1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator.  The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
14 
15 #ifdef HAVE_CONFIG_H
16 #include "config.h"
17 #endif
18 
19 #ifdef HAVE_STDINT_H
20 # include <stdint.h>
21 #endif
22 #ifdef HAVE_INTTYPES_H
23 # include <inttypes.h>
24 #endif
25 
26 #define UNUSED(x) ( (void)(x) )
27 
28 extern void qsort();
29 extern double strtod();
30 extern long strtol();
31 extern void free();
32 extern int access();
33 extern int atoi();
34 extern char *getenv();
35 
36 #ifndef __WIN32__
37 #   if defined(_WIN32) || defined(WIN32)
38 #	define __WIN32__
39 #   endif
40 #endif
41 
42 #if __GNUC__ > 2
43 #define NORETURN __attribute__ ((__noreturn__))
44 #else
45 #define NORETURN
46 #endif
47 
48 /* #define PRIVATE static */
49 #define PRIVATE static
50 
51 #ifdef TEST
52 #define MAXRHS 5       /* Set low to exercise exception code */
53 #else
54 #define MAXRHS 1000
55 #endif
56 
57 char *msort();
58 extern void *malloc();
59 
60 extern void memory_error() NORETURN;
61 
62 /******** From the file "action.h" *************************************/
63 struct action *Action_new();
64 struct action *Action_sort();
65 void Action_add();
66 
67 /********* From the file "assert.h" ************************************/
68 void myassert() NORETURN;
69 #ifndef NDEBUG
70 #  define assert(X) if(!(X))myassert(__FILE__,__LINE__)
71 #else
72 #  define assert(X)
73 #endif
74 
75 /********** From the file "build.h" ************************************/
76 void FindRulePrecedences();
77 void FindFirstSets();
78 void FindStates();
79 void FindLinks();
80 void FindFollowSets();
81 void FindActions();
82 
83 /********* From the file "configlist.h" *********************************/
84 void Configlist_init(/* void */);
85 struct config *Configlist_add(/* struct rule *, int */);
86 struct config *Configlist_addbasis(/* struct rule *, int */);
87 void Configlist_closure(/* void */);
88 void Configlist_sort(/* void */);
89 void Configlist_sortbasis(/* void */);
90 struct config *Configlist_return(/* void */);
91 struct config *Configlist_basis(/* void */);
92 void Configlist_eat(/* struct config * */);
93 void Configlist_reset(/* void */);
94 
95 /********* From the file "error.h" ***************************************/
96 void ErrorMsg(const char *, int,const char *, ...);
97 
98 /****** From the file "option.h" ******************************************/
99 struct s_options {
100   enum { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
101          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
102   char *label;
103   char *arg;
104   char *message;
105 };
106 int    OptInit(/* char**,struct s_options*,FILE* */);
107 int    OptNArgs(/* void */);
108 char  *OptArg(/* int */);
109 void   OptErr(/* int */);
110 void   OptPrint(/* void */);
111 
112 /******** From the file "parse.h" *****************************************/
113 void Parse(/* struct lemon *lemp */);
114 
115 /********* From the file "plink.h" ***************************************/
116 struct plink *Plink_new(/* void */);
117 void Plink_add(/* struct plink **, struct config * */);
118 void Plink_copy(/* struct plink **, struct plink * */);
119 void Plink_delete(/* struct plink * */);
120 
121 /********** From the file "report.h" *************************************/
122 void Reprint(/* struct lemon * */);
123 void ReportOutput(/* struct lemon * */);
124 void ReportTable(/* struct lemon * */);
125 void ReportHeader(/* struct lemon * */);
126 void CompressTables(/* struct lemon * */);
127 
128 /********** From the file "set.h" ****************************************/
129 void  SetSize(/* int N */);             /* All sets will be of size N */
130 char *SetNew(/* void */);               /* A new set for element 0..N */
131 void  SetFree(/* char* */);             /* Deallocate a set */
132 
133 int SetAdd(/* char*,int */);            /* Add element to a set */
134 int SetUnion(/* char *A,char *B */);    /* A <- A U B, thru element N */
135 
136 #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
137 
138 /********** From the file "struct.h" *************************************/
139 /*
140 ** Principal data structures for the LEMON parser generator.
141 */
142 
143 typedef enum {Bo_FALSE=0, Bo_TRUE} Boolean;
144 
145 /* Symbols (terminals and nonterminals) of the grammar are stored
146 ** in the following: */
147 struct symbol {
148   char *name;              /* Name of the symbol */
149   int index;               /* Index number for this symbol */
150   enum {
151     TERMINAL,
152     NONTERMINAL
153   } type;                  /* Symbols are all either TERMINALS or NTs */
154   struct rule *rule;       /* Linked list of rules of this (if an NT) */
155   struct symbol *fallback; /* fallback token in case this token doesn't parse */
156   int prec;                /* Precedence if defined (-1 otherwise) */
157   enum e_assoc {
158     LEFT,
159     RIGHT,
160     NONE,
161     UNK
162   } assoc;                 /* Associativity if predecence is defined */
163   char *firstset;          /* First-set for all rules of this symbol */
164   Boolean lambda;          /* True if NT and can generate an empty string */
165   char *destructor;        /* Code which executes whenever this symbol is
166                            ** popped from the stack during error processing */
167   int destructorln;        /* Line number of destructor code */
168   char *datatype;          /* The data type of information held by this
169                            ** object. Only used if type==NONTERMINAL */
170   int dtnum;               /* The data type number.  In the parser, the value
171                            ** stack is a union.  The .yy%d element of this
172                            ** union is the correct data type for this object */
173 };
174 
175 /* Each production rule in the grammar is stored in the following
176 ** structure.  */
177 struct rule {
178   struct symbol *lhs;      /* Left-hand side of the rule */
179   char *lhsalias;          /* Alias for the LHS (NULL if none) */
180   int ruleline;            /* Line number for the rule */
181   int nrhs;                /* Number of RHS symbols */
182   struct symbol **rhs;     /* The RHS symbols */
183   char **rhsalias;         /* An alias for each RHS symbol (NULL if none) */
184   int line;                /* Line number at which code begins */
185   char *code;              /* The code executed when this rule is reduced */
186   struct symbol *precsym;  /* Precedence symbol for this rule */
187   int index;               /* An index number for this rule */
188   Boolean canReduce;       /* True if this rule is ever reduced */
189   struct rule *nextlhs;    /* Next rule with the same LHS */
190   struct rule *next;       /* Next rule in the global list */
191 };
192 
193 /* A configuration is a production rule of the grammar together with
194 ** a mark (dot) showing how much of that rule has been processed so far.
195 ** Configurations also contain a follow-set which is a list of terminal
196 ** symbols which are allowed to immediately follow the end of the rule.
197 ** Every configuration is recorded as an instance of the following: */
198 struct config {
199   struct rule *rp;         /* The rule upon which the configuration is based */
200   int dot;                 /* The parse point */
201   char *fws;               /* Follow-set for this configuration only */
202   struct plink *fplp;      /* Follow-set forward propagation links */
203   struct plink *bplp;      /* Follow-set backwards propagation links */
204   struct state *stp;       /* Pointer to state which contains this */
205   enum {
206     COMPLETE,              /* The status is used during followset and */
207     INCOMPLETE             /*    shift computations */
208   } status;
209   struct config *next;     /* Next configuration in the state */
210   struct config *bp;       /* The next basis configuration */
211 };
212 
213 /* Every shift or reduce operation is stored as one of the following */
214 struct action {
215   struct symbol *sp;       /* The look-ahead symbol */
216   enum e_action {
217     SHIFT,
218     ACCEPT,
219     REDUCE,
220     ERROR,
221     CONFLICT,                /* Was a reduce, but part of a conflict */
222     SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
223     RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
224     NOT_USED                 /* Deleted by compression */
225   } type;
226   union {
227     struct state *stp;     /* The new state, if a shift */
228     struct rule *rp;       /* The rule, if a reduce */
229   } x;
230   struct action *next;     /* Next action for this state */
231   struct action *collide;  /* Next action with the same hash */
232 };
233 
234 /* Each state of the generated parser's finite state machine
235 ** is encoded as an instance of the following structure. */
236 struct state {
237   struct config *bp;       /* The basis configurations for this state */
238   struct config *cfp;      /* All configurations in this set */
239   int index;               /* Sequencial number for this state */
240   struct action *ap;       /* Array of actions for this state */
241   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
242   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
243   int iDflt;               /* Default action */
244 };
245 #define NO_OFFSET (-2147483647)
246 
247 /* A followset propagation link indicates that the contents of one
248 ** configuration followset should be propagated to another whenever
249 ** the first changes. */
250 struct plink {
251   struct config *cfp;      /* The configuration to which linked */
252   struct plink *next;      /* The next propagate link */
253 };
254 
255 /* The state vector for the entire parser generator is recorded as
256 ** follows.  (LEMON uses no global variables and makes little use of
257 ** static variables.  Fields in the following structure can be thought
258 ** of as begin global variables in the program.) */
259 struct lemon {
260   struct state **sorted;   /* Table of states sorted by state number */
261   struct rule *rule;       /* List of all rules */
262   int nstate;              /* Number of states */
263   int nrule;               /* Number of rules */
264   int nsymbol;             /* Number of terminal and nonterminal symbols */
265   int nterminal;           /* Number of terminal symbols */
266   struct symbol **symbols; /* Sorted array of pointers to symbols */
267   int errorcnt;            /* Number of errors */
268   struct symbol *errsym;   /* The error symbol */
269   char *name;              /* Name of the generated parser */
270   char *arg;               /* Declaration of the 3th argument to parser */
271   char *tokentype;         /* Type of terminal symbols in the parser stack */
272   char *vartype;           /* The default type of non-terminal symbols */
273   char *start;             /* Name of the start symbol for the grammar */
274   char *stacksize;         /* Size of the parser stack */
275   char *include;           /* Code to put at the start of the C file */
276   int  includeln;          /* Line number for start of include code */
277   char *error;             /* Code to execute when an error is seen */
278   int  errorln;            /* Line number for start of error code */
279   char *overflow;          /* Code to execute on a stack overflow */
280   int  overflowln;         /* Line number for start of overflow code */
281   char *failure;           /* Code to execute on parser failure */
282   int  failureln;          /* Line number for start of failure code */
283   char *accept;            /* Code to execute when the parser excepts */
284   int  acceptln;           /* Line number for the start of accept code */
285   char *extracode;         /* Code appended to the generated file */
286   int  extracodeln;        /* Line number for the start of the extra code */
287   char *tokendest;         /* Code to execute to destroy token data */
288   int  tokendestln;        /* Line number for token destroyer code */
289   char *vardest;           /* Code for the default non-terminal destructor */
290   int  vardestln;          /* Line number for default non-term destructor code*/
291   char *filename;          /* Name of the input file */
292   char *tmplname;          /* Name of the template file */
293   char *outname;           /* Name of the current output file */
294   char *tokenprefix;       /* A prefix added to token names in the .h file */
295   int nconflict;           /* Number of parsing conflicts */
296   int tablesize;           /* Size of the parse tables */
297   int basisflag;           /* Print only basis configurations */
298   int has_fallback;        /* True if any %fallback is seen in the grammer */
299   char *argv0;             /* Name of the program */
300 };
301 
302 #define MemoryCheck(X) if((X)==0){ \
303   memory_error(); \
304 }
305 
306 /**************** From the file "table.h" *********************************/
307 /*
308 ** All code in this file has been automatically generated
309 ** from a specification in the file
310 **              "table.q"
311 ** by the associative array code building program "aagen".
