1 /*
2 * Copyright (c) 2018, Salvatore Sanfilippo <antirez at gmail dot com>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * * Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * * Neither the name of Redis nor the names of its contributors may be used
14 * to endorse or promote products derived from this software without
15 * specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 *
29 * ----------------------------------------------------------------------------
30 *
31 * This file implements the LOLWUT command. The command should do something
32 * fun and interesting, and should be replaced by a new implementation at
33 * each new version of Redis.
34 */
35
36 #include "server.h"
37 #include <math.h>
38
39 /* This structure represents our canvas. Drawing functions will take a pointer
40 * to a canvas to write to it. Later the canvas can be rendered to a string
41 * suitable to be printed on the screen, using unicode Braille characters. */
42 typedef struct lwCanvas {
43 int width;
44 int height;
45 char *pixels;
46 } lwCanvas;
47
48 /* Translate a group of 8 pixels (2x4 vertical rectangle) to the corresponding
49 * braille character. The byte should correspond to the pixels arranged as
50 * follows, where 0 is the least significant bit, and 7 the most significant
51 * bit:
52 *
53 * 0 3
54 * 1 4
55 * 2 5
56 * 6 7
57 *
58 * The corresponding utf8 encoded character is set into the three bytes
59 * pointed by 'output'.
60 */
61 #include <stdio.h>
lwTranslatePixelsGroup(int byte,char * output)62 void lwTranslatePixelsGroup(int byte, char *output) {
63 int code = 0x2800 + byte;
64 /* Convert to unicode. This is in the U0800-UFFFF range, so we need to
65 * emit it like this in three bytes:
66 * 1110xxxx 10xxxxxx 10xxxxxx. */
67 output[0] = 0xE0 | (code >> 12); /* 1110-xxxx */
68 output[1] = 0x80 | ((code >> 6) & 0x3F); /* 10-xxxxxx */
69 output[2] = 0x80 | (code & 0x3F); /* 10-xxxxxx */
70 }
71
72 /* Allocate and return a new canvas of the specified size. */
lwCreateCanvas(int width,int height)73 lwCanvas *lwCreateCanvas(int width, int height) {
74 lwCanvas *canvas = zmalloc(sizeof(*canvas));
75 canvas->width = width;
76 canvas->height = height;
77 canvas->pixels = zmalloc(width*height);
78 memset(canvas->pixels,0,width*height);
79 return canvas;
80 }
81
82 /* Free the canvas created by lwCreateCanvas(). */
lwFreeCanvas(lwCanvas * canvas)83 void lwFreeCanvas(lwCanvas *canvas) {
84 zfree(canvas->pixels);
85 zfree(canvas);
86 }
87
88 /* Set a pixel to the specified color. Color is 0 or 1, where zero means no
89 * dot will be displyed, and 1 means dot will be displayed.
90 * Coordinates are arranged so that left-top corner is 0,0. You can write
91 * out of the size of the canvas without issues. */
lwDrawPixel(lwCanvas * canvas,int x,int y,int color)92 void lwDrawPixel(lwCanvas *canvas, int x, int y, int color) {
93 if (x < 0 || x >= canvas->width ||
94 y < 0 || y >= canvas->height) return;
95 canvas->pixels[x+y*canvas->width] = color;
96 }
97
98 /* Return the value of the specified pixel on the canvas. */
lwGetPixel(lwCanvas * canvas,int x,int y)99 int lwGetPixel(lwCanvas *canvas, int x, int y) {
100 if (x < 0 || x >= canvas->width ||
101 y < 0 || y >= canvas->height) return 0;
102 return canvas->pixels[x+y*canvas->width];
103 }
104
105 /* Draw a line from x1,y1 to x2,y2 using the Bresenham algorithm. */
lwDrawLine(lwCanvas * canvas,int x1,int y1,int x2,int y2,int color)106 void lwDrawLine(lwCanvas *canvas, int x1, int y1, int x2, int y2, int color) {
107 int dx = abs(x2-x1);
108 int dy = abs(y2-y1);
109 int sx = (x1 < x2) ? 1 : -1;
110 int sy = (y1 < y2) ? 1 : -1;
111 int err = dx-dy, e2;
112
113 while(1) {
114 lwDrawPixel(canvas,x1,y1,color);
115 if (x1 == x2 && y1 == y2) break;
116 e2 = err*2;
117 if (e2 > -dy) {
118 err -= dy;
119 x1 += sx;
120 }
121 if (e2 < dx) {
122 err += dx;
123 y1 += sy;
124 }
125 }
126 }
127
128 /* Draw a square centered at the specified x,y coordinates, with the specified
129 * rotation angle and size. In order to write a rotated square, we use the
130 * trivial fact that the parametric equation:
131 *
132 * x = sin(k)
133 * y = cos(k)
134 *
135 * Describes a circle for values going from 0 to 2*PI. So basically if we start
136 * at 45 degrees, that is k = PI/4, with the first point, and then we find
137 * the other three points incrementing K by PI/2 (90 degrees), we'll have the
138 * points of the square. In order to rotate the square, we just start with
139 * k = PI/4 + rotation_angle, and we are done.
