xref: /xnu-11215/bsd/kern/kdebug.c (revision 8d741a5d)
1 /*
2  * Copyright (c) 2000-2021 Apple Inc. All rights reserved.
3  *
4  * @Apple_LICENSE_HEADER_START@
5  *
6  * The contents of this file constitute Original Code as defined in and
7  * are subject to the Apple Public Source License Version 1.1 (the
8  * "License").  You may not use this file except in compliance with the
9  * License.  Please obtain a copy of the License at
10  * http://www.apple.com/publicsource and read it before using this file.
11  *
12  * This Original Code and all software distributed under the License are
13  * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.  Please see the
17  * License for the specific language governing rights and limitations
18  * under the License.
19  *
20  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
21  */
22 
23 #include <sys/errno.h>
24 #include <sys/kdebug_private.h>
25 #include <sys/proc_internal.h>
26 #include <sys/vm.h>
27 #include <sys/sysctl.h>
28 #include <sys/kdebug_common.h>
29 #include <sys/kdebug.h>
30 #include <sys/kdebug_triage.h>
31 #include <sys/kauth.h>
32 #include <sys/ktrace.h>
33 #include <sys/sysproto.h>
34 #include <sys/bsdtask_info.h>
35 #include <sys/random.h>
36 
37 #include <mach/mach_vm.h>
38 #include <machine/atomic.h>
39 
40 #include <mach/machine.h>
41 #include <mach/vm_map.h>
42 #include <kern/clock.h>
43 
44 #include <kern/task.h>
45 #include <kern/debug.h>
46 #include <kern/kalloc.h>
47 #include <kern/telemetry.h>
48 #include <kern/sched_prim.h>
49 #include <sys/lock.h>
50 #include <pexpert/device_tree.h>
51 
52 #include <sys/malloc.h>
53 
54 #include <sys/vnode.h>
55 #include <sys/vnode_internal.h>
56 #include <sys/fcntl.h>
57 #include <sys/file_internal.h>
58 #include <sys/ubc.h>
59 #include <sys/param.h>                  /* for isset() */
60 
61 #include <vm/vm_kern_xnu.h>
62 #include <vm/vm_map_xnu.h>
63 
64 #include <libkern/OSAtomic.h>
65 
66 #include <machine/pal_routines.h>
67 #include <machine/atomic.h>
68 
69 
70 extern unsigned int wake_nkdbufs;
71 extern unsigned int trace_wrap;
72 
73 // Coprocessors (or "IOP"s)
74 //
75 // Coprocessors are auxiliary cores that want to participate in kdebug event
76 // logging.  They are registered dynamically, as devices match hardware, and are
77 // each assigned an ID at registration.
78 //
79 // Once registered, a coprocessor is permanent; it cannot be unregistered.
80 // The current implementation depends on this for thread safety.
81 //
82 // The `kd_coprocs` list may be safely walked at any time, without holding
83 // locks.
84 //
85 // When starting a trace session, the current `kd_coprocs` head is captured. Any
86 // operations that depend on the buffer state (such as flushing IOP traces on
87 // reads, etc.) should use the captured list head. This will allow registrations
88 // to take place while trace is in use, though their events will be rejected
89 // until the next time a trace session is started.
90 
91 struct kd_coproc {
92 	char                  full_name[32];
93 	kdebug_coproc_flags_t flags;
94 	kd_callback_t         callback;
95 	uint32_t              cpu_id;
96 	struct kd_coproc     *next;
97 	struct mpsc_queue_chain chain;
98 };
99 
100 static struct kd_coproc *kd_coprocs = NULL;
101 
102 // Use an MPSC queue to notify coprocessors of the current trace state during
103 // registration, if space is available for them in the current trace session.
104 static struct mpsc_daemon_queue _coproc_notify_queue;
105 
106 // Typefilter(s)
107 //
108 // A typefilter is a 8KB bitmap that is used to selectively filter events
109 // being recorded. It is able to individually address every class & subclass.
110 //
111 // There is a shared typefilter in the kernel which is lazily allocated. Once
112 // allocated, the shared typefilter is never deallocated. The shared typefilter
113 // is also mapped on demand into userspace processes that invoke kdebug_trace
114 // API from Libsyscall. When mapped into a userspace process, the memory is
115 // read only, and does not have a fixed address.
116 //
117 // It is a requirement that the kernel's shared typefilter always pass DBG_TRACE
118 // events. This is enforced automatically, by having the needed bits set any
119 // time the shared typefilter is mutated.
120 
121 typedef uint8_t *typefilter_t;
122 
123 static typefilter_t kdbg_typefilter;
124 static mach_port_t kdbg_typefilter_memory_entry;
125 
126 /*
127  * There are 3 combinations of page sizes:
128  *
129  *  4KB /  4KB
130  *  4KB / 16KB
131  * 16KB / 16KB
132  *
133  * The typefilter is exactly 8KB. In the first two scenarios, we would like
134  * to use 2 pages exactly; in the third scenario we must make certain that
135  * a full page is allocated so we do not inadvertantly share 8KB of random
136  * data to userspace. The round_page_32 macro rounds to kernel page size.
137  */
138 #define TYPEFILTER_ALLOC_SIZE MAX(round_page_32(KDBG_TYPEFILTER_BITMAP_SIZE), KDBG_TYPEFILTER_BITMAP_SIZE)
139 
140 static typefilter_t
typefilter_create(void)141 typefilter_create(void)
142 {
143 	typefilter_t tf;
144 	if (KERN_SUCCESS == kmem_alloc(kernel_map, (vm_offset_t*)&tf,
145 	    TYPEFILTER_ALLOC_SIZE, KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_DIAG)) {
146 		return tf;
147 	}
148 	return NULL;
149 }
150 
151 static void
typefilter_deallocate(typefilter_t tf)152 typefilter_deallocate(typefilter_t tf)
153 {
154 	assert(tf != NULL);
155 	assert(tf != kdbg_typefilter);
156 	kmem_free(kernel_map, (vm_offset_t)tf, TYPEFILTER_ALLOC_SIZE);
157 }
158 
159 static void
typefilter_copy(typefilter_t dst,typefilter_t src)160 typefilter_copy(typefilter_t dst, typefilter_t src)
161 {
162 	assert(src != NULL);
163 	assert(dst != NULL);
164 	memcpy(dst, src, KDBG_TYPEFILTER_BITMAP_SIZE);
165 }
166 
167 static void
typefilter_reject_all(typefilter_t tf)168 typefilter_reject_all(typefilter_t tf)
169 {
170 	assert(tf != NULL);
171 	memset(tf, 0, KDBG_TYPEFILTER_BITMAP_SIZE);
172 }
173 
174 static void
typefilter_allow_all(typefilter_t tf)175 typefilter_allow_all(typefilter_t tf)
176 {
177 	assert(tf != NULL);
178 	memset(tf, ~0, KDBG_TYPEFILTER_BITMAP_SIZE);
179 }
180 
181 static void
typefilter_allow_class(typefilter_t tf,uint8_t class)182 typefilter_allow_class(typefilter_t tf, uint8_t class)
183 {
184 	assert(tf != NULL);
185 	const uint32_t BYTES_PER_CLASS = 256 / 8; // 256 subclasses, 1 bit each
186 	memset(&tf[class * BYTES_PER_CLASS], 0xFF, BYTES_PER_CLASS);
187 }
188 
189 static void
typefilter_allow_csc(typefilter_t tf,uint16_t csc)190 typefilter_allow_csc(typefilter_t tf, uint16_t csc)
191 {
192 	assert(tf != NULL);
193 	setbit(tf, csc);
194 }
195 
196 static bool
typefilter_is_debugid_allowed(typefilter_t tf,uint32_t id)197 typefilter_is_debugid_allowed(typefilter_t tf, uint32_t id)
198 {
199 	assert(tf != NULL);
200 	return isset(tf, KDBG_EXTRACT_CSC(id));
201 }
202 
203 static mach_port_t
typefilter_create_memory_entry(typefilter_t tf)204 typefilter_create_memory_entry(typefilter_t tf)
205 {
206 	assert(tf != NULL);
207 
208 	mach_port_t memory_entry = MACH_PORT_NULL;
209 	memory_object_size_t size = TYPEFILTER_ALLOC_SIZE;
210 
211 	kern_return_t kr = mach_make_memory_entry_64(kernel_map,
212 	    &size,
213 	    (memory_object_offset_t)tf,
214 	    VM_PROT_READ,
215 	    &memory_entry,
216 	    MACH_PORT_NULL);
217 	if (kr != KERN_SUCCESS) {
218 		return MACH_PORT_NULL;
219 	}
220 
221 	return memory_entry;
222 }
223 
224 static int  kdbg_copyin_typefilter(user_addr_t addr, size_t size);
225 static void kdbg_enable_typefilter(void);
226 static void kdbg_disable_typefilter(void);
227 
228 // External prototypes
229 
230 void commpage_update_kdebug_state(void);
231 
232 static int kdbg_readcurthrmap(user_addr_t, size_t *);
233 static int kdbg_setpidex(kd_regtype *);
234 static int kdbg_setpid(kd_regtype *);
235 static int kdbg_reinit(unsigned int extra_cpus);
236 #if DEVELOPMENT || DEBUG
237 static int kdbg_test(size_t flavor);
238 #endif /* DEVELOPMENT || DEBUG */
239 
240 static int _write_legacy_header(bool write_thread_map, vnode_t vp,
241     vfs_context_t ctx);
242 static int kdbg_write_thread_map(vnode_t vp, vfs_context_t ctx);
243 static int kdbg_copyout_thread_map(user_addr_t buffer, size_t *buffer_size);
244 static void _clear_thread_map(void);
245 
246 static bool kdbg_wait(uint64_t timeout_ms);
247 static void kdbg_wakeup(void);
248 
249 static int _copy_cpu_map(int version, void **dst, size_t *size);
250 
251 static kd_threadmap *_thread_map_create_live(size_t max_count,
252     vm_size_t *map_size, vm_size_t *map_count);
253 
254 static bool kdebug_current_proc_enabled(uint32_t debugid);
255 static errno_t kdebug_check_trace_string(uint32_t debugid, uint64_t str_id);
256 
257 int kernel_debug_trace_write_to_file(user_addr_t *buffer, size_t *number,
258     size_t *count, size_t tempbuf_number, vnode_t vp, vfs_context_t ctx,
259     bool chunk);
260 
261 extern void IOSleep(int);
262 
263 unsigned int kdebug_enable = 0;
264 
265 // A static buffer to record events prior to the start of regular logging.
266 
267 #define KD_EARLY_BUFFER_SIZE (16 * 1024)
268 #define KD_EARLY_EVENT_COUNT (KD_EARLY_BUFFER_SIZE / sizeof(kd_buf))
269 #if defined(__x86_64__)
270 __attribute__((aligned(KD_EARLY_BUFFER_SIZE)))
271 static kd_buf kd_early_buffer[KD_EARLY_EVENT_COUNT];
272 #else /* defined(__x86_64__) */
273 // On ARM, the space for this is carved out by osfmk/arm/data.s -- clang
274 // has problems aligning to greater than 4K.
275 extern kd_buf kd_early_buffer[KD_EARLY_EVENT_COUNT];
276 #endif /* !defined(__x86_64__) */
277 
278 static __security_const_late unsigned int kd_early_index = 0;
279 static __security_const_late bool kd_early_overflow = false;
280 static __security_const_late bool kd_early_done = false;
281 
282 static bool kd_waiter = false;
283 static LCK_SPIN_DECLARE(kd_wait_lock, &kdebug_lck_grp);
284 // Synchronize access to coprocessor list for kdebug trace.
285 static LCK_SPIN_DECLARE(kd_coproc_spinlock, &kdebug_lck_grp);
286 
287 #define TRACE_KDCOPYBUF_COUNT 8192
288 #define TRACE_KDCOPYBUF_SIZE  (TRACE_KDCOPYBUF_COUNT * sizeof(kd_buf))
289 
290 struct kd_control kd_control_trace = {
291 	.kds_free_list = {.raw = KDS_PTR_NULL},
292 	.enabled = 0,
293 	.mode = KDEBUG_MODE_TRACE,
294 	.kdebug_events_per_storage_unit = TRACE_EVENTS_PER_STORAGE_UNIT,
295 	.kdebug_min_storage_units_per_cpu = TRACE_MIN_STORAGE_UNITS_PER_CPU,
296 	.kdebug_kdcopybuf_count = TRACE_KDCOPYBUF_COUNT,
297 	.kdebug_kdcopybuf_size = TRACE_KDCOPYBUF_SIZE,
298 	.kdc_flags = 0,
299 	.kdc_emit = KDEMIT_DISABLE,
300 	.kdc_oldest_time = 0
301 };
302 
303 struct kd_buffer kd_buffer_trace = {
304 	.kdb_event_count = 0,
305 	.kdb_storage_count = 0,
306 	.kdb_storage_threshold = 0,
307 	.kdb_region_count = 0,
308 	.kdb_info = NULL,
309 	.kd_bufs = NULL,
310 	.kdcopybuf = NULL
311 };
312 
313 unsigned int kdlog_beg = 0;
314 unsigned int kdlog_end = 0;
315 unsigned int kdlog_value1 = 0;
316 unsigned int kdlog_value2 = 0;
317 unsigned int kdlog_value3 = 0;
318 unsigned int kdlog_value4 = 0;
319 
320 kd_threadmap *kd_mapptr = 0;
321 vm_size_t kd_mapsize = 0;
322 vm_size_t kd_mapcount = 0;
323 
324 off_t RAW_file_offset = 0;
325 int   RAW_file_written = 0;
326 
327 /*
328  * A globally increasing counter for identifying strings in trace.  Starts at
329  * 1 because 0 is a reserved return value.
330  */
331 __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE)))
332 static uint64_t g_curr_str_id = 1;
333 
334 #define STR_ID_SIG_OFFSET (48)
335 #define STR_ID_MASK       ((1ULL << STR_ID_SIG_OFFSET) - 1)
336 #define STR_ID_SIG_MASK   (~STR_ID_MASK)
337 
338 /*
339  * A bit pattern for identifying string IDs generated by
340  * kdebug_trace_string(2).
341  */
342 static uint64_t g_str_id_signature = (0x70acULL << STR_ID_SIG_OFFSET);
343 
344 #define RAW_VERSION3    0x00001000
345 
346 #define V3_RAW_EVENTS   0x00001e00
347 
348 static void
_coproc_lock(void)349 _coproc_lock(void)
350 {
351 	lck_spin_lock_grp(&kd_coproc_spinlock, &kdebug_lck_grp);
352 }
353 
354 static void
_coproc_unlock(void)355 _coproc_unlock(void)
356 {
357 	lck_spin_unlock(&kd_coproc_spinlock);
358 }
359 
360 static void
_coproc_list_check(void)361 _coproc_list_check(void)
362 {
363 #if MACH_ASSERT
364 	_coproc_lock();
365 	struct kd_coproc *coproc = kd_control_trace.kdc_coprocs;
366 	if (coproc) {
367 		/* Is list sorted by cpu_id? */
368 		struct kd_coproc* temp = coproc;
369 		do {
370 			assert(!temp->next || temp->next->cpu_id == temp->cpu_id - 1);
371 			assert(temp->next || (temp->cpu_id == kdbg_cpu_count()));
372 		} while ((temp = temp->next));
373 
374 		/* Does each entry have a function and a name? */
375 		temp = coproc;
376 		do {
377 			assert(temp->callback.func);
378 			assert(strlen(temp->callback.iop_name) < sizeof(temp->callback.iop_name));
379 		} while ((temp = temp->next));
380 	}
381 	_coproc_unlock();
382 #endif // MACH_ASSERT
383 }
384 
385 static void
_coproc_list_callback(kd_callback_type type,void * arg)386 _coproc_list_callback(kd_callback_type type, void *arg)
387 {
388 	if (kd_control_trace.kdc_flags & KDBG_DISABLE_COPROCS) {
389 		return;
390 	}
391 
392 	_coproc_lock();
393 	// Coprocessor list is only ever prepended to.