312 ** Do not edit this file!  Instead, edit the specification
313 ** file, then rerun aagen.
314 */
315 /*
316 ** Code for processing tables in the LEMON parser generator.
317 */
318 
319 /* Routines for handling a strings */
320 
321 char *Strsafe();
322 
323 void Strsafe_init(/* void */);
324 int Strsafe_insert(/* char * */);
325 char *Strsafe_find(/* char * */);
326 
327 /* Routines for handling symbols of the grammar */
328 
329 struct symbol *Symbol_new();
330 int Symbolcmpp(/* struct symbol **, struct symbol ** */);
331 void Symbol_init(/* void */);
332 int Symbol_insert(/* struct symbol *, char * */);
333 struct symbol *Symbol_find(/* char * */);
334 struct symbol *Symbol_Nth(/* int */);
335 int Symbol_count(/*  */);
336 struct symbol **Symbol_arrayof(/*  */);
337 
338 /* Routines to manage the state table */
339 
340 int Configcmp(/* struct config *, struct config * */);
341 struct state *State_new();
342 void State_init(/* void */);
343 int State_insert(/* struct state *, struct config * */);
344 struct state *State_find(/* struct config * */);
345 struct state **State_arrayof(/*  */);
346 
347 /* Routines used for efficiency in Configlist_add */
348 
349 void Configtable_init(/* void */);
350 int Configtable_insert(/* struct config * */);
351 struct config *Configtable_find(/* struct config * */);
352 void Configtable_clear(/* int(*)(struct config *) */);
353 /****************** From the file "action.c" *******************************/
354 /*
355 ** Routines processing parser actions in the LEMON parser generator.
356 */
357 
358 /* Allocate a new parser action */
Action_new()359 struct action *Action_new(){
360   static struct action *freelist = NULL;
361   struct action *new;
362 
363   if( freelist==NULL ){
364     int i;
365     int amt = 100;
366     freelist = (struct action *)malloc( sizeof(struct action)*amt );
367     if( freelist==0 ){
368       fprintf(stderr,"Unable to allocate memory for a new parser action.");
369       exit(1);
370     }
371     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
372     freelist[amt-1].next = 0;
373   }
374   new = freelist;
375   freelist = freelist->next;
376   return new;
377 }
378 
379 /* Compare two actions */
actioncmp(ap1,ap2)380 static int actioncmp(ap1,ap2)
381 struct action *ap1;
382 struct action *ap2;
383 {
384   int rc;
385   rc = ap1->sp->index - ap2->sp->index;
386   if( rc==0 ) rc = (int)ap1->type - (int)ap2->type;
387   if( rc==0 ){
388     assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT);
389     assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT);
390     rc = ap1->x.rp->index - ap2->x.rp->index;
391   }
392   return rc;
393 }
394 
395 /* Sort parser actions */
Action_sort(ap)396 struct action *Action_sort(ap)
397 struct action *ap;
398 {
399   ap = (struct action *)msort(ap,&ap->next,actioncmp);
400   return ap;
401 }
402 
Action_add(app,type,sp,arg)403 void Action_add(app,type,sp,arg)
404 struct action **app;
405 enum e_action type;
406 struct symbol *sp;
407 void *arg;
408 {
409   struct action *new;
410   new = Action_new();
411   new->next = *app;
412   *app = new;
413   new->type = type;
414   new->sp = sp;
415   if( type==SHIFT ){
416     new->x.stp = (struct state *)arg;
417   }else{
418     new->x.rp = (struct rule *)arg;
419   }
420 }
421 /********************** New code to implement the "acttab" module ***********/
422 /*
423 ** This module implements routines use to construct the yy_action[] table.
424 */
425 
426 /*
427 ** The state of the yy_action table under construction is an instance of
428 ** the following structure
429 */
430 typedef struct acttab acttab;
431 struct acttab {
432   int nAction;                 /* Number of used slots in aAction[] */
433   int nActionAlloc;            /* Slots allocated for aAction[] */
434   struct {
435     int lookahead;             /* Value of the lookahead token */
436     int action;                /* Action to take on the given lookahead */
437   } *aAction,                  /* The yy_action[] table under construction */
438     *aLookahead;               /* A single new transaction set */
439   int mnLookahead;             /* Minimum aLookahead[].lookahead */
440   int mnAction;                /* Action associated with mnLookahead */
441   int mxLookahead;             /* Maximum aLookahead[].lookahead */
442   int nLookahead;              /* Used slots in aLookahead[] */
443   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
444 };
445 
446 /* Return the number of entries in the yy_action table */
447 #define acttab_size(X) ((X)->nAction)
448 
449 /* The value for the N-th entry in yy_action */
450 #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
451 
452 /* The value for the N-th entry in yy_lookahead */
453 #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
454 
455 /* Free all memory associated with the given acttab */
456 /*
457 PRIVATE void acttab_free(acttab *p){
458   free( p->aAction );
459   free( p->aLookahead );
460   free( p );
461 }
462 */
463 
464 /* Allocate a new acttab structure */
acttab_alloc(void)465 PRIVATE acttab *acttab_alloc(void){
466   acttab *p = malloc( sizeof(*p) );
467   if( p==0 ){
468     fprintf(stderr,"Unable to allocate memory for a new acttab.");
469     exit(1);
470   }
471   memset(p, 0, sizeof(*p));
472   return p;
473 }
474 
475 /* Add a new action to the current transaction set
476 */
acttab_action(acttab * p,int lookahead,int action)477 PRIVATE void acttab_action(acttab *p, int lookahead, int action){
478   if( p->nLookahead>=p->nLookaheadAlloc ){
479     p->nLookaheadAlloc += 25;
480     p->aLookahead = realloc( p->aLookahead,
481                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
482     if( p->aLookahead==0 ){
483       fprintf(stderr,"malloc failed\n");
484       exit(1);
485     }
486   }
487   if( p->nLookahead==0 ){
488     p->mxLookahead = lookahead;
489     p->mnLookahead = lookahead;
490     p->mnAction = action;
491   }else{
492     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
493     if( p->mnLookahead>lookahead ){
494       p->mnLookahead = lookahead;
495       p->mnAction = action;
496     }
497   }
498   p->aLookahead[p->nLookahead].lookahead = lookahead;
499   p->aLookahead[p->nLookahead].action = action;
500   p->nLookahead++;
501 }
502 
503 /*
504 ** Add the transaction set built up with prior calls to acttab_action()
505 ** into the current action table.  Then reset the transaction set back
506 ** to an empty set in preparation for a new round of acttab_action() calls.
507 **
508 ** Return the offset into the action table of the new transaction.
509 */
acttab_insert(acttab * p)510 PRIVATE int acttab_insert(acttab *p){
511   int i, j, k, n;
512   assert( p->nLookahead>0 );
513 
514   /* Make sure we have enough space to hold the expanded action table
515   ** in the worst case.  The worst case occurs if the transaction set
516   ** must be appended to the current action table
517   */
518   n = p->mxLookahead + 1;
519   if( p->nAction + n >= p->nActionAlloc ){
520     int oldAlloc = p->nActionAlloc;
521     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
522     p->aAction = realloc( p->aAction,
523                           sizeof(p->aAction[0])*p->nActionAlloc);
524     if( p->aAction==0 ){
525       fprintf(stderr,"malloc failed\n");
526       exit(1);
527     }
528     for(i=oldAlloc; i<p->nActionAlloc; i++){
529       p->aAction[i].lookahead = -1;
530       p->aAction[i].action = -1;
531     }
532   }
533 
534   /* Scan the existing action table looking for an offset where we can
535   ** insert the current transaction set.  Fall out of the loop when that
536   ** offset is found.  In the worst case, we fall out of the loop when
537   ** i reaches p->nAction, which means we append the new transaction set.
538   **
539   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
540   */
541   for(i=0; i<p->nAction+p->mnLookahead; i++){
542     if( p->aAction[i].lookahead<0 ){
543       for(j=0; j<p->nLookahead; j++){
544         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
545         if( k<0 ) break;
546         if( p->aAction[k].lookahead>=0 ) break;
547       }
548       if( j<p->nLookahead ) continue;
549       for(j=0; j<p->nAction; j++){
550         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
551       }
552       if( j==p->nAction ){
553         break;  /* Fits in empty slots */
554       }
555     }else if( p->aAction[i].lookahead==p->mnLookahead ){
556       if( p->aAction[i].action!=p->mnAction ) continue;
557       for(j=0; j<p->nLookahead; j++){
558         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
559         if( k<0 || k>=p->nAction ) break;
560         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
561         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
562       }
563       if( j<p->nLookahead ) continue;
564       n = 0;
565       for(j=0; j<p->nAction; j++){
566         if( p->aAction[j].lookahead<0 ) continue;
567         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
568       }
569       if( n==p->nLookahead ){
570         break;  /* Same as a prior transaction set */
571       }
572     }
573   }
574   /* Insert transaction set at index i. */
575   for(j=0; j<p->nLookahead; j++){
576     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
577     p->aAction[k] = p->aLookahead[j];
578     if( k>=p->nAction ) p->nAction = k+1;
579   }
580   p->nLookahead = 0;
581 
582   /* Return the offset that is added to the lookahead in order to get the
583   ** index into yy_action of the action */
584   return i - p->mnLookahead;
585 }
586 
587 /********************** From the file "assert.c" ****************************/
588 /*
589 ** A more efficient way of handling assertions.