140 *
141 * Of course the vanilla equations above will describe the square inside a
142 * circle of radius 1, so in order to draw larger squares we'll have to
143 * multiply the obtained coordinates, and then translate them. However this
144 * is much simpler than implementing the abstract concept of 2D shape and then
145 * performing the rotation/translation transformation, so for LOLWUT it's
146 * a good approach. */
lwDrawSquare(lwCanvas * canvas,int x,int y,float size,float angle)147 void lwDrawSquare(lwCanvas *canvas, int x, int y, float size, float angle) {
148 int px[4], py[4];
149
150 /* Adjust the desired size according to the fact that the square inscribed
151 * into a circle of radius 1 has the side of length SQRT(2). This way
152 * size becomes a simple multiplication factor we can use with our
153 * coordinates to magnify them. */
154 size /= 1.4142135623;
155 size = round(size);
156
157 /* Compute the four points. */
158 float k = M_PI/4 + angle;
159 for (int j = 0; j < 4; j++) {
160 px[j] = round(sin(k) * size + x);
161 py[j] = round(cos(k) * size + y);
162 k += M_PI/2;
163 }
164
165 /* Draw the square. */
166 for (int j = 0; j < 4; j++)
167 lwDrawLine(canvas,px[j],py[j],px[(j+1)%4],py[(j+1)%4],1);
168 }
169
170 /* Schotter, the output of LOLWUT of Redis 5, is a computer graphic art piece
171 * generated by Georg Nees in the 60s. It explores the relationship between
172 * caos and order.
173 *
174 * The function creates the canvas itself, depending on the columns available
175 * in the output display and the number of squares per row and per column
176 * requested by the caller. */
lwDrawSchotter(int console_cols,int squares_per_row,int squares_per_col)177 lwCanvas *lwDrawSchotter(int console_cols, int squares_per_row, int squares_per_col) {
178 /* Calculate the canvas size. */
179 int canvas_width = console_cols*2;
180 int padding = canvas_width > 4 ? 2 : 0;
181 float square_side = (float)(canvas_width-padding*2) / squares_per_row;
182 int canvas_height = square_side * squares_per_col + padding*2;
183 lwCanvas *canvas = lwCreateCanvas(canvas_width, canvas_height);
184
185 for (int y = 0; y < squares_per_col; y++) {
186 for (int x = 0; x < squares_per_row; x++) {
187 int sx = x * square_side + square_side/2 + padding;
188 int sy = y * square_side + square_side/2 + padding;
189 /* Rotate and translate randomly as we go down to lower
190 * rows. */
191 float angle = 0;
192 if (y > 1) {
193 float r1 = (float)rand() / RAND_MAX / squares_per_col * y;
194 float r2 = (float)rand() / RAND_MAX / squares_per_col * y;
195 float r3 = (float)rand() / RAND_MAX / squares_per_col * y;
196 if (rand() % 2) r1 = -r1;
197 if (rand() % 2) r2 = -r2;
198 if (rand() % 2) r3 = -r3;
199 angle = r1;
200 sx += r2*square_side/3;
201 sy += r3*square_side/3;
202 }
203 lwDrawSquare(canvas,sx,sy,square_side,angle);
204 }
205 }
206
207 return canvas;
208 }
209
