1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the X86 specific subclass of TargetSubtargetInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
15 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
16 
17 #include "X86FrameLowering.h"
18 #include "X86ISelLowering.h"
19 #include "X86InstrInfo.h"
20 #include "X86SelectionDAGInfo.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
25 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include <climits>
31 #include <memory>
32 
33 #define GET_SUBTARGETINFO_HEADER
34 #include "X86GenSubtargetInfo.inc"
35 
36 namespace llvm {
37 
38 class GlobalValue;
39 
40 /// The X86 backend supports a number of different styles of PIC.
41 ///
42 namespace PICStyles {
43 
44 enum Style {
45   StubPIC,          // Used on i386-darwin in pic mode.
46   GOT,              // Used on 32 bit elf on when in pic mode.
47   RIPRel,           // Used on X86-64 when in pic mode.
48   None              // Set when not in pic mode.
49 };
50 
51 } // end namespace PICStyles
52 
53 class X86Subtarget final : public X86GenSubtargetInfo {
54 public:
55   // NOTE: Do not add anything new to this list. Coarse, CPU name based flags
56   // are not a good idea. We should be migrating away from these.
57   enum X86ProcFamilyEnum {
58     Others,
59     IntelAtom,
60     IntelSLM,
61     IntelGLM,
62     IntelGLP,
63     IntelTRM
64   };
65 
66 protected:
67   enum X86SSEEnum {
68     NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
69   };
70 
71   enum X863DNowEnum {
72     NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
73   };
74 
75   /// X86 processor family: Intel Atom, and others
76   X86ProcFamilyEnum X86ProcFamily = Others;
77 
78   /// Which PIC style to use
79   PICStyles::Style PICStyle;
80 
81   const TargetMachine &TM;
82 
83   /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
84   X86SSEEnum X86SSELevel = NoSSE;
85 
86   /// MMX, 3DNow, 3DNow Athlon, or none supported.
87   X863DNowEnum X863DNowLevel = NoThreeDNow;
88 
89   /// True if the processor supports X87 instructions.
90   bool HasX87 = false;
91 
92   /// True if this processor has NOPL instruction
93   /// (generally pentium pro+).
94   bool HasNOPL = false;
95 
96   /// True if this processor has conditional move instructions
97   /// (generally pentium pro+).
98   bool HasCMov = false;
99 
100   /// True if the processor supports X86-64 instructions.
101   bool HasX86_64 = false;
102 
103   /// True if the processor supports POPCNT.
104   bool HasPOPCNT = false;
105 
106   /// True if the processor supports SSE4A instructions.
107   bool HasSSE4A = false;
108 
109   /// Target has AES instructions
110   bool HasAES = false;
111   bool HasVAES = false;
112 
113   /// Target has FXSAVE/FXRESTOR instructions
114   bool HasFXSR = false;
115 
116   /// Target has XSAVE instructions
117   bool HasXSAVE = false;
118 
119   /// Target has XSAVEOPT instructions
120   bool HasXSAVEOPT = false;
121 
122   /// Target has XSAVEC instructions
123   bool HasXSAVEC = false;
124 
125   /// Target has XSAVES instructions
126   bool HasXSAVES = false;
127 
128   /// Target has carry-less multiplication
129   bool HasPCLMUL = false;
130   bool HasVPCLMULQDQ = false;
131 
132   /// Target has Galois Field Arithmetic instructions
133   bool HasGFNI = false;
134 
135   /// Target has 3-operand fused multiply-add
136   bool HasFMA = false;
137 
138   /// Target has 4-operand fused multiply-add
139   bool HasFMA4 = false;
140 
141   /// Target has XOP instructions
142   bool HasXOP = false;
143 
144   /// Target has TBM instructions.
145   bool HasTBM = false;
146 
147   /// Target has LWP instructions
148   bool HasLWP = false;
149 
150   /// True if the processor has the MOVBE instruction.
151   bool HasMOVBE = false;
152 
153   /// True if the processor has the RDRAND instruction.
154   bool HasRDRAND = false;
155 
156   /// Processor has 16-bit floating point conversion instructions.
157   bool HasF16C = false;
158 
159   /// Processor has FS/GS base insturctions.
160   bool HasFSGSBase = false;
161 
162   /// Processor has LZCNT instruction.
163   bool HasLZCNT = false;
164 
165   /// Processor has BMI1 instructions.
