1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2014-2019 Netflix Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_rss.h"
34
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/domainset.h>
38 #include <sys/ktls.h>
39 #include <sys/lock.h>
40 #include <sys/mbuf.h>
41 #include <sys/mutex.h>
42 #include <sys/rmlock.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/refcount.h>
46 #include <sys/smp.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51 #include <sys/kthread.h>
52 #include <sys/uio.h>
53 #include <sys/vmmeter.h>
54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
55 #include <machine/pcb.h>
56 #endif
57 #include <machine/vmparam.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #ifdef RSS
61 #include <net/netisr.h>
62 #include <net/rss_config.h>
63 #endif
64 #include <net/route.h>
65 #include <net/route/nhop.h>
66 #if defined(INET) || defined(INET6)
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #endif
70 #include <netinet/tcp_var.h>
71 #ifdef TCP_OFFLOAD
72 #include <netinet/tcp_offload.h>
73 #endif
74 #include <opencrypto/xform.h>
75 #include <vm/uma_dbg.h>
76 #include <vm/vm.h>
77 #include <vm/vm_pageout.h>
78 #include <vm/vm_page.h>
79
80 struct ktls_wq {
81 struct mtx mtx;
82 STAILQ_HEAD(, mbuf) m_head;
83 STAILQ_HEAD(, socket) so_head;
84 bool running;
85 } __aligned(CACHE_LINE_SIZE);
86
87 struct ktls_domain_info {
88 int count;
89 int cpu[MAXCPU];
90 };
91
92 struct ktls_domain_info ktls_domains[MAXMEMDOM];
93 static struct ktls_wq *ktls_wq;
94 static struct proc *ktls_proc;
95 LIST_HEAD(, ktls_crypto_backend) ktls_backends;
96 static struct rmlock ktls_backends_lock;
97 static uma_zone_t ktls_session_zone;
98 static uint16_t ktls_cpuid_lookup[MAXCPU];
99
100 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
101 "Kernel TLS offload");
102 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
103 "Kernel TLS offload stats");
104
105 static int ktls_allow_unload;
106 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN,
107 &ktls_allow_unload, 0, "Allow software crypto modules to unload");
108
109 #ifdef RSS
110 static int ktls_bind_threads = 1;
111 #else
112 static int ktls_bind_threads;
113 #endif
114 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
115 &ktls_bind_threads, 0,
116 "Bind crypto threads to cores (1) or cores and domains (2) at boot");
117
118 static u_int ktls_maxlen = 16384;
119 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN,
120 &ktls_maxlen, 0, "Maximum TLS record size");
121
122 static int ktls_number_threads;
123 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
124 &ktls_number_threads, 0,
125 "Number of TLS threads in thread-pool");
126
127 static bool ktls_offload_enable;
128 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW,
129 &ktls_offload_enable, 0,
130 "Enable support for kernel TLS offload");
131
132 static bool ktls_cbc_enable = true;
133 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW,
134 &ktls_cbc_enable, 1,
135 "Enable Support of AES-CBC crypto for kernel TLS");
136
137 static counter_u64_t ktls_tasks_active;
138 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
139 &ktls_tasks_active, "Number of active tasks");
140
141 static counter_u64_t ktls_cnt_tx_queued;
142 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
143 &ktls_cnt_tx_queued,
144 "Number of TLS records in queue to tasks for SW encryption");
145
146 static counter_u64_t ktls_cnt_rx_queued;
147 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
148 &ktls_cnt_rx_queued,
149 "Number of TLS sockets in queue to tasks for SW decryption");
150
151 static counter_u64_t ktls_offload_total;
152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
153 CTLFLAG_RD, &ktls_offload_total,
154 "Total successful TLS setups (parameters set)");
155
156 static counter_u64_t ktls_offload_enable_calls;
157 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
158 CTLFLAG_RD, &ktls_offload_enable_calls,
159 "Total number of TLS enable calls made");
160
161 static counter_u64_t ktls_offload_active;
162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
163 &ktls_offload_active, "Total Active TLS sessions");
164
165 static counter_u64_t ktls_offload_corrupted_records;
166 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
167 &ktls_offload_corrupted_records, "Total corrupted TLS records received");
168
169 static counter_u64_t ktls_offload_failed_crypto;
170 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
171 &ktls_offload_failed_crypto, "Total TLS crypto failures");
172
173 static counter_u64_t ktls_switch_to_ifnet;
174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
175 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
176
177 static counter_u64_t ktls_switch_to_sw;
178 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
179 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
180
181 static counter_u64_t ktls_switch_failed;
182 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
183 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
184
185 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
186 "Software TLS session stats");
187 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
188 "Hardware (ifnet) TLS session stats");
189 #ifdef TCP_OFFLOAD
190 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
191 "TOE TLS session stats");
192 #endif
193
194 static counter_u64_t ktls_sw_cbc;
195 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
196 "Active number of software TLS sessions using AES-CBC");
197
198 static counter_u64_t ktls_sw_gcm;
199 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
200 "Active number of software TLS sessions using AES-GCM");
201
202 static counter_u64_t ktls_ifnet_cbc;
203 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
204 &ktls_ifnet_cbc,
205 "Active number of ifnet TLS sessions using AES-CBC");
206
207 static counter_u64_t ktls_ifnet_gcm;
208 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
209 &ktls_ifnet_gcm,
210 "Active number of ifnet TLS sessions using AES-GCM");
211
212 static counter_u64_t ktls_ifnet_reset;
213 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
214 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
215
216 static counter_u64_t ktls_ifnet_reset_dropped;
217 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
218 &ktls_ifnet_reset_dropped,
219 "TLS sessions dropped after failing to update ifnet send tag");
220
221 static counter_u64_t ktls_ifnet_reset_failed;
222 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
223 &ktls_ifnet_reset_failed,
224 "TLS sessions that failed to allocate a new ifnet send tag");
225
226 static int ktls_ifnet_permitted;
227 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
228 &ktls_ifnet_permitted, 1,
229 "Whether to permit hardware (ifnet) TLS sessions");
230
231 #ifdef TCP_OFFLOAD
232 static counter_u64_t ktls_toe_cbc;
233 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
234 &ktls_toe_cbc,
235 "Active number of TOE TLS sessions using AES-CBC");
236
237 static counter_u64_t ktls_toe_gcm;
238 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
239 &ktls_toe_gcm,
240 "Active number of TOE TLS sessions using AES-GCM");
241 #endif
242
243 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
244
245 static void ktls_cleanup(struct ktls_session *tls);
246 #if defined(INET) || defined(INET6)
247 static void ktls_reset_send_tag(void *context, int pending);
248 #endif
249 static void ktls_work_thread(void *ctx);
250
251 int
ktls_crypto_backend_register(struct ktls_crypto_backend * be)252 ktls_crypto_backend_register(struct ktls_crypto_backend *be)
253 {
254 struct ktls_crypto_backend *curr_be, *tmp;
255
256 if (be->api_version != KTLS_API_VERSION) {
257 printf("KTLS: API version mismatch (%d vs %d) for %s\n",
258 be->api_version, KTLS_API_VERSION,
259 be->name);
260 return (EINVAL);
261 }
262
263 rm_wlock(&ktls_backends_lock);
264 printf("KTLS: Registering crypto method %s with prio %d\n",
265 be->name, be->prio);
266 if (LIST_EMPTY(&ktls_backends)) {
267 LIST_INSERT_HEAD(&ktls_backends, be, next);
268 } else {
269 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) {
270 if (curr_be->prio < be->prio) {
271 LIST_INSERT_BEFORE(curr_be, be, next);
272 break;
273 }
274 if (LIST_NEXT(curr_be, next) == NULL) {
275 LIST_INSERT_AFTER(curr_be, be, next);
276 break;
277 }
278 }
279 }
280 rm_wunlock(&ktls_backends_lock);
281 return (0);
282 }
283
284 int
ktls_crypto_backend_deregister(struct ktls_crypto_backend * be)285 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be)
286 {
287 struct ktls_crypto_backend *tmp;
288
289 /*
290 * Don't error if the backend isn't registered. This permits
291 * MOD_UNLOAD handlers to use this function unconditionally.
292 */
293 rm_wlock(&ktls_backends_lock);
294 LIST_FOREACH(tmp, &ktls_backends, next) {
295 if (tmp == be)
296 break;
297 }
298 if (tmp == NULL) {
299 rm_wunlock(&ktls_backends_lock);
300 return (0);
301 }
302
303 if (!ktls_allow_unload) {
304 rm_wunlock(&ktls_backends_lock);
305 printf(
306 "KTLS: Deregistering crypto method %s is not supported\n",
307 be->name);
308 return (EBUSY);
309 }
310
311 if (be->use_count) {
312 rm_wunlock(&ktls_backends_lock);
313 return (EBUSY);
314 }
315
316 LIST_REMOVE(be, next);
317 rm_wunlock(&ktls_backends_lock);
318 return (0);
319 }
320
321 #if defined(INET) || defined(INET6)
322 static u_int
ktls_get_cpu(struct socket * so)323 ktls_get_cpu(struct socket *so)
324 {
325 struct inpcb *inp;
326 #ifdef NUMA
327 struct ktls_domain_info *di;
328 #endif
329 u_int cpuid;
330
331 inp = sotoinpcb(so);
332 #ifdef RSS
333 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
334 if (cpuid != NETISR_CPUID_NONE)
335 return (cpuid);
336 #endif
337 /*
338 * Just use the flowid to shard connections in a repeatable
339 * fashion. Note that some crypto backends rely on the
340 * serialization provided by having the same connection use
341 * the same queue.
