1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2007-2009 Bruce Simpson.
5 * Copyright (c) 2005 Robert N. M. Watson.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote
17 * products derived from this software without specific prior written
18 * permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * IPv4 multicast socket, group, and socket option processing module.
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/protosw.h>
51 #include <sys/sysctl.h>
52 #include <sys/ktr.h>
53 #include <sys/taskqueue.h>
54 #include <sys/tree.h>
55
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <net/route/nhop.h>
61 #include <net/vnet.h>
62
63 #include <net/ethernet.h>
64
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_fib.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/igmp_var.h>
72
73 #ifndef KTR_IGMPV3
74 #define KTR_IGMPV3 KTR_INET
75 #endif
76
77 #ifndef __SOCKUNION_DECLARED
78 union sockunion {
79 struct sockaddr_storage ss;
80 struct sockaddr sa;
81 struct sockaddr_dl sdl;
82 struct sockaddr_in sin;
83 };
84 typedef union sockunion sockunion_t;
85 #define __SOCKUNION_DECLARED
86 #endif /* __SOCKUNION_DECLARED */
87
88 static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
89 "IPv4 multicast PCB-layer source filter");
90 static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
91 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
92 static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
93 "IPv4 multicast IGMP-layer source filter");
94
95 /*
96 * Locking:
97 *
98 * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK,
99 * IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
100 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
101 * it can be taken by code in net/if.c also.
102 * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
103 *
104 * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly
105 * any need for in_multi itself to be virtualized -- it is bound to an ifp
106 * anyway no matter what happens.
107 */
108 struct mtx in_multi_list_mtx;
109 MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF);
110
111 struct mtx in_multi_free_mtx;
112 MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF);
113
114 struct sx in_multi_sx;
115 SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx");
116
117 int ifma_restart;
118
119 /*
120 * Functions with non-static linkage defined in this file should be
121 * declared in in_var.h:
122 * imo_multi_filter()
123 * in_addmulti()
124 * in_delmulti()
125 * in_joingroup()
126 * in_joingroup_locked()
127 * in_leavegroup()
128 * in_leavegroup_locked()
129 * and ip_var.h:
130 * inp_freemoptions()
131 * inp_getmoptions()
132 * inp_setmoptions()
133 *
134 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
135 * and in_delmulti().
136 */
137 static void imf_commit(struct in_mfilter *);
138 static int imf_get_source(struct in_mfilter *imf,
139 const struct sockaddr_in *psin,
140 struct in_msource **);
141 static struct in_msource *
142 imf_graft(struct in_mfilter *, const uint8_t,
143 const struct sockaddr_in *);
144 static void imf_leave(struct in_mfilter *);
145 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *);
146 static void imf_purge(struct in_mfilter *);
147 static void imf_rollback(struct in_mfilter *);
148 static void imf_reap(struct in_mfilter *);
149 static struct in_mfilter *
150 imo_match_group(const struct ip_moptions *,
151 const struct ifnet *, const struct sockaddr *);
152 static struct in_msource *
153 imo_match_source(struct in_mfilter *, const struct sockaddr *);
154 static void ims_merge(struct ip_msource *ims,
155 const struct in_msource *lims, const int rollback);
156 static int in_getmulti(struct ifnet *, const struct in_addr *,
157 struct in_multi **);
158 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr,
159 const int noalloc, struct ip_msource **pims);
160 #ifdef KTR
161 static int inm_is_ifp_detached(const struct in_multi *);
162 #endif
163 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
164 static void inm_purge(struct in_multi *);
165 static void inm_reap(struct in_multi *);
166 static void inm_release(struct in_multi *);
167 static struct ip_moptions *
168 inp_findmoptions(struct inpcb *);
169 static int inp_get_source_filters(struct inpcb *, struct sockopt *);
170 static int inp_join_group(struct inpcb *, struct sockopt *);
171 static int inp_leave_group(struct inpcb *, struct sockopt *);
172 static struct ifnet *
173 inp_lookup_mcast_ifp(const struct inpcb *,
174 const struct sockaddr_in *, const struct in_addr);
175 static int inp_block_unblock_source(struct inpcb *, struct sockopt *);
176 static int inp_set_multicast_if(struct inpcb *, struct sockopt *);
177 static int inp_set_source_filters(struct inpcb *, struct sockopt *);
178 static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
179
180 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast,
181 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
182 "IPv4 multicast");
183
184 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
185 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
186 CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0,
187 "Max source filters per group");
188
189 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
190 SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
191 CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0,
192 "Max source filters per socket");
193
194 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
195 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN,
196 &in_mcast_loop, 0, "Loopback multicast datagrams by default");
197
198 static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
199 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
200 "Per-interface stack-wide source filters");
201
202 #ifdef KTR
203 /*
204 * Inline function which wraps assertions for a valid ifp.
205 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
206 * is detached.
207 */
208 static int __inline
inm_is_ifp_detached(const struct in_multi * inm)209 inm_is_ifp_detached(const struct in_multi *inm)
210 {
211 struct ifnet *ifp;
212
213 KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
214 ifp = inm->inm_ifma->ifma_ifp;
215 if (ifp != NULL) {
216 /*
217 * Sanity check that netinet's notion of ifp is the
218 * same as net's.
219 */
220 KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
221 }
222
223 return (ifp == NULL);
224 }
225 #endif
226
227 /*
228 * Interface detach can happen in a taskqueue thread context, so we must use a
229 * dedicated thread to avoid deadlocks when draining inm_release tasks.
230 */
231 TASKQUEUE_DEFINE_THREAD(inm_free);
232 static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER();
233 static void inm_release_task(void *arg __unused, int pending __unused);
234 static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL);
235
236 void
inm_release_wait(void * arg __unused)237 inm_release_wait(void *arg __unused)
238 {
239
240 /*
241 * Make sure all pending multicast addresses are freed before
242 * the VNET or network device is destroyed:
243 */
244 taskqueue_drain(taskqueue_inm_free, &inm_free_task);
245 }
246 #ifdef VIMAGE
247 /* XXX-BZ FIXME, see D24914. */
248 VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL);
249 #endif
250
251 void
inm_release_list_deferred(struct in_multi_head * inmh)252 inm_release_list_deferred(struct in_multi_head *inmh)
253 {
254
255 if (SLIST_EMPTY(inmh))
256 return;
257 mtx_lock(&in_multi_free_mtx);
258 SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele);
259 mtx_unlock(&in_multi_free_mtx);
260 taskqueue_enqueue(taskqueue_inm_free, &inm_free_task);
261 }
262
263 void
inm_disconnect(struct in_multi * inm)264 inm_disconnect(struct in_multi *inm)
265 {
266 struct ifnet *ifp;
267 struct ifmultiaddr *ifma, *ll_ifma;
268
269 ifp = inm->inm_ifp;
270 IF_ADDR_WLOCK_ASSERT(ifp);
271 ifma = inm->inm_ifma;
272
273 if_ref(ifp);
274 if (ifma->ifma_flags & IFMA_F_ENQUEUED) {
275 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
276 ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
277 }
278 MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname);
279 if ((ll_ifma = ifma->ifma_llifma) != NULL) {
280 MPASS(ifma != ll_ifma);
281 ifma->ifma_llifma = NULL;
282 MPASS(ll_ifma->ifma_llifma == NULL);
283 MPASS(ll_ifma->ifma_ifp == ifp);
284 if (--ll_ifma->ifma_refcount == 0) {
285 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
286 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link);
287 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
288 }
289 MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname);
290 if_freemulti(ll_ifma);
291 ifma_restart = true;
292 }
293 }
294 }
295
296 void
inm_release_deferred(struct in_multi * inm)297 inm_release_deferred(struct in_multi *inm)
298 {
299 struct in_multi_head tmp;
300
301 IN_MULTI_LIST_LOCK_ASSERT();
302 MPASS(inm->inm_refcount > 0);
303 if (--inm->inm_refcount == 0) {
304 SLIST_INIT(&tmp);
305 inm_disconnect(inm);
306 inm->inm_ifma->ifma_protospec = NULL;
307 SLIST_INSERT_HEAD(&tmp, inm, inm_nrele);
308 inm_release_list_deferred(&tmp);
309 }
310 }
311
312 static void
inm_release_task(void * arg __unused,int pending __unused)313 inm_release_task(void *arg __unused, int pending __unused)
314 {
315 struct in_multi_head inm_free_tmp;
316 struct in_multi *inm, *tinm;
317
318 SLIST_INIT(&inm_free_tmp);
319 mtx_lock(&in_multi_free_mtx);
320 SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele);
321 mtx_unlock(&in_multi_free_mtx);
322 IN_MULTI_LOCK();
323 SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) {
324 SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele);
325 MPASS(inm);
326 inm_release(inm);
327 }
328 IN_MULTI_UNLOCK();
329 }
330
331 /*
332 * Initialize an in_mfilter structure to a known state at t0, t1
333 * with an empty source filter list.
334 */
335 static __inline void
imf_init(struct in_mfilter * imf,const int st0,const int st1)336 imf_init(struct in_mfilter *imf, const int st0, const int st1)
337 {
338 memset(imf, 0, sizeof(struct in_mfilter));
339 RB_INIT(&imf->imf_sources);
340 imf->imf_st[0] = st0;
341 imf->imf_st[1] = st1;
342 }
343
344 struct in_mfilter *
ip_mfilter_alloc(const int mflags,const int st0,const int st1)345 ip_mfilter_alloc(const int mflags, const int st0, const int st1)
346 {
347 struct in_mfilter *imf;
348
349 imf = malloc(sizeof(*imf), M_INMFILTER, mflags);
350 if (imf != NULL)
351 imf_init(imf, st0, st1);
352
353 return (imf);
354 }
355
356 void
ip_mfilter_free(struct in_mfilter * imf)357 ip_mfilter_free(struct in_mfilter *imf)
358 {
359
360 imf_purge(imf);
361 free(imf, M_INMFILTER);
362 }
363
364 /*
365 * Function for looking up an in_multi record for an IPv4 multicast address
366 * on a given interface. ifp must be valid. If no record found, return NULL.
367 * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held.
368 */
369 struct in_multi *
inm_lookup_locked(struct ifnet * ifp,const struct in_addr ina)370 inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina)
371 {
372 struct ifmultiaddr *ifma;
373 struct in_multi *inm;
374
375 IN_MULTI_LIST_LOCK_ASSERT();
376 IF_ADDR_LOCK_ASSERT(ifp);
377
378 inm = NULL;
379 CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) {
380 if (ifma->ifma_addr->sa_family != AF_INET ||
381 ifma->ifma_protospec == NULL)
382 continue;
383 inm = (struct in_multi *)ifma->ifma_protospec;
384 if (inm->inm_addr.s_addr == ina.s_addr)
385 break;
386 inm = NULL;
387 }
388 return (inm);
389 }
390
391 /*
392 * Wrapper for inm_lookup_locked().
393 * The IF_ADDR_LOCK will be taken on ifp and released on return.
394 */
395 struct in_multi *
inm_lookup(struct ifnet * ifp,const struct in_addr ina)396 inm_lookup(struct ifnet *ifp, const struct in_addr ina)
397 {
398 struct epoch_tracker et;
399 struct in_multi *inm;
400
401 IN_MULTI_LIST_LOCK_ASSERT();
402 NET_EPOCH_ENTER(et);
403
404 inm = inm_lookup_locked(ifp, ina);
405 NET_EPOCH_EXIT(et);
406
407 return (inm);
408 }
409
410 /*
411 * Find an IPv4 multicast group entry for this ip_moptions instance
412 * which matches the specified group, and optionally an interface.
413 * Return its index into the array, or -1 if not found.