166   bool HasBMI = false;
167 
168   /// Processor has BMI2 instructions.
169   bool HasBMI2 = false;
170 
171   /// Processor has VBMI instructions.
172   bool HasVBMI = false;
173 
174   /// Processor has VBMI2 instructions.
175   bool HasVBMI2 = false;
176 
177   /// Processor has Integer Fused Multiply Add
178   bool HasIFMA = false;
179 
180   /// Processor has RTM instructions.
181   bool HasRTM = false;
182 
183   /// Processor has ADX instructions.
184   bool HasADX = false;
185 
186   /// Processor has SHA instructions.
187   bool HasSHA = false;
188 
189   /// Processor has PRFCHW instructions.
190   bool HasPRFCHW = false;
191 
192   /// Processor has RDSEED instructions.
193   bool HasRDSEED = false;
194 
195   /// Processor has LAHF/SAHF instructions.
196   bool HasLAHFSAHF = false;
197 
198   /// Processor has MONITORX/MWAITX instructions.
199   bool HasMWAITX = false;
200 
201   /// Processor has Cache Line Zero instruction
202   bool HasCLZERO = false;
203 
204   /// Processor has Cache Line Demote instruction
205   bool HasCLDEMOTE = false;
206 
207   /// Processor has MOVDIRI instruction (direct store integer).
208   bool HasMOVDIRI = false;
209 
210   /// Processor has MOVDIR64B instruction (direct store 64 bytes).
211   bool HasMOVDIR64B = false;
212 
213   /// Processor has ptwrite instruction.
214   bool HasPTWRITE = false;
215 
216   /// Processor has Prefetch with intent to Write instruction
217   bool HasPREFETCHWT1 = false;
218 
219   /// True if SHLD instructions are slow.
220   bool IsSHLDSlow = false;
221 
222   /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
223   //  PMULUDQ.
224   bool IsPMULLDSlow = false;
225 
226   /// True if the PMADDWD instruction is slow compared to PMULLD.
227   bool IsPMADDWDSlow = false;
228 
229   /// True if unaligned memory accesses of 16-bytes are slow.
230   bool IsUAMem16Slow = false;
231 
232   /// True if unaligned memory accesses of 32-bytes are slow.
233   bool IsUAMem32Slow = false;
234 
235   /// True if SSE operations can have unaligned memory operands.
236   /// This may require setting a configuration bit in the processor.
237   bool HasSSEUnalignedMem = false;
238 
239   /// True if this processor has the CMPXCHG16B instruction;
240   /// this is true for most x86-64 chips, but not the first AMD chips.
241   bool HasCmpxchg16b = false;
242 
243   /// True if the LEA instruction should be used for adjusting
244   /// the stack pointer. This is an optimization for Intel Atom processors.
245   bool UseLeaForSP = false;
246 
247   /// True if POPCNT instruction has a false dependency on the destination register.
248   bool HasPOPCNTFalseDeps = false;
249 
250   /// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
251   bool HasLZCNTFalseDeps = false;
252 
253   /// True if its preferable to combine to a single shuffle using a variable
254   /// mask over multiple fixed shuffles.
255   bool HasFastVariableShuffle = false;
256 
257   /// True if there is no performance penalty to writing only the lower parts
258   /// of a YMM or ZMM register without clearing the upper part.
259   bool HasFastPartialYMMorZMMWrite = false;
260 
261   /// True if there is no performance penalty for writing NOPs with up to
262   /// 11 bytes.
263   bool HasFast11ByteNOP = false;
264 
265   /// True if there is no performance penalty for writing NOPs with up to
266   /// 15 bytes.
267   bool HasFast15ByteNOP = false;
268 
269   /// True if gather is reasonably fast. This is true for Skylake client and
270   /// all AVX-512 CPUs.
271   bool HasFastGather = false;
272 
273   /// True if hardware SQRTSS instruction is at least as fast (latency) as
274   /// RSQRTSS followed by a Newton-Raphson iteration.
275   bool HasFastScalarFSQRT = false;
276 
277   /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
278   /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
279   bool HasFastVectorFSQRT = false;
280 
281   /// True if 8-bit divisions are significantly faster than
282   /// 32-bit divisions and should be used when possible.
283   bool HasSlowDivide32 = false;
284 
285   /// True if 32-bit divides are significantly faster than
286   /// 64-bit divisions and should be used when possible.