342 */
343 #ifdef NUMA
344 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
345 di = &ktls_domains[inp->inp_numa_domain];
346 cpuid = di->cpu[inp->inp_flowid % di->count];
347 } else
348 #endif
349 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
350 return (cpuid);
351 }
352 #endif
353
354 static void
ktls_init(void * dummy __unused)355 ktls_init(void *dummy __unused)
356 {
357 struct thread *td;
358 struct pcpu *pc;
359 cpuset_t mask;
360 int count, domain, error, i;
361
362 ktls_tasks_active = counter_u64_alloc(M_WAITOK);
363 ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK);
364 ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK);
365 ktls_offload_total = counter_u64_alloc(M_WAITOK);
366 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK);
367 ktls_offload_active = counter_u64_alloc(M_WAITOK);
368 ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK);
369 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK);
370 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK);
371 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK);
372 ktls_switch_failed = counter_u64_alloc(M_WAITOK);
373 ktls_sw_cbc = counter_u64_alloc(M_WAITOK);
374 ktls_sw_gcm = counter_u64_alloc(M_WAITOK);
375 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK);
376 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK);
377 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK);
378 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK);
379 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK);
380 #ifdef TCP_OFFLOAD
381 ktls_toe_cbc = counter_u64_alloc(M_WAITOK);
382 ktls_toe_gcm = counter_u64_alloc(M_WAITOK);
383 #endif
384
385 rm_init(&ktls_backends_lock, "ktls backends");
386 LIST_INIT(&ktls_backends);
387
388 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
389 M_WAITOK | M_ZERO);
390
391 ktls_session_zone = uma_zcreate("ktls_session",
392 sizeof(struct ktls_session),
393 NULL, NULL, NULL, NULL,
394 UMA_ALIGN_CACHE, 0);
395
396 /*
397 * Initialize the workqueues to run the TLS work. We create a
398 * work queue for each CPU.
399 */
400 CPU_FOREACH(i) {
401 STAILQ_INIT(&ktls_wq[i].m_head);
402 STAILQ_INIT(&ktls_wq[i].so_head);
403 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
404 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
405 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
406 if (error)
407 panic("Can't add KTLS thread %d error %d", i, error);
408
409 /*
410 * Bind threads to cores. If ktls_bind_threads is >
411 * 1, then we bind to the NUMA domain.
412 */
413 if (ktls_bind_threads) {
414 if (ktls_bind_threads > 1) {
415 pc = pcpu_find(i);
416 domain = pc->pc_domain;
417 CPU_COPY(&cpuset_domain[domain], &mask);
418 count = ktls_domains[domain].count;
419 ktls_domains[domain].cpu[count] = i;
420 ktls_domains[domain].count++;
421 } else {
422 CPU_SETOF(i, &mask);
423 }
424 error = cpuset_setthread(td->td_tid, &mask);
425 if (error)
426 panic(
427 "Unable to bind KTLS thread for CPU %d error %d",
428 i, error);
429 }
430 ktls_cpuid_lookup[ktls_number_threads] = i;
431 ktls_number_threads++;
432 }
433
434 /*
435 * If we somehow have an empty domain, fall back to choosing
436 * among all KTLS threads.
437 */
438 if (ktls_bind_threads > 1) {
439 for (i = 0; i < vm_ndomains; i++) {
440 if (ktls_domains[i].count == 0) {
441 ktls_bind_threads = 1;
442 break;
443 }
444 }
445 }
446
447 printf("KTLS: Initialized %d threads\n", ktls_number_threads);
448 }
449 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL);
450
451 #if defined(INET) || defined(INET6)
452 static int
ktls_create_session(struct socket * so,struct tls_enable * en,struct ktls_session ** tlsp)453 ktls_create_session(struct socket *so, struct tls_enable *en,
454 struct ktls_session **tlsp)
455 {
456 struct ktls_session *tls;
457 int error;
458
459 /* Only TLS 1.0 - 1.3 are supported. */
460 if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
461 return (EINVAL);
462 if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
463 en->tls_vminor > TLS_MINOR_VER_THREE)
464 return (EINVAL);
465
466 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
467 return (EINVAL);
468 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
469 return (EINVAL);
470 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
471 return (EINVAL);
472
473 /* All supported algorithms require a cipher key. */
474 if (en->cipher_key_len == 0)
475 return (EINVAL);
476
477 /* No flags are currently supported. */
478 if (en->flags != 0)
479 return (EINVAL);
480
481 /* Common checks for supported algorithms. */
482 switch (en->cipher_algorithm) {
483 case CRYPTO_AES_NIST_GCM_16:
484 /*
485 * auth_algorithm isn't used, but permit GMAC values
486 * for compatibility.
487 */
488 switch (en->auth_algorithm) {
489 case 0:
490 #ifdef COMPAT_FREEBSD12
491 /* XXX: Really 13.0-current COMPAT. */
492 case CRYPTO_AES_128_NIST_GMAC:
493 case CRYPTO_AES_192_NIST_GMAC:
494 case CRYPTO_AES_256_NIST_GMAC:
495 #endif
496 break;
497 default:
498 return (EINVAL);
499 }
500 if (en->auth_key_len != 0)
501 return (EINVAL);
502 if ((en->tls_vminor == TLS_MINOR_VER_TWO &&
503 en->iv_len != TLS_AEAD_GCM_LEN) ||
504 (en->tls_vminor == TLS_MINOR_VER_THREE &&
505 en->iv_len != TLS_1_3_GCM_IV_LEN))
506 return (EINVAL);
507 break;
508 case CRYPTO_AES_CBC:
509 switch (en->auth_algorithm) {
510 case CRYPTO_SHA1_HMAC:
511 /*
512 * TLS 1.0 requires an implicit IV. TLS 1.1+
513 * all use explicit IVs.
514 */
515 if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
516 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
517 return (EINVAL);
518 break;
519 }
520
521 /* FALLTHROUGH */
522 case CRYPTO_SHA2_256_HMAC:
523 case CRYPTO_SHA2_384_HMAC:
524 /* Ignore any supplied IV. */
525 en->iv_len = 0;
526 break;
527 default:
528 return (EINVAL);
529 }
530 if (en->auth_key_len == 0)
531 return (EINVAL);
532 break;
533 default:
534 return (EINVAL);
535 }
536
537 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
538
539 counter_u64_add(ktls_offload_active, 1);
540
541 refcount_init(&tls->refcount, 1);
542 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
543
544 tls->wq_index = ktls_get_cpu(so);
545
546 tls->params.cipher_algorithm = en->cipher_algorithm;
547 tls->params.auth_algorithm = en->auth_algorithm;
548 tls->params.tls_vmajor = en->tls_vmajor;
549 tls->params.tls_vminor = en->tls_vminor;
550 tls->params.flags = en->flags;
551 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
552
553 /* Set the header and trailer lengths. */
554 tls->params.tls_hlen = sizeof(struct tls_record_layer);
555 switch (en->cipher_algorithm) {
556 case CRYPTO_AES_NIST_GCM_16:
557 /*
558 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
559 * nonce. TLS 1.3 uses a 12 byte implicit IV.
560 */
561 if (en->tls_vminor < TLS_MINOR_VER_THREE)
562 tls->params.tls_hlen += sizeof(uint64_t);
563 tls->params.tls_tlen = AES_GMAC_HASH_LEN;
564
565 /*
566 * TLS 1.3 includes optional padding which we
567 * do not support, and also puts the "real" record
568 * type at the end of the encrypted data.
