1 //===- PPC64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "SymbolTable.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "Thunks.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/Support/Endian.h"
17
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24
25 constexpr uint64_t ppc64TocOffset = 0x8000;
26 constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
27
28 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
29 // instructions that can be used as part of the initial exec TLS sequence.
30 enum XFormOpcd {
31 LBZX = 87,
32 LHZX = 279,
33 LWZX = 23,
34 LDX = 21,
35 STBX = 215,
36 STHX = 407,
37 STWX = 151,
38 STDX = 149,
39 ADD = 266,
40 };
41
42 enum DFormOpcd {
43 LBZ = 34,
44 LBZU = 35,
45 LHZ = 40,
46 LHZU = 41,
47 LHAU = 43,
48 LWZ = 32,
49 LWZU = 33,
50 LFSU = 49,
51 LD = 58,
52 LFDU = 51,
53 STB = 38,
54 STBU = 39,
55 STH = 44,
56 STHU = 45,
57 STW = 36,
58 STWU = 37,
59 STFSU = 53,
60 STFDU = 55,
61 STD = 62,
62 ADDI = 14
63 };
64
65 constexpr uint32_t NOP = 0x60000000;
66
67 enum class PPCLegacyInsn : uint32_t {
68 NOINSN = 0,
69 // Loads.
70 LBZ = 0x88000000,
71 LHZ = 0xa0000000,
72 LWZ = 0x80000000,
73 LHA = 0xa8000000,
74 LWA = 0xe8000002,
75 LD = 0xe8000000,
76 LFS = 0xC0000000,
77 LXSSP = 0xe4000003,
78 LFD = 0xc8000000,
79 LXSD = 0xe4000002,
80 LXV = 0xf4000001,
81 LXVP = 0x18000000,
82
83 // Stores.
84 STB = 0x98000000,
85 STH = 0xb0000000,
86 STW = 0x90000000,
87 STD = 0xf8000000,
88 STFS = 0xd0000000,
89 STXSSP = 0xf4000003,
90 STFD = 0xd8000000,
91 STXSD = 0xf4000002,
92 STXV = 0xf4000005,
93 STXVP = 0x18000001
94 };
95 enum class PPCPrefixedInsn : uint64_t {
96 NOINSN = 0,
97 PREFIX_MLS = 0x0610000000000000,
98 PREFIX_8LS = 0x0410000000000000,
99
100 // Loads.
101 PLBZ = PREFIX_MLS,
102 PLHZ = PREFIX_MLS,
103 PLWZ = PREFIX_MLS,
104 PLHA = PREFIX_MLS,
105 PLWA = PREFIX_8LS | 0xa4000000,
106 PLD = PREFIX_8LS | 0xe4000000,
107 PLFS = PREFIX_MLS,
108 PLXSSP = PREFIX_8LS | 0xac000000,
109 PLFD = PREFIX_MLS,
110 PLXSD = PREFIX_8LS | 0xa8000000,
111 PLXV = PREFIX_8LS | 0xc8000000,
112 PLXVP = PREFIX_8LS | 0xe8000000,
113
114 // Stores.
115 PSTB = PREFIX_MLS,
116 PSTH = PREFIX_MLS,
117 PSTW = PREFIX_MLS,
118 PSTD = PREFIX_8LS | 0xf4000000,
119 PSTFS = PREFIX_MLS,
120 PSTXSSP = PREFIX_8LS | 0xbc000000,
121 PSTFD = PREFIX_MLS,
122 PSTXSD = PREFIX_8LS | 0xb8000000,
123 PSTXV = PREFIX_8LS | 0xd8000000,
124 PSTXVP = PREFIX_8LS | 0xf8000000
125 };
checkPPCLegacyInsn(uint32_t encoding)126 static bool checkPPCLegacyInsn(uint32_t encoding) {
127 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
128 if (insn == PPCLegacyInsn::NOINSN)
129 return false;
130 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
131 if (insn == PPCLegacyInsn::Legacy) \
132 return true;
133 #include "PPCInsns.def"
134 #undef PCREL_OPT
135 return false;
136 }
137
138 // Masks to apply to legacy instructions when converting them to prefixed,
139 // pc-relative versions. For the most part, the primary opcode is shared
140 // between the legacy instruction and the suffix of its prefixed version.
141 // However, there are some instances where that isn't the case (DS-Form and
142 // DQ-form instructions).
143 enum class LegacyToPrefixMask : uint64_t {
144 NOMASK = 0x0,
145 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
146 ONLY_RST = 0x3e00000, // [RS]T (6-10).
147 ST_STX28_TO5 =
148 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
149 };
150
getPPC64TocBase()151 uint64_t elf::getPPC64TocBase() {
152 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
153 // TOC starts where the first of these sections starts. We always create a
154 // .got when we see a relocation that uses it, so for us the start is always
155 // the .got.
156 uint64_t tocVA = in.got->getVA();
157
158 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
159 // thus permitting a full 64 Kbytes segment. Note that the glibc startup
160 // code (crt1.o) assumes that you can get from the TOC base to the
161 // start of the .toc section with only a single (signed) 16-bit relocation.
162 return tocVA + ppc64TocOffset;
163 }
164
getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther)165 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
166 // The offset is encoded into the 3 most significant bits of the st_other
167 // field, with some special values described in section 3.4.1 of the ABI:
168 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use
169 // the TOC pointer (r2). r2 will hold the same value on returning from
170 // the function as it did on entering the function.
171 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
172 // caller-saved register for all callers.
173 // 2-6 --> The binary logarithm of the offset eg:
174 // 2 --> 2^2 = 4 bytes --> 1 instruction.
175 // 6 --> 2^6 = 64 bytes --> 16 instructions.
176 // 7 --> Reserved.
177 uint8_t gepToLep = (stOther >> 5) & 7;
178 if (gepToLep < 2)
179 return 0;
180
181 // The value encoded in the st_other bits is the
182 // log-base-2(offset).
183 if (gepToLep < 7)
184 return 1 << gepToLep;
185
186 error("reserved value of 7 in the 3 most-significant-bits of st_other");
187 return 0;
188 }
189
isPPC64SmallCodeModelTocReloc(RelType type)190 bool elf::isPPC64SmallCodeModelTocReloc(RelType type) {
191 // The only small code model relocations that access the .toc section.
192 return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS;
193 }
194
writePrefixedInstruction(uint8_t * loc,uint64_t insn)195 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
196 insn = config->isLE ? insn << 32 | insn >> 32 : insn;
197 write64(loc, insn);
198 }
199
addOptional(StringRef name,uint64_t value,std::vector<Defined * > & defined)200 static bool addOptional(StringRef name, uint64_t value,
201 std::vector<Defined *> &defined) {
202 Symbol *sym = symtab->find(name);
203 if (!sym || sym->isDefined())
204 return false;
205 sym->resolve(Defined{/*file=*/nullptr, saver.save(name), STB_GLOBAL,
206 STV_HIDDEN, STT_FUNC, value,
207 /*size=*/0, /*section=*/nullptr});
208 defined.push_back(cast<Defined>(sym));
209 return true;
210 }
211
212 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
213 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
214 // The labels are defined only if they exist in the symbol table.
writeSequence(MutableArrayRef<uint32_t> buf,const char * prefix,int from,uint32_t firstInsn,ArrayRef<uint32_t> tail)215 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
216 int from, uint32_t firstInsn,
217 ArrayRef<uint32_t> tail) {
218 std::vector<Defined *> defined;
219 char name[16];
220 int first;
221 uint32_t *ptr = buf.data();
222 for (int r = from; r < 32; ++r) {
223 format("%s%d", prefix, r).snprint(name, sizeof(name));
224 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
225 first = r - from;
226 write32(ptr++, firstInsn + 0x200008 * (r - from));
227 }
228 for (uint32_t insn : tail)
229 write32(ptr++, insn);
230 assert(ptr == &*buf.end());
231
232 if (defined.empty())
233 return;
234 // The full section content has the extent of [begin, end). We drop unused
235 // instructions and write [first,end).
