1 /* $FreeBSD$ */
2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
3
4 /*-
5 * SPDX-License-Identifier: BSD-3-Clause
6 *
7 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the project nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * This code is referd to RFC 2367
37 */
38
39 #include "opt_inet.h"
40 #include "opt_inet6.h"
41 #include "opt_ipsec.h"
42
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/fnv_hash.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/mbuf.h>
51 #include <sys/domain.h>
52 #include <sys/protosw.h>
53 #include <sys/malloc.h>
54 #include <sys/rmlock.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/refcount.h>
62 #include <sys/syslog.h>
63
64 #include <vm/uma.h>
65
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/vnet.h>
69 #include <net/raw_cb.h>
70
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #include <netinet/udp.h>
76
77 #ifdef INET6
78 #include <netinet/ip6.h>
79 #include <netinet6/in6_var.h>
80 #include <netinet6/ip6_var.h>
81 #endif /* INET6 */
82
83 #include <net/pfkeyv2.h>
84 #include <netipsec/keydb.h>
85 #include <netipsec/key.h>
86 #include <netipsec/keysock.h>
87 #include <netipsec/key_debug.h>
88
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93
94 #include <netipsec/xform.h>
95 #include <machine/in_cksum.h>
96 #include <machine/stdarg.h>
97
98 /* randomness */
99 #include <sys/random.h>
100
101 #define FULLMASK 0xff
102 #define _BITS(bytes) ((bytes) << 3)
103
104 #define UINT32_80PCT 0xcccccccc
105 /*
106 * Note on SA reference counting:
107 * - SAs that are not in DEAD state will have (total external reference + 1)
108 * following value in reference count field. they cannot be freed and are
109 * referenced from SA header.
110 * - SAs that are in DEAD state will have (total external reference)
111 * in reference count field. they are ready to be freed. reference from
112 * SA header will be removed in key_delsav(), when the reference count
113 * field hits 0 (= no external reference other than from SA header.
114 */
115
116 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
117 VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000;
118 VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100;
119 VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */
120 VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0;
121 /*interval to initialize randseed,1(m)*/
122 VNET_DEFINE_STATIC(u_int, key_int_random) = 60;
123 /* interval to expire acquiring, 30(s)*/
124 VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30;
125 /* counter for blocking SADB_ACQUIRE.*/
126 VNET_DEFINE_STATIC(int, key_blockacq_count) = 10;
127 /* lifetime for blocking SADB_ACQUIRE.*/
128 VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20;
129 /* preferred old sa rather than new sa.*/
130 VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1;
131 #define V_key_spi_trycnt VNET(key_spi_trycnt)
132 #define V_key_spi_minval VNET(key_spi_minval)
133 #define V_key_spi_maxval VNET(key_spi_maxval)
134 #define V_policy_id VNET(policy_id)
135 #define V_key_int_random VNET(key_int_random)
136 #define V_key_larval_lifetime VNET(key_larval_lifetime)
137 #define V_key_blockacq_count VNET(key_blockacq_count)
138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime)
139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa)
140
141 VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0;
142 #define V_acq_seq VNET(acq_seq)
143
144 VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0;
145 #define V_sp_genid VNET(sp_genid)
146
147 /* SPD */
148 TAILQ_HEAD(secpolicy_queue, secpolicy);
149 LIST_HEAD(secpolicy_list, secpolicy);
150 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]);
151 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]);
152 static struct rmlock sptree_lock;
153 #define V_sptree VNET(sptree)
154 #define V_sptree_ifnet VNET(sptree_ifnet)
155 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree")
156 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock)
157 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker
158 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker)
159 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker)
160 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED)
161 #define SPTREE_WLOCK() rm_wlock(&sptree_lock)
162 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock)
163 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED)
164 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED)
165
166 /* Hash table for lookup SP using unique id */
167 VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl);
168 VNET_DEFINE_STATIC(u_long, sphash_mask);
169 #define V_sphashtbl VNET(sphashtbl)
170 #define V_sphash_mask VNET(sphash_mask)
171
172 #define SPHASH_NHASH_LOG2 7
173 #define SPHASH_NHASH (1 << SPHASH_NHASH_LOG2)
174 #define SPHASH_HASHVAL(id) (key_u32hash(id) & V_sphash_mask)
175 #define SPHASH_HASH(id) &V_sphashtbl[SPHASH_HASHVAL(id)]
176
177 /* SPD cache */
178 struct spdcache_entry {
179 struct secpolicyindex spidx; /* secpolicyindex */
180 struct secpolicy *sp; /* cached policy to be used */
181
182 LIST_ENTRY(spdcache_entry) chain;
183 };
184 LIST_HEAD(spdcache_entry_list, spdcache_entry);
185
186 #define SPDCACHE_MAX_ENTRIES_PER_HASH 8
187
188 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0;
189 #define V_key_spdcache_maxentries VNET(key_spdcache_maxentries)
190 VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32;
191 #define V_key_spdcache_threshold VNET(key_spdcache_threshold)
192 VNET_DEFINE_STATIC(unsigned long, spd_size) = 0;
193 #define V_spd_size VNET(spd_size)
194
195 #define SPDCACHE_ENABLED() (V_key_spdcache_maxentries != 0)
196 #define SPDCACHE_ACTIVE() \
197 (SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold)
198
199 VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl);
200 VNET_DEFINE_STATIC(u_long, spdcachehash_mask);
201 #define V_spdcachehashtbl VNET(spdcachehashtbl)
202 #define V_spdcachehash_mask VNET(spdcachehash_mask)
203
204 #define SPDCACHE_HASHVAL(idx) \
205 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) & \
206 V_spdcachehash_mask)
207
208 /* Each cache line is protected by a mutex */
209 VNET_DEFINE_STATIC(struct mtx *, spdcache_lock);
210 #define V_spdcache_lock VNET(spdcache_lock)
211
212 #define SPDCACHE_LOCK_INIT(a) \
213 mtx_init(&V_spdcache_lock[a], "spdcache", \
214 "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK)
215 #define SPDCACHE_LOCK_DESTROY(a) mtx_destroy(&V_spdcache_lock[a])
216 #define SPDCACHE_LOCK(a) mtx_lock(&V_spdcache_lock[a]);
217 #define SPDCACHE_UNLOCK(a) mtx_unlock(&V_spdcache_lock[a]);
218
219 /* SAD */
220 TAILQ_HEAD(secashead_queue, secashead);
221 LIST_HEAD(secashead_list, secashead);
222 VNET_DEFINE_STATIC(struct secashead_queue, sahtree);
223 static struct rmlock sahtree_lock;
224 #define V_sahtree VNET(sahtree)
225 #define SAHTREE_LOCK_INIT() rm_init(&sahtree_lock, "sahtree")
226 #define SAHTREE_LOCK_DESTROY() rm_destroy(&sahtree_lock)
227 #define SAHTREE_RLOCK_TRACKER struct rm_priotracker sahtree_tracker
228 #define SAHTREE_RLOCK() rm_rlock(&sahtree_lock, &sahtree_tracker)
229 #define SAHTREE_RUNLOCK() rm_runlock(&sahtree_lock, &sahtree_tracker)
230 #define SAHTREE_RLOCK_ASSERT() rm_assert(&sahtree_lock, RA_RLOCKED)
231 #define SAHTREE_WLOCK() rm_wlock(&sahtree_lock)
232 #define SAHTREE_WUNLOCK() rm_wunlock(&sahtree_lock)
233 #define SAHTREE_WLOCK_ASSERT() rm_assert(&sahtree_lock, RA_WLOCKED)
234 #define SAHTREE_UNLOCK_ASSERT() rm_assert(&sahtree_lock, RA_UNLOCKED)
235
236 /* Hash table for lookup in SAD using SA addresses */
237 VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl);
238 VNET_DEFINE_STATIC(u_long, sahaddrhash_mask);
239 #define V_sahaddrhashtbl VNET(sahaddrhashtbl)
240 #define V_sahaddrhash_mask VNET(sahaddrhash_mask)
241
242 #define SAHHASH_NHASH_LOG2 7
243 #define SAHHASH_NHASH (1 << SAHHASH_NHASH_LOG2)
244 #define SAHADDRHASH_HASHVAL(idx) \
245 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
246 V_sahaddrhash_mask)
247 #define SAHADDRHASH_HASH(saidx) \
248 &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)]
249
250 /* Hash table for lookup in SAD using SPI */
251 LIST_HEAD(secasvar_list, secasvar);
252 VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl);
253 VNET_DEFINE_STATIC(u_long, savhash_mask);
254 #define V_savhashtbl VNET(savhashtbl)
255 #define V_savhash_mask VNET(savhash_mask)
256 #define SAVHASH_NHASH_LOG2 7
257 #define SAVHASH_NHASH (1 << SAVHASH_NHASH_LOG2)
258 #define SAVHASH_HASHVAL(spi) (key_u32hash(spi) & V_savhash_mask)
259 #define SAVHASH_HASH(spi) &V_savhashtbl[SAVHASH_HASHVAL(spi)]
260
261 static uint32_t
key_addrprotohash(const union sockaddr_union * src,const union sockaddr_union * dst,const uint8_t * proto)262 key_addrprotohash(const union sockaddr_union *src,
263 const union sockaddr_union *dst, const uint8_t *proto)
264 {
265 uint32_t hval;
266
267 hval = fnv_32_buf(proto, sizeof(*proto),
268 FNV1_32_INIT);
269 switch (dst->sa.sa_family) {
270 #ifdef INET
271 case AF_INET:
272 hval = fnv_32_buf(&src->sin.sin_addr,
273 sizeof(in_addr_t), hval);
274 hval = fnv_32_buf(&dst->sin.sin_addr,
275 sizeof(in_addr_t), hval);
276 break;
277 #endif
278 #ifdef INET6
279 case AF_INET6:
280 hval = fnv_32_buf(&src->sin6.sin6_addr,
281 sizeof(struct in6_addr), hval);
282 hval = fnv_32_buf(&dst->sin6.sin6_addr,
283 sizeof(struct in6_addr), hval);
284 break;
285 #endif
286 default:
287 hval = 0;
288 ipseclog((LOG_DEBUG, "%s: unknown address family %d\n",
289 __func__, dst->sa.sa_family));
290 }
291 return (hval);
292 }
293
294 static uint32_t
key_u32hash(uint32_t val)295 key_u32hash(uint32_t val)
296 {
297
298 return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT));
299 }
300
301 /* registed list */
302 VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
303 #define V_regtree VNET(regtree)
304 static struct mtx regtree_lock;
305 #define REGTREE_LOCK_INIT() \
306 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
307 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock)
308 #define REGTREE_LOCK() mtx_lock(®tree_lock)
309 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock)
310 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED)
311
312 /* Acquiring list */
313 LIST_HEAD(secacq_list, secacq);
314 VNET_DEFINE_STATIC(struct secacq_list, acqtree);
315 #define V_acqtree VNET(acqtree)
316 static struct mtx acq_lock;
317 #define ACQ_LOCK_INIT() \
318 mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF)
319 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock)
320 #define ACQ_LOCK() mtx_lock(&acq_lock)
321 #define ACQ_UNLOCK() mtx_unlock(&acq_lock)
322 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED)
323
324 /* Hash table for lookup in ACQ list using SA addresses */
325 VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl);
326 VNET_DEFINE_STATIC(u_long, acqaddrhash_mask);
327 #define V_acqaddrhashtbl VNET(acqaddrhashtbl)
328 #define V_acqaddrhash_mask VNET(acqaddrhash_mask)
329
330 /* Hash table for lookup in ACQ list using SEQ number */
331 VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl);
332 VNET_DEFINE_STATIC(u_long, acqseqhash_mask);
333 #define V_acqseqhashtbl VNET(acqseqhashtbl)
334 #define V_acqseqhash_mask VNET(acqseqhash_mask)
335
336 #define ACQHASH_NHASH_LOG2 7
337 #define ACQHASH_NHASH (1 << ACQHASH_NHASH_LOG2)
338 #define ACQADDRHASH_HASHVAL(idx) \
339 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
340 V_acqaddrhash_mask)
341 #define ACQSEQHASH_HASHVAL(seq) \
342 (key_u32hash(seq) & V_acqseqhash_mask)
343 #define ACQADDRHASH_HASH(saidx) \
344 &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)]
345 #define ACQSEQHASH_HASH(seq) \
346 &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)]
347 /* SP acquiring list */
348 VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree);
349 #define V_spacqtree VNET(spacqtree)
350 static struct mtx spacq_lock;
351 #define SPACQ_LOCK_INIT() \
352 mtx_init(&spacq_lock, "spacqtree", \
353 "fast ipsec security policy acquire list", MTX_DEF)
354 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock)
355 #define SPACQ_LOCK() mtx_lock(&spacq_lock)
356 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock)
357 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED)
358
359 static const int minsize[] = {
360 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
361 sizeof(struct sadb_sa), /* SADB_EXT_SA */
362 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
363 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
364 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
365 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
366 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
367 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
368 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
369 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
370 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
371 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
372 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
373 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
374 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
375 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
376 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
377 0, /* SADB_X_EXT_KMPRIVATE */
378 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
379 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
380 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
381 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
382 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
383 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
384 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
385 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
386 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */
387 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_SRC */
388 sizeof(struct sadb_address), /* SADB_X_EXT_NEW_ADDRESS_DST */
389 };
390 _Static_assert(sizeof(minsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch");
391
392 static const int maxsize[] = {
393 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
394 sizeof(struct sadb_sa), /* SADB_EXT_SA */
395 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
396 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
397 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
398 0, /* SADB_EXT_ADDRESS_SRC */
399 0, /* SADB_EXT_ADDRESS_DST */
400 0, /* SADB_EXT_ADDRESS_PROXY */
401 0, /* SADB_EXT_KEY_AUTH */
402 0, /* SADB_EXT_KEY_ENCRYPT */
403 0, /* SADB_EXT_IDENTITY_SRC */
404 0, /* SADB_EXT_IDENTITY_DST */
405 0, /* SADB_EXT_SENSITIVITY */
406 0, /* SADB_EXT_PROPOSAL */
407 0, /* SADB_EXT_SUPPORTED_AUTH */
408 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
409 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
410 0, /* SADB_X_EXT_KMPRIVATE */
411 0, /* SADB_X_EXT_POLICY */
412 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
413 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
414 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
415 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
416 0, /* SADB_X_EXT_NAT_T_OAI */
417 0, /* SADB_X_EXT_NAT_T_OAR */
418 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
419 sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */
420 0, /* SADB_X_EXT_NEW_ADDRESS_SRC */
421 0, /* SADB_X_EXT_NEW_ADDRESS_DST */
422 };
423 _Static_assert(sizeof(maxsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch");
424
425 /*
426 * Internal values for SA flags:
427 * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses,
428 * thus we will not free the most of SA content in key_delsav().
429 */
430 #define SADB_X_EXT_F_CLONED 0x80000000
431
432 #define SADB_CHECKLEN(_mhp, _ext) \
433 ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \
434 ((_mhp)->extlen[(_ext)] > maxsize[(_ext)])))
435 #define SADB_CHECKHDR(_mhp, _ext) ((_mhp)->ext[(_ext)] == NULL)
436
437 VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256;
438 VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0;
439 VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128;
440
441 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin)
442 #define V_ipsec_esp_auth VNET(ipsec_esp_auth)
443 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin)
444
445 #ifdef IPSEC_DEBUG
446 VNET_DEFINE(int, ipsec_debug) = 1;
447 #else
448 VNET_DEFINE(int, ipsec_debug) = 0;
449 #endif
450
451 #ifdef INET
452 SYSCTL_DECL(_net_inet_ipsec);
453 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug,
454 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
455 "Enable IPsec debugging output when set.");
456 #endif
457 #ifdef INET6
458 SYSCTL_DECL(_net_inet6_ipsec6);
459 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug,
460 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
461 "Enable IPsec debugging output when set.");
462 #endif
463
464 SYSCTL_DECL(_net_key);
465 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug,
466 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
467
468 /* max count of trial for the decision of spi value */
469 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
470 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
471
472 /* minimum spi value to allocate automatically. */
473 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval,
474 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
475
476 /* maximun spi value to allocate automatically. */
477 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval,
478 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
479
480 /* interval to initialize randseed */
481 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random,
482 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
483
484 /* lifetime for larval SA */
485 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime,
486 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
487
488 /* counter for blocking to send SADB_ACQUIRE to IKEd */
489 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count,
490 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
491
492 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
493 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime,
494 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
495
496 /* ESP auth */
497 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
498 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
499
500 /* minimum ESP key length */
501 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin,
502 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
503
504 /* minimum AH key length */
505 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
506 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
507
508 /* perfered old SA rather than new SA */
509 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa,
510 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
511
512 static SYSCTL_NODE(_net_key, OID_AUTO, spdcache,
513 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
514 "SPD cache");
515
516 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries,
517 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0,
518 "Maximum number of entries in the SPD cache"
519 " (power of 2, 0 to disable)");
520
521 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold,
522 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0,
523 "Number of SPs that make the SPD cache active");
524
525 #define __LIST_CHAINED(elm) \
526 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
527
528 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
529 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
530 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
531 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
532 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
533 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
534 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
535 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache");
536
537 VNET_DEFINE_STATIC(uma_zone_t, key_lft_zone);
538 #define V_key_lft_zone VNET(key_lft_zone)
539
540 /*
541 * set parameters into secpolicyindex buffer.
542 * Must allocate secpolicyindex buffer passed to this function.
543 */
544 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
545 do { \
546 bzero((idx), sizeof(struct secpolicyindex)); \
547 (idx)->dir = (_dir); \
548 (idx)->prefs = (ps); \
549 (idx)->prefd = (pd); \
550 (idx)->ul_proto = (ulp); \
551 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
552 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
553 } while (0)
554
555 /*
556 * set parameters into secasindex buffer.
557 * Must allocate secasindex buffer before calling this function.
558 */
559 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
560 do { \
561 bzero((idx), sizeof(struct secasindex)); \
562 (idx)->proto = (p); \
563 (idx)->mode = (m); \
564 (idx)->reqid = (r); \
565 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
566 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
567 key_porttosaddr(&(idx)->src.sa, 0); \
568 key_porttosaddr(&(idx)->dst.sa, 0); \
569 } while (0)
570
571 /* key statistics */
572 struct _keystat {
573 u_long getspi_count; /* the avarage of count to try to get new SPI */
574 } keystat;
575
576 struct sadb_msghdr {
577 struct sadb_msg *msg;
578 struct sadb_ext *ext[SADB_EXT_MAX + 1];
579 int extoff[SADB_EXT_MAX + 1];
580 int extlen[SADB_EXT_MAX + 1];
581 };
582
583 static struct supported_ealgs {
584 int sadb_alg;
585 const struct enc_xform *xform;
586 } supported_ealgs[] = {
587 { SADB_X_EALG_AES, &enc_xform_rijndael128 },
588 { SADB_EALG_NULL, &enc_xform_null },
589 { SADB_X_EALG_AESCTR, &enc_xform_aes_icm },
590 { SADB_X_EALG_AESGCM16, &enc_xform_aes_nist_gcm },
591 { SADB_X_EALG_AESGMAC, &enc_xform_aes_nist_gmac },
592 };
593
594 static struct supported_aalgs {
595 int sadb_alg;
596 const struct auth_hash *xform;
597 } supported_aalgs[] = {
598 { SADB_X_AALG_NULL, &auth_hash_null },
599 { SADB_AALG_SHA1HMAC, &auth_hash_hmac_sha1 },
600 { SADB_X_AALG_SHA2_256, &auth_hash_hmac_sha2_256 },
601 { SADB_X_AALG_SHA2_384, &auth_hash_hmac_sha2_384 },
602 { SADB_X_AALG_SHA2_512, &auth_hash_hmac_sha2_512 },
603 { SADB_X_AALG_AES128GMAC, &auth_hash_nist_gmac_aes_128 },
604 { SADB_X_AALG_AES192GMAC, &auth_hash_nist_gmac_aes_192 },
605 { SADB_X_AALG_AES256GMAC, &auth_hash_nist_gmac_aes_256 },
606 };
607
608 static struct supported_calgs {
609 int sadb_alg;
610 const struct comp_algo *xform;
611 } supported_calgs[] = {
612 { SADB_X_CALG_DEFLATE, &comp_algo_deflate },
613 };
614
615 #ifndef IPSEC_DEBUG2
616 static struct callout key_timer;
617 #endif
618
619 static void key_unlink(struct secpolicy *);
620 static struct secpolicy *key_do_allocsp(struct secpolicyindex *spidx, u_int dir);
621 static struct secpolicy *key_getsp(struct secpolicyindex *);
622 static struct secpolicy *key_getspbyid(u_int32_t);
623 static struct mbuf *key_gather_mbuf(struct mbuf *,
624 const struct sadb_msghdr *, int, int, ...);
625 static int key_spdadd(struct socket *, struct mbuf *,
626 const struct sadb_msghdr *);
627 static uint32_t key_getnewspid(void);
628 static int key_spddelete(struct socket *, struct mbuf *,
629 const struct sadb_msghdr *);
630 static int key_spddelete2(struct socket *, struct mbuf *,
631 const struct sadb_msghdr *);
632 static int key_spdget(struct socket *, struct mbuf *,
633 const struct sadb_msghdr *);
634 static int key_spdflush(struct socket *, struct mbuf *,
635 const struct sadb_msghdr *);
636 static int key_spddump(struct socket *, struct mbuf *,
637 const struct sadb_msghdr *);
638 static struct mbuf *key_setdumpsp(struct secpolicy *,
639 u_int8_t, u_int32_t, u_int32_t);
640 static struct mbuf *key_sp2mbuf(struct secpolicy *);
641 static size_t key_getspreqmsglen(struct secpolicy *);
642 static int key_spdexpire(struct secpolicy *);
643 static struct secashead *key_newsah(struct secasindex *);
644 static void key_freesah(struct secashead **);
645 static void key_delsah(struct secashead *);
646 static struct secasvar *key_newsav(const struct sadb_msghdr *,
647 struct secasindex *, uint32_t, int *);
648 static void key_delsav(struct secasvar *);
649 static void key_unlinksav(struct secasvar *);
650 static struct secashead *key_getsah(struct secasindex *);
651 static int key_checkspidup(uint32_t);
652 static struct secasvar *key_getsavbyspi(uint32_t);
653 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *);
654 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *);
655 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *);
656 static int key_updateaddresses(struct socket *, struct mbuf *,
657 const struct sadb_msghdr *, struct secasvar *, struct secasindex *);
658
659 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
660 u_int8_t, u_int32_t, u_int32_t);
661 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
662 u_int32_t, pid_t, u_int16_t);
663 static struct mbuf *key_setsadbsa(struct secasvar *);
664 static struct mbuf *key_setsadbaddr(u_int16_t,
665 const struct sockaddr *, u_int8_t, u_int16_t);
666 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
667 static struct mbuf *key_setsadbxtype(u_int16_t);
668 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t);
669 static struct mbuf *key_setsadbxsareplay(u_int32_t);
670 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
671 u_int32_t, u_int32_t);
672 static struct seckey *key_dup_keymsg(const struct sadb_key *, size_t,
673 struct malloc_type *);
674 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
675 struct malloc_type *);
676
677 /* flags for key_cmpsaidx() */
678 #define CMP_HEAD 1 /* protocol, addresses. */
679 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
680 #define CMP_REQID 3 /* additionally HEAD, reaid. */
681 #define CMP_EXACTLY 4 /* all elements. */
682 static int key_cmpsaidx(const struct secasindex *,
683 const struct secasindex *, int);
684 static int key_cmpspidx_exactly(struct secpolicyindex *,
685 struct secpolicyindex *);
686 static int key_cmpspidx_withmask(struct secpolicyindex *,
687 struct secpolicyindex *);
688 static int key_bbcmp(const void *, const void *, u_int);
689 static uint8_t key_satype2proto(uint8_t);
690 static uint8_t key_proto2satype(uint8_t);
691
692 static int key_getspi(struct socket *, struct mbuf *,
693 const struct sadb_msghdr *);
694 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *);
695 static int key_update(struct socket *, struct mbuf *,
696 const struct sadb_msghdr *);
697 static int key_add(struct socket *, struct mbuf *,
698 const struct sadb_msghdr *);
699 static int key_setident(struct secashead *, const struct sadb_msghdr *);
700 static struct mbuf *key_getmsgbuf_x1(struct mbuf *,
701 const struct sadb_msghdr *);
702 static int key_delete(struct socket *, struct mbuf *,
703 const struct sadb_msghdr *);
704 static int key_delete_all(struct socket *, struct mbuf *,
705 const struct sadb_msghdr *, struct secasindex *);
706 static int key_get(struct socket *, struct mbuf *,
707 const struct sadb_msghdr *);
708
709 static void key_getcomb_setlifetime(struct sadb_comb *);
710 static struct mbuf *key_getcomb_ealg(void);
711 static struct mbuf *key_getcomb_ah(void);
712 static struct mbuf *key_getcomb_ipcomp(void);
713 static struct mbuf *key_getprop(const struct secasindex *);
714
715 static int key_acquire(const struct secasindex *, struct secpolicy *);
716 static uint32_t key_newacq(const struct secasindex *, int *);
717 static uint32_t key_getacq(const struct secasindex *, int *);
718 static int key_acqdone(const struct secasindex *, uint32_t);
719 static int key_acqreset(uint32_t);
720 static struct secspacq *key_newspacq(struct secpolicyindex *);
721 static struct secspacq *key_getspacq(struct secpolicyindex *);
722 static int key_acquire2(struct socket *, struct mbuf *,
723 const struct sadb_msghdr *);
724 static int key_register(struct socket *, struct mbuf *,
725 const struct sadb_msghdr *);
726 static int key_expire(struct secasvar *, int);
727 static int key_flush(struct socket *, struct mbuf *,
728 const struct sadb_msghdr *);
729 static int key_dump(struct socket *, struct mbuf *,
730 const struct sadb_msghdr *);
731 static int key_promisc(struct socket *, struct mbuf *,
732 const struct sadb_msghdr *);
733 static int key_senderror(struct socket *, struct mbuf *, int);
734 static int key_validate_ext(const struct sadb_ext *, int);
735 static int key_align(struct mbuf *, struct sadb_msghdr *);
736 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t);
737 static struct mbuf *key_setkey(struct seckey *, uint16_t);
738
739 static void spdcache_init(void);
740 static void spdcache_clear(void);
741 static struct spdcache_entry *spdcache_entry_alloc(
742 const struct secpolicyindex *spidx,
743 struct secpolicy *policy);
744 static void spdcache_entry_free(struct spdcache_entry *entry);
745 #ifdef VIMAGE
746 static void spdcache_destroy(void);
747 #endif
748
749 #define DBG_IPSEC_INITREF(t, p) do { \
750 refcount_init(&(p)->refcnt, 1); \
751 KEYDBG(KEY_STAMP, \
752 printf("%s: Initialize refcnt %s(%p) = %u\n", \
753 __func__, #t, (p), (p)->refcnt)); \
754 } while (0)
755 #define DBG_IPSEC_ADDREF(t, p) do { \
756 refcount_acquire(&(p)->refcnt); \
757 KEYDBG(KEY_STAMP, \
758 printf("%s: Acquire refcnt %s(%p) -> %u\n", \
759 __func__, #t, (p), (p)->refcnt)); \
760 } while (0)
761 #define DBG_IPSEC_DELREF(t, p) do { \
762 KEYDBG(KEY_STAMP, \
763 printf("%s: Release refcnt %s(%p) -> %u\n", \
764 __func__, #t, (p), (p)->refcnt - 1)); \
765 refcount_release(&(p)->refcnt); \
766 } while (0)
767
768 #define IPSEC_INITREF(t, p) refcount_init(&(p)->refcnt, 1)
769 #define IPSEC_ADDREF(t, p) refcount_acquire(&(p)->refcnt)
770 #define IPSEC_DELREF(t, p) refcount_release(&(p)->refcnt)
771
772 #define SP_INITREF(p) IPSEC_INITREF(SP, p)
773 #define SP_ADDREF(p) IPSEC_ADDREF(SP, p)
774 #define SP_DELREF(p) IPSEC_DELREF(SP, p)
775
776 #define SAH_INITREF(p) IPSEC_INITREF(SAH, p)
777 #define SAH_ADDREF(p) IPSEC_ADDREF(SAH, p)
778 #define SAH_DELREF(p) IPSEC_DELREF(SAH, p)
779
780 #define SAV_INITREF(p) IPSEC_INITREF(SAV, p)
781 #define SAV_ADDREF(p) IPSEC_ADDREF(SAV, p)
782 #define SAV_DELREF(p) IPSEC_DELREF(SAV, p)
783
784 /*
785 * Update the refcnt while holding the SPTREE lock.
786 */
787 void
key_addref(struct secpolicy * sp)788 key_addref(struct secpolicy *sp)
789 {
790
791 SP_ADDREF(sp);
792 }
793
794 /*
795 * Return 0 when there are known to be no SP's for the specified
796 * direction. Otherwise return 1. This is used by IPsec code
797 * to optimize performance.
798 */
799 int
key_havesp(u_int dir)800 key_havesp(u_int dir)
801 {
802
803 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
804 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1);
805 }
806
807 /* %%% IPsec policy management */
808 /*
809 * Return current SPDB generation.
810 */
811 uint32_t
key_getspgen(void)812 key_getspgen(void)
813 {
814
815 return (V_sp_genid);
816 }
817
818 void
key_bumpspgen(void)819 key_bumpspgen(void)
820 {
821
822 V_sp_genid++;
823 }
824
825 static int
key_checksockaddrs(struct sockaddr * src,struct sockaddr * dst)826 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst)
827 {
828
829 /* family match */
830 if (src->sa_family != dst->sa_family)
831 return (EINVAL);
832 /* sa_len match */
833 if (src->sa_len != dst->sa_len)
834 return (EINVAL);
835 switch (src->sa_family) {
836 #ifdef INET
837 case AF_INET:
838 if (src->sa_len != sizeof(struct sockaddr_in))
839 return (EINVAL);
840 break;
841 #endif
842 #ifdef INET6
843 case AF_INET6:
844 if (src->sa_len != sizeof(struct sockaddr_in6))
845 return (EINVAL);
846 break;
847 #endif
848 default:
849 return (EAFNOSUPPORT);
850 }
851 return (0);
852 }
853
854 struct secpolicy *
key_do_allocsp(struct secpolicyindex * spidx,u_int dir)855 key_do_allocsp(struct secpolicyindex *spidx, u_int dir)
856 {
857 SPTREE_RLOCK_TRACKER;
858 struct secpolicy *sp;
859
860 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
861 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
862 ("invalid direction %u", dir));
863
864 SPTREE_RLOCK();
865 TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
866 if (key_cmpspidx_withmask(&sp->spidx, spidx)) {
867 SP_ADDREF(sp);
868 break;
869 }
870 }
871 SPTREE_RUNLOCK();
872 return (sp);
873 }
874
875 /*
876 * allocating a SP for OUTBOUND or INBOUND packet.
877 * Must call key_freesp() later.
878 * OUT: NULL: not found
879 * others: found and return the pointer.
880 */
881 struct secpolicy *
key_allocsp(struct secpolicyindex * spidx,u_int dir)882 key_allocsp(struct secpolicyindex *spidx, u_int dir)
883 {
884 struct spdcache_entry *entry, *lastentry, *tmpentry;
885 struct secpolicy *sp;
886 uint32_t hashv;
887 int nb_entries;
888
889 if (!SPDCACHE_ACTIVE()) {
890 sp = key_do_allocsp(spidx, dir);
891 goto out;
892 }
893
894 hashv = SPDCACHE_HASHVAL(spidx);
895 SPDCACHE_LOCK(hashv);
896 nb_entries = 0;
897 LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) {
898 /* Removed outdated entries */
899 if (entry->sp != NULL &&
900 entry->sp->state == IPSEC_SPSTATE_DEAD) {
901 LIST_REMOVE(entry, chain);
902 spdcache_entry_free(entry);
903 continue;
904 }
905
906 nb_entries++;
907 if (!key_cmpspidx_exactly(&entry->spidx, spidx)) {
908 lastentry = entry;
909 continue;
910 }
911
912 sp = entry->sp;
913 if (entry->sp != NULL)
914 SP_ADDREF(sp);
915
916 /* IPSECSTAT_INC(ips_spdcache_hits); */
917
918 SPDCACHE_UNLOCK(hashv);
919 goto out;
920 }
921
922 /* IPSECSTAT_INC(ips_spdcache_misses); */
923
924 sp = key_do_allocsp(spidx, dir);
925 entry = spdcache_entry_alloc(spidx, sp);
926 if (entry != NULL) {
927 if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) {
928 LIST_REMOVE(lastentry, chain);
929 spdcache_entry_free(lastentry);
930 }
931
932 LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain);
933 }
934
935 SPDCACHE_UNLOCK(hashv);
936
937 out:
938 if (sp != NULL) { /* found a SPD entry */
939 sp->lastused = time_second;
940 KEYDBG(IPSEC_STAMP,
941 printf("%s: return SP(%p)\n", __func__, sp));
942 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
943 } else {
944 KEYDBG(IPSEC_DATA,
945 printf("%s: lookup failed for ", __func__);
946 kdebug_secpolicyindex(spidx, NULL));
947 }
948 return (sp);
949 }
950
951 /*
952 * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed
953 * or should be signed by MD5 signature.
954 * We don't use key_allocsa() for such lookups, because we don't know SPI.
955 * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with
956 * signed packet. We use SADB only as storage for password.
957 * OUT: positive: corresponding SA for given saidx found.