569 */
570 if (en->tls_vminor == TLS_MINOR_VER_THREE)
571 tls->params.tls_tlen += sizeof(uint8_t);
572
573 tls->params.tls_bs = 1;
574 break;
575 case CRYPTO_AES_CBC:
576 switch (en->auth_algorithm) {
577 case CRYPTO_SHA1_HMAC:
578 if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
579 /* Implicit IV, no nonce. */
580 } else {
581 tls->params.tls_hlen += AES_BLOCK_LEN;
582 }
583 tls->params.tls_tlen = AES_BLOCK_LEN +
584 SHA1_HASH_LEN;
585 break;
586 case CRYPTO_SHA2_256_HMAC:
587 tls->params.tls_hlen += AES_BLOCK_LEN;
588 tls->params.tls_tlen = AES_BLOCK_LEN +
589 SHA2_256_HASH_LEN;
590 break;
591 case CRYPTO_SHA2_384_HMAC:
592 tls->params.tls_hlen += AES_BLOCK_LEN;
593 tls->params.tls_tlen = AES_BLOCK_LEN +
594 SHA2_384_HASH_LEN;
595 break;
596 default:
597 panic("invalid hmac");
598 }
599 tls->params.tls_bs = AES_BLOCK_LEN;
600 break;
601 default:
602 panic("invalid cipher");
603 }
604
605 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
606 ("TLS header length too long: %d", tls->params.tls_hlen));
607 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
608 ("TLS trailer length too long: %d", tls->params.tls_tlen));
609
610 if (en->auth_key_len != 0) {
611 tls->params.auth_key_len = en->auth_key_len;
612 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
613 M_WAITOK);
614 error = copyin(en->auth_key, tls->params.auth_key,
615 en->auth_key_len);
616 if (error)
617 goto out;
618 }
619
620 tls->params.cipher_key_len = en->cipher_key_len;
621 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
622 error = copyin(en->cipher_key, tls->params.cipher_key,
623 en->cipher_key_len);
624 if (error)
625 goto out;
626
627 /*
628 * This holds the implicit portion of the nonce for GCM and
629 * the initial implicit IV for TLS 1.0. The explicit portions
630 * of the IV are generated in ktls_frame().
631 */
632 if (en->iv_len != 0) {
633 tls->params.iv_len = en->iv_len;
634 error = copyin(en->iv, tls->params.iv, en->iv_len);
635 if (error)
636 goto out;
637
638 /*
639 * For TLS 1.2, generate an 8-byte nonce as a counter
640 * to generate unique explicit IVs.
641 *
642 * Store this counter in the last 8 bytes of the IV
643 * array so that it is 8-byte aligned.
644 */
645 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
646 en->tls_vminor == TLS_MINOR_VER_TWO)
647 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
648 }
649
650 *tlsp = tls;
651 return (0);
652
653 out:
654 ktls_cleanup(tls);
655 return (error);
656 }
657
658 static struct ktls_session *
ktls_clone_session(struct ktls_session * tls)659 ktls_clone_session(struct ktls_session *tls)
660 {
661 struct ktls_session *tls_new;
662
663 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
664
665 counter_u64_add(ktls_offload_active, 1);
666
667 refcount_init(&tls_new->refcount, 1);
668
669 /* Copy fields from existing session. */
670 tls_new->params = tls->params;
671 tls_new->wq_index = tls->wq_index;
672
673 /* Deep copy keys. */
674 if (tls_new->params.auth_key != NULL) {
675 tls_new->params.auth_key = malloc(tls->params.auth_key_len,
676 M_KTLS, M_WAITOK);
677 memcpy(tls_new->params.auth_key, tls->params.auth_key,
678 tls->params.auth_key_len);
679 }
680
681 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
682 M_WAITOK);
683 memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
684 tls->params.cipher_key_len);
685
686 return (tls_new);
687 }
688 #endif
689
690 static void
ktls_cleanup(struct ktls_session * tls)691 ktls_cleanup(struct ktls_session *tls)
692 {
693
694 counter_u64_add(ktls_offload_active, -1);
695 switch (tls->mode) {
696 case TCP_TLS_MODE_SW:
697 MPASS(tls->be != NULL);
698 switch (tls->params.cipher_algorithm) {
699 case CRYPTO_AES_CBC:
700 counter_u64_add(ktls_sw_cbc, -1);
701 break;
702 case CRYPTO_AES_NIST_GCM_16:
703 counter_u64_add(ktls_sw_gcm, -1);
704 break;
705 }
706 tls->free(tls);
707 break;
708 case TCP_TLS_MODE_IFNET:
709 switch (tls->params.cipher_algorithm) {
710 case CRYPTO_AES_CBC:
711 counter_u64_add(ktls_ifnet_cbc, -1);
712 break;
713 case CRYPTO_AES_NIST_GCM_16:
714 counter_u64_add(ktls_ifnet_gcm, -1);
715 break;
716 }
717 if (tls->snd_tag != NULL)
718 m_snd_tag_rele(tls->snd_tag);
719 break;
720 #ifdef TCP_OFFLOAD
721 case TCP_TLS_MODE_TOE:
722 switch (tls->params.cipher_algorithm) {
723 case CRYPTO_AES_CBC:
724 counter_u64_add(ktls_toe_cbc, -1);
725 break;
726 case CRYPTO_AES_NIST_GCM_16:
727 counter_u64_add(ktls_toe_gcm, -1);
728 break;
729 }
730 break;
731 #endif
732 }
733 if (tls->params.auth_key != NULL) {
734 zfree(tls->params.auth_key, M_KTLS);
735 tls->params.auth_key = NULL;
736 tls->params.auth_key_len = 0;
737 }
738 if (tls->params.cipher_key != NULL) {
739 zfree(tls->params.cipher_key, M_KTLS);
740 tls->params.cipher_key = NULL;
741 tls->params.cipher_key_len = 0;
742 }
743 explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
744 }
745
746 #if defined(INET) || defined(INET6)
747
748 #ifdef TCP_OFFLOAD
749 static int
ktls_try_toe(struct socket * so,struct ktls_session * tls,int direction)750 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
751 {
752 struct inpcb *inp;
753 struct tcpcb *tp;
754 int error;
755
756 inp = so->so_pcb;
757 INP_WLOCK(inp);
758 if (inp->inp_flags2 & INP_FREED) {
759 INP_WUNLOCK(inp);
760 return (ECONNRESET);
761 }
762 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
763 INP_WUNLOCK(inp);
764 return (ECONNRESET);
765 }
766 if (inp->inp_socket == NULL) {
767 INP_WUNLOCK(inp);
768 return (ECONNRESET);
769 }
770 tp = intotcpcb(inp);
771 if (!(tp->t_flags & TF_TOE)) {
772 INP_WUNLOCK(inp);
773 return (EOPNOTSUPP);
774 }
775
776 error = tcp_offload_alloc_tls_session(tp, tls, direction);
777 INP_WUNLOCK(inp);
778 if (error == 0) {
779 tls->mode = TCP_TLS_MODE_TOE;
780 switch (tls->params.cipher_algorithm) {
781 case CRYPTO_AES_CBC:
782 counter_u64_add(ktls_toe_cbc, 1);
783 break;
784 case CRYPTO_AES_NIST_GCM_16:
785 counter_u64_add(ktls_toe_gcm, 1);
786 break;
787 }
788 }
789 return (error);
790 }
791 #endif
792
793 /*
794 * Common code used when first enabling ifnet TLS on a connection or
795 * when allocating a new ifnet TLS session due to a routing change.
796 * This function allocates a new TLS send tag on whatever interface
797 * the connection is currently routed over.
798 */
799 static int
ktls_alloc_snd_tag(struct inpcb * inp,struct ktls_session * tls,bool force,struct m_snd_tag ** mstp)800 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
801 struct m_snd_tag **mstp)
802 {
803 union if_snd_tag_alloc_params params;
804 struct ifnet *ifp;
805 struct nhop_object *nh;
806 struct tcpcb *tp;
807 int error;
808
809 INP_RLOCK(inp);
810 if (inp->inp_flags2 & INP_FREED) {
811 INP_RUNLOCK(inp);
812 return (ECONNRESET);
813 }
814 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
815 INP_RUNLOCK(inp);
816 return (ECONNRESET);
817 }
818 if (inp->inp_socket == NULL) {
819 INP_RUNLOCK(inp);
820 return (ECONNRESET);
821 }
822 tp = intotcpcb(inp);
823
824 /*
825 * Check administrative controls on ifnet TLS to determine if
826 * ifnet TLS should be denied.
827 *
828 * - Always permit 'force' requests.
829 * - ktls_ifnet_permitted == 0: always deny.
830 */
831 if (!force && ktls_ifnet_permitted == 0) {
832 INP_RUNLOCK(inp);
833 return (ENXIO);
834 }
835
836 /*
837 * XXX: Use the cached route in the inpcb to find the
838 * interface. This should perhaps instead use
839 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only
840 * enabled after a connection has completed key negotiation in
841 * userland, the cached route will be present in practice.
842 */
843 nh = inp->inp_route.ro_nh;
844 if (nh == NULL) {
845 INP_RUNLOCK(inp);
846 return (ENXIO);
847 }
848 ifp = nh->nh_ifp;
849 if_ref(ifp);
850
851 /*
852 * Allocate a TLS + ratelimit tag if the connection has an
853 * existing pacing rate.