236 auto *sec = make<InputSection>(
237 nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
238 makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
239 4 * (buf.size() - first)),
240 ".text");
241 inputSections.push_back(sec);
242 for (Defined *sym : defined) {
243 sym->section = sec;
244 sym->value -= 4 * first;
245 }
246 }
247
248 // Implements some save and restore functions as described by ELF V2 ABI to be
249 // compatible with GCC. With GCC -Os, when the number of call-saved registers
250 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
251 // expects the linker to define them. See
252 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
253 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
254 // weird because libgcc.a would be the natural place. The linker generation
255 // approach has the advantage that the linker can generate multiple copies to
256 // avoid long branch thunks. However, we don't consider the advantage
257 // significant enough to complicate our trunk implementation, so we take the
258 // simple approach and synthesize .text sections providing the implementation.
addPPC64SaveRestore()259 void elf::addPPC64SaveRestore() {
260 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
261 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
262
263 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
264 // Tail: ld 0, 16(1); mtlr 0; blr
265 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
266 {0xe8010010, mtlr_0, blr});
267 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
268 // Tail: blr
269 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
270 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
271 // Tail: std 0, 16(1); blr
272 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
273 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
274 // Tail: blr
275 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
276 }
277
278 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
279 template <typename ELFT>
280 static std::pair<Defined *, int64_t>
getRelaTocSymAndAddend(InputSectionBase * tocSec,uint64_t offset)281 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
282 if (tocSec->numRelocations == 0)
283 return {};
284
285 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
286 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
287 // relocation index in most cases.
288 //
289 // In rare cases a TOC entry may store a constant that doesn't need an
290 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
291 // points to a relocation with larger r_offset. Do a linear probe then.
292 // Constants are extremely uncommon in .toc and the extra number of array
293 // accesses can be seen as a small constant.
294 ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>();
295 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
296 for (;;) {
297 if (relas[index].r_offset == offset) {
298 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
299 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
300 }
301 if (relas[index].r_offset < offset || index == 0)
302 break;
303 --index;
304 }
305 return {};
306 }
307
308 // When accessing a symbol defined in another translation unit, compilers
309 // reserve a .toc entry, allocate a local label and generate toc-indirect
310 // instructions:
311 //
312 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
313 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
314 // ld/lwa 3, 0(3) # load the value from the address
315 //
316 // .section .toc,"aw",@progbits
317 // .LC0: .tc var[TC],var
318 //
319 // If var is defined, non-preemptable and addressable with a 32-bit signed
320 // offset from the toc base, the address of var can be computed by adding an
321 // offset to the toc base, saving a load.
322 //
323 // addis 3,2,var@toc@ha # this may be relaxed to a nop,
324 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
325 // ld/lwa 3, 0(3) # load the value from the address
326 //
327 // Returns true if the relaxation is performed.
tryRelaxPPC64TocIndirection(const Relocation & rel,uint8_t * bufLoc)328 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) {
329 assert(config->tocOptimize);
330 if (rel.addend < 0)
331 return false;
332
333 // If the symbol is not the .toc section, this isn't a toc-indirection.
334 Defined *defSym = dyn_cast<Defined>(rel.sym);
335 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
336 return false;
337
338 Defined *d;
339 int64_t addend;
340 auto *tocISB = cast<InputSectionBase>(defSym->section);
341 std::tie(d, addend) =
342 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
343 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
344
345 // Only non-preemptable defined symbols can be relaxed.
346 if (!d || d->isPreemptible)
347 return false;
348
349 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
350 // ifunc and changed its type to STT_FUNC.
351 assert(!d->isGnuIFunc());
352
353 // Two instructions can materialize a 32-bit signed offset from the toc base.
354 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
355 if (!isInt<32>(tocRelative))
356 return false;
357
358 // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
359 target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset);
360 return true;
361 }
362
363 namespace {
364 class PPC64 final : public TargetInfo {
365 public:
366 PPC64();
367 int getTlsGdRelaxSkip(RelType type) const override;
368 uint32_t calcEFlags() const override;
369 RelExpr getRelExpr(RelType type, const Symbol &s,
370 const uint8_t *loc) const override;
371 RelType getDynRel(RelType type) const override;
372 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
373 void writePltHeader(uint8_t *buf) const override;
374 void writePlt(uint8_t *buf, const Symbol &sym,
375 uint64_t pltEntryAddr) const override;
376 void writeIplt(uint8_t *buf, const Symbol &sym,
377 uint64_t pltEntryAddr) const override;
378 void relocate(uint8_t *loc, const Relocation &rel,
379 uint64_t val) const override;
380 void writeGotHeader(uint8_t *buf) const override;
381 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
382 uint64_t branchAddr, const Symbol &s,
383 int64_t a) const override;
384 uint32_t getThunkSectionSpacing() const override;
385 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
386 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
387 RelExpr adjustGotPcExpr(RelType type, int64_t addend,
388 const uint8_t *loc) const override;
389 void relaxGot(uint8_t *loc, const Relocation &rel,
390 uint64_t val) const override;
391 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
392 uint64_t val) const override;
393 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
394 uint64_t val) const override;
395 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
396 uint64_t val) const override;
397 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
398 uint64_t val) const override;
399
400 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
401 uint8_t stOther) const override;
402 };
403 } // namespace
404
405 // Relocation masks following the #lo(value), #hi(value), #ha(value),
406 // #higher(value), #highera(value), #highest(value), and #highesta(value)
407 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
408 // document.
lo(uint64_t v)409 static uint16_t lo(uint64_t v) { return v; }
hi(uint64_t v)410 static uint16_t hi(uint64_t v) { return v >> 16; }
ha(uint64_t v)411 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
higher(uint64_t v)412 static uint16_t higher(uint64_t v) { return v >> 32; }
highera(uint64_t v)413 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
highest(uint64_t v)414 static uint16_t highest(uint64_t v) { return v >> 48; }
highesta(uint64_t v)415 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
416
417 // Extracts the 'PO' field of an instruction encoding.
getPrimaryOpCode(uint32_t encoding)418 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
419
isDQFormInstruction(uint32_t encoding)420 static bool isDQFormInstruction(uint32_t encoding) {
421 switch (getPrimaryOpCode(encoding)) {
422 default:
423 return false;
424 case 6: // Power10 paired loads/stores (lxvp, stxvp).
425 case 56:
426 // The only instruction with a primary opcode of 56 is `lq`.
427 return true;
428 case 61:
429 // There are both DS and DQ instruction forms with this primary opcode.
430 // Namely `lxv` and `stxv` are the DQ-forms that use it.
431 // The DS 'XO' bits being set to 01 is restricted to DQ form.