590 */
myassert(file,line)591 void myassert(file,line)
592 char *file;
593 int line;
594 {
595   fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file);
596   exit(1);
597 }
598 /********************** From the file "build.c" *****************************/
599 /*
600 ** Routines to construction the finite state machine for the LEMON
601 ** parser generator.
602 */
603 
604 /* Find a precedence symbol of every rule in the grammar.
605 **
606 ** Those rules which have a precedence symbol coded in the input
607 ** grammar using the "[symbol]" construct will already have the
608 ** rp->precsym field filled.  Other rules take as their precedence
609 ** symbol the first RHS symbol with a defined precedence.  If there
610 ** are not RHS symbols with a defined precedence, the precedence
611 ** symbol field is left blank.
612 */
FindRulePrecedences(xp)613 void FindRulePrecedences(xp)
614 struct lemon *xp;
615 {
616   struct rule *rp;
617   for(rp=xp->rule; rp; rp=rp->next){
618     if( rp->precsym==0 ){
619       int i;
620       for(i=0; i<rp->nrhs; i++){
621         if( rp->rhs[i]->prec>=0 ){
622           rp->precsym = rp->rhs[i];
623           break;
624 	}
625       }
626     }
627   }
628   return;
629 }
630 
631 /* Find all nonterminals which will generate the empty string.
632 ** Then go back and compute the first sets of every nonterminal.
633 ** The first set is the set of all terminal symbols which can begin
634 ** a string generated by that nonterminal.
635 */
FindFirstSets(lemp)636 void FindFirstSets(lemp)
637 struct lemon *lemp;
638 {
639   int i;
640   struct rule *rp;
641   int progress;
642 
643   for(i=0; i<lemp->nsymbol; i++){
644     lemp->symbols[i]->lambda = Bo_FALSE;
645   }
646   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
647     lemp->symbols[i]->firstset = SetNew();
648   }
649 
650   /* First compute all lambdas */
651   do{
652     progress = 0;
653     for(rp=lemp->rule; rp; rp=rp->next){
654       if( rp->lhs->lambda ) continue;
655       for(i=0; i<rp->nrhs; i++){
656          if( rp->rhs[i]->lambda==Bo_FALSE ) break;
657       }
658       if( i==rp->nrhs ){
659         rp->lhs->lambda = Bo_TRUE;
660         progress = 1;
661       }
662     }
663   }while( progress );
664 
665   /* Now compute all first sets */
666   do{
667     struct symbol *s1, *s2;
668     progress = 0;
669     for(rp=lemp->rule; rp; rp=rp->next){
670       s1 = rp->lhs;
671       for(i=0; i<rp->nrhs; i++){
672         s2 = rp->rhs[i];
673         if( s2->type==TERMINAL ){
674           progress += SetAdd(s1->firstset,s2->index);
675           break;
676 	}else if( s1==s2 ){
677           if( s1->lambda==Bo_FALSE ) break;
678 	}else{
679           progress += SetUnion(s1->firstset,s2->firstset);
680           if( s2->lambda==Bo_FALSE ) break;
681 	}
682       }
683     }
684   }while( progress );
685   return;
686 }
687 
688 /* Compute all LR(0) states for the grammar.  Links
689 ** are added to between some states so that the LR(1) follow sets
690 ** can be computed later.
691 */
692 PRIVATE struct state *getstate(/* struct lemon * */);  /* forward reference */
FindStates(lemp)693 void FindStates(lemp)
694 struct lemon *lemp;
695 {
696   struct symbol *sp;
697   struct rule *rp;
698 
699   Configlist_init();
700 
701   /* Find the start symbol */
702   if( lemp->start ){
703     sp = Symbol_find(lemp->start);
704     if( sp==0 ){
705       ErrorMsg(lemp->filename,0,
706 "The specified start symbol \"%s\" is not \
707 in a nonterminal of the grammar.  \"%s\" will be used as the start \
708 symbol instead.",lemp->start,lemp->rule->lhs->name);
709       lemp->errorcnt++;
710       sp = lemp->rule->lhs;
711     }
712   }else{
713     sp = lemp->rule->lhs;
714   }
715 
716   /* Make sure the start symbol doesn't occur on the right-hand side of
717   ** any rule.  Report an error if it does.  (YACC would generate a new
718   ** start symbol in this case.) */
719   for(rp=lemp->rule; rp; rp=rp->next){
720     int i;
721     for(i=0; i<rp->nrhs; i++){
722       if( rp->rhs[i]==sp ){
723         ErrorMsg(lemp->filename,0,
724 "The start symbol \"%s\" occurs on the \
725 right-hand side of a rule. This will result in a parser which \
726 does not work properly.",sp->name);
727         lemp->errorcnt++;
728       }
729     }
730   }
731 
732   /* The basis configuration set for the first state
733   ** is all rules which have the start symbol as their
734   ** left-hand side */
735   for(rp=sp->rule; rp; rp=rp->nextlhs){
736     struct config *newcfp;
737     newcfp = Configlist_addbasis(rp,0);
738     SetAdd(newcfp->fws,0);
739   }
740 
741   /* Compute the first state.  All other states will be
742   ** computed automatically during the computation of the first one.
743   ** The returned pointer to the first state is not used. */
744   (void)getstate(lemp);
745   return;
746 }
747 
748 /* Return a pointer to a state which is described by the configuration
749 ** list which has been built from calls to Configlist_add.
750 */
751 PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
getstate(lemp)752 PRIVATE struct state *getstate(lemp)
753 struct lemon *lemp;
754 {
755   struct config *cfp, *bp;
756   struct state *stp;
757 
758   /* Extract the sorted basis of the new state.  The basis was constructed
759   ** by prior calls to "Configlist_addbasis()". */
760   Configlist_sortbasis();
761   bp = Configlist_basis();
762 
763   /* Get a state with the same basis */
764   stp = State_find(bp);
765   if( stp ){
766     /* A state with the same basis already exists!  Copy all the follow-set
767     ** propagation links from the state under construction into the
768     ** preexisting state, then return a pointer to the preexisting state */
769     struct config *x, *y;
770     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
771       Plink_copy(&y->bplp,x->bplp);
772       Plink_delete(x->fplp);
773       x->fplp = x->bplp = 0;
774     }
775     cfp = Configlist_return();
776     Configlist_eat(cfp);
777   }else{
778     /* This really is a new state.  Construct all the details */
779     Configlist_closure(lemp);    /* Compute the configuration closure */
780     Configlist_sort();           /* Sort the configuration closure */
781     cfp = Configlist_return();   /* Get a pointer to the config list */
782     stp = State_new();           /* A new state structure */
783     MemoryCheck(stp);
784     stp->bp = bp;                /* Remember the configuration basis */
785     stp->cfp = cfp;              /* Remember the configuration closure */
786     stp->index = lemp->nstate++; /* Every state gets a sequence number */
787     stp->ap = 0;                 /* No actions, yet. */
788     State_insert(stp,stp->bp);   /* Add to the state table */
789     buildshifts(lemp,stp);       /* Recursively compute successor states */
790   }
791   return stp;
792 }
793 
794 /* Construct all successor states to the given state.  A "successor"
795 ** state is any state which can be reached by a shift action.
796 */
buildshifts(lemp,stp)797 PRIVATE void buildshifts(lemp,stp)
798 struct lemon *lemp;
799 struct state *stp;     /* The state from which successors are computed */
800 {
801   struct config *cfp;  /* For looping thru the config closure of "stp" */
802   struct config *bcfp; /* For the inner loop on config closure of "stp" */
803   struct config *new;  /* */
804   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
805   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
806   struct state *newstp; /* A pointer to a successor state */
807 
808   /* Each configuration becomes complete after it contibutes to a successor
809   ** state.  Initially, all configurations are incomplete */
810   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
811 
812   /* Loop through all configurations of the state "stp" */
813   for(cfp=stp->cfp; cfp; cfp=cfp->next){
814     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
815     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
816     Configlist_reset();                      /* Reset the new config set */
817     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
818 
819     /* For every configuration in the state "stp" which has the symbol "sp"
820     ** following its dot, add the same configuration to the basis set under
821     ** construction but with the dot shifted one symbol to the right. */
822     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
823       if( bcfp->status==COMPLETE ) continue;    /* Already used */
824       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
825       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
826       if( bsp!=sp ) continue;                   /* Must be same as for "cfp" */
827       bcfp->status = COMPLETE;                  /* Mark this config as used */
828       new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
829       Plink_add(&new->bplp,bcfp);
830     }
831 
832     /* Get a pointer to the state described by the basis configuration set
833     ** constructed in the preceding loop */
834     newstp = getstate(lemp);
835 
836     /* The state "newstp" is reached from the state "stp" by a shift action
837     ** on the symbol "sp" */
838     Action_add(&stp->ap,SHIFT,sp,newstp);
839   }
840 }
841 
842 /*
843 ** Construct the propagation links
844 */
FindLinks(lemp)845 void FindLinks(lemp)
846 struct lemon *lemp;
847 {
848   int i;
849   struct config *cfp, *other;
850   struct state *stp;
851   struct plink *plp;
852 
853   /* Housekeeping detail:
854   ** Add to every propagate link a pointer back to the state to
855   ** which the link is attached. */
856   for(i=0; i<lemp->nstate; i++){
857     stp = lemp->sorted[i];
858     for(cfp=stp->cfp; cfp; cfp=cfp->next){
859       cfp->stp = stp;
860     }
861   }
862 
863   /* Convert all backlinks into forward links.  Only the forward
864   ** links are used in the follow-set computation. */
865   for(i=0; i<lemp->nstate; i++){
866     stp = lemp->sorted[i];
867     for(cfp=stp->cfp; cfp; cfp=cfp->next){
868       for(plp=cfp->bplp; plp; plp=plp->next){
869         other = plp->cfp;
870         Plink_add(&other->fplp,cfp);
871       }
872     }
873   }
874 }
875 
876 /* Compute all followsets.