394 	struct kd_coproc *head = kd_control_trace.kdc_coprocs;
395 	_coproc_unlock();
396 	while (head) {
397 		head->callback.func(head->callback.context, type, arg);
398 		head = head->next;
399 	}
400 }
401 
402 // Leave some extra space for coprocessors to register while tracing is active.
403 #define EXTRA_COPROC_COUNT      (16)
404 // There are more coprocessors registering during boot tracing.
405 #define EXTRA_COPROC_COUNT_BOOT (32)
406 
407 static kdebug_emit_filter_t
_trace_emit_filter(void)408 _trace_emit_filter(void)
409 {
410 	if (!kdebug_enable) {
411 		return KDEMIT_DISABLE;
412 	} else if (kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK) {
413 		return KDEMIT_TYPEFILTER;
414 	} else if (kd_control_trace.kdc_flags & KDBG_RANGECHECK) {
415 		return KDEMIT_RANGE;
416 	} else if (kd_control_trace.kdc_flags & KDBG_VALCHECK) {
417 		return KDEMIT_EXACT;
418 	} else {
419 		return KDEMIT_ALL;
420 	}
421 }
422 
423 static void
kdbg_set_tracing_enabled(bool enabled,uint32_t trace_type)424 kdbg_set_tracing_enabled(bool enabled, uint32_t trace_type)
425 {
426 	// Drain any events from coprocessors before making the state change.  On
427 	// enabling, this removes any stale events from before tracing.  On
428 	// disabling, this saves any events up to the point tracing is disabled.
429 	_coproc_list_callback(KD_CALLBACK_SYNC_FLUSH, NULL);
430 
431 	if (!enabled) {
432 		// Give coprocessors a chance to log any events before tracing is
433 		// disabled, outside the lock.
434 		_coproc_list_callback(KD_CALLBACK_KDEBUG_DISABLED, NULL);
435 	}
436 
437 	int intrs_en = kdebug_storage_lock(&kd_control_trace);
438 	if (enabled) {
439 		// The oldest valid time is now; reject past events from coprocessors.
440 		kd_control_trace.kdc_oldest_time = kdebug_timestamp();
441 		kdebug_enable |= trace_type;
442 		kd_control_trace.kdc_emit = _trace_emit_filter();
443 		kd_control_trace.enabled = 1;
444 		commpage_update_kdebug_state();
445 	} else {
446 		kdebug_enable = 0;
447 		kd_control_trace.kdc_emit = KDEMIT_DISABLE;
448 		kd_control_trace.enabled = 0;
449 		commpage_update_kdebug_state();
450 	}
451 	kdebug_storage_unlock(&kd_control_trace, intrs_en);
452 
453 	if (enabled) {
454 		_coproc_list_callback(KD_CALLBACK_KDEBUG_ENABLED, NULL);
455 	}
456 }
457 
458 static int
create_buffers_trace(unsigned int extra_cpus)459 create_buffers_trace(unsigned int extra_cpus)
460 {
461 	int events_per_storage_unit = kd_control_trace.kdebug_events_per_storage_unit;
462 	int min_storage_units_per_cpu = kd_control_trace.kdebug_min_storage_units_per_cpu;
463 
464 	// For the duration of this allocation, trace code will only reference
465 	// kdc_coprocs.
466 	kd_control_trace.kdc_coprocs = kd_coprocs;
467 	_coproc_list_check();
468 
469 	// If the list is valid, it is sorted from newest to oldest.  Each entry is
470 	// prepended, so the CPU IDs are sorted in descending order.
471 	kd_control_trace.kdebug_cpus = kd_control_trace.kdc_coprocs ?
472 	    kd_control_trace.kdc_coprocs->cpu_id + 1 : kdbg_cpu_count();
473 	kd_control_trace.alloc_cpus = kd_control_trace.kdebug_cpus + extra_cpus;
474 
475 	size_t min_event_count = kd_control_trace.alloc_cpus *
476 	    events_per_storage_unit * min_storage_units_per_cpu;
477 	if (kd_buffer_trace.kdb_event_count < min_event_count) {
478 		kd_buffer_trace.kdb_storage_count = kd_control_trace.alloc_cpus * min_storage_units_per_cpu;
479 	} else {
480 		kd_buffer_trace.kdb_storage_count = kd_buffer_trace.kdb_event_count / events_per_storage_unit;
481 	}
482 
483 	kd_buffer_trace.kdb_event_count = kd_buffer_trace.kdb_storage_count * events_per_storage_unit;
484 
485 	kd_buffer_trace.kd_bufs = NULL;
486 
487 	int error = create_buffers(&kd_control_trace, &kd_buffer_trace,
488 	    VM_KERN_MEMORY_DIAG);
489 	if (!error) {
490 		struct kd_bufinfo *info = kd_buffer_trace.kdb_info;
491 		struct kd_coproc *cur_iop = kd_control_trace.kdc_coprocs;
492 		while (cur_iop != NULL) {
493 			info[cur_iop->cpu_id].continuous_timestamps = ISSET(cur_iop->flags,
494 			    KDCP_CONTINUOUS_TIME);
495 			cur_iop = cur_iop->next;
496 		}
497 		kd_buffer_trace.kdb_storage_threshold = kd_buffer_trace.kdb_storage_count / 2;
498 	}
499 
500 	return error;
501 }
502 
503 static void
delete_buffers_trace(void)504 delete_buffers_trace(void)
505 {
506 	delete_buffers(&kd_control_trace, &kd_buffer_trace);
507 }
508 
509 static int
_register_coproc_internal(const char * name,kdebug_coproc_flags_t flags,kd_callback_fn callback,void * context)510 _register_coproc_internal(const char *name, kdebug_coproc_flags_t flags,
511     kd_callback_fn callback, void *context)
512 {
513 	struct kd_coproc *coproc = NULL;
514 
515 	coproc = zalloc_permanent_type(struct kd_coproc);
516 	coproc->callback.func = callback;
517 	coproc->callback.context = context;
518 	coproc->flags = flags;
519 	strlcpy(coproc->full_name, name, sizeof(coproc->full_name));
520 
521 	_coproc_lock();
522 	coproc->next = kd_coprocs;
523 	coproc->cpu_id = kd_coprocs == NULL ? kdbg_cpu_count() : kd_coprocs->cpu_id + 1;
524 	kd_coprocs = coproc;
525 	if (coproc->cpu_id < kd_control_trace.alloc_cpus) {
526 		kd_control_trace.kdc_coprocs = kd_coprocs;
527 		kd_control_trace.kdebug_cpus += 1;
528 		if (kdebug_enable) {
529 			mpsc_daemon_enqueue(&_coproc_notify_queue, &coproc->chain,
530 			    MPSC_QUEUE_NONE);
531 		}
532 	}
533 	_coproc_unlock();
534 
535 	return coproc->cpu_id;
536 }
537 
538 int
kernel_debug_register_callback(kd_callback_t callback)539 kernel_debug_register_callback(kd_callback_t callback)
540 {
541 	// Be paranoid about using the provided name, but it's too late to reject
542 	// it.
543 	bool is_valid_name = false;
544 	for (uint32_t length = 0; length < sizeof(callback.iop_name); ++length) {
545 		if (callback.iop_name[length] > 0x20 && callback.iop_name[length] < 0x7F) {
546 			continue;
547 		}
548 		if (callback.iop_name[length] == 0) {
549 			if (length) {
550 				is_valid_name = true;
551 			}
552 			break;
553 		}
554 	}
555 	kd_callback_t sane_cb = callback;
556 	if (!is_valid_name) {
557 		strlcpy(sane_cb.iop_name, "IOP-???", sizeof(sane_cb.iop_name));
558 	}
559 
560 	return _register_coproc_internal(sane_cb.iop_name, 0, sane_cb.func,
561 	           sane_cb.context);
562 }
563 
564 int
kdebug_register_coproc(const char * name,kdebug_coproc_flags_t flags,kd_callback_fn callback,void * context)565 kdebug_register_coproc(const char *name, kdebug_coproc_flags_t flags,
566     kd_callback_fn callback, void *context)
567 {
568 	size_t name_len = strlen(name);
569 	if (!name || name_len == 0) {
570 		panic("kdebug: invalid name for coprocessor: %p", name);
571 	}
572 	for (size_t i = 0; i < name_len; i++) {
573 		if (name[i] <= 0x20 || name[i] >= 0x7F) {
574 			panic("kdebug: invalid name for coprocessor: %s", name);
575 		}
576 	}
577 	if (!callback) {
578 		panic("kdebug: no callback for coprocessor `%s'", name);
579 	}
580 	return _register_coproc_internal(name, flags, callback, context);
581 }
582 
583 static inline bool
_should_emit_debugid(kdebug_emit_filter_t emit,uint32_t debugid)584 _should_emit_debugid(kdebug_emit_filter_t emit, uint32_t debugid)
585 {
586 	switch (emit) {
587 	case KDEMIT_DISABLE:
588 		return false;
589 	case KDEMIT_TYPEFILTER:
590 		return typefilter_is_debugid_allowed(kdbg_typefilter, debugid);
591 	case KDEMIT_RANGE:
592 		return debugid >= kdlog_beg && debugid <= kdlog_end;
593 	case KDEMIT_EXACT:;
594 		uint32_t eventid = debugid & KDBG_EVENTID_MASK;
595 		return eventid == kdlog_value1 || eventid == kdlog_value2 ||
596 		       eventid == kdlog_value3 || eventid == kdlog_value4;
597 	case KDEMIT_ALL:
598 		return true;
599 	}
600 }
601 
602 static void
_try_wakeup_above_threshold(uint32_t debugid)603 _try_wakeup_above_threshold(uint32_t debugid)
604 {
605 	bool over_threshold = kd_control_trace.kdc_storage_used >=
606 	    kd_buffer_trace.kdb_storage_threshold;
607 	if (kd_waiter && over_threshold) {
608 		// Wakeup any waiters if called from a safe context.
609 
610 		const uint32_t INTERRUPT_EVENT = 0x01050000;
611 		const uint32_t VMFAULT_EVENT = 0x01300008;
612 		const uint32_t BSD_SYSCALL_CSC = 0x040c0000;
613 		const uint32_t MACH_SYSCALL_CSC = 0x010c0000;
614 
615 		uint32_t eventid = debugid & KDBG_EVENTID_MASK;
616 		uint32_t csc = debugid & KDBG_CSC_MASK;
617 
618 		if (eventid == INTERRUPT_EVENT || eventid == VMFAULT_EVENT ||
619 		    csc == BSD_SYSCALL_CSC || csc == MACH_SYSCALL_CSC) {
620 			kdbg_wakeup();
621 		}
622 	}
623 }
624 
625 // Emit events from coprocessors.
626 void
kernel_debug_enter(uint32_t coreid,uint32_t debugid,uint64_t timestamp,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t threadid)627 kernel_debug_enter(
628 	uint32_t  coreid,
629 	uint32_t  debugid,
630 	uint64_t  timestamp,
631 	uintptr_t arg1,
632 	uintptr_t arg2,
633 	uintptr_t arg3,
634 	uintptr_t arg4,
635 	uintptr_t threadid
636 	)
637 {
638 	if (kd_control_trace.kdc_flags & KDBG_DISABLE_COPROCS) {
639 		return;
640 	}
641 	kdebug_emit_filter_t emit = kd_control_trace.kdc_emit;
642 	if (!emit || !kdebug_enable) {
643 		return;
644 	}
645 	if (!_should_emit_debugid(emit, debugid)) {
646 		return;
647 	}
648 
649 	struct kd_record kd_rec = {
650 		.cpu = (int32_t)coreid,
651 		.timestamp = (int64_t)timestamp,
652 		.debugid = debugid,
653 		.arg1 = arg1,
654 		.arg2 = arg2,
655 		.arg3 = arg3,
656 		.arg4 = arg4,
657 		.arg5 = threadid,
658 	};
659 	kernel_debug_write(&kd_control_trace, &kd_buffer_trace, kd_rec);
660 }
661 
662 __pure2
663 static inline proc_t
kdebug_current_proc_unsafe(void)664 kdebug_current_proc_unsafe(void)
665 {
666 	return get_thread_ro_unchecked(current_thread())->tro_proc;
667 }
668 
669 // Return true iff the debug ID should be traced by the current process.
670 static inline bool
kdebug_debugid_procfilt_allowed(uint32_t debugid)671 kdebug_debugid_procfilt_allowed(uint32_t debugid)
672 {
673 	uint32_t procfilt_flags = kd_control_trace.kdc_flags &
674 	    (KDBG_PIDCHECK | KDBG_PIDEXCLUDE);
675 	if (!procfilt_flags) {
676 		return true;
677 	}
678 
679 	// DBG_TRACE and MACH_SCHED tracepoints ignore the process filter.
680 	if ((debugid & KDBG_CSC_MASK) == MACHDBG_CODE(DBG_MACH_SCHED, 0) ||
681 	    (KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE)) {
682 		return true;
683 	}
684 
685 	struct proc *curproc = kdebug_current_proc_unsafe();
686 	// If the process is missing (early in boot), allow it.
