line aligned */
464 new_elem->pad = elem->pad;
465 new_elem->state = ELEM_PAD;
466 new_elem->size = elem->size - elem->pad;
467 set_header(new_elem);
468 }
469
470 return new_elem;
471 }
472
473 /* we are going to split the element in two. The original element
474 * remains free, and the new element is the one allocated.
475 * Re-insert original element, in case its new size makes it
476 * belong on a different list.
477 */
478 split_elem(elem, new_elem);
479 new_elem->state = ELEM_BUSY;
480 malloc_elem_free_list_insert(elem);
481
482 return new_elem;
483 }
484
485 /*
486 * join two struct malloc_elem together. elem1 and elem2 must
487 * be contiguous in memory.
488 */
489 static inline void
join_elem(struct malloc_elem * elem1,struct malloc_elem * elem2)490 join_elem(struct malloc_elem *elem1, struct malloc_elem *elem2)
491 {
492 struct malloc_elem *next = elem2->next;
493 elem1->size += elem2->size;
494 if (next)
495 next->prev = elem1;
496 else
497 elem1->heap->last = elem1;
498 elem1->next = next;
499 if (elem1->pad) {
500 struct malloc_elem *inner = RTE_PTR_ADD(elem1, elem1->pad);
501 inner->size = elem1->size - elem1->pad;
502 }
503 }
504
505 struct malloc_elem *
malloc_elem_join_adjacent_free(struct malloc_elem * elem)506 malloc_elem_join_adjacent_free(struct malloc_elem *elem)
507 {
508 /*
509 * check if next element exists, is adjacent and is free, if so join
510 * with it, need to remove from free list.
511 */
512 if (elem->next != NULL && elem->next->state == ELEM_FREE &&
513 next_elem_is_adjacent(elem)) {
514 void *erase;
515 size_t erase_len;
516
517 /* we will want to erase the trailer and header */
518 erase = RTE_PTR_SUB(elem->next, MALLOC_ELEM_TRAILER_LEN);
519 erase_len = MALLOC_ELEM_OVERHEAD + elem->next->pad;
520
521 /* remove from free list, join to this one */
522 malloc_elem_free_list_remove(elem->next);
523 join_elem(elem, elem->next);
524
525 /* erase header, trailer and pad */
526 memset(erase, MALLOC_POISON, erase_len);
527 }
528
529 /*
530 * check if prev element exists, is adjacent and is free, if so join
531 * with it, need to remove from free list.
532 */
533 if (elem->prev != NULL && elem->prev->state == ELEM_FREE &&
534 prev_elem_is_adjacent(elem)) {
535 struct malloc_elem *new_elem;
536 void *erase;
537 size_t erase_len;
538
539 /* we will want to erase trailer and header */
540 erase = RTE_PTR_SUB(elem, MALLOC_ELEM_TRAILER_LEN);
541 erase_len = MALLOC_ELEM_OVERHEAD + elem->pad;
542
543 /* remove from free list, join to this one */
544 malloc_elem_free_list_remove(elem->prev);
545
546 new_elem = elem->prev;
547 join_elem(new_elem, elem);
548
549 /* erase header, trailer and pad */
550 memset(erase, MALLOC_POISON, erase_len);
551
552 elem = new_elem;
553 }
554
555 return elem;
556 }
557
558 /*
559 * free a malloc_elem block by adding it to the free list. If the
560 * blocks either immediately before or immediately after newly freed block
561 * are also free, the blocks are merged together.