877 **
878 ** A followset is the set of all symbols which can come immediately
879 ** after a configuration.
880 */
FindFollowSets(lemp)881 void FindFollowSets(lemp)
882 struct lemon *lemp;
883 {
884   int i;
885   struct config *cfp;
886   struct plink *plp;
887   int progress;
888   int change;
889 
890   for(i=0; i<lemp->nstate; i++){
891     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
892       cfp->status = INCOMPLETE;
893     }
894   }
895 
896   do{
897     progress = 0;
898     for(i=0; i<lemp->nstate; i++){
899       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
900         if( cfp->status==COMPLETE ) continue;
901         for(plp=cfp->fplp; plp; plp=plp->next){
902           change = SetUnion(plp->cfp->fws,cfp->fws);
903           if( change ){
904             plp->cfp->status = INCOMPLETE;
905             progress = 1;
906 	  }
907 	}
908         cfp->status = COMPLETE;
909       }
910     }
911   }while( progress );
912 }
913 
914 static int resolve_conflict();
915 
916 /* Compute the reduce actions, and resolve conflicts.
917 */
FindActions(lemp)918 void FindActions(lemp)
919 struct lemon *lemp;
920 {
921   int i,j;
922   struct config *cfp;
923   struct symbol *sp;
924   struct rule *rp;
925 
926   /* Add all of the reduce actions
927   ** A reduce action is added for each element of the followset of
928   ** a configuration which has its dot at the extreme right.
929   */
930   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
931     struct state *stp;
932     stp = lemp->sorted[i];
933     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
934       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
935         for(j=0; j<lemp->nterminal; j++){
936           if( SetFind(cfp->fws,j) ){
937             /* Add a reduce action to the state "stp" which will reduce by the
938             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
939             Action_add(&stp->ap,REDUCE,lemp->symbols[j],cfp->rp);
940           }
941 	}
942       }
943     }
944   }
945 
946   /* Add the accepting token */
947   if( lemp->start ){
948     sp = Symbol_find(lemp->start);
949     if( sp==0 ) sp = lemp->rule->lhs;
950   }else{
951     sp = lemp->rule->lhs;
952   }
953   /* Add to the first state (which is always the starting state of the
954   ** finite state machine) an action to ACCEPT if the lookahead is the
955   ** start nonterminal.  */
956   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
957 
958   /* Resolve conflicts */
959   for(i=0; i<lemp->nstate; i++){
960     struct action *ap, *nap;
961     struct state *stp;
962     stp = lemp->sorted[i];
963     assert( stp->ap );
964     stp->ap = Action_sort(stp->ap);
965     for(ap=stp->ap; ap && ap->next; ap=ap->next){
966       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
967          /* The two actions "ap" and "nap" have the same lookahead.
968          ** Figure out which one should be used */
969          lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
970       }
971     }
972   }
973 
974   /* Report an error for each rule that can never be reduced. */
975   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = Bo_FALSE;
976   for(i=0; i<lemp->nstate; i++){
977     struct action *ap;
978     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
979       if( ap->type==REDUCE ) ap->x.rp->canReduce = Bo_TRUE;
980     }
981   }
982   for(rp=lemp->rule; rp; rp=rp->next){
983     if( rp->canReduce ) continue;
984     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
985     lemp->errorcnt++;
986   }
987 }
988 
989 /* Resolve a conflict between the two given actions.  If the
990 ** conflict can't be resolve, return non-zero.
991 **
992 ** NO LONGER TRUE:
993 **   To resolve a conflict, first look to see if either action
994 **   is on an error rule.  In that case, take the action which
995 **   is not associated with the error rule.  If neither or both
996 **   actions are associated with an error rule, then try to
997 **   use precedence to resolve the conflict.
998 **
999 ** If either action is a SHIFT, then it must be apx.  This
1000 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1001 */
resolve_conflict(apx,apy,errsym)1002 static int resolve_conflict(apx,apy,errsym)
1003 struct action *apx;
1004 struct action *apy;
1005 struct symbol *errsym;   /* The error symbol (if defined.  NULL otherwise) */
1006 {
1007   struct symbol *spx, *spy;
1008   int errcnt = 0;
1009   UNUSED(errsym);
1010   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
1011   if( apx->type==SHIFT && apy->type==REDUCE ){
1012     spx = apx->sp;
1013     spy = apy->x.rp->precsym;
1014     if( spy==0 || spx->prec<0 || spy->prec<0 ){
1015       /* Not enough precedence information. */
1016       apy->type = CONFLICT;
1017       errcnt++;
1018     }else if( spx->prec>spy->prec ){    /* Lower precedence wins */
1019       apy->type = RD_RESOLVED;
1020     }else if( spx->prec<spy->prec ){
1021       apx->type = SH_RESOLVED;
1022     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1023       apy->type = RD_RESOLVED;                             /* associativity */
1024     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
1025       apx->type = SH_RESOLVED;
1026     }else{
1027       assert( spx->prec==spy->prec && spx->assoc==NONE );
1028       apy->type = CONFLICT;
1029       errcnt++;
1030     }
1031   }else if( apx->type==REDUCE && apy->type==REDUCE ){
1032     spx = apx->x.rp->precsym;
1033     spy = apy->x.rp->precsym;
1034     if( spx==0 || spy==0 || spx->prec<0 ||
1035     spy->prec<0 || spx->prec==spy->prec ){
1036       apy->type = CONFLICT;
1037       errcnt++;
1038     }else if( spx->prec>spy->prec ){
1039       apy->type = RD_RESOLVED;
1040     }else if( spx->prec<spy->prec ){
1041       apx->type = RD_RESOLVED;
1042     }
1043   }else{
1044     assert(
1045       apx->type==SH_RESOLVED ||
1046       apx->type==RD_RESOLVED ||
1047       apx->type==CONFLICT ||
1048       apy->type==SH_RESOLVED ||
1049       apy->type==RD_RESOLVED ||
1050       apy->type==CONFLICT
1051     );
1052     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1053     ** REDUCEs on the list.  If we reach this point it must be because
1054     ** the parser conflict had already been resolved. */
1055   }
1056   return errcnt;
1057 }
1058 /********************* From the file "configlist.c" *************************/
1059 /*
1060 ** Routines to processing a configuration list and building a state
1061 ** in the LEMON parser generator.
1062 */
1063 
1064 static struct config *freelist = 0;      /* List of free configurations */
1065 static struct config *current = 0;       /* Top of list of configurations */
1066 static struct config **currentend = 0;   /* Last on list of configs */
1067 static struct config *basis = 0;         /* Top of list of basis configs */
1068 static struct config **basisend = 0;     /* End of list of basis configs */
1069 
1070 /* Return a pointer to a new configuration */
newconfig()1071 PRIVATE struct config *newconfig(){
1072   struct config *new;
1073   if( freelist==0 ){
1074     int i;
1075     int amt = 3;
1076     freelist = (struct config *)malloc( sizeof(struct config)*amt );
1077     if( freelist==0 ){
1078       fprintf(stderr,"Unable to allocate memory for a new configuration.");
1079       exit(1);
1080     }
1081     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1082     freelist[amt-1].next = 0;
1083   }
1084   new = freelist;
1085   freelist = freelist->next;
1086   return new;
1087 }
1088 
1089 /* The configuration "old" is no longer used */
deleteconfig(old)1090 PRIVATE void deleteconfig(old)
1091 struct config *old;
1092 {
1093   old->next = freelist;
1094   freelist = old;
1095 }
1096 
1097 /* Initialized the configuration list builder */
Configlist_init()1098 void Configlist_init(){
1099   current = 0;
1100   currentend = &current;
1101   basis = 0;
1102   basisend = &basis;
1103   Configtable_init();
1104   return;
1105 }
1106 
1107 /* Initialized the configuration list builder */
Configlist_reset()1108 void Configlist_reset(){
1109   current = 0;
1110   currentend = &current;
1111   basis = 0;
1112   basisend = &basis;
1113   Configtable_clear(0);
1114   return;
1115 }
1116 
1117 /* Add another configuration to the configuration list */
Configlist_add(rp,dot)1118 struct config *Configlist_add(rp,dot)
1119 struct rule *rp;    /* The rule */
1120 int dot;            /* Index into the RHS of the rule where the dot goes */
1121 {
1122   struct config *cfp, model;
1123 
1124   assert( currentend!=0 );
1125   model.rp = rp;
1126   model.dot = dot;
1127   cfp = Configtable_find(&model);
1128   if( cfp==0 ){
1129     cfp = newconfig();
1130     cfp->rp = rp;
1131     cfp->dot = dot;
1132     cfp->fws = SetNew();
1133     cfp->stp = 0;
1134     cfp->fplp = cfp->bplp = 0;
1135     cfp->next = 0;
1136     cfp->bp = 0;
1137     *currentend = cfp;
1138     currentend = &cfp->next;
1139     Configtable_insert(cfp);
1140   }
1141   return cfp;
1142 }
1143 
1144 /* Add a basis configuration to the configuration list */
Configlist_addbasis(rp,dot)1145 struct config *Configlist_addbasis(rp,dot)
1146 struct rule *rp;
1147 int dot;
1148 {
1149   struct config *cfp, model;
1150 
1151   assert( basisend!=0 );
1152   assert( currentend!=0 );
1153   model.rp = rp;
1154   model.dot = dot;
1155   cfp = Configtable_find(&model);
1156   if( cfp==0 ){
1157     cfp = newconfig();
1158     cfp->rp = rp;
1159     cfp->dot = dot;
1160     cfp->fws = SetNew();
1161     cfp->stp = 0;
1162     cfp->fplp = cfp->bplp = 0;
1163     cfp->next = 0;
1164     cfp->bp = 0;
1165     *currentend = cfp;
1166     currentend = &cfp->next;
1167     *basisend = cfp;
1168     basisend = &cfp->bp;
1169     Configtable_insert(cfp);
1170   }
1171   return cfp;
1172 }
1173 
1174 /* Compute the closure of the configuration list */
Configlist_closure(lemp)1175 void Configlist_closure(lemp)
1176 struct lemon *lemp;
1177 {
1178   struct config *cfp, *newcfp;
1179   struct rule *rp, *newrp;
1180   struct symbol *sp, *xsp;
1181   int i, dot;
1182 
1183   assert( currentend!=0 );