432 return (encoding & 3) == 0x1;
433 }
434 }
435
isDSFormInstruction(PPCLegacyInsn insn)436 static bool isDSFormInstruction(PPCLegacyInsn insn) {
437 switch (insn) {
438 default:
439 return false;
440 case PPCLegacyInsn::LWA:
441 case PPCLegacyInsn::LD:
442 case PPCLegacyInsn::LXSD:
443 case PPCLegacyInsn::LXSSP:
444 case PPCLegacyInsn::STD:
445 case PPCLegacyInsn::STXSD:
446 case PPCLegacyInsn::STXSSP:
447 return true;
448 }
449 }
450
getPPCLegacyInsn(uint32_t encoding)451 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
452 uint32_t opc = encoding & 0xfc000000;
453
454 // If the primary opcode is shared between multiple instructions, we need to
455 // fix it up to match the actual instruction we are after.
456 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
457 opc == 0xf8000000) &&
458 !isDQFormInstruction(encoding))
459 opc = encoding & 0xfc000003;
460 else if (opc == 0xf4000000)
461 opc = encoding & 0xfc000007;
462 else if (opc == 0x18000000)
463 opc = encoding & 0xfc00000f;
464
465 // If the value is not one of the enumerators in PPCLegacyInsn, we want to
466 // return PPCLegacyInsn::NOINSN.
467 if (!checkPPCLegacyInsn(opc))
468 return PPCLegacyInsn::NOINSN;
469 return static_cast<PPCLegacyInsn>(opc);
470 }
471
getPCRelativeForm(PPCLegacyInsn insn)472 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
473 switch (insn) {
474 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
475 case PPCLegacyInsn::Legacy: \
476 return PPCPrefixedInsn::PCRel
477 #include "PPCInsns.def"
478 #undef PCREL_OPT
479 }
480 return PPCPrefixedInsn::NOINSN;
481 }
482
getInsnMask(PPCLegacyInsn insn)483 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
484 switch (insn) {
485 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
486 case PPCLegacyInsn::Legacy: \
487 return LegacyToPrefixMask::InsnMask
488 #include "PPCInsns.def"
489 #undef PCREL_OPT
490 }
491 return LegacyToPrefixMask::NOMASK;
492 }
getPCRelativeForm(uint32_t encoding)493 static uint64_t getPCRelativeForm(uint32_t encoding) {
494 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
495 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
496 if (pcrelInsn == PPCPrefixedInsn::NOINSN)
497 return UINT64_C(-1);
498 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
499 uint64_t pcrelEncoding =
500 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
501
502 // If the mask requires moving bit 28 to bit 5, do that now.
503 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
504 pcrelEncoding |= (encoding & 0x8) << 23;
505 return pcrelEncoding;
506 }
507
isInstructionUpdateForm(uint32_t encoding)508 static bool isInstructionUpdateForm(uint32_t encoding) {
509 switch (getPrimaryOpCode(encoding)) {
510 default:
511 return false;
512 case LBZU:
513 case LHAU:
514 case LHZU:
515 case LWZU:
516 case LFSU:
517 case LFDU:
518 case STBU:
519 case STHU:
520 case STWU:
521 case STFSU:
522 case STFDU:
523 return true;
524 // LWA has the same opcode as LD, and the DS bits is what differentiates
525 // between LD/LDU/LWA
526 case LD:
527 case STD:
528 return (encoding & 3) == 1;
529 }
530 }
531
532 // Compute the total displacement between the prefixed instruction that gets
533 // to the start of the data and the load/store instruction that has the offset
534 // into the data structure.
535 // For example:
536 // paddi 3, 0, 1000, 1
537 // lwz 3, 20(3)
538 // Should add up to 1020 for total displacement.
getTotalDisp(uint64_t prefixedInsn,uint32_t accessInsn)539 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
540 int64_t disp34 = llvm::SignExtend64(
541 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
542 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
543 // For DS and DQ form instructions, we need to mask out the XO bits.
544 if (isDQFormInstruction(accessInsn))
545 disp16 &= ~0xf;
546 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
547 disp16 &= ~0x3;
548 return disp34 + disp16;
549 }
550
551 // There are a number of places when we either want to read or write an
552 // instruction when handling a half16 relocation type. On big-endian the buffer
553 // pointer is pointing into the middle of the word we want to extract, and on
554 // little-endian it is pointing to the start of the word. These 2 helpers are to
555 // simplify reading and writing in that context.
writeFromHalf16(uint8_t * loc,uint32_t insn)556 static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
557 write32(config->isLE ? loc : loc - 2, insn);
558 }
559
readFromHalf16(const uint8_t * loc)560 static uint32_t readFromHalf16(const uint8_t *loc) {
561 return read32(config->isLE ? loc : loc - 2);
562 }
563
readPrefixedInstruction(const uint8_t * loc)564 static uint64_t readPrefixedInstruction(const uint8_t *loc) {
565 uint64_t fullInstr = read64(loc);
566 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
567 }
568
PPC64()569 PPC64::PPC64() {
570 copyRel = R_PPC64_COPY;
571 gotRel = R_PPC64_GLOB_DAT;
572 noneRel = R_PPC64_NONE;
573 pltRel = R_PPC64_JMP_SLOT;
574 relativeRel = R_PPC64_RELATIVE;
575 iRelativeRel = R_PPC64_IRELATIVE;
576 symbolicRel = R_PPC64_ADDR64;
577 pltHeaderSize = 60;
578 pltEntrySize = 4;
579 ipltEntrySize = 16; // PPC64PltCallStub::size
580 gotBaseSymInGotPlt = false;
581 gotHeaderEntriesNum = 1;
582 gotPltHeaderEntriesNum = 2;
583 needsThunks = true;
584
585 tlsModuleIndexRel = R_PPC64_DTPMOD64;
586 tlsOffsetRel = R_PPC64_DTPREL64;
587
588 tlsGotRel = R_PPC64_TPREL64;
589
590 needsMoreStackNonSplit = false;
591
592 // We need 64K pages (at least under glibc/Linux, the loader won't
593 // set different permissions on a finer granularity than that).
594 defaultMaxPageSize = 65536;
595
596 // The PPC64 ELF ABI v1 spec, says:
597 //
598 // It is normally desirable to put segments with different characteristics
599 // in separate 256 Mbyte portions of the address space, to give the
600 // operating system full paging flexibility in the 64-bit address space.
601 //
602 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
603 // use 0x10000000 as the starting address.
604 defaultImageBase = 0x10000000;
605
606 write32(trapInstr.data(), 0x7fe00008);
607 }
608
getTlsGdRelaxSkip(RelType type) const609 int PPC64::getTlsGdRelaxSkip(RelType type) const {
610 // A __tls_get_addr call instruction is marked with 2 relocations:
611 //
612 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
613 // R_PPC64_REL24: __tls_get_addr
614 //
615 // After the relaxation we no longer call __tls_get_addr and should skip both
616 // relocations to not create a false dependence on __tls_get_addr being
617 // defined.
618 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
619 return 2;
620 return 1;
621 }
622
getEFlags(InputFile * file)623 static uint32_t getEFlags(InputFile *file) {
624 if (config->ekind == ELF64BEKind)
625 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
626 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
627 }
628
629 // This file implements v2 ABI. This function makes sure that all
630 // object files have v2 or an unspecified version as an ABI version.
calcEFlags() const631 uint32_t PPC64::calcEFlags() const {
632 for (InputFile *f : objectFiles) {
633 uint32_t flag = getEFlags(f);
634 if (flag == 1)
635 error(toString(f) + ": ABI version 1 is not supported");
636 else if (flag > 2)
637 error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
638 }
639 return 2;
640 }
641
relaxGot(uint8_t * loc,const Relocation & rel,uint64_t val) const642 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
643 switch (rel.type) {
644 case R_PPC64_TOC16_HA:
645 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
646 relocate(loc, rel, val);
647 break;
648 case R_PPC64_TOC16_LO_DS: {
649 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
650 // "addi reg, 2, var@toc".