854 */
855 if (tp->t_pacing_rate != -1 &&
856 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) {
857 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
858 params.tls_rate_limit.inp = inp;
859 params.tls_rate_limit.tls = tls;
860 params.tls_rate_limit.max_rate = tp->t_pacing_rate;
861 } else {
862 params.hdr.type = IF_SND_TAG_TYPE_TLS;
863 params.tls.inp = inp;
864 params.tls.tls = tls;
865 }
866 params.hdr.flowid = inp->inp_flowid;
867 params.hdr.flowtype = inp->inp_flowtype;
868 params.hdr.numa_domain = inp->inp_numa_domain;
869 INP_RUNLOCK(inp);
870
871 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) {
872 error = EOPNOTSUPP;
873 goto out;
874 }
875 if (inp->inp_vflag & INP_IPV6) {
876 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
877 error = EOPNOTSUPP;
878 goto out;
879 }
880 } else {
881 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
882 error = EOPNOTSUPP;
883 goto out;
884 }
885 }
886 error = m_snd_tag_alloc(ifp, ¶ms, mstp);
887 out:
888 if_rele(ifp);
889 return (error);
890 }
891
892 static int
ktls_try_ifnet(struct socket * so,struct ktls_session * tls,bool force)893 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force)
894 {
895 struct m_snd_tag *mst;
896 int error;
897
898 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
899 if (error == 0) {
900 tls->mode = TCP_TLS_MODE_IFNET;
901 tls->snd_tag = mst;
902 switch (tls->params.cipher_algorithm) {
903 case CRYPTO_AES_CBC:
904 counter_u64_add(ktls_ifnet_cbc, 1);
905 break;
906 case CRYPTO_AES_NIST_GCM_16:
907 counter_u64_add(ktls_ifnet_gcm, 1);
908 break;
909 }
910 }
911 return (error);
912 }
913
914 static int
ktls_try_sw(struct socket * so,struct ktls_session * tls,int direction)915 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
916 {
917 struct rm_priotracker prio;
918 struct ktls_crypto_backend *be;
919
920 /*
921 * Choose the best software crypto backend. Backends are
922 * stored in sorted priority order (larget value == most
923 * important at the head of the list), so this just stops on
924 * the first backend that claims the session by returning
925 * success.
926 */
927 if (ktls_allow_unload)
928 rm_rlock(&ktls_backends_lock, &prio);
929 LIST_FOREACH(be, &ktls_backends, next) {
930 if (be->try(so, tls, direction) == 0)
931 break;
932 KASSERT(tls->cipher == NULL,
933 ("ktls backend leaked a cipher pointer"));
934 }
935 if (be != NULL) {
936 if (ktls_allow_unload)
937 be->use_count++;
938 tls->be = be;
939 }
940 if (ktls_allow_unload)
941 rm_runlock(&ktls_backends_lock, &prio);
942 if (be == NULL)
943 return (EOPNOTSUPP);
944 tls->mode = TCP_TLS_MODE_SW;
945 switch (tls->params.cipher_algorithm) {
946 case CRYPTO_AES_CBC:
947 counter_u64_add(ktls_sw_cbc, 1);
948 break;
949 case CRYPTO_AES_NIST_GCM_16:
950 counter_u64_add(ktls_sw_gcm, 1);
951 break;
952 }
953 return (0);
954 }
955
956 /*
957 * KTLS RX stores data in the socket buffer as a list of TLS records,
958 * where each record is stored as a control message containg the TLS
959 * header followed by data mbufs containing the decrypted data. This
960 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
961 * both encrypted and decrypted data. TLS records decrypted by a NIC
962 * should be queued to the socket buffer as records, but encrypted
963 * data which needs to be decrypted by software arrives as a stream of
964 * regular mbufs which need to be converted. In addition, there may
965 * already be pending encrypted data in the socket buffer when KTLS RX
966 * is enabled.
967 *
968 * To manage not-yet-decrypted data for KTLS RX, the following scheme
969 * is used:
970 *
971 * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
972 *
973 * - ktls_check_rx checks this chain of mbufs reading the TLS header
974 * from the first mbuf. Once all of the data for that TLS record is
975 * queued, the socket is queued to a worker thread.
976 *
977 * - The worker thread calls ktls_decrypt to decrypt TLS records in
978 * the TLS chain. Each TLS record is detached from the TLS chain,
979 * decrypted, and inserted into the regular socket buffer chain as
980 * record starting with a control message holding the TLS header and
981 * a chain of mbufs holding the encrypted data.
982 */
983
984 static void
sb_mark_notready(struct sockbuf * sb)985 sb_mark_notready(struct sockbuf *sb)
986 {
987 struct mbuf *m;
988
989 m = sb->sb_mb;
990 sb->sb_mtls = m;
991 sb->sb_mb = NULL;
992 sb->sb_mbtail = NULL;
993 sb->sb_lastrecord = NULL;
994 for (; m != NULL; m = m->m_next) {
995 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
996 __func__));
997 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
998 __func__));
999 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
1000 __func__));
1001 m->m_flags |= M_NOTREADY;
1002 sb->sb_acc -= m->m_len;
1003 sb->sb_tlscc += m->m_len;
1004 sb->sb_mtlstail = m;
1005 }
1006 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1007 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1008 sb->sb_ccc));
1009 }
1010
1011 int
ktls_enable_rx(struct socket * so,struct tls_enable * en)1012 ktls_enable_rx(struct socket *so, struct tls_enable *en)
1013 {
1014 struct ktls_session *tls;
1015 int error;
1016
1017 if (!ktls_offload_enable)
1018 return (ENOTSUP);
1019 if (SOLISTENING(so))
1020 return (EINVAL);
1021
1022 counter_u64_add(ktls_offload_enable_calls, 1);
1023
1024 /*
1025 * This should always be true since only the TCP socket option
1026 * invokes this function.
1027 */
1028 if (so->so_proto->pr_protocol != IPPROTO_TCP)
1029 return (EINVAL);
1030
1031 /*
1032 * XXX: Don't overwrite existing sessions. We should permit
1033 * this to support rekeying in the future.
1034 */
1035 if (so->so_rcv.sb_tls_info != NULL)
1036 return (EALREADY);
1037
1038 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1039 return (ENOTSUP);
1040
1041 /* TLS 1.3 is not yet supported. */
1042 if (en->tls_vmajor == TLS_MAJOR_VER_ONE &&
1043 en->tls_vminor == TLS_MINOR_VER_THREE)
1044 return (ENOTSUP);
1045
1046 error = ktls_create_session(so, en, &tls);
1047 if (error)
1048 return (error);
1049
1050 #ifdef TCP_OFFLOAD
1051 error = ktls_try_toe(so, tls, KTLS_RX);
1052 if (error)
1053 #endif
1054 error = ktls_try_sw(so, tls, KTLS_RX);
1055
1056 if (error) {
1057 ktls_cleanup(tls);
1058 return (error);
1059 }
1060
1061 /* Mark the socket as using TLS offload. */
1062 SOCKBUF_LOCK(&so->so_rcv);
1063 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1064 so->so_rcv.sb_tls_info = tls;
1065 so->so_rcv.sb_flags |= SB_TLS_RX;
1066
1067 /* Mark existing data as not ready until it can be decrypted. */
1068 sb_mark_notready(&so->so_rcv);
1069 ktls_check_rx(&so->so_rcv);
1070 SOCKBUF_UNLOCK(&so->so_rcv);
1071
1072 counter_u64_add(ktls_offload_total, 1);
1073
1074 return (0);
1075 }
1076
1077 int
ktls_enable_tx(struct socket * so,struct tls_enable * en)1078 ktls_enable_tx(struct socket *so, struct tls_enable *en)
1079 {
1080 struct ktls_session *tls;
1081 struct inpcb *inp;
1082 int error;
1083
1084 if (!ktls_offload_enable)
1085 return (ENOTSUP);
1086 if (SOLISTENING(so))
1087 return (EINVAL);
1088
1089 counter_u64_add(ktls_offload_enable_calls, 1);
1090
1091 /*
1092 * This should always be true since only the TCP socket option
1093 * invokes this function.
1094 */
1095 if (so->so_proto->pr_protocol != IPPROTO_TCP)
1096 return (EINVAL);
1097
1098 /*
1099 * XXX: Don't overwrite existing sessions. We should permit
1100 * this to support rekeying in the future.
1101 */
1102 if (so->so_snd.sb_tls_info != NULL)
1103 return (EALREADY);
1104
1105 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1106 return (ENOTSUP);
1107
1108 /* TLS requires ext pgs */
1109 if (mb_use_ext_pgs == 0)
1110 return (ENXIO);
1111
1112 error = ktls_create_session(so, en, &tls);
1113 if (error)
1114 return (error);
1115
1116 /* Prefer TOE -> ifnet TLS -> software TLS. */
1117 #ifdef TCP_OFFLOAD
1118 error = ktls_try_toe(so, tls, KTLS_TX);
1119 if (error)
1120 #endif
1121 error = ktls_try_ifnet(so, tls, false);
1122 if (error)
1123 error = ktls_try_sw(so, tls, KTLS_TX);
1124
1125 if (error) {
1126 ktls_cleanup(tls);
1127 return (error);
1128 }
1129
1130 error = sblock(&so->so_snd, SBL_WAIT);
1131 if (error) {
1132 ktls_cleanup(tls);
1133 return (error);
1134 }
1135
1136 /*
1137 * Write lock the INP when setting sb_tls_info so that
1138 * routines in tcp_ratelimit.c can read sb_tls_info while
1139 * holding the INP lock.