1184   for(cfp=current; cfp; cfp=cfp->next){
1185     rp = cfp->rp;
1186     dot = cfp->dot;
1187     if( dot>=rp->nrhs ) continue;
1188     sp = rp->rhs[dot];
1189     if( sp->type==NONTERMINAL ){
1190       if( sp->rule==0 && sp!=lemp->errsym ){
1191         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1192           sp->name);
1193         lemp->errorcnt++;
1194       }
1195       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1196         newcfp = Configlist_add(newrp,0);
1197         for(i=dot+1; i<rp->nrhs; i++){
1198           xsp = rp->rhs[i];
1199           if( xsp->type==TERMINAL ){
1200             SetAdd(newcfp->fws,xsp->index);
1201             break;
1202 	  }else{
1203             SetUnion(newcfp->fws,xsp->firstset);
1204             if( xsp->lambda==Bo_FALSE ) break;
1205 	  }
1206 	}
1207         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1208       }
1209     }
1210   }
1211   return;
1212 }
1213 
1214 /* Sort the configuration list */
Configlist_sort()1215 void Configlist_sort(){
1216   current = (struct config *)msort(current,&(current->next),Configcmp);
1217   currentend = 0;
1218   return;
1219 }
1220 
1221 /* Sort the basis configuration list */
Configlist_sortbasis()1222 void Configlist_sortbasis(){
1223   basis = (struct config *)msort(current,&(current->bp),Configcmp);
1224   basisend = 0;
1225   return;
1226 }
1227 
1228 /* Return a pointer to the head of the configuration list and
1229 ** reset the list */
Configlist_return()1230 struct config *Configlist_return(){
1231   struct config *old;
1232   old = current;
1233   current = 0;
1234   currentend = 0;
1235   return old;
1236 }
1237 
1238 /* Return a pointer to the head of the configuration list and
1239 ** reset the list */
Configlist_basis()1240 struct config *Configlist_basis(){
1241   struct config *old;
1242   old = basis;
1243   basis = 0;
1244   basisend = 0;
1245   return old;
1246 }
1247 
1248 /* Free all elements of the given configuration list */
Configlist_eat(cfp)1249 void Configlist_eat(cfp)
1250 struct config *cfp;
1251 {
1252   struct config *nextcfp;
1253   for(; cfp; cfp=nextcfp){
1254     nextcfp = cfp->next;
1255     assert( cfp->fplp==0 );
1256     assert( cfp->bplp==0 );
1257     if( cfp->fws ) SetFree(cfp->fws);
1258     deleteconfig(cfp);
1259   }
1260   return;
1261 }
1262 /***************** From the file "error.c" *********************************/
1263 /*
1264 ** Code for printing error message.
1265 */
1266 
1267 /* Find a good place to break "msg" so that its length is at least "min"
1268 ** but no more than "max".  Make the point as close to max as possible.
1269 */
findbreak(msg,min,max)1270 static int findbreak(msg,min,max)
1271 char *msg;
1272 int min;
1273 int max;
1274 {
1275   int i,spot;
1276   char c;
1277   for(i=spot=min; i<=max; i++){
1278     c = msg[i];
1279     if( c=='\t' ) msg[i] = ' ';
1280     if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
1281     if( c==0 ){ spot = i; break; }
1282     if( c=='-' && i<max-1 ) spot = i+1;
1283     if( c==' ' ) spot = i;
1284   }
1285   return spot;
1286 }
1287 
1288 /*
1289 ** The error message is split across multiple lines if necessary.  The
1290 ** splits occur at a space, if there is a space available near the end
1291 ** of the line.
1292 */
1293 #define ERRMSGSIZE  10000 /* Hope this is big enough.  No way to error check */
1294 #define LINEWIDTH      79 /* Max width of any output line */
1295 #define PREFIXLIMIT    30 /* Max width of the prefix on each line */
ErrorMsg(const char * filename,int lineno,const char * format,...)1296 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1297   char errmsg[ERRMSGSIZE];
1298   char prefix[PREFIXLIMIT+10];
1299   int errmsgsize;
1300   int prefixsize;
1301   int availablewidth;
1302   va_list ap;
1303   int end, restart, base;
1304 
1305   va_start(ap, format);
1306   /* Prepare a prefix to be prepended to every output line */
1307   if( lineno>0 ){
1308     sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
1309   }else{
1310     sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
1311   }
1312   prefixsize = strlen(prefix);
1313   availablewidth = LINEWIDTH - prefixsize;
1314 
1315   /* Generate the error message */
1316   vsprintf(errmsg,format,ap);
1317   va_end(ap);
1318   errmsgsize = strlen(errmsg);
1319   /* Remove trailing '\n's from the error message. */
1320   while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
1321      errmsg[--errmsgsize] = 0;
1322   }
1323 
1324   /* Print the error message */
1325   base = 0;
1326   while( errmsg[base]!=0 ){
1327     end = restart = findbreak(&errmsg[base],0,availablewidth);
1328     restart += base;
1329     while( errmsg[restart]==' ' ) restart++;
1330     fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
1331     base = restart;
1332   }
1333 }
1334 /**************** From the file "main.c" ************************************/
1335 /*
1336 ** Main program file for the LEMON parser generator.
1337 */
1338 
1339 /* Report an out-of-memory condition and abort.  This function
1340 ** is used mostly by the "MemoryCheck" macro in struct.h
1341 */
memory_error()1342 void memory_error() {
1343   fprintf(stderr,"Out of memory.  Aborting...\n");
1344   exit(1);
1345 }
1346 
1347 
1348 /* The main program.  Parse the command line and do it... */
main(argc,argv)1349 int main(argc,argv)
1350 int argc;
1351 char **argv;
1352 {
1353   static int version = 0;
1354   static int rpflag = 0;
1355   static int basisflag = 0;
1356   static int compress = 0;
1357   static int quiet = 0;
1358   static int statistics = 0;
1359   static int mhflag = 0;
1360   static struct s_options options[] = {
1361     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1362     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1363     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1364     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file"},
1365     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1366     {OPT_FLAG, "s", (char*)&statistics, "Print parser stats to standard output."},
1367     {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1368     {OPT_FLAG,0,0,0}
1369   };
1370   int i;
1371   struct lemon lem;
1372   char *def_tmpl_name = "lempar.c";
1373 
1374   UNUSED(argc);
1375   OptInit(argv,options,stderr);
1376   if( version ){
1377      printf("Lemon version 1.0\n");
1378      exit(0);
1379   }
1380   if( OptNArgs() < 1 ){
1381     fprintf(stderr,"Exactly one filename argument is required.\n");
1382     exit(1);
1383   }
1384   lem.errorcnt = 0;
1385 
1386   /* Initialize the machine */
1387   Strsafe_init();
1388   Symbol_init();
1389   State_init();
1390   lem.argv0 = argv[0];
1391   lem.filename = OptArg(0);
1392   lem.tmplname = (OptNArgs() == 2) ? OptArg(1) : def_tmpl_name;
1393   lem.basisflag = basisflag;
1394   lem.has_fallback = 0;
1395   lem.nconflict = 0;
1396   lem.name = lem.include = lem.arg = lem.tokentype = lem.start = 0;
1397   lem.vartype = 0;
1398   lem.stacksize = 0;
1399   lem.error = lem.overflow = lem.failure = lem.accept = lem.tokendest =
1400   lem.tokenprefix = lem.outname = lem.extracode = 0;
1401   lem.vardest = 0;
1402   lem.tablesize = 0;
1403   Symbol_new("$");
1404   lem.errsym = Symbol_new("error");
1405 
1406   /* Parse the input file */
1407   Parse(&lem);
1408   if( lem.errorcnt ) exit(lem.errorcnt);
1409   if( lem.rule==0 ){
1410     fprintf(stderr,"Empty grammar.\n");
1411     exit(1);
1412   }
1413 
1414   /* Count and index the symbols of the grammar */
1415   lem.nsymbol = Symbol_count();
1416   Symbol_new("{default}");
1417   lem.symbols = Symbol_arrayof();
1418   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1419   qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
1420         (int(*)())Symbolcmpp);
1421   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1422   for(i=1; isupper(lem.symbols[i]->name[0]); i++);
1423   lem.nterminal = i;
1424 
1425   /* Generate a reprint of the grammar, if requested on the command line */
1426   if( rpflag ){
1427     Reprint(&lem);
1428   }else{
1429     /* Initialize the size for all follow and first sets */
1430     SetSize(lem.nterminal);
1431 
1432     /* Find the precedence for every production rule (that has one) */
1433     FindRulePrecedences(&lem);
1434 
1435     /* Compute the lambda-nonterminals and the first-sets for every
1436     ** nonterminal */
1437     FindFirstSets(&lem);
1438 
1439     /* Compute all LR(0) states.  Also record follow-set propagation
1440     ** links so that the follow-set can be computed later */
1441     lem.nstate = 0;
1442     FindStates(&lem);
1443     lem.sorted = State_arrayof();
1444 
1445     /* Tie up loose ends on the propagation links */
1446     FindLinks(&lem);
1447 
1448     /* Compute the follow set of every reducible configuration */
1449     FindFollowSets(&lem);
1450 
1451     /* Compute the action tables */
1452     FindActions(&lem);
1453 
1454     /* Compress the action tables */
1455     if( compress==0 ) CompressTables(&lem);
1456 
1457     /* Generate a report of the parser generated.  (the "y.output" file) */
1458     if( !quiet ) ReportOutput(&lem);
1459 
1460     /* Generate the source code for the parser */
1461     ReportTable(&lem, mhflag);
1462 
1463     /* Produce a header file for use by the scanner.  (This step is
1464     ** omitted if the "-m" option is used because makeheaders will
1465     ** generate the file for us.) */
1466     if( !mhflag ) ReportHeader(&lem);
1467   }
1468   if( statistics ){
1469     printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
1470       lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
1471     printf("                   %d states, %d parser table entries, %d conflicts\n",
1472       lem.nstate, lem.tablesize, lem.nconflict);
1473   }
1474   if( lem.nconflict ){
1475     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1476   }
1477   exit(lem.errorcnt + lem.nconflict);
1478 }
1479 /******************** From the file "msort.c" *******************************/
1480 /*
1481 ** A generic merge-sort program.