958 * NULL: SA not found
959 */
960 struct secasvar *
key_allocsa_tcpmd5(struct secasindex * saidx)961 key_allocsa_tcpmd5(struct secasindex *saidx)
962 {
963 SAHTREE_RLOCK_TRACKER;
964 struct secashead *sah;
965 struct secasvar *sav;
966
967 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP,
968 ("unexpected security protocol %u", saidx->proto));
969 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5,
970 ("unexpected mode %u", saidx->mode));
971
972 SAHTREE_RLOCK();
973 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
974 KEYDBG(IPSEC_DUMP,
975 printf("%s: checking SAH\n", __func__);
976 kdebug_secash(sah, " "));
977 if (sah->saidx.proto != IPPROTO_TCP)
978 continue;
979 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
980 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
981 break;
982 }
983 if (sah != NULL) {
984 if (V_key_preferred_oldsa)
985 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
986 else
987 sav = TAILQ_FIRST(&sah->savtree_alive);
988 if (sav != NULL)
989 SAV_ADDREF(sav);
990 } else
991 sav = NULL;
992 SAHTREE_RUNLOCK();
993
994 if (sav != NULL) {
995 KEYDBG(IPSEC_STAMP,
996 printf("%s: return SA(%p)\n", __func__, sav));
997 KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
998 } else {
999 KEYDBG(IPSEC_STAMP,
1000 printf("%s: SA not found\n", __func__));
1001 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1002 }
1003 return (sav);
1004 }
1005
1006 /*
1007 * Allocating an SA entry for an *OUTBOUND* packet.
1008 * OUT: positive: corresponding SA for given saidx found.
1009 * NULL: SA not found, but will be acquired, check *error
1010 * for acquiring status.
1011 */
1012 struct secasvar *
key_allocsa_policy(struct secpolicy * sp,const struct secasindex * saidx,int * error)1013 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx,
1014 int *error)
1015 {
1016 SAHTREE_RLOCK_TRACKER;
1017 struct secashead *sah;
1018 struct secasvar *sav;
1019
1020 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
1021 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
1022 saidx->mode == IPSEC_MODE_TUNNEL,
1023 ("unexpected policy %u", saidx->mode));
1024
1025 /*
1026 * We check new SA in the IPsec request because a different
1027 * SA may be involved each time this request is checked, either
1028 * because new SAs are being configured, or this request is
1029 * associated with an unconnected datagram socket, or this request
1030 * is associated with a system default policy.
1031 */
1032 SAHTREE_RLOCK();
1033 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
1034 KEYDBG(IPSEC_DUMP,
1035 printf("%s: checking SAH\n", __func__);
1036 kdebug_secash(sah, " "));
1037 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
1038 break;
1039 }
1040 if (sah != NULL) {
1041 /*
1042 * Allocate the oldest SA available according to
1043 * draft-jenkins-ipsec-rekeying-03.
1044 */
1045 if (V_key_preferred_oldsa)
1046 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1047 else
1048 sav = TAILQ_FIRST(&sah->savtree_alive);
1049 if (sav != NULL)
1050 SAV_ADDREF(sav);
1051 } else
1052 sav = NULL;
1053 SAHTREE_RUNLOCK();
1054
1055 if (sav != NULL) {
1056 *error = 0;
1057 KEYDBG(IPSEC_STAMP,
1058 printf("%s: chosen SA(%p) for SP(%p)\n", __func__,
1059 sav, sp));
1060 KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1061 return (sav); /* return referenced SA */
1062 }
1063
1064 /* there is no SA */
1065 *error = key_acquire(saidx, sp);
1066 if ((*error) != 0)
1067 ipseclog((LOG_DEBUG,
1068 "%s: error %d returned from key_acquire()\n",
1069 __func__, *error));
1070 KEYDBG(IPSEC_STAMP,
1071 printf("%s: acquire SA for SP(%p), error %d\n",
1072 __func__, sp, *error));
1073 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1074 return (NULL);
1075 }
1076
1077 /*
1078 * allocating a usable SA entry for a *INBOUND* packet.
1079 * Must call key_freesav() later.
1080 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1081 * NULL: not found, or error occurred.
1082 *
1083 * According to RFC 2401 SA is uniquely identified by a triple SPI,
1084 * destination address, and security protocol. But according to RFC 4301,
1085 * SPI by itself suffices to specify an SA.
1086 *
1087 * Note that, however, we do need to keep source address in IPsec SA.
1088 * IKE specification and PF_KEY specification do assume that we
1089 * keep source address in IPsec SA. We see a tricky situation here.
1090 */
1091 struct secasvar *
key_allocsa(union sockaddr_union * dst,uint8_t proto,uint32_t spi)1092 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi)
1093 {
1094 SAHTREE_RLOCK_TRACKER;
1095 struct secasvar *sav;
1096
1097 IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH ||
1098 proto == IPPROTO_IPCOMP, ("unexpected security protocol %u",
1099 proto));
1100
1101 SAHTREE_RLOCK();
1102 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
1103 if (sav->spi == spi)
1104 break;
1105 }
1106 /*
1107 * We use single SPI namespace for all protocols, so it is
1108 * impossible to have SPI duplicates in the SAVHASH.
1109 */
1110 if (sav != NULL) {
1111 if (sav->state != SADB_SASTATE_LARVAL &&
1112 sav->sah->saidx.proto == proto &&
1113 key_sockaddrcmp(&dst->sa,
1114 &sav->sah->saidx.dst.sa, 0) == 0)
1115 SAV_ADDREF(sav);
1116 else
1117 sav = NULL;
1118 }
1119 SAHTREE_RUNLOCK();
1120
1121 if (sav == NULL) {
1122 KEYDBG(IPSEC_STAMP,
1123 char buf[IPSEC_ADDRSTRLEN];
1124 printf("%s: SA not found for spi %u proto %u dst %s\n",
1125 __func__, ntohl(spi), proto, ipsec_address(dst, buf,
1126 sizeof(buf))));
1127 } else {
1128 KEYDBG(IPSEC_STAMP,
1129 printf("%s: return SA(%p)\n", __func__, sav));
1130 KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1131 }
1132 return (sav);
1133 }
1134
1135 struct secasvar *
key_allocsa_tunnel(union sockaddr_union * src,union sockaddr_union * dst,uint8_t proto)1136 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst,
1137 uint8_t proto)
1138 {
1139 SAHTREE_RLOCK_TRACKER;
1140 struct secasindex saidx;
1141 struct secashead *sah;
1142 struct secasvar *sav;
1143
1144 IPSEC_ASSERT(src != NULL, ("null src address"));
1145 IPSEC_ASSERT(dst != NULL, ("null dst address"));
1146
1147 KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa,
1148 &dst->sa, &saidx);
1149
1150 sav = NULL;
1151 SAHTREE_RLOCK();
1152 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
1153 if (IPSEC_MODE_TUNNEL != sah->saidx.mode)
1154 continue;
1155 if (proto != sah->saidx.proto)
1156 continue;
1157 if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0)
1158 continue;
1159 if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0)
1160 continue;
1161 /* XXXAE: is key_preferred_oldsa reasonably?*/
1162 if (V_key_preferred_oldsa)
1163 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1164 else
1165 sav = TAILQ_FIRST(&sah->savtree_alive);
1166 if (sav != NULL) {
1167 SAV_ADDREF(sav);
1168 break;
1169 }
1170 }
1171 SAHTREE_RUNLOCK();
1172 KEYDBG(IPSEC_STAMP,
1173 printf("%s: return SA(%p)\n", __func__, sav));
1174 if (sav != NULL)
1175 KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1176 return (sav);
1177 }
1178
1179 /*
1180 * Must be called after calling key_allocsp().
1181 */
1182 void
key_freesp(struct secpolicy ** spp)1183 key_freesp(struct secpolicy **spp)
1184 {
1185 struct secpolicy *sp = *spp;
1186
1187 IPSEC_ASSERT(sp != NULL, ("null sp"));
1188 if (SP_DELREF(sp) == 0)
1189 return;
1190
1191 KEYDBG(IPSEC_STAMP,
1192 printf("%s: last reference to SP(%p)\n", __func__, sp));
1193 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1194
1195 *spp = NULL;
1196 while (sp->tcount > 0)
1197 ipsec_delisr(sp->req[--sp->tcount]);
1198 free(sp, M_IPSEC_SP);
1199 }
1200
1201 static void
key_unlink(struct secpolicy * sp)1202 key_unlink(struct secpolicy *sp)
1203 {
1204
1205 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND ||
1206 sp->spidx.dir == IPSEC_DIR_OUTBOUND,
1207 ("invalid direction %u", sp->spidx.dir));
1208 SPTREE_UNLOCK_ASSERT();
1209
1210 KEYDBG(KEY_STAMP,
1211 printf("%s: SP(%p)\n", __func__, sp));
1212 SPTREE_WLOCK();
1213 if (sp->state != IPSEC_SPSTATE_ALIVE) {
1214 /* SP is already unlinked */
1215 SPTREE_WUNLOCK();
1216 return;
1217 }
1218 sp->state = IPSEC_SPSTATE_DEAD;
1219 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
1220 V_spd_size--;
1221 LIST_REMOVE(sp, idhash);
1222 V_sp_genid++;
1223 SPTREE_WUNLOCK();
1224 if (SPDCACHE_ENABLED())
1225 spdcache_clear();
1226 key_freesp(&sp);
1227 }
1228
1229 /*
1230 * insert a secpolicy into the SP database. Lower priorities first
1231 */
1232 static void
key_insertsp(struct secpolicy * newsp)1233 key_insertsp(struct secpolicy *newsp)
1234 {
1235 struct secpolicy *sp;
1236
1237 SPTREE_WLOCK_ASSERT();
1238 TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) {
1239 if (newsp->priority < sp->priority) {
1240 TAILQ_INSERT_BEFORE(sp, newsp, chain);
1241 goto done;
1242 }
1243 }
1244 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain);
1245 done:
1246 LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash);
1247 newsp->state = IPSEC_SPSTATE_ALIVE;
1248 V_spd_size++;
1249 V_sp_genid++;
1250 }
1251
1252 /*
1253 * Insert a bunch of VTI secpolicies into the SPDB.
1254 * We keep VTI policies in the separate list due to following reasons:
1255 * 1) they should be immutable to user's or some deamon's attempts to
1256 * delete. The only way delete such policies - destroy or unconfigure
1257 * corresponding virtual inteface.
1258 * 2) such policies have traffic selector that matches all traffic per
1259 * address family.
1260 * Since all VTI policies have the same priority, we don't care about
1261 * policies order.
1262 */
1263 int
key_register_ifnet(struct secpolicy ** spp,u_int count)1264 key_register_ifnet(struct secpolicy **spp, u_int count)
1265 {
1266 struct mbuf *m;
1267 u_int i;
1268
1269 SPTREE_WLOCK();
1270 /*
1271 * First of try to acquire id for each SP.
1272 */
1273 for (i = 0; i < count; i++) {
1274 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1275 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1276 ("invalid direction %u", spp[i]->spidx.dir));
1277
1278 if ((spp[i]->id = key_getnewspid()) == 0) {
1279 SPTREE_WUNLOCK();
1280 return (EAGAIN);
1281 }
1282 }
1283 for (i = 0; i < count; i++) {
1284 TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir],
1285 spp[i], chain);
1286 /*
1287 * NOTE: despite the fact that we keep VTI SP in the
1288 * separate list, SPHASH contains policies from both
1289 * sources. Thus SADB_X_SPDGET will correctly return
1290 * SP by id, because it uses SPHASH for lookups.
1291 */
1292 LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash);
1293 spp[i]->state = IPSEC_SPSTATE_IFNET;
1294 }
1295 SPTREE_WUNLOCK();
1296 /*
1297 * Notify user processes about new SP.
1298 */
1299 for (i = 0; i < count; i++) {
1300 m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0);
1301 if (m != NULL)
1302 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1303 }
1304 return (0);
1305 }
1306
1307 void
key_unregister_ifnet(struct secpolicy ** spp,u_int count)1308 key_unregister_ifnet(struct secpolicy **spp, u_int count)
1309 {
1310 struct mbuf *m;
1311 u_int i;
1312
1313 SPTREE_WLOCK();
1314 for (i = 0; i < count; i++) {
1315 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1316 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1317 ("invalid direction %u", spp[i]->spidx.dir));
1318
1319 if (spp[i]->state != IPSEC_SPSTATE_IFNET)
1320 continue;
1321 spp[i]->state = IPSEC_SPSTATE_DEAD;
1322 TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir],
1323 spp[i], chain);
1324 V_spd_size--;
1325 LIST_REMOVE(spp[i], idhash);
1326 }
1327 SPTREE_WUNLOCK();
1328 if (SPDCACHE_ENABLED())
1329 spdcache_clear();
1330
1331 for (i = 0; i < count; i++) {
1332 m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0);
1333 if (m != NULL)
1334 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1335 }
1336 }
1337
1338 /*
1339 * Must be called after calling key_allocsa().
1340 * This function is called by key_freesp() to free some SA allocated
1341 * for a policy.
1342 */
1343 void
key_freesav(struct secasvar ** psav)1344 key_freesav(struct secasvar **psav)
1345 {
1346 struct secasvar *sav = *psav;
1347
1348 IPSEC_ASSERT(sav != NULL, ("null sav"));
1349 if (SAV_DELREF(sav) == 0)
1350 return;
1351
1352 KEYDBG(IPSEC_STAMP,
1353 printf("%s: last reference to SA(%p)\n", __func__, sav));
1354
1355 *psav = NULL;
1356 key_delsav(sav);
1357 }
1358
1359 /*
1360 * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK.
1361 * Expect that SA has extra reference due to lookup.
1362 * Release this references, also release SAH reference after unlink.
1363 */
1364 static void
key_unlinksav(struct secasvar * sav)1365 key_unlinksav(struct secasvar *sav)
1366 {
1367 struct secashead *sah;
1368
1369 KEYDBG(KEY_STAMP,
1370 printf("%s: SA(%p)\n", __func__, sav));
1371
1372 SAHTREE_UNLOCK_ASSERT();
1373 SAHTREE_WLOCK();
1374 if (sav->state == SADB_SASTATE_DEAD) {
1375 /* SA is already unlinked */
1376 SAHTREE_WUNLOCK();
1377 return;
1378 }
1379 /* Unlink from SAH */
1380 if (sav->state == SADB_SASTATE_LARVAL)
1381 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
1382 else
1383 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
1384 /* Unlink from SPI hash */
1385 LIST_REMOVE(sav, spihash);
1386 sav->state = SADB_SASTATE_DEAD;
1387 sah = sav->sah;
1388 SAHTREE_WUNLOCK();
1389 key_freesav(&sav);
1390 /* Since we are unlinked, release reference to SAH */
1391 key_freesah(&sah);
1392 }
1393
1394 /* %%% SPD management */
1395 /*
1396 * search SPD
1397 * OUT: NULL : not found
1398 * others : found, pointer to a SP.
1399 */
1400 static struct secpolicy *
key_getsp(struct secpolicyindex * spidx)1401 key_getsp(struct secpolicyindex *spidx)
1402 {
1403 SPTREE_RLOCK_TRACKER;
1404 struct secpolicy *sp;
1405
1406 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1407
1408 SPTREE_RLOCK();
1409 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1410 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1411 SP_ADDREF(sp);
1412 break;
1413 }
1414 }
1415 SPTREE_RUNLOCK();
1416
1417 return sp;
1418 }
1419
1420 /*
1421 * get SP by index.
1422 * OUT: NULL : not found
1423 * others : found, pointer to referenced SP.
1424 */
1425 static struct secpolicy *
key_getspbyid(uint32_t id)1426 key_getspbyid(uint32_t id)
1427 {
1428 SPTREE_RLOCK_TRACKER;
1429 struct secpolicy *sp;
1430
1431 SPTREE_RLOCK();
1432 LIST_FOREACH(sp, SPHASH_HASH(id), idhash) {
1433 if (sp->id == id) {
1434 SP_ADDREF(sp);
1435 break;
1436 }
1437 }
1438 SPTREE_RUNLOCK();
1439 return (sp);
1440 }
1441
1442 struct secpolicy *
key_newsp(void)1443 key_newsp(void)
1444 {
1445 struct secpolicy *sp;
1446
1447 sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO);
1448 if (sp != NULL)
1449 SP_INITREF(sp);
1450 return (sp);
1451 }
1452
1453 struct ipsecrequest *
ipsec_newisr(void)1454 ipsec_newisr(void)
1455 {
1456
1457 return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR,
1458 M_NOWAIT | M_ZERO));
1459 }
1460
1461 void
ipsec_delisr(struct ipsecrequest * p)1462 ipsec_delisr(struct ipsecrequest *p)
1463 {
1464
1465 free(p, M_IPSEC_SR);
1466 }
1467
1468 /*
1469 * create secpolicy structure from sadb_x_policy structure.
1470 * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure
1471 * are not set, so must be set properly later.
1472 */
1473 struct secpolicy *
key_msg2sp(struct sadb_x_policy * xpl0,size_t len,int * error)1474 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1475 {
1476 struct secpolicy *newsp;
1477
1478 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1479 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1480
1481 if (len != PFKEY_EXTLEN(xpl0)) {
1482 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1483 *error = EINVAL;
1484 return NULL;
1485 }
1486
1487 if ((newsp = key_newsp()) == NULL) {
1488 *error = ENOBUFS;
1489 return NULL;
1490 }
1491
1492 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1493 newsp->policy = xpl0->sadb_x_policy_type;
1494 newsp->priority = xpl0->sadb_x_policy_priority;
1495 newsp->tcount = 0;
1496
1497 /* check policy */
1498 switch (xpl0->sadb_x_policy_type) {
1499 case IPSEC_POLICY_DISCARD:
1500 case IPSEC_POLICY_NONE:
1501 case IPSEC_POLICY_ENTRUST:
1502 case IPSEC_POLICY_BYPASS:
1503 break;
1504
1505 case IPSEC_POLICY_IPSEC:
1506 {
1507 struct sadb_x_ipsecrequest *xisr;
1508 struct ipsecrequest *isr;
1509 int tlen;
1510
1511 /* validity check */
1512 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1513 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1514 __func__));
1515 key_freesp(&newsp);
1516 *error = EINVAL;
1517 return NULL;
1518 }
1519
1520 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1521 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1522
1523 while (tlen > 0) {
1524 /* length check */
1525 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) ||
1526 xisr->sadb_x_ipsecrequest_len > tlen) {
1527 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1528 "length.\n", __func__));
1529 key_freesp(&newsp);
1530 *error = EINVAL;
1531 return NULL;
1532 }
1533
1534 if (newsp->tcount >= IPSEC_MAXREQ) {
1535 ipseclog((LOG_DEBUG,
1536 "%s: too many ipsecrequests.\n",
1537 __func__));
1538 key_freesp(&newsp);
1539 *error = EINVAL;
1540 return (NULL);
1541 }
1542
1543 /* allocate request buffer */
1544 /* NB: data structure is zero'd */
1545 isr = ipsec_newisr();
1546 if (isr == NULL) {
1547 ipseclog((LOG_DEBUG,
1548 "%s: No more memory.\n", __func__));
1549 key_freesp(&newsp);
1550 *error = ENOBUFS;
1551 return NULL;
1552 }
1553
1554 newsp->req[newsp->tcount++] = isr;
1555
1556 /* set values */
1557 switch (xisr->sadb_x_ipsecrequest_proto) {
1558 case IPPROTO_ESP:
1559 case IPPROTO_AH:
1560 case IPPROTO_IPCOMP:
1561 break;
1562 default:
1563 ipseclog((LOG_DEBUG,
1564 "%s: invalid proto type=%u\n", __func__,
1565 xisr->sadb_x_ipsecrequest_proto));
1566 key_freesp(&newsp);
1567 *error = EPROTONOSUPPORT;
1568 return NULL;
1569 }
1570 isr->saidx.proto =
1571 (uint8_t)xisr->sadb_x_ipsecrequest_proto;
1572
1573 switch (xisr->sadb_x_ipsecrequest_mode) {
1574 case IPSEC_MODE_TRANSPORT:
1575 case IPSEC_MODE_TUNNEL:
1576 break;
1577 case IPSEC_MODE_ANY:
1578 default:
1579 ipseclog((LOG_DEBUG,
1580 "%s: invalid mode=%u\n", __func__,
1581 xisr->sadb_x_ipsecrequest_mode));
1582 key_freesp(&newsp);
1583 *error = EINVAL;
1584 return NULL;
1585 }
1586 isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1587
1588 switch (xisr->sadb_x_ipsecrequest_level) {
1589 case IPSEC_LEVEL_DEFAULT:
1590 case IPSEC_LEVEL_USE:
1591 case IPSEC_LEVEL_REQUIRE:
1592 break;
1593 case IPSEC_LEVEL_UNIQUE:
1594 /* validity check */
1595 /*
1596 * If range violation of reqid, kernel will
1597 * update it, don't refuse it.
1598 */
1599 if (xisr->sadb_x_ipsecrequest_reqid
1600 > IPSEC_MANUAL_REQID_MAX) {
1601 ipseclog((LOG_DEBUG,
1602 "%s: reqid=%d range "
1603 "violation, updated by kernel.\n",
1604 __func__,
1605 xisr->sadb_x_ipsecrequest_reqid));
1606 xisr->sadb_x_ipsecrequest_reqid = 0;
1607 }
1608
1609 /* allocate new reqid id if reqid is zero. */
1610 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1611 u_int32_t reqid;
1612 if ((reqid = key_newreqid()) == 0) {
1613 key_freesp(&newsp);
1614 *error = ENOBUFS;
1615 return NULL;
1616 }
1617 isr->saidx.reqid = reqid;
1618 xisr->sadb_x_ipsecrequest_reqid = reqid;
1619 } else {
1620 /* set it for manual keying. */
1621 isr->saidx.reqid =
1622 xisr->sadb_x_ipsecrequest_reqid;
1623 }
1624 break;
1625
1626 default:
1627 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1628 __func__,
1629 xisr->sadb_x_ipsecrequest_level));
1630 key_freesp(&newsp);
1631 *error = EINVAL;
1632 return NULL;
1633 }
1634 isr->level = xisr->sadb_x_ipsecrequest_level;
1635
1636 /* set IP addresses if there */
1637 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1638 struct sockaddr *paddr;
1639
1640 len = tlen - sizeof(*xisr);
1641 paddr = (struct sockaddr *)(xisr + 1);
1642 /* validity check */
1643 if (len < sizeof(struct sockaddr) ||
1644 len < 2 * paddr->sa_len ||
1645 paddr->sa_len > sizeof(isr->saidx.src)) {
1646 ipseclog((LOG_DEBUG, "%s: invalid "
1647 "request address length.\n",
1648 __func__));
1649 key_freesp(&newsp);
1650 *error = EINVAL;
1651 return NULL;
1652 }
1653 /*
1654 * Request length should be enough to keep
1655 * source and destination addresses.
1656 */
1657 if (xisr->sadb_x_ipsecrequest_len <
1658 sizeof(*xisr) + 2 * paddr->sa_len) {
1659 ipseclog((LOG_DEBUG, "%s: invalid "
1660 "ipsecrequest length.\n",
1661 __func__));
1662 key_freesp(&newsp);
1663 *error = EINVAL;
1664 return (NULL);
1665 }
1666 bcopy(paddr, &isr->saidx.src, paddr->sa_len);
1667 paddr = (struct sockaddr *)((caddr_t)paddr +
1668 paddr->sa_len);
1669
1670 /* validity check */
1671 if (paddr->sa_len !=
1672 isr->saidx.src.sa.sa_len) {
1673 ipseclog((LOG_DEBUG, "%s: invalid "
1674 "request address length.\n",
1675 __func__));
1676 key_freesp(&newsp);
1677 *error = EINVAL;
1678 return NULL;
1679 }
1680 /* AF family should match */
1681 if (paddr->sa_family !=
1682 isr->saidx.src.sa.sa_family) {
1683 ipseclog((LOG_DEBUG, "%s: address "
1684 "family doesn't match.\n",
1685 __func__));
1686 key_freesp(&newsp);
1687 *error = EINVAL;
1688 return (NULL);
1689 }
1690 bcopy(paddr, &isr->saidx.dst, paddr->sa_len);
1691 } else {
1692 /*
1693 * Addresses for TUNNEL mode requests are
1694 * mandatory.
1695 */
1696 if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
1697 ipseclog((LOG_DEBUG, "%s: missing "
1698 "request addresses.\n", __func__));
1699 key_freesp(&newsp);
1700 *error = EINVAL;
1701 return (NULL);
1702 }
1703 }
1704 tlen -= xisr->sadb_x_ipsecrequest_len;
1705
1706 /* validity check */
1707 if (tlen < 0) {
1708 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1709 __func__));
1710 key_freesp(&newsp);
1711 *error = EINVAL;
1712 return NULL;
1713 }
1714
1715 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1716 + xisr->sadb_x_ipsecrequest_len);
1717 }
1718 /* XXXAE: LARVAL SP */
1719 if (newsp->tcount < 1) {
1720 ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms "
1721 "not found.\n", __func__));
1722 key_freesp(&newsp);
1723 *error = EINVAL;
1724 return (NULL);
1725 }
1726 }
1727 break;
1728 default:
1729 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1730 key_freesp(&newsp);
1731 *error = EINVAL;
1732 return NULL;
1733 }
1734
1735 *error = 0;
1736 return (newsp);
1737 }
1738
1739 uint32_t
key_newreqid(void)1740 key_newreqid(void)
1741 {
1742 static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1743
1744 if (auto_reqid == ~0)
1745 auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1746 else
1747 auto_reqid++;
1748
1749 /* XXX should be unique check */
1750 return (auto_reqid);
1751 }
1752
1753 /*
1754 * copy secpolicy struct to sadb_x_policy structure indicated.
1755 */
1756 static struct mbuf *
key_sp2mbuf(struct secpolicy * sp)1757 key_sp2mbuf(struct secpolicy *sp)
1758 {
1759 struct mbuf *m;
1760 size_t tlen;
1761
1762 tlen = key_getspreqmsglen(sp);
1763 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1764 if (m == NULL)
1765 return (NULL);
1766 m_align(m, tlen);
1767 m->m_len = tlen;
1768 if (key_sp2msg(sp, m->m_data, &tlen) != 0) {
1769 m_freem(m);
1770 return (NULL);
1771 }
1772 return (m);
1773 }
1774
1775 int
key_sp2msg(struct secpolicy * sp,void * request,size_t * len)1776 key_sp2msg(struct secpolicy *sp, void *request, size_t *len)
1777 {
1778 struct sadb_x_ipsecrequest *xisr;
1779 struct sadb_x_policy *xpl;
1780 struct ipsecrequest *isr;
1781 size_t xlen, ilen;
1782 caddr_t p;
1783 int error, i;
1784
1785 IPSEC_ASSERT(sp != NULL, ("null policy"));
1786
1787 xlen = sizeof(*xpl);
1788 if (*len < xlen)
1789 return (EINVAL);
1790
1791 error = 0;
1792 bzero(request, *len);
1793 xpl = (struct sadb_x_policy *)request;
1794 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1795 xpl->sadb_x_policy_type = sp->policy;
1796 xpl->sadb_x_policy_dir = sp->spidx.dir;
1797 xpl->sadb_x_policy_id = sp->id;
1798 xpl->sadb_x_policy_priority = sp->priority;
1799 switch (sp->state) {
1800 case IPSEC_SPSTATE_IFNET:
1801 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET;
1802 break;
1803 case IPSEC_SPSTATE_PCB:
1804 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB;
1805 break;
1806 default:
1807 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL;
1808 }
1809
1810 /* if is the policy for ipsec ? */
1811 if (sp->policy == IPSEC_POLICY_IPSEC) {
1812 p = (caddr_t)xpl + sizeof(*xpl);
1813 for (i = 0; i < sp->tcount; i++) {
1814 isr = sp->req[i];
1815 ilen = PFKEY_ALIGN8(sizeof(*xisr) +
1816 isr->saidx.src.sa.sa_len +
1817 isr->saidx.dst.sa.sa_len);
1818 xlen += ilen;
1819 if (xlen > *len) {
1820 error = ENOBUFS;
1821 /* Calculate needed size */
1822 continue;
1823 }
1824 xisr = (struct sadb_x_ipsecrequest *)p;
1825 xisr->sadb_x_ipsecrequest_len = ilen;
1826 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1827 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1828 xisr->sadb_x_ipsecrequest_level = isr->level;
1829 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1830
1831 p += sizeof(*xisr);
1832 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1833 p += isr->saidx.src.sa.sa_len;
1834 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1835 p += isr->saidx.dst.sa.sa_len;
1836 }
1837 }
1838 xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen);
1839 if (error == 0)
1840 *len = xlen;
1841 else
1842 *len = sizeof(*xpl);
1843 return (error);
1844 }
1845
1846 /* m will not be freed nor modified */
1847 static struct mbuf *
key_gather_mbuf(struct mbuf * m,const struct sadb_msghdr * mhp,int ndeep,int nitem,...)1848 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1849 int ndeep, int nitem, ...)
1850 {
1851 va_list ap;
1852 int idx;
1853 int i;
1854 struct mbuf *result = NULL, *n;
1855 int len;
1856
1857 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1858 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1859
1860 va_start(ap, nitem);
1861 for (i = 0; i < nitem; i++) {
1862 idx = va_arg(ap, int);
1863 if (idx < 0 || idx > SADB_EXT_MAX)
1864 goto fail;
1865 /* don't attempt to pull empty extension */
1866 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1867 continue;
1868 if (idx != SADB_EXT_RESERVED &&
1869 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1870 continue;
1871
1872 if (idx == SADB_EXT_RESERVED) {
1873 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1874
1875 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1876
1877 MGETHDR(n, M_NOWAIT, MT_DATA);
1878 if (!n)
1879 goto fail;
1880 n->m_len = len;
1881 n->m_next = NULL;
1882 m_copydata(m, 0, sizeof(struct sadb_msg),
1883 mtod(n, caddr_t));
1884 } else if (i < ndeep) {
1885 len = mhp->extlen[idx];
1886 n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1887 if (n == NULL)
1888 goto fail;
1889 m_align(n, len);
1890 n->m_len = len;
1891 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1892 mtod(n, caddr_t));
1893 } else {
1894 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1895 M_NOWAIT);
1896 }
1897 if (n == NULL)
1898 goto fail;
1899
1900 if (result)
1901 m_cat(result, n);
1902 else
1903 result = n;
1904 }
1905 va_end(ap);
1906
1907 if ((result->m_flags & M_PKTHDR) != 0) {
1908 result->m_pkthdr.len = 0;
1909 for (n = result; n; n = n->m_next)
1910 result->m_pkthdr.len += n->m_len;
1911 }
1912
1913 return result;
1914
1915 fail:
1916 m_freem(result);
1917 va_end(ap);
1918 return NULL;
1919 }
1920
1921 /*
1922 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1923 * add an entry to SP database, when received
1924 * <base, address(SD), (lifetime(H),) policy>
1925 * from the user(?).
1926 * Adding to SP database,
1927 * and send
1928 * <base, address(SD), (lifetime(H),) policy>
1929 * to the socket which was send.
1930 *
1931 * SPDADD set a unique policy entry.
1932 * SPDSETIDX like SPDADD without a part of policy requests.
1933 * SPDUPDATE replace a unique policy entry.
1934 *
1935 * XXXAE: serialize this in PF_KEY to avoid races.
1936 * m will always be freed.
1937 */
1938 static int
key_spdadd(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)1939 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
1940 {
1941 struct secpolicyindex spidx;
1942 struct sadb_address *src0, *dst0;
1943 struct sadb_x_policy *xpl0, *xpl;
1944 struct sadb_lifetime *lft = NULL;
1945 struct secpolicy *newsp;
1946 int error;
1947
1948 IPSEC_ASSERT(so != NULL, ("null socket"));
1949 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1950 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1951 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1952
1953 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
1954 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
1955 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
1956 ipseclog((LOG_DEBUG,
1957 "%s: invalid message: missing required header.\n",
1958 __func__));
1959 return key_senderror(so, m, EINVAL);
1960 }
1961 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
1962 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
1963 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
1964 ipseclog((LOG_DEBUG,
1965 "%s: invalid message: wrong header size.\n", __func__));
1966 return key_senderror(so, m, EINVAL);
1967 }
1968 if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) {
1969 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) {
1970 ipseclog((LOG_DEBUG,
1971 "%s: invalid message: wrong header size.\n",
1972 __func__));
1973 return key_senderror(so, m, EINVAL);
1974 }
1975 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1976 }
1977
1978 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1979 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1980 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1981
1982 /* check the direciton */
1983 switch (xpl0->sadb_x_policy_dir) {
1984 case IPSEC_DIR_INBOUND:
1985 case IPSEC_DIR_OUTBOUND:
1986 break;
1987 default:
1988 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
1989 return key_senderror(so, m, EINVAL);
1990 }
1991 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1992 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
1993 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
1994 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
1995 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1996 return key_senderror(so, m, EINVAL);
1997 }
1998
1999 /* policy requests are mandatory when action is ipsec. */
2000 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2001 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2002 ipseclog((LOG_DEBUG,
2003 "%s: policy requests required.\n", __func__));
2004 return key_senderror(so, m, EINVAL);
2005 }
2006
2007 error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
2008 (struct sockaddr *)(dst0 + 1));
2009 if (error != 0 ||
2010 src0->sadb_address_proto != dst0->sadb_address_proto) {
2011 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2012 return key_senderror(so, m, error);
2013 }
2014 /* make secindex */
2015 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2016 src0 + 1,
2017 dst0 + 1,
2018 src0->sadb_address_prefixlen,
2019 dst0->sadb_address_prefixlen,
2020 src0->sadb_address_proto,
2021 &spidx);
2022 /* Checking there is SP already or not. */
2023 newsp = key_getsp(&spidx);
2024 if (newsp != NULL) {
2025 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2026 KEYDBG(KEY_STAMP,
2027 printf("%s: unlink SP(%p) for SPDUPDATE\n",
2028 __func__, newsp));
2029 KEYDBG(KEY_DATA, kdebug_secpolicy(newsp));
2030 key_unlink(newsp);
2031 key_freesp(&newsp);
2032 } else {
2033 key_freesp(&newsp);
2034 ipseclog((LOG_DEBUG,
2035 "%s: a SP entry exists already.\n", __func__));
2036 return (key_senderror(so, m, EEXIST));
2037 }
2038 }
2039
2040 /* allocate new SP entry */
2041 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
2042 return key_senderror(so, m, error);
2043 }
2044
2045 newsp->lastused = newsp->created = time_second;
2046 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2047 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2048 bcopy(&spidx, &newsp->spidx, sizeof(spidx));
2049
2050 /* XXXAE: there is race between key_getsp() and key_insertsp() */
2051 SPTREE_WLOCK();
2052 if ((newsp->id = key_getnewspid()) == 0) {
2053 SPTREE_WUNLOCK();
2054 key_freesp(&newsp);
2055 return key_senderror(so, m, ENOBUFS);
2056 }
2057 key_insertsp(newsp);
2058 SPTREE_WUNLOCK();
2059 if (SPDCACHE_ENABLED())
2060 spdcache_clear();
2061
2062 KEYDBG(KEY_STAMP,
2063 printf("%s: SP(%p)\n", __func__, newsp));
2064 KEYDBG(KEY_DATA, kdebug_secpolicy(newsp));
2065
2066 {
2067 struct mbuf *n, *mpolicy;
2068 struct sadb_msg *newmsg;
2069 int off;
2070
2071 /* create new sadb_msg to reply. */
2072 if (lft) {
2073 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2074 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2075 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2076 } else {
2077 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2078 SADB_X_EXT_POLICY,
2079 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2080 }
2081 if (!n)
2082 return key_senderror(so, m, ENOBUFS);
2083
2084 if (n->m_len < sizeof(*newmsg)) {
2085 n = m_pullup(n, sizeof(*newmsg));
2086 if (!n)
2087 return key_senderror(so, m, ENOBUFS);
2088 }
2089 newmsg = mtod(n, struct sadb_msg *);
2090 newmsg->sadb_msg_errno = 0;
2091 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2092
2093 off = 0;
2094 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2095 sizeof(*xpl), &off);
2096 if (mpolicy == NULL) {
2097 /* n is already freed */
2098 return key_senderror(so, m, ENOBUFS);
2099 }
2100 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
2101 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2102 m_freem(n);
2103 return key_senderror(so, m, EINVAL);
2104 }
2105 xpl->sadb_x_policy_id = newsp->id;
2106
2107 m_freem(m);
2108 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2109 }
2110 }
2111
2112 /*
2113 * get new policy id.