651 uint32_t insn = readFromHalf16(loc);
652 if (getPrimaryOpCode(insn) != LD)
653 error("expected a 'ld' for got-indirect to toc-relative relaxing");
654 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
655 relocateNoSym(loc, R_PPC64_TOC16_LO, val);
656 break;
657 }
658 case R_PPC64_GOT_PCREL34: {
659 // Clear the first 8 bits of the prefix and the first 6 bits of the
660 // instruction (the primary opcode).
661 uint64_t insn = readPrefixedInstruction(loc);
662 if ((insn & 0xfc000000) != 0xe4000000)
663 error("expected a 'pld' for got-indirect to pc-relative relaxing");
664 insn &= ~0xff000000fc000000;
665
666 // Replace the cleared bits with the values for PADDI (0x600000038000000);
667 insn |= 0x600000038000000;
668 writePrefixedInstruction(loc, insn);
669 relocate(loc, rel, val);
670 break;
671 }
672 case R_PPC64_PCREL_OPT: {
673 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
674 // be relaxed. The eligibility for the relaxation needs to be determined
675 // on that relocation since this one does not relocate a symbol.
676 uint64_t insn = readPrefixedInstruction(loc);
677 uint32_t accessInsn = read32(loc + rel.addend);
678 uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
679
680 // This error is not necessary for correctness but is emitted for now
681 // to ensure we don't miss these opportunities in real code. It can be
682 // removed at a later date.
683 if (pcRelInsn == UINT64_C(-1)) {
684 errorOrWarn(
685 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
686 Twine::utohexstr(accessInsn));
687 break;
688 }
689
690 int64_t totalDisp = getTotalDisp(insn, accessInsn);
691 if (!isInt<34>(totalDisp))
692 break; // Displacement doesn't fit.
693 // Convert the PADDI to the prefixed version of accessInsn and convert
694 // accessInsn to a nop.
695 writePrefixedInstruction(loc, pcRelInsn |
696 ((totalDisp & 0x3ffff0000) << 16) |
697 (totalDisp & 0xffff));
698 write32(loc + rel.addend, NOP); // nop accessInsn.
699 break;
700 }
701 default:
702 llvm_unreachable("unexpected relocation type");
703 }
704 }
705
relaxTlsGdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const706 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
707 uint64_t val) const {
708 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
709 // The general dynamic code sequence for a global `x` will look like:
710 // Instruction Relocation Symbol
711 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
712 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
713 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
714 // R_PPC64_REL24 __tls_get_addr
715 // nop None None
716
717 // Relaxing to local exec entails converting:
718 // addis r3, r2, x@got@tlsgd@ha into nop
719 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
720 // bl __tls_get_addr(x@tlsgd) into nop
721 // nop into addi r3, r3, x@tprel@l
722
723 switch (rel.type) {
724 case R_PPC64_GOT_TLSGD16_HA:
725 writeFromHalf16(loc, NOP);
726 break;
727 case R_PPC64_GOT_TLSGD16:
728 case R_PPC64_GOT_TLSGD16_LO:
729 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
730 relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
731 break;
732 case R_PPC64_GOT_TLSGD_PCREL34:
733 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
734 // paddi r3, r13, x@tprel, 0
735 writePrefixedInstruction(loc, 0x06000000386d0000);
736 relocateNoSym(loc, R_PPC64_TPREL34, val);
737 break;
738 case R_PPC64_TLSGD: {
739 // PC Relative Relaxation:
740 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
741 // nop
742 // TOC Relaxation:
743 // Relax from bl __tls_get_addr(x@tlsgd)
744 // nop
745 // to
746 // nop
747 // addi r3, r3, x@tprel@l
748 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
749 if (locAsInt % 4 == 0) {
750 write32(loc, NOP); // nop
751 write32(loc + 4, 0x38630000); // addi r3, r3
752 // Since we are relocating a half16 type relocation and Loc + 4 points to
753 // the start of an instruction we need to advance the buffer by an extra
754 // 2 bytes on BE.
755 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
756 R_PPC64_TPREL16_LO, val);
757 } else if (locAsInt % 4 == 1) {
758 write32(loc - 1, NOP);
759 } else {
760 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
761 }
762 break;
763 }
764 default:
765 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
766 }
767 }
768
relaxTlsLdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const769 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
770 uint64_t val) const {
771 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
772 // The local dynamic code sequence for a global `x` will look like:
773 // Instruction Relocation Symbol
774 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
775 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
776 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
777 // R_PPC64_REL24 __tls_get_addr
778 // nop None None
779
780 // Relaxing to local exec entails converting:
781 // addis r3, r2, x@got@tlsld@ha into nop
782 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
783 // bl __tls_get_addr(x@tlsgd) into nop
784 // nop into addi r3, r3, 4096
785
786 switch (rel.type) {
787 case R_PPC64_GOT_TLSLD16_HA:
788 writeFromHalf16(loc, NOP);
789 break;
790 case R_PPC64_GOT_TLSLD16_LO:
791 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
792 break;
793 case R_PPC64_GOT_TLSLD_PCREL34:
794 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
795 // paddi r3, r13, 0x1000, 0
796 writePrefixedInstruction(loc, 0x06000000386d1000);
797 break;
798 case R_PPC64_TLSLD: {
799 // PC Relative Relaxation:
800 // Relax from bl __tls_get_addr@notoc(x@tlsld)
801 // to
802 // nop
803 // TOC Relaxation:
804 // Relax from bl __tls_get_addr(x@tlsld)
805 // nop
806 // to
807 // nop
808 // addi r3, r3, 4096
809 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
810 if (locAsInt % 4 == 0) {
811 write32(loc, NOP);
812 write32(loc + 4, 0x38631000); // addi r3, r3, 4096
813 } else if (locAsInt % 4 == 1) {
814 write32(loc - 1, NOP);
815 } else {
816 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
817 }
818 break;
819 }
820 case R_PPC64_DTPREL16:
821 case R_PPC64_DTPREL16_HA:
822 case R_PPC64_DTPREL16_HI:
823 case R_PPC64_DTPREL16_DS:
824 case R_PPC64_DTPREL16_LO:
825 case R_PPC64_DTPREL16_LO_DS:
826 case R_PPC64_DTPREL34:
827 relocate(loc, rel, val);
828 break;
829 default:
830 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
831 }
832 }
833
getPPCDFormOp(unsigned secondaryOp)834 unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
835 switch (secondaryOp) {
836 case LBZX:
837 return LBZ;
838 case LHZX:
839 return LHZ;
840 case LWZX:
841 return LWZ;
842 case LDX:
843 return LD;
844 case STBX:
845 return STB;
846 case STHX:
847 return STH;
848 case STWX:
849 return STW;
850 case STDX:
851 return STD;
852 case ADD:
853 return ADDI;
854 default:
855 return 0;
856 }
857 }
858
relaxTlsIeToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const859 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
860 uint64_t val) const {
861 // The initial exec code sequence for a global `x` will look like:
862 // Instruction Relocation Symbol
863 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
864 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
865 // add r9, r9, x@tls R_PPC64_TLS x
866
867 // Relaxing to local exec entails converting:
868 // addis r9, r2, x@got@tprel@ha into nop
869 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
870 // add r9, r9, x@tls into addi r9, r9, x@tprel@l
871
872 // x@tls R_PPC64_TLS is a relocation which does not compute anything,
873 // it is replaced with r13 (thread pointer).