414 */
415 static struct in_mfilter *
imo_match_group(const struct ip_moptions * imo,const struct ifnet * ifp,const struct sockaddr * group)416 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
417 const struct sockaddr *group)
418 {
419 const struct sockaddr_in *gsin;
420 struct in_mfilter *imf;
421 struct in_multi *inm;
422
423 gsin = (const struct sockaddr_in *)group;
424
425 IP_MFILTER_FOREACH(imf, &imo->imo_head) {
426 inm = imf->imf_inm;
427 if (inm == NULL)
428 continue;
429 if ((ifp == NULL || (inm->inm_ifp == ifp)) &&
430 in_hosteq(inm->inm_addr, gsin->sin_addr)) {
431 break;
432 }
433 }
434 return (imf);
435 }
436
437 /*
438 * Find an IPv4 multicast source entry for this imo which matches
439 * the given group index for this socket, and source address.
440 *
441 * NOTE: This does not check if the entry is in-mode, merely if
442 * it exists, which may not be the desired behaviour.
443 */
444 static struct in_msource *
imo_match_source(struct in_mfilter * imf,const struct sockaddr * src)445 imo_match_source(struct in_mfilter *imf, const struct sockaddr *src)
446 {
447 struct ip_msource find;
448 struct ip_msource *ims;
449 const sockunion_t *psa;
450
451 KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
452
453 /* Source trees are keyed in host byte order. */
454 psa = (const sockunion_t *)src;
455 find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
456 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
457
458 return ((struct in_msource *)ims);
459 }
460
461 /*
462 * Perform filtering for multicast datagrams on a socket by group and source.
463 *
464 * Returns 0 if a datagram should be allowed through, or various error codes
465 * if the socket was not a member of the group, or the source was muted, etc.
466 */
467 int
imo_multi_filter(const struct ip_moptions * imo,const struct ifnet * ifp,const struct sockaddr * group,const struct sockaddr * src)468 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
469 const struct sockaddr *group, const struct sockaddr *src)
470 {
471 struct in_mfilter *imf;
472 struct in_msource *ims;
473 int mode;
474
475 KASSERT(ifp != NULL, ("%s: null ifp", __func__));
476
477 imf = imo_match_group(imo, ifp, group);
478 if (imf == NULL)
479 return (MCAST_NOTGMEMBER);
480
481 /*
482 * Check if the source was included in an (S,G) join.
483 * Allow reception on exclusive memberships by default,
484 * reject reception on inclusive memberships by default.
485 * Exclude source only if an in-mode exclude filter exists.
486 * Include source only if an in-mode include filter exists.
487 * NOTE: We are comparing group state here at IGMP t1 (now)
488 * with socket-layer t0 (since last downcall).
489 */
490 mode = imf->imf_st[1];
491 ims = imo_match_source(imf, src);
492
493 if ((ims == NULL && mode == MCAST_INCLUDE) ||
494 (ims != NULL && ims->imsl_st[0] != mode))
495 return (MCAST_NOTSMEMBER);
496
497 return (MCAST_PASS);
498 }
499
500 /*
501 * Find and return a reference to an in_multi record for (ifp, group),
502 * and bump its reference count.
503 * If one does not exist, try to allocate it, and update link-layer multicast
504 * filters on ifp to listen for group.
505 * Assumes the IN_MULTI lock is held across the call.
506 * Return 0 if successful, otherwise return an appropriate error code.
507 */
508 static int
in_getmulti(struct ifnet * ifp,const struct in_addr * group,struct in_multi ** pinm)509 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
510 struct in_multi **pinm)
511 {
512 struct sockaddr_in gsin;
513 struct ifmultiaddr *ifma;
514 struct in_ifinfo *ii;
515 struct in_multi *inm;
516 int error;
517
518 IN_MULTI_LOCK_ASSERT();
519
520 ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
521 IN_MULTI_LIST_LOCK();
522 inm = inm_lookup(ifp, *group);
523 if (inm != NULL) {
524 /*
525 * If we already joined this group, just bump the
526 * refcount and return it.
527 */
528 KASSERT(inm->inm_refcount >= 1,
529 ("%s: bad refcount %d", __func__, inm->inm_refcount));
530 inm_acquire_locked(inm);
531 *pinm = inm;
532 }
533 IN_MULTI_LIST_UNLOCK();
534 if (inm != NULL)
535 return (0);
536
537 memset(&gsin, 0, sizeof(gsin));
538 gsin.sin_family = AF_INET;
539 gsin.sin_len = sizeof(struct sockaddr_in);
540 gsin.sin_addr = *group;
541
542 /*
543 * Check if a link-layer group is already associated
544 * with this network-layer group on the given ifnet.
545 */
546 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
547 if (error != 0)
548 return (error);
549
550 /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
551 IN_MULTI_LIST_LOCK();
552 IF_ADDR_WLOCK(ifp);
553
554 /*
555 * If something other than netinet is occupying the link-layer
556 * group, print a meaningful error message and back out of
557 * the allocation.
558 * Otherwise, bump the refcount on the existing network-layer
559 * group association and return it.
560 */
561 if (ifma->ifma_protospec != NULL) {
562 inm = (struct in_multi *)ifma->ifma_protospec;
563 #ifdef INVARIANTS
564 KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
565 __func__));
566 KASSERT(ifma->ifma_addr->sa_family == AF_INET,
567 ("%s: ifma not AF_INET", __func__));
568 KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
569 if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
570 !in_hosteq(inm->inm_addr, *group)) {
571 char addrbuf[INET_ADDRSTRLEN];
572
573 panic("%s: ifma %p is inconsistent with %p (%s)",
574 __func__, ifma, inm, inet_ntoa_r(*group, addrbuf));
575 }
576 #endif
577 inm_acquire_locked(inm);
578 *pinm = inm;
579 goto out_locked;
580 }
581
582 IF_ADDR_WLOCK_ASSERT(ifp);
583
584 /*
585 * A new in_multi record is needed; allocate and initialize it.
586 * We DO NOT perform an IGMP join as the in_ layer may need to
587 * push an initial source list down to IGMP to support SSM.
588 *
589 * The initial source filter state is INCLUDE, {} as per the RFC.
590 */
591 inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
592 if (inm == NULL) {
593 IF_ADDR_WUNLOCK(ifp);
594 IN_MULTI_LIST_UNLOCK();
595 if_delmulti_ifma(ifma);
596 return (ENOMEM);
597 }
598 inm->inm_addr = *group;
599 inm->inm_ifp = ifp;
600 inm->inm_igi = ii->ii_igmp;
601 inm->inm_ifma = ifma;
602 inm->inm_refcount = 1;
603 inm->inm_state = IGMP_NOT_MEMBER;
604 mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
605 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
606 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
607 RB_INIT(&inm->inm_srcs);
608
609 ifma->ifma_protospec = inm;
610
611 *pinm = inm;
612 out_locked:
613 IF_ADDR_WUNLOCK(ifp);
614 IN_MULTI_LIST_UNLOCK();
615 return (0);
616 }
617
618 /*
619 * Drop a reference to an in_multi record.
620 *
621 * If the refcount drops to 0, free the in_multi record and
622 * delete the underlying link-layer membership.
623 */
624 static void
inm_release(struct in_multi * inm)625 inm_release(struct in_multi *inm)
626 {
627 struct ifmultiaddr *ifma;
628 struct ifnet *ifp;
629
630 CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
631 MPASS(inm->inm_refcount == 0);
632 CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
633
634 ifma = inm->inm_ifma;
635 ifp = inm->inm_ifp;
636
637 /* XXX this access is not covered by IF_ADDR_LOCK */
638 CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
639 if (ifp != NULL) {
640 CURVNET_SET(ifp->if_vnet);
641 inm_purge(inm);
642 free(inm, M_IPMADDR);
643 if_delmulti_ifma_flags(ifma, 1);
644 CURVNET_RESTORE();
645 if_rele(ifp);
646 } else {
647 inm_purge(inm);
648 free(inm, M_IPMADDR);
649 if_delmulti_ifma_flags(ifma, 1);
650 }
651 }
652
653 /*
654 * Clear recorded source entries for a group.
655 * Used by the IGMP code. Caller must hold the IN_MULTI lock.
656 * FIXME: Should reap.
657 */
658 void
inm_clear_recorded(struct in_multi * inm)659 inm_clear_recorded(struct in_multi *inm)
660 {
661 struct ip_msource *ims;
662
663 IN_MULTI_LIST_LOCK_ASSERT();
664
665 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
666 if (ims->ims_stp) {
667 ims->ims_stp = 0;
668 --inm->inm_st[1].iss_rec;
669 }
670 }
671 KASSERT(inm->inm_st[1].iss_rec == 0,
672 ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
673 }
674
675 /*
676 * Record a source as pending for a Source-Group IGMPv3 query.
677 * This lives here as it modifies the shared tree.
678 *
679 * inm is the group descriptor.
680 * naddr is the address of the source to record in network-byte order.
681 *
682 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
683 * lazy-allocate a source node in response to an SG query.
684 * Otherwise, no allocation is performed. This saves some memory
685 * with the trade-off that the source will not be reported to the
686 * router if joined in the window between the query response and
687 * the group actually being joined on the local host.
688 *
689 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
690 * This turns off the allocation of a recorded source entry if
691 * the group has not been joined.
692 *
693 * Return 0 if the source didn't exist or was already marked as recorded.
694 * Return 1 if the source was marked as recorded by this function.
695 * Return <0 if any error occurred (negated errno code).
696 */
697 int
inm_record_source(struct in_multi * inm,const in_addr_t naddr)698 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
699 {
700 struct ip_msource find;
701 struct ip_msource *ims, *nims;
702
703 IN_MULTI_LIST_LOCK_ASSERT();
704
705 find.ims_haddr = ntohl(naddr);
706 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
707 if (ims && ims->ims_stp)
708 return (0);
709 if (ims == NULL) {
710 if (inm->inm_nsrc == in_mcast_maxgrpsrc)
711 return (-ENOSPC);
712 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
713 M_NOWAIT | M_ZERO);
714 if (nims == NULL)
715 return (-ENOMEM);
716 nims->ims_haddr = find.ims_haddr;
717 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
718 ++inm->inm_nsrc;
719 ims = nims;
720 }
721
722 /*
723 * Mark the source as recorded and update the recorded
724 * source count.
725 */
726 ++ims->ims_stp;
727 ++inm->inm_st[1].iss_rec;
728
729 return (1);
730 }
731
732 /*
733 * Return a pointer to an in_msource owned by an in_mfilter,
734 * given its source address.
735 * Lazy-allocate if needed. If this is a new entry its filter state is
736 * undefined at t0.
737 *
738 * imf is the filter set being modified.
739 * haddr is the source address in *host* byte-order.
740 *
741 * SMPng: May be called with locks held; malloc must not block.
742 */
743 static int
imf_get_source(struct in_mfilter * imf,const struct sockaddr_in * psin,struct in_msource ** plims)744 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
745 struct in_msource **plims)
746 {
747 struct ip_msource find;
748 struct ip_msource *ims, *nims;
749 struct in_msource *lims;
750 int error;
751
752 error = 0;
753 ims = NULL;
754 lims = NULL;
755
756 /* key is host byte order */
757 find.ims_haddr = ntohl(psin->sin_addr.s_addr);
758 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
759 lims = (struct in_msource *)ims;
760 if (lims == NULL) {
761 if (imf->imf_nsrc == in_mcast_maxsocksrc)
762 return (ENOSPC);
763 nims = malloc(sizeof(struct in_msource), M_INMFILTER,
764 M_NOWAIT | M_ZERO);
765 if (nims == NULL)
766 return (ENOMEM);
767 lims = (struct in_msource *)nims;
768 lims->ims_haddr = find.ims_haddr;
769 lims->imsl_st[0] = MCAST_UNDEFINED;
770 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
771 ++imf->imf_nsrc;
772 }
773
774 *plims = lims;
775
776 return (error);
777 }
778
779 /*
780 * Graft a source entry into an existing socket-layer filter set,
781 * maintaining any required invariants and checking allocations.
782 *
783 * The source is marked as being in the new filter mode at t1.
784 *
785 * Return the pointer to the new node, otherwise return NULL.