287   bool HasSlowDivide64 = false;
288 
289   /// True if LZCNT instruction is fast.
290   bool HasFastLZCNT = false;
291 
292   /// True if SHLD based rotate is fast.
293   bool HasFastSHLDRotate = false;
294 
295   /// True if the processor supports macrofusion.
296   bool HasMacroFusion = false;
297 
298   /// True if the processor has enhanced REP MOVSB/STOSB.
299   bool HasERMSB = false;
300 
301   /// True if the short functions should be padded to prevent
302   /// a stall when returning too early.
303   bool PadShortFunctions = false;
304 
305   /// True if two memory operand instructions should use a temporary register
306   /// instead.
307   bool SlowTwoMemOps = false;
308 
309   /// True if the LEA instruction inputs have to be ready at address generation
310   /// (AG) time.
311   bool LEAUsesAG = false;
312 
313   /// True if the LEA instruction with certain arguments is slow
314   bool SlowLEA = false;
315 
316   /// True if the LEA instruction has all three source operands: base, index,
317   /// and offset or if the LEA instruction uses base and index registers where
318   /// the base is EBP, RBP,or R13
319   bool Slow3OpsLEA = false;
320 
321   /// True if INC and DEC instructions are slow when writing to flags
322   bool SlowIncDec = false;
323 
324   /// Processor has AVX-512 PreFetch Instructions
325   bool HasPFI = false;
326 
327   /// Processor has AVX-512 Exponential and Reciprocal Instructions
328   bool HasERI = false;
329 
330   /// Processor has AVX-512 Conflict Detection Instructions
331   bool HasCDI = false;
332 
333   /// Processor has AVX-512 population count Instructions
334   bool HasVPOPCNTDQ = false;
335 
336   /// Processor has AVX-512 Doubleword and Quadword instructions
337   bool HasDQI = false;
338 
339   /// Processor has AVX-512 Byte and Word instructions
340   bool HasBWI = false;
341 
342   /// Processor has AVX-512 Vector Length eXtenstions
343   bool HasVLX = false;
344 
345   /// Processor has PKU extenstions
346   bool HasPKU = false;
347 
348   /// Processor has AVX-512 Vector Neural Network Instructions
349   bool HasVNNI = false;
350 
351   /// Processor has AVX-512 Bit Algorithms instructions
352   bool HasBITALG = false;
353 
354   /// Processor supports MPX - Memory Protection Extensions
355   bool HasMPX = false;
356 
357   /// Processor supports CET SHSTK - Control-Flow Enforcement Technology
358   /// using Shadow Stack
359   bool HasSHSTK = false;
360 
361   /// Processor supports Invalidate Process-Context Identifier
362   bool HasINVPCID = false;
363 
364   /// Processor has Software Guard Extensions
365   bool HasSGX = false;
366 
367   /// Processor supports Flush Cache Line instruction
368   bool HasCLFLUSHOPT = false;
369 
370   /// Processor supports Cache Line Write Back instruction
371   bool HasCLWB = false;
372 
373   /// Processor supports Write Back No Invalidate instruction
374   bool HasWBNOINVD = false;
375 
376   /// Processor support RDPID instruction
377   bool HasRDPID = false;
378 
379   /// Processor supports WaitPKG instructions
380   bool HasWAITPKG = false;
381 
382   /// Processor supports PCONFIG instruction
383   bool HasPCONFIG = false;
384 
385   /// Processor has a single uop BEXTR implementation.
386   bool HasFastBEXTR = false;
387 
388   /// Try harder to combine to horizontal vector ops if they are fast.
389   bool HasFastHorizontalOps = false;
390 
391   /// Use a retpoline thunk rather than indirect calls to block speculative
392   /// execution.
393   bool UseRetpolineIndirectCalls = false;
394 
395   /// Use a retpoline thunk or remove any indirect branch to block speculative
396   /// execution.
397   bool UseRetpolineIndirectBranches = false;
398 
399   /// Deprecated flag, query `UseRetpolineIndirectCalls` and
400   /// `UseRetpolineIndirectBranches` instead.
401   bool DeprecatedUseRetpoline = false;
402 
403   /// When using a retpoline thunk, call an externally provided thunk rather
404   /// than emitting one inside the compiler.