1140 */
1141 inp = so->so_pcb;
1142 INP_WLOCK(inp);
1143 SOCKBUF_LOCK(&so->so_snd);
1144 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1145 so->so_snd.sb_tls_info = tls;
1146 if (tls->mode != TCP_TLS_MODE_SW)
1147 so->so_snd.sb_flags |= SB_TLS_IFNET;
1148 SOCKBUF_UNLOCK(&so->so_snd);
1149 INP_WUNLOCK(inp);
1150 sbunlock(&so->so_snd);
1151
1152 counter_u64_add(ktls_offload_total, 1);
1153
1154 return (0);
1155 }
1156
1157 int
ktls_get_rx_mode(struct socket * so)1158 ktls_get_rx_mode(struct socket *so)
1159 {
1160 struct ktls_session *tls;
1161 struct inpcb *inp;
1162 int mode;
1163
1164 if (SOLISTENING(so))
1165 return (EINVAL);
1166 inp = so->so_pcb;
1167 INP_WLOCK_ASSERT(inp);
1168 SOCKBUF_LOCK(&so->so_rcv);
1169 tls = so->so_rcv.sb_tls_info;
1170 if (tls == NULL)
1171 mode = TCP_TLS_MODE_NONE;
1172 else
1173 mode = tls->mode;
1174 SOCKBUF_UNLOCK(&so->so_rcv);
1175 return (mode);
1176 }
1177
1178 int
ktls_get_tx_mode(struct socket * so)1179 ktls_get_tx_mode(struct socket *so)
1180 {
1181 struct ktls_session *tls;
1182 struct inpcb *inp;
1183 int mode;
1184
1185 if (SOLISTENING(so))
1186 return (EINVAL);
1187 inp = so->so_pcb;
1188 INP_WLOCK_ASSERT(inp);
1189 SOCKBUF_LOCK(&so->so_snd);
1190 tls = so->so_snd.sb_tls_info;
1191 if (tls == NULL)
1192 mode = TCP_TLS_MODE_NONE;
1193 else
1194 mode = tls->mode;
1195 SOCKBUF_UNLOCK(&so->so_snd);
1196 return (mode);
1197 }
1198
1199 /*
1200 * Switch between SW and ifnet TLS sessions as requested.
1201 */
1202 int
ktls_set_tx_mode(struct socket * so,int mode)1203 ktls_set_tx_mode(struct socket *so, int mode)
1204 {
1205 struct ktls_session *tls, *tls_new;
1206 struct inpcb *inp;
1207 int error;
1208
1209 if (SOLISTENING(so))
1210 return (EINVAL);
1211 switch (mode) {
1212 case TCP_TLS_MODE_SW:
1213 case TCP_TLS_MODE_IFNET:
1214 break;
1215 default:
1216 return (EINVAL);
1217 }
1218
1219 inp = so->so_pcb;
1220 INP_WLOCK_ASSERT(inp);
1221 SOCKBUF_LOCK(&so->so_snd);
1222 tls = so->so_snd.sb_tls_info;
1223 if (tls == NULL) {
1224 SOCKBUF_UNLOCK(&so->so_snd);
1225 return (0);
1226 }
1227
1228 if (tls->mode == mode) {
1229 SOCKBUF_UNLOCK(&so->so_snd);
1230 return (0);
1231 }
1232
1233 tls = ktls_hold(tls);
1234 SOCKBUF_UNLOCK(&so->so_snd);
1235 INP_WUNLOCK(inp);
1236
1237 tls_new = ktls_clone_session(tls);
1238
1239 if (mode == TCP_TLS_MODE_IFNET)
1240 error = ktls_try_ifnet(so, tls_new, true);
1241 else
1242 error = ktls_try_sw(so, tls_new, KTLS_TX);
1243 if (error) {
1244 counter_u64_add(ktls_switch_failed, 1);
1245 ktls_free(tls_new);
1246 ktls_free(tls);
1247 INP_WLOCK(inp);
1248 return (error);
1249 }
1250
1251 error = sblock(&so->so_snd, SBL_WAIT);
1252 if (error) {
1253 counter_u64_add(ktls_switch_failed, 1);
1254 ktls_free(tls_new);
1255 ktls_free(tls);
1256 INP_WLOCK(inp);
1257 return (error);
1258 }
1259
1260 /*
1261 * If we raced with another session change, keep the existing
1262 * session.
1263 */
1264 if (tls != so->so_snd.sb_tls_info) {
1265 counter_u64_add(ktls_switch_failed, 1);
1266 sbunlock(&so->so_snd);
1267 ktls_free(tls_new);
1268 ktls_free(tls);
1269 INP_WLOCK(inp);
1270 return (EBUSY);
1271 }
1272
1273 SOCKBUF_LOCK(&so->so_snd);
1274 so->so_snd.sb_tls_info = tls_new;
1275 if (tls_new->mode != TCP_TLS_MODE_SW)
1276 so->so_snd.sb_flags |= SB_TLS_IFNET;
1277 SOCKBUF_UNLOCK(&so->so_snd);
1278 sbunlock(&so->so_snd);
1279
1280 /*
1281 * Drop two references on 'tls'. The first is for the
1282 * ktls_hold() above. The second drops the reference from the
1283 * socket buffer.
1284 */
1285 KASSERT(tls->refcount >= 2, ("too few references on old session"));
1286 ktls_free(tls);
1287 ktls_free(tls);
1288
1289 if (mode == TCP_TLS_MODE_IFNET)
1290 counter_u64_add(ktls_switch_to_ifnet, 1);
1291 else
1292 counter_u64_add(ktls_switch_to_sw, 1);
1293
1294 INP_WLOCK(inp);
1295 return (0);
1296 }
1297
1298 /*
1299 * Try to allocate a new TLS send tag. This task is scheduled when
1300 * ip_output detects a route change while trying to transmit a packet
1301 * holding a TLS record. If a new tag is allocated, replace the tag
1302 * in the TLS session. Subsequent packets on the connection will use
1303 * the new tag. If a new tag cannot be allocated, drop the
1304 * connection.
1305 */
1306 static void
ktls_reset_send_tag(void * context,int pending)1307 ktls_reset_send_tag(void *context, int pending)
1308 {
1309 struct epoch_tracker et;
1310 struct ktls_session *tls;
1311 struct m_snd_tag *old, *new;
1312 struct inpcb *inp;
1313 struct tcpcb *tp;
1314 int error;
1315
1316 MPASS(pending == 1);
1317
1318 tls = context;
1319 inp = tls->inp;
1320
1321 /*
1322 * Free the old tag first before allocating a new one.
1323 * ip[6]_output_send() will treat a NULL send tag the same as
1324 * an ifp mismatch and drop packets until a new tag is
1325 * allocated.
1326 *
1327 * Write-lock the INP when changing tls->snd_tag since
1328 * ip[6]_output_send() holds a read-lock when reading the
1329 * pointer.
1330 */
1331 INP_WLOCK(inp);
1332 old = tls->snd_tag;
1333 tls->snd_tag = NULL;
1334 INP_WUNLOCK(inp);
1335 if (old != NULL)
1336 m_snd_tag_rele(old);
1337
1338 error = ktls_alloc_snd_tag(inp, tls, true, &new);
1339
1340 if (error == 0) {
1341 INP_WLOCK(inp);
1342 tls->snd_tag = new;
1343 mtx_pool_lock(mtxpool_sleep, tls);
1344 tls->reset_pending = false;
1345 mtx_pool_unlock(mtxpool_sleep, tls);
1346 if (!in_pcbrele_wlocked(inp))
1347 INP_WUNLOCK(inp);
1348
1349 counter_u64_add(ktls_ifnet_reset, 1);
1350
1351 /*
1352 * XXX: Should we kick tcp_output explicitly now that
1353 * the send tag is fixed or just rely on timers?
1354 */
1355 } else {
1356 NET_EPOCH_ENTER(et);
1357 INP_WLOCK(inp);
1358 if (!in_pcbrele_wlocked(inp)) {
1359 if (!(inp->inp_flags & INP_TIMEWAIT) &&
1360 !(inp->inp_flags & INP_DROPPED)) {
1361 tp = intotcpcb(inp);
1362 CURVNET_SET(tp->t_vnet);
1363 tp = tcp_drop(tp, ECONNABORTED);
1364 CURVNET_RESTORE();
1365 if (tp != NULL)
1366 INP_WUNLOCK(inp);
1367 counter_u64_add(ktls_ifnet_reset_dropped, 1);
1368 } else
1369 INP_WUNLOCK(inp);
1370 }
1371 NET_EPOCH_EXIT(et);
1372
1373 counter_u64_add(ktls_ifnet_reset_failed, 1);
1374
1375 /*
1376 * Leave reset_pending true to avoid future tasks while
1377 * the socket goes away.