210 /* Converts the canvas to an SDS string representing the UTF8 characters to
211 * print to the terminal in order to obtain a graphical representaiton of the
212 * logical canvas. The actual returned string will require a terminal that is
213 * width/2 large and height/4 tall in order to hold the whole image without
214 * overflowing or scrolling, since each Barille character is 2x4. */
lwRenderCanvas(lwCanvas * canvas)215 sds lwRenderCanvas(lwCanvas *canvas) {
216 sds text = sdsempty();
217 for (int y = 0; y < canvas->height; y += 4) {
218 for (int x = 0; x < canvas->width; x += 2) {
219 /* We need to emit groups of 8 bits according to a specific
220 * arrangement. See lwTranslatePixelsGroup() for more info. */
221 int byte = 0;
222 if (lwGetPixel(canvas,x,y)) byte |= (1<<0);
223 if (lwGetPixel(canvas,x,y+1)) byte |= (1<<1);
224 if (lwGetPixel(canvas,x,y+2)) byte |= (1<<2);
225 if (lwGetPixel(canvas,x+1,y)) byte |= (1<<3);
226 if (lwGetPixel(canvas,x+1,y+1)) byte |= (1<<4);
227 if (lwGetPixel(canvas,x+1,y+2)) byte |= (1<<5);
228 if (lwGetPixel(canvas,x,y+3)) byte |= (1<<6);
229 if (lwGetPixel(canvas,x+1,y+3)) byte |= (1<<7);
230 char unicode[3];
231 lwTranslatePixelsGroup(byte,unicode);
232 text = sdscatlen(text,unicode,3);
233 }
234 if (y != canvas->height-1) text = sdscatlen(text,"\n",1);
235 }
236 return text;
237 }
238
239 /* The LOLWUT command:
240 *
241 * LOLWUT [terminal columns] [squares-per-row] [squares-per-col]
242 *
243 * By default the command uses 66 columns, 8 squares per row, 12 squares
244 * per column.
245 */
lolwut5Command(client * c)246 void lolwut5Command(client *c) {
247 long cols = 66;
248 long squares_per_row = 8;
249 long squares_per_col = 12;
250
251 /* Parse the optional arguments if any. */
252 if (c->argc > 1 &&
253 getLongFromObjectOrReply(c,c->argv[1],&cols,NULL) != C_OK)
254 return;
255
256 if (c->argc > 2 &&
257 getLongFromObjectOrReply(c,c->argv[2],&squares_per_row,NULL) != C_OK)
258 return;
259
260 if (c->argc > 3 &&
261 getLongFromObjectOrReply(c,c->argv[3],&squares_per_col,NULL) != C_OK)
262 return;
263
264 /* Limits. We want LOLWUT to be always reasonably fast and cheap to execute
265 * so we have maximum number of columns, rows, and output resulution. */
266 if (cols < 1) cols = 1;
267 if (cols > 1000) cols = 1000;
268 if (squares_per_row < 1) squares_per_row = 1;
269 if (squares_per_row > 200) squares_per_row = 200;
270 if (squares_per_col < 1) squares_per_col = 1;
271 if (squares_per_col > 200) squares_per_col = 200;
272
273 /* Generate some computer art and reply. */
274 lwCanvas *canvas = lwDrawSchotter(cols,squares_per_row,squares_per_col);
275 sds rendered = lwRenderCanvas(canvas);
276 rendered = sdscat(rendered,
277 "\nGeorg Nees - schotter, plotter on paper, 1968. Redis ver. ");
278 rendered = sdscat(rendered,REDIS_VERSION);
279 rendered = sdscatlen(rendered,"\n",1);
280 addReplyBulkSds(c,rendered);
281 lwFreeCanvas(canvas);
282 }
283