xref: /f-stack/dpdk/lib/librte_gro/gro_udp4.h (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2020 Inspur Corporation
3  */
4 
5 #ifndef _GRO_UDP4_H_
6 #define _GRO_UDP4_H_
7 
8 #include <rte_ip.h>
9 #include <rte_udp.h>
10 #include <rte_vxlan.h>
11 
12 #define INVALID_ARRAY_INDEX 0xffffffffUL
13 #define GRO_UDP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL)
14 
15 /*
16  * The max length of a IPv4 packet, which includes the length of the L3
17  * header, the L4 header and the data payload.
18  */
19 #define MAX_IPV4_PKT_LENGTH UINT16_MAX
20 
21 /* Header fields representing a UDP/IPv4 flow */
22 struct udp4_flow_key {
23 	struct rte_ether_addr eth_saddr;
24 	struct rte_ether_addr eth_daddr;
25 	uint32_t ip_src_addr;
26 	uint32_t ip_dst_addr;
27 
28 	/* IP fragment for UDP does not contain UDP header
29 	 * except the first one. But IP ID must be same.
30 	 */
31 	uint16_t ip_id;
32 };
33 
34 struct gro_udp4_flow {
35 	struct udp4_flow_key key;
36 	/*
37 	 * The index of the first packet in the flow.
38 	 * INVALID_ARRAY_INDEX indicates an empty flow.
39 	 */
40 	uint32_t start_index;
41 };
42 
43 struct gro_udp4_item {
44 	/*
45 	 * The first MBUF segment of the packet. If the value
46 	 * is NULL, it means the item is empty.
47 	 */
48 	struct rte_mbuf *firstseg;
49 	/* The last MBUF segment of the packet */
50 	struct rte_mbuf *lastseg;
51 	/*
52 	 * The time when the first packet is inserted into the table.
53 	 * This value won't be updated, even if the packet is merged
54 	 * with other packets.
55 	 */
56 	uint64_t start_time;
57 	/*
58 	 * next_pkt_idx is used to chain the packets that
59 	 * are in the same flow but can't be merged together
60 	 * (e.g. caused by packet reordering).
61 	 */
62 	uint32_t next_pkt_idx;
63 	/* offset of IP fragment packet */
64 	uint16_t frag_offset;
65 	/* is last IP fragment? */
66 	uint8_t is_last_frag;
67 	/* the number of merged packets */
68 	uint16_t nb_merged;
69 };
70 
71 /*
72  * UDP/IPv4 reassembly table structure.
73  */
74 struct gro_udp4_tbl {
75 	/* item array */
76 	struct gro_udp4_item *items;
77 	/* flow array */
78 	struct gro_udp4_flow *flows;
79 	/* current item number */
80 	uint32_t item_num;
81 	/* current flow num */
82 	uint32_t flow_num;
83 	/* item array size */
84 	uint32_t max_item_num;
85 	/* flow array size */
86 	uint32_t max_flow_num;
87 };
88 
89 /**
90  * This function creates a UDP/IPv4 reassembly table.
91  *
92  * @param socket_id
93  *  Socket index for allocating the UDP/IPv4 reassemble table
94  * @param max_flow_num
95  *  The maximum number of flows in the UDP/IPv4 GRO table
96  * @param max_item_per_flow
97  *  The maximum number of packets per flow
98  *
99  * @return
100  *  - Return the table pointer on success.
101  *  - Return NULL on failure.
102  */
103 void *gro_udp4_tbl_create(uint16_t socket_id,
104 		uint16_t max_flow_num,
105 		uint16_t max_item_per_flow);
106 
107 /**
108  * This function destroys a UDP/IPv4 reassembly table.
109  *
110  * @param tbl
111  *  Pointer pointing to the UDP/IPv4 reassembly table.
112  */
113 void gro_udp4_tbl_destroy(void *tbl);
114 
115 /**
116  * This function merges a UDP/IPv4 packet.
117  *
118  * This function does not check if the packet has correct checksums and
119  * does not re-calculate checksums for the merged packet. It returns the
120  * packet if it isn't UDP fragment or there is no available space in
121  * the table.
122  *
123  * @param pkt
124  *  Packet to reassemble
125  * @param tbl
126  *  Pointer pointing to the UDP/IPv4 reassembly table
127  * @start_time
128  *  The time when the packet is inserted into the table
129  *
130  * @return
131  *  - Return a positive value if the packet is merged.
132  *  - Return zero if the packet isn't merged but stored in the table.
133  *  - Return a negative value for invalid parameters or no available
134  *    space in the table.
135  */
136 int32_t gro_udp4_reassemble(struct rte_mbuf *pkt,
137 		struct gro_udp4_tbl *tbl,
138 		uint64_t start_time);
139 
140 /**
141  * This function flushes timeout packets in a UDP/IPv4 reassembly table,
142  * and without updating checksums.
143  *
144  * @param tbl
145  *  UDP/IPv4 reassembly table pointer
146  * @param flush_timestamp
147  *  Flush packets which are inserted into the table before or at the
148  *  flush_timestamp.
149  * @param out
150  *  Pointer array used to keep flushed packets
151  * @param nb_out
152  *  The element number in 'out'. It also determines the maximum number of
153  *  packets that can be flushed finally.