2114 * OUT:
2115 * 0: failure.
2116 * others: success.
2117 */
2118 static uint32_t
key_getnewspid(void)2119 key_getnewspid(void)
2120 {
2121 struct secpolicy *sp;
2122 uint32_t newid = 0;
2123 int count = V_key_spi_trycnt; /* XXX */
2124
2125 SPTREE_WLOCK_ASSERT();
2126 while (count--) {
2127 if (V_policy_id == ~0) /* overflowed */
2128 newid = V_policy_id = 1;
2129 else
2130 newid = ++V_policy_id;
2131 LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) {
2132 if (sp->id == newid)
2133 break;
2134 }
2135 if (sp == NULL)
2136 break;
2137 }
2138 if (count == 0 || newid == 0) {
2139 ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n",
2140 __func__));
2141 return (0);
2142 }
2143 return (newid);
2144 }
2145
2146 /*
2147 * SADB_SPDDELETE processing
2148 * receive
2149 * <base, address(SD), policy(*)>
2150 * from the user(?), and set SADB_SASTATE_DEAD,
2151 * and send,
2152 * <base, address(SD), policy(*)>
2153 * to the ikmpd.
2154 * policy(*) including direction of policy.
2155 *
2156 * m will always be freed.
2157 */
2158 static int
key_spddelete(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2159 key_spddelete(struct socket *so, struct mbuf *m,
2160 const struct sadb_msghdr *mhp)
2161 {
2162 struct secpolicyindex spidx;
2163 struct sadb_address *src0, *dst0;
2164 struct sadb_x_policy *xpl0;
2165 struct secpolicy *sp;
2166
2167 IPSEC_ASSERT(so != NULL, ("null so"));
2168 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2169 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2170 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2171
2172 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
2173 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
2174 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
2175 ipseclog((LOG_DEBUG,
2176 "%s: invalid message: missing required header.\n",
2177 __func__));
2178 return key_senderror(so, m, EINVAL);
2179 }
2180 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
2181 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
2182 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2183 ipseclog((LOG_DEBUG,
2184 "%s: invalid message: wrong header size.\n", __func__));
2185 return key_senderror(so, m, EINVAL);
2186 }
2187
2188 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2189 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2190 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2191
2192 /* check the direciton */
2193 switch (xpl0->sadb_x_policy_dir) {
2194 case IPSEC_DIR_INBOUND:
2195 case IPSEC_DIR_OUTBOUND:
2196 break;
2197 default:
2198 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
2199 return key_senderror(so, m, EINVAL);
2200 }
2201 /* Only DISCARD, NONE and IPSEC are allowed */
2202 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
2203 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
2204 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
2205 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
2206 return key_senderror(so, m, EINVAL);
2207 }
2208 if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
2209 (struct sockaddr *)(dst0 + 1)) != 0 ||
2210 src0->sadb_address_proto != dst0->sadb_address_proto) {
2211 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2212 return key_senderror(so, m, EINVAL);
2213 }
2214 /* make secindex */
2215 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2216 src0 + 1,
2217 dst0 + 1,
2218 src0->sadb_address_prefixlen,
2219 dst0->sadb_address_prefixlen,
2220 src0->sadb_address_proto,
2221 &spidx);
2222
2223 /* Is there SP in SPD ? */
2224 if ((sp = key_getsp(&spidx)) == NULL) {
2225 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2226 return key_senderror(so, m, EINVAL);
2227 }
2228
2229 /* save policy id to buffer to be returned. */
2230 xpl0->sadb_x_policy_id = sp->id;
2231
2232 KEYDBG(KEY_STAMP,
2233 printf("%s: SP(%p)\n", __func__, sp));
2234 KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2235 key_unlink(sp);
2236 key_freesp(&sp);
2237
2238 {
2239 struct mbuf *n;
2240 struct sadb_msg *newmsg;
2241
2242 /* create new sadb_msg to reply. */
2243 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2244 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2245 if (!n)
2246 return key_senderror(so, m, ENOBUFS);
2247
2248 newmsg = mtod(n, struct sadb_msg *);
2249 newmsg->sadb_msg_errno = 0;
2250 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2251
2252 m_freem(m);
2253 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2254 }
2255 }
2256
2257 /*
2258 * SADB_SPDDELETE2 processing
2259 * receive
2260 * <base, policy(*)>
2261 * from the user(?), and set SADB_SASTATE_DEAD,
2262 * and send,
2263 * <base, policy(*)>
2264 * to the ikmpd.
2265 * policy(*) including direction of policy.
2266 *
2267 * m will always be freed.
2268 */
2269 static int
key_spddelete2(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2270 key_spddelete2(struct socket *so, struct mbuf *m,
2271 const struct sadb_msghdr *mhp)
2272 {
2273 struct secpolicy *sp;
2274 uint32_t id;
2275
2276 IPSEC_ASSERT(so != NULL, ("null socket"));
2277 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2278 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2279 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2280
2281 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2282 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2283 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2284 __func__));
2285 return key_senderror(so, m, EINVAL);
2286 }
2287
2288 id = ((struct sadb_x_policy *)
2289 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2290
2291 /* Is there SP in SPD ? */
2292 if ((sp = key_getspbyid(id)) == NULL) {
2293 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2294 __func__, id));
2295 return key_senderror(so, m, EINVAL);
2296 }
2297
2298 KEYDBG(KEY_STAMP,
2299 printf("%s: SP(%p)\n", __func__, sp));
2300 KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2301 key_unlink(sp);
2302 if (sp->state != IPSEC_SPSTATE_DEAD) {
2303 ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n",
2304 __func__, id));
2305 key_freesp(&sp);
2306 return (key_senderror(so, m, EACCES));
2307 }
2308 key_freesp(&sp);
2309
2310 {
2311 struct mbuf *n, *nn;
2312 struct sadb_msg *newmsg;
2313 int off, len;
2314
2315 /* create new sadb_msg to reply. */
2316 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2317
2318 MGETHDR(n, M_NOWAIT, MT_DATA);
2319 if (n && len > MHLEN) {
2320 if (!(MCLGET(n, M_NOWAIT))) {
2321 m_freem(n);
2322 n = NULL;
2323 }
2324 }
2325 if (!n)
2326 return key_senderror(so, m, ENOBUFS);
2327
2328 n->m_len = len;
2329 n->m_next = NULL;
2330 off = 0;
2331
2332 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2333 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2334
2335 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2336 off, len));
2337
2338 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2339 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2340 if (!n->m_next) {
2341 m_freem(n);
2342 return key_senderror(so, m, ENOBUFS);
2343 }
2344
2345 n->m_pkthdr.len = 0;
2346 for (nn = n; nn; nn = nn->m_next)
2347 n->m_pkthdr.len += nn->m_len;
2348
2349 newmsg = mtod(n, struct sadb_msg *);
2350 newmsg->sadb_msg_errno = 0;
2351 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2352
2353 m_freem(m);
2354 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2355 }
2356 }
2357
2358 /*
2359 * SADB_X_SPDGET processing
2360 * receive
2361 * <base, policy(*)>
2362 * from the user(?),
2363 * and send,
2364 * <base, address(SD), policy>
2365 * to the ikmpd.
2366 * policy(*) including direction of policy.
2367 *
2368 * m will always be freed.
2369 */
2370 static int
key_spdget(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2371 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2372 {
2373 struct secpolicy *sp;
2374 struct mbuf *n;
2375 uint32_t id;
2376
2377 IPSEC_ASSERT(so != NULL, ("null socket"));
2378 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2379 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2380 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2381
2382 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2383 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2384 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2385 __func__));
2386 return key_senderror(so, m, EINVAL);
2387 }
2388
2389 id = ((struct sadb_x_policy *)
2390 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2391
2392 /* Is there SP in SPD ? */
2393 if ((sp = key_getspbyid(id)) == NULL) {
2394 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2395 __func__, id));
2396 return key_senderror(so, m, ENOENT);
2397 }
2398
2399 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2400 mhp->msg->sadb_msg_pid);
2401 key_freesp(&sp);
2402 if (n != NULL) {
2403 m_freem(m);
2404 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2405 } else
2406 return key_senderror(so, m, ENOBUFS);
2407 }
2408
2409 /*
2410 * SADB_X_SPDACQUIRE processing.
2411 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2412 * send
2413 * <base, policy(*)>
2414 * to KMD, and expect to receive
2415 * <base> with SADB_X_SPDACQUIRE if error occurred,
2416 * or
2417 * <base, policy>
2418 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2419 * policy(*) is without policy requests.
2420 *
2421 * 0 : succeed
2422 * others: error number
2423 */
2424 int
key_spdacquire(struct secpolicy * sp)2425 key_spdacquire(struct secpolicy *sp)
2426 {
2427 struct mbuf *result = NULL, *m;
2428 struct secspacq *newspacq;
2429
2430 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2431 IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2432 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2433 ("policy not IPSEC %u", sp->policy));
2434
2435 /* Get an entry to check whether sent message or not. */
2436 newspacq = key_getspacq(&sp->spidx);
2437 if (newspacq != NULL) {
2438 if (V_key_blockacq_count < newspacq->count) {
2439 /* reset counter and do send message. */
2440 newspacq->count = 0;
2441 } else {
2442 /* increment counter and do nothing. */
2443 newspacq->count++;
2444 SPACQ_UNLOCK();
2445 return (0);
2446 }
2447 SPACQ_UNLOCK();
2448 } else {
2449 /* make new entry for blocking to send SADB_ACQUIRE. */
2450 newspacq = key_newspacq(&sp->spidx);
2451 if (newspacq == NULL)
2452 return ENOBUFS;
2453 }
2454
2455 /* create new sadb_msg to reply. */
2456 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2457 if (!m)
2458 return ENOBUFS;
2459
2460 result = m;
2461
2462 result->m_pkthdr.len = 0;
2463 for (m = result; m; m = m->m_next)
2464 result->m_pkthdr.len += m->m_len;
2465
2466 mtod(result, struct sadb_msg *)->sadb_msg_len =
2467 PFKEY_UNIT64(result->m_pkthdr.len);
2468
2469 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2470 }
2471
2472 /*
2473 * SADB_SPDFLUSH processing
2474 * receive
2475 * <base>
2476 * from the user, and free all entries in secpctree.
2477 * and send,
2478 * <base>
2479 * to the user.
2480 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2481 *
2482 * m will always be freed.
2483 */
2484 static int
key_spdflush(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2485 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2486 {
2487 struct secpolicy_queue drainq;
2488 struct sadb_msg *newmsg;
2489 struct secpolicy *sp, *nextsp;
2490 u_int dir;
2491
2492 IPSEC_ASSERT(so != NULL, ("null socket"));
2493 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2494 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2495 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2496
2497 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2498 return key_senderror(so, m, EINVAL);
2499
2500 TAILQ_INIT(&drainq);
2501 SPTREE_WLOCK();
2502 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2503 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain);
2504 }
2505 /*
2506 * We need to set state to DEAD for each policy to be sure,
2507 * that another thread won't try to unlink it.
2508 * Also remove SP from sphash.
2509 */
2510 TAILQ_FOREACH(sp, &drainq, chain) {
2511 sp->state = IPSEC_SPSTATE_DEAD;
2512 LIST_REMOVE(sp, idhash);
2513 }
2514 V_sp_genid++;
2515 V_spd_size = 0;
2516 SPTREE_WUNLOCK();
2517 if (SPDCACHE_ENABLED())
2518 spdcache_clear();
2519 sp = TAILQ_FIRST(&drainq);
2520 while (sp != NULL) {
2521 nextsp = TAILQ_NEXT(sp, chain);
2522 key_freesp(&sp);
2523 sp = nextsp;
2524 }
2525
2526 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2527 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2528 return key_senderror(so, m, ENOBUFS);
2529 }
2530
2531 if (m->m_next)
2532 m_freem(m->m_next);
2533 m->m_next = NULL;
2534 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2535 newmsg = mtod(m, struct sadb_msg *);
2536 newmsg->sadb_msg_errno = 0;
2537 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2538
2539 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2540 }
2541
2542 static uint8_t
key_satype2scopemask(uint8_t satype)2543 key_satype2scopemask(uint8_t satype)
2544 {
2545
2546 if (satype == IPSEC_POLICYSCOPE_ANY)
2547 return (0xff);
2548 return (satype);
2549 }
2550 /*
2551 * SADB_SPDDUMP processing
2552 * receive
2553 * <base>
2554 * from the user, and dump all SP leaves and send,
2555 * <base> .....
2556 * to the ikmpd.
2557 *
2558 * NOTE:
2559 * sadb_msg_satype is considered as mask of policy scopes.
2560 * m will always be freed.
2561 */
2562 static int
key_spddump(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)2563 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2564 {
2565 SPTREE_RLOCK_TRACKER;
2566 struct secpolicy *sp;
2567 struct mbuf *n;
2568 int cnt;
2569 u_int dir, scope;
2570
2571 IPSEC_ASSERT(so != NULL, ("null socket"));
2572 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2573 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2574 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2575
2576 /* search SPD entry and get buffer size. */
2577 cnt = 0;
2578 scope = key_satype2scopemask(mhp->msg->sadb_msg_satype);
2579 SPTREE_RLOCK();
2580 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2581 if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2582 TAILQ_FOREACH(sp, &V_sptree[dir], chain)
2583 cnt++;
2584 }
2585 if (scope & IPSEC_POLICYSCOPE_IFNET) {
2586 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain)
2587 cnt++;
2588 }
2589 }
2590
2591 if (cnt == 0) {
2592 SPTREE_RUNLOCK();
2593 return key_senderror(so, m, ENOENT);
2594 }
2595
2596 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2597 if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2598 TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
2599 --cnt;
2600 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2601 mhp->msg->sadb_msg_pid);
2602
2603 if (n != NULL)
2604 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2605 }
2606 }
2607 if (scope & IPSEC_POLICYSCOPE_IFNET) {
2608 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) {
2609 --cnt;
2610 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2611 mhp->msg->sadb_msg_pid);
2612
2613 if (n != NULL)
2614 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2615 }
2616 }
2617 }
2618
2619 SPTREE_RUNLOCK();
2620 m_freem(m);
2621 return (0);
2622 }
2623
2624 static struct mbuf *
key_setdumpsp(struct secpolicy * sp,u_int8_t type,u_int32_t seq,u_int32_t pid)2625 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq,
2626 u_int32_t pid)
2627 {
2628 struct mbuf *result = NULL, *m;
2629 struct seclifetime lt;
2630
2631 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2632 if (!m)
2633 goto fail;
2634 result = m;
2635
2636 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2637 &sp->spidx.src.sa, sp->spidx.prefs,
2638 sp->spidx.ul_proto);
2639 if (!m)
2640 goto fail;
2641 m_cat(result, m);
2642
2643 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2644 &sp->spidx.dst.sa, sp->spidx.prefd,
2645 sp->spidx.ul_proto);
2646 if (!m)
2647 goto fail;
2648 m_cat(result, m);
2649
2650 m = key_sp2mbuf(sp);
2651 if (!m)
2652 goto fail;
2653 m_cat(result, m);
2654
2655 if(sp->lifetime){
2656 lt.addtime=sp->created;
2657 lt.usetime= sp->lastused;
2658 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT);
2659 if (!m)
2660 goto fail;
2661 m_cat(result, m);
2662
2663 lt.addtime=sp->lifetime;
2664 lt.usetime= sp->validtime;
2665 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD);
2666 if (!m)
2667 goto fail;
2668 m_cat(result, m);
2669 }
2670
2671 if ((result->m_flags & M_PKTHDR) == 0)
2672 goto fail;
2673
2674 if (result->m_len < sizeof(struct sadb_msg)) {
2675 result = m_pullup(result, sizeof(struct sadb_msg));
2676 if (result == NULL)
2677 goto fail;
2678 }
2679
2680 result->m_pkthdr.len = 0;
2681 for (m = result; m; m = m->m_next)
2682 result->m_pkthdr.len += m->m_len;
2683
2684 mtod(result, struct sadb_msg *)->sadb_msg_len =
2685 PFKEY_UNIT64(result->m_pkthdr.len);
2686
2687 return result;
2688
2689 fail:
2690 m_freem(result);
2691 return NULL;
2692 }
2693 /*
2694 * get PFKEY message length for security policy and request.
2695 */
2696 static size_t
key_getspreqmsglen(struct secpolicy * sp)2697 key_getspreqmsglen(struct secpolicy *sp)
2698 {
2699 size_t tlen, len;
2700 int i;
2701
2702 tlen = sizeof(struct sadb_x_policy);
2703 /* if is the policy for ipsec ? */
2704 if (sp->policy != IPSEC_POLICY_IPSEC)
2705 return (tlen);
2706
2707 /* get length of ipsec requests */
2708 for (i = 0; i < sp->tcount; i++) {
2709 len = sizeof(struct sadb_x_ipsecrequest)
2710 + sp->req[i]->saidx.src.sa.sa_len
2711 + sp->req[i]->saidx.dst.sa.sa_len;
2712
2713 tlen += PFKEY_ALIGN8(len);
2714 }
2715 return (tlen);
2716 }
2717
2718 /*
2719 * SADB_SPDEXPIRE processing
2720 * send
2721 * <base, address(SD), lifetime(CH), policy>
2722 * to KMD by PF_KEY.
2723 *
2724 * OUT: 0 : succeed
2725 * others : error number
2726 */
2727 static int
key_spdexpire(struct secpolicy * sp)2728 key_spdexpire(struct secpolicy *sp)
2729 {
2730 struct sadb_lifetime *lt;
2731 struct mbuf *result = NULL, *m;
2732 int len, error = -1;
2733
2734 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2735
2736 KEYDBG(KEY_STAMP,
2737 printf("%s: SP(%p)\n", __func__, sp));
2738 KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2739
2740 /* set msg header */
2741 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2742 if (!m) {
2743 error = ENOBUFS;
2744 goto fail;
2745 }
2746 result = m;
2747
2748 /* create lifetime extension (current and hard) */
2749 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2750 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2751 if (m == NULL) {
2752 error = ENOBUFS;
2753 goto fail;
2754 }
2755 m_align(m, len);
2756 m->m_len = len;
2757 bzero(mtod(m, caddr_t), len);
2758 lt = mtod(m, struct sadb_lifetime *);
2759 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2760 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2761 lt->sadb_lifetime_allocations = 0;
2762 lt->sadb_lifetime_bytes = 0;
2763 lt->sadb_lifetime_addtime = sp->created;
2764 lt->sadb_lifetime_usetime = sp->lastused;
2765 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2766 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2767 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2768 lt->sadb_lifetime_allocations = 0;
2769 lt->sadb_lifetime_bytes = 0;
2770 lt->sadb_lifetime_addtime = sp->lifetime;
2771 lt->sadb_lifetime_usetime = sp->validtime;
2772 m_cat(result, m);
2773
2774 /* set sadb_address for source */
2775 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2776 &sp->spidx.src.sa,
2777 sp->spidx.prefs, sp->spidx.ul_proto);
2778 if (!m) {
2779 error = ENOBUFS;
2780 goto fail;
2781 }
2782 m_cat(result, m);
2783
2784 /* set sadb_address for destination */
2785 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2786 &sp->spidx.dst.sa,
2787 sp->spidx.prefd, sp->spidx.ul_proto);
2788 if (!m) {
2789 error = ENOBUFS;
2790 goto fail;
2791 }
2792 m_cat(result, m);
2793
2794 /* set secpolicy */
2795 m = key_sp2mbuf(sp);
2796 if (!m) {
2797 error = ENOBUFS;
2798 goto fail;
2799 }
2800 m_cat(result, m);
2801
2802 if ((result->m_flags & M_PKTHDR) == 0) {
2803 error = EINVAL;
2804 goto fail;
2805 }
2806
2807 if (result->m_len < sizeof(struct sadb_msg)) {
2808 result = m_pullup(result, sizeof(struct sadb_msg));
2809 if (result == NULL) {
2810 error = ENOBUFS;
2811 goto fail;
2812 }
2813 }
2814
2815 result->m_pkthdr.len = 0;
2816 for (m = result; m; m = m->m_next)
2817 result->m_pkthdr.len += m->m_len;
2818
2819 mtod(result, struct sadb_msg *)->sadb_msg_len =
2820 PFKEY_UNIT64(result->m_pkthdr.len);
2821
2822 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2823
2824 fail:
2825 if (result)
2826 m_freem(result);
2827 return error;
2828 }
2829
2830 /* %%% SAD management */
2831 /*
2832 * allocating and initialize new SA head.
2833 * OUT: NULL : failure due to the lack of memory.
2834 * others : pointer to new SA head.
2835 */
2836 static struct secashead *
key_newsah(struct secasindex * saidx)2837 key_newsah(struct secasindex *saidx)
2838 {
2839 struct secashead *sah;
2840
2841 sah = malloc(sizeof(struct secashead), M_IPSEC_SAH,
2842 M_NOWAIT | M_ZERO);
2843 if (sah == NULL) {
2844 PFKEYSTAT_INC(in_nomem);
2845 return (NULL);
2846 }
2847 TAILQ_INIT(&sah->savtree_larval);
2848 TAILQ_INIT(&sah->savtree_alive);
2849 sah->saidx = *saidx;
2850 sah->state = SADB_SASTATE_DEAD;
2851 SAH_INITREF(sah);
2852
2853 KEYDBG(KEY_STAMP,
2854 printf("%s: SAH(%p)\n", __func__, sah));
2855 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
2856 return (sah);
2857 }
2858
2859 static void
key_freesah(struct secashead ** psah)2860 key_freesah(struct secashead **psah)
2861 {
2862 struct secashead *sah = *psah;
2863
2864 if (SAH_DELREF(sah) == 0)
2865 return;
2866
2867 KEYDBG(KEY_STAMP,
2868 printf("%s: last reference to SAH(%p)\n", __func__, sah));
2869 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
2870
2871 *psah = NULL;
2872 key_delsah(sah);
2873 }
2874
2875 static void
key_delsah(struct secashead * sah)2876 key_delsah(struct secashead *sah)
2877 {
2878 IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2879 IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD,
2880 ("Attempt to free non DEAD SAH %p", sah));
2881 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval),
2882 ("Attempt to free SAH %p with LARVAL SA", sah));
2883 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive),
2884 ("Attempt to free SAH %p with ALIVE SA", sah));
2885
2886 free(sah, M_IPSEC_SAH);
2887 }
2888
2889 /*
2890 * allocating a new SA for key_add() and key_getspi() call,
2891 * and copy the values of mhp into new buffer.
2892 * When SAD message type is SADB_GETSPI set SA state to LARVAL.
2893 * For SADB_ADD create and initialize SA with MATURE state.
2894 * OUT: NULL : fail
2895 * others : pointer to new secasvar.
2896 */
2897 static struct secasvar *
key_newsav(const struct sadb_msghdr * mhp,struct secasindex * saidx,uint32_t spi,int * errp)2898 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx,
2899 uint32_t spi, int *errp)
2900 {
2901 struct secashead *sah;
2902 struct secasvar *sav;
2903 int isnew;
2904
2905 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2906 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2907 IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI ||
2908 mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type"));
2909
2910 sav = NULL;
2911 sah = NULL;
2912 /* check SPI value */
2913 switch (saidx->proto) {
2914 case IPPROTO_ESP:
2915 case IPPROTO_AH:
2916 /*
2917 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
2918 * 1-255 reserved by IANA for future use,
2919 * 0 for implementation specific, local use.
2920 */
2921 if (ntohl(spi) <= 255) {
2922 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
2923 __func__, ntohl(spi)));
2924 *errp = EINVAL;
2925 goto done;
2926 }
2927 break;
2928 }
2929
2930 sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO);
2931 if (sav == NULL) {
2932 *errp = ENOBUFS;
2933 goto done;
2934 }
2935 sav->lock = malloc(sizeof(struct mtx), M_IPSEC_MISC,
2936 M_NOWAIT | M_ZERO);
2937 if (sav->lock == NULL) {
2938 *errp = ENOBUFS;
2939 goto done;
2940 }
2941 mtx_init(sav->lock, "ipsec association", NULL, MTX_DEF);
2942 sav->lft_c = uma_zalloc_pcpu(V_key_lft_zone, M_NOWAIT);
2943 if (sav->lft_c == NULL) {
2944 *errp = ENOBUFS;
2945 goto done;
2946 }
2947 counter_u64_zero(sav->lft_c_allocations);
2948 counter_u64_zero(sav->lft_c_bytes);
2949
2950 sav->spi = spi;
2951 sav->seq = mhp->msg->sadb_msg_seq;
2952 sav->state = SADB_SASTATE_LARVAL;
2953 sav->pid = (pid_t)mhp->msg->sadb_msg_pid;
2954 SAV_INITREF(sav);
2955 again:
2956 sah = key_getsah(saidx);
2957 if (sah == NULL) {
2958 /* create a new SA index */
2959 sah = key_newsah(saidx);
2960 if (sah == NULL) {
2961 ipseclog((LOG_DEBUG,
2962 "%s: No more memory.\n", __func__));
2963 *errp = ENOBUFS;
2964 goto done;
2965 }
2966 isnew = 1;
2967 } else
2968 isnew = 0;
2969
2970 sav->sah = sah;
2971 if (mhp->msg->sadb_msg_type == SADB_GETSPI) {
2972 sav->created = time_second;
2973 } else if (sav->state == SADB_SASTATE_LARVAL) {
2974 /*
2975 * Do not call key_setsaval() second time in case
2976 * of `goto again`. We will have MATURE state.
2977 */
2978 *errp = key_setsaval(sav, mhp);
2979 if (*errp != 0)
2980 goto done;
2981 sav->state = SADB_SASTATE_MATURE;
2982 }
2983
2984 SAHTREE_WLOCK();
2985 /*
2986 * Check that existing SAH wasn't unlinked.
2987 * Since we didn't hold the SAHTREE lock, it is possible,
2988 * that callout handler or key_flush() or key_delete() could
2989 * unlink this SAH.
2990 */
2991 if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) {
2992 SAHTREE_WUNLOCK();
2993 key_freesah(&sah); /* reference from key_getsah() */
2994 goto again;
2995 }
2996 if (isnew != 0) {
2997 /*
2998 * Add new SAH into SADB.
2999 *
3000 * XXXAE: we can serialize key_add and key_getspi calls, so
3001 * several threads will not fight in the race.
3002 * Otherwise we should check under SAHTREE lock, that this
3003 * SAH would not added twice.
3004 */
3005 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
3006 /* Add new SAH into hash by addresses */
3007 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
3008 /* Now we are linked in the chain */
3009 sah->state = SADB_SASTATE_MATURE;
3010 /*
3011 * SAV references this new SAH.
3012 * In case of existing SAH we reuse reference
3013 * from key_getsah().
3014 */
3015 SAH_ADDREF(sah);
3016 }
3017 /* Link SAV with SAH */
3018 if (sav->state == SADB_SASTATE_MATURE)
3019 TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain);
3020 else
3021 TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain);
3022 /* Add SAV into SPI hash */
3023 LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash);
3024 SAHTREE_WUNLOCK();
3025 *errp = 0; /* success */
3026 done:
3027 if (*errp != 0) {
3028 if (sav != NULL) {
3029 if (sav->lock != NULL) {
3030 mtx_destroy(sav->lock);
3031 free(sav->lock, M_IPSEC_MISC);
3032 }
3033 if (sav->lft_c != NULL)
3034 uma_zfree_pcpu(V_key_lft_zone, sav->lft_c);
3035 free(sav, M_IPSEC_SA), sav = NULL;
3036 }
3037 if (sah != NULL)
3038 key_freesah(&sah);
3039 if (*errp == ENOBUFS) {
3040 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3041 __func__));
3042 PFKEYSTAT_INC(in_nomem);
3043 }
3044 }
3045 return (sav);
3046 }
3047
3048 /*
3049 * free() SA variable entry.
3050 */
3051 static void
key_cleansav(struct secasvar * sav)3052 key_cleansav(struct secasvar *sav)
3053 {
3054
3055 if (sav->natt != NULL) {
3056 free(sav->natt, M_IPSEC_MISC);
3057 sav->natt = NULL;
3058 }
3059 if (sav->flags & SADB_X_EXT_F_CLONED)
3060 return;
3061 if (sav->tdb_xform != NULL) {
3062 sav->tdb_xform->xf_cleanup(sav);
3063 sav->tdb_xform = NULL;
3064 }
3065 if (sav->key_auth != NULL) {
3066 zfree(sav->key_auth->key_data, M_IPSEC_MISC);
3067 free(sav->key_auth, M_IPSEC_MISC);
3068 sav->key_auth = NULL;
3069 }
3070 if (sav->key_enc != NULL) {
3071 zfree(sav->key_enc->key_data, M_IPSEC_MISC);
3072 free(sav->key_enc, M_IPSEC_MISC);
3073 sav->key_enc = NULL;
3074 }
3075 if (sav->replay != NULL) {
3076 if (sav->replay->bitmap != NULL)
3077 free(sav->replay->bitmap, M_IPSEC_MISC);
3078 free(sav->replay, M_IPSEC_MISC);
3079 sav->replay = NULL;
3080 }
3081 if (sav->lft_h != NULL) {
3082 free(sav->lft_h, M_IPSEC_MISC);
3083 sav->lft_h = NULL;
3084 }
3085 if (sav->lft_s != NULL) {
3086 free(sav->lft_s, M_IPSEC_MISC);
3087 sav->lft_s = NULL;
3088 }
3089 }
3090
3091 /*
3092 * free() SA variable entry.
3093 */
3094 static void
key_delsav(struct secasvar * sav)3095 key_delsav(struct secasvar *sav)
3096 {
3097 IPSEC_ASSERT(sav != NULL, ("null sav"));
3098 IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD,
3099 ("attempt to free non DEAD SA %p", sav));
3100 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0",
3101 sav->refcnt));
3102
3103 /*
3104 * SA must be unlinked from the chain and hashtbl.
3105 * If SA was cloned, we leave all fields untouched,
3106 * except NAT-T config.
3107 */
3108 key_cleansav(sav);
3109 if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) {
3110 mtx_destroy(sav->lock);
3111 free(sav->lock, M_IPSEC_MISC);
3112 uma_zfree_pcpu(V_key_lft_zone, sav->lft_c);
3113 }
3114 free(sav, M_IPSEC_SA);
3115 }
3116
3117 /*
3118 * search SAH.
3119 * OUT:
3120 * NULL : not found
3121 * others : found, referenced pointer to a SAH.
3122 */
3123 static struct secashead *
key_getsah(struct secasindex * saidx)3124 key_getsah(struct secasindex *saidx)
3125 {
3126 SAHTREE_RLOCK_TRACKER;
3127 struct secashead *sah;
3128
3129 SAHTREE_RLOCK();
3130 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
3131 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) {
3132 SAH_ADDREF(sah);
3133 break;
3134 }
3135 }
3136 SAHTREE_RUNLOCK();
3137 return (sah);
3138 }
3139
3140 /*
3141 * Check not to be duplicated SPI.
3142 * OUT:
3143 * 0 : not found
3144 * 1 : found SA with given SPI.
3145 */
3146 static int
key_checkspidup(uint32_t spi)3147 key_checkspidup(uint32_t spi)
3148 {
3149 SAHTREE_RLOCK_TRACKER;
3150 struct secasvar *sav;
3151
3152 /* Assume SPI is in network byte order */
3153 SAHTREE_RLOCK();
3154 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3155 if (sav->spi == spi)
3156 break;
3157 }
3158 SAHTREE_RUNLOCK();
3159 return (sav != NULL);
3160 }
3161
3162 /*
3163 * Search SA by SPI.
3164 * OUT:
3165 * NULL : not found
3166 * others : found, referenced pointer to a SA.