786 */
787 static struct in_msource *
imf_graft(struct in_mfilter * imf,const uint8_t st1,const struct sockaddr_in * psin)788 imf_graft(struct in_mfilter *imf, const uint8_t st1,
789 const struct sockaddr_in *psin)
790 {
791 struct ip_msource *nims;
792 struct in_msource *lims;
793
794 nims = malloc(sizeof(struct in_msource), M_INMFILTER,
795 M_NOWAIT | M_ZERO);
796 if (nims == NULL)
797 return (NULL);
798 lims = (struct in_msource *)nims;
799 lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
800 lims->imsl_st[0] = MCAST_UNDEFINED;
801 lims->imsl_st[1] = st1;
802 RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
803 ++imf->imf_nsrc;
804
805 return (lims);
806 }
807
808 /*
809 * Prune a source entry from an existing socket-layer filter set,
810 * maintaining any required invariants and checking allocations.
811 *
812 * The source is marked as being left at t1, it is not freed.
813 *
814 * Return 0 if no error occurred, otherwise return an errno value.
815 */
816 static int
imf_prune(struct in_mfilter * imf,const struct sockaddr_in * psin)817 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
818 {
819 struct ip_msource find;
820 struct ip_msource *ims;
821 struct in_msource *lims;
822
823 /* key is host byte order */
824 find.ims_haddr = ntohl(psin->sin_addr.s_addr);
825 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
826 if (ims == NULL)
827 return (ENOENT);
828 lims = (struct in_msource *)ims;
829 lims->imsl_st[1] = MCAST_UNDEFINED;
830 return (0);
831 }
832
833 /*
834 * Revert socket-layer filter set deltas at t1 to t0 state.
835 */
836 static void
imf_rollback(struct in_mfilter * imf)837 imf_rollback(struct in_mfilter *imf)
838 {
839 struct ip_msource *ims, *tims;
840 struct in_msource *lims;
841
842 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
843 lims = (struct in_msource *)ims;
844 if (lims->imsl_st[0] == lims->imsl_st[1]) {
845 /* no change at t1 */
846 continue;
847 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
848 /* revert change to existing source at t1 */
849 lims->imsl_st[1] = lims->imsl_st[0];
850 } else {
851 /* revert source added t1 */
852 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
853 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
854 free(ims, M_INMFILTER);
855 imf->imf_nsrc--;
856 }
857 }
858 imf->imf_st[1] = imf->imf_st[0];
859 }
860
861 /*
862 * Mark socket-layer filter set as INCLUDE {} at t1.
863 */
864 static void
imf_leave(struct in_mfilter * imf)865 imf_leave(struct in_mfilter *imf)
866 {
867 struct ip_msource *ims;
868 struct in_msource *lims;
869
870 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
871 lims = (struct in_msource *)ims;
872 lims->imsl_st[1] = MCAST_UNDEFINED;
873 }
874 imf->imf_st[1] = MCAST_INCLUDE;
875 }
876
877 /*
878 * Mark socket-layer filter set deltas as committed.
879 */
880 static void
imf_commit(struct in_mfilter * imf)881 imf_commit(struct in_mfilter *imf)
882 {
883 struct ip_msource *ims;
884 struct in_msource *lims;
885
886 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
887 lims = (struct in_msource *)ims;
888 lims->imsl_st[0] = lims->imsl_st[1];
889 }
890 imf->imf_st[0] = imf->imf_st[1];
891 }
892
893 /*
894 * Reap unreferenced sources from socket-layer filter set.
895 */
896 static void
imf_reap(struct in_mfilter * imf)897 imf_reap(struct in_mfilter *imf)
898 {
899 struct ip_msource *ims, *tims;
900 struct in_msource *lims;
901
902 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
903 lims = (struct in_msource *)ims;
904 if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
905 (lims->imsl_st[1] == MCAST_UNDEFINED)) {
906 CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
907 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
908 free(ims, M_INMFILTER);
909 imf->imf_nsrc--;
910 }
911 }
912 }
913
914 /*
915 * Purge socket-layer filter set.
916 */
917 static void
imf_purge(struct in_mfilter * imf)918 imf_purge(struct in_mfilter *imf)
919 {
920 struct ip_msource *ims, *tims;
921
922 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
923 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
924 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
925 free(ims, M_INMFILTER);
926 imf->imf_nsrc--;
927 }
928 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
929 KASSERT(RB_EMPTY(&imf->imf_sources),
930 ("%s: imf_sources not empty", __func__));
931 }
932
933 /*
934 * Look up a source filter entry for a multicast group.
935 *
936 * inm is the group descriptor to work with.
937 * haddr is the host-byte-order IPv4 address to look up.
938 * noalloc may be non-zero to suppress allocation of sources.
939 * *pims will be set to the address of the retrieved or allocated source.
940 *
941 * SMPng: NOTE: may be called with locks held.
942 * Return 0 if successful, otherwise return a non-zero error code.
943 */
944 static int
inm_get_source(struct in_multi * inm,const in_addr_t haddr,const int noalloc,struct ip_msource ** pims)945 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
946 const int noalloc, struct ip_msource **pims)
947 {
948 struct ip_msource find;
949 struct ip_msource *ims, *nims;
950
951 find.ims_haddr = haddr;
952 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
953 if (ims == NULL && !noalloc) {
954 if (inm->inm_nsrc == in_mcast_maxgrpsrc)
955 return (ENOSPC);
956 nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
957 M_NOWAIT | M_ZERO);
958 if (nims == NULL)
959 return (ENOMEM);
960 nims->ims_haddr = haddr;
961 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
962 ++inm->inm_nsrc;
963 ims = nims;
964 #ifdef KTR
965 CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__,
966 haddr, ims);
967 #endif
968 }
969
970 *pims = ims;
971 return (0);
972 }
973
974 /*
975 * Merge socket-layer source into IGMP-layer source.
976 * If rollback is non-zero, perform the inverse of the merge.
977 */
978 static void
ims_merge(struct ip_msource * ims,const struct in_msource * lims,const int rollback)979 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
980 const int rollback)
981 {
982 int n = rollback ? -1 : 1;
983
984 if (lims->imsl_st[0] == MCAST_EXCLUDE) {
985 CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x",
986 __func__, n, ims->ims_haddr);
987 ims->ims_st[1].ex -= n;
988 } else if (lims->imsl_st[0] == MCAST_INCLUDE) {
989 CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x",
990 __func__, n, ims->ims_haddr);
991 ims->ims_st[1].in -= n;
992 }
993
994 if (lims->imsl_st[1] == MCAST_EXCLUDE) {
995 CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x",
996 __func__, n, ims->ims_haddr);
997 ims->ims_st[1].ex += n;
998 } else if (lims->imsl_st[1] == MCAST_INCLUDE) {
999 CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x",
1000 __func__, n, ims->ims_haddr);
1001 ims->ims_st[1].in += n;
1002 }
1003 }
1004
1005 /*
1006 * Atomically update the global in_multi state, when a membership's
1007 * filter list is being updated in any way.
1008 *
1009 * imf is the per-inpcb-membership group filter pointer.
1010 * A fake imf may be passed for in-kernel consumers.
1011 *
1012 * XXX This is a candidate for a set-symmetric-difference style loop
1013 * which would eliminate the repeated lookup from root of ims nodes,
1014 * as they share the same key space.
1015 *
1016 * If any error occurred this function will back out of refcounts
1017 * and return a non-zero value.
1018 */
1019 static int
inm_merge(struct in_multi * inm,struct in_mfilter * imf)1020 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1021 {
1022 struct ip_msource *ims, *nims;
1023 struct in_msource *lims;
1024 int schanged, error;
1025 int nsrc0, nsrc1;
1026
1027 schanged = 0;
1028 error = 0;
1029 nsrc1 = nsrc0 = 0;
1030 IN_MULTI_LIST_LOCK_ASSERT();
1031
1032 /*
1033 * Update the source filters first, as this may fail.
1034 * Maintain count of in-mode filters at t0, t1. These are
1035 * used to work out if we transition into ASM mode or not.
1036 * Maintain a count of source filters whose state was
1037 * actually modified by this operation.
1038 */
1039 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1040 lims = (struct in_msource *)ims;
1041 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1042 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1043 if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1044 error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1045 ++schanged;
1046 if (error)
1047 break;
1048 ims_merge(nims, lims, 0);
1049 }
1050 if (error) {
1051 struct ip_msource *bims;
1052
1053 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1054 lims = (struct in_msource *)ims;
1055 if (lims->imsl_st[0] == lims->imsl_st[1])
1056 continue;
1057 (void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
1058 if (bims == NULL)
1059 continue;
1060 ims_merge(bims, lims, 1);
1061 }
1062 goto out_reap;
1063 }
1064
1065 CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
1066 __func__, nsrc0, nsrc1);
1067
1068 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1069 if (imf->imf_st[0] == imf->imf_st[1] &&
1070 imf->imf_st[1] == MCAST_INCLUDE) {
1071 if (nsrc1 == 0) {
1072 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1073 --inm->inm_st[1].iss_in;
1074 }
1075 }
1076
1077 /* Handle filter mode transition on socket. */
1078 if (imf->imf_st[0] != imf->imf_st[1]) {
1079 CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
1080 __func__, imf->imf_st[0], imf->imf_st[1]);
1081
1082 if (imf->imf_st[0] == MCAST_EXCLUDE) {
1083 CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
1084 --inm->inm_st[1].iss_ex;
1085 } else if (imf->imf_st[0] == MCAST_INCLUDE) {
1086 CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
1087 --inm->inm_st[1].iss_in;
1088 }
1089
1090 if (imf->imf_st[1] == MCAST_EXCLUDE) {
1091 CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
1092 inm->inm_st[1].iss_ex++;
1093 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1094 CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
1095 inm->inm_st[1].iss_in++;
1096 }
1097 }
1098
1099 /*
1100 * Track inm filter state in terms of listener counts.
1101 * If there are any exclusive listeners, stack-wide
1102 * membership is exclusive.
1103 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1104 * If no listeners remain, state is undefined at t1,
1105 * and the IGMP lifecycle for this group should finish.
1106 */
1107 if (inm->inm_st[1].iss_ex > 0) {
1108 CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1109 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1110 } else if (inm->inm_st[1].iss_in > 0) {
1111 CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1112 inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1113 } else {
1114 CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1115 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1116 }
1117
1118 /* Decrement ASM listener count on transition out of ASM mode. */
1119 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1120 if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1121 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1122 CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1123 --inm->inm_st[1].iss_asm;
1124 }
1125 }
1126
1127 /* Increment ASM listener count on transition to ASM mode. */
1128 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1129 CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1130 inm->inm_st[1].iss_asm++;
1131 }
1132
1133 CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1134 inm_print(inm);
1135
1136 out_reap:
1137 if (schanged > 0) {
1138 CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1139 inm_reap(inm);
1140 }
1141 return (error);
1142 }
1143
1144 /*
1145 * Mark an in_multi's filter set deltas as committed.
1146 * Called by IGMP after a state change has been enqueued.
1147 */
1148 void
inm_commit(struct in_multi * inm)1149 inm_commit(struct in_multi *inm)
1150 {
1151 struct ip_msource *ims;
1152
1153 CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1154 CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1155 inm_print(inm);
1156
1157 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1158 ims->ims_st[0] = ims->ims_st[1];
1159 }
1160 inm->inm_st[0] = inm->inm_st[1];
1161 }
1162
1163 /*
1164 * Reap unreferenced nodes from an in_multi's filter set.
1165 */
1166 static void
inm_reap(struct in_multi * inm)1167 inm_reap(struct in_multi *inm)
1168 {
1169 struct ip_msource *ims, *tims;
1170
1171 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1172 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1173 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1174 ims->ims_stp != 0)
1175 continue;
1176 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1177 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1178 free(ims, M_IPMSOURCE);
1179 inm->inm_nsrc--;
1180 }
1181 }
1182
1183 /*
1184 * Purge all source nodes from an in_multi's filter set.
1185 */
1186 static void
inm_purge(struct in_multi * inm)1187 inm_purge(struct in_multi *inm)
1188 {
1189 struct ip_msource *ims, *tims;
1190
1191 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1192 CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1193 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1194 free(ims, M_IPMSOURCE);
1195 inm->inm_nsrc--;
1196 }
1197 }
1198
1199 /*
1200 * Join a multicast group; unlocked entry point.