874
875 // The add instruction in the initial exec sequence has multiple variations
876 // that need to be handled. If we are building an address it will use an add
877 // instruction, if we are accessing memory it will use any of the X-form
878 // indexed load or store instructions.
879
880 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
881 switch (rel.type) {
882 case R_PPC64_GOT_TPREL16_HA:
883 write32(loc - offset, NOP);
884 break;
885 case R_PPC64_GOT_TPREL16_LO_DS:
886 case R_PPC64_GOT_TPREL16_DS: {
887 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
888 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13
889 relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
890 break;
891 }
892 case R_PPC64_GOT_TPREL_PCREL34: {
893 const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
894 // paddi RT(from pld), r13, symbol@tprel, 0
895 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
896 relocateNoSym(loc, R_PPC64_TPREL34, val);
897 break;
898 }
899 case R_PPC64_TLS: {
900 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
901 if (locAsInt % 4 == 0) {
902 uint32_t primaryOp = getPrimaryOpCode(read32(loc));
903 if (primaryOp != 31)
904 error("unrecognized instruction for IE to LE R_PPC64_TLS");
905 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
906 uint32_t dFormOp = getPPCDFormOp(secondaryOp);
907 if (dFormOp == 0)
908 error("unrecognized instruction for IE to LE R_PPC64_TLS");
909 write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
910 relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
911 } else if (locAsInt % 4 == 1) {
912 // If the offset is not 4 byte aligned then we have a PCRel type reloc.
913 // This version of the relocation is offset by one byte from the
914 // instruction it references.
915 uint32_t tlsInstr = read32(loc - 1);
916 uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
917 if (primaryOp != 31)
918 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
919 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
920 // The add is a special case and should be turned into a nop. The paddi
921 // that comes before it will already have computed the address of the
922 // symbol.
923 if (secondaryOp == 266) {
924 // Check if the add uses the same result register as the input register.
925 uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
926 uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
927 if (ra == rt) {
928 write32(loc - 1, NOP);
929 } else {
930 // mr rt, ra
931 write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
932 }
933 } else {
934 uint32_t dFormOp = getPPCDFormOp(secondaryOp);
935 if (dFormOp == 0)
936 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
937 write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000)));
938 }
939 } else {
940 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
941 "offset from 4 byte aligned");
942 }
943 break;
944 }
945 default:
946 llvm_unreachable("unknown relocation for IE to LE");
947 break;
948 }
949 }
950
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const951 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
952 const uint8_t *loc) const {
953 switch (type) {
954 case R_PPC64_NONE:
955 return R_NONE;
956 case R_PPC64_ADDR16:
957 case R_PPC64_ADDR16_DS:
958 case R_PPC64_ADDR16_HA:
959 case R_PPC64_ADDR16_HI:
960 case R_PPC64_ADDR16_HIGH:
961 case R_PPC64_ADDR16_HIGHER:
962 case R_PPC64_ADDR16_HIGHERA:
963 case R_PPC64_ADDR16_HIGHEST:
964 case R_PPC64_ADDR16_HIGHESTA:
965 case R_PPC64_ADDR16_LO:
966 case R_PPC64_ADDR16_LO_DS:
967 case R_PPC64_ADDR32:
968 case R_PPC64_ADDR64:
969 return R_ABS;
970 case R_PPC64_GOT16:
971 case R_PPC64_GOT16_DS:
972 case R_PPC64_GOT16_HA:
973 case R_PPC64_GOT16_HI:
974 case R_PPC64_GOT16_LO:
975 case R_PPC64_GOT16_LO_DS:
976 return R_GOT_OFF;
977 case R_PPC64_TOC16:
978 case R_PPC64_TOC16_DS:
979 case R_PPC64_TOC16_HI:
980 case R_PPC64_TOC16_LO:
981 return R_GOTREL;
982 case R_PPC64_GOT_PCREL34:
983 case R_PPC64_GOT_TPREL_PCREL34:
984 case R_PPC64_PCREL_OPT:
985 return R_GOT_PC;
986 case R_PPC64_TOC16_HA:
987 case R_PPC64_TOC16_LO_DS:
988 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
989 case R_PPC64_TOC:
990 return R_PPC64_TOCBASE;
991 case R_PPC64_REL14:
992 case R_PPC64_REL24:
993 return R_PPC64_CALL_PLT;
994 case R_PPC64_REL24_NOTOC:
995 return R_PLT_PC;
996 case R_PPC64_REL16_LO:
997 case R_PPC64_REL16_HA:
998 case R_PPC64_REL16_HI:
999 case R_PPC64_REL32:
1000 case R_PPC64_REL64:
1001 case R_PPC64_PCREL34:
1002 return R_PC;
1003 case R_PPC64_GOT_TLSGD16:
1004 case R_PPC64_GOT_TLSGD16_HA:
1005 case R_PPC64_GOT_TLSGD16_HI:
1006 case R_PPC64_GOT_TLSGD16_LO:
1007 return R_TLSGD_GOT;
1008 case R_PPC64_GOT_TLSGD_PCREL34:
1009 return R_TLSGD_PC;
1010 case R_PPC64_GOT_TLSLD16:
1011 case R_PPC64_GOT_TLSLD16_HA:
1012 case R_PPC64_GOT_TLSLD16_HI:
1013 case R_PPC64_GOT_TLSLD16_LO:
1014 return R_TLSLD_GOT;
1015 case R_PPC64_GOT_TLSLD_PCREL34:
1016 return R_TLSLD_PC;
1017 case R_PPC64_GOT_TPREL16_HA:
1018 case R_PPC64_GOT_TPREL16_LO_DS:
1019 case R_PPC64_GOT_TPREL16_DS:
1020 case R_PPC64_GOT_TPREL16_HI:
1021 return R_GOT_OFF;
1022 case R_PPC64_GOT_DTPREL16_HA:
1023 case R_PPC64_GOT_DTPREL16_LO_DS:
1024 case R_PPC64_GOT_DTPREL16_DS:
1025 case R_PPC64_GOT_DTPREL16_HI:
1026 return R_TLSLD_GOT_OFF;
1027 case R_PPC64_TPREL16:
1028 case R_PPC64_TPREL16_HA:
1029 case R_PPC64_TPREL16_LO:
1030 case R_PPC64_TPREL16_HI:
1031 case R_PPC64_TPREL16_DS:
1032 case R_PPC64_TPREL16_LO_DS:
1033 case R_PPC64_TPREL16_HIGHER:
1034 case R_PPC64_TPREL16_HIGHERA:
1035 case R_PPC64_TPREL16_HIGHEST:
1036 case R_PPC64_TPREL16_HIGHESTA:
1037 case R_PPC64_TPREL34:
1038 return R_TPREL;
1039 case R_PPC64_DTPREL16:
1040 case R_PPC64_DTPREL16_DS:
1041 case R_PPC64_DTPREL16_HA:
1042 case R_PPC64_DTPREL16_HI:
1043 case R_PPC64_DTPREL16_HIGHER:
1044 case R_PPC64_DTPREL16_HIGHERA:
1045 case R_PPC64_DTPREL16_HIGHEST:
1046 case R_PPC64_DTPREL16_HIGHESTA:
1047 case R_PPC64_DTPREL16_LO:
1048 case R_PPC64_DTPREL16_LO_DS:
1049 case R_PPC64_DTPREL64:
1050 case R_PPC64_DTPREL34:
1051 return R_DTPREL;
1052 case R_PPC64_TLSGD:
1053 return R_TLSDESC_CALL;
1054 case R_PPC64_TLSLD:
1055 return R_TLSLD_HINT;
1056 case R_PPC64_TLS:
1057 return R_TLSIE_HINT;
1058 default:
1059 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1060 ") against symbol " + toString(s));
1061 return R_NONE;
1062 }
1063 }
1064
getDynRel(RelType type) const1065 RelType PPC64::getDynRel(RelType type) const {
1066 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1067 return R_PPC64_ADDR64;
1068 return R_PPC64_NONE;
1069 }
1070
getImplicitAddend(const uint8_t * buf,RelType type) const1071 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
1072 switch (type) {
1073 case R_PPC64_NONE:
1074 return 0;
1075 case R_PPC64_REL32:
1076 return SignExtend64<32>(read32(buf));
1077 case R_PPC64_ADDR64:
1078 case R_PPC64_REL64:
1079 return read64(buf);
1080 default:
1081 internalLinkerError(getErrorLocation(buf),
1082 "cannot read addend for relocation " + toString(type));
1083 return 0;
1084 }
1085 }
1086
writeGotHeader(uint8_t * buf) const1087 void PPC64::writeGotHeader(uint8_t *buf) const {
1088 write64(buf, getPPC64TocBase());
1089 }
1090
writePltHeader(uint8_t * buf) const1091 void PPC64::writePltHeader(uint8_t *buf) const {
1092 // The generic resolver stub goes first.