405   bool UseRetpolineExternalThunk = false;
406 
407   /// Use software floating point for code generation.
408   bool UseSoftFloat = false;
409 
410   /// The minimum alignment known to hold of the stack frame on
411   /// entry to the function and which must be maintained by every function.
412   unsigned stackAlignment = 4;
413 
414   /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
415   ///
416   // FIXME: this is a known good value for Yonah. How about others?
417   unsigned MaxInlineSizeThreshold = 128;
418 
419   /// Indicates target prefers 256 bit instructions.
420   bool Prefer256Bit = false;
421 
422   /// Threeway branch is profitable in this subtarget.
423   bool ThreewayBranchProfitable = false;
424 
425   /// What processor and OS we're targeting.
426   Triple TargetTriple;
427 
428   /// GlobalISel related APIs.
429   std::unique_ptr<CallLowering> CallLoweringInfo;
430   std::unique_ptr<LegalizerInfo> Legalizer;
431   std::unique_ptr<RegisterBankInfo> RegBankInfo;
432   std::unique_ptr<InstructionSelector> InstSelector;
433 
434 private:
435   /// Override the stack alignment.
436   unsigned StackAlignOverride;
437 
438   /// Preferred vector width from function attribute.
439   unsigned PreferVectorWidthOverride;
440 
441   /// Resolved preferred vector width from function attribute and subtarget
442   /// features.
443   unsigned PreferVectorWidth = UINT32_MAX;
444 
445   /// Required vector width from function attribute.
446   unsigned RequiredVectorWidth;
447 
448   /// True if compiling for 64-bit, false for 16-bit or 32-bit.
449   bool In64BitMode;
450 
451   /// True if compiling for 32-bit, false for 16-bit or 64-bit.
452   bool In32BitMode;
453 
454   /// True if compiling for 16-bit, false for 32-bit or 64-bit.
455   bool In16BitMode;
456 
457   /// Contains the Overhead of gather\scatter instructions
458   int GatherOverhead = 1024;
459   int ScatterOverhead = 1024;
460 
461   X86SelectionDAGInfo TSInfo;
462   // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
463   // X86TargetLowering needs.
464   X86InstrInfo InstrInfo;
465   X86TargetLowering TLInfo;
466   X86FrameLowering FrameLowering;
467 
468 public:
469   /// This constructor initializes the data members to match that
470   /// of the specified triple.
471   ///
472   X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
473                const X86TargetMachine &TM, unsigned StackAlignOverride,
474                unsigned PreferVectorWidthOverride,
475                unsigned RequiredVectorWidth);
476 
getTargetLowering()477   const X86TargetLowering *getTargetLowering() const override {
478     return &TLInfo;
479   }
480 
getInstrInfo()481   const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
482 
getFrameLowering()483   const X86FrameLowering *getFrameLowering() const override {
484     return &FrameLowering;
485   }
486 
getSelectionDAGInfo()487   const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
488     return &TSInfo;
489   }
490 
getRegisterInfo()491   const X86RegisterInfo *getRegisterInfo() const override {
492     return &getInstrInfo()->getRegisterInfo();
493   }
494 
495   /// Returns the minimum alignment known to hold of the
496   /// stack frame on entry to the function and which must be maintained by every
497   /// function for this subtarget.
getStackAlignment()498   unsigned getStackAlignment() const { return stackAlignment; }
499 
500   /// Returns the maximum memset / memcpy size
501   /// that still makes it profitable to inline the call.
getMaxInlineSizeThreshold()502   unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
503 
504   /// ParseSubtargetFeatures - Parses features string setting specified
505   /// subtarget options.  Definition of function is auto generated by tblgen.
506   void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
507 
508   /// Methods used by Global ISel
509   const CallLowering *getCallLowering() const override;
510   const InstructionSelector *getInstructionSelector() const override;
511   const LegalizerInfo *getLegalizerInfo() const override;
512   const RegisterBankInfo *getRegBankInfo() const override;
513 
514 private:
515   /// Initialize the full set of dependencies so we can use an initializer
516   /// list for X86Subtarget.