1201 *
1202 * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1203 * is not held. Fortunately, ifp is unlikely to have been detached
1204 * at this point, so we assume it's OK to recurse.
1205 */
1206 int
in_joingroup(struct ifnet * ifp,const struct in_addr * gina,struct in_mfilter * imf,struct in_multi ** pinm)1207 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1208 /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1209 {
1210 int error;
1211
1212 IN_MULTI_LOCK();
1213 error = in_joingroup_locked(ifp, gina, imf, pinm);
1214 IN_MULTI_UNLOCK();
1215
1216 return (error);
1217 }
1218
1219 /*
1220 * Join a multicast group; real entry point.
1221 *
1222 * Only preserves atomicity at inm level.
1223 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1224 *
1225 * If the IGMP downcall fails, the group is not joined, and an error
1226 * code is returned.
1227 */
1228 int
in_joingroup_locked(struct ifnet * ifp,const struct in_addr * gina,struct in_mfilter * imf,struct in_multi ** pinm)1229 in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1230 /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1231 {
1232 struct in_mfilter timf;
1233 struct in_multi *inm;
1234 int error;
1235
1236 IN_MULTI_LOCK_ASSERT();
1237 IN_MULTI_LIST_UNLOCK_ASSERT();
1238
1239 CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__,
1240 ntohl(gina->s_addr), ifp, ifp->if_xname);
1241
1242 error = 0;
1243 inm = NULL;
1244
1245 /*
1246 * If no imf was specified (i.e. kernel consumer),
1247 * fake one up and assume it is an ASM join.
1248 */
1249 if (imf == NULL) {
1250 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1251 imf = &timf;
1252 }
1253
1254 error = in_getmulti(ifp, gina, &inm);
1255 if (error) {
1256 CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1257 return (error);
1258 }
1259 IN_MULTI_LIST_LOCK();
1260 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1261 error = inm_merge(inm, imf);
1262 if (error) {
1263 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1264 goto out_inm_release;
1265 }
1266
1267 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1268 error = igmp_change_state(inm);
1269 if (error) {
1270 CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1271 goto out_inm_release;
1272 }
1273
1274 out_inm_release:
1275 if (error) {
1276 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1277 IF_ADDR_WLOCK(ifp);
1278 inm_release_deferred(inm);
1279 IF_ADDR_WUNLOCK(ifp);
1280 } else {
1281 *pinm = inm;
1282 }
1283 IN_MULTI_LIST_UNLOCK();
1284
1285 return (error);
1286 }
1287
1288 /*
1289 * Leave a multicast group; unlocked entry point.
1290 */
1291 int
in_leavegroup(struct in_multi * inm,struct in_mfilter * imf)1292 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1293 {
1294 int error;
1295
1296 IN_MULTI_LOCK();
1297 error = in_leavegroup_locked(inm, imf);
1298 IN_MULTI_UNLOCK();
1299
1300 return (error);
1301 }
1302
1303 /*
1304 * Leave a multicast group; real entry point.
1305 * All source filters will be expunged.
1306 *
1307 * Only preserves atomicity at inm level.
1308 *
1309 * Holding the write lock for the INP which contains imf
1310 * is highly advisable. We can't assert for it as imf does not
1311 * contain a back-pointer to the owning inp.
1312 *
1313 * Note: This is not the same as inm_release(*) as this function also
1314 * makes a state change downcall into IGMP.
1315 */
1316 int
in_leavegroup_locked(struct in_multi * inm,struct in_mfilter * imf)1317 in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1318 {
1319 struct in_mfilter timf;
1320 int error;
1321
1322 IN_MULTI_LOCK_ASSERT();
1323 IN_MULTI_LIST_UNLOCK_ASSERT();
1324
1325 error = 0;
1326
1327 CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__,
1328 inm, ntohl(inm->inm_addr.s_addr),
1329 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1330 imf);
1331
1332 /*
1333 * If no imf was specified (i.e. kernel consumer),
1334 * fake one up and assume it is an ASM join.
1335 */
1336 if (imf == NULL) {
1337 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1338 imf = &timf;
1339 }
1340
1341 /*
1342 * Begin state merge transaction at IGMP layer.
1343 *
1344 * As this particular invocation should not cause any memory
1345 * to be allocated, and there is no opportunity to roll back
1346 * the transaction, it MUST NOT fail.
1347 */
1348 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1349 IN_MULTI_LIST_LOCK();
1350 error = inm_merge(inm, imf);
1351 KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1352
1353 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1354 CURVNET_SET(inm->inm_ifp->if_vnet);
1355 error = igmp_change_state(inm);
1356 IF_ADDR_WLOCK(inm->inm_ifp);
1357 inm_release_deferred(inm);
1358 IF_ADDR_WUNLOCK(inm->inm_ifp);
1359 IN_MULTI_LIST_UNLOCK();
1360 CURVNET_RESTORE();
1361 if (error)
1362 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1363
1364 CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1365
1366 return (error);
1367 }
1368
1369 /*#ifndef BURN_BRIDGES*/
1370 /*
1371 * Join an IPv4 multicast group in (*,G) exclusive mode.
1372 * The group must be a 224.0.0.0/24 link-scope group.
1373 * This KPI is for legacy kernel consumers only.
1374 */
1375 struct in_multi *
in_addmulti(struct in_addr * ap,struct ifnet * ifp)1376 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1377 {
1378 struct in_multi *pinm;
1379 int error;
1380 #ifdef INVARIANTS
1381 char addrbuf[INET_ADDRSTRLEN];
1382 #endif
1383
1384 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1385 ("%s: %s not in 224.0.0.0/24", __func__,
1386 inet_ntoa_r(*ap, addrbuf)));
1387
1388 error = in_joingroup(ifp, ap, NULL, &pinm);
1389 if (error != 0)
1390 pinm = NULL;
1391
1392 return (pinm);
1393 }
1394
1395 /*
1396 * Block or unblock an ASM multicast source on an inpcb.
1397 * This implements the delta-based API described in RFC 3678.
1398 *
1399 * The delta-based API applies only to exclusive-mode memberships.
1400 * An IGMP downcall will be performed.
1401 *
1402 * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1403 *
1404 * Return 0 if successful, otherwise return an appropriate error code.
1405 */
1406 static int
inp_block_unblock_source(struct inpcb * inp,struct sockopt * sopt)1407 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1408 {
1409 struct group_source_req gsr;
1410 struct rm_priotracker in_ifa_tracker;
1411 sockunion_t *gsa, *ssa;
1412 struct ifnet *ifp;
1413 struct in_mfilter *imf;
1414 struct ip_moptions *imo;
1415 struct in_msource *ims;
1416 struct in_multi *inm;
1417 uint16_t fmode;
1418 int error, doblock;
1419
1420 ifp = NULL;
1421 error = 0;
1422 doblock = 0;
1423
1424 memset(&gsr, 0, sizeof(struct group_source_req));
1425 gsa = (sockunion_t *)&gsr.gsr_group;
1426 ssa = (sockunion_t *)&gsr.gsr_source;
1427
1428 switch (sopt->sopt_name) {
1429 case IP_BLOCK_SOURCE:
1430 case IP_UNBLOCK_SOURCE: {
1431 struct ip_mreq_source mreqs;
1432
1433 error = sooptcopyin(sopt, &mreqs,
1434 sizeof(struct ip_mreq_source),
1435 sizeof(struct ip_mreq_source));
1436 if (error)
1437 return (error);
1438
1439 gsa->sin.sin_family = AF_INET;
1440 gsa->sin.sin_len = sizeof(struct sockaddr_in);
1441 gsa->sin.sin_addr = mreqs.imr_multiaddr;
1442
1443 ssa->sin.sin_family = AF_INET;
1444 ssa->sin.sin_len = sizeof(struct sockaddr_in);
1445 ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1446
1447 if (!in_nullhost(mreqs.imr_interface)) {
1448 IN_IFADDR_RLOCK(&in_ifa_tracker);
1449 INADDR_TO_IFP(mreqs.imr_interface, ifp);
1450 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1451 }
1452 if (sopt->sopt_name == IP_BLOCK_SOURCE)
1453 doblock = 1;
1454
1455 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
1456 __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
1457 break;
1458 }
1459
1460 case MCAST_BLOCK_SOURCE:
1461 case MCAST_UNBLOCK_SOURCE:
1462 error = sooptcopyin(sopt, &gsr,
1463 sizeof(struct group_source_req),
1464 sizeof(struct group_source_req));
1465 if (error)
1466 return (error);
1467
1468 if (gsa->sin.sin_family != AF_INET ||
1469 gsa->sin.sin_len != sizeof(struct sockaddr_in))
1470 return (EINVAL);
1471
1472 if (ssa->sin.sin_family != AF_INET ||
1473 ssa->sin.sin_len != sizeof(struct sockaddr_in))
1474 return (EINVAL);
1475
1476 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1477 return (EADDRNOTAVAIL);
1478
1479 ifp = ifnet_byindex(gsr.gsr_interface);
1480
1481 if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1482 doblock = 1;
1483 break;
1484
1485 default:
1486 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1487 __func__, sopt->sopt_name);
1488 return (EOPNOTSUPP);
1489 break;
1490 }
1491
1492 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1493 return (EINVAL);
1494
1495 IN_MULTI_LOCK();
1496
1497 /*
1498 * Check if we are actually a member of this group.
1499 */
1500 imo = inp_findmoptions(inp);
1501 imf = imo_match_group(imo, ifp, &gsa->sa);
1502 if (imf == NULL) {
1503 error = EADDRNOTAVAIL;
1504 goto out_inp_locked;
1505 }
1506 inm = imf->imf_inm;
1507
1508 /*
1509 * Attempting to use the delta-based API on an
1510 * non exclusive-mode membership is an error.
1511 */
1512 fmode = imf->imf_st[0];
1513 if (fmode != MCAST_EXCLUDE) {
1514 error = EINVAL;
1515 goto out_inp_locked;
1516 }
1517
1518 /*
1519 * Deal with error cases up-front:
1520 * Asked to block, but already blocked; or
1521 * Asked to unblock, but nothing to unblock.
1522 * If adding a new block entry, allocate it.
1523 */
1524 ims = imo_match_source(imf, &ssa->sa);
1525 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1526 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__,
1527 ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not ");
1528 error = EADDRNOTAVAIL;
1529 goto out_inp_locked;
1530 }
1531
1532 INP_WLOCK_ASSERT(inp);
1533
1534 /*
1535 * Begin state merge transaction at socket layer.
1536 */
1537 if (doblock) {
1538 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1539 ims = imf_graft(imf, fmode, &ssa->sin);
1540 if (ims == NULL)
1541 error = ENOMEM;
1542 } else {
1543 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1544 error = imf_prune(imf, &ssa->sin);
1545 }
1546
1547 if (error) {
1548 CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1549 goto out_imf_rollback;
1550 }
1551
1552 /*
1553 * Begin state merge transaction at IGMP layer.
1554 */
1555 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1556 IN_MULTI_LIST_LOCK();
1557 error = inm_merge(inm, imf);
1558 if (error) {
1559 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1560 IN_MULTI_LIST_UNLOCK();
1561 goto out_imf_rollback;
1562 }
1563
1564 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1565 error = igmp_change_state(inm);
1566 IN_MULTI_LIST_UNLOCK();
1567 if (error)
1568 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1569
1570 out_imf_rollback:
1571 if (error)
1572 imf_rollback(imf);
1573 else
1574 imf_commit(imf);
1575
1576 imf_reap(imf);
1577
1578 out_inp_locked:
1579 INP_WUNLOCK(inp);
1580 IN_MULTI_UNLOCK();
1581 return (error);
1582 }
1583
1584 /*
1585 * Given an inpcb, return its multicast options structure pointer. Accepts
1586 * an unlocked inpcb pointer, but will return it locked. May sleep.
1587 *
1588 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1589 * SMPng: NOTE: Returns with the INP write lock held.