1378 */
1379 }
1380
1381 ktls_free(tls);
1382 }
1383
1384 int
ktls_output_eagain(struct inpcb * inp,struct ktls_session * tls)1385 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1386 {
1387
1388 if (inp == NULL)
1389 return (ENOBUFS);
1390
1391 INP_LOCK_ASSERT(inp);
1392
1393 /*
1394 * See if we should schedule a task to update the send tag for
1395 * this session.
1396 */
1397 mtx_pool_lock(mtxpool_sleep, tls);
1398 if (!tls->reset_pending) {
1399 (void) ktls_hold(tls);
1400 in_pcbref(inp);
1401 tls->inp = inp;
1402 tls->reset_pending = true;
1403 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1404 }
1405 mtx_pool_unlock(mtxpool_sleep, tls);
1406 return (ENOBUFS);
1407 }
1408
1409 #ifdef RATELIMIT
1410 int
ktls_modify_txrtlmt(struct ktls_session * tls,uint64_t max_pacing_rate)1411 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1412 {
1413 union if_snd_tag_modify_params params = {
1414 .rate_limit.max_rate = max_pacing_rate,
1415 .rate_limit.flags = M_NOWAIT,
1416 };
1417 struct m_snd_tag *mst;
1418 struct ifnet *ifp;
1419 int error;
1420
1421 /* Can't get to the inp, but it should be locked. */
1422 /* INP_LOCK_ASSERT(inp); */
1423
1424 MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1425
1426 if (tls->snd_tag == NULL) {
1427 /*
1428 * Resetting send tag, ignore this change. The
1429 * pending reset may or may not see this updated rate
1430 * in the tcpcb. If it doesn't, we will just lose
1431 * this rate change.
1432 */
1433 return (0);
1434 }
1435
1436 MPASS(tls->snd_tag != NULL);
1437 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1438
1439 mst = tls->snd_tag;
1440 ifp = mst->ifp;
1441 return (ifp->if_snd_tag_modify(mst, ¶ms));
1442 }
1443 #endif
1444 #endif
1445
1446 void
ktls_destroy(struct ktls_session * tls)1447 ktls_destroy(struct ktls_session *tls)
1448 {
1449 struct rm_priotracker prio;
1450
1451 ktls_cleanup(tls);
1452 if (tls->be != NULL && ktls_allow_unload) {
1453 rm_rlock(&ktls_backends_lock, &prio);
1454 tls->be->use_count--;
1455 rm_runlock(&ktls_backends_lock, &prio);
1456 }
1457 uma_zfree(ktls_session_zone, tls);
1458 }
1459
1460 void
ktls_seq(struct sockbuf * sb,struct mbuf * m)1461 ktls_seq(struct sockbuf *sb, struct mbuf *m)
1462 {
1463
1464 for (; m != NULL; m = m->m_next) {
1465 KASSERT((m->m_flags & M_EXTPG) != 0,
1466 ("ktls_seq: mapped mbuf %p", m));
1467
1468 m->m_epg_seqno = sb->sb_tls_seqno;
1469 sb->sb_tls_seqno++;
1470 }
1471 }
1472
1473 /*
1474 * Add TLS framing (headers and trailers) to a chain of mbufs. Each
1475 * mbuf in the chain must be an unmapped mbuf. The payload of the
1476 * mbuf must be populated with the payload of each TLS record.
1477 *
1478 * The record_type argument specifies the TLS record type used when
1479 * populating the TLS header.
1480 *
1481 * The enq_count argument on return is set to the number of pages of
1482 * payload data for this entire chain that need to be encrypted via SW
1483 * encryption. The returned value should be passed to ktls_enqueue
1484 * when scheduling encryption of this chain of mbufs. To handle the
1485 * special case of empty fragments for TLS 1.0 sessions, an empty
1486 * fragment counts as one page.
1487 */
1488 void
ktls_frame(struct mbuf * top,struct ktls_session * tls,int * enq_cnt,uint8_t record_type)1489 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
1490 uint8_t record_type)
1491 {
1492 struct tls_record_layer *tlshdr;
1493 struct mbuf *m;
1494 uint64_t *noncep;
1495 uint16_t tls_len;
1496 int maxlen;
1497
1498 maxlen = tls->params.max_frame_len;
1499 *enq_cnt = 0;
1500 for (m = top; m != NULL; m = m->m_next) {
1501 /*
1502 * All mbufs in the chain should be TLS records whose
1503 * payload does not exceed the maximum frame length.
1504 *
1505 * Empty TLS records are permitted when using CBC.
1506 */
1507 KASSERT(m->m_len <= maxlen &&
1508 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ?
1509 m->m_len >= 0 : m->m_len > 0),
1510 ("ktls_frame: m %p len %d\n", m, m->m_len));
1511
1512 /*
1513 * TLS frames require unmapped mbufs to store session
1514 * info.
1515 */
1516 KASSERT((m->m_flags & M_EXTPG) != 0,
1517 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top));
1518
1519 tls_len = m->m_len;
1520
1521 /* Save a reference to the session. */
1522 m->m_epg_tls = ktls_hold(tls);
1523
1524 m->m_epg_hdrlen = tls->params.tls_hlen;
1525 m->m_epg_trllen = tls->params.tls_tlen;
1526 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
1527 int bs, delta;
1528
1529 /*
1530 * AES-CBC pads messages to a multiple of the
1531 * block size. Note that the padding is
1532 * applied after the digest and the encryption
1533 * is done on the "plaintext || mac || padding".
1534 * At least one byte of padding is always
1535 * present.
1536 *
1537 * Compute the final trailer length assuming
1538 * at most one block of padding.
1539 * tls->params.sb_tls_tlen is the maximum
1540 * possible trailer length (padding + digest).
1541 * delta holds the number of excess padding
1542 * bytes if the maximum were used. Those
1543 * extra bytes are removed.
1544 */
1545 bs = tls->params.tls_bs;
1546 delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
1547 m->m_epg_trllen -= delta;
1548 }
1549 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
1550
1551 /* Populate the TLS header. */
1552 tlshdr = (void *)m->m_epg_hdr;
1553 tlshdr->tls_vmajor = tls->params.tls_vmajor;
1554
1555 /*
1556 * TLS 1.3 masquarades as TLS 1.2 with a record type
1557 * of TLS_RLTYPE_APP.
1558 */
1559 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
1560 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
1561 tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
1562 tlshdr->tls_type = TLS_RLTYPE_APP;
1563 /* save the real record type for later */
1564 m->m_epg_record_type = record_type;
1565 m->m_epg_trail[0] = record_type;
1566 } else {
1567 tlshdr->tls_vminor = tls->params.tls_vminor;
1568 tlshdr->tls_type = record_type;
1569 }
1570 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
1571
1572 /*
1573 * Store nonces / explicit IVs after the end of the
1574 * TLS header.
1575 *
1576 * For GCM with TLS 1.2, an 8 byte nonce is copied
1577 * from the end of the IV. The nonce is then
1578 * incremented for use by the next record.
1579 *
1580 * For CBC, a random nonce is inserted for TLS 1.1+.
1581 */
1582 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
1583 tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
1584 noncep = (uint64_t *)(tls->params.iv + 8);
1585 be64enc(tlshdr + 1, *noncep);
1586 (*noncep)++;
1587 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
1588 tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
1589 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
1590
1591 /*
1592 * When using SW encryption, mark the mbuf not ready.
1593 * It will be marked ready via sbready() after the
1594 * record has been encrypted.
1595 *
1596 * When using ifnet TLS, unencrypted TLS records are
1597 * sent down the stack to the NIC.
1598 */
1599 if (tls->mode == TCP_TLS_MODE_SW) {
1600 m->m_flags |= M_NOTREADY;
1601 m->m_epg_nrdy = m->m_epg_npgs;
1602 if (__predict_false(tls_len == 0)) {
1603 /* TLS 1.0 empty fragment. */
1604 *enq_cnt += 1;
1605 } else
1606 *enq_cnt += m->m_epg_npgs;
1607 }
1608 }
1609 }
1610
1611 void
ktls_check_rx(struct sockbuf * sb)1612 ktls_check_rx(struct sockbuf *sb)
1613 {
1614 struct tls_record_layer hdr;
1615 struct ktls_wq *wq;
1616 struct socket *so;
1617 bool running;
1618
1619 SOCKBUF_LOCK_ASSERT(sb);
1620 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1621 __func__, sb));
1622 so = __containerof(sb, struct socket, so_rcv);
1623
1624 if (sb->sb_flags & SB_TLS_RX_RUNNING)
1625 return;
1626
1627 /* Is there enough queued for a TLS header? */
1628 if (sb->sb_tlscc < sizeof(hdr)) {
1629 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
1630 so->so_error = EMSGSIZE;
1631 return;
1632 }
1633
1634 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
1635
1636 /* Is the entire record queued? */
1637 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
1638 if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
1639 so->so_error = EMSGSIZE;
1640 return;
1641 }
1642
1643 sb->sb_flags |= SB_TLS_RX_RUNNING;
1644
1645 soref(so);
1646 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
1647 mtx_lock(&wq->mtx);
1648 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
1649 running = wq->running;
1650 mtx_unlock(&wq->mtx);
1651 if (!running)
1652 wakeup(wq);
1653 counter_u64_add(ktls_cnt_rx_queued, 1);
1654 }
1655
1656 static struct mbuf *
ktls_detach_record(struct sockbuf * sb,int len)1657 ktls_detach_record(struct sockbuf *sb, int len)
1658 {
1659 struct mbuf *m, *n, *top;
1660 int remain;
1661
1662 SOCKBUF_LOCK_ASSERT(sb);
1663 MPASS(len <= sb->sb_tlscc);
1664
1665 /*
1666 * If TLS chain is the exact size of the record,
1667 * just grab the whole record.