517   X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
518   void initSubtargetFeatures(StringRef CPU, StringRef FS);
519 
520 public:
521   /// Is this x86_64? (disregarding specific ABI / programming model)
is64Bit()522   bool is64Bit() const {
523     return In64BitMode;
524   }
525 
is32Bit()526   bool is32Bit() const {
527     return In32BitMode;
528   }
529 
is16Bit()530   bool is16Bit() const {
531     return In16BitMode;
532   }
533 
534   /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
isTarget64BitILP32()535   bool isTarget64BitILP32() const {
536     return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
537                            TargetTriple.isOSNaCl());
538   }
539 
540   /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
isTarget64BitLP64()541   bool isTarget64BitLP64() const {
542     return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
543                            !TargetTriple.isOSNaCl());
544   }
545 
getPICStyle()546   PICStyles::Style getPICStyle() const { return PICStyle; }
setPICStyle(PICStyles::Style Style)547   void setPICStyle(PICStyles::Style Style)  { PICStyle = Style; }
548 
hasX87()549   bool hasX87() const { return HasX87; }
hasNOPL()550   bool hasNOPL() const { return HasNOPL; }
551   // SSE codegen depends on cmovs, and all SSE1+ processors support them.
552   // All 64-bit processors support cmov.
hasCMov()553   bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); }
hasSSE1()554   bool hasSSE1() const { return X86SSELevel >= SSE1; }
hasSSE2()555   bool hasSSE2() const { return X86SSELevel >= SSE2; }
hasSSE3()556   bool hasSSE3() const { return X86SSELevel >= SSE3; }
hasSSSE3()557   bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
hasSSE41()558   bool hasSSE41() const { return X86SSELevel >= SSE41; }
hasSSE42()559   bool hasSSE42() const { return X86SSELevel >= SSE42; }
hasAVX()560   bool hasAVX() const { return X86SSELevel >= AVX; }
hasAVX2()561   bool hasAVX2() const { return X86SSELevel >= AVX2; }
hasAVX512()562   bool hasAVX512() const { return X86SSELevel >= AVX512F; }
hasInt256()563   bool hasInt256() const { return hasAVX2(); }
hasSSE4A()564   bool hasSSE4A() const { return HasSSE4A; }
hasMMX()565   bool hasMMX() const { return X863DNowLevel >= MMX; }
has3DNow()566   bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
has3DNowA()567   bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
hasPOPCNT()568   bool hasPOPCNT() const { return HasPOPCNT; }
hasAES()569   bool hasAES() const { return HasAES; }
hasVAES()570   bool hasVAES() const { return HasVAES; }
hasFXSR()571   bool hasFXSR() const { return HasFXSR; }
hasXSAVE()572   bool hasXSAVE() const { return HasXSAVE; }
hasXSAVEOPT()573   bool hasXSAVEOPT() const { return HasXSAVEOPT; }
hasXSAVEC()574   bool hasXSAVEC() const { return HasXSAVEC; }
hasXSAVES()575   bool hasXSAVES() const { return HasXSAVES; }
hasPCLMUL()576   bool hasPCLMUL() const { return HasPCLMUL; }
hasVPCLMULQDQ()577   bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; }
hasGFNI()578   bool hasGFNI() const { return HasGFNI; }
579   // Prefer FMA4 to FMA - its better for commutation/memory folding and
580   // has equal or better performance on all supported targets.
hasFMA()581   bool hasFMA() const { return HasFMA; }
hasFMA4()582   bool hasFMA4() const { return HasFMA4; }
hasAnyFMA()583   bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
hasXOP()584   bool hasXOP() const { return HasXOP; }
hasTBM()585   bool hasTBM() const { return HasTBM; }
hasLWP()586   bool hasLWP() const { return HasLWP; }
hasMOVBE()587   bool hasMOVBE() const { return HasMOVBE; }
hasRDRAND()588   bool hasRDRAND() const { return HasRDRAND; }
hasF16C()589   bool hasF16C() const { return HasF16C; }
hasFSGSBase()590   bool hasFSGSBase() const { return HasFSGSBase; }
hasLZCNT()591   bool hasLZCNT() const { return HasLZCNT; }
hasBMI()592   bool hasBMI() const { return HasBMI; }
hasBMI2()593   bool hasBMI2() const { return HasBMI2; }
hasVBMI()594   bool hasVBMI() const { return HasVBMI; }
hasVBMI2()595   bool hasVBMI2() const { return HasVBMI2; }
hasIFMA()596   bool hasIFMA() const { return HasIFMA; }
hasRTM()597   bool hasRTM() const { return HasRTM; }
hasADX()598   bool hasADX() const { return HasADX; }
hasSHA()599   bool hasSHA() const { return HasSHA; }
hasPRFCHW()600   bool hasPRFCHW() const { return HasPRFCHW || HasPREFETCHWT1; }
hasPREFETCHWT1()601   bool hasPREFETCHWT1() const { return HasPREFETCHWT1; }
hasSSEPrefetch()602   bool hasSSEPrefetch() const {
603     // We implicitly enable these when we have a write prefix supporting cache
604     // level OR if we have prfchw, but don't already have a read prefetch from
605     // 3dnow.