3167 */
3168 static struct secasvar *
key_getsavbyspi(uint32_t spi)3169 key_getsavbyspi(uint32_t spi)
3170 {
3171 SAHTREE_RLOCK_TRACKER;
3172 struct secasvar *sav;
3173
3174 /* Assume SPI is in network byte order */
3175 SAHTREE_RLOCK();
3176 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3177 if (sav->spi != spi)
3178 continue;
3179 SAV_ADDREF(sav);
3180 break;
3181 }
3182 SAHTREE_RUNLOCK();
3183 return (sav);
3184 }
3185
3186 static int
key_updatelifetimes(struct secasvar * sav,const struct sadb_msghdr * mhp)3187 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp)
3188 {
3189 struct seclifetime *lft_h, *lft_s, *tmp;
3190
3191 /* Lifetime extension is optional, check that it is present. */
3192 if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3193 SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) {
3194 /*
3195 * In case of SADB_UPDATE we may need to change
3196 * existing lifetimes.
3197 */
3198 if (sav->state == SADB_SASTATE_MATURE) {
3199 lft_h = lft_s = NULL;
3200 goto reset;
3201 }
3202 return (0);
3203 }
3204 /* Both HARD and SOFT extensions must present */
3205 if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3206 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
3207 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
3208 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
3209 ipseclog((LOG_DEBUG,
3210 "%s: invalid message: missing required header.\n",
3211 __func__));
3212 return (EINVAL);
3213 }
3214 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) ||
3215 SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) {
3216 ipseclog((LOG_DEBUG,
3217 "%s: invalid message: wrong header size.\n", __func__));
3218 return (EINVAL);
3219 }
3220 lft_h = key_dup_lifemsg((const struct sadb_lifetime *)
3221 mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC);
3222 if (lft_h == NULL) {
3223 PFKEYSTAT_INC(in_nomem);
3224 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3225 return (ENOBUFS);
3226 }
3227 lft_s = key_dup_lifemsg((const struct sadb_lifetime *)
3228 mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC);
3229 if (lft_s == NULL) {
3230 PFKEYSTAT_INC(in_nomem);
3231 free(lft_h, M_IPSEC_MISC);
3232 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3233 return (ENOBUFS);
3234 }
3235 reset:
3236 if (sav->state != SADB_SASTATE_LARVAL) {
3237 /*
3238 * key_update() holds reference to this SA,
3239 * so it won't be deleted in meanwhile.
3240 */
3241 SECASVAR_LOCK(sav);
3242 tmp = sav->lft_h;
3243 sav->lft_h = lft_h;
3244 lft_h = tmp;
3245
3246 tmp = sav->lft_s;
3247 sav->lft_s = lft_s;
3248 lft_s = tmp;
3249 SECASVAR_UNLOCK(sav);
3250 if (lft_h != NULL)
3251 free(lft_h, M_IPSEC_MISC);
3252 if (lft_s != NULL)
3253 free(lft_s, M_IPSEC_MISC);
3254 return (0);
3255 }
3256 /* We can update lifetime without holding a lock */
3257 IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n"));
3258 IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n"));
3259 sav->lft_h = lft_h;
3260 sav->lft_s = lft_s;
3261 return (0);
3262 }
3263
3264 /*
3265 * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*.
3266 * You must update these if need. Expects only LARVAL SAs.
3267 * OUT: 0: success.
3268 * !0: failure.
3269 */
3270 static int
key_setsaval(struct secasvar * sav,const struct sadb_msghdr * mhp)3271 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp)
3272 {
3273 const struct sadb_sa *sa0;
3274 const struct sadb_key *key0;
3275 uint32_t replay;
3276 size_t len;
3277 int error;
3278
3279 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3280 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3281 IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL,
3282 ("Attempt to update non LARVAL SA"));
3283
3284 /* XXX rewrite */
3285 error = key_setident(sav->sah, mhp);
3286 if (error != 0)
3287 goto fail;
3288
3289 /* SA */
3290 if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
3291 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
3292 error = EINVAL;
3293 goto fail;
3294 }
3295 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3296 sav->alg_auth = sa0->sadb_sa_auth;
3297 sav->alg_enc = sa0->sadb_sa_encrypt;
3298 sav->flags = sa0->sadb_sa_flags;
3299 if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) {
3300 ipseclog((LOG_DEBUG,
3301 "%s: invalid sa_flags 0x%08x.\n", __func__,
3302 sav->flags));
3303 error = EINVAL;
3304 goto fail;
3305 }
3306
3307 /* Optional replay window */
3308 replay = 0;
3309 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0)
3310 replay = sa0->sadb_sa_replay;
3311 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) {
3312 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) {
3313 error = EINVAL;
3314 goto fail;
3315 }
3316 replay = ((const struct sadb_x_sa_replay *)
3317 mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay;
3318
3319 if (replay > UINT32_MAX - 32) {
3320 ipseclog((LOG_DEBUG,
3321 "%s: replay window too big.\n", __func__));
3322 error = EINVAL;
3323 goto fail;
3324 }
3325
3326 replay = (replay + 7) >> 3;
3327 }
3328
3329 sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC,
3330 M_NOWAIT | M_ZERO);
3331 if (sav->replay == NULL) {
3332 PFKEYSTAT_INC(in_nomem);
3333 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3334 __func__));
3335 error = ENOBUFS;
3336 goto fail;
3337 }
3338
3339 if (replay != 0) {
3340 /* number of 32b blocks to be allocated */
3341 uint32_t bitmap_size;
3342
3343 /* RFC 6479:
3344 * - the allocated replay window size must be
3345 * a power of two.
3346 * - use an extra 32b block as a redundant window.
3347 */
3348 bitmap_size = 1;
3349 while (replay + 4 > bitmap_size)
3350 bitmap_size <<= 1;
3351 bitmap_size = bitmap_size / 4;
3352
3353 sav->replay->bitmap = malloc(
3354 bitmap_size * sizeof(uint32_t), M_IPSEC_MISC,
3355 M_NOWAIT | M_ZERO);
3356 if (sav->replay->bitmap == NULL) {
3357 PFKEYSTAT_INC(in_nomem);
3358 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3359 __func__));
3360 error = ENOBUFS;
3361 goto fail;
3362 }
3363 sav->replay->bitmap_size = bitmap_size;
3364 sav->replay->wsize = replay;
3365 }
3366 }
3367
3368 /* Authentication keys */
3369 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
3370 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) {
3371 error = EINVAL;
3372 goto fail;
3373 }
3374 error = 0;
3375 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3376 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3377 switch (mhp->msg->sadb_msg_satype) {
3378 case SADB_SATYPE_AH:
3379 case SADB_SATYPE_ESP:
3380 case SADB_X_SATYPE_TCPSIGNATURE:
3381 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3382 sav->alg_auth != SADB_X_AALG_NULL)
3383 error = EINVAL;
3384 break;
3385 case SADB_X_SATYPE_IPCOMP:
3386 default:
3387 error = EINVAL;
3388 break;
3389 }
3390 if (error) {
3391 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3392 __func__));
3393 goto fail;
3394 }
3395
3396 sav->key_auth = key_dup_keymsg(key0, len, M_IPSEC_MISC);
3397 if (sav->key_auth == NULL ) {
3398 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3399 __func__));
3400 PFKEYSTAT_INC(in_nomem);
3401 error = ENOBUFS;
3402 goto fail;
3403 }
3404 }
3405
3406 /* Encryption key */
3407 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) {
3408 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) {
3409 error = EINVAL;
3410 goto fail;
3411 }
3412 error = 0;
3413 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3414 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3415 switch (mhp->msg->sadb_msg_satype) {
3416 case SADB_SATYPE_ESP:
3417 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3418 sav->alg_enc != SADB_EALG_NULL) {
3419 error = EINVAL;
3420 break;
3421 }
3422 sav->key_enc = key_dup_keymsg(key0, len, M_IPSEC_MISC);
3423 if (sav->key_enc == NULL) {
3424 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3425 __func__));
3426 PFKEYSTAT_INC(in_nomem);
3427 error = ENOBUFS;
3428 goto fail;
3429 }
3430 break;
3431 case SADB_X_SATYPE_IPCOMP:
3432 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3433 error = EINVAL;
3434 sav->key_enc = NULL; /*just in case*/
3435 break;
3436 case SADB_SATYPE_AH:
3437 case SADB_X_SATYPE_TCPSIGNATURE:
3438 default:
3439 error = EINVAL;
3440 break;
3441 }
3442 if (error) {
3443 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3444 __func__));
3445 goto fail;
3446 }
3447 }
3448
3449 /* set iv */
3450 sav->ivlen = 0;
3451 switch (mhp->msg->sadb_msg_satype) {
3452 case SADB_SATYPE_AH:
3453 if (sav->flags & SADB_X_EXT_DERIV) {
3454 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3455 "given to AH SA.\n", __func__));
3456 error = EINVAL;
3457 goto fail;
3458 }
3459 if (sav->alg_enc != SADB_EALG_NONE) {
3460 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3461 "mismated.\n", __func__));
3462 error = EINVAL;
3463 goto fail;
3464 }
3465 error = xform_init(sav, XF_AH);
3466 break;
3467 case SADB_SATYPE_ESP:
3468 if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) ==
3469 (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) {
3470 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3471 "given to old-esp.\n", __func__));
3472 error = EINVAL;
3473 goto fail;
3474 }
3475 error = xform_init(sav, XF_ESP);
3476 break;
3477 case SADB_X_SATYPE_IPCOMP:
3478 if (sav->alg_auth != SADB_AALG_NONE) {
3479 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3480 "mismated.\n", __func__));
3481 error = EINVAL;
3482 goto fail;
3483 }
3484 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 &&
3485 ntohl(sav->spi) >= 0x10000) {
3486 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3487 __func__));
3488 error = EINVAL;
3489 goto fail;
3490 }
3491 error = xform_init(sav, XF_IPCOMP);
3492 break;
3493 case SADB_X_SATYPE_TCPSIGNATURE:
3494 if (sav->alg_enc != SADB_EALG_NONE) {
3495 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3496 "mismated.\n", __func__));
3497 error = EINVAL;
3498 goto fail;
3499 }
3500 error = xform_init(sav, XF_TCPSIGNATURE);
3501 break;
3502 default:
3503 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3504 error = EPROTONOSUPPORT;
3505 goto fail;
3506 }
3507 if (error) {
3508 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3509 __func__, mhp->msg->sadb_msg_satype));
3510 goto fail;
3511 }
3512
3513 /* Handle NAT-T headers */
3514 error = key_setnatt(sav, mhp);
3515 if (error != 0)
3516 goto fail;
3517
3518 /* Initialize lifetime for CURRENT */
3519 sav->firstused = 0;
3520 sav->created = time_second;
3521
3522 /* lifetimes for HARD and SOFT */
3523 error = key_updatelifetimes(sav, mhp);
3524 if (error == 0)
3525 return (0);
3526 fail:
3527 key_cleansav(sav);
3528 return (error);
3529 }
3530
3531 /*
3532 * subroutine for SADB_GET and SADB_DUMP.
3533 */
3534 static struct mbuf *
key_setdumpsa(struct secasvar * sav,uint8_t type,uint8_t satype,uint32_t seq,uint32_t pid)3535 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype,
3536 uint32_t seq, uint32_t pid)
3537 {
3538 struct seclifetime lft_c;
3539 struct mbuf *result = NULL, *tres = NULL, *m;
3540 int i, dumporder[] = {
3541 SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY,
3542 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3543 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3544 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY,
3545 SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT,
3546 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
3547 SADB_EXT_SENSITIVITY,
3548 SADB_X_EXT_NAT_T_TYPE,
3549 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3550 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3551 SADB_X_EXT_NAT_T_FRAG,
3552 };
3553 uint32_t replay_count;
3554
3555 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3556 if (m == NULL)
3557 goto fail;
3558 result = m;
3559
3560 for (i = nitems(dumporder) - 1; i >= 0; i--) {
3561 m = NULL;
3562 switch (dumporder[i]) {
3563 case SADB_EXT_SA:
3564 m = key_setsadbsa(sav);
3565 if (!m)
3566 goto fail;
3567 break;
3568
3569 case SADB_X_EXT_SA2:
3570 SECASVAR_LOCK(sav);
3571 replay_count = sav->replay ? sav->replay->count : 0;
3572 SECASVAR_UNLOCK(sav);
3573 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
3574 sav->sah->saidx.reqid);
3575 if (!m)
3576 goto fail;
3577 break;
3578
3579 case SADB_X_EXT_SA_REPLAY:
3580 if (sav->replay == NULL ||
3581 sav->replay->wsize <= UINT8_MAX)
3582 continue;
3583
3584 m = key_setsadbxsareplay(sav->replay->wsize);
3585 if (!m)
3586 goto fail;
3587 break;
3588
3589 case SADB_EXT_ADDRESS_SRC:
3590 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3591 &sav->sah->saidx.src.sa,
3592 FULLMASK, IPSEC_ULPROTO_ANY);
3593 if (!m)
3594 goto fail;
3595 break;
3596
3597 case SADB_EXT_ADDRESS_DST:
3598 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3599 &sav->sah->saidx.dst.sa,
3600 FULLMASK, IPSEC_ULPROTO_ANY);
3601 if (!m)
3602 goto fail;
3603 break;
3604
3605 case SADB_EXT_KEY_AUTH:
3606 if (!sav->key_auth)
3607 continue;
3608 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3609 if (!m)
3610 goto fail;
3611 break;
3612
3613 case SADB_EXT_KEY_ENCRYPT:
3614 if (!sav->key_enc)
3615 continue;
3616 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3617 if (!m)
3618 goto fail;
3619 break;
3620
3621 case SADB_EXT_LIFETIME_CURRENT:
3622 lft_c.addtime = sav->created;
3623 lft_c.allocations = (uint32_t)counter_u64_fetch(
3624 sav->lft_c_allocations);
3625 lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes);
3626 lft_c.usetime = sav->firstused;
3627 m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT);
3628 if (!m)
3629 goto fail;
3630 break;
3631
3632 case SADB_EXT_LIFETIME_HARD:
3633 if (!sav->lft_h)
3634 continue;
3635 m = key_setlifetime(sav->lft_h,
3636 SADB_EXT_LIFETIME_HARD);
3637 if (!m)
3638 goto fail;
3639 break;
3640
3641 case SADB_EXT_LIFETIME_SOFT:
3642 if (!sav->lft_s)
3643 continue;
3644 m = key_setlifetime(sav->lft_s,
3645 SADB_EXT_LIFETIME_SOFT);
3646
3647 if (!m)
3648 goto fail;
3649 break;
3650
3651 case SADB_X_EXT_NAT_T_TYPE:
3652 if (sav->natt == NULL)
3653 continue;
3654 m = key_setsadbxtype(UDP_ENCAP_ESPINUDP);
3655 if (!m)
3656 goto fail;
3657 break;
3658
3659 case SADB_X_EXT_NAT_T_DPORT:
3660 if (sav->natt == NULL)
3661 continue;
3662 m = key_setsadbxport(sav->natt->dport,
3663 SADB_X_EXT_NAT_T_DPORT);
3664 if (!m)
3665 goto fail;
3666 break;
3667
3668 case SADB_X_EXT_NAT_T_SPORT:
3669 if (sav->natt == NULL)
3670 continue;
3671 m = key_setsadbxport(sav->natt->sport,
3672 SADB_X_EXT_NAT_T_SPORT);
3673 if (!m)
3674 goto fail;
3675 break;
3676
3677 case SADB_X_EXT_NAT_T_OAI:
3678 if (sav->natt == NULL ||
3679 (sav->natt->flags & IPSEC_NATT_F_OAI) == 0)
3680 continue;
3681 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI,
3682 &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3683 if (!m)
3684 goto fail;
3685 break;
3686 case SADB_X_EXT_NAT_T_OAR:
3687 if (sav->natt == NULL ||
3688 (sav->natt->flags & IPSEC_NATT_F_OAR) == 0)
3689 continue;
3690 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR,
3691 &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3692 if (!m)
3693 goto fail;
3694 break;
3695 case SADB_X_EXT_NAT_T_FRAG:
3696 /* We do not (yet) support those. */
3697 continue;
3698
3699 case SADB_EXT_ADDRESS_PROXY:
3700 case SADB_EXT_IDENTITY_SRC:
3701 case SADB_EXT_IDENTITY_DST:
3702 /* XXX: should we brought from SPD ? */
3703 case SADB_EXT_SENSITIVITY:
3704 default:
3705 continue;
3706 }
3707
3708 if (!m)
3709 goto fail;
3710 if (tres)
3711 m_cat(m, tres);
3712 tres = m;
3713 }
3714
3715 m_cat(result, tres);
3716 tres = NULL;
3717 if (result->m_len < sizeof(struct sadb_msg)) {
3718 result = m_pullup(result, sizeof(struct sadb_msg));
3719 if (result == NULL)
3720 goto fail;
3721 }
3722
3723 result->m_pkthdr.len = 0;
3724 for (m = result; m; m = m->m_next)
3725 result->m_pkthdr.len += m->m_len;
3726
3727 mtod(result, struct sadb_msg *)->sadb_msg_len =
3728 PFKEY_UNIT64(result->m_pkthdr.len);
3729
3730 return result;
3731
3732 fail:
3733 m_freem(result);
3734 m_freem(tres);
3735 return NULL;
3736 }
3737
3738 /*
3739 * set data into sadb_msg.
3740 */
3741 static struct mbuf *
key_setsadbmsg(u_int8_t type,u_int16_t tlen,u_int8_t satype,u_int32_t seq,pid_t pid,u_int16_t reserved)3742 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3743 pid_t pid, u_int16_t reserved)
3744 {
3745 struct mbuf *m;
3746 struct sadb_msg *p;
3747 int len;
3748
3749 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3750 if (len > MCLBYTES)
3751 return NULL;
3752 MGETHDR(m, M_NOWAIT, MT_DATA);
3753 if (m && len > MHLEN) {
3754 if (!(MCLGET(m, M_NOWAIT))) {
3755 m_freem(m);
3756 m = NULL;
3757 }
3758 }
3759 if (!m)
3760 return NULL;
3761 m->m_pkthdr.len = m->m_len = len;
3762 m->m_next = NULL;
3763
3764 p = mtod(m, struct sadb_msg *);
3765
3766 bzero(p, len);
3767 p->sadb_msg_version = PF_KEY_V2;
3768 p->sadb_msg_type = type;
3769 p->sadb_msg_errno = 0;
3770 p->sadb_msg_satype = satype;
3771 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3772 p->sadb_msg_reserved = reserved;
3773 p->sadb_msg_seq = seq;
3774 p->sadb_msg_pid = (u_int32_t)pid;
3775
3776 return m;
3777 }
3778
3779 /*
3780 * copy secasvar data into sadb_address.
3781 */
3782 static struct mbuf *
key_setsadbsa(struct secasvar * sav)3783 key_setsadbsa(struct secasvar *sav)
3784 {
3785 struct mbuf *m;
3786 struct sadb_sa *p;
3787 int len;
3788
3789 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3790 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3791 if (m == NULL)
3792 return (NULL);
3793 m_align(m, len);
3794 m->m_len = len;
3795 p = mtod(m, struct sadb_sa *);
3796 bzero(p, len);
3797 p->sadb_sa_len = PFKEY_UNIT64(len);
3798 p->sadb_sa_exttype = SADB_EXT_SA;
3799 p->sadb_sa_spi = sav->spi;
3800 p->sadb_sa_replay = sav->replay ?
3801 (sav->replay->wsize > UINT8_MAX ? UINT8_MAX :
3802 sav->replay->wsize): 0;
3803 p->sadb_sa_state = sav->state;
3804 p->sadb_sa_auth = sav->alg_auth;
3805 p->sadb_sa_encrypt = sav->alg_enc;
3806 p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX;
3807 return (m);
3808 }
3809
3810 /*
3811 * set data into sadb_address.
3812 */
3813 static struct mbuf *
key_setsadbaddr(u_int16_t exttype,const struct sockaddr * saddr,u_int8_t prefixlen,u_int16_t ul_proto)3814 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3815 u_int8_t prefixlen, u_int16_t ul_proto)
3816 {
3817 struct mbuf *m;
3818 struct sadb_address *p;
3819 size_t len;
3820
3821 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3822 PFKEY_ALIGN8(saddr->sa_len);
3823 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3824 if (m == NULL)
3825 return (NULL);
3826 m_align(m, len);
3827 m->m_len = len;
3828 p = mtod(m, struct sadb_address *);
3829
3830 bzero(p, len);
3831 p->sadb_address_len = PFKEY_UNIT64(len);
3832 p->sadb_address_exttype = exttype;
3833 p->sadb_address_proto = ul_proto;
3834 if (prefixlen == FULLMASK) {
3835 switch (saddr->sa_family) {
3836 case AF_INET:
3837 prefixlen = sizeof(struct in_addr) << 3;
3838 break;
3839 case AF_INET6:
3840 prefixlen = sizeof(struct in6_addr) << 3;
3841 break;
3842 default:
3843 ; /*XXX*/
3844 }
3845 }
3846 p->sadb_address_prefixlen = prefixlen;
3847 p->sadb_address_reserved = 0;
3848
3849 bcopy(saddr,
3850 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3851 saddr->sa_len);
3852
3853 return m;
3854 }
3855
3856 /*
3857 * set data into sadb_x_sa2.
3858 */
3859 static struct mbuf *
key_setsadbxsa2(u_int8_t mode,u_int32_t seq,u_int32_t reqid)3860 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3861 {
3862 struct mbuf *m;
3863 struct sadb_x_sa2 *p;
3864 size_t len;
3865
3866 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3867 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3868 if (m == NULL)
3869 return (NULL);
3870 m_align(m, len);
3871 m->m_len = len;
3872 p = mtod(m, struct sadb_x_sa2 *);
3873
3874 bzero(p, len);
3875 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3876 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3877 p->sadb_x_sa2_mode = mode;
3878 p->sadb_x_sa2_reserved1 = 0;
3879 p->sadb_x_sa2_reserved2 = 0;
3880 p->sadb_x_sa2_sequence = seq;
3881 p->sadb_x_sa2_reqid = reqid;
3882
3883 return m;
3884 }
3885
3886 /*
3887 * Set data into sadb_x_sa_replay.
3888 */
3889 static struct mbuf *
key_setsadbxsareplay(u_int32_t replay)3890 key_setsadbxsareplay(u_int32_t replay)
3891 {
3892 struct mbuf *m;
3893 struct sadb_x_sa_replay *p;
3894 size_t len;
3895
3896 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay));
3897 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3898 if (m == NULL)
3899 return (NULL);
3900 m_align(m, len);
3901 m->m_len = len;
3902 p = mtod(m, struct sadb_x_sa_replay *);
3903
3904 bzero(p, len);
3905 p->sadb_x_sa_replay_len = PFKEY_UNIT64(len);
3906 p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY;
3907 p->sadb_x_sa_replay_replay = (replay << 3);
3908
3909 return m;
3910 }
3911
3912 /*
3913 * Set a type in sadb_x_nat_t_type.
3914 */
3915 static struct mbuf *
key_setsadbxtype(u_int16_t type)3916 key_setsadbxtype(u_int16_t type)
3917 {
3918 struct mbuf *m;
3919 size_t len;
3920 struct sadb_x_nat_t_type *p;
3921
3922 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3923
3924 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3925 if (m == NULL)
3926 return (NULL);
3927 m_align(m, len);
3928 m->m_len = len;
3929 p = mtod(m, struct sadb_x_nat_t_type *);
3930
3931 bzero(p, len);
3932 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3933 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3934 p->sadb_x_nat_t_type_type = type;
3935
3936 return (m);
3937 }
3938 /*
3939 * Set a port in sadb_x_nat_t_port.
3940 * In contrast to default RFC 2367 behaviour, port is in network byte order.
3941 */
3942 static struct mbuf *
key_setsadbxport(u_int16_t port,u_int16_t type)3943 key_setsadbxport(u_int16_t port, u_int16_t type)
3944 {
3945 struct mbuf *m;
3946 size_t len;
3947 struct sadb_x_nat_t_port *p;
3948
3949 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3950
3951 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3952 if (m == NULL)
3953 return (NULL);
3954 m_align(m, len);
3955 m->m_len = len;
3956 p = mtod(m, struct sadb_x_nat_t_port *);
3957
3958 bzero(p, len);
3959 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3960 p->sadb_x_nat_t_port_exttype = type;
3961 p->sadb_x_nat_t_port_port = port;
3962
3963 return (m);
3964 }
3965
3966 /*
3967 * Get port from sockaddr. Port is in network byte order.
3968 */
3969 uint16_t
key_portfromsaddr(struct sockaddr * sa)3970 key_portfromsaddr(struct sockaddr *sa)
3971 {
3972
3973 switch (sa->sa_family) {
3974 #ifdef INET
3975 case AF_INET:
3976 return ((struct sockaddr_in *)sa)->sin_port;
3977 #endif
3978 #ifdef INET6
3979 case AF_INET6:
3980 return ((struct sockaddr_in6 *)sa)->sin6_port;
3981 #endif
3982 }
3983 return (0);
3984 }
3985
3986 /*
3987 * Set port in struct sockaddr. Port is in network byte order.
3988 */
3989 void
key_porttosaddr(struct sockaddr * sa,uint16_t port)3990 key_porttosaddr(struct sockaddr *sa, uint16_t port)
3991 {
3992
3993 switch (sa->sa_family) {
3994 #ifdef INET
3995 case AF_INET:
3996 ((struct sockaddr_in *)sa)->sin_port = port;
3997 break;
3998 #endif
3999 #ifdef INET6
4000 case AF_INET6:
4001 ((struct sockaddr_in6 *)sa)->sin6_port = port;
4002 break;
4003 #endif
4004 default:
4005 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
4006 __func__, sa->sa_family));
4007 break;
4008 }
4009 }
4010
4011 /*
4012 * set data into sadb_x_policy
4013 */
4014 static struct mbuf *
key_setsadbxpolicy(u_int16_t type,u_int8_t dir,u_int32_t id,u_int32_t priority)4015 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority)
4016 {
4017 struct mbuf *m;
4018 struct sadb_x_policy *p;
4019 size_t len;
4020
4021 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4022 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4023 if (m == NULL)
4024 return (NULL);
4025 m_align(m, len);
4026 m->m_len = len;
4027 p = mtod(m, struct sadb_x_policy *);
4028
4029 bzero(p, len);
4030 p->sadb_x_policy_len = PFKEY_UNIT64(len);
4031 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4032 p->sadb_x_policy_type = type;
4033 p->sadb_x_policy_dir = dir;
4034 p->sadb_x_policy_id = id;
4035 p->sadb_x_policy_priority = priority;
4036
4037 return m;
4038 }
4039
4040 /* %%% utilities */
4041 /* Take a key message (sadb_key) from the socket and turn it into one
4042 * of the kernel's key structures (seckey).
4043 *
4044 * IN: pointer to the src
4045 * OUT: NULL no more memory
4046 */
4047 struct seckey *
key_dup_keymsg(const struct sadb_key * src,size_t len,struct malloc_type * type)4048 key_dup_keymsg(const struct sadb_key *src, size_t len,
4049 struct malloc_type *type)
4050 {
4051 struct seckey *dst;
4052
4053 dst = malloc(sizeof(*dst), type, M_NOWAIT);
4054 if (dst != NULL) {
4055 dst->bits = src->sadb_key_bits;
4056 dst->key_data = malloc(len, type, M_NOWAIT);
4057 if (dst->key_data != NULL) {
4058 bcopy((const char *)(src + 1), dst->key_data, len);
4059 } else {
4060 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4061 __func__));
4062 free(dst, type);
4063 dst = NULL;
4064 }
4065 } else {
4066 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4067 __func__));
4068 }
4069 return (dst);
4070 }
4071
4072 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
4073 * turn it into one of the kernel's lifetime structures (seclifetime).
4074 *
4075 * IN: pointer to the destination, source and malloc type
4076 * OUT: NULL, no more memory
4077 */
4078
4079 static struct seclifetime *
key_dup_lifemsg(const struct sadb_lifetime * src,struct malloc_type * type)4080 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type)
4081 {
4082 struct seclifetime *dst;
4083
4084 dst = malloc(sizeof(*dst), type, M_NOWAIT);
4085 if (dst == NULL) {
4086 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4087 return (NULL);
4088 }
4089 dst->allocations = src->sadb_lifetime_allocations;
4090 dst->bytes = src->sadb_lifetime_bytes;
4091 dst->addtime = src->sadb_lifetime_addtime;
4092 dst->usetime = src->sadb_lifetime_usetime;
4093 return (dst);
4094 }
4095
4096 /*
4097 * compare two secasindex structure.
4098 * flag can specify to compare 2 saidxes.
4099 * compare two secasindex structure without both mode and reqid.
4100 * don't compare port.
4101 * IN:
4102 * saidx0: source, it can be in SAD.
4103 * saidx1: object.
4104 * OUT:
4105 * 1 : equal
4106 * 0 : not equal
4107 */
4108 static int
key_cmpsaidx(const struct secasindex * saidx0,const struct secasindex * saidx1,int flag)4109 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1,
4110 int flag)
4111 {
4112
4113 /* sanity */
4114 if (saidx0 == NULL && saidx1 == NULL)
4115 return 1;
4116
4117 if (saidx0 == NULL || saidx1 == NULL)
4118 return 0;
4119
4120 if (saidx0->proto != saidx1->proto)
4121 return 0;
4122
4123 if (flag == CMP_EXACTLY) {
4124 if (saidx0->mode != saidx1->mode)
4125 return 0;
4126 if (saidx0->reqid != saidx1->reqid)
4127 return 0;
4128 if (bcmp(&saidx0->src, &saidx1->src,
4129 saidx0->src.sa.sa_len) != 0 ||
4130 bcmp(&saidx0->dst, &saidx1->dst,
4131 saidx0->dst.sa.sa_len) != 0)
4132 return 0;
4133 } else {
4134 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4135 if (flag == CMP_MODE_REQID || flag == CMP_REQID) {
4136 /*
4137 * If reqid of SPD is non-zero, unique SA is required.
4138 * The result must be of same reqid in this case.
4139 */
4140 if (saidx1->reqid != 0 &&
4141 saidx0->reqid != saidx1->reqid)
4142 return 0;
4143 }
4144
4145 if (flag == CMP_MODE_REQID) {
4146 if (saidx0->mode != IPSEC_MODE_ANY
4147 && saidx0->mode != saidx1->mode)
4148 return 0;
4149 }
4150
4151 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0)
4152 return 0;
4153 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0)
4154 return 0;
4155 }
4156
4157 return 1;
4158 }
4159
4160 /*
4161 * compare two secindex structure exactly.
4162 * IN:
4163 * spidx0: source, it is often in SPD.
4164 * spidx1: object, it is often from PFKEY message.
4165 * OUT:
4166 * 1 : equal
4167 * 0 : not equal
4168 */
4169 static int
key_cmpspidx_exactly(struct secpolicyindex * spidx0,struct secpolicyindex * spidx1)4170 key_cmpspidx_exactly(struct secpolicyindex *spidx0,
4171 struct secpolicyindex *spidx1)
4172 {
4173 /* sanity */
4174 if (spidx0 == NULL && spidx1 == NULL)
4175 return 1;
4176
4177 if (spidx0 == NULL || spidx1 == NULL)
4178 return 0;
4179
4180 if (spidx0->prefs != spidx1->prefs
4181 || spidx0->prefd != spidx1->prefd
4182 || spidx0->ul_proto != spidx1->ul_proto
4183 || spidx0->dir != spidx1->dir)
4184 return 0;
4185
4186 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4187 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4188 }
4189
4190 /*
4191 * compare two secindex structure with mask.
4192 * IN:
4193 * spidx0: source, it is often in SPD.
4194 * spidx1: object, it is often from IP header.
4195 * OUT:
4196 * 1 : equal
4197 * 0 : not equal
4198 */
4199 static int
key_cmpspidx_withmask(struct secpolicyindex * spidx0,struct secpolicyindex * spidx1)4200 key_cmpspidx_withmask(struct secpolicyindex *spidx0,
4201 struct secpolicyindex *spidx1)
4202 {
4203 /* sanity */
4204 if (spidx0 == NULL && spidx1 == NULL)
4205 return 1;
4206
4207 if (spidx0 == NULL || spidx1 == NULL)
4208 return 0;
4209
4210 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4211 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4212 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4213 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4214 return 0;
4215
4216 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4217 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4218 && spidx0->ul_proto != spidx1->ul_proto)
4219 return 0;
4220
4221 switch (spidx0->src.sa.sa_family) {
4222 case AF_INET:
4223 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4224 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4225 return 0;
4226 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4227 &spidx1->src.sin.sin_addr, spidx0->prefs))
4228 return 0;
4229 break;
4230 case AF_INET6:
4231 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4232 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4233 return 0;
4234 /*
4235 * scope_id check. if sin6_scope_id is 0, we regard it
4236 * as a wildcard scope, which matches any scope zone ID.
4237 */
4238 if (spidx0->src.sin6.sin6_scope_id &&
4239 spidx1->src.sin6.sin6_scope_id &&
4240 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4241 return 0;
4242 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4243 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4244 return 0;
4245 break;
4246 default:
4247 /* XXX */
4248 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4249 return 0;
4250 break;
4251 }
4252
4253 switch (spidx0->dst.sa.sa_family) {
4254 case AF_INET:
4255 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4256 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4257 return 0;
4258 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4259 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4260 return 0;
4261 break;
4262 case AF_INET6:
4263 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4264 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4265 return 0;
4266 /*
4267 * scope_id check. if sin6_scope_id is 0, we regard it
4268 * as a wildcard scope, which matches any scope zone ID.