1482 **
1483 ** USAGE:
1484 ** Let "ptr" be a pointer to some structure which is at the head of
1485 ** a null-terminated list.  Then to sort the list call:
1486 **
1487 **     ptr = msort(ptr,&(ptr->next),cmpfnc);
1488 **
1489 ** In the above, "cmpfnc" is a pointer to a function which compares
1490 ** two instances of the structure and returns an integer, as in
1491 ** strcmp.  The second argument is a pointer to the pointer to the
1492 ** second element of the linked list.  This address is used to compute
1493 ** the offset to the "next" field within the structure.  The offset to
1494 ** the "next" field must be constant for all structures in the list.
1495 **
1496 ** The function returns a new pointer which is the head of the list
1497 ** after sorting.
1498 **
1499 ** ALGORITHM:
1500 ** Merge-sort.
1501 */
1502 
1503 /*
1504 ** Return a pointer to the next structure in the linked list.
1505 */
1506 #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
1507 
1508 /*
1509 ** Inputs:
1510 **   a:       A sorted, null-terminated linked list.  (May be null).
1511 **   b:       A sorted, null-terminated linked list.  (May be null).
1512 **   cmp:     A pointer to the comparison function.
1513 **   offset:  Offset in the structure to the "next" field.
1514 **
1515 ** Return Value:
1516 **   A pointer to the head of a sorted list containing the elements
1517 **   of both a and b.
1518 **
1519 ** Side effects:
1520 **   The "next" pointers for elements in the lists a and b are
1521 **   changed.
1522 */
merge(a,b,cmp,offset)1523 static char *merge(a,b,cmp,offset)
1524 char *a;
1525 char *b;
1526 int (*cmp)();
1527 int offset;
1528 {
1529   char *ptr, *head;
1530 
1531   if( a==0 ){
1532     head = b;
1533   }else if( b==0 ){
1534     head = a;
1535   }else{
1536     if( (*cmp)(a,b)<0 ){
1537       ptr = a;
1538       a = NEXT(a);
1539     }else{
1540       ptr = b;
1541       b = NEXT(b);
1542     }
1543     head = ptr;
1544     while( a && b ){
1545       if( (*cmp)(a,b)<0 ){
1546         NEXT(ptr) = a;
1547         ptr = a;
1548         a = NEXT(a);
1549       }else{
1550         NEXT(ptr) = b;
1551         ptr = b;
1552         b = NEXT(b);
1553       }
1554     }
1555     if( a ) NEXT(ptr) = a;
1556     else    NEXT(ptr) = b;
1557   }
1558   return head;
1559 }
1560 
1561 /*
1562 ** Inputs:
1563 **   list:      Pointer to a singly-linked list of structures.
1564 **   next:      Pointer to pointer to the second element of the list.
1565 **   cmp:       A comparison function.
1566 **
1567 ** Return Value:
1568 **   A pointer to the head of a sorted list containing the elements
1569 **   orginally in list.
1570 **
1571 ** Side effects:
1572 **   The "next" pointers for elements in list are changed.
1573 */
1574 #define LISTSIZE 30
msort(list,next,cmp)1575 char *msort(list,next,cmp)
1576 char *list;
1577 char **next;
1578 int (*cmp)();
1579 {
1580   unsigned long offset;
1581   char *ep;
1582   char *set[LISTSIZE];
1583   int i;
1584   offset = (unsigned long)next - (unsigned long)list;
1585   for(i=0; i<LISTSIZE; i++) set[i] = 0;
1586   while( list ){
1587     ep = list;
1588     list = NEXT(list);
1589     NEXT(ep) = 0;
1590     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1591       ep = merge(ep,set[i],cmp,offset);
1592       set[i] = 0;
1593     }
1594     set[i] = ep;
1595   }
1596   ep = 0;
1597   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
1598   return ep;
1599 }
1600 /************************ From the file "option.c" **************************/
1601 static char **argv;
1602 static struct s_options *op;
1603 static FILE *errstream;
1604 
1605 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1606 
1607 /*
1608 ** Print the command line with a carrot pointing to the k-th character
1609 ** of the n-th field.
1610 */
errline(n,k,err)1611 static void errline(n,k,err)
1612 int n;
1613 int k;
1614 FILE *err;
1615 {
1616   int spcnt, i;
1617   if( argv[0] ) fprintf(err,"%s",argv[0]);
1618   spcnt = strlen(argv[0]) + 1;
1619   for(i=1; i<n && argv[i]; i++){
1620     fprintf(err," %s",argv[i]);
1621     spcnt += strlen(argv[i]+1);
1622   }
1623   spcnt += k;
1624   for(; argv[i]; i++) fprintf(err," %s",argv[i]);
1625   if( spcnt<20 ){
1626     fprintf(err,"\n%*s^-- here\n",spcnt,"");
1627   }else{
1628     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1629   }
1630 }
1631 
1632 /*
1633 ** Return the index of the N-th non-switch argument.  Return -1
1634 ** if N is out of range.
1635 */
argindex(n)1636 static int argindex(n)
1637 int n;
1638 {
1639   int i;
1640   int dashdash = 0;
1641   if( argv!=0 && *argv!=0 ){
1642     for(i=1; argv[i]; i++){
1643       if( dashdash || !ISOPT(argv[i]) ){
1644         if( n==0 ) return i;
1645         n--;
1646       }
1647       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1648     }
1649   }
1650   return -1;
1651 }
1652 
1653 static char emsg[] = "Command line syntax error: ";
1654 
1655 /*
1656 ** Process a flag command line argument.
1657 */
handleflags(i,err)1658 static int handleflags(i,err)
1659 int i;
1660 FILE *err;
1661 {
1662   int v;
1663   int errcnt = 0;
1664   int j;
1665   for(j=0; op[j].label; j++){
1666     if( strcmp(&argv[i][1],op[j].label)==0 ) break;
1667   }
1668   v = argv[i][0]=='-' ? 1 : 0;
1669   if( op[j].label==0 ){
1670     if( err ){
1671       fprintf(err,"%sundefined option.\n",emsg);
1672       errline(i,1,err);
1673     }
1674     errcnt++;
1675   }else if( op[j].type==OPT_FLAG ){
1676     *((int*)op[j].arg) = v;
1677   }else if( op[j].type==OPT_FFLAG ){
1678     (*(void(*)())(intptr_t)(op[j].arg))(v);
1679   }else{
1680     if( err ){
1681       fprintf(err,"%smissing argument on switch.\n",emsg);
1682       errline(i,1,err);
1683     }
1684     errcnt++;
1685   }
1686   return errcnt;
1687 }
1688 
1689 /*
1690 ** Process a command line switch which has an argument.