606     return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1();
607   }
hasRDSEED()608   bool hasRDSEED() const { return HasRDSEED; }
hasLAHFSAHF()609   bool hasLAHFSAHF() const { return HasLAHFSAHF; }
hasMWAITX()610   bool hasMWAITX() const { return HasMWAITX; }
hasCLZERO()611   bool hasCLZERO() const { return HasCLZERO; }
hasCLDEMOTE()612   bool hasCLDEMOTE() const { return HasCLDEMOTE; }
hasMOVDIRI()613   bool hasMOVDIRI() const { return HasMOVDIRI; }
hasMOVDIR64B()614   bool hasMOVDIR64B() const { return HasMOVDIR64B; }
hasPTWRITE()615   bool hasPTWRITE() const { return HasPTWRITE; }
isSHLDSlow()616   bool isSHLDSlow() const { return IsSHLDSlow; }
isPMULLDSlow()617   bool isPMULLDSlow() const { return IsPMULLDSlow; }
isPMADDWDSlow()618   bool isPMADDWDSlow() const { return IsPMADDWDSlow; }
isUnalignedMem16Slow()619   bool isUnalignedMem16Slow() const { return IsUAMem16Slow; }
isUnalignedMem32Slow()620   bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
getGatherOverhead()621   int getGatherOverhead() const { return GatherOverhead; }
getScatterOverhead()622   int getScatterOverhead() const { return ScatterOverhead; }
hasSSEUnalignedMem()623   bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
hasCmpxchg16b()624   bool hasCmpxchg16b() const { return HasCmpxchg16b; }
useLeaForSP()625   bool useLeaForSP() const { return UseLeaForSP; }
hasPOPCNTFalseDeps()626   bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; }
hasLZCNTFalseDeps()627   bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; }
hasFastVariableShuffle()628   bool hasFastVariableShuffle() const {
629     return HasFastVariableShuffle;
630   }
hasFastPartialYMMorZMMWrite()631   bool hasFastPartialYMMorZMMWrite() const {
632     return HasFastPartialYMMorZMMWrite;
633   }
hasFastGather()634   bool hasFastGather() const { return HasFastGather; }
hasFastScalarFSQRT()635   bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; }
hasFastVectorFSQRT()636   bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; }
hasFastLZCNT()637   bool hasFastLZCNT() const { return HasFastLZCNT; }
hasFastSHLDRotate()638   bool hasFastSHLDRotate() const { return HasFastSHLDRotate; }
hasFastBEXTR()639   bool hasFastBEXTR() const { return HasFastBEXTR; }
hasFastHorizontalOps()640   bool hasFastHorizontalOps() const { return HasFastHorizontalOps; }
hasMacroFusion()641   bool hasMacroFusion() const { return HasMacroFusion; }
hasERMSB()642   bool hasERMSB() const { return HasERMSB; }
hasSlowDivide32()643   bool hasSlowDivide32() const { return HasSlowDivide32; }
hasSlowDivide64()644   bool hasSlowDivide64() const { return HasSlowDivide64; }
padShortFunctions()645   bool padShortFunctions() const { return PadShortFunctions; }
slowTwoMemOps()646   bool slowTwoMemOps() const { return SlowTwoMemOps; }
LEAusesAG()647   bool LEAusesAG() const { return LEAUsesAG; }
slowLEA()648   bool slowLEA() const { return SlowLEA; }
slow3OpsLEA()649   bool slow3OpsLEA() const { return Slow3OpsLEA; }
slowIncDec()650   bool slowIncDec() const { return SlowIncDec; }
hasCDI()651   bool hasCDI() const { return HasCDI; }
hasVPOPCNTDQ()652   bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; }
hasPFI()653   bool hasPFI() const { return HasPFI; }