687 	if (!curproc) {
688 		return true;
689 	}
690 
691 	switch (procfilt_flags) {
692 	case KDBG_PIDCHECK:
693 		return curproc->p_kdebug;
694 	case KDBG_PIDEXCLUDE:
695 		return !curproc->p_kdebug;
696 	default:
697 		panic("kdebug: invalid procfilt flags %x", kd_control_trace.kdc_flags);
698 	}
699 }
700 
701 static void
kdebug_emit_internal(kdebug_emit_filter_t emit,uint32_t debugid,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t arg5,uint64_t flags)702 kdebug_emit_internal(kdebug_emit_filter_t emit,
703     uint32_t debugid,
704     uintptr_t arg1,
705     uintptr_t arg2,
706     uintptr_t arg3,
707     uintptr_t arg4,
708     uintptr_t arg5,
709     uint64_t flags)
710 {
711 	bool only_filter = flags & KDBG_FLAG_FILTERED;
712 	bool observe_procfilt = !(flags & KDBG_FLAG_NOPROCFILT);
713 
714 	if (!_should_emit_debugid(emit, debugid)) {
715 		return;
716 	}
717 	if (emit == KDEMIT_ALL && only_filter) {
718 		return;
719 	}
720 	if (!ml_at_interrupt_context() && observe_procfilt &&
721 	    !kdebug_debugid_procfilt_allowed(debugid)) {
722 		return;
723 	}
724 
725 	struct kd_record kd_rec = {
726 		.cpu = -1,
727 		.timestamp = -1,
728 		.debugid = debugid,
729 		.arg1 = arg1,
730 		.arg2 = arg2,
731 		.arg3 = arg3,
732 		.arg4 = arg4,
733 		.arg5 = arg5,
734 	};
735 	kernel_debug_write(&kd_control_trace, &kd_buffer_trace, kd_rec);
736 
737 #if KPERF
738 	kperf_kdebug_callback(kd_rec.debugid, __builtin_frame_address(0));
739 #endif // KPERF
740 }
741 
742 static void
kernel_debug_internal(uint32_t debugid,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t arg5,uint64_t flags)743 kernel_debug_internal(
744 	uint32_t debugid,
745 	uintptr_t arg1,
746 	uintptr_t arg2,
747 	uintptr_t arg3,
748 	uintptr_t arg4,
749 	uintptr_t arg5,
750 	uint64_t flags)
751 {
752 	kdebug_emit_filter_t emit = kd_control_trace.kdc_emit;
753 	if (!emit || !kdebug_enable) {
754 		return;
755 	}
756 	kdebug_emit_internal(emit, debugid, arg1, arg2, arg3, arg4, arg5, flags);
757 	_try_wakeup_above_threshold(debugid);
758 }
759 
760 __attribute__((noinline))
761 void
kernel_debug(uint32_t debugid,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,__unused uintptr_t arg5)762 kernel_debug(uint32_t debugid, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
763     uintptr_t arg4, __unused uintptr_t arg5)
764 {
765 	kernel_debug_internal(debugid, arg1, arg2, arg3, arg4,
766 	    (uintptr_t)thread_tid(current_thread()), 0);
767 }
768 
769 __attribute__((noinline))
770 void
kernel_debug1(uint32_t debugid,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t arg5)771 kernel_debug1(uint32_t debugid, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
772     uintptr_t arg4, uintptr_t arg5)
773 {
774 	kernel_debug_internal(debugid, arg1, arg2, arg3, arg4, arg5, 0);
775 }
776 
777 __attribute__((noinline))
778 void
kernel_debug_flags(uint32_t debugid,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uint64_t flags)779 kernel_debug_flags(
780 	uint32_t debugid,
781 	uintptr_t arg1,
782 	uintptr_t arg2,
783 	uintptr_t arg3,
784 	uintptr_t arg4,
785 	uint64_t flags)
786 {
787 	kernel_debug_internal(debugid, arg1, arg2, arg3, arg4,
788 	    (uintptr_t)thread_tid(current_thread()), flags);
789 }
790 
791 __attribute__((noinline))
792 void
kernel_debug_filtered(uint32_t debugid,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4)793 kernel_debug_filtered(
794 	uint32_t debugid,
795 	uintptr_t arg1,
796 	uintptr_t arg2,
797 	uintptr_t arg3,
798 	uintptr_t arg4)
799 {
800 	kernel_debug_flags(debugid, arg1, arg2, arg3, arg4, KDBG_FLAG_FILTERED);
801 }
802 
803 void
kernel_debug_string_early(const char * message)804 kernel_debug_string_early(const char *message)
805 {
806 	uintptr_t a[4] = { 0 };
807 	strncpy((char *)a, message, sizeof(a));
808 	KERNEL_DEBUG_EARLY(TRACE_INFO_STRING, a[0], a[1], a[2], a[3]);
809 }
810 
811 #define SIMPLE_STR_LEN (64)
812 static_assert(SIMPLE_STR_LEN % sizeof(uintptr_t) == 0);
813 
814 void
kernel_debug_string_simple(uint32_t eventid,const char * str)815 kernel_debug_string_simple(uint32_t eventid, const char *str)
816 {
817 	if (!kdebug_enable) {
818 		return;
819 	}
820 
821 	/* array of uintptr_ts simplifies emitting the string as arguments */
822 	uintptr_t str_buf[(SIMPLE_STR_LEN / sizeof(uintptr_t)) + 1] = { 0 };
823 	size_t len = strlcpy((char *)str_buf, str, SIMPLE_STR_LEN + 1);
824 	len = MIN(len, SIMPLE_STR_LEN);
825 
826 	uintptr_t thread_id = (uintptr_t)thread_tid(current_thread());
827 	uint32_t debugid = eventid | DBG_FUNC_START;
828 
829 	/* string can fit in a single tracepoint */
830 	if (len <= (4 * sizeof(uintptr_t))) {
831 		debugid |= DBG_FUNC_END;
832 	}
833 
834 	kernel_debug_internal(debugid, str_buf[0], str_buf[1], str_buf[2],
835 	    str_buf[3], thread_id, 0);
836 
837 	debugid &= KDBG_EVENTID_MASK;
838 	int i = 4;
839 	size_t written = 4 * sizeof(uintptr_t);
840 
841 	for (; written < len; i += 4, written += 4 * sizeof(uintptr_t)) {
842 		/* if this is the last tracepoint to be emitted */
843 		if ((written + (4 * sizeof(uintptr_t))) >= len) {
844 			debugid |= DBG_FUNC_END;
845 		}
846 		kernel_debug_internal(debugid, str_buf[i],
847 		    str_buf[i + 1],
848 		    str_buf[i + 2],
849 		    str_buf[i + 3], thread_id, 0);
850 	}
851 }
852 
853 extern int      master_cpu;             /* MACH_KERNEL_PRIVATE */
854 /*
855  * Used prior to start_kern_tracing() being called.
856  * Log temporarily into a static buffer.
857  */
858 void
kernel_debug_early(uint32_t debugid,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4)859 kernel_debug_early(
860 	uint32_t        debugid,
861 	uintptr_t       arg1,
862 	uintptr_t       arg2,
863 	uintptr_t       arg3,
864 	uintptr_t       arg4)
865 {
866 #if defined(__x86_64__)
867 	extern int early_boot;
868 	/*
869 	 * Note that "early" isn't early enough in some cases where
870 	 * we're invoked before gsbase is set on x86, hence the
871 	 * check of "early_boot".
872 	 */
873 	if (early_boot) {
874 		return;
875 	}
876 #endif
877 
878 	/* If early tracing is over, use the normal path. */
879 	if (kd_early_done) {
880 		KDBG_RELEASE(debugid, arg1, arg2, arg3, arg4);
881 		return;
882 	}
883 
884 	/* Do nothing if the buffer is full or we're not on the boot cpu. */
885 	kd_early_overflow = kd_early_index >= KD_EARLY_EVENT_COUNT;
886 	if (kd_early_overflow || cpu_number() != master_cpu) {
887 		return;
888 	}
889 
890 	kd_early_buffer[kd_early_index].debugid = debugid;
891 	kd_early_buffer[kd_early_index].timestamp = mach_absolute_time();
892 	kd_early_buffer[kd_early_index].arg1 = arg1;
893 	kd_early_buffer[kd_early_index].arg2 = arg2;
894 	kd_early_buffer[kd_early_index].arg3 = arg3;
895 	kd_early_buffer[kd_early_index].arg4 = arg4;
896 	kd_early_buffer[kd_early_index].arg5 = 0;
897 	kd_early_index++;
898 }
899 
900 /*
901  * Transfer the contents of the temporary buffer into the trace buffers.
902  * Precede that by logging the rebase time (offset) - the TSC-based time (in ns)
903  * when mach_absolute_time is set to 0.
904  */
905 static void
kernel_debug_early_end(void)906 kernel_debug_early_end(void)
907 {
908 	if (cpu_number() != master_cpu) {
909 		panic("kernel_debug_early_end() not call on boot processor");
910 	}
911 
912 	/* reset the current oldest time to allow early events */
913 	kd_control_trace.kdc_oldest_time = 0;
914 
915 #if defined(__x86_64__)
916 	/* Fake sentinel marking the start of kernel time relative to TSC */
917 	kernel_debug_enter(0, TRACE_TIMESTAMPS, 0,
918 	    (uint32_t)(tsc_rebase_abs_time >> 32), (uint32_t)tsc_rebase_abs_time,
919 	    tsc_at_boot, 0, 0);
920 #endif /* defined(__x86_64__) */
921 	for (unsigned int i = 0; i < kd_early_index; i++) {
922 		kernel_debug_enter(0,
923 		    kd_early_buffer[i].debugid,
924 		    kd_early_buffer[i].timestamp,
925 		    kd_early_buffer[i].arg1,
926 		    kd_early_buffer[i].arg2,
927 		    kd_early_buffer[i].arg3,
928 		    kd_early_buffer[i].arg4,
929 		    0);
930 	}
931 
932 	/* Cut events-lost event on overflow */
933 	if (kd_early_overflow) {
934 		KDBG_RELEASE(TRACE_LOST_EVENTS, 1);
935 	}
936 
937 	kd_early_done = true;
938 
939 	/* This trace marks the start of kernel tracing */
940 	kernel_debug_string_early("early trace done");
941 }
942 
943 void
kernel_debug_disable(void)944 kernel_debug_disable(void)
945 {
946 	if (kdebug_enable) {
947 		kdbg_set_tracing_enabled(false, 0);
948 		kdbg_wakeup();
949 	}
950 }
951 
952 // Returns true if debugid should only be traced from the kernel.
953 static int
_kernel_only_event(uint32_t debugid)954 _kernel_only_event(uint32_t debugid)
955 {
956 	return KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE;
957 }
958 
959 /*
960  * Support syscall SYS_kdebug_typefilter.
961  */
962 int
kdebug_typefilter(__unused struct proc * p,struct kdebug_typefilter_args * uap,__unused int * retval)963 kdebug_typefilter(__unused struct proc* p, struct kdebug_typefilter_args* uap,
964     __unused int *retval)
965 {
966 	if (uap->addr == USER_ADDR_NULL || uap->size == USER_ADDR_NULL) {
967 		return EINVAL;
968 	}
969 
970 	mach_vm_offset_t user_addr = 0;
971 	vm_map_t user_map = current_map();
972 	const bool copy = false;
973 	kern_return_t kr = mach_vm_map_kernel(user_map, &user_addr,
974 	    TYPEFILTER_ALLOC_SIZE, 0, VM_MAP_KERNEL_FLAGS_ANYWHERE(),
975 	    kdbg_typefilter_memory_entry, 0, copy,
976 	    VM_PROT_READ, VM_PROT_READ, VM_INHERIT_SHARE);
977 	if (kr != KERN_SUCCESS) {
978 		return mach_to_bsd_errno(kr);
979 	}
980 
981 	vm_size_t user_ptr_size = vm_map_is_64bit(user_map) ? 8 : 4;
982 	int error = copyout((void *)&user_addr, uap->addr, user_ptr_size);
983 	if (error != 0) {
984 		mach_vm_deallocate(user_map, user_addr, TYPEFILTER_ALLOC_SIZE);
985 	}
986 	return error;
987 }
988 
989 // Support SYS_kdebug_trace.
990 int
kdebug_trace(struct proc * p,struct kdebug_trace_args * uap,int32_t * retval)991 kdebug_trace(struct proc *p, struct kdebug_trace_args *uap, int32_t *retval)
992 {
993 	struct kdebug_trace64_args uap64 = {
994 		.code = uap->code,
995 		.arg1 = uap->arg1,
996 		.arg2 = uap->arg2,
997 		.arg3 = uap->arg3,
998 		.arg4 = uap->arg4,
999 	};
1000 	return kdebug_trace64(p, &uap64, retval);
1001 }
1002 
1003 // Support kdebug_trace(2).  64-bit arguments on K32 will get truncated
1004 // to fit in the 32-bit record format.
1005 //
1006 // It is intentional that error conditions are not checked until kdebug is
1007 // enabled. This is to match the userspace wrapper behavior, which is optimizing
1008 // for non-error case performance.
1009 int
kdebug_trace64(__unused struct proc * p,struct kdebug_trace64_args * uap,__unused int32_t * retval)1010 kdebug_trace64(__unused struct proc *p, struct kdebug_trace64_args *uap,
1011     __unused int32_t *retval)
1012 {
1013 	if (__probable(kdebug_enable == 0)) {
1014 		return 0;
1015 	}
1016 	if (_kernel_only_event(uap->code)) {
1017 		return EPERM;
1018 	}
1019 	kernel_debug_internal(uap->code, (uintptr_t)uap->arg1,
1020 	    (uintptr_t)uap->arg2, (uintptr_t)uap->arg3, (uintptr_t)uap->arg4,
1021 	    (uintptr_t)thread_tid(current_thread()), 0);
1022 	return 0;
1023 }
1024 
1025 /*
1026  * Adding enough padding to contain a full tracepoint for the last
1027  * portion of the string greatly simplifies the logic of splitting the
1028  * string between tracepoints.  Full tracepoints can be generated using
1029  * the buffer itself, without having to manually add zeros to pad the
1030  * arguments.
1031  */
1032 
1033 /* 2 string args in first tracepoint and 9 string data tracepoints */
1034 #define STR_BUF_ARGS (2 + (32 * 4))
1035 /* times the size of each arg on K64 */
1036 #define MAX_STR_LEN  (STR_BUF_ARGS * sizeof(uint64_t))
1037 /* on K32, ending straddles a tracepoint, so reserve blanks */
1038 #define STR_BUF_SIZE (MAX_STR_LEN + (2 * sizeof(uint32_t)))
1039 
1040 /*
1041  * This function does no error checking and assumes that it is called with
1042  * the correct arguments, including that the buffer pointed to by str is at
1043  * least STR_BUF_SIZE bytes.  However, str must be aligned to word-size and
1044  * be NUL-terminated.  In cases where a string can fit evenly into a final
1045  * tracepoint without its NUL-terminator, this function will not end those
1046  * strings with a NUL in trace.  It's up to clients to look at the function
1047  * qualifier for DBG_FUNC_END in this case, to end the string.
1048  */
1049 static uint64_t
kernel_debug_string_internal(uint32_t debugid,uint64_t str_id,void * vstr,size_t str_len)1050 kernel_debug_string_internal(uint32_t debugid, uint64_t str_id, void *vstr,
1051     size_t str_len)
1052 {
1053 	/* str must be word-aligned */
1054 	uintptr_t *str = vstr;
1055 	size_t written = 0;
1056 	uintptr_t thread_id;
1057 	int i;
1058 	uint32_t trace_debugid = TRACEDBG_CODE(DBG_TRACE_STRING,
1059 	    TRACE_STRING_GLOBAL);
1060 
1061 	thread_id = (uintptr_t)thread_tid(current_thread());
1062 
1063 	/* if the ID is being invalidated, just emit that */
1064 	if (str_id != 0 && str_len == 0) {
1065 		kernel_debug_internal(trace_debugid | DBG_FUNC_START | DBG_FUNC_END,
1066 		    (uintptr_t)debugid, (uintptr_t)str_id, 0, 0, thread_id, 0);
1067 		return str_id;
1068 	}
1069 
1070 	/* generate an ID, if necessary */
1071 	if (str_id == 0) {
1072 		str_id = OSIncrementAtomic64((SInt64 *)&g_curr_str_id);
1073 		str_id = (str_id & STR_ID_MASK) | g_str_id_signature;
1074 	}
1075 
1076 	trace_debugid |= DBG_FUNC_START;
1077 	/* string can fit in a single tracepoint */
1078 	if (str_len <= (2 * sizeof(uintptr_t))) {
1079 		trace_debugid |= DBG_FUNC_END;
1080 	}
1081 
1082 	kernel_debug_internal(trace_debugid, (uintptr_t)debugid, (uintptr_t)str_id,
1083 	    str[0], str[1], thread_id, 0);
1084 
1085 	trace_debugid &= KDBG_EVENTID_MASK;
1086 	i = 2;
1087 	written += 2 * sizeof(uintptr_t);
1088 
1089 	for (; written < str_len; i += 4, written += 4 * sizeof(uintptr_t)) {
1090 		if ((written + (4 * sizeof(uintptr_t))) >= str_len) {
1091 			trace_debugid |= DBG_FUNC_END;
1092 		}
1093 		kernel_debug_internal(trace_debugid, str[i],
1094 		    str[i + 1],
1095 		    str[i + 2],
1096 		    str[i + 3], thread_id, 0);
1097 	}
1098 
1099 	return str_id;
1100 }
1101 
1102 /*
1103  * Returns true if the current process can emit events, and false otherwise.
1104  * Trace system and scheduling events circumvent this check, as do events
1105  * emitted in interrupt context.