1590 */
1591 static struct ip_moptions *
inp_findmoptions(struct inpcb * inp)1592 inp_findmoptions(struct inpcb *inp)
1593 {
1594 struct ip_moptions *imo;
1595
1596 INP_WLOCK(inp);
1597 if (inp->inp_moptions != NULL)
1598 return (inp->inp_moptions);
1599
1600 INP_WUNLOCK(inp);
1601
1602 imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1603
1604 imo->imo_multicast_ifp = NULL;
1605 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1606 imo->imo_multicast_vif = -1;
1607 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1608 imo->imo_multicast_loop = in_mcast_loop;
1609 STAILQ_INIT(&imo->imo_head);
1610
1611 INP_WLOCK(inp);
1612 if (inp->inp_moptions != NULL) {
1613 free(imo, M_IPMOPTS);
1614 return (inp->inp_moptions);
1615 }
1616 inp->inp_moptions = imo;
1617 return (imo);
1618 }
1619
1620 static void
inp_gcmoptions(struct ip_moptions * imo)1621 inp_gcmoptions(struct ip_moptions *imo)
1622 {
1623 struct in_mfilter *imf;
1624 struct in_multi *inm;
1625 struct ifnet *ifp;
1626
1627 while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) {
1628 ip_mfilter_remove(&imo->imo_head, imf);
1629
1630 imf_leave(imf);
1631 if ((inm = imf->imf_inm) != NULL) {
1632 if ((ifp = inm->inm_ifp) != NULL) {
1633 CURVNET_SET(ifp->if_vnet);
1634 (void)in_leavegroup(inm, imf);
1635 CURVNET_RESTORE();
1636 } else {
1637 (void)in_leavegroup(inm, imf);
1638 }
1639 }
1640 ip_mfilter_free(imf);
1641 }
1642 free(imo, M_IPMOPTS);
1643 }
1644
1645 /*
1646 * Discard the IP multicast options (and source filters). To minimize
1647 * the amount of work done while holding locks such as the INP's
1648 * pcbinfo lock (which is used in the receive path), the free
1649 * operation is deferred to the epoch callback task.
1650 */
1651 void
inp_freemoptions(struct ip_moptions * imo)1652 inp_freemoptions(struct ip_moptions *imo)
1653 {
1654 if (imo == NULL)
1655 return;
1656 inp_gcmoptions(imo);
1657 }
1658
1659 /*
1660 * Atomically get source filters on a socket for an IPv4 multicast group.
1661 * Called with INP lock held; returns with lock released.
1662 */
1663 static int
inp_get_source_filters(struct inpcb * inp,struct sockopt * sopt)1664 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1665 {
1666 struct __msfilterreq msfr;
1667 sockunion_t *gsa;
1668 struct ifnet *ifp;
1669 struct ip_moptions *imo;
1670 struct in_mfilter *imf;
1671 struct ip_msource *ims;
1672 struct in_msource *lims;
1673 struct sockaddr_in *psin;
1674 struct sockaddr_storage *ptss;
1675 struct sockaddr_storage *tss;
1676 int error;
1677 size_t nsrcs, ncsrcs;
1678
1679 INP_WLOCK_ASSERT(inp);
1680
1681 imo = inp->inp_moptions;
1682 KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1683
1684 INP_WUNLOCK(inp);
1685
1686 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1687 sizeof(struct __msfilterreq));
1688 if (error)
1689 return (error);
1690
1691 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1692 return (EINVAL);
1693
1694 ifp = ifnet_byindex(msfr.msfr_ifindex);
1695 if (ifp == NULL)
1696 return (EINVAL);
1697
1698 INP_WLOCK(inp);
1699
1700 /*
1701 * Lookup group on the socket.
1702 */
1703 gsa = (sockunion_t *)&msfr.msfr_group;
1704 imf = imo_match_group(imo, ifp, &gsa->sa);
1705 if (imf == NULL) {
1706 INP_WUNLOCK(inp);
1707 return (EADDRNOTAVAIL);
1708 }
1709
1710 /*
1711 * Ignore memberships which are in limbo.
1712 */
1713 if (imf->imf_st[1] == MCAST_UNDEFINED) {
1714 INP_WUNLOCK(inp);
1715 return (EAGAIN);
1716 }
1717 msfr.msfr_fmode = imf->imf_st[1];
1718
1719 /*
1720 * If the user specified a buffer, copy out the source filter
1721 * entries to userland gracefully.
1722 * We only copy out the number of entries which userland
1723 * has asked for, but we always tell userland how big the
1724 * buffer really needs to be.
1725 */
1726 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1727 msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1728 tss = NULL;
1729 if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1730 tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1731 M_TEMP, M_NOWAIT | M_ZERO);
1732 if (tss == NULL) {
1733 INP_WUNLOCK(inp);
1734 return (ENOBUFS);
1735 }
1736 }
1737
1738 /*
1739 * Count number of sources in-mode at t0.
1740 * If buffer space exists and remains, copy out source entries.
1741 */
1742 nsrcs = msfr.msfr_nsrcs;
1743 ncsrcs = 0;
1744 ptss = tss;
1745 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1746 lims = (struct in_msource *)ims;
1747 if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1748 lims->imsl_st[0] != imf->imf_st[0])
1749 continue;
1750 ++ncsrcs;
1751 if (tss != NULL && nsrcs > 0) {
1752 psin = (struct sockaddr_in *)ptss;
1753 psin->sin_family = AF_INET;
1754 psin->sin_len = sizeof(struct sockaddr_in);
1755 psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1756 psin->sin_port = 0;
1757 ++ptss;
1758 --nsrcs;
1759 }
1760 }
1761
1762 INP_WUNLOCK(inp);
1763
1764 if (tss != NULL) {
1765 error = copyout(tss, msfr.msfr_srcs,
1766 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1767 free(tss, M_TEMP);
1768 if (error)
1769 return (error);
1770 }
1771
1772 msfr.msfr_nsrcs = ncsrcs;
1773 error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1774
1775 return (error);
1776 }
1777
1778 /*
1779 * Return the IP multicast options in response to user getsockopt().
1780 */
1781 int
inp_getmoptions(struct inpcb * inp,struct sockopt * sopt)1782 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1783 {
1784 struct rm_priotracker in_ifa_tracker;
1785 struct ip_mreqn mreqn;
1786 struct ip_moptions *imo;
1787 struct ifnet *ifp;
1788 struct in_ifaddr *ia;
1789 int error, optval;
1790 u_char coptval;
1791
1792 INP_WLOCK(inp);
1793 imo = inp->inp_moptions;
1794 /*
1795 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1796 * or is a divert socket, reject it.
1797 */
1798 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1799 (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1800 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1801 INP_WUNLOCK(inp);
1802 return (EOPNOTSUPP);
1803 }
1804
1805 error = 0;
1806 switch (sopt->sopt_name) {
1807 case IP_MULTICAST_VIF:
1808 if (imo != NULL)
1809 optval = imo->imo_multicast_vif;
1810 else
1811 optval = -1;
1812 INP_WUNLOCK(inp);
1813 error = sooptcopyout(sopt, &optval, sizeof(int));
1814 break;
1815
1816 case IP_MULTICAST_IF:
1817 memset(&mreqn, 0, sizeof(struct ip_mreqn));
1818 if (imo != NULL) {
1819 ifp = imo->imo_multicast_ifp;
1820 if (!in_nullhost(imo->imo_multicast_addr)) {
1821 mreqn.imr_address = imo->imo_multicast_addr;
1822 } else if (ifp != NULL) {
1823 struct epoch_tracker et;
1824
1825 mreqn.imr_ifindex = ifp->if_index;
1826 NET_EPOCH_ENTER(et);
1827 IFP_TO_IA(ifp, ia, &in_ifa_tracker);
1828 if (ia != NULL)
1829 mreqn.imr_address =
1830 IA_SIN(ia)->sin_addr;
1831 NET_EPOCH_EXIT(et);
1832 }
1833 }
1834 INP_WUNLOCK(inp);
1835 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1836 error = sooptcopyout(sopt, &mreqn,
1837 sizeof(struct ip_mreqn));
1838 } else {
1839 error = sooptcopyout(sopt, &mreqn.imr_address,
1840 sizeof(struct in_addr));
1841 }
1842 break;
1843
1844 case IP_MULTICAST_TTL:
1845 if (imo == NULL)
1846 optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1847 else
1848 optval = coptval = imo->imo_multicast_ttl;
1849 INP_WUNLOCK(inp);
1850 if (sopt->sopt_valsize == sizeof(u_char))
1851 error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1852 else
1853 error = sooptcopyout(sopt, &optval, sizeof(int));
1854 break;
1855
1856 case IP_MULTICAST_LOOP:
1857 if (imo == NULL)
1858 optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1859 else
1860 optval = coptval = imo->imo_multicast_loop;
1861 INP_WUNLOCK(inp);
1862 if (sopt->sopt_valsize == sizeof(u_char))
1863 error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1864 else
1865 error = sooptcopyout(sopt, &optval, sizeof(int));
1866 break;
1867
1868 case IP_MSFILTER:
1869 if (imo == NULL) {
1870 error = EADDRNOTAVAIL;
1871 INP_WUNLOCK(inp);
1872 } else {
1873 error = inp_get_source_filters(inp, sopt);
1874 }
1875 break;
1876
1877 default:
1878 INP_WUNLOCK(inp);
1879 error = ENOPROTOOPT;
1880 break;
1881 }
1882
1883 INP_UNLOCK_ASSERT(inp);
1884
1885 return (error);
1886 }
1887
1888 /*
1889 * Look up the ifnet to use for a multicast group membership,
1890 * given the IPv4 address of an interface, and the IPv4 group address.
1891 *
1892 * This routine exists to support legacy multicast applications
1893 * which do not understand that multicast memberships are scoped to
1894 * specific physical links in the networking stack, or which need
1895 * to join link-scope groups before IPv4 addresses are configured.
1896 *
1897 * If inp is non-NULL, use this socket's current FIB number for any
1898 * required FIB lookup.
1899 * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1900 * and use its ifp; usually, this points to the default next-hop.
1901 *
1902 * If the FIB lookup fails, attempt to use the first non-loopback
1903 * interface with multicast capability in the system as a
1904 * last resort. The legacy IPv4 ASM API requires that we do
1905 * this in order to allow groups to be joined when the routing
1906 * table has not yet been populated during boot.
1907 *
1908 * Returns NULL if no ifp could be found, otherwise return referenced ifp.
1909 *
1910 * FUTURE: Implement IPv4 source-address selection.
1911 */
1912 static struct ifnet *
inp_lookup_mcast_ifp(const struct inpcb * inp,const struct sockaddr_in * gsin,const struct in_addr ina)1913 inp_lookup_mcast_ifp(const struct inpcb *inp,
1914 const struct sockaddr_in *gsin, const struct in_addr ina)
1915 {
1916 struct rm_priotracker in_ifa_tracker;
1917 struct ifnet *ifp;
1918 struct nhop_object *nh;
1919 uint32_t fibnum;
1920
1921 KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1922 KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1923 ("%s: not multicast", __func__));
1924
1925 ifp = NULL;
1926 if (!in_nullhost(ina)) {
1927 IN_IFADDR_RLOCK(&in_ifa_tracker);
1928 INADDR_TO_IFP(ina, ifp);
1929 if (ifp != NULL)
1930 if_ref(ifp);
1931 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1932 } else {
1933 fibnum = inp ? inp->inp_inc.inc_fibnum : RT_DEFAULT_FIB;
1934 nh = fib4_lookup(fibnum, gsin->sin_addr, 0, NHR_NONE, 0);
1935 if (nh != NULL) {
1936 ifp = nh->nh_ifp;
1937 if_ref(ifp);
1938 } else {
1939 struct in_ifaddr *ia;
1940 struct ifnet *mifp;
1941
1942 mifp = NULL;
1943 IN_IFADDR_RLOCK(&in_ifa_tracker);
1944 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1945 mifp = ia->ia_ifp;
1946 if (!(mifp->if_flags & IFF_LOOPBACK) &&
1947 (mifp->if_flags & IFF_MULTICAST)) {
1948 ifp = mifp;
1949 if_ref(ifp);
1950 break;
1951 }
1952 }
1953 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1954 }
1955 }
1956
1957 return (ifp);
1958 }
1959
1960 /*
1961 * Join an IPv4 multicast group, possibly with a source.