1093 write32(buf + 0, 0x7c0802a6); // mflr r0
1094 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
1095 write32(buf + 8, 0x7d6802a6); // mflr r11
1096 write32(buf + 12, 0x7c0803a6); // mtlr r0
1097 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1098 write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1099 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1100 write32(buf + 28, 0xe98b002c); // ld r12,44(r11)
1101 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11
1102 write32(buf + 36, 0xe98b0000); // ld r12,0(r11)
1103 write32(buf + 40, 0xe96b0008); // ld r11,8(r11)
1104 write32(buf + 44, 0x7d8903a6); // mtctr r12
1105 write32(buf + 48, 0x4e800420); // bctr
1106
1107 // The 'bcl' instruction will set the link register to the address of the
1108 // following instruction ('mflr r11'). Here we store the offset from that
1109 // instruction to the first entry in the GotPlt section.
1110 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1111 write64(buf + 52, gotPltOffset);
1112 }
1113
writePlt(uint8_t * buf,const Symbol & sym,uint64_t) const1114 void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1115 uint64_t /*pltEntryAddr*/) const {
1116 int32_t offset = pltHeaderSize + sym.pltIndex * pltEntrySize;
1117 // bl __glink_PLTresolve
1118 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1119 }
1120
writeIplt(uint8_t * buf,const Symbol & sym,uint64_t) const1121 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1122 uint64_t /*pltEntryAddr*/) const {
1123 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1124 }
1125
toAddr16Rel(RelType type,uint64_t val)1126 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1127 // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1128 uint64_t tocBiasedVal = val - ppc64TocOffset;
1129 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1130 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1131
1132 switch (type) {
1133 // TOC biased relocation.
1134 case R_PPC64_GOT16:
1135 case R_PPC64_GOT_TLSGD16:
1136 case R_PPC64_GOT_TLSLD16:
1137 case R_PPC64_TOC16:
1138 return {R_PPC64_ADDR16, tocBiasedVal};
1139 case R_PPC64_GOT16_DS:
1140 case R_PPC64_TOC16_DS:
1141 case R_PPC64_GOT_TPREL16_DS:
1142 case R_PPC64_GOT_DTPREL16_DS:
1143 return {R_PPC64_ADDR16_DS, tocBiasedVal};
1144 case R_PPC64_GOT16_HA:
1145 case R_PPC64_GOT_TLSGD16_HA:
1146 case R_PPC64_GOT_TLSLD16_HA:
1147 case R_PPC64_GOT_TPREL16_HA:
1148 case R_PPC64_GOT_DTPREL16_HA:
1149 case R_PPC64_TOC16_HA:
1150 return {R_PPC64_ADDR16_HA, tocBiasedVal};
1151 case R_PPC64_GOT16_HI:
1152 case R_PPC64_GOT_TLSGD16_HI:
1153 case R_PPC64_GOT_TLSLD16_HI:
1154 case R_PPC64_GOT_TPREL16_HI:
1155 case R_PPC64_GOT_DTPREL16_HI:
1156 case R_PPC64_TOC16_HI:
1157 return {R_PPC64_ADDR16_HI, tocBiasedVal};
1158 case R_PPC64_GOT16_LO:
1159 case R_PPC64_GOT_TLSGD16_LO:
1160 case R_PPC64_GOT_TLSLD16_LO:
1161 case R_PPC64_TOC16_LO:
1162 return {R_PPC64_ADDR16_LO, tocBiasedVal};
1163 case R_PPC64_GOT16_LO_DS:
1164 case R_PPC64_TOC16_LO_DS:
1165 case R_PPC64_GOT_TPREL16_LO_DS:
1166 case R_PPC64_GOT_DTPREL16_LO_DS:
1167 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1168
1169 // Dynamic Thread pointer biased relocation types.
1170 case R_PPC64_DTPREL16:
1171 return {R_PPC64_ADDR16, dtpBiasedVal};
1172 case R_PPC64_DTPREL16_DS:
1173 return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1174 case R_PPC64_DTPREL16_HA:
1175 return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1176 case R_PPC64_DTPREL16_HI:
1177 return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1178 case R_PPC64_DTPREL16_HIGHER:
1179 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1180 case R_PPC64_DTPREL16_HIGHERA:
1181 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1182 case R_PPC64_DTPREL16_HIGHEST:
1183 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1184 case R_PPC64_DTPREL16_HIGHESTA:
1185 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1186 case R_PPC64_DTPREL16_LO:
1187 return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1188 case R_PPC64_DTPREL16_LO_DS:
1189 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1190 case R_PPC64_DTPREL64:
1191 return {R_PPC64_ADDR64, dtpBiasedVal};
1192
1193 default:
1194 return {type, val};
1195 }
1196 }
1197
isTocOptType(RelType type)1198 static bool isTocOptType(RelType type) {
1199 switch (type) {
1200 case R_PPC64_GOT16_HA:
1201 case R_PPC64_GOT16_LO_DS:
1202 case R_PPC64_TOC16_HA:
1203 case R_PPC64_TOC16_LO_DS:
1204 case R_PPC64_TOC16_LO:
1205 return true;
1206 default:
1207 return false;
1208 }
1209 }
1210
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const1211 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1212 RelType type = rel.type;
1213 bool shouldTocOptimize = isTocOptType(type);
1214 // For dynamic thread pointer relative, toc-relative, and got-indirect
1215 // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1216 std::tie(type, val) = toAddr16Rel(type, val);
1217
1218 switch (type) {
1219 case R_PPC64_ADDR14: {
1220 checkAlignment(loc, val, 4, rel);
1221 // Preserve the AA/LK bits in the branch instruction
1222 uint8_t aalk = loc[3];
1223 write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1224 break;
1225 }
1226 case R_PPC64_ADDR16:
1227 checkIntUInt(loc, val, 16, rel);
1228 write16(loc, val);
1229 break;
1230 case R_PPC64_ADDR32:
1231 checkIntUInt(loc, val, 32, rel);
1232 write32(loc, val);
1233 break;
1234 case R_PPC64_ADDR16_DS:
1235 case R_PPC64_TPREL16_DS: {
1236 checkInt(loc, val, 16, rel);
1237 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1238 // DS-form instructions only use bits 30-31.