1106  */
1107 static bool
kdebug_current_proc_enabled(uint32_t debugid)1108 kdebug_current_proc_enabled(uint32_t debugid)
1109 {
1110 	/* can't determine current process in interrupt context */
1111 	if (ml_at_interrupt_context()) {
1112 		return true;
1113 	}
1114 
1115 	/* always emit trace system and scheduling events */
1116 	if ((KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE ||
1117 	    (debugid & KDBG_CSC_MASK) == MACHDBG_CODE(DBG_MACH_SCHED, 0))) {
1118 		return true;
1119 	}
1120 
1121 	if (kd_control_trace.kdc_flags & KDBG_PIDCHECK) {
1122 		proc_t cur_proc = kdebug_current_proc_unsafe();
1123 
1124 		/* only the process with the kdebug bit set is allowed */
1125 		if (cur_proc && !(cur_proc->p_kdebug)) {
1126 			return false;
1127 		}
1128 	} else if (kd_control_trace.kdc_flags & KDBG_PIDEXCLUDE) {
1129 		proc_t cur_proc = kdebug_current_proc_unsafe();
1130 
1131 		/* every process except the one with the kdebug bit set is allowed */
1132 		if (cur_proc && cur_proc->p_kdebug) {
1133 			return false;
1134 		}
1135 	}
1136 
1137 	return true;
1138 }
1139 
1140 bool
kdebug_debugid_enabled(uint32_t debugid)1141 kdebug_debugid_enabled(uint32_t debugid)
1142 {
1143 	return _should_emit_debugid(kd_control_trace.kdc_emit, debugid);
1144 }
1145 
1146 bool
kdebug_debugid_explicitly_enabled(uint32_t debugid)1147 kdebug_debugid_explicitly_enabled(uint32_t debugid)
1148 {
1149 	if (kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK) {
1150 		return typefilter_is_debugid_allowed(kdbg_typefilter, debugid);
1151 	} else if (KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE) {
1152 		return true;
1153 	} else if (kd_control_trace.kdc_flags & KDBG_RANGECHECK) {
1154 		if (debugid < kdlog_beg || debugid > kdlog_end) {
1155 			return false;
1156 		}
1157 	} else if (kd_control_trace.kdc_flags & KDBG_VALCHECK) {
1158 		if ((debugid & KDBG_EVENTID_MASK) != kdlog_value1 &&
1159 		    (debugid & KDBG_EVENTID_MASK) != kdlog_value2 &&
1160 		    (debugid & KDBG_EVENTID_MASK) != kdlog_value3 &&
1161 		    (debugid & KDBG_EVENTID_MASK) != kdlog_value4) {
1162 			return false;
1163 		}
1164 	}
1165 
1166 	return true;
1167 }
1168 
1169 /*
1170  * Returns 0 if a string can be traced with these arguments.  Returns errno
1171  * value if error occurred.
1172  */
1173 static errno_t
kdebug_check_trace_string(uint32_t debugid,uint64_t str_id)1174 kdebug_check_trace_string(uint32_t debugid, uint64_t str_id)
1175 {
1176 	if (debugid & (DBG_FUNC_START | DBG_FUNC_END)) {
1177 		return EINVAL;
1178 	}
1179 	if (_kernel_only_event(debugid)) {
1180 		return EPERM;
1181 	}
1182 	if (str_id != 0 && (str_id & STR_ID_SIG_MASK) != g_str_id_signature) {
1183 		return EINVAL;
1184 	}
1185 	return 0;
1186 }
1187 
1188 /*
1189  * Implementation of KPI kernel_debug_string.
1190  */
1191 int
kernel_debug_string(uint32_t debugid,uint64_t * str_id,const char * str)1192 kernel_debug_string(uint32_t debugid, uint64_t *str_id, const char *str)
1193 {
1194 	/* arguments to tracepoints must be word-aligned */
1195 	__attribute__((aligned(sizeof(uintptr_t)))) char str_buf[STR_BUF_SIZE];
1196 	static_assert(sizeof(str_buf) > MAX_STR_LEN);
1197 	vm_size_t len_copied;
1198 	int err;
1199 
1200 	assert(str_id);
1201 
1202 	if (__probable(kdebug_enable == 0)) {
1203 		return 0;
1204 	}
1205 
1206 	if (!kdebug_current_proc_enabled(debugid)) {
1207 		return 0;
1208 	}
1209 
1210 	if (!kdebug_debugid_enabled(debugid)) {
1211 		return 0;
1212 	}
1213 
1214 	if ((err = kdebug_check_trace_string(debugid, *str_id)) != 0) {
1215 		return err;
1216 	}
1217 
1218 	if (str == NULL) {
1219 		if (str_id == 0) {
1220 			return EINVAL;
1221 		}
1222 
1223 		*str_id = kernel_debug_string_internal(debugid, *str_id, NULL, 0);
1224 		return 0;
1225 	}
1226 
1227 	memset(str_buf, 0, sizeof(str_buf));
1228 	len_copied = strlcpy(str_buf, str, MAX_STR_LEN + 1);
1229 	*str_id = kernel_debug_string_internal(debugid, *str_id, str_buf,
1230 	    len_copied);
1231 	return 0;
1232 }
1233 
1234 // Support kdebug_trace_string(2).
1235 int
kdebug_trace_string(__unused struct proc * p,struct kdebug_trace_string_args * uap,uint64_t * retval)1236 kdebug_trace_string(__unused struct proc *p,
1237     struct kdebug_trace_string_args *uap,
1238     uint64_t *retval)
1239 {
1240 	__attribute__((aligned(sizeof(uintptr_t)))) char str_buf[STR_BUF_SIZE];
1241 	static_assert(sizeof(str_buf) > MAX_STR_LEN);
1242 	size_t len_copied;
1243 	int err;
1244 
1245 	if (__probable(kdebug_enable == 0)) {
1246 		return 0;
1247 	}
1248 
1249 	if (!kdebug_current_proc_enabled(uap->debugid)) {
1250 		return 0;
1251 	}
1252 
1253 	if (!kdebug_debugid_enabled(uap->debugid)) {
1254 		return 0;
1255 	}
1256 
1257 	if ((err = kdebug_check_trace_string(uap->debugid, uap->str_id)) != 0) {
1258 		return err;
1259 	}
1260 
1261 	if (uap->str == USER_ADDR_NULL) {
1262 		if (uap->str_id == 0) {
1263 			return EINVAL;
1264 		}
1265 
1266 		*retval = kernel_debug_string_internal(uap->debugid, uap->str_id,
1267 		    NULL, 0);
1268 		return 0;
1269 	}
1270 
1271 	memset(str_buf, 0, sizeof(str_buf));
1272 	err = copyinstr(uap->str, str_buf, MAX_STR_LEN + 1, &len_copied);
1273 
1274 	/* it's alright to truncate the string, so allow ENAMETOOLONG */
1275 	if (err == ENAMETOOLONG) {
1276 		str_buf[MAX_STR_LEN] = '\0';
1277 	} else if (err) {
1278 		return err;
1279 	}
1280 
1281 	if (len_copied <= 1) {
1282 		return EINVAL;
1283 	}
1284 
1285 	/* convert back to a length */
1286 	len_copied--;
1287 
1288 	*retval = kernel_debug_string_internal(uap->debugid, uap->str_id, str_buf,
1289 	    len_copied);
1290 	return 0;
1291 }
1292 
1293 int
kdbg_reinit(unsigned int extra_cpus)1294 kdbg_reinit(unsigned int extra_cpus)
1295 {
1296 	kernel_debug_disable();
1297 	// Wait for any event writers to see the disable status.
1298 	IOSleep(100);
1299 	delete_buffers_trace();
1300 
1301 	_clear_thread_map();
1302 	kd_control_trace.kdc_live_flags &= ~KDBG_WRAPPED;
1303 
1304 	RAW_file_offset = 0;
1305 	RAW_file_written = 0;
1306 
1307 	return create_buffers_trace(extra_cpus);
1308 }
1309 
1310 void
kdbg_trace_data(struct proc * proc,long * arg_pid,long * arg_uniqueid)1311 kdbg_trace_data(struct proc *proc, long *arg_pid, long *arg_uniqueid)
1312 {
1313 	if (proc) {
1314 		*arg_pid = proc_getpid(proc);
1315 		*arg_uniqueid = (long)proc_uniqueid(proc);
1316 		if ((uint64_t)*arg_uniqueid != proc_uniqueid(proc)) {
1317 			*arg_uniqueid = 0;
1318 		}
1319 	} else {
1320 		*arg_pid = 0;
1321 		*arg_uniqueid = 0;
1322 	}
1323 }
1324 
1325 void kdebug_proc_name_args(struct proc *proc, long args[static 4]);
1326 void
kdebug_proc_name_args(struct proc * proc,long args[static4])1327 kdebug_proc_name_args(struct proc *proc, long args[static 4])
1328 {
1329 	if (proc) {
1330 		strncpy((char *)args, proc_best_name(proc), 4 * sizeof(args[0]));
1331 	}
1332 }
1333 
1334 static void
_copy_ap_name(unsigned int cpuid,void * dst,size_t size)1335 _copy_ap_name(unsigned int cpuid, void *dst, size_t size)
1336 {
1337 	const char *name = "AP";
1338 #if defined(__arm64__)
1339 	const ml_topology_info_t *topology = ml_get_topology_info();
1340 	switch (topology->cpus[cpuid].cluster_type) {
1341 	case CLUSTER_TYPE_E:
1342 		name = "AP-E";
1343 		break;
1344 	case CLUSTER_TYPE_P:
1345 		name = "AP-P";
1346 		break;
1347 	default:
1348 		break;
1349 	}
1350 #else /* defined(__arm64__) */
1351 #pragma unused(cpuid)
1352 #endif /* !defined(__arm64__) */
1353 	strlcpy(dst, name, size);
1354 }
1355 
1356 // Write the specified `map_version` of CPU map to the `dst` buffer, using at
1357 // most `size` bytes.  Returns 0 on success and sets `size` to the number of
1358 // bytes written, and either ENOMEM or EINVAL on failure.
1359 //
1360 // If the value pointed to by `dst` is NULL, memory is allocated, and `size` is
1361 // adjusted to the allocated buffer's size.
1362 //
1363 // NB: `coprocs` is used to determine whether the stashed CPU map captured at
1364 // the start of tracing should be used.
1365 static errno_t
_copy_cpu_map(int map_version,void ** dst,size_t * size)1366 _copy_cpu_map(int map_version, void **dst, size_t *size)
1367 {
1368 	_coproc_lock();
1369 	struct kd_coproc *coprocs = kd_control_trace.kdc_coprocs;
1370 	unsigned int cpu_count = kd_control_trace.kdebug_cpus;
1371 	_coproc_unlock();
1372 
1373 	assert(cpu_count != 0);
1374 	assert(coprocs == NULL || coprocs[0].cpu_id + 1 == cpu_count);
1375 
1376 	bool ext = map_version != RAW_VERSION1;
1377 	size_t stride = ext ? sizeof(kd_cpumap_ext) : sizeof(kd_cpumap);
1378 
1379 	size_t size_needed = sizeof(kd_cpumap_header) + cpu_count * stride;
1380 	size_t size_avail = *size;
1381 	*size = size_needed;
1382 
1383 	if (*dst == NULL) {
1384 		kern_return_t alloc_ret = kmem_alloc(kernel_map, (vm_offset_t *)dst,
1385 		    (vm_size_t)size_needed, KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_DIAG);
1386 		if (alloc_ret != KERN_SUCCESS) {
1387 			return ENOMEM;
1388 		}
1389 	} else if (size_avail < size_needed) {
1390 		return EINVAL;
1391 	}
1392 
1393 	kd_cpumap_header *header = *dst;
1394 	header->version_no = map_version;
1395 	header->cpu_count = cpu_count;
1396 
1397 	void *cpus = &header[1];
1398 	size_t name_size = ext ? sizeof(((kd_cpumap_ext *)NULL)->name) :
1399 	    sizeof(((kd_cpumap *)NULL)->name);
1400 
1401 	int i = cpu_count - 1;
1402 	for (struct kd_coproc *cur_coproc = coprocs; cur_coproc != NULL;
1403 	    cur_coproc = cur_coproc->next, i--) {
1404 		kd_cpumap_ext *cpu = (kd_cpumap_ext *)((uintptr_t)cpus + stride * i);
1405 		cpu->cpu_id = cur_coproc->cpu_id;
1406 		cpu->flags = KDBG_CPUMAP_IS_IOP;
1407 		strlcpy((void *)&cpu->name, cur_coproc->full_name, name_size);
1408 	}
1409 	for (; i >= 0; i--) {
1410 		kd_cpumap *cpu = (kd_cpumap *)((uintptr_t)cpus + stride * i);
1411 		cpu->cpu_id = i;
1412 		cpu->flags = 0;
1413 		_copy_ap_name(i, &cpu->name, name_size);
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 static void
_threadmap_init(void)1420 _threadmap_init(void)
1421 {
1422 	ktrace_assert_lock_held();
1423 
1424 	if (kd_control_trace.kdc_flags & KDBG_MAPINIT) {
1425 		return;
1426 	}
1427 
1428 	kd_mapptr = _thread_map_create_live(0, &kd_mapsize, &kd_mapcount);
1429 
1430 	if (kd_mapptr) {
1431 		kd_control_trace.kdc_flags |= KDBG_MAPINIT;
1432 	}
1433 }
1434 
1435 struct kd_resolver {
1436 	kd_threadmap *krs_map;
1437 	vm_size_t krs_count;
1438 	vm_size_t krs_maxcount;
1439 };
1440 
1441 static int
_resolve_iterator(proc_t proc,void * opaque)1442 _resolve_iterator(proc_t proc, void *opaque)
1443 {
1444 	if (proc == kernproc) {
1445 		/* Handled specially as it lacks uthreads. */
1446 		return PROC_RETURNED;
1447 	}
1448 	struct kd_resolver *resolver = opaque;
1449 	struct uthread *uth = NULL;
1450 	const char *proc_name = proc_best_name(proc);
1451 	pid_t pid = proc_getpid(proc);
1452 
1453 	proc_lock(proc);
1454 	TAILQ_FOREACH(uth, &proc->p_uthlist, uu_list) {
1455 		if (resolver->krs_count >= resolver->krs_maxcount) {
1456 			break;
1457 		}
1458 		kd_threadmap *map = &resolver->krs_map[resolver->krs_count];
1459 		map->thread = (uintptr_t)uthread_tid(uth);
1460 		(void)strlcpy(map->command, proc_name, sizeof(map->command));
1461 		map->valid = pid;
1462 		resolver->krs_count++;
1463 	}
1464 	proc_unlock(proc);
1465 
1466 	bool done = resolver->krs_count >= resolver->krs_maxcount;
1467 	return done ? PROC_RETURNED_DONE : PROC_RETURNED;
1468 }
1469 
1470 static void
_resolve_kernel_task(thread_t thread,void * opaque)1471 _resolve_kernel_task(thread_t thread, void *opaque)
1472 {
1473 	struct kd_resolver *resolver = opaque;
1474 	if (resolver->krs_count >= resolver->krs_maxcount) {
1475 		return;
1476 	}
1477 	kd_threadmap *map = &resolver->krs_map[resolver->krs_count];
1478 	map->thread = (uintptr_t)thread_tid(thread);
1479 	(void)strlcpy(map->command, "kernel_task", sizeof(map->command));
1480 	map->valid = 1;
1481 	resolver->krs_count++;
1482 }
1483 
1484 static vm_size_t
_resolve_threads(kd_threadmap * map,vm_size_t nthreads)1485 _resolve_threads(kd_threadmap *map, vm_size_t nthreads)
1486 {
1487 	struct kd_resolver resolver = {
1488 		.krs_map = map, .krs_count = 0, .krs_maxcount = nthreads,
1489 	};
1490 
1491 	// Handle kernel_task specially, as it lacks uthreads.