1962 */
1963 static int
inp_join_group(struct inpcb * inp,struct sockopt * sopt)1964 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1965 {
1966 struct group_source_req gsr;
1967 sockunion_t *gsa, *ssa;
1968 struct ifnet *ifp;
1969 struct in_mfilter *imf;
1970 struct ip_moptions *imo;
1971 struct in_multi *inm;
1972 struct in_msource *lims;
1973 struct epoch_tracker et;
1974 int error, is_new;
1975
1976 ifp = NULL;
1977 lims = NULL;
1978 error = 0;
1979
1980 memset(&gsr, 0, sizeof(struct group_source_req));
1981 gsa = (sockunion_t *)&gsr.gsr_group;
1982 gsa->ss.ss_family = AF_UNSPEC;
1983 ssa = (sockunion_t *)&gsr.gsr_source;
1984 ssa->ss.ss_family = AF_UNSPEC;
1985
1986 switch (sopt->sopt_name) {
1987 case IP_ADD_MEMBERSHIP: {
1988 struct ip_mreqn mreqn;
1989
1990 if (sopt->sopt_valsize == sizeof(struct ip_mreqn))
1991 error = sooptcopyin(sopt, &mreqn,
1992 sizeof(struct ip_mreqn), sizeof(struct ip_mreqn));
1993 else
1994 error = sooptcopyin(sopt, &mreqn,
1995 sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1996 if (error)
1997 return (error);
1998
1999 gsa->sin.sin_family = AF_INET;
2000 gsa->sin.sin_len = sizeof(struct sockaddr_in);
2001 gsa->sin.sin_addr = mreqn.imr_multiaddr;
2002 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2003 return (EINVAL);
2004
2005 NET_EPOCH_ENTER(et);
2006 if (sopt->sopt_valsize == sizeof(struct ip_mreqn) &&
2007 mreqn.imr_ifindex != 0)
2008 ifp = ifnet_byindex_ref(mreqn.imr_ifindex);
2009 else
2010 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2011 mreqn.imr_address);
2012 NET_EPOCH_EXIT(et);
2013 break;
2014 }
2015 case IP_ADD_SOURCE_MEMBERSHIP: {
2016 struct ip_mreq_source mreqs;
2017
2018 error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source),
2019 sizeof(struct ip_mreq_source));
2020 if (error)
2021 return (error);
2022
2023 gsa->sin.sin_family = ssa->sin.sin_family = AF_INET;
2024 gsa->sin.sin_len = ssa->sin.sin_len =
2025 sizeof(struct sockaddr_in);
2026
2027 gsa->sin.sin_addr = mreqs.imr_multiaddr;
2028 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2029 return (EINVAL);
2030
2031 ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2032
2033 NET_EPOCH_ENTER(et);
2034 ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2035 mreqs.imr_interface);
2036 NET_EPOCH_EXIT(et);
2037 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2038 __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2039 break;
2040 }
2041
2042 case MCAST_JOIN_GROUP:
2043 case MCAST_JOIN_SOURCE_GROUP:
2044 if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2045 error = sooptcopyin(sopt, &gsr,
2046 sizeof(struct group_req),
2047 sizeof(struct group_req));
2048 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2049 error = sooptcopyin(sopt, &gsr,
2050 sizeof(struct group_source_req),
2051 sizeof(struct group_source_req));
2052 }
2053 if (error)
2054 return (error);
2055
2056 if (gsa->sin.sin_family != AF_INET ||
2057 gsa->sin.sin_len != sizeof(struct sockaddr_in))
2058 return (EINVAL);
2059
2060 /*
2061 * Overwrite the port field if present, as the sockaddr
2062 * being copied in may be matched with a binary comparison.
2063 */
2064 gsa->sin.sin_port = 0;
2065 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2066 if (ssa->sin.sin_family != AF_INET ||
2067 ssa->sin.sin_len != sizeof(struct sockaddr_in))
2068 return (EINVAL);
2069 ssa->sin.sin_port = 0;
2070 }
2071
2072 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2073 return (EINVAL);
2074
2075 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2076 return (EADDRNOTAVAIL);
2077 NET_EPOCH_ENTER(et);
2078 ifp = ifnet_byindex_ref(gsr.gsr_interface);
2079 NET_EPOCH_EXIT(et);
2080 break;
2081
2082 default:
2083 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2084 __func__, sopt->sopt_name);
2085 return (EOPNOTSUPP);
2086 break;
2087 }
2088
2089 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2090 if (ifp != NULL)
2091 if_rele(ifp);
2092 return (EADDRNOTAVAIL);
2093 }
2094
2095 IN_MULTI_LOCK();
2096
2097 /*
2098 * Find the membership in the membership list.
2099 */
2100 imo = inp_findmoptions(inp);
2101 imf = imo_match_group(imo, ifp, &gsa->sa);
2102 if (imf == NULL) {
2103 is_new = 1;
2104 inm = NULL;
2105
2106 if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) {
2107 error = ENOMEM;
2108 goto out_inp_locked;
2109 }
2110 } else {
2111 is_new = 0;
2112 inm = imf->imf_inm;
2113
2114 if (ssa->ss.ss_family != AF_UNSPEC) {
2115 /*
2116 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2117 * is an error. On an existing inclusive membership,
2118 * it just adds the source to the filter list.
2119 */
2120 if (imf->imf_st[1] != MCAST_INCLUDE) {
2121 error = EINVAL;
2122 goto out_inp_locked;
2123 }
2124 /*
2125 * Throw out duplicates.
2126 *
2127 * XXX FIXME: This makes a naive assumption that
2128 * even if entries exist for *ssa in this imf,
2129 * they will be rejected as dupes, even if they
2130 * are not valid in the current mode (in-mode).
2131 *
2132 * in_msource is transactioned just as for anything
2133 * else in SSM -- but note naive use of inm_graft()
2134 * below for allocating new filter entries.
2135 *
2136 * This is only an issue if someone mixes the
2137 * full-state SSM API with the delta-based API,
2138 * which is discouraged in the relevant RFCs.
2139 */
2140 lims = imo_match_source(imf, &ssa->sa);
2141 if (lims != NULL /*&&
2142 lims->imsl_st[1] == MCAST_INCLUDE*/) {
2143 error = EADDRNOTAVAIL;
2144 goto out_inp_locked;
2145 }
2146 } else {
2147 /*
2148 * MCAST_JOIN_GROUP on an existing exclusive
2149 * membership is an error; return EADDRINUSE
2150 * to preserve 4.4BSD API idempotence, and
2151 * avoid tedious detour to code below.
2152 * NOTE: This is bending RFC 3678 a bit.
2153 *
2154 * On an existing inclusive membership, this is also
2155 * an error; if you want to change filter mode,
2156 * you must use the userland API setsourcefilter().
2157 * XXX We don't reject this for imf in UNDEFINED
2158 * state at t1, because allocation of a filter
2159 * is atomic with allocation of a membership.
2160 */
2161 error = EINVAL;
2162 if (imf->imf_st[1] == MCAST_EXCLUDE)
2163 error = EADDRINUSE;
2164 goto out_inp_locked;
2165 }
2166 }
2167
2168 /*
2169 * Begin state merge transaction at socket layer.
2170 */
2171 INP_WLOCK_ASSERT(inp);
2172
2173 /*
2174 * Graft new source into filter list for this inpcb's
2175 * membership of the group. The in_multi may not have
2176 * been allocated yet if this is a new membership, however,
2177 * the in_mfilter slot will be allocated and must be initialized.
2178 *
2179 * Note: Grafting of exclusive mode filters doesn't happen
2180 * in this path.
2181 * XXX: Should check for non-NULL lims (node exists but may
2182 * not be in-mode) for interop with full-state API.
2183 */
2184 if (ssa->ss.ss_family != AF_UNSPEC) {
2185 /* Membership starts in IN mode */
2186 if (is_new) {
2187 CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2188 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE);
2189 if (imf == NULL) {
2190 error = ENOMEM;
2191 goto out_inp_locked;
2192 }
2193 } else {
2194 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2195 }
2196 lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2197 if (lims == NULL) {
2198 CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2199 __func__);
2200 error = ENOMEM;
2201 goto out_inp_locked;
2202 }
2203 } else {
2204 /* No address specified; Membership starts in EX mode */
2205 if (is_new) {
2206 CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2207 imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE);
2208 if (imf == NULL) {
2209 error = ENOMEM;
2210 goto out_inp_locked;
2211 }
2212 }
2213 }
2214
2215 /*
2216 * Begin state merge transaction at IGMP layer.
2217 */
2218 if (is_new) {
2219 in_pcbref(inp);
2220 INP_WUNLOCK(inp);
2221
2222 error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2223 &imf->imf_inm);
2224
2225 INP_WLOCK(inp);
2226 if (in_pcbrele_wlocked(inp)) {
2227 error = ENXIO;
2228 goto out_inp_unlocked;
2229 }
2230 if (error) {
2231 CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed",
2232 __func__);
2233 goto out_inp_locked;
2234 }
2235 /*
2236 * NOTE: Refcount from in_joingroup_locked()
2237 * is protecting membership.
2238 */
2239 ip_mfilter_insert(&imo->imo_head, imf);
2240 } else {
2241 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2242 IN_MULTI_LIST_LOCK();
2243 error = inm_merge(inm, imf);
2244 if (error) {
2245 CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2246 __func__);
2247 IN_MULTI_LIST_UNLOCK();
2248 imf_rollback(imf);
2249 imf_reap(imf);
2250 goto out_inp_locked;
2251 }
2252 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2253 error = igmp_change_state(inm);
2254 IN_MULTI_LIST_UNLOCK();
2255 if (error) {
2256 CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2257 __func__);
2258 imf_rollback(imf);
2259 imf_reap(imf);
2260 goto out_inp_locked;
2261 }
2262 }
2263
2264 imf_commit(imf);
2265 imf = NULL;
2266
2267 out_inp_locked:
2268 INP_WUNLOCK(inp);
2269 out_inp_unlocked:
2270 IN_MULTI_UNLOCK();
2271
2272 if (is_new && imf) {
2273 if (imf->imf_inm != NULL) {
2274 IN_MULTI_LIST_LOCK();
2275 IF_ADDR_WLOCK(ifp);
2276 inm_release_deferred(imf->imf_inm);
2277 IF_ADDR_WUNLOCK(ifp);
2278 IN_MULTI_LIST_UNLOCK();
2279 }
2280 ip_mfilter_free(imf);
2281 }
2282 if_rele(ifp);
2283 return (error);
2284 }
2285
2286 /*
2287 * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2288 */
2289 static int
inp_leave_group(struct inpcb * inp,struct sockopt * sopt)2290 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2291 {
2292 struct group_source_req gsr;
2293 struct ip_mreq_source mreqs;
2294 struct rm_priotracker in_ifa_tracker;
2295 sockunion_t *gsa, *ssa;
2296 struct ifnet *ifp;
2297 struct in_mfilter *imf;
2298 struct ip_moptions *imo;
2299 struct in_msource *ims;
2300 struct in_multi *inm;
2301 int error;
2302 bool is_final;
2303
2304 ifp = NULL;
2305 error = 0;
2306 is_final = true;
2307
2308 memset(&gsr, 0, sizeof(struct group_source_req));
2309 gsa = (sockunion_t *)&gsr.gsr_group;
2310 gsa->ss.ss_family = AF_UNSPEC;
2311 ssa = (sockunion_t *)&gsr.gsr_source;
2312 ssa->ss.ss_family = AF_UNSPEC;
2313
2314 switch (sopt->sopt_name) {
2315 case IP_DROP_MEMBERSHIP:
2316 case IP_DROP_SOURCE_MEMBERSHIP:
2317 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2318 error = sooptcopyin(sopt, &mreqs,
2319 sizeof(struct ip_mreq),
2320 sizeof(struct ip_mreq));
2321 /*
2322 * Swap interface and sourceaddr arguments,
2323 * as ip_mreq and ip_mreq_source are laid
2324 * out differently.