1691 */
handleswitch(i,err)1692 static int handleswitch(i,err)
1693 int i;
1694 FILE *err;
1695 {
1696   int lv = 0;
1697   double dv = 0.0;
1698   char *sv = 0, *end;
1699   char *cp;
1700   int j;
1701   int errcnt = 0;
1702   cp = strchr(argv[i],'=');
1703   *cp = 0;
1704   for(j=0; op[j].label; j++){
1705     if( strcmp(argv[i],op[j].label)==0 ) break;
1706   }
1707   *cp = '=';
1708   if( op[j].label==0 ){
1709     if( err ){
1710       fprintf(err,"%sundefined option.\n",emsg);
1711       errline(i,0,err);
1712     }
1713     errcnt++;
1714   }else{
1715     cp++;
1716     switch( op[j].type ){
1717       case OPT_FLAG:
1718       case OPT_FFLAG:
1719         if( err ){
1720           fprintf(err,"%soption requires an argument.\n",emsg);
1721           errline(i,0,err);
1722         }
1723         errcnt++;
1724         break;
1725       case OPT_DBL:
1726       case OPT_FDBL:
1727         dv = strtod(cp,&end);
1728         if( *end ){
1729           if( err ){
1730             fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
1731             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1732           }
1733           errcnt++;
1734         }
1735         break;
1736       case OPT_INT:
1737       case OPT_FINT:
1738         lv = strtol(cp,&end,0);
1739         if( *end ){
1740           if( err ){
1741             fprintf(err,"%sillegal character in integer argument.\n",emsg);
1742             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1743           }
1744           errcnt++;
1745         }
1746         break;
1747       case OPT_STR:
1748       case OPT_FSTR:
1749         sv = cp;
1750         break;
1751     }
1752     switch( op[j].type ){
1753       case OPT_FLAG:
1754       case OPT_FFLAG:
1755         break;
1756       case OPT_DBL:
1757         *(double*)(op[j].arg) = dv;
1758         break;
1759       case OPT_FDBL:
1760         (*(void(*)())(intptr_t)(op[j].arg))(dv);
1761         break;
1762       case OPT_INT:
1763         *(int*)(op[j].arg) = lv;
1764         break;
1765       case OPT_FINT:
1766         (*(void(*)())(intptr_t)(op[j].arg))((int)lv);
1767         break;
1768       case OPT_STR:
1769         *(char**)(op[j].arg) = sv;
1770         break;
1771       case OPT_FSTR:
1772         (*(void(*)())(intptr_t)(op[j].arg))(sv);
1773         break;
1774     }
1775   }
1776   return errcnt;
1777 }
1778 
OptInit(a,o,err)1779 int OptInit(a,o,err)
1780 char **a;
1781 struct s_options *o;
1782 FILE *err;
1783 {
1784   int errcnt = 0;
1785   argv = a;
1786   op = o;
1787   errstream = err;
1788   if( argv && *argv && op ){
1789     int i;
1790     for(i=1; argv[i]; i++){
1791       if( argv[i][0]=='+' || argv[i][0]=='-' ){
1792         errcnt += handleflags(i,err);
1793       }else if( strchr(argv[i],'=') ){
1794         errcnt += handleswitch(i,err);
1795       }
1796     }
1797   }
1798   if( errcnt>0 ){
1799     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
1800     OptPrint();
1801     exit(1);
1802   }
1803   return 0;
1804 }
1805 
OptNArgs()1806 int OptNArgs(){
1807   int cnt = 0;
1808   int dashdash = 0;
1809   int i;
1810   if( argv!=0 && argv[0]!=0 ){
1811     for(i=1; argv[i]; i++){
1812       if( dashdash || !ISOPT(argv[i]) ) cnt++;
1813       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1814     }
1815   }
1816   return cnt;
1817 }
1818 
OptArg(n)1819 char *OptArg(n)
1820 int n;
1821 {
1822   int i;
1823   i = argindex(n);
1824   return i>=0 ? argv[i] : 0;
1825 }
1826 
OptErr(n)1827 void OptErr(n)
1828 int n;
1829 {
1830   int i;
1831   i = argindex(n);
1832   if( i>=0 ) errline(i,0,errstream);
1833 }
1834 
OptPrint()1835 void OptPrint(){
1836   int i;
1837   int max, len;
1838   max = 0;
1839   for(i=0; op[i].label; i++){
1840     len = strlen(op[i].label) + 1;
1841     switch( op[i].type ){
1842       case OPT_FLAG:
1843       case OPT_FFLAG:
1844         break;
1845       case OPT_INT:
1846       case OPT_FINT:
1847         len += 9;       /* length of "<integer>" */
1848         break;
1849       case OPT_DBL:
1850       case OPT_FDBL:
1851         len += 6;       /* length of "<real>" */
1852         break;
1853       case OPT_STR:
1854       case OPT_FSTR:
1855         len += 8;       /* length of "<string>" */
1856         break;
1857     }
1858     if( len>max ) max = len;
1859   }
1860   for(i=0; op[i].label; i++){
1861     switch( op[i].type ){
1862       case OPT_FLAG:
1863       case OPT_FFLAG:
1864         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
1865         break;
1866       case OPT_INT:
1867       case OPT_FINT:
1868         fprintf(errstream,"  %s=<integer>%*s  %s\n",op[i].label,
1869           (int)(max-strlen(op[i].label)-9),"",op[i].message);
1870         break;
1871       case OPT_DBL:
1872       case OPT_FDBL:
1873         fprintf(errstream,"  %s=<real>%*s  %s\n",op[i].label,
1874           (int)(max-strlen(op[i].label)-6),"",op[i].message);
1875         break;
1876       case OPT_STR:
1877       case OPT_FSTR:
1878         fprintf(errstream,"  %s=<string>%*s  %s\n",op[i].label,
1879           (int)(max-strlen(op[i].label)-8),"",op[i].message);
1880         break;
1881     }
1882   }
1883 }
1884 /*********************** From the file "parse.c" ****************************/
1885 /*
1886 ** Input file parser for the LEMON parser generator.
1887 */
1888 
1889 /* The state of the parser */
1890 struct pstate {
1891   char *filename;       /* Name of the input file */
1892   int tokenlineno;      /* Linenumber at which current token starts */
1893   int errorcnt;         /* Number of errors so far */
1894   char *tokenstart;     /* Text of current token */
1895   struct lemon *gp;     /* Global state vector */
1896   enum e_state {
1897     INITIALIZE,
1898     WAITING_FOR_DECL_OR_RULE,
1899     WAITING_FOR_DECL_KEYWORD,
1900     WAITING_FOR_DECL_ARG,
1901     WAITING_FOR_PRECEDENCE_SYMBOL,
1902     WAITING_FOR_ARROW,
1903     IN_RHS,
1904     LHS_ALIAS_1,
1905     LHS_ALIAS_2,
1906     LHS_ALIAS_3,
1907     RHS_ALIAS_1,
1908     RHS_ALIAS_2,
1909     PRECEDENCE_MARK_1,
1910     PRECEDENCE_MARK_2,
1911     RESYNC_AFTER_RULE_ERROR,
1912     RESYNC_AFTER_DECL_ERROR,
1913     WAITING_FOR_DESTRUCTOR_SYMBOL,
1914     WAITING_FOR_DATATYPE_SYMBOL,
1915     WAITING_FOR_FALLBACK_ID
1916   } state;                   /* The state of the parser */
1917   struct symbol *fallback;   /* The fallback token */
1918   struct symbol *lhs;        /* Left-hand side of current rule */
1919   char *lhsalias;            /* Alias for the LHS */
1920   int nrhs;                  /* Number of right-hand side symbols seen */
1921   struct symbol *rhs[MAXRHS];  /* RHS symbols */
1922   char *alias[MAXRHS];       /* Aliases for each RHS symbol (or NULL) */
1923   struct rule *prevrule;     /* Previous rule parsed */
1924   char *declkeyword;         /* Keyword of a declaration */
1925   char **declargslot;        /* Where the declaration argument should be put */
1926   int *decllnslot;           /* Where the declaration linenumber is put */
1927   enum e_assoc declassoc;    /* Assign this association to decl arguments */
1928   int preccounter;           /* Assign this precedence to decl arguments */
1929   struct rule *firstrule;    /* Pointer to first rule in the grammar */
1930   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
1931 };
1932 
1933 /* Parse a single token */
parseonetoken(psp)1934 static void parseonetoken(psp)
1935 struct pstate *psp;
1936 {
1937   char *x;
1938   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
1939 #if 0
1940   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
1941     x,psp->state);
1942 #endif
1943   switch( psp->state ){
1944     case INITIALIZE:
1945       psp->prevrule = 0;
1946       psp->preccounter = 0;
1947       psp->firstrule = psp->lastrule = 0;
1948       psp->gp->nrule = 0;
1949       /* Fall thru to next case */
1950     case WAITING_FOR_DECL_OR_RULE:
1951       if( x[0]=='%' ){
1952         psp->state = WAITING_FOR_DECL_KEYWORD;
1953       }else if( islower(x[0]) ){
1954         psp->lhs = Symbol_new(x);
1955         psp->nrhs = 0;
1956         psp->lhsalias = 0;
1957         psp->state = WAITING_FOR_ARROW;
1958       }else if( x[0]=='{' ){
1959         if( psp->prevrule==0 ){
1960           ErrorMsg(psp->filename,psp->tokenlineno,
1961 "There is not prior rule opon which to attach the code \
1962 fragment which begins on this line.");
1963           psp->errorcnt++;
1964 	}else if( psp->prevrule->code!=0 ){
1965           ErrorMsg(psp->filename,psp->tokenlineno,
1966 "Code fragment beginning on this line is not the first \
1967 to follow the previous rule.");
1968           psp->errorcnt++;
1969         }else{
1970           psp->prevrule->line = psp->tokenlineno;
1971           psp->prevrule->code = &x[1];
1972 	}
1973       }else if( x[0]=='[' ){
1974         psp->state = PRECEDENCE_MARK_1;
1975       }else{
1976         ErrorMsg(psp->filename,psp->tokenlineno,
1977           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
1978           x);
1979         psp->errorcnt++;
1980       }
1981       break;
1982     case PRECEDENCE_MARK_1:
1983       if( !isupper(x[0]) ){
1984         ErrorMsg(psp->filename,psp->tokenlineno,
1985           "The precedence symbol must be a terminal.");
1986         psp->errorcnt++;
1987       }else if( psp->prevrule==0 ){
1988         ErrorMsg(psp->filename,psp->tokenlineno,
1989           "There is no prior rule to assign precedence \"[%s]\".",x);
1990         psp->errorcnt++;
1991       }else if( psp->prevrule->precsym!=0 ){
1992         ErrorMsg(psp->filename,psp->tokenlineno,
1993 "Precedence mark on this line is not the first \
1994 to follow the previous rule.");
1995         psp->errorcnt++;
1996       }else{
1997         psp->prevrule->precsym = Symbol_new(x);
1998       }
1999       psp->state = PRECEDENCE_MARK_2;
2000       break;
2001     case PRECEDENCE_MARK_2:
2002       if( x[0]!=']' ){
2003         ErrorMsg(psp->filename,psp->tokenlineno,
2004           "Missing \"]\" on precedence mark.");
2005         psp->errorcnt++;
2006       }
2007       psp->state = WAITING_FOR_DECL_OR_RULE;
2008       break;
2009     case WAITING_FOR_ARROW:
2010       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2011         psp->state = IN_RHS;
2012       }else if( x[0]=='(' ){
2013         psp->state = LHS_ALIAS_1;
2014       }else{
2015         ErrorMsg(psp->filename,psp->tokenlineno,