1239 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1240 checkAlignment(loc, lo(val), mask + 1, rel);
1241 write16(loc, (read16(loc) & mask) | lo(val));
1242 } break;
1243 case R_PPC64_ADDR16_HA:
1244 case R_PPC64_REL16_HA:
1245 case R_PPC64_TPREL16_HA:
1246 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1247 writeFromHalf16(loc, NOP);
1248 else {
1249 checkInt(loc, val + 0x8000, 32, rel);
1250 write16(loc, ha(val));
1251 }
1252 break;
1253 case R_PPC64_ADDR16_HI:
1254 case R_PPC64_REL16_HI:
1255 case R_PPC64_TPREL16_HI:
1256 checkInt(loc, val, 32, rel);
1257 write16(loc, hi(val));
1258 break;
1259 case R_PPC64_ADDR16_HIGH:
1260 write16(loc, hi(val));
1261 break;
1262 case R_PPC64_ADDR16_HIGHER:
1263 case R_PPC64_TPREL16_HIGHER:
1264 write16(loc, higher(val));
1265 break;
1266 case R_PPC64_ADDR16_HIGHERA:
1267 case R_PPC64_TPREL16_HIGHERA:
1268 write16(loc, highera(val));
1269 break;
1270 case R_PPC64_ADDR16_HIGHEST:
1271 case R_PPC64_TPREL16_HIGHEST:
1272 write16(loc, highest(val));
1273 break;
1274 case R_PPC64_ADDR16_HIGHESTA:
1275 case R_PPC64_TPREL16_HIGHESTA:
1276 write16(loc, highesta(val));
1277 break;
1278 case R_PPC64_ADDR16_LO:
1279 case R_PPC64_REL16_LO:
1280 case R_PPC64_TPREL16_LO:
1281 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1282 // changed into a nop. The lo part then needs to be updated to use the
1283 // toc-pointer register r2, as the base register.
1284 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1285 uint32_t insn = readFromHalf16(loc);
1286 if (isInstructionUpdateForm(insn))
1287 error(getErrorLocation(loc) +
1288 "can't toc-optimize an update instruction: 0x" +
1289 utohexstr(insn));
1290 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1291 } else {
1292 write16(loc, lo(val));
1293 }
1294 break;
1295 case R_PPC64_ADDR16_LO_DS:
1296 case R_PPC64_TPREL16_LO_DS: {
1297 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1298 // DS-form instructions only use bits 30-31.
1299 uint32_t insn = readFromHalf16(loc);
1300 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1301 checkAlignment(loc, lo(val), mask + 1, rel);
1302 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1303 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1304 // changed into a nop. The lo part then needs to be updated to use the toc
1305 // pointer register r2, as the base register.
1306 if (isInstructionUpdateForm(insn))
1307 error(getErrorLocation(loc) +
1308 "Can't toc-optimize an update instruction: 0x" +
1309 Twine::utohexstr(insn));
1310 insn &= 0xffe00000 | mask;
1311 writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1312 } else {
1313 write16(loc, (read16(loc) & mask) | lo(val));
1314 }
1315 } break;
1316 case R_PPC64_TPREL16:
1317 checkInt(loc, val, 16, rel);
1318 write16(loc, val);
1319 break;
1320 case R_PPC64_REL32:
1321 checkInt(loc, val, 32, rel);
1322 write32(loc, val);
1323 break;
1324 case R_PPC64_ADDR64:
1325 case R_PPC64_REL64:
1326 case R_PPC64_TOC:
1327 write64(loc, val);
1328 break;
1329 case R_PPC64_REL14: {
1330 uint32_t mask = 0x0000FFFC;
1331 checkInt(loc, val, 16, rel);
1332 checkAlignment(loc, val, 4, rel);
1333 write32(loc, (read32(loc) & ~mask) | (val & mask));
1334 break;
1335 }
1336 case R_PPC64_REL24:
1337 case R_PPC64_REL24_NOTOC: {
1338 uint32_t mask = 0x03FFFFFC;
1339 checkInt(loc, val, 26, rel);
1340 checkAlignment(loc, val, 4, rel);
1341 write32(loc, (read32(loc) & ~mask) | (val & mask));
1342 break;
1343 }
1344 case R_PPC64_DTPREL64:
1345 write64(loc, val - dynamicThreadPointerOffset);
1346 break;
1347 case R_PPC64_DTPREL34:
1348 // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1349 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1350 // need to subtract that value then fallthrough to the general case.
1351 val -= dynamicThreadPointerOffset;
1352 LLVM_FALLTHROUGH;
1353 case R_PPC64_PCREL34:
1354 case R_PPC64_GOT_PCREL34:
1355 case R_PPC64_GOT_TLSGD_PCREL34:
1356 case R_PPC64_GOT_TLSLD_PCREL34:
1357 case R_PPC64_GOT_TPREL_PCREL34:
1358 case R_PPC64_TPREL34: {
1359 const uint64_t si0Mask = 0x00000003ffff0000;
1360 const uint64_t si1Mask = 0x000000000000ffff;
1361 const uint64_t fullMask = 0x0003ffff0000ffff;
1362 checkInt(loc, val, 34, rel);
1363
1364 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1365 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1366 (val & si1Mask));
1367 break;
1368 }
1369 // If we encounter a PCREL_OPT relocation that we won't optimize.
1370 case R_PPC64_PCREL_OPT:
1371 break;
1372 default:
1373 llvm_unreachable("unknown relocation");
1374 }
1375 }
1376
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const1377 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1378 uint64_t branchAddr, const Symbol &s, int64_t a) const {
1379 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1380 type != R_PPC64_REL24_NOTOC)
1381 return false;
1382
1383 // If a function is in the Plt it needs to be called with a call-stub.
1384 if (s.isInPlt())
1385 return true;
1386
1387 // This check looks at the st_other bits of the callee with relocation
1388 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1389 // clobbers the TOC and we need an R2 save stub.
1390 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1391 return true;
1392
1393 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1394 return true;
1395
1396 // If a symbol is a weak undefined and we are compiling an executable
1397 // it doesn't need a range-extending thunk since it can't be called.
1398 if (s.isUndefWeak() && !config->shared)
1399 return false;
1400
1401 // If the offset exceeds the range of the branch type then it will need
1402 // a range-extending thunk.
1403 // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1404 return !inBranchRange(type, branchAddr,
1405 s.getVA(a) +
1406 getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1407 }
1408
getThunkSectionSpacing() const1409 uint32_t PPC64::getThunkSectionSpacing() const {
1410 // See comment in Arch/ARM.cpp for a more detailed explanation of
1411 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1412 // R_PPC64_REL24, which is used by unconditional branch instructions.