1492 	extern void task_act_iterate_wth_args(task_t, void (*)(thread_t, void *),
1493 	    void *);
1494 	task_act_iterate_wth_args(kernel_task, _resolve_kernel_task, &resolver);
1495 	proc_iterate(PROC_ALLPROCLIST | PROC_NOWAITTRANS, _resolve_iterator,
1496 	    &resolver, NULL, NULL);
1497 	return resolver.krs_count;
1498 }
1499 
1500 static kd_threadmap *
_thread_map_create_live(size_t maxthreads,vm_size_t * mapsize,vm_size_t * mapcount)1501 _thread_map_create_live(size_t maxthreads, vm_size_t *mapsize,
1502     vm_size_t *mapcount)
1503 {
1504 	kd_threadmap *thread_map = NULL;
1505 
1506 	assert(mapsize != NULL);
1507 	assert(mapcount != NULL);
1508 
1509 	extern int threads_count;
1510 	vm_size_t nthreads = threads_count;
1511 
1512 	// Allow 25% more threads to be started while iterating processes.
1513 	if (os_add_overflow(nthreads, nthreads / 4, &nthreads)) {
1514 		return NULL;
1515 	}
1516 
1517 	*mapcount = nthreads;
1518 	if (os_mul_overflow(nthreads, sizeof(kd_threadmap), mapsize)) {
1519 		return NULL;
1520 	}
1521 
1522 	// Wait until the out-parameters have been filled with the needed size to
1523 	// do the bounds checking on the provided maximum.
1524 	if (maxthreads != 0 && maxthreads < nthreads) {
1525 		return NULL;
1526 	}
1527 
1528 	// This allocation can be too large for `Z_NOFAIL`.
1529 	thread_map = kalloc_data_tag(*mapsize, Z_WAITOK | Z_ZERO,
1530 	    VM_KERN_MEMORY_DIAG);
1531 	if (thread_map != NULL) {
1532 		*mapcount = _resolve_threads(thread_map, nthreads);
1533 	}
1534 	return thread_map;
1535 }
1536 
1537 static void
kdbg_clear(void)1538 kdbg_clear(void)
1539 {
1540 	kernel_debug_disable();
1541 	kdbg_disable_typefilter();
1542 
1543 	// Wait for any event writers to see the disable status.
1544 	IOSleep(100);
1545 
1546 	// Reset kdebug status for each process.
1547 	if (kd_control_trace.kdc_flags & (KDBG_PIDCHECK | KDBG_PIDEXCLUDE)) {
1548 		proc_list_lock();
1549 		proc_t p;
1550 		ALLPROC_FOREACH(p) {
1551 			p->p_kdebug = 0;
1552 		}
1553 		proc_list_unlock();
1554 	}
1555 
1556 	kd_control_trace.kdc_flags &= (unsigned int)~KDBG_CKTYPES;
1557 	kd_control_trace.kdc_flags &= ~(KDBG_RANGECHECK | KDBG_VALCHECK);
1558 	kd_control_trace.kdc_flags &= ~(KDBG_PIDCHECK | KDBG_PIDEXCLUDE);
1559 	kd_control_trace.kdc_flags &= ~KDBG_CONTINUOUS_TIME;
1560 	kd_control_trace.kdc_flags &= ~KDBG_DISABLE_COPROCS;
1561 	kd_control_trace.kdc_flags &= ~KDBG_MATCH_DISABLE;
1562 	kd_control_trace.kdc_live_flags &= ~(KDBG_NOWRAP | KDBG_WRAPPED);
1563 
1564 	kd_control_trace.kdc_oldest_time = 0;
1565 
1566 	delete_buffers_trace();
1567 	kd_buffer_trace.kdb_event_count = 0;
1568 
1569 	_clear_thread_map();
1570 
1571 	RAW_file_offset = 0;
1572 	RAW_file_written = 0;
1573 }
1574 
1575 void
kdebug_reset(void)1576 kdebug_reset(void)
1577 {
1578 	ktrace_assert_lock_held();
1579 
1580 	kdbg_clear();
1581 	typefilter_reject_all(kdbg_typefilter);
1582 	typefilter_allow_class(kdbg_typefilter, DBG_TRACE);
1583 }
1584 
1585 void
kdebug_free_early_buf(void)1586 kdebug_free_early_buf(void)
1587 {
1588 #if defined(__x86_64__)
1589 	ml_static_mfree((vm_offset_t)&kd_early_buffer, sizeof(kd_early_buffer));
1590 #endif /* defined(__x86_64__) */
1591 	// ARM handles this as part of the BOOTDATA segment.
1592 }
1593 
1594 int
kdbg_setpid(kd_regtype * kdr)1595 kdbg_setpid(kd_regtype *kdr)
1596 {
1597 	pid_t pid;
1598 	int flag, ret = 0;
1599 	struct proc *p;
1600 
1601 	pid = (pid_t)kdr->value1;
1602 	flag = (int)kdr->value2;
1603 
1604 	if (pid >= 0) {
1605 		if ((p = proc_find(pid)) == NULL) {
1606 			ret = ESRCH;
1607 		} else {
1608 			if (flag == 1) {
1609 				/*
1610 				 * turn on pid check for this and all pids
1611 				 */
1612 				kd_control_trace.kdc_flags |= KDBG_PIDCHECK;
1613 				kd_control_trace.kdc_flags &= ~KDBG_PIDEXCLUDE;
1614 
1615 				p->p_kdebug = 1;
1616 			} else {
1617 				/*
1618 				 * turn off pid check for this pid value
1619 				 * Don't turn off all pid checking though
1620 				 *
1621 				 * kd_control_trace.kdc_flags &= ~KDBG_PIDCHECK;
1622 				 */
1623 				p->p_kdebug = 0;
1624 			}
1625 			proc_rele(p);
1626 		}
1627 	} else {
1628 		ret = EINVAL;
1629 	}
1630 
1631 	return ret;
1632 }
1633 
1634 /* This is for pid exclusion in the trace buffer */
1635 int
kdbg_setpidex(kd_regtype * kdr)1636 kdbg_setpidex(kd_regtype *kdr)
1637 {
1638 	pid_t pid;
1639 	int flag, ret = 0;
1640 	struct proc *p;
1641 
1642 	pid = (pid_t)kdr->value1;
1643 	flag = (int)kdr->value2;
1644 
1645 	if (pid >= 0) {
1646 		if ((p = proc_find(pid)) == NULL) {
1647 			ret = ESRCH;
1648 		} else {
1649 			if (flag == 1) {
1650 				/*
1651 				 * turn on pid exclusion
1652 				 */
1653 				kd_control_trace.kdc_flags |= KDBG_PIDEXCLUDE;
1654 				kd_control_trace.kdc_flags &= ~KDBG_PIDCHECK;
1655 
1656 				p->p_kdebug = 1;
1657 			} else {
1658 				/*
1659 				 * turn off pid exclusion for this pid value
1660 				 * Don't turn off all pid exclusion though
1661 				 *
1662 				 * kd_control_trace.kdc_flags &= ~KDBG_PIDEXCLUDE;
1663 				 */
1664 				p->p_kdebug = 0;
1665 			}
1666 			proc_rele(p);
1667 		}
1668 	} else {
1669 		ret = EINVAL;
1670 	}
1671 
1672 	return ret;
1673 }
1674 
1675 /*
1676  * The following functions all operate on the typefilter singleton.
1677  */
1678 
1679 static int
kdbg_copyin_typefilter(user_addr_t addr,size_t size)1680 kdbg_copyin_typefilter(user_addr_t addr, size_t size)
1681 {
1682 	int ret = ENOMEM;
1683 	typefilter_t tf;
1684 
1685 	ktrace_assert_lock_held();
1686 
1687 	if (size != KDBG_TYPEFILTER_BITMAP_SIZE) {
1688 		return EINVAL;
1689 	}
1690 
1691 	if ((tf = typefilter_create())) {
1692 		if ((ret = copyin(addr, tf, KDBG_TYPEFILTER_BITMAP_SIZE)) == 0) {
1693 			/* The kernel typefilter must always allow DBG_TRACE */
1694 			typefilter_allow_class(tf, DBG_TRACE);
1695 
1696 			typefilter_copy(kdbg_typefilter, tf);
1697 
1698 			kdbg_enable_typefilter();
1699 			_coproc_list_callback(KD_CALLBACK_TYPEFILTER_CHANGED, kdbg_typefilter);
1700 		}
1701 
1702 		if (tf) {
1703 			typefilter_deallocate(tf);
1704 		}
1705 	}
1706 
1707 	return ret;
1708 }
1709 
1710 /*
1711  * Enable the flags in the control page for the typefilter.  Assumes that
1712  * kdbg_typefilter has already been allocated, so events being written
1713  * don't see a bad typefilter.
1714  */
1715 static void
kdbg_enable_typefilter(void)1716 kdbg_enable_typefilter(void)
1717 {
1718 	kd_control_trace.kdc_flags &= ~(KDBG_RANGECHECK | KDBG_VALCHECK);
1719 	kd_control_trace.kdc_flags |= KDBG_TYPEFILTER_CHECK;
1720 	if (kdebug_enable) {
1721 		kd_control_trace.kdc_emit = _trace_emit_filter();
1722 	}
1723 	commpage_update_kdebug_state();
1724 }
1725 
1726 // Disable the flags in the control page for the typefilter.  The typefilter
1727 // may be safely deallocated shortly after this function returns.
1728 static void
kdbg_disable_typefilter(void)1729 kdbg_disable_typefilter(void)
1730 {
1731 	bool notify_coprocs = kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK;
1732 	kd_control_trace.kdc_flags &= ~KDBG_TYPEFILTER_CHECK;
1733 
1734 	commpage_update_kdebug_state();
1735 
1736 	if (notify_coprocs) {
1737 		// Notify coprocessors that the typefilter will now allow everything.
1738 		// Otherwise, they won't know a typefilter is no longer in effect.
1739 		typefilter_allow_all(kdbg_typefilter);
1740 		_coproc_list_callback(KD_CALLBACK_TYPEFILTER_CHANGED, kdbg_typefilter);
1741 	}
1742 }
1743 
1744 uint32_t
kdebug_commpage_state(void)1745 kdebug_commpage_state(void)
1746 {
1747 	uint32_t state = 0;
1748 	if (kdebug_enable) {
1749 		state |= KDEBUG_COMMPAGE_ENABLE_TRACE;
1750 		if (kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK) {
1751 			state |= KDEBUG_COMMPAGE_ENABLE_TYPEFILTER;
1752 		}
1753 		if (kd_control_trace.kdc_flags & KDBG_CONTINUOUS_TIME) {
1754 			state |= KDEBUG_COMMPAGE_CONTINUOUS;
1755 		}
1756 	}
1757 	return state;
1758 }
1759 
1760 static int
kdbg_setreg(kd_regtype * kdr)1761 kdbg_setreg(kd_regtype * kdr)
1762 {
1763 	switch (kdr->type) {
1764 	case KDBG_CLASSTYPE:
1765 		kdlog_beg = KDBG_EVENTID(kdr->value1 & 0xff, 0, 0);
1766 		kdlog_end = KDBG_EVENTID(kdr->value2 & 0xff, 0, 0);
1767 		kd_control_trace.kdc_flags &= ~KDBG_VALCHECK;
1768 		kd_control_trace.kdc_flags |= KDBG_RANGECHECK;
1769 		break;
1770 	case KDBG_SUBCLSTYPE:;
1771 		unsigned int cls = kdr->value1 & 0xff;
1772 		unsigned int subcls = kdr->value2 & 0xff;
1773 		unsigned int subcls_end = subcls + 1;
1774 		kdlog_beg = KDBG_EVENTID(cls, subcls, 0);
1775 		kdlog_end = KDBG_EVENTID(cls, subcls_end, 0);
1776 		kd_control_trace.kdc_flags &= ~KDBG_VALCHECK;
1777 		kd_control_trace.kdc_flags |= KDBG_RANGECHECK;
1778 		break;
1779 	case KDBG_RANGETYPE:
1780 		kdlog_beg = kdr->value1;
1781 		kdlog_end = kdr->value2;
1782 		kd_control_trace.kdc_flags &= ~KDBG_VALCHECK;
1783 		kd_control_trace.kdc_flags |= KDBG_RANGECHECK;
1784 		break;
1785 	case KDBG_VALCHECK:
1786 		kdlog_value1 = kdr->value1;
1787 		kdlog_value2 = kdr->value2;
1788 		kdlog_value3 = kdr->value3;
1789 		kdlog_value4 = kdr->value4;
1790 		kd_control_trace.kdc_flags &= ~KDBG_RANGECHECK;
1791 		kd_control_trace.kdc_flags |= KDBG_VALCHECK;
1792 		break;
1793 	case KDBG_TYPENONE:
1794 		kd_control_trace.kdc_flags &= ~(KDBG_RANGECHECK | KDBG_VALCHECK);
1795 		kdlog_beg = 0;
1796 		kdlog_end = 0;
1797 		break;
1798 	default:
1799 		return EINVAL;
1800 	}
1801 	if (kdebug_enable) {
1802 		kd_control_trace.kdc_emit = _trace_emit_filter();
1803 	}
1804 	return 0;
1805 }
1806 
1807 static int
_copyin_event_disable_mask(user_addr_t uaddr,size_t usize)1808 _copyin_event_disable_mask(user_addr_t uaddr, size_t usize)
1809 {
1810 	if (usize < 2 * sizeof(kd_event_matcher)) {
1811 		return ERANGE;
1812 	}
1813 	int ret = copyin(uaddr, &kd_control_trace.disable_event_match,
1814 	    sizeof(kd_event_matcher));
1815 	if (ret != 0) {
1816 		return ret;
1817 	}
1818 	ret = copyin(uaddr + sizeof(kd_event_matcher),
1819 	    &kd_control_trace.disable_event_mask, sizeof(kd_event_matcher));
1820 	if (ret != 0) {
1821 		memset(&kd_control_trace.disable_event_match, 0,
1822 		    sizeof(kd_event_matcher));
1823 		return ret;
1824 	}
1825 	return 0;
1826 }
1827 
1828 static int
_copyout_event_disable_mask(user_addr_t uaddr,size_t usize)1829 _copyout_event_disable_mask(user_addr_t uaddr, size_t usize)
1830 {
1831 	if (usize < 2 * sizeof(kd_event_matcher)) {
1832 		return ERANGE;
1833 	}
1834 	int ret = copyout(&kd_control_trace.disable_event_match, uaddr,
1835 	    sizeof(kd_event_matcher));
1836 	if (ret != 0) {
1837 		return ret;
1838 	}
1839 	ret = copyout(&kd_control_trace.disable_event_mask,
1840 	    uaddr + sizeof(kd_event_matcher), sizeof(kd_event_matcher));
1841 	if (ret != 0) {
1842 		return ret;
1843 	}
1844 	return 0;
1845 }
1846 
1847 static int
kdbg_write_to_vnode(caddr_t buffer,size_t size,vnode_t vp,vfs_context_t ctx,off_t file_offset)1848 kdbg_write_to_vnode(caddr_t buffer, size_t size, vnode_t vp, vfs_context_t ctx, off_t file_offset)
1849 {
1850 	assert(size < INT_MAX);
1851 	return vn_rdwr(UIO_WRITE, vp, buffer, (int)size, file_offset, UIO_SYSSPACE,
1852 	           IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0,
1853 	           vfs_context_proc(ctx));
1854 }
1855 
1856 static errno_t
_copyout_cpu_map(int map_version,user_addr_t udst,size_t * usize)1857 _copyout_cpu_map(int map_version, user_addr_t udst, size_t *usize)
1858 {
1859 	if ((kd_control_trace.kdc_flags & KDBG_BUFINIT) == 0) {
1860 		return EINVAL;
1861 	}
1862 
1863 	void *cpu_map = NULL;
1864 	size_t size = 0;
1865 	int error = _copy_cpu_map(map_version, &cpu_map, &size);
1866 	if (0 == error) {
1867 		if (udst) {
1868 			size_t copy_size = MIN(*usize, size);
1869 			error = copyout(cpu_map, udst, copy_size);
1870 		}
1871 		*usize = size;
1872 		kmem_free(kernel_map, (vm_offset_t)cpu_map, size);
1873 	}
1874 	if (EINVAL == error && 0 == udst) {
1875 		*usize = size;
1876 		// User space only needs the size if it passes NULL;
1877 		error = 0;
1878 	}
1879 	return error;
1880 }
1881 
1882 int
kdbg_readcurthrmap(user_addr_t buffer,size_t * bufsize)1883 kdbg_readcurthrmap(user_addr_t buffer, size_t *bufsize)
1884 {
1885 	kd_threadmap *mapptr;
1886 	vm_size_t mapsize;
1887 	vm_size_t mapcount;
1888 	int ret = 0;
1889 	size_t count = *bufsize / sizeof(kd_threadmap);
1890 
1891 	*bufsize = 0;
1892 
1893 	if ((mapptr = _thread_map_create_live(count, &mapsize, &mapcount))) {
1894 		if (copyout(mapptr, buffer, mapcount * sizeof(kd_threadmap))) {
1895 			ret = EFAULT;
1896 		} else {
1897 			*bufsize = (mapcount * sizeof(kd_threadmap));
1898 		}
1899 
1900 		kfree_data(mapptr, mapsize);
1901 	} else {
1902 		ret = EINVAL;
1903 	}
1904 
1905 	return ret;
1906 }
1907 
1908 static int
_write_legacy_header(bool write_thread_map,vnode_t vp,vfs_context_t ctx)1909 _write_legacy_header(bool write_thread_map, vnode_t vp, vfs_context_t ctx)
1910 {
1911 	int ret = 0;
1912 	RAW_header header;
1913 	clock_sec_t secs;
1914 	clock_usec_t usecs;
1915 	void *pad_buf;
1916 	uint32_t pad_size;
1917 	uint32_t extra_thread_count = 0;
1918 	uint32_t cpumap_size;
1919 	size_t map_size = 0;
1920 	uint32_t map_count = 0;
1921 
1922 	if (write_thread_map) {
1923 		assert(kd_control_trace.kdc_flags & KDBG_MAPINIT);
1924 		if (kd_mapcount > UINT32_MAX) {
1925 			return ERANGE;
1926 		}
1927 		map_count = (uint32_t)kd_mapcount;
1928 		if (os_mul_overflow(map_count, sizeof(kd_threadmap), &map_size)) {
1929 			return ERANGE;
1930 		}
1931 		if (map_size >= INT_MAX) {
1932 			return ERANGE;
1933 		}
1934 	}
1935 
1936 	/*
1937 	 * Without the buffers initialized, we cannot construct a CPU map or a
1938 	 * thread map, and cannot write a header.