1668 */
1669 top = sb->sb_mtls;
1670 if (sb->sb_tlscc == len) {
1671 sb->sb_mtls = NULL;
1672 sb->sb_mtlstail = NULL;
1673 goto out;
1674 }
1675
1676 /*
1677 * While it would be nice to use m_split() here, we need
1678 * to know exactly what m_split() allocates to update the
1679 * accounting, so do it inline instead.
1680 */
1681 remain = len;
1682 for (m = top; remain > m->m_len; m = m->m_next)
1683 remain -= m->m_len;
1684
1685 /* Easy case: don't have to split 'm'. */
1686 if (remain == m->m_len) {
1687 sb->sb_mtls = m->m_next;
1688 if (sb->sb_mtls == NULL)
1689 sb->sb_mtlstail = NULL;
1690 m->m_next = NULL;
1691 goto out;
1692 }
1693
1694 /*
1695 * Need to allocate an mbuf to hold the remainder of 'm'. Try
1696 * with M_NOWAIT first.
1697 */
1698 n = m_get(M_NOWAIT, MT_DATA);
1699 if (n == NULL) {
1700 /*
1701 * Use M_WAITOK with socket buffer unlocked. If
1702 * 'sb_mtls' changes while the lock is dropped, return
1703 * NULL to force the caller to retry.
1704 */
1705 SOCKBUF_UNLOCK(sb);
1706
1707 n = m_get(M_WAITOK, MT_DATA);
1708
1709 SOCKBUF_LOCK(sb);
1710 if (sb->sb_mtls != top) {
1711 m_free(n);
1712 return (NULL);
1713 }
1714 }
1715 n->m_flags |= M_NOTREADY;
1716
1717 /* Store remainder in 'n'. */
1718 n->m_len = m->m_len - remain;
1719 if (m->m_flags & M_EXT) {
1720 n->m_data = m->m_data + remain;
1721 mb_dupcl(n, m);
1722 } else {
1723 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
1724 }
1725
1726 /* Trim 'm' and update accounting. */
1727 m->m_len -= n->m_len;
1728 sb->sb_tlscc -= n->m_len;
1729 sb->sb_ccc -= n->m_len;
1730
1731 /* Account for 'n'. */
1732 sballoc_ktls_rx(sb, n);
1733
1734 /* Insert 'n' into the TLS chain. */
1735 sb->sb_mtls = n;
1736 n->m_next = m->m_next;
1737 if (sb->sb_mtlstail == m)
1738 sb->sb_mtlstail = n;
1739
1740 /* Detach the record from the TLS chain. */
1741 m->m_next = NULL;
1742
1743 out:
1744 MPASS(m_length(top, NULL) == len);
1745 for (m = top; m != NULL; m = m->m_next)
1746 sbfree_ktls_rx(sb, m);
1747 sb->sb_tlsdcc = len;
1748 sb->sb_ccc += len;
1749 SBCHECK(sb);
1750 return (top);
1751 }
1752
1753 static void
ktls_decrypt(struct socket * so)1754 ktls_decrypt(struct socket *so)
1755 {
1756 char tls_header[MBUF_PEXT_HDR_LEN];
1757 struct ktls_session *tls;
1758 struct sockbuf *sb;
1759 struct tls_record_layer *hdr;
1760 struct tls_get_record tgr;
1761 struct mbuf *control, *data, *m;
1762 uint64_t seqno;
1763 int error, remain, tls_len, trail_len;
1764
1765 hdr = (struct tls_record_layer *)tls_header;
1766 sb = &so->so_rcv;
1767 SOCKBUF_LOCK(sb);
1768 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
1769 ("%s: socket %p not running", __func__, so));
1770
1771 tls = sb->sb_tls_info;
1772 MPASS(tls != NULL);
1773
1774 for (;;) {
1775 /* Is there enough queued for a TLS header? */
1776 if (sb->sb_tlscc < tls->params.tls_hlen)
1777 break;
1778
1779 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
1780 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
1781
1782 if (hdr->tls_vmajor != tls->params.tls_vmajor ||
1783 hdr->tls_vminor != tls->params.tls_vminor)
1784 error = EINVAL;
1785 else if (tls_len < tls->params.tls_hlen || tls_len >
1786 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
1787 tls->params.tls_tlen)
1788 error = EMSGSIZE;
1789 else
1790 error = 0;
1791 if (__predict_false(error != 0)) {
1792 /*
1793 * We have a corrupted record and are likely
1794 * out of sync. The connection isn't
1795 * recoverable at this point, so abort it.
1796 */
1797 SOCKBUF_UNLOCK(sb);
1798 counter_u64_add(ktls_offload_corrupted_records, 1);
1799
1800 CURVNET_SET(so->so_vnet);
1801 so->so_proto->pr_usrreqs->pru_abort(so);
1802 so->so_error = error;
1803 CURVNET_RESTORE();
1804 goto deref;
1805 }
1806
1807 /* Is the entire record queued? */
1808 if (sb->sb_tlscc < tls_len)
1809 break;
1810
1811 /*
1812 * Split out the portion of the mbuf chain containing
1813 * this TLS record.
1814 */
1815 data = ktls_detach_record(sb, tls_len);
1816 if (data == NULL)
1817 continue;
1818 MPASS(sb->sb_tlsdcc == tls_len);
1819
1820 seqno = sb->sb_tls_seqno;
1821 sb->sb_tls_seqno++;
1822 SBCHECK(sb);
1823 SOCKBUF_UNLOCK(sb);
1824
1825 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len);
1826 if (error) {
1827 counter_u64_add(ktls_offload_failed_crypto, 1);
1828
1829 SOCKBUF_LOCK(sb);
1830 if (sb->sb_tlsdcc == 0) {
1831 /*
1832 * sbcut/drop/flush discarded these
1833 * mbufs.
1834 */
1835 m_freem(data);
1836 break;
1837 }
1838
1839 /*
1840 * Drop this TLS record's data, but keep
1841 * decrypting subsequent records.
1842 */
1843 sb->sb_ccc -= tls_len;
1844 sb->sb_tlsdcc = 0;
1845
1846 CURVNET_SET(so->so_vnet);
1847 so->so_error = EBADMSG;
1848 sorwakeup_locked(so);
1849 CURVNET_RESTORE();
1850
1851 m_freem(data);
1852
1853 SOCKBUF_LOCK(sb);
1854 continue;
1855 }
1856
1857 /* Allocate the control mbuf. */
1858 tgr.tls_type = hdr->tls_type;
1859 tgr.tls_vmajor = hdr->tls_vmajor;
1860 tgr.tls_vminor = hdr->tls_vminor;
1861 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
1862 trail_len);
1863 control = sbcreatecontrol_how(&tgr, sizeof(tgr),
1864 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
1865
1866 SOCKBUF_LOCK(sb);
1867 if (sb->sb_tlsdcc == 0) {
1868 /* sbcut/drop/flush discarded these mbufs. */
1869 MPASS(sb->sb_tlscc == 0);
1870 m_freem(data);
1871 m_freem(control);
1872 break;
1873 }
1874
1875 /*
1876 * Clear the 'dcc' accounting in preparation for
1877 * adding the decrypted record.