1413 // 0x2000000 = (1 << 24-1) * 4
1414 return 0x2000000;
1415 }
1416
inBranchRange(RelType type,uint64_t src,uint64_t dst) const1417 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1418 int64_t offset = dst - src;
1419 if (type == R_PPC64_REL14)
1420 return isInt<16>(offset);
1421 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1422 return isInt<26>(offset);
1423 llvm_unreachable("unsupported relocation type used in branch");
1424 }
1425
adjustTlsExpr(RelType type,RelExpr expr) const1426 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1427 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1428 return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1429 if (expr == R_RELAX_TLS_LD_TO_LE)
1430 return R_RELAX_TLS_LD_TO_LE_ABS;
1431 return expr;
1432 }
1433
adjustGotPcExpr(RelType type,int64_t addend,const uint8_t * loc) const1434 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1435 const uint8_t *loc) const {
1436 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1437 config->pcRelOptimize) {
1438 // It only makes sense to optimize pld since paddi means that the address
1439 // of the object in the GOT is required rather than the object itself.
1440 if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1441 return R_PPC64_RELAX_GOT_PC;
1442 }
1443 return R_GOT_PC;
1444 }
1445
1446 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1447 // The general dynamic code sequence for a global `x` uses 4 instructions.
1448 // Instruction Relocation Symbol
1449 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
1450 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
1451 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
1452 // R_PPC64_REL24 __tls_get_addr
1453 // nop None None
1454 //
1455 // Relaxing to initial-exec entails:
1456 // 1) Convert the addis/addi pair that builds the address of the tls_index
1457 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1458 // 2) Convert the call to __tls_get_addr to a nop.
1459 // 3) Convert the nop following the call to an add of the loaded offset to the
1460 // thread pointer.
1461 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1462 // used as the relaxation hint for both steps 2 and 3.
relaxTlsGdToIe(uint8_t * loc,const Relocation & rel,uint64_t val) const1463 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1464 uint64_t val) const {
1465 switch (rel.type) {
1466 case R_PPC64_GOT_TLSGD16_HA:
1467 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1468 // addis rT, r2, sym@got@tprel@ha.
1469 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1470 return;
1471 case R_PPC64_GOT_TLSGD16:
1472 case R_PPC64_GOT_TLSGD16_LO: {
1473 // Relax from addi r3, rA, sym@got@tlsgd@l to
1474 // ld r3, sym@got@tprel@l(rA)
1475 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1476 writeFromHalf16(loc, 0xe8600000 | ra);
1477 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1478 return;
1479 }
1480 case R_PPC64_GOT_TLSGD_PCREL34: {
1481 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1482 // pld r3, sym@got@tprel@pcrel
1483 writePrefixedInstruction(loc, 0x04100000e4600000);
1484 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1485 return;
1486 }
1487 case R_PPC64_TLSGD: {
1488 // PC Relative Relaxation:
1489 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1490 // nop
1491 // TOC Relaxation:
1492 // Relax from bl __tls_get_addr(x@tlsgd)
1493 // nop
1494 // to
1495 // nop
1496 // add r3, r3, r13
1497 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1498 if (locAsInt % 4 == 0) {
1499 write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop
1500 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1501 } else if (locAsInt % 4 == 1) {
1502 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1503 write32(loc - 1, 0x7c636a14);
1504 } else {
1505 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1506 }
1507 return;
1508 }
1509 default:
1510 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1511 }
1512 }
1513
1514 // The prologue for a split-stack function is expected to look roughly
1515 // like this:
1516 // .Lglobal_entry_point:
1517 // # TOC pointer initialization.
1518 // ...
1519 // .Llocal_entry_point:
1520 // # load the __private_ss member of the threads tcbhead.
1521 // ld r0,-0x7000-64(r13)
1522 // # subtract the functions stack size from the stack pointer.
1523 // addis r12, r1, ha(-stack-frame size)
1524 // addi r12, r12, l(-stack-frame size)
1525 // # compare needed to actual and branch to allocate_more_stack if more
1526 // # space is needed, otherwise fallthrough to 'normal' function body.
1527 // cmpld cr7,r12,r0
1528 // blt- cr7, .Lallocate_more_stack
1529 //
1530 // -) The allocate_more_stack block might be placed after the split-stack
1531 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1532 // instead.
1533 // -) If either the addis or addi is not needed due to the stack size being
1534 // smaller then 32K or a multiple of 64K they will be replaced with a nop,
1535 // but there will always be 2 instructions the linker can overwrite for the
1536 // adjusted stack size.
1537 //
1538 // The linkers job here is to increase the stack size used in the addis/addi
1539 // pair by split-stack-size-adjust.
1540 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1541 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
adjustPrologueForCrossSplitStack(uint8_t * loc,uint8_t * end,uint8_t stOther) const1542 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1543 uint8_t stOther) const {
1544 // If the caller has a global entry point adjust the buffer past it. The start
1545 // of the split-stack prologue will be at the local entry point.
1546 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1547
1548 // At the very least we expect to see a load of some split-stack data from the
1549 // tcb, and 2 instructions that calculate the ending stack address this
1550 // function will require. If there is not enough room for at least 3
1551 // instructions it can't be a split-stack prologue.
1552 if (loc + 12 >= end)
1553 return false;
1554
1555 // First instruction must be `ld r0, -0x7000-64(r13)`
1556 if (read32(loc) != 0xe80d8fc0)
1557 return false;
1558
1559 int16_t hiImm = 0;
1560 int16_t loImm = 0;
1561 // First instruction can be either an addis if the frame size is larger then
1562 // 32K, or an addi if the size is less then 32K.
1563 int32_t firstInstr = read32(loc + 4);
1564 if (getPrimaryOpCode(firstInstr) == 15) {
1565 hiImm = firstInstr & 0xFFFF;
1566 } else if (getPrimaryOpCode(firstInstr) == 14) {
1567 loImm = firstInstr & 0xFFFF;
1568 } else {
1569 return false;
1570 }
1571
1572 // Second instruction is either an addi or a nop. If the first instruction was
1573 // an addi then LoImm is set and the second instruction must be a nop.
1574 uint32_t secondInstr = read32(loc + 8);
1575 if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1576 loImm = secondInstr & 0xFFFF;
1577 } else if (secondInstr != NOP) {
1578 return false;
1579 }
1580
1581 // The register operands of the first instruction should be the stack-pointer
1582 // (r1) as the input (RA) and r12 as the output (RT). If the second
1583 // instruction is not a nop, then it should use r12 as both input and output.
1584 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1585 uint8_t expectedRA) {
1586 return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1587 ((instr & 0x1F0000) >> 16 == expectedRA);
1588 };
1589 if (!checkRegOperands(firstInstr, 12, 1))
1590 return false;
1591 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1592 return false;
1593
1594 int32_t stackFrameSize = (hiImm * 65536) + loImm;
1595 // Check that the adjusted size doesn't overflow what we can represent with 2
1596 // instructions.
1597 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1598 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1599 return false;
1600 }
1601
1602 int32_t adjustedStackFrameSize =
1603 stackFrameSize - config->splitStackAdjustSize;
1604
1605 loImm = adjustedStackFrameSize & 0xFFFF;
1606 hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1607 if (hiImm) {
1608 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1609 // If the low immediate is zero the second instruction will be a nop.
1610 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1611 write32(loc + 8, secondInstr);
1612 } else {
1613 // addi r12, r1, imm
1614 write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1615 write32(loc + 8, NOP);
1616 }
1617
1618 return true;
1619 }
1620
getPPC64TargetInfo()1621 TargetInfo *elf::getPPC64TargetInfo() {
1622 static PPC64 target;
1623 return ⌖
1624 }
1625