hasERI()654   bool hasERI() const { return HasERI; }
hasDQI()655   bool hasDQI() const { return HasDQI; }
hasBWI()656   bool hasBWI() const { return HasBWI; }
hasVLX()657   bool hasVLX() const { return HasVLX; }
hasPKU()658   bool hasPKU() const { return HasPKU; }
hasVNNI()659   bool hasVNNI() const { return HasVNNI; }
hasBITALG()660   bool hasBITALG() const { return HasBITALG; }
hasMPX()661   bool hasMPX() const { return HasMPX; }
hasSHSTK()662   bool hasSHSTK() const { return HasSHSTK; }
hasCLFLUSHOPT()663   bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; }
hasCLWB()664   bool hasCLWB() const { return HasCLWB; }
hasWBNOINVD()665   bool hasWBNOINVD() const { return HasWBNOINVD; }
hasRDPID()666   bool hasRDPID() const { return HasRDPID; }
hasWAITPKG()667   bool hasWAITPKG() const { return HasWAITPKG; }
hasPCONFIG()668   bool hasPCONFIG() const { return HasPCONFIG; }
hasSGX()669   bool hasSGX() const { return HasSGX; }
threewayBranchProfitable()670   bool threewayBranchProfitable() const { return ThreewayBranchProfitable; }
hasINVPCID()671   bool hasINVPCID() const { return HasINVPCID; }
useRetpolineIndirectCalls()672   bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; }
useRetpolineIndirectBranches()673   bool useRetpolineIndirectBranches() const {
674     return UseRetpolineIndirectBranches;
675   }
useRetpolineExternalThunk()676   bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; }
677 
getPreferVectorWidth()678   unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
getRequiredVectorWidth()679   unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
680 
681   // Helper functions to determine when we should allow widening to 512-bit
682   // during codegen.
683   // TODO: Currently we're always allowing widening on CPUs without VLX,
684   // because for many cases we don't have a better option.
canExtendTo512DQ()685   bool canExtendTo512DQ() const {
686     return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
687   }
canExtendTo512BW()688   bool canExtendTo512BW() const  {
689     return hasBWI() && canExtendTo512DQ();
690   }
691 
692   // If there are no 512-bit vectors and we prefer not to use 512-bit registers,
693   // disable them in the legalizer.
useAVX512Regs()694   bool useAVX512Regs() const {
695     return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256);
696   }
697 
useBWIRegs()698   bool useBWIRegs() const {
699     return hasBWI() && useAVX512Regs();
700   }
701 
isXRaySupported()702   bool isXRaySupported() const override { return is64Bit(); }
703 
getProcFamily()704   X86ProcFamilyEnum getProcFamily() const { return X86ProcFamily; }
705 
706   /// TODO: to be removed later and replaced with suitable properties
isAtom()707   bool isAtom() const { return X86ProcFamily == IntelAtom; }
isSLM()708   bool isSLM() const { return X86ProcFamily == IntelSLM; }
isGLM()709   bool isGLM() const {
710     return X86ProcFamily == IntelGLM ||
711            X86ProcFamily == IntelGLP ||
712            X86ProcFamily == IntelTRM;
713   }
useSoftFloat()714   bool useSoftFloat() const { return UseSoftFloat; }
715 
716   /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
717   /// no-sse2). There isn't any reason to disable it if the target processor
718   /// supports it.