4269 */
4270 if (spidx0->dst.sin6.sin6_scope_id &&
4271 spidx1->dst.sin6.sin6_scope_id &&
4272 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4273 return 0;
4274 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4275 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4276 return 0;
4277 break;
4278 default:
4279 /* XXX */
4280 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4281 return 0;
4282 break;
4283 }
4284
4285 /* XXX Do we check other field ? e.g. flowinfo */
4286
4287 return 1;
4288 }
4289
4290 #ifdef satosin
4291 #undef satosin
4292 #endif
4293 #define satosin(s) ((const struct sockaddr_in *)s)
4294 #ifdef satosin6
4295 #undef satosin6
4296 #endif
4297 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4298 /* returns 0 on match */
4299 int
key_sockaddrcmp(const struct sockaddr * sa1,const struct sockaddr * sa2,int port)4300 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2,
4301 int port)
4302 {
4303 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4304 return 1;
4305
4306 switch (sa1->sa_family) {
4307 #ifdef INET
4308 case AF_INET:
4309 if (sa1->sa_len != sizeof(struct sockaddr_in))
4310 return 1;
4311 if (satosin(sa1)->sin_addr.s_addr !=
4312 satosin(sa2)->sin_addr.s_addr) {
4313 return 1;
4314 }
4315 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4316 return 1;
4317 break;
4318 #endif
4319 #ifdef INET6
4320 case AF_INET6:
4321 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4322 return 1; /*EINVAL*/
4323 if (satosin6(sa1)->sin6_scope_id !=
4324 satosin6(sa2)->sin6_scope_id) {
4325 return 1;
4326 }
4327 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4328 &satosin6(sa2)->sin6_addr)) {
4329 return 1;
4330 }
4331 if (port &&
4332 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4333 return 1;
4334 }
4335 break;
4336 #endif
4337 default:
4338 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4339 return 1;
4340 break;
4341 }
4342
4343 return 0;
4344 }
4345
4346 /* returns 0 on match */
4347 int
key_sockaddrcmp_withmask(const struct sockaddr * sa1,const struct sockaddr * sa2,size_t mask)4348 key_sockaddrcmp_withmask(const struct sockaddr *sa1,
4349 const struct sockaddr *sa2, size_t mask)
4350 {
4351 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4352 return (1);
4353
4354 switch (sa1->sa_family) {
4355 #ifdef INET
4356 case AF_INET:
4357 return (!key_bbcmp(&satosin(sa1)->sin_addr,
4358 &satosin(sa2)->sin_addr, mask));
4359 #endif
4360 #ifdef INET6
4361 case AF_INET6:
4362 if (satosin6(sa1)->sin6_scope_id !=
4363 satosin6(sa2)->sin6_scope_id)
4364 return (1);
4365 return (!key_bbcmp(&satosin6(sa1)->sin6_addr,
4366 &satosin6(sa2)->sin6_addr, mask));
4367 #endif
4368 }
4369 return (1);
4370 }
4371 #undef satosin
4372 #undef satosin6
4373
4374 /*
4375 * compare two buffers with mask.
4376 * IN:
4377 * addr1: source
4378 * addr2: object
4379 * bits: Number of bits to compare
4380 * OUT:
4381 * 1 : equal
4382 * 0 : not equal
4383 */
4384 static int
key_bbcmp(const void * a1,const void * a2,u_int bits)4385 key_bbcmp(const void *a1, const void *a2, u_int bits)
4386 {
4387 const unsigned char *p1 = a1;
4388 const unsigned char *p2 = a2;
4389
4390 /* XXX: This could be considerably faster if we compare a word
4391 * at a time, but it is complicated on LSB Endian machines */
4392
4393 /* Handle null pointers */
4394 if (p1 == NULL || p2 == NULL)
4395 return (p1 == p2);
4396
4397 while (bits >= 8) {
4398 if (*p1++ != *p2++)
4399 return 0;
4400 bits -= 8;
4401 }
4402
4403 if (bits > 0) {
4404 u_int8_t mask = ~((1<<(8-bits))-1);
4405 if ((*p1 & mask) != (*p2 & mask))
4406 return 0;
4407 }
4408 return 1; /* Match! */
4409 }
4410
4411 static void
key_flush_spd(time_t now)4412 key_flush_spd(time_t now)
4413 {
4414 SPTREE_RLOCK_TRACKER;
4415 struct secpolicy_list drainq;
4416 struct secpolicy *sp, *nextsp;
4417 u_int dir;
4418
4419 LIST_INIT(&drainq);
4420 SPTREE_RLOCK();
4421 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4422 TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
4423 if (sp->lifetime == 0 && sp->validtime == 0)
4424 continue;
4425 if ((sp->lifetime &&
4426 now - sp->created > sp->lifetime) ||
4427 (sp->validtime &&
4428 now - sp->lastused > sp->validtime)) {
4429 /* Hold extra reference to send SPDEXPIRE */
4430 SP_ADDREF(sp);
4431 LIST_INSERT_HEAD(&drainq, sp, drainq);
4432 }
4433 }
4434 }
4435 SPTREE_RUNLOCK();
4436 if (LIST_EMPTY(&drainq))
4437 return;
4438
4439 SPTREE_WLOCK();
4440 sp = LIST_FIRST(&drainq);
4441 while (sp != NULL) {
4442 nextsp = LIST_NEXT(sp, drainq);
4443 /* Check that SP is still linked */
4444 if (sp->state != IPSEC_SPSTATE_ALIVE) {
4445 LIST_REMOVE(sp, drainq);
4446 key_freesp(&sp); /* release extra reference */
4447 sp = nextsp;
4448 continue;
4449 }
4450 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
4451 V_spd_size--;
4452 LIST_REMOVE(sp, idhash);
4453 sp->state = IPSEC_SPSTATE_DEAD;
4454 sp = nextsp;
4455 }
4456 V_sp_genid++;
4457 SPTREE_WUNLOCK();
4458 if (SPDCACHE_ENABLED())
4459 spdcache_clear();
4460
4461 sp = LIST_FIRST(&drainq);
4462 while (sp != NULL) {
4463 nextsp = LIST_NEXT(sp, drainq);
4464 key_spdexpire(sp);
4465 key_freesp(&sp); /* release extra reference */
4466 key_freesp(&sp); /* release last reference */
4467 sp = nextsp;
4468 }
4469 }
4470
4471 static void
key_flush_sad(time_t now)4472 key_flush_sad(time_t now)
4473 {
4474 SAHTREE_RLOCK_TRACKER;
4475 struct secashead_list emptyq;
4476 struct secasvar_list drainq, hexpireq, sexpireq, freeq;
4477 struct secashead *sah, *nextsah;
4478 struct secasvar *sav, *nextsav;
4479
4480 LIST_INIT(&drainq);
4481 LIST_INIT(&hexpireq);
4482 LIST_INIT(&sexpireq);
4483 LIST_INIT(&emptyq);
4484
4485 SAHTREE_RLOCK();
4486 TAILQ_FOREACH(sah, &V_sahtree, chain) {
4487 /* Check for empty SAH */
4488 if (TAILQ_EMPTY(&sah->savtree_larval) &&
4489 TAILQ_EMPTY(&sah->savtree_alive)) {
4490 SAH_ADDREF(sah);
4491 LIST_INSERT_HEAD(&emptyq, sah, drainq);
4492 continue;
4493 }
4494 /* Add all stale LARVAL SAs into drainq */
4495 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
4496 if (now - sav->created < V_key_larval_lifetime)
4497 continue;
4498 SAV_ADDREF(sav);
4499 LIST_INSERT_HEAD(&drainq, sav, drainq);
4500 }
4501 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
4502 /* lifetimes aren't specified */
4503 if (sav->lft_h == NULL)
4504 continue;
4505 SECASVAR_LOCK(sav);
4506 /*
4507 * Check again with lock held, because it may
4508 * be updated by SADB_UPDATE.
4509 */
4510 if (sav->lft_h == NULL) {
4511 SECASVAR_UNLOCK(sav);
4512 continue;
4513 }
4514 /*
4515 * RFC 2367:
4516 * HARD lifetimes MUST take precedence over SOFT
4517 * lifetimes, meaning if the HARD and SOFT lifetimes
4518 * are the same, the HARD lifetime will appear on the
4519 * EXPIRE message.
4520 */
4521 /* check HARD lifetime */
4522 if ((sav->lft_h->addtime != 0 &&
4523 now - sav->created > sav->lft_h->addtime) ||
4524 (sav->lft_h->usetime != 0 && sav->firstused &&
4525 now - sav->firstused > sav->lft_h->usetime) ||
4526 (sav->lft_h->bytes != 0 && counter_u64_fetch(
4527 sav->lft_c_bytes) > sav->lft_h->bytes)) {
4528 SECASVAR_UNLOCK(sav);
4529 SAV_ADDREF(sav);
4530 LIST_INSERT_HEAD(&hexpireq, sav, drainq);
4531 continue;
4532 }
4533 /* check SOFT lifetime (only for MATURE SAs) */
4534 if (sav->state == SADB_SASTATE_MATURE && (
4535 (sav->lft_s->addtime != 0 &&
4536 now - sav->created > sav->lft_s->addtime) ||
4537 (sav->lft_s->usetime != 0 && sav->firstused &&
4538 now - sav->firstused > sav->lft_s->usetime) ||
4539 (sav->lft_s->bytes != 0 && counter_u64_fetch(
4540 sav->lft_c_bytes) > sav->lft_s->bytes) ||
4541 (!(sav->flags & SADB_X_SAFLAGS_ESN) &&
4542 (sav->replay != NULL) && (
4543 (sav->replay->count > UINT32_80PCT) ||
4544 (sav->replay->last > UINT32_80PCT))))) {
4545 SECASVAR_UNLOCK(sav);
4546 SAV_ADDREF(sav);
4547 LIST_INSERT_HEAD(&sexpireq, sav, drainq);
4548 continue;
4549 }
4550 SECASVAR_UNLOCK(sav);
4551 }
4552 }
4553 SAHTREE_RUNLOCK();
4554
4555 if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) &&
4556 LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq))
4557 return;
4558
4559 LIST_INIT(&freeq);
4560 SAHTREE_WLOCK();
4561 /* Unlink stale LARVAL SAs */
4562 sav = LIST_FIRST(&drainq);
4563 while (sav != NULL) {
4564 nextsav = LIST_NEXT(sav, drainq);
4565 /* Check that SA is still LARVAL */
4566 if (sav->state != SADB_SASTATE_LARVAL) {
4567 LIST_REMOVE(sav, drainq);
4568 LIST_INSERT_HEAD(&freeq, sav, drainq);
4569 sav = nextsav;
4570 continue;
4571 }
4572 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
4573 LIST_REMOVE(sav, spihash);
4574 sav->state = SADB_SASTATE_DEAD;
4575 sav = nextsav;
4576 }
4577 /* Unlink all SAs with expired HARD lifetime */
4578 sav = LIST_FIRST(&hexpireq);
4579 while (sav != NULL) {
4580 nextsav = LIST_NEXT(sav, drainq);
4581 /* Check that SA is not unlinked */
4582 if (sav->state == SADB_SASTATE_DEAD) {
4583 LIST_REMOVE(sav, drainq);
4584 LIST_INSERT_HEAD(&freeq, sav, drainq);
4585 sav = nextsav;
4586 continue;
4587 }
4588 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
4589 LIST_REMOVE(sav, spihash);
4590 sav->state = SADB_SASTATE_DEAD;
4591 sav = nextsav;
4592 }
4593 /* Mark all SAs with expired SOFT lifetime as DYING */
4594 sav = LIST_FIRST(&sexpireq);
4595 while (sav != NULL) {
4596 nextsav = LIST_NEXT(sav, drainq);
4597 /* Check that SA is not unlinked */
4598 if (sav->state == SADB_SASTATE_DEAD) {
4599 LIST_REMOVE(sav, drainq);
4600 LIST_INSERT_HEAD(&freeq, sav, drainq);
4601 sav = nextsav;
4602 continue;
4603 }
4604 /*
4605 * NOTE: this doesn't change SA order in the chain.
4606 */
4607 sav->state = SADB_SASTATE_DYING;
4608 sav = nextsav;
4609 }
4610 /* Unlink empty SAHs */
4611 sah = LIST_FIRST(&emptyq);
4612 while (sah != NULL) {
4613 nextsah = LIST_NEXT(sah, drainq);
4614 /* Check that SAH is still empty and not unlinked */
4615 if (sah->state == SADB_SASTATE_DEAD ||
4616 !TAILQ_EMPTY(&sah->savtree_larval) ||
4617 !TAILQ_EMPTY(&sah->savtree_alive)) {
4618 LIST_REMOVE(sah, drainq);
4619 key_freesah(&sah); /* release extra reference */
4620 sah = nextsah;
4621 continue;
4622 }
4623 TAILQ_REMOVE(&V_sahtree, sah, chain);
4624 LIST_REMOVE(sah, addrhash);
4625 sah->state = SADB_SASTATE_DEAD;
4626 sah = nextsah;
4627 }
4628 SAHTREE_WUNLOCK();
4629
4630 /* Send SPDEXPIRE messages */
4631 sav = LIST_FIRST(&hexpireq);
4632 while (sav != NULL) {
4633 nextsav = LIST_NEXT(sav, drainq);
4634 key_expire(sav, 1);
4635 key_freesah(&sav->sah); /* release reference from SAV */
4636 key_freesav(&sav); /* release extra reference */
4637 key_freesav(&sav); /* release last reference */
4638 sav = nextsav;
4639 }
4640 sav = LIST_FIRST(&sexpireq);
4641 while (sav != NULL) {
4642 nextsav = LIST_NEXT(sav, drainq);
4643 key_expire(sav, 0);
4644 key_freesav(&sav); /* release extra reference */
4645 sav = nextsav;
4646 }
4647 /* Free stale LARVAL SAs */
4648 sav = LIST_FIRST(&drainq);
4649 while (sav != NULL) {
4650 nextsav = LIST_NEXT(sav, drainq);
4651 key_freesah(&sav->sah); /* release reference from SAV */
4652 key_freesav(&sav); /* release extra reference */
4653 key_freesav(&sav); /* release last reference */
4654 sav = nextsav;
4655 }
4656 /* Free SAs that were unlinked/changed by someone else */
4657 sav = LIST_FIRST(&freeq);
4658 while (sav != NULL) {
4659 nextsav = LIST_NEXT(sav, drainq);
4660 key_freesav(&sav); /* release extra reference */
4661 sav = nextsav;
4662 }
4663 /* Free empty SAH */
4664 sah = LIST_FIRST(&emptyq);
4665 while (sah != NULL) {
4666 nextsah = LIST_NEXT(sah, drainq);
4667 key_freesah(&sah); /* release extra reference */
4668 key_freesah(&sah); /* release last reference */
4669 sah = nextsah;
4670 }
4671 }
4672
4673 static void
key_flush_acq(time_t now)4674 key_flush_acq(time_t now)
4675 {
4676 struct secacq *acq, *nextacq;
4677
4678 /* ACQ tree */
4679 ACQ_LOCK();
4680 acq = LIST_FIRST(&V_acqtree);
4681 while (acq != NULL) {
4682 nextacq = LIST_NEXT(acq, chain);
4683 if (now - acq->created > V_key_blockacq_lifetime) {
4684 LIST_REMOVE(acq, chain);
4685 LIST_REMOVE(acq, addrhash);
4686 LIST_REMOVE(acq, seqhash);
4687 free(acq, M_IPSEC_SAQ);
4688 }
4689 acq = nextacq;
4690 }
4691 ACQ_UNLOCK();
4692 }
4693
4694 static void
key_flush_spacq(time_t now)4695 key_flush_spacq(time_t now)
4696 {
4697 struct secspacq *acq, *nextacq;
4698
4699 /* SP ACQ tree */
4700 SPACQ_LOCK();
4701 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4702 nextacq = LIST_NEXT(acq, chain);
4703 if (now - acq->created > V_key_blockacq_lifetime
4704 && __LIST_CHAINED(acq)) {
4705 LIST_REMOVE(acq, chain);
4706 free(acq, M_IPSEC_SAQ);
4707 }
4708 }
4709 SPACQ_UNLOCK();
4710 }
4711
4712 /*
4713 * time handler.
4714 * scanning SPD and SAD to check status for each entries,
4715 * and do to remove or to expire.
4716 * XXX: year 2038 problem may remain.
4717 */
4718 static void
key_timehandler(void * arg)4719 key_timehandler(void *arg)
4720 {
4721 VNET_ITERATOR_DECL(vnet_iter);
4722 time_t now = time_second;
4723
4724 VNET_LIST_RLOCK_NOSLEEP();
4725 VNET_FOREACH(vnet_iter) {
4726 CURVNET_SET(vnet_iter);
4727 key_flush_spd(now);
4728 key_flush_sad(now);
4729 key_flush_acq(now);
4730 key_flush_spacq(now);
4731 CURVNET_RESTORE();
4732 }
4733 VNET_LIST_RUNLOCK_NOSLEEP();
4734
4735 #ifndef IPSEC_DEBUG2
4736 /* do exchange to tick time !! */
4737 callout_schedule(&key_timer, hz);
4738 #endif /* IPSEC_DEBUG2 */
4739 }
4740
4741 u_long
key_random()4742 key_random()
4743 {
4744 u_long value;
4745
4746 arc4random_buf(&value, sizeof(value));
4747 return value;
4748 }
4749
4750 /*
4751 * map SADB_SATYPE_* to IPPROTO_*.
4752 * if satype == SADB_SATYPE then satype is mapped to ~0.
4753 * OUT:
4754 * 0: invalid satype.
4755 */
4756 static uint8_t
key_satype2proto(uint8_t satype)4757 key_satype2proto(uint8_t satype)
4758 {
4759 switch (satype) {
4760 case SADB_SATYPE_UNSPEC:
4761 return IPSEC_PROTO_ANY;
4762 case SADB_SATYPE_AH:
4763 return IPPROTO_AH;
4764 case SADB_SATYPE_ESP:
4765 return IPPROTO_ESP;
4766 case SADB_X_SATYPE_IPCOMP:
4767 return IPPROTO_IPCOMP;
4768 case SADB_X_SATYPE_TCPSIGNATURE:
4769 return IPPROTO_TCP;
4770 default:
4771 return 0;
4772 }
4773 /* NOTREACHED */
4774 }
4775
4776 /*
4777 * map IPPROTO_* to SADB_SATYPE_*
4778 * OUT:
4779 * 0: invalid protocol type.
4780 */
4781 static uint8_t
key_proto2satype(uint8_t proto)4782 key_proto2satype(uint8_t proto)
4783 {
4784 switch (proto) {
4785 case IPPROTO_AH:
4786 return SADB_SATYPE_AH;
4787 case IPPROTO_ESP:
4788 return SADB_SATYPE_ESP;
4789 case IPPROTO_IPCOMP:
4790 return SADB_X_SATYPE_IPCOMP;
4791 case IPPROTO_TCP:
4792 return SADB_X_SATYPE_TCPSIGNATURE;
4793 default:
4794 return 0;
4795 }
4796 /* NOTREACHED */
4797 }
4798
4799 /* %%% PF_KEY */
4800 /*
4801 * SADB_GETSPI processing is to receive
4802 * <base, (SA2), src address, dst address, (SPI range)>
4803 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4804 * tree with the status of LARVAL, and send
4805 * <base, SA(*), address(SD)>
4806 * to the IKMPd.
4807 *
4808 * IN: mhp: pointer to the pointer to each header.
4809 * OUT: NULL if fail.
4810 * other if success, return pointer to the message to send.
4811 */
4812 static int
key_getspi(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)4813 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4814 {
4815 struct secasindex saidx;
4816 struct sadb_address *src0, *dst0;
4817 struct secasvar *sav;
4818 uint32_t reqid, spi;
4819 int error;
4820 uint8_t mode, proto;
4821
4822 IPSEC_ASSERT(so != NULL, ("null socket"));
4823 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4824 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4825 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4826
4827 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
4828 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)
4829 #ifdef PFKEY_STRICT_CHECKS
4830 || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE)
4831 #endif
4832 ) {
4833 ipseclog((LOG_DEBUG,
4834 "%s: invalid message: missing required header.\n",
4835 __func__));
4836 error = EINVAL;
4837 goto fail;
4838 }
4839 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
4840 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)
4841 #ifdef PFKEY_STRICT_CHECKS
4842 || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE)
4843 #endif
4844 ) {
4845 ipseclog((LOG_DEBUG,
4846 "%s: invalid message: wrong header size.\n", __func__));
4847 error = EINVAL;
4848 goto fail;
4849 }
4850 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
4851 mode = IPSEC_MODE_ANY;
4852 reqid = 0;
4853 } else {
4854 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
4855 ipseclog((LOG_DEBUG,
4856 "%s: invalid message: wrong header size.\n",
4857 __func__));
4858 error = EINVAL;
4859 goto fail;
4860 }
4861 mode = ((struct sadb_x_sa2 *)
4862 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4863 reqid = ((struct sadb_x_sa2 *)
4864 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4865 }
4866
4867 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4868 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4869
4870 /* map satype to proto */
4871 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4872 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4873 __func__));
4874 error = EINVAL;
4875 goto fail;
4876 }
4877 error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
4878 (struct sockaddr *)(dst0 + 1));
4879 if (error != 0) {
4880 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
4881 error = EINVAL;
4882 goto fail;
4883 }
4884 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4885
4886 /* SPI allocation */
4887 spi = key_do_getnewspi(
4888 (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx);
4889 if (spi == 0) {
4890 /*
4891 * Requested SPI or SPI range is not available or
4892 * already used.
4893 */
4894 error = EEXIST;
4895 goto fail;
4896 }
4897 sav = key_newsav(mhp, &saidx, spi, &error);
4898 if (sav == NULL)
4899 goto fail;
4900
4901 if (sav->seq != 0) {
4902 /*
4903 * RFC2367:
4904 * If the SADB_GETSPI message is in response to a
4905 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq
4906 * MUST be the same as the SADB_ACQUIRE message.
4907 *
4908 * XXXAE: However it doesn't definethe behaviour how to
4909 * check this and what to do if it doesn't match.
4910 * Also what we should do if it matches?
4911 *
4912 * We can compare saidx used in SADB_ACQUIRE with saidx
4913 * used in SADB_GETSPI, but this probably can break
4914 * existing software. For now just warn if it doesn't match.
4915 *
4916 * XXXAE: anyway it looks useless.
4917 */
4918 key_acqdone(&saidx, sav->seq);
4919 }
4920 KEYDBG(KEY_STAMP,
4921 printf("%s: SA(%p)\n", __func__, sav));
4922 KEYDBG(KEY_DATA, kdebug_secasv(sav));
4923
4924 {
4925 struct mbuf *n, *nn;
4926 struct sadb_sa *m_sa;
4927 struct sadb_msg *newmsg;
4928 int off, len;
4929
4930 /* create new sadb_msg to reply. */
4931 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4932 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4933
4934 MGETHDR(n, M_NOWAIT, MT_DATA);
4935 if (len > MHLEN) {
4936 if (!(MCLGET(n, M_NOWAIT))) {
4937 m_freem(n);
4938 n = NULL;
4939 }
4940 }
4941 if (!n) {
4942 error = ENOBUFS;
4943 goto fail;
4944 }
4945
4946 n->m_len = len;
4947 n->m_next = NULL;
4948 off = 0;
4949
4950 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4951 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4952
4953 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4954 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4955 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4956 m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */
4957 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4958
4959 IPSEC_ASSERT(off == len,
4960 ("length inconsistency (off %u len %u)", off, len));
4961
4962 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4963 SADB_EXT_ADDRESS_DST);
4964 if (!n->m_next) {
4965 m_freem(n);
4966 error = ENOBUFS;
4967 goto fail;
4968 }
4969
4970 if (n->m_len < sizeof(struct sadb_msg)) {
4971 n = m_pullup(n, sizeof(struct sadb_msg));
4972 if (n == NULL)
4973 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4974 }
4975
4976 n->m_pkthdr.len = 0;
4977 for (nn = n; nn; nn = nn->m_next)
4978 n->m_pkthdr.len += nn->m_len;
4979
4980 newmsg = mtod(n, struct sadb_msg *);
4981 newmsg->sadb_msg_seq = sav->seq;
4982 newmsg->sadb_msg_errno = 0;
4983 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4984
4985 m_freem(m);
4986 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4987 }
4988
4989 fail:
4990 return (key_senderror(so, m, error));
4991 }
4992
4993 /*
4994 * allocating new SPI
4995 * called by key_getspi().
4996 * OUT:
4997 * 0: failure.
4998 * others: success, SPI in network byte order.
4999 */
5000 static uint32_t
key_do_getnewspi(struct sadb_spirange * spirange,struct secasindex * saidx)5001 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx)
5002 {
5003 uint32_t min, max, newspi, t;
5004 int count = V_key_spi_trycnt;
5005
5006 /* set spi range to allocate */
5007 if (spirange != NULL) {
5008 min = spirange->sadb_spirange_min;
5009 max = spirange->sadb_spirange_max;
5010 } else {
5011 min = V_key_spi_minval;
5012 max = V_key_spi_maxval;
5013 }
5014 /* IPCOMP needs 2-byte SPI */
5015 if (saidx->proto == IPPROTO_IPCOMP) {
5016 if (min >= 0x10000)
5017 min = 0xffff;
5018 if (max >= 0x10000)
5019 max = 0xffff;
5020 if (min > max) {
5021 t = min; min = max; max = t;
5022 }
5023 }
5024
5025 if (min == max) {
5026 if (!key_checkspidup(htonl(min))) {
5027 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
5028 __func__, min));
5029 return 0;
5030 }
5031
5032 count--; /* taking one cost. */
5033 newspi = min;
5034 } else {
5035 /* init SPI */
5036 newspi = 0;
5037
5038 /* when requesting to allocate spi ranged */
5039 while (count--) {
5040 /* generate pseudo-random SPI value ranged. */
5041 newspi = min + (key_random() % (max - min + 1));
5042 if (!key_checkspidup(htonl(newspi)))
5043 break;
5044 }
5045
5046 if (count == 0 || newspi == 0) {
5047 ipseclog((LOG_DEBUG,
5048 "%s: failed to allocate SPI.\n", __func__));
5049 return 0;
5050 }
5051 }
5052
5053 /* statistics */
5054 keystat.getspi_count =
5055 (keystat.getspi_count + V_key_spi_trycnt - count) / 2;
5056
5057 return (htonl(newspi));
5058 }
5059
5060 /*
5061 * Find TCP-MD5 SA with corresponding secasindex.
5062 * If not found, return NULL and fill SPI with usable value if needed.
5063 */
5064 static struct secasvar *
key_getsav_tcpmd5(struct secasindex * saidx,uint32_t * spi)5065 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi)
5066 {
5067 SAHTREE_RLOCK_TRACKER;
5068 struct secashead *sah;
5069 struct secasvar *sav;
5070
5071 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto"));
5072 SAHTREE_RLOCK();
5073 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
5074 if (sah->saidx.proto != IPPROTO_TCP)
5075 continue;
5076 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
5077 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
5078 break;
5079 }
5080 if (sah != NULL) {
5081 if (V_key_preferred_oldsa)
5082 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
5083 else
5084 sav = TAILQ_FIRST(&sah->savtree_alive);
5085 if (sav != NULL) {
5086 SAV_ADDREF(sav);
5087 SAHTREE_RUNLOCK();
5088 return (sav);
5089 }
5090 }
5091 if (spi == NULL) {
5092 /* No SPI required */
5093 SAHTREE_RUNLOCK();
5094 return (NULL);
5095 }
5096 /* Check that SPI is unique */
5097 LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) {
5098 if (sav->spi == *spi)
5099 break;
5100 }
5101 if (sav == NULL) {
5102 SAHTREE_RUNLOCK();
5103 /* SPI is already unique */
5104 return (NULL);
5105 }
5106 SAHTREE_RUNLOCK();
5107 /* XXX: not optimal */
5108 *spi = key_do_getnewspi(NULL, saidx);
5109 return (NULL);
5110 }
5111
5112 static int
key_updateaddresses(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp,struct secasvar * sav,struct secasindex * saidx)5113 key_updateaddresses(struct socket *so, struct mbuf *m,
5114 const struct sadb_msghdr *mhp, struct secasvar *sav,
5115 struct secasindex *saidx)
5116 {
5117 struct sockaddr *newaddr;
5118 struct secashead *sah;
5119 struct secasvar *newsav, *tmp;
5120 struct mbuf *n;
5121 int error, isnew;
5122
5123 /* Check that we need to change SAH */
5124 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) {
5125 newaddr = (struct sockaddr *)(
5126 ((struct sadb_address *)
5127 mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1);
5128 bcopy(newaddr, &saidx->src, newaddr->sa_len);
5129 key_porttosaddr(&saidx->src.sa, 0);
5130 }
5131 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5132 newaddr = (struct sockaddr *)(
5133 ((struct sadb_address *)
5134 mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1);
5135 bcopy(newaddr, &saidx->dst, newaddr->sa_len);
5136 key_porttosaddr(&saidx->dst.sa, 0);
5137 }
5138 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5139 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5140 error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa);
5141 if (error != 0) {
5142 ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n",
5143 __func__));
5144 return (error);
5145 }
5146
5147 sah = key_getsah(saidx);
5148 if (sah == NULL) {
5149 /* create a new SA index */
5150 sah = key_newsah(saidx);
5151 if (sah == NULL) {
5152 ipseclog((LOG_DEBUG,
5153 "%s: No more memory.\n", __func__));
5154 return (ENOBUFS);
5155 }
5156 isnew = 2; /* SAH is new */
5157 } else
5158 isnew = 1; /* existing SAH is referenced */
5159 } else {
5160 /*
5161 * src and dst addresses are still the same.
5162 * Do we want to change NAT-T config?
5163 */
5164 if (sav->sah->saidx.proto != IPPROTO_ESP ||
5165 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5166 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5167 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5168 ipseclog((LOG_DEBUG,
5169 "%s: invalid message: missing required header.\n",
5170 __func__));
5171 return (EINVAL);
5172 }
5173 /* We hold reference to SA, thus SAH will be referenced too. */
5174 sah = sav->sah;
5175 isnew = 0;
5176 }
5177
5178 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA,
5179 M_NOWAIT | M_ZERO);
5180 if (newsav == NULL) {
5181 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5182 error = ENOBUFS;
5183 goto fail;
5184 }
5185
5186 /* Clone SA's content into newsav */
5187 SAV_INITREF(newsav);
5188 bcopy(sav, newsav, offsetof(struct secasvar, chain));
5189 /*
5190 * We create new NAT-T config if it is needed.
5191 * Old NAT-T config will be freed by key_cleansav() when
5192 * last reference to SA will be released.
5193 */
5194 newsav->natt = NULL;
5195 newsav->sah = sah;
5196 newsav->state = SADB_SASTATE_MATURE;
5197 error = key_setnatt(newsav, mhp);
5198 if (error != 0)
5199 goto fail;
5200
5201 SAHTREE_WLOCK();
5202 /* Check that SA is still alive */
5203 if (sav->state == SADB_SASTATE_DEAD) {
5204 /* SA was unlinked */
5205 SAHTREE_WUNLOCK();
5206 error = ESRCH;
5207 goto fail;
5208 }
5209
5210 /* Unlink SA from SAH and SPI hash */
5211 IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0,
5212 ("SA is already cloned"));
5213 IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE ||
5214 sav->state == SADB_SASTATE_DYING,
5215 ("Wrong SA state %u\n", sav->state));
5216 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
5217 LIST_REMOVE(sav, spihash);
5218 sav->state = SADB_SASTATE_DEAD;
5219
5220 /*
5221 * Link new SA with SAH. Keep SAs ordered by
5222 * create time (newer are first).
5223 */
5224 TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) {
5225 if (newsav->created > tmp->created) {
5226 TAILQ_INSERT_BEFORE(tmp, newsav, chain);
5227 break;
5228 }
5229 }
5230 if (tmp == NULL)
5231 TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain);
5232
5233 /* Add new SA into SPI hash. */
5234 LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash);
5235
5236 /* Add new SAH into SADB. */
5237 if (isnew == 2) {
5238 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
5239 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
5240 sah->state = SADB_SASTATE_MATURE;
5241 SAH_ADDREF(sah); /* newsav references new SAH */
5242 }
5243 /*
5244 * isnew == 1 -> @sah was referenced by key_getsah().
5245 * isnew == 0 -> we use the same @sah, that was used by @sav,
5246 * and we use its reference for @newsav.
5247 */
5248 SECASVAR_LOCK(sav);
5249 /* XXX: replace cntr with pointer? */
5250 newsav->cntr = sav->cntr;
5251 sav->flags |= SADB_X_EXT_F_CLONED;
5252 SECASVAR_UNLOCK(sav);
5253
5254 SAHTREE_WUNLOCK();
5255
5256 KEYDBG(KEY_STAMP,
5257 printf("%s: SA(%p) cloned into SA(%p)\n",
5258 __func__, sav, newsav));
5259 KEYDBG(KEY_DATA, kdebug_secasv(newsav));
5260
5261 key_freesav(&sav); /* release last reference */
5262
5263 /* set msg buf from mhp */
5264 n = key_getmsgbuf_x1(m, mhp);
5265 if (n == NULL) {
5266 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5267 return (ENOBUFS);
5268 }
5269 m_freem(m);
5270 key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5271 return (0);
5272 fail:
5273 if (isnew != 0)
5274 key_freesah(&sah);
5275 if (newsav != NULL) {
5276 if (newsav->natt != NULL)
5277 free(newsav->natt, M_IPSEC_MISC);
5278 free(newsav, M_IPSEC_SA);
5279 }
5280 return (error);
5281 }
5282
5283 /*
5284 * SADB_UPDATE processing
5285 * receive
5286 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5287 * key(AE), (identity(SD),) (sensitivity)>
5288 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5289 * and send
5290 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5291 * (identity(SD),) (sensitivity)>
5292 * to the ikmpd.
5293 *
5294 * m will always be freed.