2325 */
2326 mreqs.imr_interface = mreqs.imr_sourceaddr;
2327 mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2328 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2329 error = sooptcopyin(sopt, &mreqs,
2330 sizeof(struct ip_mreq_source),
2331 sizeof(struct ip_mreq_source));
2332 }
2333 if (error)
2334 return (error);
2335
2336 gsa->sin.sin_family = AF_INET;
2337 gsa->sin.sin_len = sizeof(struct sockaddr_in);
2338 gsa->sin.sin_addr = mreqs.imr_multiaddr;
2339
2340 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2341 ssa->sin.sin_family = AF_INET;
2342 ssa->sin.sin_len = sizeof(struct sockaddr_in);
2343 ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2344 }
2345
2346 /*
2347 * Attempt to look up hinted ifp from interface address.
2348 * Fallthrough with null ifp iff lookup fails, to
2349 * preserve 4.4BSD mcast API idempotence.
2350 * XXX NOTE WELL: The RFC 3678 API is preferred because
2351 * using an IPv4 address as a key is racy.
2352 */
2353 if (!in_nullhost(mreqs.imr_interface)) {
2354 IN_IFADDR_RLOCK(&in_ifa_tracker);
2355 INADDR_TO_IFP(mreqs.imr_interface, ifp);
2356 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2357 }
2358 CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p",
2359 __func__, ntohl(mreqs.imr_interface.s_addr), ifp);
2360
2361 break;
2362
2363 case MCAST_LEAVE_GROUP:
2364 case MCAST_LEAVE_SOURCE_GROUP:
2365 if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2366 error = sooptcopyin(sopt, &gsr,
2367 sizeof(struct group_req),
2368 sizeof(struct group_req));
2369 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2370 error = sooptcopyin(sopt, &gsr,
2371 sizeof(struct group_source_req),
2372 sizeof(struct group_source_req));
2373 }
2374 if (error)
2375 return (error);
2376
2377 if (gsa->sin.sin_family != AF_INET ||
2378 gsa->sin.sin_len != sizeof(struct sockaddr_in))
2379 return (EINVAL);
2380
2381 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2382 if (ssa->sin.sin_family != AF_INET ||
2383 ssa->sin.sin_len != sizeof(struct sockaddr_in))
2384 return (EINVAL);
2385 }
2386
2387 if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2388 return (EADDRNOTAVAIL);
2389
2390 ifp = ifnet_byindex(gsr.gsr_interface);
2391
2392 if (ifp == NULL)
2393 return (EADDRNOTAVAIL);
2394 break;
2395
2396 default:
2397 CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2398 __func__, sopt->sopt_name);
2399 return (EOPNOTSUPP);
2400 break;
2401 }
2402
2403 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2404 return (EINVAL);
2405
2406 IN_MULTI_LOCK();
2407
2408 /*
2409 * Find the membership in the membership list.
2410 */
2411 imo = inp_findmoptions(inp);
2412 imf = imo_match_group(imo, ifp, &gsa->sa);
2413 if (imf == NULL) {
2414 error = EADDRNOTAVAIL;
2415 goto out_inp_locked;
2416 }
2417 inm = imf->imf_inm;
2418
2419 if (ssa->ss.ss_family != AF_UNSPEC)
2420 is_final = false;
2421
2422 /*
2423 * Begin state merge transaction at socket layer.
2424 */
2425 INP_WLOCK_ASSERT(inp);
2426
2427 /*
2428 * If we were instructed only to leave a given source, do so.
2429 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2430 */
2431 if (is_final) {
2432 ip_mfilter_remove(&imo->imo_head, imf);
2433 imf_leave(imf);
2434
2435 /*
2436 * Give up the multicast address record to which
2437 * the membership points.
2438 */
2439 (void) in_leavegroup_locked(imf->imf_inm, imf);
2440 } else {
2441 if (imf->imf_st[0] == MCAST_EXCLUDE) {
2442 error = EADDRNOTAVAIL;
2443 goto out_inp_locked;
2444 }
2445 ims = imo_match_source(imf, &ssa->sa);
2446 if (ims == NULL) {
2447 CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent",
2448 __func__, ntohl(ssa->sin.sin_addr.s_addr), "not ");
2449 error = EADDRNOTAVAIL;
2450 goto out_inp_locked;
2451 }
2452 CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2453 error = imf_prune(imf, &ssa->sin);
2454 if (error) {
2455 CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2456 __func__);
2457 goto out_inp_locked;
2458 }
2459 }
2460
2461 /*
2462 * Begin state merge transaction at IGMP layer.
2463 */
2464 if (!is_final) {
2465 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2466 IN_MULTI_LIST_LOCK();
2467 error = inm_merge(inm, imf);
2468 if (error) {
2469 CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2470 __func__);
2471 IN_MULTI_LIST_UNLOCK();
2472 imf_rollback(imf);
2473 imf_reap(imf);
2474 goto out_inp_locked;
2475 }
2476
2477 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2478 error = igmp_change_state(inm);
2479 IN_MULTI_LIST_UNLOCK();
2480 if (error) {
2481 CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2482 __func__);
2483 imf_rollback(imf);
2484 imf_reap(imf);
2485 goto out_inp_locked;
2486 }
2487 }
2488 imf_commit(imf);
2489 imf_reap(imf);
2490
2491 out_inp_locked:
2492 INP_WUNLOCK(inp);
2493
2494 if (is_final && imf)
2495 ip_mfilter_free(imf);
2496
2497 IN_MULTI_UNLOCK();
2498 return (error);
2499 }
2500
2501 /*
2502 * Select the interface for transmitting IPv4 multicast datagrams.
2503 *
2504 * Either an instance of struct in_addr or an instance of struct ip_mreqn
2505 * may be passed to this socket option. An address of INADDR_ANY or an
2506 * interface index of 0 is used to remove a previous selection.
2507 * When no interface is selected, one is chosen for every send.
2508 */
2509 static int
inp_set_multicast_if(struct inpcb * inp,struct sockopt * sopt)2510 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2511 {
2512 struct rm_priotracker in_ifa_tracker;
2513 struct in_addr addr;
2514 struct ip_mreqn mreqn;
2515 struct ifnet *ifp;
2516 struct ip_moptions *imo;
2517 int error;
2518
2519 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2520 /*
2521 * An interface index was specified using the
2522 * Linux-derived ip_mreqn structure.
2523 */
2524 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2525 sizeof(struct ip_mreqn));
2526 if (error)
2527 return (error);
2528
2529 if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2530 return (EINVAL);
2531
2532 if (mreqn.imr_ifindex == 0) {
2533 ifp = NULL;
2534 } else {
2535 ifp = ifnet_byindex(mreqn.imr_ifindex);
2536 if (ifp == NULL)
2537 return (EADDRNOTAVAIL);
2538 }
2539 } else {
2540 /*
2541 * An interface was specified by IPv4 address.
2542 * This is the traditional BSD usage.
2543 */
2544 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2545 sizeof(struct in_addr));
2546 if (error)
2547 return (error);
2548 if (in_nullhost(addr)) {
2549 ifp = NULL;
2550 } else {
2551 IN_IFADDR_RLOCK(&in_ifa_tracker);
2552 INADDR_TO_IFP(addr, ifp);
2553 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
2554 if (ifp == NULL)
2555 return (EADDRNOTAVAIL);
2556 }
2557 CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp,
2558 ntohl(addr.s_addr));
2559 }
2560
2561 /* Reject interfaces which do not support multicast. */
2562 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2563 return (EOPNOTSUPP);
2564
2565 imo = inp_findmoptions(inp);
2566 imo->imo_multicast_ifp = ifp;
2567 imo->imo_multicast_addr.s_addr = INADDR_ANY;
2568 INP_WUNLOCK(inp);
2569
2570 return (0);
2571 }
2572
2573 /*
2574 * Atomically set source filters on a socket for an IPv4 multicast group.
2575 *
2576 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2577 */
2578 static int
inp_set_source_filters(struct inpcb * inp,struct sockopt * sopt)2579 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2580 {
2581 struct __msfilterreq msfr;
2582 sockunion_t *gsa;
2583 struct ifnet *ifp;
2584 struct in_mfilter *imf;
2585 struct ip_moptions *imo;
2586 struct in_multi *inm;
2587 int error;
2588
2589 error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2590 sizeof(struct __msfilterreq));
2591 if (error)
2592 return (error);
2593
2594 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2595 return (ENOBUFS);
2596
2597 if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2598 msfr.msfr_fmode != MCAST_INCLUDE))
2599 return (EINVAL);
2600
2601 if (msfr.msfr_group.ss_family != AF_INET ||
2602 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2603 return (EINVAL);
2604
2605 gsa = (sockunion_t *)&msfr.msfr_group;
2606 if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2607 return (EINVAL);
2608
2609 gsa->sin.sin_port = 0; /* ignore port */
2610
2611 if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2612 return (EADDRNOTAVAIL);
2613
2614 ifp = ifnet_byindex(msfr.msfr_ifindex);
2615 if (ifp == NULL)
2616 return (EADDRNOTAVAIL);
2617
2618 IN_MULTI_LOCK();
2619
2620 /*
2621 * Take the INP write lock.
2622 * Check if this socket is a member of this group.
2623 */
2624 imo = inp_findmoptions(inp);
2625 imf = imo_match_group(imo, ifp, &gsa->sa);
2626 if (imf == NULL) {
2627 error = EADDRNOTAVAIL;
2628 goto out_inp_locked;
2629 }
2630 inm = imf->imf_inm;
2631
2632 /*
2633 * Begin state merge transaction at socket layer.
2634 */
2635 INP_WLOCK_ASSERT(inp);
2636
2637 imf->imf_st[1] = msfr.msfr_fmode;
2638
2639 /*
2640 * Apply any new source filters, if present.
2641 * Make a copy of the user-space source vector so
2642 * that we may copy them with a single copyin. This
2643 * allows us to deal with page faults up-front.
2644 */
2645 if (msfr.msfr_nsrcs > 0) {
2646 struct in_msource *lims;
2647 struct sockaddr_in *psin;
2648 struct sockaddr_storage *kss, *pkss;
2649 int i;
2650
2651 INP_WUNLOCK(inp);
2652
2653 CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2654 __func__, (unsigned long)msfr.msfr_nsrcs);
2655 kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2656 M_TEMP, M_WAITOK);
2657 error = copyin(msfr.msfr_srcs, kss,
2658 sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2659 if (error) {
2660 free(kss, M_TEMP);
2661 return (error);
2662 }
2663
2664 INP_WLOCK(inp);
2665
2666 /*
2667 * Mark all source filters as UNDEFINED at t1.
2668 * Restore new group filter mode, as imf_leave()
2669 * will set it to INCLUDE.
2670 */
2671 imf_leave(imf);
2672 imf->imf_st[1] = msfr.msfr_fmode;
2673
2674 /*
2675 * Update socket layer filters at t1, lazy-allocating
2676 * new entries. This saves a bunch of memory at the
2677 * cost of one RB_FIND() per source entry; duplicate
2678 * entries in the msfr_nsrcs vector are ignored.
2679 * If we encounter an error, rollback transaction.
2680 *
2681 * XXX This too could be replaced with a set-symmetric
2682 * difference like loop to avoid walking from root
2683 * every time, as the key space is common.
2684 */
2685 for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2686 psin = (struct sockaddr_in *)pkss;
2687 if (psin->sin_family != AF_INET) {
2688 error = EAFNOSUPPORT;
2689 break;
2690 }
2691 if (psin->sin_len != sizeof(struct sockaddr_in)) {
2692 error = EINVAL;
2693 break;
2694 }
2695 error = imf_get_source(imf, psin, &lims);
2696 if (error)
2697 break;
2698 lims->imsl_st[1] = imf->imf_st[1];
2699 }
2700 free(kss, M_TEMP);
2701 }
2702
2703 if (error)
2704 goto out_imf_rollback;
2705
2706 INP_WLOCK_ASSERT(inp);
2707
2708 /*
2709 * Begin state merge transaction at IGMP layer.