1939 	 */
1940 	if (!(kd_control_trace.kdc_flags & KDBG_BUFINIT)) {
1941 		return EINVAL;
1942 	}
1943 
1944 	/*
1945 	 * To write a RAW_VERSION1+ file, we must embed a cpumap in the
1946 	 * "padding" used to page align the events following the threadmap. If
1947 	 * the threadmap happens to not require enough padding, we artificially
1948 	 * increase its footprint until it needs enough padding.
1949 	 */
1950 
1951 	assert(vp);
1952 	assert(ctx);
1953 
1954 	pad_size = 16384 - ((sizeof(RAW_header) + map_size) & PAGE_MASK);
1955 	cpumap_size = sizeof(kd_cpumap_header) + kd_control_trace.kdebug_cpus * sizeof(kd_cpumap);
1956 
1957 	if (cpumap_size > pad_size) {
1958 		/* If the cpu map doesn't fit in the current available pad_size,
1959 		 * we increase the pad_size by 16K. We do this so that the event
1960 		 * data is always  available on a page aligned boundary for both
1961 		 * 4k and 16k systems. We enforce this alignment for the event
1962 		 * data so that we can take advantage of optimized file/disk writes.
1963 		 */
1964 		pad_size += 16384;
1965 	}
1966 
1967 	/* The way we are silently embedding a cpumap in the "padding" is by artificially
1968 	 * increasing the number of thread entries. However, we'll also need to ensure that
1969 	 * the cpumap is embedded in the last 4K page before when the event data is expected.
1970 	 * This way the tools can read the data starting the next page boundary on both
1971 	 * 4K and 16K systems preserving compatibility with older versions of the tools
1972 	 */
1973 	if (pad_size > 4096) {
1974 		pad_size -= 4096;
1975 		extra_thread_count = (pad_size / sizeof(kd_threadmap)) + 1;
1976 	}
1977 
1978 	memset(&header, 0, sizeof(header));
1979 	header.version_no = RAW_VERSION1;
1980 	header.thread_count = map_count + extra_thread_count;
1981 
1982 	clock_get_calendar_microtime(&secs, &usecs);
1983 	header.TOD_secs = secs;
1984 	header.TOD_usecs = usecs;
1985 
1986 	ret = vn_rdwr(UIO_WRITE, vp, (caddr_t)&header, (int)sizeof(RAW_header), RAW_file_offset,
1987 	    UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0, vfs_context_proc(ctx));
1988 	if (ret) {
1989 		goto write_error;
1990 	}
1991 	RAW_file_offset += sizeof(RAW_header);
1992 	RAW_file_written += sizeof(RAW_header);
1993 
1994 	if (write_thread_map) {
1995 		assert(map_size < INT_MAX);
1996 		ret = vn_rdwr(UIO_WRITE, vp, (caddr_t)kd_mapptr, (int)map_size, RAW_file_offset,
1997 		    UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0, vfs_context_proc(ctx));
1998 		if (ret) {
1999 			goto write_error;
2000 		}
2001 
2002 		RAW_file_offset += map_size;
2003 		RAW_file_written += map_size;
2004 	}
2005 
2006 	if (extra_thread_count) {
2007 		pad_size = extra_thread_count * sizeof(kd_threadmap);
2008 		pad_buf = (char *)kalloc_data(pad_size, Z_WAITOK | Z_ZERO);
2009 		if (!pad_buf) {
2010 			ret = ENOMEM;
2011 			goto write_error;
2012 		}
2013 
2014 		assert(pad_size < INT_MAX);
2015 		ret = vn_rdwr(UIO_WRITE, vp, (caddr_t)pad_buf, (int)pad_size, RAW_file_offset,
2016 		    UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0, vfs_context_proc(ctx));
2017 		kfree_data(pad_buf, pad_size);
2018 		if (ret) {
2019 			goto write_error;
2020 		}
2021 
2022 		RAW_file_offset += pad_size;
2023 		RAW_file_written += pad_size;
2024 	}
2025 
2026 	pad_size = PAGE_SIZE - (RAW_file_offset & PAGE_MASK);
2027 	if (pad_size) {
2028 		pad_buf = (char *)kalloc_data(pad_size, Z_WAITOK | Z_ZERO);
2029 		if (!pad_buf) {
2030 			ret = ENOMEM;
2031 			goto write_error;
2032 		}
2033 
2034 		/*
2035 		 * Embed the CPU map in the padding bytes -- old code will skip it,
2036 		 * while newer code knows it's there.
2037 		 */
2038 		size_t temp = pad_size;
2039 		errno_t error = _copy_cpu_map(RAW_VERSION1, &pad_buf, &temp);
2040 		if (0 != error) {
2041 			memset(pad_buf, 0, pad_size);
2042 		}
2043 
2044 		assert(pad_size < INT_MAX);
2045 		ret = vn_rdwr(UIO_WRITE, vp, (caddr_t)pad_buf, (int)pad_size, RAW_file_offset,
2046 		    UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, vfs_context_ucred(ctx), (int *) 0, vfs_context_proc(ctx));
2047 		kfree_data(pad_buf, pad_size);
2048 		if (ret) {
2049 			goto write_error;
2050 		}
2051 
2052 		RAW_file_offset += pad_size;
2053 		RAW_file_written += pad_size;
2054 	}
2055 
2056 write_error:
2057 	return ret;
2058 }
2059 
2060 static void
_clear_thread_map(void)2061 _clear_thread_map(void)
2062 {
2063 	ktrace_assert_lock_held();
2064 
2065 	if (kd_control_trace.kdc_flags & KDBG_MAPINIT) {
2066 		assert(kd_mapptr != NULL);
2067 		kfree_data(kd_mapptr, kd_mapsize);
2068 		kd_mapptr = NULL;
2069 		kd_mapsize = 0;
2070 		kd_mapcount = 0;
2071 		kd_control_trace.kdc_flags &= ~KDBG_MAPINIT;
2072 	}
2073 }
2074 
2075 /*
2076  * Write out a version 1 header and the thread map, if it is initialized, to a
2077  * vnode.  Used by KDWRITEMAP and kdbg_dump_trace_to_file.
2078  *
2079  * Returns write errors from vn_rdwr if a write fails.  Returns ENODATA if the
2080  * thread map has not been initialized, but the header will still be written.
2081  * Returns ENOMEM if padding could not be allocated.  Returns 0 otherwise.
2082  */
2083 static int
kdbg_write_thread_map(vnode_t vp,vfs_context_t ctx)2084 kdbg_write_thread_map(vnode_t vp, vfs_context_t ctx)
2085 {
2086 	int ret = 0;
2087 	bool map_initialized;
2088 
2089 	ktrace_assert_lock_held();
2090 	assert(ctx != NULL);
2091 
2092 	map_initialized = (kd_control_trace.kdc_flags & KDBG_MAPINIT);
2093 
2094 	ret = _write_legacy_header(map_initialized, vp, ctx);
2095 	if (ret == 0) {
2096 		if (map_initialized) {
2097 			_clear_thread_map();
2098 		} else {
2099 			ret = ENODATA;
2100 		}
2101 	}
2102 
2103 	return ret;
2104 }
2105 
2106 /*
2107  * Copy out the thread map to a user space buffer.  Used by KDTHRMAP.
2108  *
2109  * Returns copyout errors if the copyout fails.  Returns ENODATA if the thread
2110  * map has not been initialized.  Returns EINVAL if the buffer provided is not
2111  * large enough for the entire thread map.  Returns 0 otherwise.
2112  */
2113 static int
kdbg_copyout_thread_map(user_addr_t buffer,size_t * buffer_size)2114 kdbg_copyout_thread_map(user_addr_t buffer, size_t *buffer_size)
2115 {
2116 	bool map_initialized;
2117 	size_t map_size;
2118 	int ret = 0;
2119 
2120 	ktrace_assert_lock_held();
2121 	assert(buffer_size != NULL);
2122 
2123 	map_initialized = (kd_control_trace.kdc_flags & KDBG_MAPINIT);
2124 	if (!map_initialized) {
2125 		return ENODATA;
2126 	}
2127 
2128 	map_size = kd_mapcount * sizeof(kd_threadmap);
2129 	if (*buffer_size < map_size) {
2130 		return EINVAL;
2131 	}
2132 
2133 	ret = copyout(kd_mapptr, buffer, map_size);
2134 	if (ret == 0) {
2135 		_clear_thread_map();
2136 	}
2137 
2138 	return ret;
2139 }
2140 
2141 static void
kdbg_set_nkdbufs_trace(unsigned int req_nkdbufs_trace)2142 kdbg_set_nkdbufs_trace(unsigned int req_nkdbufs_trace)
2143 {
2144 	/*
2145 	 * Only allow allocations of up to half the kernel's data range or "sane
2146 	 * size", whichever is smaller.
2147 	 */
2148 	const uint64_t max_nkdbufs_trace_64 =
2149 	    MIN(kmem_range_id_size(KMEM_RANGE_ID_DATA), sane_size) / 2 /
2150 	    sizeof(kd_buf);
2151 	/*
2152 	 * Can't allocate more than 2^38 (2^32 * 64) bytes of events without
2153 	 * switching to a 64-bit event count; should be fine.
2154 	 */
2155 	const unsigned int max_nkdbufs_trace =
2156 	    (unsigned int)MIN(max_nkdbufs_trace_64, UINT_MAX);
2157 
2158 	kd_buffer_trace.kdb_event_count = MIN(req_nkdbufs_trace, max_nkdbufs_trace);
2159 }
2160 
2161 /*
2162  * Block until there are `kd_buffer_trace.kdb_storage_threshold` storage units filled with
2163  * events or `timeout_ms` milliseconds have passed.  If `locked_wait` is true,
2164  * `ktrace_lock` is held while waiting.  This is necessary while waiting to
2165  * write events out of the buffers.
2166  *
2167  * Returns true if the threshold was reached and false otherwise.
2168  *
2169  * Called with `ktrace_lock` locked and interrupts enabled.
2170  */
2171 static bool
kdbg_wait(uint64_t timeout_ms)2172 kdbg_wait(uint64_t timeout_ms)
2173 {
2174 	int wait_result = THREAD_AWAKENED;
2175 	uint64_t deadline_mach = 0;
2176 
2177 	ktrace_assert_lock_held();
2178 
2179 	if (timeout_ms != 0) {
2180 		uint64_t ns = timeout_ms * NSEC_PER_MSEC;
2181 		nanoseconds_to_absolutetime(ns, &deadline_mach);
2182 		clock_absolutetime_interval_to_deadline(deadline_mach, &deadline_mach);
2183 	}
2184 
2185 	bool s = ml_set_interrupts_enabled(false);
2186 	if (!s) {
2187 		panic("kdbg_wait() called with interrupts disabled");
2188 	}
2189 	lck_spin_lock_grp(&kd_wait_lock, &kdebug_lck_grp);
2190 
2191 	/* drop the mutex to allow others to access trace */
2192 	ktrace_unlock();
2193 
2194 	while (wait_result == THREAD_AWAKENED &&
2195 	    kd_control_trace.kdc_storage_used < kd_buffer_trace.kdb_storage_threshold) {
2196 		kd_waiter = true;
2197 
2198 		if (deadline_mach) {
2199 			wait_result = lck_spin_sleep_deadline(&kd_wait_lock, 0, &kd_waiter,
2200 			    THREAD_ABORTSAFE, deadline_mach);
2201 		} else {
2202 			wait_result = lck_spin_sleep(&kd_wait_lock, 0, &kd_waiter,
2203 			    THREAD_ABORTSAFE);
2204 		}
2205 	}
2206 
2207 	bool threshold_exceeded = (kd_control_trace.kdc_storage_used >= kd_buffer_trace.kdb_storage_threshold);
2208 
2209 	lck_spin_unlock(&kd_wait_lock);
2210 	ml_set_interrupts_enabled(s);
2211 
2212 	ktrace_lock();
2213 
2214 	return threshold_exceeded;
2215 }
2216 
2217 /*
2218  * Wakeup a thread waiting using `kdbg_wait` if there are at least
2219  * `kd_buffer_trace.kdb_storage_threshold` storage units in use.
2220  */
2221 static void
kdbg_wakeup(void)2222 kdbg_wakeup(void)
2223 {
2224 	bool need_kds_wakeup = false;
2225 
2226 	/*
2227 	 * Try to take the lock here to synchronize with the waiter entering
2228 	 * the blocked state.  Use the try mode to prevent deadlocks caused by
2229 	 * re-entering this routine due to various trace points triggered in the
2230 	 * lck_spin_sleep_xxxx routines used to actually enter one of our 2 wait
2231 	 * conditions.  No problem if we fail, there will be lots of additional
2232 	 * events coming in that will eventually succeed in grabbing this lock.