5295 */
5296 static int
key_update(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)5297 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5298 {
5299 struct secasindex saidx;
5300 struct sadb_address *src0, *dst0;
5301 struct sadb_sa *sa0;
5302 struct secasvar *sav;
5303 uint32_t reqid;
5304 int error;
5305 uint8_t mode, proto;
5306
5307 IPSEC_ASSERT(so != NULL, ("null socket"));
5308 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5309 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5310 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5311
5312 /* map satype to proto */
5313 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5314 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5315 __func__));
5316 return key_senderror(so, m, EINVAL);
5317 }
5318
5319 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5320 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5321 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5322 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5323 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5324 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5325 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5326 ipseclog((LOG_DEBUG,
5327 "%s: invalid message: missing required header.\n",
5328 __func__));
5329 return key_senderror(so, m, EINVAL);
5330 }
5331 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5332 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5333 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5334 ipseclog((LOG_DEBUG,
5335 "%s: invalid message: wrong header size.\n", __func__));
5336 return key_senderror(so, m, EINVAL);
5337 }
5338 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5339 mode = IPSEC_MODE_ANY;
5340 reqid = 0;
5341 } else {
5342 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5343 ipseclog((LOG_DEBUG,
5344 "%s: invalid message: wrong header size.\n",
5345 __func__));
5346 return key_senderror(so, m, EINVAL);
5347 }
5348 mode = ((struct sadb_x_sa2 *)
5349 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5350 reqid = ((struct sadb_x_sa2 *)
5351 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5352 }
5353
5354 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5355 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5356 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5357
5358 /*
5359 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5360 * SADB_UPDATE message.
5361 */
5362 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5363 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5364 #ifdef PFKEY_STRICT_CHECKS
5365 return key_senderror(so, m, EINVAL);
5366 #endif
5367 }
5368 error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5369 (struct sockaddr *)(dst0 + 1));
5370 if (error != 0) {
5371 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5372 return key_senderror(so, m, error);
5373 }
5374 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5375 sav = key_getsavbyspi(sa0->sadb_sa_spi);
5376 if (sav == NULL) {
5377 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n",
5378 __func__, ntohl(sa0->sadb_sa_spi)));
5379 return key_senderror(so, m, EINVAL);
5380 }
5381 /*
5382 * Check that SADB_UPDATE issued by the same process that did
5383 * SADB_GETSPI or SADB_ADD.
5384 */
5385 if (sav->pid != mhp->msg->sadb_msg_pid) {
5386 ipseclog((LOG_DEBUG,
5387 "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__,
5388 ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid));
5389 key_freesav(&sav);
5390 return key_senderror(so, m, EINVAL);
5391 }
5392 /* saidx should match with SA. */
5393 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) {
5394 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u\n",
5395 __func__, ntohl(sav->spi)));
5396 key_freesav(&sav);
5397 return key_senderror(so, m, ESRCH);
5398 }
5399
5400 if (sav->state == SADB_SASTATE_LARVAL) {
5401 if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5402 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) ||
5403 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5404 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) {
5405 ipseclog((LOG_DEBUG,
5406 "%s: invalid message: missing required header.\n",
5407 __func__));
5408 key_freesav(&sav);
5409 return key_senderror(so, m, EINVAL);
5410 }
5411 /*
5412 * We can set any values except src, dst and SPI.
5413 */
5414 error = key_setsaval(sav, mhp);
5415 if (error != 0) {
5416 key_freesav(&sav);
5417 return (key_senderror(so, m, error));
5418 }
5419 /* Change SA state to MATURE */
5420 SAHTREE_WLOCK();
5421 if (sav->state != SADB_SASTATE_LARVAL) {
5422 /* SA was deleted or another thread made it MATURE. */
5423 SAHTREE_WUNLOCK();
5424 key_freesav(&sav);
5425 return (key_senderror(so, m, ESRCH));
5426 }
5427 /*
5428 * NOTE: we keep SAs in savtree_alive ordered by created
5429 * time. When SA's state changed from LARVAL to MATURE,
5430 * we update its created time in key_setsaval() and move
5431 * it into head of savtree_alive.
5432 */
5433 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
5434 TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain);
5435 sav->state = SADB_SASTATE_MATURE;
5436 SAHTREE_WUNLOCK();
5437 } else {
5438 /*
5439 * For DYING and MATURE SA we can change only state
5440 * and lifetimes. Report EINVAL if something else attempted
5441 * to change.
5442 */
5443 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5444 !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
5445 key_freesav(&sav);
5446 return (key_senderror(so, m, EINVAL));
5447 }
5448 error = key_updatelifetimes(sav, mhp);
5449 if (error != 0) {
5450 key_freesav(&sav);
5451 return (key_senderror(so, m, error));
5452 }
5453 /*
5454 * This is FreeBSD extension to RFC2367.
5455 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or
5456 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change
5457 * SA addresses (for example to implement MOBIKE protocol
5458 * as described in RFC4555). Also we allow to change
5459 * NAT-T config.
5460 */
5461 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5462 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) ||
5463 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5464 sav->natt != NULL) {
5465 error = key_updateaddresses(so, m, mhp, sav, &saidx);
5466 key_freesav(&sav);
5467 if (error != 0)
5468 return (key_senderror(so, m, error));
5469 return (0);
5470 }
5471 /* Check that SA is still alive */
5472 SAHTREE_WLOCK();
5473 if (sav->state == SADB_SASTATE_DEAD) {
5474 /* SA was unlinked */
5475 SAHTREE_WUNLOCK();
5476 key_freesav(&sav);
5477 return (key_senderror(so, m, ESRCH));
5478 }
5479 /*
5480 * NOTE: there is possible state moving from DYING to MATURE,
5481 * but this doesn't change created time, so we won't reorder
5482 * this SA.
5483 */
5484 sav->state = SADB_SASTATE_MATURE;
5485 SAHTREE_WUNLOCK();
5486 }
5487 KEYDBG(KEY_STAMP,
5488 printf("%s: SA(%p)\n", __func__, sav));
5489 KEYDBG(KEY_DATA, kdebug_secasv(sav));
5490 key_freesav(&sav);
5491
5492 {
5493 struct mbuf *n;
5494
5495 /* set msg buf from mhp */
5496 n = key_getmsgbuf_x1(m, mhp);
5497 if (n == NULL) {
5498 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5499 return key_senderror(so, m, ENOBUFS);
5500 }
5501
5502 m_freem(m);
5503 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5504 }
5505 }
5506
5507 /*
5508 * SADB_ADD processing
5509 * add an entry to SA database, when received
5510 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5511 * key(AE), (identity(SD),) (sensitivity)>
5512 * from the ikmpd,
5513 * and send
5514 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5515 * (identity(SD),) (sensitivity)>
5516 * to the ikmpd.
5517 *
5518 * IGNORE identity and sensitivity messages.
5519 *
5520 * m will always be freed.
5521 */
5522 static int
key_add(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)5523 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5524 {
5525 struct secasindex saidx;
5526 struct sadb_address *src0, *dst0;
5527 struct sadb_sa *sa0;
5528 struct secasvar *sav;
5529 uint32_t reqid, spi;
5530 uint8_t mode, proto;
5531 int error;
5532
5533 IPSEC_ASSERT(so != NULL, ("null socket"));
5534 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5535 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5536 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5537
5538 /* map satype to proto */
5539 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5540 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5541 __func__));
5542 return key_senderror(so, m, EINVAL);
5543 }
5544
5545 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5546 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5547 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5548 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && (
5549 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5550 SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) ||
5551 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && (
5552 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) ||
5553 SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) ||
5554 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5555 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5556 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5557 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5558 ipseclog((LOG_DEBUG,
5559 "%s: invalid message: missing required header.\n",
5560 __func__));
5561 return key_senderror(so, m, EINVAL);
5562 }
5563 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5564 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5565 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5566 ipseclog((LOG_DEBUG,
5567 "%s: invalid message: wrong header size.\n", __func__));
5568 return key_senderror(so, m, EINVAL);
5569 }
5570 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5571 mode = IPSEC_MODE_ANY;
5572 reqid = 0;
5573 } else {
5574 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5575 ipseclog((LOG_DEBUG,
5576 "%s: invalid message: wrong header size.\n",
5577 __func__));
5578 return key_senderror(so, m, EINVAL);
5579 }
5580 mode = ((struct sadb_x_sa2 *)
5581 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5582 reqid = ((struct sadb_x_sa2 *)
5583 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5584 }
5585
5586 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5587 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5588 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5589
5590 /*
5591 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5592 * SADB_ADD message.
5593 */
5594 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5595 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5596 #ifdef PFKEY_STRICT_CHECKS
5597 return key_senderror(so, m, EINVAL);
5598 #endif
5599 }
5600 error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5601 (struct sockaddr *)(dst0 + 1));
5602 if (error != 0) {
5603 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5604 return key_senderror(so, m, error);
5605 }
5606 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5607 spi = sa0->sadb_sa_spi;
5608 /*
5609 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using
5610 * secasindex.
5611 * XXXAE: IPComp seems also doesn't use SPI.
5612 */
5613 if (proto == IPPROTO_TCP) {
5614 sav = key_getsav_tcpmd5(&saidx, &spi);
5615 if (sav == NULL && spi == 0) {
5616 /* Failed to allocate SPI */
5617 ipseclog((LOG_DEBUG, "%s: SA already exists.\n",
5618 __func__));
5619 return key_senderror(so, m, EEXIST);
5620 }
5621 /* XXX: SPI that we report back can have another value */
5622 } else {
5623 /* We can create new SA only if SPI is different. */
5624 sav = key_getsavbyspi(spi);
5625 }
5626 if (sav != NULL) {
5627 key_freesav(&sav);
5628 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5629 return key_senderror(so, m, EEXIST);
5630 }
5631
5632 sav = key_newsav(mhp, &saidx, spi, &error);
5633 if (sav == NULL)
5634 return key_senderror(so, m, error);
5635 KEYDBG(KEY_STAMP,
5636 printf("%s: return SA(%p)\n", __func__, sav));
5637 KEYDBG(KEY_DATA, kdebug_secasv(sav));
5638 /*
5639 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule
5640 * ACQ for deletion.
5641 */
5642 if (sav->seq != 0)
5643 key_acqdone(&saidx, sav->seq);
5644
5645 {
5646 /*
5647 * Don't call key_freesav() on error here, as we would like to
5648 * keep the SA in the database.
5649 */
5650 struct mbuf *n;
5651
5652 /* set msg buf from mhp */
5653 n = key_getmsgbuf_x1(m, mhp);
5654 if (n == NULL) {
5655 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5656 return key_senderror(so, m, ENOBUFS);
5657 }
5658
5659 m_freem(m);
5660 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5661 }
5662 }
5663
5664 /*
5665 * NAT-T support.
5666 * IKEd may request the use ESP in UDP encapsulation when it detects the
5667 * presence of NAT. It uses NAT-T extension headers for such SAs to specify
5668 * parameters needed for encapsulation and decapsulation. These PF_KEY
5669 * extension headers are not standardized, so this comment addresses our
5670 * implementation.
5671 * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only
5672 * UDP_ENCAP_ESPINUDP as described in RFC3948.
5673 * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for
5674 * UDP header. We use these ports in UDP encapsulation procedure, also we
5675 * can check them in UDP decapsulation procedure.
5676 * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or
5677 * responder. These addresses can be used for transport mode to adjust
5678 * checksum after decapsulation and decryption. Since original IP addresses
5679 * used by peer usually different (we detected presence of NAT), TCP/UDP
5680 * pseudo header checksum and IP header checksum was calculated using original
5681 * addresses. After decapsulation and decryption we need to adjust checksum
5682 * to have correct datagram.
5683 *
5684 * We expect presence of NAT-T extension headers only in SADB_ADD and
5685 * SADB_UPDATE messages. We report NAT-T extension headers in replies
5686 * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages.
5687 */
5688 static int
key_setnatt(struct secasvar * sav,const struct sadb_msghdr * mhp)5689 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp)
5690 {
5691 struct sadb_x_nat_t_port *port;
5692 struct sadb_x_nat_t_type *type;
5693 struct sadb_address *oai, *oar;
5694 struct sockaddr *sa;
5695 uint32_t addr;
5696 uint16_t cksum;
5697
5698 IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized"));
5699 /*
5700 * Ignore NAT-T headers if sproto isn't ESP.
5701 */
5702 if (sav->sah->saidx.proto != IPPROTO_ESP)
5703 return (0);
5704
5705 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) &&
5706 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) &&
5707 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5708 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5709 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5710 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5711 ipseclog((LOG_DEBUG,
5712 "%s: invalid message: wrong header size.\n",
5713 __func__));
5714 return (EINVAL);
5715 }
5716 } else
5717 return (0);
5718
5719 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5720 if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) {
5721 ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n",
5722 __func__, type->sadb_x_nat_t_type_type));
5723 return (EINVAL);
5724 }
5725 /*
5726 * Allocate storage for NAT-T config.
5727 * On error it will be released by key_cleansav().
5728 */
5729 sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC,
5730 M_NOWAIT | M_ZERO);
5731 if (sav->natt == NULL) {
5732 PFKEYSTAT_INC(in_nomem);
5733 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5734 return (ENOBUFS);
5735 }
5736 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5737 if (port->sadb_x_nat_t_port_port == 0) {
5738 ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n",
5739 __func__));
5740 return (EINVAL);
5741 }
5742 sav->natt->sport = port->sadb_x_nat_t_port_port;
5743 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5744 if (port->sadb_x_nat_t_port_port == 0) {
5745 ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n",
5746 __func__));
5747 return (EINVAL);
5748 }
5749 sav->natt->dport = port->sadb_x_nat_t_port_port;
5750
5751 /*
5752 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional
5753 * and needed only for transport mode IPsec.
5754 * Usually NAT translates only one address, but it is possible,
5755 * that both addresses could be translated.
5756 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA.
5757 */
5758 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) {
5759 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) {
5760 ipseclog((LOG_DEBUG,
5761 "%s: invalid message: wrong header size.\n",
5762 __func__));
5763 return (EINVAL);
5764 }
5765 oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5766 } else
5767 oai = NULL;
5768 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) {
5769 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) {
5770 ipseclog((LOG_DEBUG,
5771 "%s: invalid message: wrong header size.\n",
5772 __func__));
5773 return (EINVAL);
5774 }
5775 oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5776 } else
5777 oar = NULL;
5778
5779 /* Initialize addresses only for transport mode */
5780 if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) {
5781 cksum = 0;
5782 if (oai != NULL) {
5783 /* Currently we support only AF_INET */
5784 sa = (struct sockaddr *)(oai + 1);
5785 if (sa->sa_family != AF_INET ||
5786 sa->sa_len != sizeof(struct sockaddr_in)) {
5787 ipseclog((LOG_DEBUG,
5788 "%s: wrong NAT-OAi header.\n",
5789 __func__));
5790 return (EINVAL);
5791 }
5792 /* Ignore address if it the same */
5793 if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
5794 sav->sah->saidx.src.sin.sin_addr.s_addr) {
5795 bcopy(sa, &sav->natt->oai.sa, sa->sa_len);
5796 sav->natt->flags |= IPSEC_NATT_F_OAI;
5797 /* Calculate checksum delta */
5798 addr = sav->sah->saidx.src.sin.sin_addr.s_addr;
5799 cksum = in_addword(cksum, ~addr >> 16);
5800 cksum = in_addword(cksum, ~addr & 0xffff);
5801 addr = sav->natt->oai.sin.sin_addr.s_addr;
5802 cksum = in_addword(cksum, addr >> 16);
5803 cksum = in_addword(cksum, addr & 0xffff);
5804 }
5805 }
5806 if (oar != NULL) {
5807 /* Currently we support only AF_INET */
5808 sa = (struct sockaddr *)(oar + 1);
5809 if (sa->sa_family != AF_INET ||
5810 sa->sa_len != sizeof(struct sockaddr_in)) {
5811 ipseclog((LOG_DEBUG,
5812 "%s: wrong NAT-OAr header.\n",
5813 __func__));
5814 return (EINVAL);
5815 }
5816 /* Ignore address if it the same */
5817 if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
5818 sav->sah->saidx.dst.sin.sin_addr.s_addr) {
5819 bcopy(sa, &sav->natt->oar.sa, sa->sa_len);
5820 sav->natt->flags |= IPSEC_NATT_F_OAR;
5821 /* Calculate checksum delta */
5822 addr = sav->sah->saidx.dst.sin.sin_addr.s_addr;
5823 cksum = in_addword(cksum, ~addr >> 16);
5824 cksum = in_addword(cksum, ~addr & 0xffff);
5825 addr = sav->natt->oar.sin.sin_addr.s_addr;
5826 cksum = in_addword(cksum, addr >> 16);
5827 cksum = in_addword(cksum, addr & 0xffff);
5828 }
5829 }
5830 sav->natt->cksum = cksum;
5831 }
5832 return (0);
5833 }
5834
5835 static int
key_setident(struct secashead * sah,const struct sadb_msghdr * mhp)5836 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp)
5837 {
5838 const struct sadb_ident *idsrc, *iddst;
5839
5840 IPSEC_ASSERT(sah != NULL, ("null secashead"));
5841 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5842 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5843
5844 /* don't make buffer if not there */
5845 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) &&
5846 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
5847 sah->idents = NULL;
5848 sah->identd = NULL;
5849 return (0);
5850 }
5851
5852 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) ||
5853 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
5854 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5855 return (EINVAL);
5856 }
5857
5858 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5859 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5860
5861 /* validity check */
5862 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5863 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5864 return EINVAL;
5865 }
5866
5867 switch (idsrc->sadb_ident_type) {
5868 case SADB_IDENTTYPE_PREFIX:
5869 case SADB_IDENTTYPE_FQDN:
5870 case SADB_IDENTTYPE_USERFQDN:
5871 default:
5872 /* XXX do nothing */
5873 sah->idents = NULL;
5874 sah->identd = NULL;
5875 return 0;
5876 }
5877
5878 /* make structure */
5879 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5880 if (sah->idents == NULL) {
5881 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5882 return ENOBUFS;
5883 }
5884 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5885 if (sah->identd == NULL) {
5886 free(sah->idents, M_IPSEC_MISC);
5887 sah->idents = NULL;
5888 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5889 return ENOBUFS;
5890 }
5891 sah->idents->type = idsrc->sadb_ident_type;
5892 sah->idents->id = idsrc->sadb_ident_id;
5893
5894 sah->identd->type = iddst->sadb_ident_type;
5895 sah->identd->id = iddst->sadb_ident_id;
5896
5897 return 0;
5898 }
5899
5900 /*
5901 * m will not be freed on return.
5902 * it is caller's responsibility to free the result.
5903 *
5904 * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers
5905 * from the request in defined order.
5906 */
5907 static struct mbuf *
key_getmsgbuf_x1(struct mbuf * m,const struct sadb_msghdr * mhp)5908 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5909 {
5910 struct mbuf *n;
5911
5912 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5913 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5914 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5915
5916 /* create new sadb_msg to reply. */
5917 n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED,
5918 SADB_EXT_SA, SADB_X_EXT_SA2,
5919 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5920 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5921 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5922 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5923 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5924 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC,
5925 SADB_X_EXT_NEW_ADDRESS_DST);
5926 if (!n)
5927 return NULL;
5928
5929 if (n->m_len < sizeof(struct sadb_msg)) {
5930 n = m_pullup(n, sizeof(struct sadb_msg));
5931 if (n == NULL)
5932 return NULL;
5933 }
5934 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5935 mtod(n, struct sadb_msg *)->sadb_msg_len =
5936 PFKEY_UNIT64(n->m_pkthdr.len);
5937
5938 return n;
5939 }
5940
5941 /*
5942 * SADB_DELETE processing
5943 * receive
5944 * <base, SA(*), address(SD)>
5945 * from the ikmpd, and set SADB_SASTATE_DEAD,
5946 * and send,
5947 * <base, SA(*), address(SD)>
5948 * to the ikmpd.
5949 *
5950 * m will always be freed.
5951 */
5952 static int
key_delete(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)5953 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5954 {
5955 struct secasindex saidx;
5956 struct sadb_address *src0, *dst0;
5957 struct secasvar *sav;
5958 struct sadb_sa *sa0;
5959 uint8_t proto;
5960
5961 IPSEC_ASSERT(so != NULL, ("null socket"));
5962 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5963 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5964 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5965
5966 /* map satype to proto */
5967 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5968 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5969 __func__));
5970 return key_senderror(so, m, EINVAL);
5971 }
5972
5973 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5974 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5975 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5976 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5977 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5978 __func__));
5979 return key_senderror(so, m, EINVAL);
5980 }
5981
5982 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5983 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5984
5985 if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
5986 (struct sockaddr *)(dst0 + 1)) != 0) {
5987 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5988 return (key_senderror(so, m, EINVAL));
5989 }
5990 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5991 if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
5992 /*
5993 * Caller wants us to delete all non-LARVAL SAs
5994 * that match the src/dst. This is used during
5995 * IKE INITIAL-CONTACT.
5996 * XXXAE: this looks like some extension to RFC2367.
5997 */
5998 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5999 return (key_delete_all(so, m, mhp, &saidx));
6000 }
6001 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
6002 ipseclog((LOG_DEBUG,
6003 "%s: invalid message: wrong header size.\n", __func__));
6004 return (key_senderror(so, m, EINVAL));
6005 }
6006 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6007 if (proto == IPPROTO_TCP)
6008 sav = key_getsav_tcpmd5(&saidx, NULL);
6009 else
6010 sav = key_getsavbyspi(sa0->sadb_sa_spi);
6011 if (sav == NULL) {
6012 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n",
6013 __func__, ntohl(sa0->sadb_sa_spi)));
6014 return (key_senderror(so, m, ESRCH));
6015 }
6016 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6017 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6018 __func__, ntohl(sav->spi)));
6019 key_freesav(&sav);
6020 return (key_senderror(so, m, ESRCH));
6021 }
6022 KEYDBG(KEY_STAMP,
6023 printf("%s: SA(%p)\n", __func__, sav));
6024 KEYDBG(KEY_DATA, kdebug_secasv(sav));
6025 key_unlinksav(sav);
6026 key_freesav(&sav);
6027
6028 {
6029 struct mbuf *n;
6030 struct sadb_msg *newmsg;
6031
6032 /* create new sadb_msg to reply. */
6033 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6034 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6035 if (!n)
6036 return key_senderror(so, m, ENOBUFS);
6037
6038 if (n->m_len < sizeof(struct sadb_msg)) {
6039 n = m_pullup(n, sizeof(struct sadb_msg));
6040 if (n == NULL)
6041 return key_senderror(so, m, ENOBUFS);
6042 }
6043 newmsg = mtod(n, struct sadb_msg *);
6044 newmsg->sadb_msg_errno = 0;
6045 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6046
6047 m_freem(m);
6048 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6049 }
6050 }
6051
6052 /*
6053 * delete all SAs for src/dst. Called from key_delete().
6054 */
6055 static int
key_delete_all(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp,struct secasindex * saidx)6056 key_delete_all(struct socket *so, struct mbuf *m,
6057 const struct sadb_msghdr *mhp, struct secasindex *saidx)
6058 {
6059 struct secasvar_queue drainq;
6060 struct secashead *sah;
6061 struct secasvar *sav, *nextsav;
6062
6063 TAILQ_INIT(&drainq);
6064 SAHTREE_WLOCK();
6065 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
6066 if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0)
6067 continue;
6068 /* Move all ALIVE SAs into drainq */
6069 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6070 }
6071 /* Unlink all queued SAs from SPI hash */
6072 TAILQ_FOREACH(sav, &drainq, chain) {
6073 sav->state = SADB_SASTATE_DEAD;
6074 LIST_REMOVE(sav, spihash);
6075 }
6076 SAHTREE_WUNLOCK();
6077 /* Now we can release reference for all SAs in drainq */
6078 sav = TAILQ_FIRST(&drainq);
6079 while (sav != NULL) {
6080 KEYDBG(KEY_STAMP,
6081 printf("%s: SA(%p)\n", __func__, sav));
6082 KEYDBG(KEY_DATA, kdebug_secasv(sav));
6083 nextsav = TAILQ_NEXT(sav, chain);
6084 key_freesah(&sav->sah); /* release reference from SAV */
6085 key_freesav(&sav); /* release last reference */
6086 sav = nextsav;
6087 }
6088
6089 {
6090 struct mbuf *n;
6091 struct sadb_msg *newmsg;
6092
6093 /* create new sadb_msg to reply. */
6094 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6095 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6096 if (!n)
6097 return key_senderror(so, m, ENOBUFS);
6098
6099 if (n->m_len < sizeof(struct sadb_msg)) {
6100 n = m_pullup(n, sizeof(struct sadb_msg));
6101 if (n == NULL)
6102 return key_senderror(so, m, ENOBUFS);
6103 }
6104 newmsg = mtod(n, struct sadb_msg *);
6105 newmsg->sadb_msg_errno = 0;
6106 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6107
6108 m_freem(m);
6109 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6110 }
6111 }
6112
6113 /*
6114 * Delete all alive SAs for corresponding xform.
6115 * Larval SAs have not initialized tdb_xform, so it is safe to leave them
6116 * here when xform disappears.
6117 */
6118 void
key_delete_xform(const struct xformsw * xsp)6119 key_delete_xform(const struct xformsw *xsp)
6120 {
6121 struct secasvar_queue drainq;
6122 struct secashead *sah;
6123 struct secasvar *sav, *nextsav;
6124
6125 TAILQ_INIT(&drainq);
6126 SAHTREE_WLOCK();
6127 TAILQ_FOREACH(sah, &V_sahtree, chain) {
6128 sav = TAILQ_FIRST(&sah->savtree_alive);
6129 if (sav == NULL)
6130 continue;
6131 if (sav->tdb_xform != xsp)
6132 continue;
6133 /*
6134 * It is supposed that all SAs in the chain are related to
6135 * one xform.
6136 */
6137 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6138 }
6139 /* Unlink all queued SAs from SPI hash */
6140 TAILQ_FOREACH(sav, &drainq, chain) {
6141 sav->state = SADB_SASTATE_DEAD;
6142 LIST_REMOVE(sav, spihash);
6143 }
6144 SAHTREE_WUNLOCK();
6145
6146 /* Now we can release reference for all SAs in drainq */
6147 sav = TAILQ_FIRST(&drainq);
6148 while (sav != NULL) {
6149 KEYDBG(KEY_STAMP,
6150 printf("%s: SA(%p)\n", __func__, sav));
6151 KEYDBG(KEY_DATA, kdebug_secasv(sav));
6152 nextsav = TAILQ_NEXT(sav, chain);
6153 key_freesah(&sav->sah); /* release reference from SAV */
6154 key_freesav(&sav); /* release last reference */
6155 sav = nextsav;
6156 }
6157 }
6158
6159 /*
6160 * SADB_GET processing
6161 * receive
6162 * <base, SA(*), address(SD)>
6163 * from the ikmpd, and get a SP and a SA to respond,
6164 * and send,
6165 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6166 * (identity(SD),) (sensitivity)>
6167 * to the ikmpd.
6168 *
6169 * m will always be freed.
6170 */
6171 static int
key_get(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)6172 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6173 {
6174 struct secasindex saidx;
6175 struct sadb_address *src0, *dst0;
6176 struct sadb_sa *sa0;
6177 struct secasvar *sav;
6178 uint8_t proto;
6179
6180 IPSEC_ASSERT(so != NULL, ("null socket"));
6181 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6182 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6183 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6184
6185 /* map satype to proto */
6186 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6187 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6188 __func__));
6189 return key_senderror(so, m, EINVAL);
6190 }
6191
6192 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
6193 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6194 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) {
6195 ipseclog((LOG_DEBUG,
6196 "%s: invalid message: missing required header.\n",
6197 __func__));
6198 return key_senderror(so, m, EINVAL);
6199 }
6200 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
6201 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
6202 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
6203 ipseclog((LOG_DEBUG,
6204 "%s: invalid message: wrong header size.\n", __func__));
6205 return key_senderror(so, m, EINVAL);
6206 }
6207
6208 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6209 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6210 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6211
6212 if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
6213 (struct sockaddr *)(dst0 + 1)) != 0) {
6214 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
6215 return key_senderror(so, m, EINVAL);
6216 }
6217 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6218
6219 if (proto == IPPROTO_TCP)
6220 sav = key_getsav_tcpmd5(&saidx, NULL);
6221 else
6222 sav = key_getsavbyspi(sa0->sadb_sa_spi);
6223 if (sav == NULL) {
6224 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
6225 return key_senderror(so, m, ESRCH);
6226 }
6227 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6228 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6229 __func__, ntohl(sa0->sadb_sa_spi)));
6230 key_freesav(&sav);
6231 return (key_senderror(so, m, ESRCH));
6232 }
6233
6234 {
6235 struct mbuf *n;
6236 uint8_t satype;
6237
6238 /* map proto to satype */
6239 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) {
6240 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
6241 __func__));
6242 key_freesav(&sav);
6243 return key_senderror(so, m, EINVAL);
6244 }
6245
6246 /* create new sadb_msg to reply. */
6247 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6248 mhp->msg->sadb_msg_pid);
6249
6250 key_freesav(&sav);
6251 if (!n)
6252 return key_senderror(so, m, ENOBUFS);
6253
6254 m_freem(m);
6255 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6256 }
6257 }
6258
6259 /* XXX make it sysctl-configurable? */
6260 static void
key_getcomb_setlifetime(struct sadb_comb * comb)6261 key_getcomb_setlifetime(struct sadb_comb *comb)
6262 {
6263
6264 comb->sadb_comb_soft_allocations = 1;
6265 comb->sadb_comb_hard_allocations = 1;
6266 comb->sadb_comb_soft_bytes = 0;
6267 comb->sadb_comb_hard_bytes = 0;
6268 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
6269 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
6270 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
6271 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6272 }
6273
6274 /*
6275 * XXX reorder combinations by preference
6276 * XXX no idea if the user wants ESP authentication or not
6277 */
6278 static struct mbuf *
key_getcomb_ealg(void)6279 key_getcomb_ealg(void)
6280 {
6281 struct sadb_comb *comb;
6282 const struct enc_xform *algo;
6283 struct mbuf *result = NULL, *m, *n;
6284 int encmin;
6285 int i, off, o;
6286 int totlen;
6287 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6288
6289 m = NULL;
6290 for (i = 1; i <= SADB_EALG_MAX; i++) {
6291 algo = enc_algorithm_lookup(i);
6292 if (algo == NULL)
6293 continue;
6294
6295 /* discard algorithms with key size smaller than system min */
6296 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6297 continue;
6298 if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6299 encmin = V_ipsec_esp_keymin;
6300 else
6301 encmin = _BITS(algo->minkey);
6302
6303 if (V_ipsec_esp_auth)
6304 m = key_getcomb_ah();
6305 else {
6306 IPSEC_ASSERT(l <= MLEN,
6307 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6308 MGET(m, M_NOWAIT, MT_DATA);
6309 if (m) {
6310 M_ALIGN(m, l);
6311 m->m_len = l;
6312 m->m_next = NULL;
6313 bzero(mtod(m, caddr_t), m->m_len);
6314 }
6315 }
6316 if (!m)
6317 goto fail;
6318
6319 totlen = 0;
6320 for (n = m; n; n = n->m_next)
6321 totlen += n->m_len;
6322 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6323
6324 for (off = 0; off < totlen; off += l) {
6325 n = m_pulldown(m, off, l, &o);
6326 if (!n) {
6327 /* m is already freed */
6328 goto fail;
6329 }
6330 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6331 bzero(comb, sizeof(*comb));
6332 key_getcomb_setlifetime(comb);
6333 comb->sadb_comb_encrypt = i;
6334 comb->sadb_comb_encrypt_minbits = encmin;
6335 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6336 }
6337
6338 if (!result)
6339 result = m;
6340 else
6341 m_cat(result, m);
6342 }
6343
6344 return result;
6345
6346 fail:
6347 if (result)
6348 m_freem(result);
6349 return NULL;
6350 }
6351
6352 static void
key_getsizes_ah(const struct auth_hash * ah,int alg,u_int16_t * min,u_int16_t * max)6353 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min,
6354 u_int16_t* max)
6355 {
6356
6357 *min = *max = ah->hashsize;
6358 if (ah->keysize == 0) {
6359 /*
6360 * Transform takes arbitrary key size but algorithm
6361 * key size is restricted. Enforce this here.
6362 */
6363 switch (alg) {
6364 case SADB_X_AALG_NULL: *min = 1; *max = 256; break;
6365 case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6366 case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6367 case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6368 default:
6369 DPRINTF(("%s: unknown AH algorithm %u\n",
6370 __func__, alg));
6371 break;
6372 }
6373 }
6374 }
6375
6376 /*
6377 * XXX reorder combinations by preference
6378 */
6379 static struct mbuf *
key_getcomb_ah()6380 key_getcomb_ah()
6381 {
6382 const struct auth_hash *algo;
6383 struct sadb_comb *comb;
6384 struct mbuf *m;
6385 u_int16_t minkeysize, maxkeysize;
6386 int i;
6387 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6388
6389 m = NULL;
6390 for (i = 1; i <= SADB_AALG_MAX; i++) {
6391 #if 1
6392 /* we prefer HMAC algorithms, not old algorithms */
6393 if (i != SADB_AALG_SHA1HMAC &&
6394 i != SADB_X_AALG_SHA2_256 &&
6395 i != SADB_X_AALG_SHA2_384 &&
6396 i != SADB_X_AALG_SHA2_512)
6397 continue;
6398 #endif
6399 algo = auth_algorithm_lookup(i);
6400 if (!algo)
6401 continue;
6402 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6403 /* discard algorithms with key size smaller than system min */
6404 if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6405 continue;
6406
6407 if (!m) {
6408 IPSEC_ASSERT(l <= MLEN,
6409 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6410 MGET(m, M_NOWAIT, MT_DATA);
6411 if (m) {
6412 M_ALIGN(m, l);
6413 m->m_len = l;
6414 m->m_next = NULL;
6415 }
6416 } else
6417 M_PREPEND(m, l, M_NOWAIT);
6418 if (!m)
6419 return NULL;
6420
6421 comb = mtod(m, struct sadb_comb *);
6422 bzero(comb, sizeof(*comb));
6423 key_getcomb_setlifetime(comb);
6424 comb->sadb_comb_auth = i;
6425 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6426 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6427 }
6428
6429 return m;
6430 }
6431
6432 /*
6433 * not really an official behavior. discussed in [email protected] in Sep2000.