2710 */
2711 CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2712 IN_MULTI_LIST_LOCK();
2713 error = inm_merge(inm, imf);
2714 if (error) {
2715 CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2716 IN_MULTI_LIST_UNLOCK();
2717 goto out_imf_rollback;
2718 }
2719
2720 CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2721 error = igmp_change_state(inm);
2722 IN_MULTI_LIST_UNLOCK();
2723 if (error)
2724 CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2725
2726 out_imf_rollback:
2727 if (error)
2728 imf_rollback(imf);
2729 else
2730 imf_commit(imf);
2731
2732 imf_reap(imf);
2733
2734 out_inp_locked:
2735 INP_WUNLOCK(inp);
2736 IN_MULTI_UNLOCK();
2737 return (error);
2738 }
2739
2740 /*
2741 * Set the IP multicast options in response to user setsockopt().
2742 *
2743 * Many of the socket options handled in this function duplicate the
2744 * functionality of socket options in the regular unicast API. However,
2745 * it is not possible to merge the duplicate code, because the idempotence
2746 * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2747 * the effects of these options must be treated as separate and distinct.
2748 *
2749 * SMPng: XXX: Unlocked read of inp_socket believed OK.
2750 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2751 * is refactored to no longer use vifs.
2752 */
2753 int
inp_setmoptions(struct inpcb * inp,struct sockopt * sopt)2754 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2755 {
2756 struct ip_moptions *imo;
2757 int error;
2758
2759 error = 0;
2760
2761 /*
2762 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2763 * or is a divert socket, reject it.
2764 */
2765 if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2766 (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2767 inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2768 return (EOPNOTSUPP);
2769
2770 switch (sopt->sopt_name) {
2771 case IP_MULTICAST_VIF: {
2772 int vifi;
2773 /*
2774 * Select a multicast VIF for transmission.
2775 * Only useful if multicast forwarding is active.
2776 */
2777 if (legal_vif_num == NULL) {
2778 error = EOPNOTSUPP;
2779 break;
2780 }
2781 error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2782 if (error)
2783 break;
2784 if (!legal_vif_num(vifi) && (vifi != -1)) {
2785 error = EINVAL;
2786 break;
2787 }
2788 imo = inp_findmoptions(inp);
2789 imo->imo_multicast_vif = vifi;
2790 INP_WUNLOCK(inp);
2791 break;
2792 }
2793
2794 case IP_MULTICAST_IF:
2795 error = inp_set_multicast_if(inp, sopt);
2796 break;
2797
2798 case IP_MULTICAST_TTL: {
2799 u_char ttl;
2800
2801 /*
2802 * Set the IP time-to-live for outgoing multicast packets.
2803 * The original multicast API required a char argument,
2804 * which is inconsistent with the rest of the socket API.
2805 * We allow either a char or an int.
2806 */
2807 if (sopt->sopt_valsize == sizeof(u_char)) {
2808 error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2809 sizeof(u_char));
2810 if (error)
2811 break;
2812 } else {
2813 u_int ittl;
2814
2815 error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2816 sizeof(u_int));
2817 if (error)
2818 break;
2819 if (ittl > 255) {
2820 error = EINVAL;
2821 break;
2822 }
2823 ttl = (u_char)ittl;
2824 }
2825 imo = inp_findmoptions(inp);
2826 imo->imo_multicast_ttl = ttl;
2827 INP_WUNLOCK(inp);
2828 break;
2829 }
2830
2831 case IP_MULTICAST_LOOP: {
2832 u_char loop;
2833
2834 /*
2835 * Set the loopback flag for outgoing multicast packets.
2836 * Must be zero or one. The original multicast API required a
2837 * char argument, which is inconsistent with the rest
2838 * of the socket API. We allow either a char or an int.
2839 */
2840 if (sopt->sopt_valsize == sizeof(u_char)) {
2841 error = sooptcopyin(sopt, &loop, sizeof(u_char),
2842 sizeof(u_char));
2843 if (error)
2844 break;
2845 } else {
2846 u_int iloop;
2847
2848 error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2849 sizeof(u_int));
2850 if (error)
2851 break;
2852 loop = (u_char)iloop;
2853 }
2854 imo = inp_findmoptions(inp);
2855 imo->imo_multicast_loop = !!loop;
2856 INP_WUNLOCK(inp);
2857 break;
2858 }
2859
2860 case IP_ADD_MEMBERSHIP:
2861 case IP_ADD_SOURCE_MEMBERSHIP:
2862 case MCAST_JOIN_GROUP:
2863 case MCAST_JOIN_SOURCE_GROUP:
2864 error = inp_join_group(inp, sopt);
2865 break;
2866
2867 case IP_DROP_MEMBERSHIP:
2868 case IP_DROP_SOURCE_MEMBERSHIP:
2869 case MCAST_LEAVE_GROUP:
2870 case MCAST_LEAVE_SOURCE_GROUP:
2871 error = inp_leave_group(inp, sopt);
2872 break;
2873
2874 case IP_BLOCK_SOURCE:
2875 case IP_UNBLOCK_SOURCE:
2876 case MCAST_BLOCK_SOURCE:
2877 case MCAST_UNBLOCK_SOURCE:
2878 error = inp_block_unblock_source(inp, sopt);
2879 break;
2880
2881 case IP_MSFILTER:
2882 error = inp_set_source_filters(inp, sopt);
2883 break;
2884
2885 default:
2886 error = EOPNOTSUPP;
2887 break;
2888 }
2889
2890 INP_UNLOCK_ASSERT(inp);
2891
2892 return (error);
2893 }
2894
2895 /*
2896 * Expose IGMP's multicast filter mode and source list(s) to userland,
2897 * keyed by (ifindex, group).
2898 * The filter mode is written out as a uint32_t, followed by
2899 * 0..n of struct in_addr.
2900 * For use by ifmcstat(8).
2901 * SMPng: NOTE: unlocked read of ifindex space.
2902 */
2903 static int
sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)2904 sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2905 {
2906 struct in_addr src, group;
2907 struct epoch_tracker et;
2908 struct ifnet *ifp;
2909 struct ifmultiaddr *ifma;
2910 struct in_multi *inm;
2911 struct ip_msource *ims;
2912 int *name;
2913 int retval;
2914 u_int namelen;
2915 uint32_t fmode, ifindex;
2916
2917 name = (int *)arg1;
2918 namelen = arg2;
2919
2920 if (req->newptr != NULL)
2921 return (EPERM);
2922
2923 if (namelen != 2)
2924 return (EINVAL);
2925
2926 ifindex = name[0];
2927 if (ifindex <= 0 || ifindex > V_if_index) {
2928 CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2929 __func__, ifindex);
2930 return (ENOENT);
2931 }
2932
2933 group.s_addr = name[1];
2934 if (!IN_MULTICAST(ntohl(group.s_addr))) {
2935 CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast",
2936 __func__, ntohl(group.s_addr));
2937 return (EINVAL);
2938 }
2939
2940 NET_EPOCH_ENTER(et);
2941 ifp = ifnet_byindex(ifindex);
2942 if (ifp == NULL) {
2943 NET_EPOCH_EXIT(et);
2944 CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2945 __func__, ifindex);
2946 return (ENOENT);
2947 }
2948
2949 retval = sysctl_wire_old_buffer(req,
2950 sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2951 if (retval) {
2952 NET_EPOCH_EXIT(et);
2953 return (retval);
2954 }
2955
2956 IN_MULTI_LIST_LOCK();
2957
2958 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2959 if (ifma->ifma_addr->sa_family != AF_INET ||
2960 ifma->ifma_protospec == NULL)
2961 continue;
2962 inm = (struct in_multi *)ifma->ifma_protospec;
2963 if (!in_hosteq(inm->inm_addr, group))
2964 continue;
2965 fmode = inm->inm_st[1].iss_fmode;
2966 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2967 if (retval != 0)
2968 break;
2969 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2970 CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__,
2971 ims->ims_haddr);
2972 /*
2973 * Only copy-out sources which are in-mode.
2974 */
2975 if (fmode != ims_get_mode(inm, ims, 1)) {
2976 CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2977 __func__);
2978 continue;
2979 }
2980 src.s_addr = htonl(ims->ims_haddr);
2981 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2982 if (retval != 0)
2983 break;
2984 }
2985 }
2986
2987 IN_MULTI_LIST_UNLOCK();
2988 NET_EPOCH_EXIT(et);
2989
2990 return (retval);
2991 }
2992
2993 #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3)
2994
2995 static const char *inm_modestrs[] = {
2996 [MCAST_UNDEFINED] = "un",
2997 [MCAST_INCLUDE] = "in",
2998 [MCAST_EXCLUDE] = "ex",
2999 };
3000 _Static_assert(MCAST_UNDEFINED == 0 &&
3001 MCAST_EXCLUDE + 1 == nitems(inm_modestrs),
3002 "inm_modestrs: no longer matches #defines");
3003
3004 static const char *
inm_mode_str(const int mode)3005 inm_mode_str(const int mode)
3006 {
3007
3008 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
3009 return (inm_modestrs[mode]);
3010 return ("??");
3011 }
3012
3013 static const char *inm_statestrs[] = {
3014 [IGMP_NOT_MEMBER] = "not-member",
3015 [IGMP_SILENT_MEMBER] = "silent",
3016 [IGMP_REPORTING_MEMBER] = "reporting",
3017 [IGMP_IDLE_MEMBER] = "idle",
3018 [IGMP_LAZY_MEMBER] = "lazy",
3019 [IGMP_SLEEPING_MEMBER] = "sleeping",
3020 [IGMP_AWAKENING_MEMBER] = "awakening",
3021 [IGMP_G_QUERY_PENDING_MEMBER] = "query-pending",
3022 [IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending",
3023 [IGMP_LEAVING_MEMBER] = "leaving",
3024 };
3025 _Static_assert(IGMP_NOT_MEMBER == 0 &&
3026 IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs),
3027 "inm_statetrs: no longer matches #defines");
3028
3029 static const char *
inm_state_str(const int state)3030 inm_state_str(const int state)
3031 {
3032
3033 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3034 return (inm_statestrs[state]);
3035 return ("??");
3036 }
3037
3038 /*
3039 * Dump an in_multi structure to the console.
3040 */
3041 void
inm_print(const struct in_multi * inm)3042 inm_print(const struct in_multi *inm)
3043 {
3044 int t;
3045 char addrbuf[INET_ADDRSTRLEN];
3046
3047 if ((ktr_mask & KTR_IGMPV3) == 0)
3048 return;
3049
3050 printf("%s: --- begin inm %p ---\n", __func__, inm);
3051 printf("addr %s ifp %p(%s) ifma %p\n",
3052 inet_ntoa_r(inm->inm_addr, addrbuf),
3053 inm->inm_ifp,
3054 inm->inm_ifp->if_xname,
3055 inm->inm_ifma);
3056 printf("timer %u state %s refcount %u scq.len %u\n",
3057 inm->inm_timer,
3058 inm_state_str(inm->inm_state),
3059 inm->inm_refcount,
3060 inm->inm_scq.mq_len);
3061 printf("igi %p nsrc %lu sctimer %u scrv %u\n",
3062 inm->inm_igi,
3063 inm->inm_nsrc,
3064 inm->inm_sctimer,
3065 inm->inm_scrv);
3066 for (t = 0; t < 2; t++) {
3067 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3068 inm_mode_str(inm->inm_st[t].iss_fmode),
3069 inm->inm_st[t].iss_asm,
3070 inm->inm_st[t].iss_ex,
3071 inm->inm_st[t].iss_in,
3072 inm->inm_st[t].iss_rec);
3073 }
3074 printf("%s: --- end inm %p ---\n", __func__, inm);
3075 }
3076
3077 #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */
3078
3079 void
inm_print(const struct in_multi * inm)3080 inm_print(const struct in_multi *inm)
3081 {
3082
3083 }
3084
3085 #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */
3086
3087 RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
3088