1878 */
1879 sb->sb_ccc -= tls_len;
1880 sb->sb_tlsdcc = 0;
1881 SBCHECK(sb);
1882
1883 /* If there is no payload, drop all of the data. */
1884 if (tgr.tls_length == htobe16(0)) {
1885 m_freem(data);
1886 data = NULL;
1887 } else {
1888 /* Trim header. */
1889 remain = tls->params.tls_hlen;
1890 while (remain > 0) {
1891 if (data->m_len > remain) {
1892 data->m_data += remain;
1893 data->m_len -= remain;
1894 break;
1895 }
1896 remain -= data->m_len;
1897 data = m_free(data);
1898 }
1899
1900 /* Trim trailer and clear M_NOTREADY. */
1901 remain = be16toh(tgr.tls_length);
1902 m = data;
1903 for (m = data; remain > m->m_len; m = m->m_next) {
1904 m->m_flags &= ~M_NOTREADY;
1905 remain -= m->m_len;
1906 }
1907 m->m_len = remain;
1908 m_freem(m->m_next);
1909 m->m_next = NULL;
1910 m->m_flags &= ~M_NOTREADY;
1911
1912 /* Set EOR on the final mbuf. */
1913 m->m_flags |= M_EOR;
1914 }
1915
1916 sbappendcontrol_locked(sb, data, control, 0);
1917 }
1918
1919 sb->sb_flags &= ~SB_TLS_RX_RUNNING;
1920
1921 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
1922 so->so_error = EMSGSIZE;
1923
1924 sorwakeup_locked(so);
1925
1926 deref:
1927 SOCKBUF_UNLOCK_ASSERT(sb);
1928
1929 CURVNET_SET(so->so_vnet);
1930 SOCK_LOCK(so);
1931 sorele(so);
1932 CURVNET_RESTORE();
1933 }
1934
1935 void
ktls_enqueue_to_free(struct mbuf * m)1936 ktls_enqueue_to_free(struct mbuf *m)
1937 {
1938 struct ktls_wq *wq;
1939 bool running;
1940
1941 /* Mark it for freeing. */
1942 m->m_epg_flags |= EPG_FLAG_2FREE;
1943 wq = &ktls_wq[m->m_epg_tls->wq_index];
1944 mtx_lock(&wq->mtx);
1945 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
1946 running = wq->running;
1947 mtx_unlock(&wq->mtx);
1948 if (!running)
1949 wakeup(wq);
1950 }
1951
1952 void
ktls_enqueue(struct mbuf * m,struct socket * so,int page_count)1953 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
1954 {
1955 struct ktls_wq *wq;
1956 bool running;
1957
1958 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
1959 (M_EXTPG | M_NOTREADY)),
1960 ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
1961 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
1962
1963 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
1964
1965 m->m_epg_enc_cnt = page_count;
1966
1967 /*
1968 * Save a pointer to the socket. The caller is responsible
1969 * for taking an additional reference via soref().
1970 */
1971 m->m_epg_so = so;
1972
1973 wq = &ktls_wq[m->m_epg_tls->wq_index];
1974 mtx_lock(&wq->mtx);
1975 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
1976 running = wq->running;
1977 mtx_unlock(&wq->mtx);
1978 if (!running)
1979 wakeup(wq);
1980 counter_u64_add(ktls_cnt_tx_queued, 1);
1981 }
1982
1983 static __noinline void
ktls_encrypt(struct mbuf * top)1984 ktls_encrypt(struct mbuf *top)
1985 {
1986 struct ktls_session *tls;
1987 struct socket *so;
1988 struct mbuf *m;
1989 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1990 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1991 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1992 vm_page_t pg;
1993 int error, i, len, npages, off, total_pages;
1994 bool is_anon;
1995
1996 so = top->m_epg_so;
1997 tls = top->m_epg_tls;
1998 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
1999 KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
2000 #ifdef INVARIANTS
2001 top->m_epg_so = NULL;
2002 #endif
2003 total_pages = top->m_epg_enc_cnt;
2004 npages = 0;
2005
2006 /*
2007 * Encrypt the TLS records in the chain of mbufs starting with
2008 * 'top'. 'total_pages' gives us a total count of pages and is
2009 * used to know when we have finished encrypting the TLS
2010 * records originally queued with 'top'.
2011 *
2012 * NB: These mbufs are queued in the socket buffer and
2013 * 'm_next' is traversing the mbufs in the socket buffer. The
2014 * socket buffer lock is not held while traversing this chain.
2015 * Since the mbufs are all marked M_NOTREADY their 'm_next'
2016 * pointers should be stable. However, the 'm_next' of the
2017 * last mbuf encrypted is not necessarily NULL. It can point
2018 * to other mbufs appended while 'top' was on the TLS work
2019 * queue.
2020 *
2021 * Each mbuf holds an entire TLS record.
2022 */
2023 error = 0;
2024 for (m = top; npages != total_pages; m = m->m_next) {
2025 KASSERT(m->m_epg_tls == tls,
2026 ("different TLS sessions in a single mbuf chain: %p vs %p",
2027 tls, m->m_epg_tls));
2028 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2029 (M_EXTPG | M_NOTREADY),
2030 ("%p not unready & nomap mbuf (top = %p)\n", m, top));
2031 KASSERT(npages + m->m_epg_npgs <= total_pages,
2032 ("page count mismatch: top %p, total_pages %d, m %p", top,
2033 total_pages, m));
2034
2035 /*
2036 * Generate source and destination ivoecs to pass to
2037 * the SW encryption backend. For writable mbufs, the
2038 * destination iovec is a copy of the source and
2039 * encryption is done in place. For file-backed mbufs
2040 * (from sendfile), anonymous wired pages are
2041 * allocated and assigned to the destination iovec.
2042 */
2043 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0;
2044
2045 off = m->m_epg_1st_off;
2046 for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2047 len = m_epg_pagelen(m, i, off);
2048 src_iov[i].iov_len = len;
2049 src_iov[i].iov_base =
2050 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) +
2051 off;
2052
2053 if (is_anon) {
2054 dst_iov[i].iov_base = src_iov[i].iov_base;
2055 dst_iov[i].iov_len = src_iov[i].iov_len;
2056 continue;
2057 }
2058 retry_page:
2059 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2060 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED);
2061 if (pg == NULL) {
2062 vm_wait(NULL);
2063 goto retry_page;
2064 }
2065 parray[i] = VM_PAGE_TO_PHYS(pg);
2066 dst_iov[i].iov_base =
2067 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off;
2068 dst_iov[i].iov_len = len;
2069 }
2070
2071 if (__predict_false(m->m_epg_npgs == 0)) {
2072 /* TLS 1.0 empty fragment. */
2073 npages++;
2074 } else
2075 npages += i;
2076
2077 error = (*tls->sw_encrypt)(tls,
2078 (const struct tls_record_layer *)m->m_epg_hdr,
2079 m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno,
2080 m->m_epg_record_type);
2081 if (error) {
2082 counter_u64_add(ktls_offload_failed_crypto, 1);
2083 break;
2084 }
2085
2086 /*
2087 * For file-backed mbufs, release the file-backed
2088 * pages and replace them in the ext_pgs array with
2089 * the anonymous wired pages allocated above.
2090 */
2091 if (!is_anon) {
2092 /* Free the old pages. */
2093 m->m_ext.ext_free(m);
2094
2095 /* Replace them with the new pages. */
2096 for (i = 0; i < m->m_epg_npgs; i++)
2097 m->m_epg_pa[i] = parray[i];
2098
2099 /* Use the basic free routine. */
2100 m->m_ext.ext_free = mb_free_mext_pgs;
2101
2102 /* Pages are now writable. */
2103 m->m_epg_flags |= EPG_FLAG_ANON;
2104 }
2105
2106 /*
2107 * Drop a reference to the session now that it is no
2108 * longer needed. Existing code depends on encrypted
2109 * records having no associated session vs
2110 * yet-to-be-encrypted records having an associated
2111 * session.
2112 */
2113 m->m_epg_tls = NULL;
2114 ktls_free(tls);
2115 }
2116
2117 CURVNET_SET(so->so_vnet);
2118 if (error == 0) {
2119 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages);
2120 } else {
2121 so->so_proto->pr_usrreqs->pru_abort(so);
2122 so->so_error = EIO;
2123 mb_free_notready(top, total_pages);
2124 }
2125
2126 SOCK_LOCK(so);
2127 sorele(so);
2128 CURVNET_RESTORE();
2129 }
2130
2131 static void
ktls_work_thread(void * ctx)2132 ktls_work_thread(void *ctx)
2133 {
2134 struct ktls_wq *wq = ctx;
2135 struct mbuf *m, *n;
2136 struct socket *so, *son;
2137 STAILQ_HEAD(, mbuf) local_m_head;
2138 STAILQ_HEAD(, socket) local_so_head;
2139
2140 if (ktls_bind_threads > 1) {
2141 curthread->td_domain.dr_policy =
2142 DOMAINSET_PREF(PCPU_GET(domain));
2143 }
2144 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
2145 fpu_kern_thread(0);
2146 #endif
2147 for (;;) {
2148 mtx_lock(&wq->mtx);
2149 while (STAILQ_EMPTY(&wq->m_head) &&
2150 STAILQ_EMPTY(&wq->so_head)) {
2151 wq->running = false;
2152 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
2153 wq->running = true;
2154 }
2155
2156 STAILQ_INIT(&local_m_head);
2157 STAILQ_CONCAT(&local_m_head, &wq->m_head);
2158 STAILQ_INIT(&local_so_head);
2159 STAILQ_CONCAT(&local_so_head, &wq->so_head);
2160 mtx_unlock(&wq->mtx);
2161
2162 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
2163 if (m->m_epg_flags & EPG_FLAG_2FREE) {
2164 ktls_free(m->m_epg_tls);
2165 uma_zfree(zone_mbuf, m);
2166 } else {
2167 ktls_encrypt(m);
2168 counter_u64_add(ktls_cnt_tx_queued, -1);
2169 }
2170 }
2171
2172 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
2173 ktls_decrypt(so);
2174 counter_u64_add(ktls_cnt_rx_queued, -1);
2175 }
2176 }
2177 }
2178