6434 * XXX reorder combinations by preference
6435 */
6436 static struct mbuf *
key_getcomb_ipcomp()6437 key_getcomb_ipcomp()
6438 {
6439 const struct comp_algo *algo;
6440 struct sadb_comb *comb;
6441 struct mbuf *m;
6442 int i;
6443 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6444
6445 m = NULL;
6446 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6447 algo = comp_algorithm_lookup(i);
6448 if (!algo)
6449 continue;
6450
6451 if (!m) {
6452 IPSEC_ASSERT(l <= MLEN,
6453 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6454 MGET(m, M_NOWAIT, MT_DATA);
6455 if (m) {
6456 M_ALIGN(m, l);
6457 m->m_len = l;
6458 m->m_next = NULL;
6459 }
6460 } else
6461 M_PREPEND(m, l, M_NOWAIT);
6462 if (!m)
6463 return NULL;
6464
6465 comb = mtod(m, struct sadb_comb *);
6466 bzero(comb, sizeof(*comb));
6467 key_getcomb_setlifetime(comb);
6468 comb->sadb_comb_encrypt = i;
6469 /* what should we set into sadb_comb_*_{min,max}bits? */
6470 }
6471
6472 return m;
6473 }
6474
6475 /*
6476 * XXX no way to pass mode (transport/tunnel) to userland
6477 * XXX replay checking?
6478 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6479 */
6480 static struct mbuf *
key_getprop(const struct secasindex * saidx)6481 key_getprop(const struct secasindex *saidx)
6482 {
6483 struct sadb_prop *prop;
6484 struct mbuf *m, *n;
6485 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6486 int totlen;
6487
6488 switch (saidx->proto) {
6489 case IPPROTO_ESP:
6490 m = key_getcomb_ealg();
6491 break;
6492 case IPPROTO_AH:
6493 m = key_getcomb_ah();
6494 break;
6495 case IPPROTO_IPCOMP:
6496 m = key_getcomb_ipcomp();
6497 break;
6498 default:
6499 return NULL;
6500 }
6501
6502 if (!m)
6503 return NULL;
6504 M_PREPEND(m, l, M_NOWAIT);
6505 if (!m)
6506 return NULL;
6507
6508 totlen = 0;
6509 for (n = m; n; n = n->m_next)
6510 totlen += n->m_len;
6511
6512 prop = mtod(m, struct sadb_prop *);
6513 bzero(prop, sizeof(*prop));
6514 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6515 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6516 prop->sadb_prop_replay = 32; /* XXX */
6517
6518 return m;
6519 }
6520
6521 /*
6522 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6523 * send
6524 * <base, SA, address(SD), (address(P)), x_policy,
6525 * (identity(SD),) (sensitivity,) proposal>
6526 * to KMD, and expect to receive
6527 * <base> with SADB_ACQUIRE if error occurred,
6528 * or
6529 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6530 * from KMD by PF_KEY.
6531 *
6532 * XXX x_policy is outside of RFC2367 (KAME extension).
6533 * XXX sensitivity is not supported.
6534 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6535 * see comment for key_getcomb_ipcomp().
6536 *
6537 * OUT:
6538 * 0 : succeed
6539 * others: error number
6540 */
6541 static int
key_acquire(const struct secasindex * saidx,struct secpolicy * sp)6542 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6543 {
6544 union sockaddr_union addr;
6545 struct mbuf *result, *m;
6546 uint32_t seq;
6547 int error;
6548 uint16_t ul_proto;
6549 uint8_t mask, satype;
6550
6551 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6552 satype = key_proto2satype(saidx->proto);
6553 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6554
6555 error = -1;
6556 result = NULL;
6557 ul_proto = IPSEC_ULPROTO_ANY;
6558
6559 /* Get seq number to check whether sending message or not. */
6560 seq = key_getacq(saidx, &error);
6561 if (seq == 0)
6562 return (error);
6563
6564 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6565 if (!m) {
6566 error = ENOBUFS;
6567 goto fail;
6568 }
6569 result = m;
6570
6571 /*
6572 * set sadb_address for saidx's.
6573 *
6574 * Note that if sp is supplied, then we're being called from
6575 * key_allocsa_policy() and should supply port and protocol
6576 * information.
6577 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too.
6578 * XXXAE: probably we can handle this in the ipsec[46]_allocsa().
6579 * XXXAE: it looks like we should save this info in the ACQ entry.
6580 */
6581 if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP ||
6582 sp->spidx.ul_proto == IPPROTO_UDP))
6583 ul_proto = sp->spidx.ul_proto;
6584
6585 addr = saidx->src;
6586 mask = FULLMASK;
6587 if (ul_proto != IPSEC_ULPROTO_ANY) {
6588 switch (sp->spidx.src.sa.sa_family) {
6589 case AF_INET:
6590 if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) {
6591 addr.sin.sin_port = sp->spidx.src.sin.sin_port;
6592 mask = sp->spidx.prefs;
6593 }
6594 break;
6595 case AF_INET6:
6596 if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) {
6597 addr.sin6.sin6_port =
6598 sp->spidx.src.sin6.sin6_port;
6599 mask = sp->spidx.prefs;
6600 }
6601 break;
6602 default:
6603 break;
6604 }
6605 }
6606 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto);
6607 if (!m) {
6608 error = ENOBUFS;
6609 goto fail;
6610 }
6611 m_cat(result, m);
6612
6613 addr = saidx->dst;
6614 mask = FULLMASK;
6615 if (ul_proto != IPSEC_ULPROTO_ANY) {
6616 switch (sp->spidx.dst.sa.sa_family) {
6617 case AF_INET:
6618 if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) {
6619 addr.sin.sin_port = sp->spidx.dst.sin.sin_port;
6620 mask = sp->spidx.prefd;
6621 }
6622 break;
6623 case AF_INET6:
6624 if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) {
6625 addr.sin6.sin6_port =
6626 sp->spidx.dst.sin6.sin6_port;
6627 mask = sp->spidx.prefd;
6628 }
6629 break;
6630 default:
6631 break;
6632 }
6633 }
6634 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto);
6635 if (!m) {
6636 error = ENOBUFS;
6637 goto fail;
6638 }
6639 m_cat(result, m);
6640
6641 /* XXX proxy address (optional) */
6642
6643 /*
6644 * Set sadb_x_policy. This is KAME extension to RFC2367.
6645 */
6646 if (sp != NULL) {
6647 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id,
6648 sp->priority);
6649 if (!m) {
6650 error = ENOBUFS;
6651 goto fail;
6652 }
6653 m_cat(result, m);
6654 }
6655
6656 /*
6657 * Set sadb_x_sa2 extension if saidx->reqid is not zero.
6658 * This is FreeBSD extension to RFC2367.
6659 */
6660 if (saidx->reqid != 0) {
6661 m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid);
6662 if (m == NULL) {
6663 error = ENOBUFS;
6664 goto fail;
6665 }
6666 m_cat(result, m);
6667 }
6668 /* XXX identity (optional) */
6669 #if 0
6670 if (idexttype && fqdn) {
6671 /* create identity extension (FQDN) */
6672 struct sadb_ident *id;
6673 int fqdnlen;
6674
6675 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6676 id = (struct sadb_ident *)p;
6677 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6678 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6679 id->sadb_ident_exttype = idexttype;
6680 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6681 bcopy(fqdn, id + 1, fqdnlen);
6682 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6683 }
6684
6685 if (idexttype) {
6686 /* create identity extension (USERFQDN) */
6687 struct sadb_ident *id;
6688 int userfqdnlen;
6689
6690 if (userfqdn) {
6691 /* +1 for terminating-NUL */
6692 userfqdnlen = strlen(userfqdn) + 1;
6693 } else
6694 userfqdnlen = 0;
6695 id = (struct sadb_ident *)p;
6696 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6697 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6698 id->sadb_ident_exttype = idexttype;
6699 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6700 /* XXX is it correct? */
6701 if (curproc && curproc->p_cred)
6702 id->sadb_ident_id = curproc->p_cred->p_ruid;
6703 if (userfqdn && userfqdnlen)
6704 bcopy(userfqdn, id + 1, userfqdnlen);
6705 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6706 }
6707 #endif
6708
6709 /* XXX sensitivity (optional) */
6710
6711 /* create proposal/combination extension */
6712 m = key_getprop(saidx);
6713 #if 0
6714 /*
6715 * spec conformant: always attach proposal/combination extension,
6716 * the problem is that we have no way to attach it for ipcomp,
6717 * due to the way sadb_comb is declared in RFC2367.
6718 */
6719 if (!m) {
6720 error = ENOBUFS;
6721 goto fail;
6722 }
6723 m_cat(result, m);
6724 #else
6725 /*
6726 * outside of spec; make proposal/combination extension optional.
6727 */
6728 if (m)
6729 m_cat(result, m);
6730 #endif
6731
6732 if ((result->m_flags & M_PKTHDR) == 0) {
6733 error = EINVAL;
6734 goto fail;
6735 }
6736
6737 if (result->m_len < sizeof(struct sadb_msg)) {
6738 result = m_pullup(result, sizeof(struct sadb_msg));
6739 if (result == NULL) {
6740 error = ENOBUFS;
6741 goto fail;
6742 }
6743 }
6744
6745 result->m_pkthdr.len = 0;
6746 for (m = result; m; m = m->m_next)
6747 result->m_pkthdr.len += m->m_len;
6748
6749 mtod(result, struct sadb_msg *)->sadb_msg_len =
6750 PFKEY_UNIT64(result->m_pkthdr.len);
6751
6752 KEYDBG(KEY_STAMP,
6753 printf("%s: SP(%p)\n", __func__, sp));
6754 KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL));
6755
6756 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6757
6758 fail:
6759 if (result)
6760 m_freem(result);
6761 return error;
6762 }
6763
6764 static uint32_t
key_newacq(const struct secasindex * saidx,int * perror)6765 key_newacq(const struct secasindex *saidx, int *perror)
6766 {
6767 struct secacq *acq;
6768 uint32_t seq;
6769
6770 acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO);
6771 if (acq == NULL) {
6772 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6773 *perror = ENOBUFS;
6774 return (0);
6775 }
6776
6777 /* copy secindex */
6778 bcopy(saidx, &acq->saidx, sizeof(acq->saidx));
6779 acq->created = time_second;
6780 acq->count = 0;
6781
6782 /* add to acqtree */
6783 ACQ_LOCK();
6784 seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6785 LIST_INSERT_HEAD(&V_acqtree, acq, chain);
6786 LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash);
6787 LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash);
6788 ACQ_UNLOCK();
6789 *perror = 0;
6790 return (seq);
6791 }
6792
6793 static uint32_t
key_getacq(const struct secasindex * saidx,int * perror)6794 key_getacq(const struct secasindex *saidx, int *perror)
6795 {
6796 struct secacq *acq;
6797 uint32_t seq;
6798
6799 ACQ_LOCK();
6800 LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) {
6801 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) {
6802 if (acq->count > V_key_blockacq_count) {
6803 /*
6804 * Reset counter and send message.
6805 * Also reset created time to keep ACQ for
6806 * this saidx.
6807 */
6808 acq->created = time_second;
6809 acq->count = 0;
6810 seq = acq->seq;
6811 } else {
6812 /*
6813 * Increment counter and do nothing.
6814 * We send SADB_ACQUIRE message only
6815 * for each V_key_blockacq_count packet.
6816 */
6817 acq->count++;
6818 seq = 0;
6819 }
6820 break;
6821 }
6822 }
6823 ACQ_UNLOCK();
6824 if (acq != NULL) {
6825 *perror = 0;
6826 return (seq);
6827 }
6828 /* allocate new entry */
6829 return (key_newacq(saidx, perror));
6830 }
6831
6832 static int
key_acqreset(uint32_t seq)6833 key_acqreset(uint32_t seq)
6834 {
6835 struct secacq *acq;
6836
6837 ACQ_LOCK();
6838 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
6839 if (acq->seq == seq) {
6840 acq->count = 0;
6841 acq->created = time_second;
6842 break;
6843 }
6844 }
6845 ACQ_UNLOCK();
6846 if (acq == NULL)
6847 return (ESRCH);
6848 return (0);
6849 }
6850 /*
6851 * Mark ACQ entry as stale to remove it in key_flush_acq().
6852 * Called after successful SADB_GETSPI message.
6853 */
6854 static int
key_acqdone(const struct secasindex * saidx,uint32_t seq)6855 key_acqdone(const struct secasindex *saidx, uint32_t seq)
6856 {
6857 struct secacq *acq;
6858
6859 ACQ_LOCK();
6860 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
6861 if (acq->seq == seq)
6862 break;
6863 }
6864 if (acq != NULL) {
6865 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) {
6866 ipseclog((LOG_DEBUG,
6867 "%s: Mismatched saidx for ACQ %u\n", __func__, seq));
6868 acq = NULL;
6869 } else {
6870 acq->created = 0;
6871 }
6872 } else {
6873 ipseclog((LOG_DEBUG,
6874 "%s: ACQ %u is not found.\n", __func__, seq));
6875 }
6876 ACQ_UNLOCK();
6877 if (acq == NULL)
6878 return (ESRCH);
6879 return (0);
6880 }
6881
6882 static struct secspacq *
key_newspacq(struct secpolicyindex * spidx)6883 key_newspacq(struct secpolicyindex *spidx)
6884 {
6885 struct secspacq *acq;
6886
6887 /* get new entry */
6888 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6889 if (acq == NULL) {
6890 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6891 return NULL;
6892 }
6893
6894 /* copy secindex */
6895 bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6896 acq->created = time_second;
6897 acq->count = 0;
6898
6899 /* add to spacqtree */
6900 SPACQ_LOCK();
6901 LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6902 SPACQ_UNLOCK();
6903
6904 return acq;
6905 }
6906
6907 static struct secspacq *
key_getspacq(struct secpolicyindex * spidx)6908 key_getspacq(struct secpolicyindex *spidx)
6909 {
6910 struct secspacq *acq;
6911
6912 SPACQ_LOCK();
6913 LIST_FOREACH(acq, &V_spacqtree, chain) {
6914 if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6915 /* NB: return holding spacq_lock */
6916 return acq;
6917 }
6918 }
6919 SPACQ_UNLOCK();
6920
6921 return NULL;
6922 }
6923
6924 /*
6925 * SADB_ACQUIRE processing,
6926 * in first situation, is receiving
6927 * <base>
6928 * from the ikmpd, and clear sequence of its secasvar entry.
6929 *
6930 * In second situation, is receiving
6931 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6932 * from a user land process, and return
6933 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6934 * to the socket.
6935 *
6936 * m will always be freed.
6937 */
6938 static int
key_acquire2(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)6939 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6940 {
6941 SAHTREE_RLOCK_TRACKER;
6942 struct sadb_address *src0, *dst0;
6943 struct secasindex saidx;
6944 struct secashead *sah;
6945 uint32_t reqid;
6946 int error;
6947 uint8_t mode, proto;
6948
6949 IPSEC_ASSERT(so != NULL, ("null socket"));
6950 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6951 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6952 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6953
6954 /*
6955 * Error message from KMd.
6956 * We assume that if error was occurred in IKEd, the length of PFKEY
6957 * message is equal to the size of sadb_msg structure.
6958 * We do not raise error even if error occurred in this function.
6959 */
6960 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6961 /* check sequence number */
6962 if (mhp->msg->sadb_msg_seq == 0 ||
6963 mhp->msg->sadb_msg_errno == 0) {
6964 ipseclog((LOG_DEBUG, "%s: must specify sequence "
6965 "number and errno.\n", __func__));
6966 } else {
6967 /*
6968 * IKEd reported that error occurred.
6969 * XXXAE: what it expects from the kernel?
6970 * Probably we should send SADB_ACQUIRE again?
6971 * If so, reset ACQ's state.
6972 * XXXAE: it looks useless.
6973 */
6974 key_acqreset(mhp->msg->sadb_msg_seq);
6975 }
6976 m_freem(m);
6977 return (0);
6978 }
6979
6980 /*
6981 * This message is from user land.
6982 */
6983
6984 /* map satype to proto */
6985 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6986 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6987 __func__));
6988 return key_senderror(so, m, EINVAL);
6989 }
6990
6991 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6992 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
6993 SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) {
6994 ipseclog((LOG_DEBUG,
6995 "%s: invalid message: missing required header.\n",
6996 __func__));
6997 return key_senderror(so, m, EINVAL);
6998 }
6999 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
7000 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
7001 SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) {
7002 ipseclog((LOG_DEBUG,
7003 "%s: invalid message: wrong header size.\n", __func__));
7004 return key_senderror(so, m, EINVAL);
7005 }
7006
7007 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
7008 mode = IPSEC_MODE_ANY;
7009 reqid = 0;
7010 } else {
7011 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
7012 ipseclog((LOG_DEBUG,
7013 "%s: invalid message: wrong header size.\n",
7014 __func__));
7015 return key_senderror(so, m, EINVAL);
7016 }
7017 mode = ((struct sadb_x_sa2 *)
7018 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
7019 reqid = ((struct sadb_x_sa2 *)
7020 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
7021 }
7022
7023 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
7024 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
7025
7026 error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
7027 (struct sockaddr *)(dst0 + 1));
7028 if (error != 0) {
7029 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
7030 return key_senderror(so, m, EINVAL);
7031 }
7032 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
7033
7034 /* get a SA index */
7035 SAHTREE_RLOCK();
7036 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
7037 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
7038 break;
7039 }
7040 SAHTREE_RUNLOCK();
7041 if (sah != NULL) {
7042 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
7043 return key_senderror(so, m, EEXIST);
7044 }
7045
7046 error = key_acquire(&saidx, NULL);
7047 if (error != 0) {
7048 ipseclog((LOG_DEBUG,
7049 "%s: error %d returned from key_acquire()\n",
7050 __func__, error));
7051 return key_senderror(so, m, error);
7052 }
7053 m_freem(m);
7054 return (0);
7055 }
7056
7057 /*
7058 * SADB_REGISTER processing.
7059 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7060 * receive
7061 * <base>
7062 * from the ikmpd, and register a socket to send PF_KEY messages,
7063 * and send
7064 * <base, supported>
7065 * to KMD by PF_KEY.
7066 * If socket is detached, must free from regnode.
7067 *
7068 * m will always be freed.
7069 */
7070 static int
key_register(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7071 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7072 {
7073 struct secreg *reg, *newreg = NULL;
7074
7075 IPSEC_ASSERT(so != NULL, ("null socket"));
7076 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7077 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7078 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7079
7080 /* check for invalid register message */
7081 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
7082 return key_senderror(so, m, EINVAL);
7083
7084 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7085 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7086 goto setmsg;
7087
7088 /* check whether existing or not */
7089 REGTREE_LOCK();
7090 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
7091 if (reg->so == so) {
7092 REGTREE_UNLOCK();
7093 ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
7094 __func__));
7095 return key_senderror(so, m, EEXIST);
7096 }
7097 }
7098
7099 /* create regnode */
7100 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
7101 if (newreg == NULL) {
7102 REGTREE_UNLOCK();
7103 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7104 return key_senderror(so, m, ENOBUFS);
7105 }
7106
7107 newreg->so = so;
7108 ((struct keycb *)sotorawcb(so))->kp_registered++;
7109
7110 /* add regnode to regtree. */
7111 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
7112 REGTREE_UNLOCK();
7113
7114 setmsg:
7115 {
7116 struct mbuf *n;
7117 struct sadb_msg *newmsg;
7118 struct sadb_supported *sup;
7119 u_int len, alen, elen;
7120 int off;
7121 int i;
7122 struct sadb_alg *alg;
7123
7124 /* create new sadb_msg to reply. */
7125 alen = 0;
7126 for (i = 1; i <= SADB_AALG_MAX; i++) {
7127 if (auth_algorithm_lookup(i))
7128 alen += sizeof(struct sadb_alg);
7129 }
7130 if (alen)
7131 alen += sizeof(struct sadb_supported);
7132 elen = 0;
7133 for (i = 1; i <= SADB_EALG_MAX; i++) {
7134 if (enc_algorithm_lookup(i))
7135 elen += sizeof(struct sadb_alg);
7136 }
7137 if (elen)
7138 elen += sizeof(struct sadb_supported);
7139
7140 len = sizeof(struct sadb_msg) + alen + elen;
7141
7142 if (len > MCLBYTES)
7143 return key_senderror(so, m, ENOBUFS);
7144
7145 MGETHDR(n, M_NOWAIT, MT_DATA);
7146 if (n != NULL && len > MHLEN) {
7147 if (!(MCLGET(n, M_NOWAIT))) {
7148 m_freem(n);
7149 n = NULL;
7150 }
7151 }
7152 if (!n)
7153 return key_senderror(so, m, ENOBUFS);
7154
7155 n->m_pkthdr.len = n->m_len = len;
7156 n->m_next = NULL;
7157 off = 0;
7158
7159 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
7160 newmsg = mtod(n, struct sadb_msg *);
7161 newmsg->sadb_msg_errno = 0;
7162 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
7163 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7164
7165 /* for authentication algorithm */
7166 if (alen) {
7167 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7168 sup->sadb_supported_len = PFKEY_UNIT64(alen);
7169 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7170 off += PFKEY_ALIGN8(sizeof(*sup));
7171
7172 for (i = 1; i <= SADB_AALG_MAX; i++) {
7173 const struct auth_hash *aalgo;
7174 u_int16_t minkeysize, maxkeysize;
7175
7176 aalgo = auth_algorithm_lookup(i);
7177 if (!aalgo)
7178 continue;
7179 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7180 alg->sadb_alg_id = i;
7181 alg->sadb_alg_ivlen = 0;
7182 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7183 alg->sadb_alg_minbits = _BITS(minkeysize);
7184 alg->sadb_alg_maxbits = _BITS(maxkeysize);
7185 off += PFKEY_ALIGN8(sizeof(*alg));
7186 }
7187 }
7188
7189 /* for encryption algorithm */
7190 if (elen) {
7191 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7192 sup->sadb_supported_len = PFKEY_UNIT64(elen);
7193 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7194 off += PFKEY_ALIGN8(sizeof(*sup));
7195
7196 for (i = 1; i <= SADB_EALG_MAX; i++) {
7197 const struct enc_xform *ealgo;
7198
7199 ealgo = enc_algorithm_lookup(i);
7200 if (!ealgo)
7201 continue;
7202 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7203 alg->sadb_alg_id = i;
7204 alg->sadb_alg_ivlen = ealgo->ivsize;
7205 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7206 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7207 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7208 }
7209 }
7210
7211 IPSEC_ASSERT(off == len,
7212 ("length assumption failed (off %u len %u)", off, len));
7213
7214 m_freem(m);
7215 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7216 }
7217 }
7218
7219 /*
7220 * free secreg entry registered.
7221 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7222 */
7223 void
key_freereg(struct socket * so)7224 key_freereg(struct socket *so)
7225 {
7226 struct secreg *reg;
7227 int i;
7228
7229 IPSEC_ASSERT(so != NULL, ("NULL so"));
7230
7231 /*
7232 * check whether existing or not.
7233 * check all type of SA, because there is a potential that
7234 * one socket is registered to multiple type of SA.
7235 */
7236 REGTREE_LOCK();
7237 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7238 LIST_FOREACH(reg, &V_regtree[i], chain) {
7239 if (reg->so == so && __LIST_CHAINED(reg)) {
7240 LIST_REMOVE(reg, chain);
7241 free(reg, M_IPSEC_SAR);
7242 break;
7243 }
7244 }
7245 }
7246 REGTREE_UNLOCK();
7247 }
7248
7249 /*
7250 * SADB_EXPIRE processing
7251 * send
7252 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7253 * to KMD by PF_KEY.
7254 * NOTE: We send only soft lifetime extension.
7255 *
7256 * OUT: 0 : succeed
7257 * others : error number
7258 */
7259 static int
key_expire(struct secasvar * sav,int hard)7260 key_expire(struct secasvar *sav, int hard)
7261 {
7262 struct mbuf *result = NULL, *m;
7263 struct sadb_lifetime *lt;
7264 uint32_t replay_count;
7265 int error, len;
7266 uint8_t satype;
7267
7268 IPSEC_ASSERT (sav != NULL, ("null sav"));
7269 IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
7270
7271 KEYDBG(KEY_STAMP,
7272 printf("%s: SA(%p) expired %s lifetime\n", __func__,
7273 sav, hard ? "hard": "soft"));
7274 KEYDBG(KEY_DATA, kdebug_secasv(sav));
7275 /* set msg header */
7276 satype = key_proto2satype(sav->sah->saidx.proto);
7277 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
7278 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
7279 if (!m) {
7280 error = ENOBUFS;
7281 goto fail;
7282 }
7283 result = m;
7284
7285 /* create SA extension */
7286 m = key_setsadbsa(sav);
7287 if (!m) {
7288 error = ENOBUFS;
7289 goto fail;
7290 }
7291 m_cat(result, m);
7292
7293 /* create SA extension */
7294 SECASVAR_LOCK(sav);
7295 replay_count = sav->replay ? sav->replay->count : 0;
7296 SECASVAR_UNLOCK(sav);
7297
7298 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
7299 sav->sah->saidx.reqid);
7300 if (!m) {
7301 error = ENOBUFS;
7302 goto fail;
7303 }
7304 m_cat(result, m);
7305
7306 if (sav->replay && sav->replay->wsize > UINT8_MAX) {
7307 m = key_setsadbxsareplay(sav->replay->wsize);
7308 if (!m) {
7309 error = ENOBUFS;
7310 goto fail;
7311 }
7312 m_cat(result, m);
7313 }
7314
7315 /* create lifetime extension (current and soft) */
7316 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7317 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7318 if (m == NULL) {
7319 error = ENOBUFS;
7320 goto fail;
7321 }
7322 m_align(m, len);
7323 m->m_len = len;
7324 bzero(mtod(m, caddr_t), len);
7325 lt = mtod(m, struct sadb_lifetime *);
7326 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7327 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7328 lt->sadb_lifetime_allocations =
7329 (uint32_t)counter_u64_fetch(sav->lft_c_allocations);
7330 lt->sadb_lifetime_bytes =
7331 counter_u64_fetch(sav->lft_c_bytes);
7332 lt->sadb_lifetime_addtime = sav->created;
7333 lt->sadb_lifetime_usetime = sav->firstused;
7334 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
7335 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7336 if (hard) {
7337 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
7338 lt->sadb_lifetime_allocations = sav->lft_h->allocations;
7339 lt->sadb_lifetime_bytes = sav->lft_h->bytes;
7340 lt->sadb_lifetime_addtime = sav->lft_h->addtime;
7341 lt->sadb_lifetime_usetime = sav->lft_h->usetime;
7342 } else {
7343 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
7344 lt->sadb_lifetime_allocations = sav->lft_s->allocations;
7345 lt->sadb_lifetime_bytes = sav->lft_s->bytes;
7346 lt->sadb_lifetime_addtime = sav->lft_s->addtime;
7347 lt->sadb_lifetime_usetime = sav->lft_s->usetime;
7348 }
7349 m_cat(result, m);
7350
7351 /* set sadb_address for source */
7352 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
7353 &sav->sah->saidx.src.sa,
7354 FULLMASK, IPSEC_ULPROTO_ANY);
7355 if (!m) {
7356 error = ENOBUFS;
7357 goto fail;
7358 }
7359 m_cat(result, m);
7360
7361 /* set sadb_address for destination */
7362 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
7363 &sav->sah->saidx.dst.sa,
7364 FULLMASK, IPSEC_ULPROTO_ANY);
7365 if (!m) {
7366 error = ENOBUFS;
7367 goto fail;
7368 }
7369 m_cat(result, m);
7370
7371 /*
7372 * XXX-BZ Handle NAT-T extensions here.
7373 * XXXAE: it doesn't seem quite useful. IKEs should not depend on
7374 * this information, we report only significant SA fields.
7375 */
7376
7377 if ((result->m_flags & M_PKTHDR) == 0) {
7378 error = EINVAL;
7379 goto fail;
7380 }
7381
7382 if (result->m_len < sizeof(struct sadb_msg)) {
7383 result = m_pullup(result, sizeof(struct sadb_msg));
7384 if (result == NULL) {
7385 error = ENOBUFS;
7386 goto fail;
7387 }
7388 }
7389
7390 result->m_pkthdr.len = 0;
7391 for (m = result; m; m = m->m_next)
7392 result->m_pkthdr.len += m->m_len;
7393
7394 mtod(result, struct sadb_msg *)->sadb_msg_len =
7395 PFKEY_UNIT64(result->m_pkthdr.len);
7396
7397 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7398
7399 fail:
7400 if (result)
7401 m_freem(result);
7402 return error;
7403 }
7404
7405 static void
key_freesah_flushed(struct secashead_queue * flushq)7406 key_freesah_flushed(struct secashead_queue *flushq)
7407 {
7408 struct secashead *sah, *nextsah;
7409 struct secasvar *sav, *nextsav;
7410
7411 sah = TAILQ_FIRST(flushq);
7412 while (sah != NULL) {
7413 sav = TAILQ_FIRST(&sah->savtree_larval);
7414 while (sav != NULL) {
7415 nextsav = TAILQ_NEXT(sav, chain);
7416 TAILQ_REMOVE(&sah->savtree_larval, sav, chain);
7417 key_freesav(&sav); /* release last reference */
7418 key_freesah(&sah); /* release reference from SAV */
7419 sav = nextsav;
7420 }
7421 sav = TAILQ_FIRST(&sah->savtree_alive);
7422 while (sav != NULL) {
7423 nextsav = TAILQ_NEXT(sav, chain);
7424 TAILQ_REMOVE(&sah->savtree_alive, sav, chain);
7425 key_freesav(&sav); /* release last reference */
7426 key_freesah(&sah); /* release reference from SAV */
7427 sav = nextsav;
7428 }
7429 nextsah = TAILQ_NEXT(sah, chain);
7430 key_freesah(&sah); /* release last reference */
7431 sah = nextsah;
7432 }
7433 }
7434
7435 /*
7436 * SADB_FLUSH processing
7437 * receive
7438 * <base>
7439 * from the ikmpd, and free all entries in secastree.
7440 * and send,
7441 * <base>
7442 * to the ikmpd.
7443 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7444 *
7445 * m will always be freed.
7446 */
7447 static int
key_flush(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7448 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7449 {
7450 struct secashead_queue flushq;
7451 struct sadb_msg *newmsg;
7452 struct secashead *sah, *nextsah;
7453 struct secasvar *sav;
7454 uint8_t proto;
7455 int i;
7456
7457 IPSEC_ASSERT(so != NULL, ("null socket"));
7458 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7459 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7460
7461 /* map satype to proto */
7462 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7463 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7464 __func__));
7465 return key_senderror(so, m, EINVAL);
7466 }
7467 KEYDBG(KEY_STAMP,
7468 printf("%s: proto %u\n", __func__, proto));
7469
7470 TAILQ_INIT(&flushq);
7471 if (proto == IPSEC_PROTO_ANY) {
7472 /* no SATYPE specified, i.e. flushing all SA. */
7473 SAHTREE_WLOCK();
7474 /* Move all SAHs into flushq */
7475 TAILQ_CONCAT(&flushq, &V_sahtree, chain);
7476 /* Flush all buckets in SPI hash */
7477 for (i = 0; i < V_savhash_mask + 1; i++)
7478 LIST_INIT(&V_savhashtbl[i]);
7479 /* Flush all buckets in SAHADDRHASH */
7480 for (i = 0; i < V_sahaddrhash_mask + 1; i++)
7481 LIST_INIT(&V_sahaddrhashtbl[i]);
7482 /* Mark all SAHs as unlinked */
7483 TAILQ_FOREACH(sah, &flushq, chain) {
7484 sah->state = SADB_SASTATE_DEAD;
7485 /*
7486 * Callout handler makes its job using
7487 * RLOCK and drain queues. In case, when this
7488 * function will be called just before it
7489 * acquires WLOCK, we need to mark SAs as
7490 * unlinked to prevent second unlink.
7491 */
7492 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7493 sav->state = SADB_SASTATE_DEAD;
7494 }
7495 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7496 sav->state = SADB_SASTATE_DEAD;
7497 }
7498 }
7499 SAHTREE_WUNLOCK();
7500 } else {
7501 SAHTREE_WLOCK();
7502 sah = TAILQ_FIRST(&V_sahtree);
7503 while (sah != NULL) {
7504 IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD,
7505 ("DEAD SAH %p in SADB_FLUSH", sah));
7506 nextsah = TAILQ_NEXT(sah, chain);
7507 if (sah->saidx.proto != proto) {
7508 sah = nextsah;
7509 continue;
7510 }
7511 sah->state = SADB_SASTATE_DEAD;
7512 TAILQ_REMOVE(&V_sahtree, sah, chain);
7513 LIST_REMOVE(sah, addrhash);
7514 /* Unlink all SAs from SPI hash */
7515 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7516 LIST_REMOVE(sav, spihash);
7517 sav->state = SADB_SASTATE_DEAD;
7518 }
7519 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7520 LIST_REMOVE(sav, spihash);
7521 sav->state = SADB_SASTATE_DEAD;
7522 }
7523 /* Add SAH into flushq */
7524 TAILQ_INSERT_HEAD(&flushq, sah, chain);
7525 sah = nextsah;
7526 }
7527 SAHTREE_WUNLOCK();
7528 }
7529
7530 key_freesah_flushed(&flushq);
7531 /* Free all queued SAs and SAHs */
7532 if (m->m_len < sizeof(struct sadb_msg) ||
7533 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7534 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7535 return key_senderror(so, m, ENOBUFS);
7536 }
7537
7538 if (m->m_next)
7539 m_freem(m->m_next);
7540 m->m_next = NULL;
7541 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7542 newmsg = mtod(m, struct sadb_msg *);
7543 newmsg->sadb_msg_errno = 0;
7544 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7545
7546 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7547 }
7548
7549 /*
7550 * SADB_DUMP processing
7551 * dump all entries including status of DEAD in SAD.