hasMFence()719   bool hasMFence() const { return hasSSE2() || is64Bit(); }
720 
getTargetTriple()721   const Triple &getTargetTriple() const { return TargetTriple; }
722 
isTargetDarwin()723   bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
isTargetFreeBSD()724   bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
isTargetDragonFly()725   bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
isTargetSolaris()726   bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
isTargetPS4()727   bool isTargetPS4() const { return TargetTriple.isPS4CPU(); }
728 
isTargetELF()729   bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
isTargetCOFF()730   bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
isTargetMachO()731   bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
732 
isTargetLinux()733   bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
isTargetKFreeBSD()734   bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
isTargetGlibc()735   bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
isTargetAndroid()736   bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
isTargetNaCl()737   bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
isTargetNaCl32()738   bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
isTargetNaCl64()739   bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
isTargetMCU()740   bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
isTargetFuchsia()741   bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); }
742 
isTargetWindowsMSVC()743   bool isTargetWindowsMSVC() const {
744     return TargetTriple.isWindowsMSVCEnvironment();
745   }
746 
isTargetKnownWindowsMSVC()747   bool isTargetKnownWindowsMSVC() const {
748     return TargetTriple.isKnownWindowsMSVCEnvironment();
749   }
750 
isTargetWindowsCoreCLR()751   bool isTargetWindowsCoreCLR() const {
752     return TargetTriple.isWindowsCoreCLREnvironment();
753   }
754 
isTargetWindowsCygwin()755   bool isTargetWindowsCygwin() const {
756     return TargetTriple.isWindowsCygwinEnvironment();
757   }
758 
isTargetWindowsGNU()759   bool isTargetWindowsGNU() const {
760     return TargetTriple.isWindowsGNUEnvironment();
761   }
762 
isTargetWindowsItanium()763   bool isTargetWindowsItanium() const {
764     return TargetTriple.isWindowsItaniumEnvironment();
765   }
766 
isTargetCygMing()767   bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
768 
isOSWindows()769   bool isOSWindows() const { return TargetTriple.isOSWindows(); }
770 
isTargetWin64()771   bool isTargetWin64() const { return In64BitMode && isOSWindows(); }
772 
isTargetWin32()773   bool isTargetWin32() const { return !In64BitMode && isOSWindows(); }
774 
isPICStyleGOT()775   bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
isPICStyleRIPRel()776   bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
777 
isPICStyleStubPIC()778   bool isPICStyleStubPIC() const {
779     return PICStyle == PICStyles::StubPIC;
780   }
781 
isPositionIndependent()782   bool isPositionIndependent() const { return TM.isPositionIndependent(); }
783 
isCallingConvWin64(CallingConv::ID CC)784   bool isCallingConvWin64(CallingConv::ID CC) const {
785     switch (CC) {
786     // On Win64, all these conventions just use the default convention.
787     case CallingConv::C:
788     case CallingConv::Fast:
789     case CallingConv::Swift:
790     case CallingConv::X86_FastCall:
791     case CallingConv::X86_StdCall:
792     case CallingConv::X86_ThisCall:
793     case CallingConv::X86_VectorCall:
794     case CallingConv::Intel_OCL_BI:
795       return isTargetWin64();
796     // This convention allows using the Win64 convention on other targets.
797     case CallingConv::Win64:
798       return true;
799     // This convention allows using the SysV convention on Windows targets.
800     case CallingConv::X86_64_SysV:
801       return false;
802     // Otherwise, who knows what this is.
803     default:
804       return false;
805     }
806   }
807 
808   /// Classify a global variable reference for the current subtarget according
809   /// to how we should reference it in a non-pcrel context.
810   unsigned char classifyLocalReference(const GlobalValue *GV) const;
811 
812   unsigned char classifyGlobalReference(const GlobalValue *GV,
813                                         const Module &M) const;
814   unsigned char classifyGlobalReference(const GlobalValue *GV) const;
815 
816   /// Classify a global function reference for the current subtarget.
817   unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
818                                                 const Module &M) const;
819   unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const;
820 
821   /// Classify a blockaddress reference for the current subtarget according to
822   /// how we should reference it in a non-pcrel context.
823   unsigned char classifyBlockAddressReference() const;
824 
825   /// Return true if the subtarget allows calls to immediate address.
826   bool isLegalToCallImmediateAddr() const;
827 
828   /// If we are using retpolines, we need to expand indirectbr to avoid it
829   /// lowering to an actual indirect jump.
enableIndirectBrExpand()830   bool enableIndirectBrExpand() const override {
831     return useRetpolineIndirectBranches();
832   }
833 
834   /// Enable the MachineScheduler pass for all X86 subtargets.
enableMachineScheduler()835   bool enableMachineScheduler() const override { return true; }
836 
837   // TODO: Update the regression tests and return true.
supportPrintSchedInfo()838   bool supportPrintSchedInfo() const override { return false; }
839 
840   bool enableEarlyIfConversion() const override;
841 
getAntiDepBreakMode()842   AntiDepBreakMode getAntiDepBreakMode() const override {
843     return TargetSubtargetInfo::ANTIDEP_CRITICAL;
844   }
845 
enableAdvancedRASplitCost()846   bool enableAdvancedRASplitCost() const override { return true; }
847 };
848 
849 } // end namespace llvm
850 
851 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H
852