2233 	 */
2234 	bool s = ml_set_interrupts_enabled(false);
2235 
2236 	if (lck_spin_try_lock(&kd_wait_lock)) {
2237 		if (kd_waiter &&
2238 		    (kd_control_trace.kdc_storage_used >= kd_buffer_trace.kdb_storage_threshold)) {
2239 			kd_waiter = 0;
2240 			need_kds_wakeup = true;
2241 		}
2242 		lck_spin_unlock(&kd_wait_lock);
2243 	}
2244 
2245 	ml_set_interrupts_enabled(s);
2246 
2247 	if (need_kds_wakeup == true) {
2248 		wakeup(&kd_waiter);
2249 	}
2250 }
2251 
2252 static int
_read_merged_trace_events(user_addr_t buffer,size_t * number,vnode_t vp,vfs_context_t ctx,bool chunk)2253 _read_merged_trace_events(user_addr_t buffer, size_t *number, vnode_t vp,
2254     vfs_context_t ctx, bool chunk)
2255 {
2256 	ktrace_assert_lock_held();
2257 	size_t count = *number / sizeof(kd_buf);
2258 	if (count == 0 || !(kd_control_trace.kdc_flags & KDBG_BUFINIT) ||
2259 	    kd_buffer_trace.kdcopybuf == 0) {
2260 		*number = 0;
2261 		return EINVAL;
2262 	}
2263 
2264 	// Before merging, make sure coprocessors have provided up-to-date events.
2265 	_coproc_list_callback(KD_CALLBACK_SYNC_FLUSH, NULL);
2266 	return kernel_debug_read(&kd_control_trace, &kd_buffer_trace, buffer,
2267 	           number, vp, ctx, chunk);
2268 }
2269 
2270 struct event_chunk_header {
2271 	uint32_t tag;
2272 	uint32_t sub_tag;
2273 	uint64_t length;
2274 	uint64_t future_events_timestamp;
2275 };
2276 
2277 static int
_write_event_chunk_header(user_addr_t udst,vnode_t vp,vfs_context_t ctx,uint64_t length)2278 _write_event_chunk_header(user_addr_t udst, vnode_t vp, vfs_context_t ctx,
2279     uint64_t length)
2280 {
2281 	struct event_chunk_header header = {
2282 		.tag = V3_RAW_EVENTS,
2283 		.sub_tag = 1,
2284 		.length = length,
2285 	};
2286 
2287 	if (vp) {
2288 		assert(udst == USER_ADDR_NULL);
2289 		assert(ctx != NULL);
2290 		int error = kdbg_write_to_vnode((caddr_t)&header, sizeof(header), vp,
2291 		    ctx, RAW_file_offset);
2292 		if (0 == error) {
2293 			RAW_file_offset += sizeof(header);
2294 		}
2295 		return error;
2296 	} else {
2297 		assert(udst != USER_ADDR_NULL);
2298 		return copyout(&header, udst, sizeof(header));
2299 	}
2300 }
2301 
2302 int
kernel_debug_trace_write_to_file(user_addr_t * buffer,size_t * number,size_t * count,size_t tempbuf_number,vnode_t vp,vfs_context_t ctx,bool chunk)2303 kernel_debug_trace_write_to_file(user_addr_t *buffer, size_t *number,
2304     size_t *count, size_t tempbuf_number, vnode_t vp, vfs_context_t ctx,
2305     bool chunk)
2306 {
2307 	int error = 0;
2308 
2309 	if (chunk) {
2310 		error = _write_event_chunk_header(*buffer, vp, ctx,
2311 		    tempbuf_number * sizeof(kd_buf));
2312 		if (error) {
2313 			return error;
2314 		}
2315 		if (buffer) {
2316 			*buffer += sizeof(struct event_chunk_header);
2317 		}
2318 
2319 		assert(*count >= sizeof(struct event_chunk_header));
2320 		*count -= sizeof(struct event_chunk_header);
2321 		*number += sizeof(struct event_chunk_header);
2322 	}
2323 	if (vp) {
2324 		size_t write_size = tempbuf_number * sizeof(kd_buf);
2325 		error = kdbg_write_to_vnode((caddr_t)kd_buffer_trace.kdcopybuf,
2326 		    write_size, vp, ctx, RAW_file_offset);
2327 		if (!error) {
2328 			RAW_file_offset += write_size;
2329 		}
2330 
2331 		if (RAW_file_written >= RAW_FLUSH_SIZE) {
2332 			error = VNOP_FSYNC(vp, MNT_NOWAIT, ctx);
2333 
2334 			RAW_file_written = 0;
2335 		}
2336 	} else {
2337 		error = copyout(kd_buffer_trace.kdcopybuf, *buffer, tempbuf_number * sizeof(kd_buf));
2338 		*buffer += (tempbuf_number * sizeof(kd_buf));
2339 	}
2340 
2341 	return error;
2342 }
2343 
2344 #pragma mark - User space interface
2345 
2346 static int
_kd_sysctl_internal(int op,int value,user_addr_t where,size_t * sizep)2347 _kd_sysctl_internal(int op, int value, user_addr_t where, size_t *sizep)
2348 {
2349 	size_t size = *sizep;
2350 	kd_regtype kd_Reg;
2351 	proc_t p;
2352 
2353 	bool read_only = (op == KERN_KDGETBUF || op == KERN_KDREADCURTHRMAP);
2354 	int perm_error = read_only ? ktrace_read_check() :
2355 	    ktrace_configure(KTRACE_KDEBUG);
2356 	if (perm_error != 0) {
2357 		return perm_error;
2358 	}
2359 
2360 	switch (op) {
2361 	case KERN_KDGETBUF:;
2362 		pid_t owning_pid = ktrace_get_owning_pid();
2363 		kbufinfo_t info = {
2364 			.nkdbufs = kd_buffer_trace.kdb_event_count,
2365 			.nkdthreads = (int)MIN(kd_mapcount, INT_MAX),
2366 			.nolog = kd_control_trace.kdc_emit == KDEMIT_DISABLE,
2367 			.flags = kd_control_trace.kdc_flags | kd_control_trace.kdc_live_flags,
2368 			.bufid = owning_pid ?: -1,
2369 		};
2370 #if defined(__LP64__)
2371 		info.flags |= KDBG_LP64;
2372 #endif // defined(__LP64__)
2373 
2374 		size = MIN(size, sizeof(info));
2375 		return copyout(&info, where, size);
2376 	case KERN_KDREADCURTHRMAP:
2377 		return kdbg_readcurthrmap(where, sizep);
2378 	case KERN_KDEFLAGS:
2379 		value &= KDBG_USERFLAGS;
2380 		kd_control_trace.kdc_flags |= value;
2381 		return 0;
2382 	case KERN_KDDFLAGS:
2383 		value &= KDBG_USERFLAGS;
2384 		kd_control_trace.kdc_flags &= ~value;
2385 		return 0;
2386 	case KERN_KDENABLE:
2387 		if (value) {
2388 			if (!(kd_control_trace.kdc_flags & KDBG_BUFINIT) ||
2389 			    !(value == KDEBUG_ENABLE_TRACE || value == KDEBUG_ENABLE_PPT)) {
2390 				return EINVAL;
2391 			}
2392 			_threadmap_init();
2393 
2394 			kdbg_set_tracing_enabled(true, value);
2395 		} else {
2396 			if (!kdebug_enable) {
2397 				return 0;
2398 			}
2399 
2400 			kernel_debug_disable();
2401 		}
2402 		return 0;
2403 	case KERN_KDSETBUF:
2404 		kdbg_set_nkdbufs_trace(value);
2405 		return 0;
2406 	case KERN_KDSETUP:
2407 		return kdbg_reinit(EXTRA_COPROC_COUNT);
2408 	case KERN_KDREMOVE:
2409 		ktrace_reset(KTRACE_KDEBUG);
2410 		return 0;
2411 	case KERN_KDSETREG:
2412 		if (size < sizeof(kd_regtype)) {
2413 			return EINVAL;
2414 		}
2415 		if (copyin(where, &kd_Reg, sizeof(kd_regtype))) {
2416 			return EINVAL;
2417 		}
2418 		return kdbg_setreg(&kd_Reg);
2419 	case KERN_KDGETREG:
2420 		return EINVAL;
2421 	case KERN_KDREADTR:
2422 		return _read_merged_trace_events(where, sizep, NULL, NULL, false);
2423 	case KERN_KDWRITETR:
2424 	case KERN_KDWRITETR_V3:
2425 	case KERN_KDWRITEMAP: {
2426 		struct  vfs_context context;
2427 		struct  fileproc *fp;
2428 		size_t  number;
2429 		vnode_t vp;
2430 		int     fd;
2431 		int ret = 0;
2432 
2433 		if (op == KERN_KDWRITETR || op == KERN_KDWRITETR_V3) {
2434 			(void)kdbg_wait(size);
2435 			// Re-check whether this process can configure ktrace, since waiting
2436 			// will drop the ktrace lock.
2437 			int no_longer_owner_error = ktrace_configure(KTRACE_KDEBUG);
2438 			if (no_longer_owner_error != 0) {
2439 				return no_longer_owner_error;
2440 			}
2441 		}
2442 
2443 		p = current_proc();
2444 		fd = value;
2445 
2446 		if (fp_get_ftype(p, fd, DTYPE_VNODE, EBADF, &fp)) {
2447 			return EBADF;
2448 		}
2449 
2450 		vp = fp_get_data(fp);
2451 		context.vc_thread = current_thread();
2452 		context.vc_ucred = fp->fp_glob->fg_cred;
2453 
2454 		if ((ret = vnode_getwithref(vp)) == 0) {
2455 			RAW_file_offset = fp->fp_glob->fg_offset;
2456 			if (op == KERN_KDWRITETR || op == KERN_KDWRITETR_V3) {
2457 				number = kd_buffer_trace.kdb_event_count * sizeof(kd_buf);
2458 
2459 				KDBG_RELEASE(TRACE_WRITING_EVENTS | DBG_FUNC_START);
2460 				ret = _read_merged_trace_events(0, &number, vp, &context,
2461 				    op == KERN_KDWRITETR_V3);
2462 				KDBG_RELEASE(TRACE_WRITING_EVENTS | DBG_FUNC_END, number);
2463 
2464 				*sizep = number;
2465 			} else {
2466 				number = kd_mapcount * sizeof(kd_threadmap);
2467 				ret = kdbg_write_thread_map(vp, &context);
2468 			}
2469 			fp->fp_glob->fg_offset = RAW_file_offset;
2470 			vnode_put(vp);
2471 		}
2472 		fp_drop(p, fd, fp, 0);
2473 
2474 		return ret;
2475 	}
2476 	case KERN_KDBUFWAIT:
2477 		*sizep = kdbg_wait(size);
2478 		return 0;
2479 	case KERN_KDPIDTR:
2480 		if (size < sizeof(kd_regtype)) {
2481 			return EINVAL;
2482 		}
2483 		if (copyin(where, &kd_Reg, sizeof(kd_regtype))) {
2484 			return EINVAL;
2485 		}
2486 		return kdbg_setpid(&kd_Reg);
2487 	case KERN_KDPIDEX:
2488 		if (size < sizeof(kd_regtype)) {
2489 			return EINVAL;
2490 		}
2491 		if (copyin(where, &kd_Reg, sizeof(kd_regtype))) {
2492 			return EINVAL;
2493 		}
2494 		return kdbg_setpidex(&kd_Reg);
2495 	case KERN_KDCPUMAP:
2496 		return _copyout_cpu_map(RAW_VERSION1, where, sizep);
2497 	case KERN_KDCPUMAP_EXT:
2498 		return _copyout_cpu_map(1, where, sizep);
2499 	case KERN_KDTHRMAP:
2500 		return kdbg_copyout_thread_map(where, sizep);
2501 	case KERN_KDSET_TYPEFILTER:
2502 		return kdbg_copyin_typefilter(where, size);
2503 	case KERN_KDSET_EDM:
2504 		return _copyin_event_disable_mask(where, size);
2505 	case KERN_KDGET_EDM:
2506 		return _copyout_event_disable_mask(where, size);
2507 #if DEVELOPMENT || DEBUG
2508 	case KERN_KDTEST:
2509 		return kdbg_test(size);
2510 #endif // DEVELOPMENT || DEBUG
2511 
2512 	default:
2513 		return ENOTSUP;
2514 	}
2515 }
2516 
2517 static int
2518 kdebug_sysctl SYSCTL_HANDLER_ARGS
2519 {
2520 	int *names = arg1;
2521 	int name_count = arg2;
2522 	user_addr_t udst = req->oldptr;
2523 	size_t *usize = &req->oldlen;
2524 	int value = 0;
2525 
2526 	if (name_count == 0) {
2527 		return ENOTSUP;
2528 	}
2529 
2530 	int op = names[0];
2531 
2532 	// Some operations have an argument stuffed into the next OID argument.
2533 	switch (op) {
2534 	case KERN_KDWRITETR:
2535 	case KERN_KDWRITETR_V3:
2536 	case KERN_KDWRITEMAP:
2537 	case KERN_KDEFLAGS:
2538 	case KERN_KDDFLAGS:
2539 	case KERN_KDENABLE:
2540 	case KERN_KDSETBUF:
2541 		if (name_count < 2) {
2542 			return EINVAL;
2543 		}
2544 		value = names[1];
2545 		break;
2546 	default:
2547 		break;
2548 	}
2549 
2550 	ktrace_lock();
2551 	int ret = _kd_sysctl_internal(op, value, udst, usize);
2552 	ktrace_unlock();
2553 	if (0 == ret) {
2554 		req->oldidx += req->oldlen;
2555 	}
2556 	return ret;
2557 }
2558 SYSCTL_PROC(_kern, KERN_KDEBUG, kdebug,
2559     CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, kdebug_sysctl, NULL, "");
2560 
2561 #pragma mark - Tests
2562 
2563 #if DEVELOPMENT || DEBUG
2564 
2565 static int test_coproc = 0;
2566 static int sync_flush_coproc = 0;
2567 
2568 #define KDEBUG_TEST_CODE(code) BSDDBG_CODE(DBG_BSD_KDEBUG_TEST, (code))
2569 
2570 /*
2571  * A test IOP for the SYNC_FLUSH callback.