562 */
563 struct malloc_elem *
malloc_elem_free(struct malloc_elem * elem)564 malloc_elem_free(struct malloc_elem *elem)
565 {
566 void *ptr;
567 size_t data_len;
568
569 ptr = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN);
570 data_len = elem->size - MALLOC_ELEM_OVERHEAD;
571
572 elem = malloc_elem_join_adjacent_free(elem);
573
574 malloc_elem_free_list_insert(elem);
575
576 elem->pad = 0;
577
578 /* decrease heap's count of allocated elements */
579 elem->heap->alloc_count--;
580
581 /* poison memory */
582 memset(ptr, MALLOC_POISON, data_len);
583
584 return elem;
585 }
586
587 /* assume all checks were already done */
588 void
malloc_elem_hide_region(struct malloc_elem * elem,void * start,size_t len)589 malloc_elem_hide_region(struct malloc_elem *elem, void *start, size_t len)
590 {
591 struct malloc_elem *hide_start, *hide_end, *prev, *next;
592 size_t len_before, len_after;
593
594 hide_start = start;
595 hide_end = RTE_PTR_ADD(start, len);
596
597 prev = elem->prev;
598 next = elem->next;
599
600 /* we cannot do anything with non-adjacent elements */
601 if (next && next_elem_is_adjacent(elem)) {
602 len_after = RTE_PTR_DIFF(next, hide_end);
603 if (len_after >= MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
604 /* split after */
605 split_elem(elem, hide_end);
606
607 malloc_elem_free_list_insert(hide_end);
608 } else if (len_after > 0) {
609 RTE_LOG(ERR, EAL, "Unaligned element, heap is probably corrupt\n");
610 return;
611 }
612 }
613
614 /* we cannot do anything with non-adjacent elements */
615 if (prev && prev_elem_is_adjacent(elem)) {
616 len_before = RTE_PTR_DIFF(hide_start, elem);
617 if (len_before >= MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
618 /* split before */
619 split_elem(elem, hide_start);
620
621 prev = elem;
622 elem = hide_start;
623
624 malloc_elem_free_list_insert(prev);
625 } else if (len_before > 0) {
626 RTE_LOG(ERR, EAL, "Unaligned element, heap is probably corrupt\n");
627 return;
628 }
629 }
630
631 remove_elem(elem);
632 }
633
634 /*
635 * attempt to resize a malloc_elem by expanding into any free space
636 * immediately after it in memory.
637 */
638 int
malloc_elem_resize(struct malloc_elem * elem,size_t size)639 malloc_elem_resize(struct malloc_elem *elem, size_t size)
640 {
641 const size_t new_size = size + elem->pad + MALLOC_ELEM_OVERHEAD;
642
643 /* if we request a smaller size, then always return ok */
644 if (elem->size >= new_size)
645 return 0;
646
647 /* check if there is a next element, it's free and adjacent */
648 if (!elem->next || elem->next->state != ELEM_FREE ||
649 !next_elem_is_adjacent(elem))
650 return -1;
651 if (elem->size + elem->next->size < new_size)
652 return -1;
653
654 /* we now know the element fits, so remove from free list,
655 * join the two
656 */
657 malloc_elem_free_list_remove(elem->next);
658 join_elem(elem, elem->next);
659
660 if (elem->size - new_size >= MIN_DATA_SIZE + MALLOC_ELEM_OVERHEAD) {
661 /* now we have a big block together. Lets cut it down a bit, by splitting */
662 struct malloc_elem *split_pt = RTE_PTR_ADD(elem, new_size);
663 split_pt = RTE_PTR_ALIGN_CEIL(split_pt, RTE_CACHE_LINE_SIZE);
664 split_elem(elem, split_pt);
665 malloc_elem_free_list_insert(split_pt);
666 }
667 return 0;
668 }
669
670 static inline const char *
elem_state_to_str(enum elem_state state)671 elem_state_to_str(enum elem_state state)
672 {
673 switch (state) {
674 case ELEM_PAD:
675 return "PAD";
676 case ELEM_BUSY:
677 return "BUSY";
678 case ELEM_FREE:
679 return "FREE";
680 }
681 return "ERROR";
682 }
683
684 void
malloc_elem_dump(const struct malloc_elem * elem,FILE * f)685 malloc_elem_dump(const struct malloc_elem *elem, FILE *f)
686 {
687 fprintf(f, "Malloc element at %p (%s)\n", elem,
688 elem_state_to_str(elem->state));
689 fprintf(f, " len: 0x%zx pad: 0x%" PRIx32 "\n", elem->size, elem->pad);
690 fprintf(f, " prev: %p next: %p\n", elem->prev, elem->next);
691 }
692