154  *
155  * @return
156  *  The number of flushed packets
157  */
158 uint16_t gro_udp4_tbl_timeout_flush(struct gro_udp4_tbl *tbl,
159 		uint64_t flush_timestamp,
160 		struct rte_mbuf **out,
161 		uint16_t nb_out);
162 
163 /**
164  * This function returns the number of the packets in a UDP/IPv4
165  * reassembly table.
166  *
167  * @param tbl
168  *  UDP/IPv4 reassembly table pointer
169  *
170  * @return
171  *  The number of packets in the table
172  */
173 uint32_t gro_udp4_tbl_pkt_count(void *tbl);
174 
175 /*
176  * Check if two UDP/IPv4 packets belong to the same flow.
177  */
178 static inline int
is_same_udp4_flow(struct udp4_flow_key k1,struct udp4_flow_key k2)179 is_same_udp4_flow(struct udp4_flow_key k1, struct udp4_flow_key k2)
180 {
181 	return (rte_is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) &&
182 			rte_is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) &&
183 			(k1.ip_src_addr == k2.ip_src_addr) &&
184 			(k1.ip_dst_addr == k2.ip_dst_addr) &&
185 			(k1.ip_id == k2.ip_id));
186 }
187 
188 /*
189  * Merge two UDP/IPv4 packets without updating checksums.
190  * If cmp is larger than 0, append the new packet to the
191  * original packet. Otherwise, pre-pend the new packet to
192  * the original packet.
193  */
194 static inline int
merge_two_udp4_packets(struct gro_udp4_item * item,struct rte_mbuf * pkt,int cmp,uint16_t frag_offset,uint8_t is_last_frag,uint16_t l2_offset)195 merge_two_udp4_packets(struct gro_udp4_item *item,
196 		struct rte_mbuf *pkt,
197 		int cmp,
198 		uint16_t frag_offset,
199 		uint8_t is_last_frag,
200 		uint16_t l2_offset)
201 {
202 	struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
203 	uint16_t hdr_len, l2_len;
204 	uint32_t ip_len;
205 
206 	if (cmp > 0) {
207 		pkt_head = item->firstseg;
208 		pkt_tail = pkt;
209 	} else {
210 		pkt_head = pkt;
211 		pkt_tail = item->firstseg;
212 	}
213 
214 	/* check if the IPv4 packet length is greater than the max value */
215 	hdr_len = l2_offset + pkt_head->l2_len + pkt_head->l3_len;
216 	l2_len = l2_offset > 0 ? pkt_head->outer_l2_len : pkt_head->l2_len;
217 	ip_len = pkt_head->pkt_len - l2_len
218 		 + pkt_tail->pkt_len - hdr_len;
219 	if (unlikely(ip_len > MAX_IPV4_PKT_LENGTH))
220 		return 0;
221 
222 	/* remove the packet header for the tail packet */
223 	rte_pktmbuf_adj(pkt_tail, hdr_len);
224 
225 	/* chain two packets together */
226 	if (cmp > 0) {
227 		item->lastseg->next = pkt;
228 		item->lastseg = rte_pktmbuf_lastseg(pkt);
229 	} else {
230 		lastseg = rte_pktmbuf_lastseg(pkt);
231 		lastseg->next = item->firstseg;
232 		item->firstseg = pkt;
233 		item->frag_offset = frag_offset;
234 	}
235 	item->nb_merged++;
236 	if (is_last_frag)
237 		item->is_last_frag = is_last_frag;
238 
239 	/* update MBUF metadata for the merged packet */
240 	pkt_head->nb_segs += pkt_tail->nb_segs;
241 	pkt_head->pkt_len += pkt_tail->pkt_len;
242 
243 	return 1;
244 }
245 
246 /*
247  * Check if two UDP/IPv4 packets are neighbors.
248  */
249 static inline int
udp4_check_neighbor(struct gro_udp4_item * item,uint16_t frag_offset,uint16_t ip_dl,uint16_t l2_offset)250 udp4_check_neighbor(struct gro_udp4_item *item,
251 		uint16_t frag_offset,
252 		uint16_t ip_dl,
253 		uint16_t l2_offset)
254 {
255 	struct rte_mbuf *pkt_orig = item->firstseg;
256 	uint16_t len;
257 
258 	/* check if the two packets are neighbors */
259 	len = pkt_orig->pkt_len - l2_offset - pkt_orig->l2_len -
260 		pkt_orig->l3_len;
261 	if (frag_offset == item->frag_offset + len)
262 		/* append the new packet */
263 		return 1;
264 	else if (frag_offset + ip_dl == item->frag_offset)
265 		/* pre-pend the new packet */
266 		return -1;
267 
268 	return 0;
269 }
270 
271 static inline int
is_ipv4_fragment(const struct rte_ipv4_hdr * hdr)272 is_ipv4_fragment(const struct rte_ipv4_hdr *hdr)
273 {
274 	uint16_t flag_offset, ip_flag, ip_ofs;
275 
276 	flag_offset = rte_be_to_cpu_16(hdr->fragment_offset);
277 	ip_ofs = (uint16_t)(flag_offset & RTE_IPV4_HDR_OFFSET_MASK);
278 	ip_flag = (uint16_t)(flag_offset & RTE_IPV4_HDR_MF_FLAG);
279 
280 	return ip_flag != 0 || ip_ofs  != 0;
281 }
282 #endif
283