2572  */
2573 
2574 static void
sync_flush_callback(void * __unused context,kd_callback_type reason,void * __unused arg)2575 sync_flush_callback(void * __unused context, kd_callback_type reason,
2576     void * __unused arg)
2577 {
2578 	assert(sync_flush_coproc > 0);
2579 
2580 	if (reason == KD_CALLBACK_SYNC_FLUSH) {
2581 		kernel_debug_enter(sync_flush_coproc, KDEBUG_TEST_CODE(0xff),
2582 		    kdebug_timestamp(), 0, 0, 0, 0, 0);
2583 	}
2584 }
2585 
2586 static struct kd_callback sync_flush_kdcb = {
2587 	.func = sync_flush_callback,
2588 	.iop_name = "test_sf",
2589 };
2590 
2591 #define TEST_COPROC_CTX 0xabadcafe
2592 
2593 static void
test_coproc_cb(__assert_only void * context,kd_callback_type __unused reason,void * __unused arg)2594 test_coproc_cb(__assert_only void *context, kd_callback_type __unused reason,
2595     void * __unused arg)
2596 {
2597 	assert((uintptr_t)context == TEST_COPROC_CTX);
2598 }
2599 
2600 static int
kdbg_test(size_t flavor)2601 kdbg_test(size_t flavor)
2602 {
2603 	int code = 0;
2604 	int dummy_iop = 0;
2605 
2606 	switch (flavor) {
2607 	case KDTEST_KERNEL_MACROS:
2608 		/* try each macro */
2609 		KDBG(KDEBUG_TEST_CODE(code)); code++;
2610 		KDBG(KDEBUG_TEST_CODE(code), 1); code++;
2611 		KDBG(KDEBUG_TEST_CODE(code), 1, 2); code++;
2612 		KDBG(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
2613 		KDBG(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
2614 
2615 		KDBG_RELEASE(KDEBUG_TEST_CODE(code)); code++;
2616 		KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1); code++;
2617 		KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1, 2); code++;
2618 		KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
2619 		KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
2620 
2621 		KDBG_FILTERED(KDEBUG_TEST_CODE(code)); code++;
2622 		KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1); code++;
2623 		KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1, 2); code++;
2624 		KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
2625 		KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
2626 
2627 		KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code)); code++;
2628 		KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1); code++;
2629 		KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1, 2); code++;
2630 		KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
2631 		KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
2632 
2633 		KDBG_DEBUG(KDEBUG_TEST_CODE(code)); code++;
2634 		KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1); code++;
2635 		KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1, 2); code++;
2636 		KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1, 2, 3); code++;
2637 		KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++;
2638 		break;
2639 
2640 	case KDTEST_OLD_TIMESTAMP:
2641 		if (kd_control_trace.kdc_coprocs) {
2642 			/* avoid the assertion in kernel_debug_enter for a valid IOP */
2643 			dummy_iop = kd_control_trace.kdc_coprocs[0].cpu_id;
2644 		}
2645 
2646 		/* ensure old timestamps are not emitted from kernel_debug_enter */
2647 		kernel_debug_enter(dummy_iop, KDEBUG_TEST_CODE(code),
2648 		    100 /* very old timestamp */, 0, 0, 0, 0, 0);
2649 		code++;
2650 		kernel_debug_enter(dummy_iop, KDEBUG_TEST_CODE(code),
2651 		    kdebug_timestamp(), 0, 0, 0, 0, 0);
2652 		code++;
2653 		break;
2654 
2655 	case KDTEST_FUTURE_TIMESTAMP:
2656 		if (kd_control_trace.kdc_coprocs) {
2657 			dummy_iop = kd_control_trace.kdc_coprocs[0].cpu_id;
2658 		}
2659 		kernel_debug_enter(dummy_iop, KDEBUG_TEST_CODE(code),
2660 		    kdebug_timestamp() * 2 /* !!! */, 0, 0, 0, 0, 0);
2661 		break;
2662 
2663 	case KDTEST_SETUP_IOP:
2664 		if (!sync_flush_coproc) {
2665 			ktrace_unlock();
2666 			int new_sync_flush_coproc = kernel_debug_register_callback(
2667 				sync_flush_kdcb);
2668 			assert(new_sync_flush_coproc > 0);
2669 			ktrace_lock();
2670 			if (!sync_flush_coproc) {
2671 				sync_flush_coproc = new_sync_flush_coproc;
2672 			}
2673 		}
2674 		break;
2675 
2676 	case KDTEST_SETUP_COPROCESSOR:
2677 		if (!test_coproc) {
2678 			ktrace_unlock();
2679 			int new_test_coproc = kdebug_register_coproc("test_coproc",
2680 			    KDCP_CONTINUOUS_TIME, test_coproc_cb, (void *)TEST_COPROC_CTX);
2681 			assert(new_test_coproc > 0);
2682 			ktrace_lock();
2683 			if (!test_coproc) {
2684 				test_coproc = new_test_coproc;
2685 			}
2686 		}
2687 		break;
2688 
2689 	case KDTEST_ABSOLUTE_TIMESTAMP:;
2690 		uint64_t atime = mach_absolute_time();
2691 		kernel_debug_enter(sync_flush_coproc, KDEBUG_TEST_CODE(0),
2692 		    atime, (uintptr_t)atime, (uintptr_t)(atime >> 32), 0, 0, 0);
2693 		break;
2694 
2695 	case KDTEST_CONTINUOUS_TIMESTAMP:;
2696 		uint64_t ctime = mach_continuous_time();
2697 		kernel_debug_enter(test_coproc, KDEBUG_TEST_CODE(1),
2698 		    ctime, (uintptr_t)ctime, (uintptr_t)(ctime >> 32), 0, 0, 0);
2699 		break;
2700 
2701 	case KDTEST_PAST_EVENT:;
2702 		uint64_t old_time = 1;
2703 		kernel_debug_enter(test_coproc, KDEBUG_TEST_CODE(1), old_time, 0, 0, 0,
2704 		    0, 0);
2705 		kernel_debug_enter(test_coproc, KDEBUG_TEST_CODE(1), kdebug_timestamp(),
2706 		    0, 0, 0, 0, 0);
2707 		break;
2708 
2709 	default:
2710 		return ENOTSUP;
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 #undef KDEBUG_TEST_CODE
2717 
2718 #endif /* DEVELOPMENT || DEBUG */
2719 
2720 static void
_deferred_coproc_notify(mpsc_queue_chain_t e,mpsc_daemon_queue_t queue __unused)2721 _deferred_coproc_notify(mpsc_queue_chain_t e, mpsc_daemon_queue_t queue __unused)
2722 {
2723 	struct kd_coproc *coproc = mpsc_queue_element(e, struct kd_coproc, chain);
2724 	if (kd_control_trace.kdc_emit == KDEMIT_TYPEFILTER) {
2725 		coproc->callback.func(coproc->callback.context,
2726 		    KD_CALLBACK_TYPEFILTER_CHANGED, kdbg_typefilter);
2727 	}
2728 	if (kdebug_enable) {
2729 		coproc->callback.func(coproc->callback.context,
2730 		    KD_CALLBACK_KDEBUG_ENABLED, kdbg_typefilter);
2731 	}
2732 }
2733 
2734 void
kdebug_init(unsigned int n_events,char * filter_desc,enum kdebug_opts opts)2735 kdebug_init(unsigned int n_events, char *filter_desc, enum kdebug_opts opts)
2736 {
2737 	assert(filter_desc != NULL);
2738 
2739 	kdbg_typefilter = typefilter_create();
2740 	assert(kdbg_typefilter != NULL);
2741 	kdbg_typefilter_memory_entry = typefilter_create_memory_entry(kdbg_typefilter);
2742 	assert(kdbg_typefilter_memory_entry != MACH_PORT_NULL);
2743 
2744 	(void)mpsc_daemon_queue_init_with_thread_call(&_coproc_notify_queue,
2745 	    _deferred_coproc_notify, THREAD_CALL_PRIORITY_KERNEL,
2746 	    MPSC_DAEMON_INIT_NONE);
2747 
2748 	kdebug_trace_start(n_events, filter_desc, opts);
2749 }
2750 
2751 static void
kdbg_set_typefilter_string(const char * filter_desc)2752 kdbg_set_typefilter_string(const char *filter_desc)
2753 {
2754 	char *end = NULL;
2755 
2756 	ktrace_assert_lock_held();
2757 
2758 	assert(filter_desc != NULL);
2759 
2760 	typefilter_reject_all(kdbg_typefilter);
2761 	typefilter_allow_class(kdbg_typefilter, DBG_TRACE);
2762 
2763 	/* if the filter description starts with a number, assume it's a csc */
2764 	if (filter_desc[0] >= '0' && filter_desc[0] <= '9') {
2765 		unsigned long csc = strtoul(filter_desc, NULL, 0);
2766 		if (filter_desc != end && csc <= KDBG_CSC_MAX) {
2767 			typefilter_allow_csc(kdbg_typefilter, (uint16_t)csc);
2768 		}
2769 		return;
2770 	}
2771 
2772 	while (filter_desc[0] != '\0') {
2773 		unsigned long allow_value;
2774 
2775 		char filter_type = filter_desc[0];
2776 		if (filter_type != 'C' && filter_type != 'S') {
2777 			printf("kdebug: unexpected filter type `%c'\n", filter_type);
2778 			return;
2779 		}
2780 		filter_desc++;
2781 
2782 		allow_value = strtoul(filter_desc, &end, 0);
2783 		if (filter_desc == end) {
2784 			printf("kdebug: cannot parse `%s' as integer\n", filter_desc);
2785 			return;
2786 		}
2787 
2788 		switch (filter_type) {
2789 		case 'C':
2790 			if (allow_value > KDBG_CLASS_MAX) {
2791 				printf("kdebug: class 0x%lx is invalid\n", allow_value);
2792 				return;
2793 			}
2794 			printf("kdebug: C 0x%lx\n", allow_value);
2795 			typefilter_allow_class(kdbg_typefilter, (uint8_t)allow_value);
2796 			break;
2797 		case 'S':
2798 			if (allow_value > KDBG_CSC_MAX) {
2799 				printf("kdebug: class-subclass 0x%lx is invalid\n", allow_value);
2800 				return;
2801 			}
2802 			printf("kdebug: S 0x%lx\n", allow_value);
2803 			typefilter_allow_csc(kdbg_typefilter, (uint16_t)allow_value);
2804 			break;
2805 		default:
2806 			__builtin_unreachable();
2807 		}
2808 
2809 		/* advance to next filter entry */
2810 		filter_desc = end;
2811 		if (filter_desc[0] == ',') {
2812 			filter_desc++;
2813 		}
2814 	}
2815 }
2816 
2817 uint64_t
kdebug_wake(void)2818 kdebug_wake(void)
2819 {
2820 	if (!wake_nkdbufs) {
2821 		return 0;
2822 	}
2823 	uint64_t start = mach_absolute_time();
2824 	kdebug_trace_start(wake_nkdbufs, NULL, trace_wrap ? KDOPT_WRAPPING : 0);
2825 	return mach_absolute_time() - start;
2826 }
2827 
2828 /*
2829  * This function is meant to be called from the bootstrap thread or kdebug_wake.
2830  */
2831 void
kdebug_trace_start(unsigned int n_events,const char * filter_desc,enum kdebug_opts opts)2832 kdebug_trace_start(unsigned int n_events, const char *filter_desc,
2833     enum kdebug_opts opts)
2834 {
2835 	if (!n_events) {
2836 		kd_early_done = true;
2837 		return;
2838 	}
2839 
2840 	ktrace_start_single_threaded();
2841 
2842 	ktrace_kernel_configure(KTRACE_KDEBUG);
2843 
2844 	kdbg_set_nkdbufs_trace(n_events);
2845 
2846 	kernel_debug_string_early("start_kern_tracing");
2847 
2848 	int error = kdbg_reinit(EXTRA_COPROC_COUNT_BOOT);
2849 	if (error != 0) {
2850 		printf("kdebug: allocation failed, kernel tracing not started: %d\n",
2851 		    error);
2852 		kd_early_done = true;
2853 		goto out;
2854 	}
2855 
2856 	/*
2857 	 * Wrapping is disabled because boot and wake tracing is interested in
2858 	 * the earliest events, at the expense of later ones.
2859 	 */
2860 	if ((opts & KDOPT_WRAPPING) == 0) {
2861 		kd_control_trace.kdc_live_flags |= KDBG_NOWRAP;
2862 	}
2863 
2864 	if (filter_desc && filter_desc[0] != '\0') {
2865 		kdbg_set_typefilter_string(filter_desc);
2866 		kdbg_enable_typefilter();
2867 	}
2868 
2869 	/*
2870 	 * Hold off interrupts between getting a thread map and enabling trace
2871 	 * and until the early traces are recorded.
2872 	 */
2873 	bool s = ml_set_interrupts_enabled(false);
2874 
2875 	if (!(opts & KDOPT_ATBOOT)) {
2876 		_threadmap_init();
2877 	}
2878 
2879 	kdbg_set_tracing_enabled(true, KDEBUG_ENABLE_TRACE);
2880 
2881 	if ((opts & KDOPT_ATBOOT)) {
2882 		/*
2883 		 * Transfer all very early events from the static buffer into the real
2884 		 * buffers.
2885 		 */
2886 		kernel_debug_early_end();
2887 	}
2888 
2889 	ml_set_interrupts_enabled(s);
2890 
2891 	printf("kernel tracing started with %u events, filter = %s\n", n_events,
2892 	    filter_desc ?: "none");
2893 
2894 out:
2895 	ktrace_end_single_threaded();
2896 }
2897 
2898 void
kdbg_dump_trace_to_file(const char * filename,bool reenable)2899 kdbg_dump_trace_to_file(const char *filename, bool reenable)
2900 {
2901 	vfs_context_t ctx;
2902 	vnode_t vp;
2903 	size_t write_size;
2904 	int ret;
2905 	int reenable_trace = 0;
2906 
2907 	ktrace_lock();
2908 
2909 	if (!(kdebug_enable & KDEBUG_ENABLE_TRACE)) {
2910 		goto out;
2911 	}
2912 
2913 	if (ktrace_get_owning_pid() != 0) {
2914 		/*
2915 		 * Another process owns ktrace and is still active, disable tracing to
2916 		 * prevent wrapping.
2917 		 */
2918 		kdebug_enable = 0;
2919 		kd_control_trace.enabled = 0;
2920 		commpage_update_kdebug_state();
2921 		goto out;
2922 	}
2923 
2924 	KDBG_RELEASE(TRACE_WRITING_EVENTS | DBG_FUNC_START);
2925 
2926 	reenable_trace = reenable ? kdebug_enable : 0;
2927 	kdebug_enable = 0;
2928 	kd_control_trace.enabled = 0;
2929 	commpage_update_kdebug_state();
2930 
2931 	ctx = vfs_context_kernel();
2932 
2933 	if (vnode_open(filename, (O_CREAT | FWRITE | O_NOFOLLOW), 0600, 0, &vp, ctx)) {
2934 		goto out;
2935 	}
2936 
2937 	kdbg_write_thread_map(vp, ctx);
2938 
2939 	write_size = kd_buffer_trace.kdb_event_count * sizeof(kd_buf);
2940 	ret = _read_merged_trace_events(0, &write_size, vp, ctx, false);
2941 	if (ret) {
2942 		goto out_close;
2943 	}
2944 
2945 	/*
2946 	 * Wait to synchronize the file to capture the I/O in the
2947 	 * TRACE_WRITING_EVENTS interval.
2948 	 */
2949 	ret = VNOP_FSYNC(vp, MNT_WAIT, ctx);
2950 	if (ret == KERN_SUCCESS) {
2951 		ret = VNOP_IOCTL(vp, F_FULLFSYNC, (caddr_t)NULL, 0, ctx);
2952 	}
2953 
2954 	/*
2955 	 * Balance the starting TRACE_WRITING_EVENTS tracepoint manually.
2956 	 */
2957 	kd_buf end_event = {
2958 		.debugid = TRACE_WRITING_EVENTS | DBG_FUNC_END,
2959 		.arg1 = write_size,
2960 		.arg2 = ret,
2961 		.arg5 = (kd_buf_argtype)thread_tid(current_thread()),
2962 	};
2963 	kdbg_set_timestamp_and_cpu(&end_event, kdebug_timestamp(),
2964 	    cpu_number());
2965 
2966 	/* this is best effort -- ignore any errors */
2967 	(void)kdbg_write_to_vnode((caddr_t)&end_event, sizeof(kd_buf), vp, ctx,
2968 	    RAW_file_offset);
2969 
2970 out_close:
2971 	vnode_close(vp, FWRITE, ctx);
2972 	sync(current_proc(), (void *)NULL, (int *)NULL);
2973 
2974 out:
2975 	if (reenable_trace != 0) {
2976 		kdebug_enable = reenable_trace;
2977 		kd_control_trace.enabled = 1;
2978 		commpage_update_kdebug_state();
2979 	}
2980 
2981 	ktrace_unlock();
2982 }
2983 
2984 SYSCTL_NODE(_kern, OID_AUTO, kdbg, CTLFLAG_RD | CTLFLAG_LOCKED, 0,
2985     "kdbg");
2986 
2987 SYSCTL_INT(_kern_kdbg, OID_AUTO, debug,
2988     CTLFLAG_RW | CTLFLAG_LOCKED,
2989     &kdbg_debug, 0, "Set kdebug debug mode");
2990 
2991 SYSCTL_QUAD(_kern_kdbg, OID_AUTO, oldest_time,
2992     CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
2993     &kd_control_trace.kdc_oldest_time,
2994     "Find the oldest timestamp still in trace");
2995