7552 * receive
7553 * <base>
7554 * from the ikmpd, and dump all secasvar leaves
7555 * and send,
7556 * <base> .....
7557 * to the ikmpd.
7558 *
7559 * m will always be freed.
7560 */
7561 static int
key_dump(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7562 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7563 {
7564 SAHTREE_RLOCK_TRACKER;
7565 struct secashead *sah;
7566 struct secasvar *sav;
7567 struct mbuf *n;
7568 uint32_t cnt;
7569 uint8_t proto, satype;
7570
7571 IPSEC_ASSERT(so != NULL, ("null socket"));
7572 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7573 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7574 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7575
7576 /* map satype to proto */
7577 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7578 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7579 __func__));
7580 return key_senderror(so, m, EINVAL);
7581 }
7582
7583 /* count sav entries to be sent to the userland. */
7584 cnt = 0;
7585 SAHTREE_RLOCK();
7586 TAILQ_FOREACH(sah, &V_sahtree, chain) {
7587 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7588 proto != sah->saidx.proto)
7589 continue;
7590
7591 TAILQ_FOREACH(sav, &sah->savtree_larval, chain)
7592 cnt++;
7593 TAILQ_FOREACH(sav, &sah->savtree_alive, chain)
7594 cnt++;
7595 }
7596
7597 if (cnt == 0) {
7598 SAHTREE_RUNLOCK();
7599 return key_senderror(so, m, ENOENT);
7600 }
7601
7602 /* send this to the userland, one at a time. */
7603 TAILQ_FOREACH(sah, &V_sahtree, chain) {
7604 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7605 proto != sah->saidx.proto)
7606 continue;
7607
7608 /* map proto to satype */
7609 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7610 SAHTREE_RUNLOCK();
7611 ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7612 "SAD.\n", __func__));
7613 return key_senderror(so, m, EINVAL);
7614 }
7615 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7616 n = key_setdumpsa(sav, SADB_DUMP, satype,
7617 --cnt, mhp->msg->sadb_msg_pid);
7618 if (n == NULL) {
7619 SAHTREE_RUNLOCK();
7620 return key_senderror(so, m, ENOBUFS);
7621 }
7622 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7623 }
7624 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7625 n = key_setdumpsa(sav, SADB_DUMP, satype,
7626 --cnt, mhp->msg->sadb_msg_pid);
7627 if (n == NULL) {
7628 SAHTREE_RUNLOCK();
7629 return key_senderror(so, m, ENOBUFS);
7630 }
7631 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7632 }
7633 }
7634 SAHTREE_RUNLOCK();
7635 m_freem(m);
7636 return (0);
7637 }
7638 /*
7639 * SADB_X_PROMISC processing
7640 *
7641 * m will always be freed.
7642 */
7643 static int
key_promisc(struct socket * so,struct mbuf * m,const struct sadb_msghdr * mhp)7644 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7645 {
7646 int olen;
7647
7648 IPSEC_ASSERT(so != NULL, ("null socket"));
7649 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7650 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7651 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7652
7653 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7654
7655 if (olen < sizeof(struct sadb_msg)) {
7656 #if 1
7657 return key_senderror(so, m, EINVAL);
7658 #else
7659 m_freem(m);
7660 return 0;
7661 #endif
7662 } else if (olen == sizeof(struct sadb_msg)) {
7663 /* enable/disable promisc mode */
7664 struct keycb *kp;
7665
7666 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7667 return key_senderror(so, m, EINVAL);
7668 mhp->msg->sadb_msg_errno = 0;
7669 switch (mhp->msg->sadb_msg_satype) {
7670 case 0:
7671 case 1:
7672 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7673 break;
7674 default:
7675 return key_senderror(so, m, EINVAL);
7676 }
7677
7678 /* send the original message back to everyone */
7679 mhp->msg->sadb_msg_errno = 0;
7680 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7681 } else {
7682 /* send packet as is */
7683
7684 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7685
7686 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7687 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7688 }
7689 }
7690
7691 static int (*key_typesw[])(struct socket *, struct mbuf *,
7692 const struct sadb_msghdr *) = {
7693 NULL, /* SADB_RESERVED */
7694 key_getspi, /* SADB_GETSPI */
7695 key_update, /* SADB_UPDATE */
7696 key_add, /* SADB_ADD */
7697 key_delete, /* SADB_DELETE */
7698 key_get, /* SADB_GET */
7699 key_acquire2, /* SADB_ACQUIRE */
7700 key_register, /* SADB_REGISTER */
7701 NULL, /* SADB_EXPIRE */
7702 key_flush, /* SADB_FLUSH */
7703 key_dump, /* SADB_DUMP */
7704 key_promisc, /* SADB_X_PROMISC */
7705 NULL, /* SADB_X_PCHANGE */
7706 key_spdadd, /* SADB_X_SPDUPDATE */
7707 key_spdadd, /* SADB_X_SPDADD */
7708 key_spddelete, /* SADB_X_SPDDELETE */
7709 key_spdget, /* SADB_X_SPDGET */
7710 NULL, /* SADB_X_SPDACQUIRE */
7711 key_spddump, /* SADB_X_SPDDUMP */
7712 key_spdflush, /* SADB_X_SPDFLUSH */
7713 key_spdadd, /* SADB_X_SPDSETIDX */
7714 NULL, /* SADB_X_SPDEXPIRE */
7715 key_spddelete2, /* SADB_X_SPDDELETE2 */
7716 };
7717
7718 /*
7719 * parse sadb_msg buffer to process PFKEYv2,
7720 * and create a data to response if needed.
7721 * I think to be dealed with mbuf directly.
7722 * IN:
7723 * msgp : pointer to pointer to a received buffer pulluped.
7724 * This is rewrited to response.
7725 * so : pointer to socket.
7726 * OUT:
7727 * length for buffer to send to user process.
7728 */
7729 int
key_parse(struct mbuf * m,struct socket * so)7730 key_parse(struct mbuf *m, struct socket *so)
7731 {
7732 struct sadb_msg *msg;
7733 struct sadb_msghdr mh;
7734 u_int orglen;
7735 int error;
7736 int target;
7737
7738 IPSEC_ASSERT(so != NULL, ("null socket"));
7739 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7740
7741 if (m->m_len < sizeof(struct sadb_msg)) {
7742 m = m_pullup(m, sizeof(struct sadb_msg));
7743 if (!m)
7744 return ENOBUFS;
7745 }
7746 msg = mtod(m, struct sadb_msg *);
7747 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7748 target = KEY_SENDUP_ONE;
7749
7750 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) {
7751 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7752 PFKEYSTAT_INC(out_invlen);
7753 error = EINVAL;
7754 goto senderror;
7755 }
7756
7757 if (msg->sadb_msg_version != PF_KEY_V2) {
7758 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7759 __func__, msg->sadb_msg_version));
7760 PFKEYSTAT_INC(out_invver);
7761 error = EINVAL;
7762 goto senderror;
7763 }
7764
7765 if (msg->sadb_msg_type > SADB_MAX) {
7766 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7767 __func__, msg->sadb_msg_type));
7768 PFKEYSTAT_INC(out_invmsgtype);
7769 error = EINVAL;
7770 goto senderror;
7771 }
7772
7773 /* for old-fashioned code - should be nuked */
7774 if (m->m_pkthdr.len > MCLBYTES) {
7775 m_freem(m);
7776 return ENOBUFS;
7777 }
7778 if (m->m_next) {
7779 struct mbuf *n;
7780
7781 MGETHDR(n, M_NOWAIT, MT_DATA);
7782 if (n && m->m_pkthdr.len > MHLEN) {
7783 if (!(MCLGET(n, M_NOWAIT))) {
7784 m_free(n);
7785 n = NULL;
7786 }
7787 }
7788 if (!n) {
7789 m_freem(m);
7790 return ENOBUFS;
7791 }
7792 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7793 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7794 n->m_next = NULL;
7795 m_freem(m);
7796 m = n;
7797 }
7798
7799 /* align the mbuf chain so that extensions are in contiguous region. */
7800 error = key_align(m, &mh);
7801 if (error)
7802 return error;
7803
7804 msg = mh.msg;
7805
7806 /* We use satype as scope mask for spddump */
7807 if (msg->sadb_msg_type == SADB_X_SPDDUMP) {
7808 switch (msg->sadb_msg_satype) {
7809 case IPSEC_POLICYSCOPE_ANY:
7810 case IPSEC_POLICYSCOPE_GLOBAL:
7811 case IPSEC_POLICYSCOPE_IFNET:
7812 case IPSEC_POLICYSCOPE_PCB:
7813 break;
7814 default:
7815 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7816 __func__, msg->sadb_msg_type));
7817 PFKEYSTAT_INC(out_invsatype);
7818 error = EINVAL;
7819 goto senderror;
7820 }
7821 } else {
7822 switch (msg->sadb_msg_satype) { /* check SA type */
7823 case SADB_SATYPE_UNSPEC:
7824 switch (msg->sadb_msg_type) {
7825 case SADB_GETSPI:
7826 case SADB_UPDATE:
7827 case SADB_ADD:
7828 case SADB_DELETE:
7829 case SADB_GET:
7830 case SADB_ACQUIRE:
7831 case SADB_EXPIRE:
7832 ipseclog((LOG_DEBUG, "%s: must specify satype "
7833 "when msg type=%u.\n", __func__,
7834 msg->sadb_msg_type));
7835 PFKEYSTAT_INC(out_invsatype);
7836 error = EINVAL;
7837 goto senderror;
7838 }
7839 break;
7840 case SADB_SATYPE_AH:
7841 case SADB_SATYPE_ESP:
7842 case SADB_X_SATYPE_IPCOMP:
7843 case SADB_X_SATYPE_TCPSIGNATURE:
7844 switch (msg->sadb_msg_type) {
7845 case SADB_X_SPDADD:
7846 case SADB_X_SPDDELETE:
7847 case SADB_X_SPDGET:
7848 case SADB_X_SPDFLUSH:
7849 case SADB_X_SPDSETIDX:
7850 case SADB_X_SPDUPDATE:
7851 case SADB_X_SPDDELETE2:
7852 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7853 __func__, msg->sadb_msg_type));
7854 PFKEYSTAT_INC(out_invsatype);
7855 error = EINVAL;
7856 goto senderror;
7857 }
7858 break;
7859 case SADB_SATYPE_RSVP:
7860 case SADB_SATYPE_OSPFV2:
7861 case SADB_SATYPE_RIPV2:
7862 case SADB_SATYPE_MIP:
7863 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7864 __func__, msg->sadb_msg_satype));
7865 PFKEYSTAT_INC(out_invsatype);
7866 error = EOPNOTSUPP;
7867 goto senderror;
7868 case 1: /* XXX: What does it do? */
7869 if (msg->sadb_msg_type == SADB_X_PROMISC)
7870 break;
7871 /*FALLTHROUGH*/
7872 default:
7873 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7874 __func__, msg->sadb_msg_satype));
7875 PFKEYSTAT_INC(out_invsatype);
7876 error = EINVAL;
7877 goto senderror;
7878 }
7879 }
7880
7881 /* check field of upper layer protocol and address family */
7882 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7883 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7884 struct sadb_address *src0, *dst0;
7885 u_int plen;
7886
7887 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7888 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7889
7890 /* check upper layer protocol */
7891 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7892 ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7893 "mismatched.\n", __func__));
7894 PFKEYSTAT_INC(out_invaddr);
7895 error = EINVAL;
7896 goto senderror;
7897 }
7898
7899 /* check family */
7900 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7901 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7902 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7903 __func__));
7904 PFKEYSTAT_INC(out_invaddr);
7905 error = EINVAL;
7906 goto senderror;
7907 }
7908 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7909 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7910 ipseclog((LOG_DEBUG, "%s: address struct size "
7911 "mismatched.\n", __func__));
7912 PFKEYSTAT_INC(out_invaddr);
7913 error = EINVAL;
7914 goto senderror;
7915 }
7916
7917 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7918 case AF_INET:
7919 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7920 sizeof(struct sockaddr_in)) {
7921 PFKEYSTAT_INC(out_invaddr);
7922 error = EINVAL;
7923 goto senderror;
7924 }
7925 break;
7926 case AF_INET6:
7927 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7928 sizeof(struct sockaddr_in6)) {
7929 PFKEYSTAT_INC(out_invaddr);
7930 error = EINVAL;
7931 goto senderror;
7932 }
7933 break;
7934 default:
7935 ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7936 __func__));
7937 PFKEYSTAT_INC(out_invaddr);
7938 error = EAFNOSUPPORT;
7939 goto senderror;
7940 }
7941
7942 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7943 case AF_INET:
7944 plen = sizeof(struct in_addr) << 3;
7945 break;
7946 case AF_INET6:
7947 plen = sizeof(struct in6_addr) << 3;
7948 break;
7949 default:
7950 plen = 0; /*fool gcc*/
7951 break;
7952 }
7953
7954 /* check max prefix length */
7955 if (src0->sadb_address_prefixlen > plen ||
7956 dst0->sadb_address_prefixlen > plen) {
7957 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7958 __func__));
7959 PFKEYSTAT_INC(out_invaddr);
7960 error = EINVAL;
7961 goto senderror;
7962 }
7963
7964 /*
7965 * prefixlen == 0 is valid because there can be a case when
7966 * all addresses are matched.
7967 */
7968 }
7969
7970 if (msg->sadb_msg_type >= nitems(key_typesw) ||
7971 key_typesw[msg->sadb_msg_type] == NULL) {
7972 PFKEYSTAT_INC(out_invmsgtype);
7973 error = EINVAL;
7974 goto senderror;
7975 }
7976
7977 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7978
7979 senderror:
7980 msg->sadb_msg_errno = error;
7981 return key_sendup_mbuf(so, m, target);
7982 }
7983
7984 static int
key_senderror(struct socket * so,struct mbuf * m,int code)7985 key_senderror(struct socket *so, struct mbuf *m, int code)
7986 {
7987 struct sadb_msg *msg;
7988
7989 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7990 ("mbuf too small, len %u", m->m_len));
7991
7992 msg = mtod(m, struct sadb_msg *);
7993 msg->sadb_msg_errno = code;
7994 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7995 }
7996
7997 /*
7998 * set the pointer to each header into message buffer.
7999 * m will be freed on error.
8000 * XXX larger-than-MCLBYTES extension?
8001 */
8002 static int
key_align(struct mbuf * m,struct sadb_msghdr * mhp)8003 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
8004 {
8005 struct mbuf *n;
8006 struct sadb_ext *ext;
8007 size_t off, end;
8008 int extlen;
8009 int toff;
8010
8011 IPSEC_ASSERT(m != NULL, ("null mbuf"));
8012 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
8013 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
8014 ("mbuf too small, len %u", m->m_len));
8015
8016 /* initialize */
8017 bzero(mhp, sizeof(*mhp));
8018
8019 mhp->msg = mtod(m, struct sadb_msg *);
8020 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
8021
8022 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
8023 extlen = end; /*just in case extlen is not updated*/
8024 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
8025 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
8026 if (!n) {
8027 /* m is already freed */
8028 return ENOBUFS;
8029 }
8030 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8031
8032 /* set pointer */
8033 switch (ext->sadb_ext_type) {
8034 case SADB_EXT_SA:
8035 case SADB_EXT_ADDRESS_SRC:
8036 case SADB_EXT_ADDRESS_DST:
8037 case SADB_EXT_ADDRESS_PROXY:
8038 case SADB_EXT_LIFETIME_CURRENT:
8039 case SADB_EXT_LIFETIME_HARD:
8040 case SADB_EXT_LIFETIME_SOFT:
8041 case SADB_EXT_KEY_AUTH:
8042 case SADB_EXT_KEY_ENCRYPT:
8043 case SADB_EXT_IDENTITY_SRC:
8044 case SADB_EXT_IDENTITY_DST:
8045 case SADB_EXT_SENSITIVITY:
8046 case SADB_EXT_PROPOSAL:
8047 case SADB_EXT_SUPPORTED_AUTH:
8048 case SADB_EXT_SUPPORTED_ENCRYPT:
8049 case SADB_EXT_SPIRANGE:
8050 case SADB_X_EXT_POLICY:
8051 case SADB_X_EXT_SA2:
8052 case SADB_X_EXT_NAT_T_TYPE:
8053 case SADB_X_EXT_NAT_T_SPORT:
8054 case SADB_X_EXT_NAT_T_DPORT:
8055 case SADB_X_EXT_NAT_T_OAI:
8056 case SADB_X_EXT_NAT_T_OAR:
8057 case SADB_X_EXT_NAT_T_FRAG:
8058 case SADB_X_EXT_SA_REPLAY:
8059 case SADB_X_EXT_NEW_ADDRESS_SRC:
8060 case SADB_X_EXT_NEW_ADDRESS_DST:
8061 /* duplicate check */
8062 /*
8063 * XXX Are there duplication payloads of either
8064 * KEY_AUTH or KEY_ENCRYPT ?
8065 */
8066 if (mhp->ext[ext->sadb_ext_type] != NULL) {
8067 ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
8068 "%u\n", __func__, ext->sadb_ext_type));
8069 m_freem(m);
8070 PFKEYSTAT_INC(out_dupext);
8071 return EINVAL;
8072 }
8073 break;
8074 default:
8075 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
8076 __func__, ext->sadb_ext_type));
8077 m_freem(m);
8078 PFKEYSTAT_INC(out_invexttype);
8079 return EINVAL;
8080 }
8081
8082 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
8083
8084 if (key_validate_ext(ext, extlen)) {
8085 m_freem(m);
8086 PFKEYSTAT_INC(out_invlen);
8087 return EINVAL;
8088 }
8089
8090 n = m_pulldown(m, off, extlen, &toff);
8091 if (!n) {
8092 /* m is already freed */
8093 return ENOBUFS;
8094 }
8095 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8096
8097 mhp->ext[ext->sadb_ext_type] = ext;
8098 mhp->extoff[ext->sadb_ext_type] = off;
8099 mhp->extlen[ext->sadb_ext_type] = extlen;
8100 }
8101
8102 if (off != end) {
8103 m_freem(m);
8104 PFKEYSTAT_INC(out_invlen);
8105 return EINVAL;
8106 }
8107
8108 return 0;
8109 }
8110
8111 static int
key_validate_ext(const struct sadb_ext * ext,int len)8112 key_validate_ext(const struct sadb_ext *ext, int len)
8113 {
8114 const struct sockaddr *sa;
8115 enum { NONE, ADDR } checktype = NONE;
8116 int baselen = 0;
8117 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8118
8119 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8120 return EINVAL;
8121
8122 /* if it does not match minimum/maximum length, bail */
8123 if (ext->sadb_ext_type >= nitems(minsize) ||
8124 ext->sadb_ext_type >= nitems(maxsize))
8125 return EINVAL;
8126 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8127 return EINVAL;
8128 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8129 return EINVAL;
8130
8131 /* more checks based on sadb_ext_type XXX need more */
8132 switch (ext->sadb_ext_type) {
8133 case SADB_EXT_ADDRESS_SRC:
8134 case SADB_EXT_ADDRESS_DST:
8135 case SADB_EXT_ADDRESS_PROXY:
8136 case SADB_X_EXT_NAT_T_OAI:
8137 case SADB_X_EXT_NAT_T_OAR:
8138 case SADB_X_EXT_NEW_ADDRESS_SRC:
8139 case SADB_X_EXT_NEW_ADDRESS_DST:
8140 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8141 checktype = ADDR;
8142 break;
8143 case SADB_EXT_IDENTITY_SRC:
8144 case SADB_EXT_IDENTITY_DST:
8145 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8146 SADB_X_IDENTTYPE_ADDR) {
8147 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8148 checktype = ADDR;
8149 } else
8150 checktype = NONE;
8151 break;
8152 default:
8153 checktype = NONE;
8154 break;
8155 }
8156
8157 switch (checktype) {
8158 case NONE:
8159 break;
8160 case ADDR:
8161 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8162 if (len < baselen + sal)
8163 return EINVAL;
8164 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8165 return EINVAL;
8166 break;
8167 }
8168
8169 return 0;
8170 }
8171
8172 void
spdcache_init(void)8173 spdcache_init(void)
8174 {
8175 int i;
8176
8177 TUNABLE_INT_FETCH("net.key.spdcache.maxentries",
8178 &V_key_spdcache_maxentries);
8179 TUNABLE_INT_FETCH("net.key.spdcache.threshold",
8180 &V_key_spdcache_threshold);
8181
8182 if (V_key_spdcache_maxentries) {
8183 V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries,
8184 SPDCACHE_MAX_ENTRIES_PER_HASH);
8185 V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries /
8186 SPDCACHE_MAX_ENTRIES_PER_HASH,
8187 M_IPSEC_SPDCACHE, &V_spdcachehash_mask);
8188 V_key_spdcache_maxentries = (V_spdcachehash_mask + 1)
8189 * SPDCACHE_MAX_ENTRIES_PER_HASH;
8190
8191 V_spdcache_lock = malloc(sizeof(struct mtx) *
8192 (V_spdcachehash_mask + 1),
8193 M_IPSEC_SPDCACHE, M_WAITOK|M_ZERO);
8194
8195 for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8196 SPDCACHE_LOCK_INIT(i);
8197 }
8198 }
8199
8200 struct spdcache_entry *
spdcache_entry_alloc(const struct secpolicyindex * spidx,struct secpolicy * sp)8201 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp)
8202 {
8203 struct spdcache_entry *entry;
8204
8205 entry = malloc(sizeof(struct spdcache_entry),
8206 M_IPSEC_SPDCACHE, M_NOWAIT|M_ZERO);
8207 if (entry == NULL)
8208 return NULL;
8209
8210 if (sp != NULL)
8211 SP_ADDREF(sp);
8212
8213 entry->spidx = *spidx;
8214 entry->sp = sp;
8215
8216 return (entry);
8217 }
8218
8219 void
spdcache_entry_free(struct spdcache_entry * entry)8220 spdcache_entry_free(struct spdcache_entry *entry)
8221 {
8222
8223 if (entry->sp != NULL)
8224 key_freesp(&entry->sp);
8225 free(entry, M_IPSEC_SPDCACHE);
8226 }
8227
8228 void
spdcache_clear(void)8229 spdcache_clear(void)
8230 {
8231 struct spdcache_entry *entry;
8232 int i;
8233
8234 for (i = 0; i < V_spdcachehash_mask + 1; ++i) {
8235 SPDCACHE_LOCK(i);
8236 while (!LIST_EMPTY(&V_spdcachehashtbl[i])) {
8237 entry = LIST_FIRST(&V_spdcachehashtbl[i]);
8238 LIST_REMOVE(entry, chain);
8239 spdcache_entry_free(entry);
8240 }
8241 SPDCACHE_UNLOCK(i);
8242 }
8243 }
8244
8245 #ifdef VIMAGE
8246 void
spdcache_destroy(void)8247 spdcache_destroy(void)
8248 {
8249 int i;
8250
8251 if (SPDCACHE_ENABLED()) {
8252 spdcache_clear();
8253 hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask);
8254
8255 for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8256 SPDCACHE_LOCK_DESTROY(i);
8257
8258 free(V_spdcache_lock, M_IPSEC_SPDCACHE);
8259 }
8260 }
8261 #endif
8262 void
key_init(void)8263 key_init(void)
8264 {
8265 int i;
8266
8267 for (i = 0; i < IPSEC_DIR_MAX; i++) {
8268 TAILQ_INIT(&V_sptree[i]);
8269 TAILQ_INIT(&V_sptree_ifnet[i]);
8270 }
8271
8272 V_key_lft_zone = uma_zcreate("IPsec SA lft_c",
8273 sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL,
8274 UMA_ALIGN_PTR, UMA_ZONE_PCPU);
8275
8276 TAILQ_INIT(&V_sahtree);
8277 V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask);
8278 V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask);
8279 V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH,
8280 &V_sahaddrhash_mask);
8281 V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8282 &V_acqaddrhash_mask);
8283 V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8284 &V_acqseqhash_mask);
8285
8286 spdcache_init();
8287
8288 for (i = 0; i <= SADB_SATYPE_MAX; i++)
8289 LIST_INIT(&V_regtree[i]);
8290
8291 LIST_INIT(&V_acqtree);
8292 LIST_INIT(&V_spacqtree);
8293
8294 if (!IS_DEFAULT_VNET(curvnet))
8295 return;
8296
8297 SPTREE_LOCK_INIT();
8298 REGTREE_LOCK_INIT();
8299 SAHTREE_LOCK_INIT();
8300 ACQ_LOCK_INIT();
8301 SPACQ_LOCK_INIT();
8302
8303 #ifndef IPSEC_DEBUG2
8304 callout_init(&key_timer, 1);
8305 callout_reset(&key_timer, hz, key_timehandler, NULL);
8306 #endif /*IPSEC_DEBUG2*/
8307
8308 /* initialize key statistics */
8309 keystat.getspi_count = 1;
8310
8311 if (bootverbose)
8312 printf("IPsec: Initialized Security Association Processing.\n");
8313 }
8314
8315 #ifdef VIMAGE
8316 void
key_destroy(void)8317 key_destroy(void)
8318 {
8319 struct secashead_queue sahdrainq;
8320 struct secpolicy_queue drainq;
8321 struct secpolicy *sp, *nextsp;
8322 struct secacq *acq, *nextacq;
8323 struct secspacq *spacq, *nextspacq;
8324 struct secashead *sah;
8325 struct secasvar *sav;
8326 struct secreg *reg;
8327 int i;
8328
8329 /*
8330 * XXX: can we just call free() for each object without
8331 * walking through safe way with releasing references?
8332 */
8333 TAILQ_INIT(&drainq);
8334 SPTREE_WLOCK();
8335 for (i = 0; i < IPSEC_DIR_MAX; i++) {
8336 TAILQ_CONCAT(&drainq, &V_sptree[i], chain);
8337 TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain);
8338 }
8339 for (i = 0; i < V_sphash_mask + 1; i++)
8340 LIST_INIT(&V_sphashtbl[i]);
8341 SPTREE_WUNLOCK();
8342 spdcache_destroy();
8343
8344 sp = TAILQ_FIRST(&drainq);
8345 while (sp != NULL) {
8346 nextsp = TAILQ_NEXT(sp, chain);
8347 key_freesp(&sp);
8348 sp = nextsp;
8349 }
8350
8351 TAILQ_INIT(&sahdrainq);
8352 SAHTREE_WLOCK();
8353 TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain);
8354 for (i = 0; i < V_savhash_mask + 1; i++)
8355 LIST_INIT(&V_savhashtbl[i]);
8356 for (i = 0; i < V_sahaddrhash_mask + 1; i++)
8357 LIST_INIT(&V_sahaddrhashtbl[i]);
8358 TAILQ_FOREACH(sah, &sahdrainq, chain) {
8359 sah->state = SADB_SASTATE_DEAD;
8360 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
8361 sav->state = SADB_SASTATE_DEAD;
8362 }
8363 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
8364 sav->state = SADB_SASTATE_DEAD;
8365 }
8366 }
8367 SAHTREE_WUNLOCK();
8368
8369 key_freesah_flushed(&sahdrainq);
8370 hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask);
8371 hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask);
8372 hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask);
8373
8374 REGTREE_LOCK();
8375 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8376 LIST_FOREACH(reg, &V_regtree[i], chain) {
8377 if (__LIST_CHAINED(reg)) {
8378 LIST_REMOVE(reg, chain);
8379 free(reg, M_IPSEC_SAR);
8380 break;
8381 }
8382 }
8383 }
8384 REGTREE_UNLOCK();
8385
8386 ACQ_LOCK();
8387 acq = LIST_FIRST(&V_acqtree);
8388 while (acq != NULL) {
8389 nextacq = LIST_NEXT(acq, chain);
8390 LIST_REMOVE(acq, chain);
8391 free(acq, M_IPSEC_SAQ);
8392 acq = nextacq;
8393 }
8394 for (i = 0; i < V_acqaddrhash_mask + 1; i++)
8395 LIST_INIT(&V_acqaddrhashtbl[i]);
8396 for (i = 0; i < V_acqseqhash_mask + 1; i++)
8397 LIST_INIT(&V_acqseqhashtbl[i]);
8398 ACQ_UNLOCK();
8399
8400 SPACQ_LOCK();
8401 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
8402 spacq = nextspacq) {
8403 nextspacq = LIST_NEXT(spacq, chain);
8404 if (__LIST_CHAINED(spacq)) {
8405 LIST_REMOVE(spacq, chain);
8406 free(spacq, M_IPSEC_SAQ);
8407 }
8408 }
8409 SPACQ_UNLOCK();
8410 hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask);
8411 hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask);
8412 uma_zdestroy(V_key_lft_zone);
8413
8414 if (!IS_DEFAULT_VNET(curvnet))
8415 return;
8416 #ifndef IPSEC_DEBUG2
8417 callout_drain(&key_timer);
8418 #endif
8419 SPTREE_LOCK_DESTROY();
8420 REGTREE_LOCK_DESTROY();
8421 SAHTREE_LOCK_DESTROY();
8422 ACQ_LOCK_DESTROY();
8423 SPACQ_LOCK_DESTROY();
8424 }
8425 #endif
8426
8427 /* record data transfer on SA, and update timestamps */
8428 void
key_sa_recordxfer(struct secasvar * sav,struct mbuf * m)8429 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8430 {
8431 IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
8432 IPSEC_ASSERT(m != NULL, ("Null mbuf"));
8433
8434 /*
8435 * XXX Currently, there is a difference of bytes size
8436 * between inbound and outbound processing.
8437 */
8438 counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len);
8439
8440 /*
8441 * We use the number of packets as the unit of
8442 * allocations. We increment the variable
8443 * whenever {esp,ah}_{in,out}put is called.
8444 */
8445 counter_u64_add(sav->lft_c_allocations, 1);
8446
8447 /*
8448 * NOTE: We record CURRENT usetime by using wall clock,
8449 * in seconds. HARD and SOFT lifetime are measured by the time
8450 * difference (again in seconds) from usetime.
8451 *
8452 * usetime
8453 * v expire expire
8454 * -----+-----+--------+---> t
8455 * <--------------> HARD
8456 * <-----> SOFT
8457 */
8458 if (sav->firstused == 0)
8459 sav->firstused = time_second;
8460 }
8461
8462 /*
8463 * Take one of the kernel's security keys and convert it into a PF_KEY
8464 * structure within an mbuf, suitable for sending up to a waiting
8465 * application in user land.
8466 *
8467 * IN:
8468 * src: A pointer to a kernel security key.
8469 * exttype: Which type of key this is. Refer to the PF_KEY data structures.
8470 * OUT:
8471 * a valid mbuf or NULL indicating an error
8472 *
8473 */
8474
8475 static struct mbuf *
key_setkey(struct seckey * src,uint16_t exttype)8476 key_setkey(struct seckey *src, uint16_t exttype)
8477 {
8478 struct mbuf *m;
8479 struct sadb_key *p;
8480 int len;
8481
8482 if (src == NULL)
8483 return NULL;
8484
8485 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8486 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8487 if (m == NULL)
8488 return NULL;
8489 m_align(m, len);
8490 m->m_len = len;
8491 p = mtod(m, struct sadb_key *);
8492 bzero(p, len);
8493 p->sadb_key_len = PFKEY_UNIT64(len);
8494 p->sadb_key_exttype = exttype;
8495 p->sadb_key_bits = src->bits;
8496 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8497
8498 return m;
8499 }
8500
8501 /*
8502 * Take one of the kernel's lifetime data structures and convert it
8503 * into a PF_KEY structure within an mbuf, suitable for sending up to
8504 * a waiting application in user land.
8505 *
8506 * IN:
8507 * src: A pointer to a kernel lifetime structure.
8508 * exttype: Which type of lifetime this is. Refer to the PF_KEY
8509 * data structures for more information.
8510 * OUT:
8511 * a valid mbuf or NULL indicating an error
8512 *
8513 */
8514
8515 static struct mbuf *
key_setlifetime(struct seclifetime * src,uint16_t exttype)8516 key_setlifetime(struct seclifetime *src, uint16_t exttype)
8517 {
8518 struct mbuf *m = NULL;
8519 struct sadb_lifetime *p;
8520 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8521
8522 if (src == NULL)
8523 return NULL;
8524
8525 m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8526 if (m == NULL)
8527 return m;
8528 m_align(m, len);
8529 m->m_len = len;
8530 p = mtod(m, struct sadb_lifetime *);
8531
8532 bzero(p, len);
8533 p->sadb_lifetime_len = PFKEY_UNIT64(len);
8534 p->sadb_lifetime_exttype = exttype;
8535 p->sadb_lifetime_allocations = src->allocations;
8536 p->sadb_lifetime_bytes = src->bytes;
8537 p->sadb_lifetime_addtime = src->addtime;
8538 p->sadb_lifetime_usetime = src->usetime;
8539
8540 return m;
8541
8542 }
8543
8544 const struct enc_xform *
enc_algorithm_lookup(int alg)8545 enc_algorithm_lookup(int alg)
8546 {
8547 int i;
8548
8549 for (i = 0; i < nitems(supported_ealgs); i++)
8550 if (alg == supported_ealgs[i].sadb_alg)
8551 return (supported_ealgs[i].xform);
8552 return (NULL);
8553 }
8554
8555 const struct auth_hash *
auth_algorithm_lookup(int alg)8556 auth_algorithm_lookup(int alg)
8557 {
8558 int i;
8559
8560 for (i = 0; i < nitems(supported_aalgs); i++)
8561 if (alg == supported_aalgs[i].sadb_alg)
8562 return (supported_aalgs[i].xform);
8563 return (NULL);
8564 }
8565
8566 const struct comp_algo *
comp_algorithm_lookup(int alg)8567 comp_algorithm_lookup(int alg)
8568 {
8569 int i;
8570
8571 for (i = 0; i < nitems(supported_calgs); i++)
8572 if (alg == supported_calgs[i].sadb_alg)
8573 return (supported_calgs[i].xform);
8574 return (NULL);
8575 }
8576