2016           "Expected to see a \":\" following the LHS symbol \"%s\".",
2017           psp->lhs->name);
2018         psp->errorcnt++;
2019         psp->state = RESYNC_AFTER_RULE_ERROR;
2020       }
2021       break;
2022     case LHS_ALIAS_1:
2023       if( isalpha(x[0]) ){
2024         psp->lhsalias = x;
2025         psp->state = LHS_ALIAS_2;
2026       }else{
2027         ErrorMsg(psp->filename,psp->tokenlineno,
2028           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2029           x,psp->lhs->name);
2030         psp->errorcnt++;
2031         psp->state = RESYNC_AFTER_RULE_ERROR;
2032       }
2033       break;
2034     case LHS_ALIAS_2:
2035       if( x[0]==')' ){
2036         psp->state = LHS_ALIAS_3;
2037       }else{
2038         ErrorMsg(psp->filename,psp->tokenlineno,
2039           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2040         psp->errorcnt++;
2041         psp->state = RESYNC_AFTER_RULE_ERROR;
2042       }
2043       break;
2044     case LHS_ALIAS_3:
2045       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2046         psp->state = IN_RHS;
2047       }else{
2048         ErrorMsg(psp->filename,psp->tokenlineno,
2049           "Missing \"->\" following: \"%s(%s)\".",
2050            psp->lhs->name,psp->lhsalias);
2051         psp->errorcnt++;
2052         psp->state = RESYNC_AFTER_RULE_ERROR;
2053       }
2054       break;
2055     case IN_RHS:
2056       if( x[0]=='.' ){
2057         struct rule *rp;
2058         rp = (struct rule *)malloc( sizeof(struct rule) +
2059              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs );
2060         if( rp==0 ){
2061           ErrorMsg(psp->filename,psp->tokenlineno,
2062             "Can't allocate enough memory for this rule.");
2063           psp->errorcnt++;
2064           psp->prevrule = 0;
2065 	}else{
2066           int i;
2067           rp->ruleline = psp->tokenlineno;
2068           rp->rhs = (struct symbol**)&rp[1];
2069           rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
2070           for(i=0; i<psp->nrhs; i++){
2071             rp->rhs[i] = psp->rhs[i];
2072             rp->rhsalias[i] = psp->alias[i];
2073 	  }
2074           rp->lhs = psp->lhs;
2075           rp->lhsalias = psp->lhsalias;
2076           rp->nrhs = psp->nrhs;
2077           rp->code = 0;
2078           rp->precsym = 0;
2079           rp->index = psp->gp->nrule++;
2080           rp->nextlhs = rp->lhs->rule;
2081           rp->lhs->rule = rp;
2082           rp->next = 0;
2083           if( psp->firstrule==0 ){
2084             psp->firstrule = psp->lastrule = rp;
2085 	  }else{
2086             psp->lastrule->next = rp;
2087             psp->lastrule = rp;
2088 	  }
2089           psp->prevrule = rp;
2090 	}
2091         psp->state = WAITING_FOR_DECL_OR_RULE;
2092       }else if( isalpha(x[0]) ){
2093         if( psp->nrhs>=MAXRHS ){
2094           ErrorMsg(psp->filename,psp->tokenlineno,
2095             "Too many symbol on RHS or rule beginning at \"%s\".",
2096             x);
2097           psp->errorcnt++;
2098           psp->state = RESYNC_AFTER_RULE_ERROR;
2099 	}else{
2100           psp->rhs[psp->nrhs] = Symbol_new(x);
2101           psp->alias[psp->nrhs] = 0;
2102           psp->nrhs++;
2103 	}
2104       }else if( x[0]=='(' && psp->nrhs>0 ){
2105         psp->state = RHS_ALIAS_1;
2106       }else{
2107         ErrorMsg(psp->filename,psp->tokenlineno,
2108           "Illegal character on RHS of rule: \"%s\".",x);
2109         psp->errorcnt++;
2110         psp->state = RESYNC_AFTER_RULE_ERROR;
2111       }
2112       break;
2113     case RHS_ALIAS_1:
2114       if( isalpha(x[0]) ){
2115         psp->alias[psp->nrhs-1] = x;
2116         psp->state = RHS_ALIAS_2;
2117       }else{
2118         ErrorMsg(psp->filename,psp->tokenlineno,
2119           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2120           x,psp->rhs[psp->nrhs-1]->name);
2121         psp->errorcnt++;
2122         psp->state = RESYNC_AFTER_RULE_ERROR;
2123       }
2124       break;
2125     case RHS_ALIAS_2:
2126       if( x[0]==')' ){
2127         psp->state = IN_RHS;
2128       }else{
2129         ErrorMsg(psp->filename,psp->tokenlineno,
2130           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2131         psp->errorcnt++;
2132         psp->state = RESYNC_AFTER_RULE_ERROR;
2133       }
2134       break;
2135     case WAITING_FOR_DECL_KEYWORD:
2136       if( isalpha(x[0]) ){
2137         psp->declkeyword = x;
2138         psp->declargslot = 0;
2139         psp->decllnslot = 0;
2140         psp->state = WAITING_FOR_DECL_ARG;
2141         if( strcmp(x,"name")==0 ){
2142           psp->declargslot = &(psp->gp->name);
2143 	}else if( strcmp(x,"include")==0 ){
2144           psp->declargslot = &(psp->gp->include);
2145           psp->decllnslot = &psp->gp->includeln;
2146 	}else if( strcmp(x,"code")==0 ){
2147           psp->declargslot = &(psp->gp->extracode);
2148           psp->decllnslot = &psp->gp->extracodeln;
2149 	}else if( strcmp(x,"token_destructor")==0 ){
2150           psp->declargslot = &psp->gp->tokendest;
2151           psp->decllnslot = &psp->gp->tokendestln;
2152 	}else if( strcmp(x,"default_destructor")==0 ){
2153           psp->declargslot = &psp->gp->vardest;
2154           psp->decllnslot = &psp->gp->vardestln;
2155 	}else if( strcmp(x,"token_prefix")==0 ){
2156           psp->declargslot = &psp->gp->tokenprefix;
2157 	}else if( strcmp(x,"syntax_error")==0 ){
2158           psp->declargslot = &(psp->gp->error);
2159           psp->decllnslot = &psp->gp->errorln;
2160 	}else if( strcmp(x,"parse_accept")==0 ){
2161           psp->declargslot = &(psp->gp->accept);
2162           psp->decllnslot = &psp->gp->acceptln;
2163 	}else if( strcmp(x,"parse_failure")==0 ){
2164           psp->declargslot = &(psp->gp->failure);
2165           psp->decllnslot = &psp->gp->failureln;
2166 	}else if( strcmp(x,"stack_overflow")==0 ){
2167           psp->declargslot = &(psp->gp->overflow);
2168           psp->decllnslot = &psp->gp->overflowln;
2169         }else if( strcmp(x,"extra_argument")==0 ){
2170           psp->declargslot = &(psp->gp->arg);
2171         }else if( strcmp(x,"token_type")==0 ){
2172           psp->declargslot = &(psp->gp->tokentype);
2173         }else if( strcmp(x,"default_type")==0 ){
2174           psp->declargslot = &(psp->gp->vartype);
2175         }else if( strcmp(x,"stack_size")==0 ){
2176           psp->declargslot = &(psp->gp->stacksize);
2177         }else if( strcmp(x,"start_symbol")==0 ){
2178           psp->declargslot = &(psp->gp->start);
2179         }else if( strcmp(x,"left")==0 ){
2180           psp->preccounter++;
2181           psp->declassoc = LEFT;
2182           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2183         }else if( strcmp(x,"right")==0 ){
2184           psp->preccounter++;
2185           psp->declassoc = RIGHT;
2186           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2187         }else if( strcmp(x,"nonassoc")==0 ){
2188           psp->preccounter++;
2189           psp->declassoc = NONE;
2190           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2191 	}else if( strcmp(x,"destructor")==0 ){
2192           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2193 	}else if( strcmp(x,"type")==0 ){
2194           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2195         }else if( strcmp(x,"fallback")==0 ){
2196           psp->fallback = 0;
2197           psp->state = WAITING_FOR_FALLBACK_ID;
2198         }else{
2199           ErrorMsg(psp->filename,psp->tokenlineno,
2200             "Unknown declaration keyword: \"%%%s\".",x);
2201           psp->errorcnt++;
2202           psp->state = RESYNC_AFTER_DECL_ERROR;
2203 	}
2204       }else{
2205         ErrorMsg(psp->filename,psp->tokenlineno,
2206           "Illegal declaration keyword: \"%s\".",x);
2207         psp->errorcnt++;
2208         psp->state = RESYNC_AFTER_DECL_ERROR;
2209       }
2210       break;
2211     case WAITING_FOR_DESTRUCTOR_SYMBOL:
2212       if( !isalpha(x[0]) ){
2213         ErrorMsg(psp->filename,psp->tokenlineno,
2214           "Symbol name missing after %destructor keyword");
2215         psp->errorcnt++;
2216         psp->state = RESYNC_AFTER_DECL_ERROR;
2217       }else{
2218         struct symbol *sp = Symbol_new(x);
2219         psp->declargslot = &sp->destructor;
2220         psp->decllnslot = &sp->destructorln;
2221         psp->state = WAITING_FOR_DECL_ARG;
2222       }
2223       break;
2224     case WAITING_FOR_DATATYPE_SYMBOL:
2225       if( !isalpha(x[0]) ){
2226         ErrorMsg(psp->filename,psp->tokenlineno,
2227           "Symbol name missing after %destructor keyword");
2228         psp->errorcnt++;
2229         psp->state = RESYNC_AFTER_DECL_ERROR;
2230       }else{
2231         struct symbol *sp = Symbol_new(x);
2232         psp->declargslot = &sp->datatype;
2233         psp->decllnslot = 0;
2234         psp->state = WAITING_FOR_DECL_ARG;
2235       }
2236       break;
2237     case WAITING_FOR_PRECEDENCE_SYMBOL:
2238       if( x[0]=='.' ){
2239         psp->state = WAITING_FOR_DECL_OR_RULE;
2240       }else if( isupper(x[0]) ){
2241         struct symbol *sp;
2242         sp = Symbol_new(x);
2243         if( sp->prec>=0 ){
2244           ErrorMsg(psp->filename,psp->tokenlineno,
2245             "Symbol \"%s\" has already be given a precedence.",x);
2246           psp->errorcnt++;
2247 	}else{
2248           sp->prec = psp->preccounter;
2249           sp->assoc = psp->declassoc;
2250 	}
2251       }else{
2252         ErrorMsg(psp->filename,psp->tokenlineno,
2253           "Can't assign a precedence to \"%s\".",x);
2254         psp->errorcnt++;
2255       }
2256       break;
2257     case WAITING_FOR_DECL_ARG:
2258       if( (x[0]=='{' || x[0]=='\"' || isalnum(x[0])) ){
2259         if( *(psp->declargslot)!=0 ){
2260           ErrorMsg(psp->filename,psp->tokenlineno,
2261             "The argument \"%s\" to declaration \"%%%s\" is not the first.",
2262             x[0]=='\"' ? &x[1] : x,psp->declkeyword);
2263           psp->errorcnt++;
2264           psp->state = RESYNC_AFTER_DECL_ERROR;
2265 	}else{
2266           *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x;
2267           if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno;
2268           psp->state = WAITING_FOR_DECL_OR_RULE;
2269 	}
2270       }else{
2271         ErrorMsg(psp->filename,psp->tokenlineno,
2272           "Illegal argument to %%%s: %s",psp->declkeyword,x);
2273         psp->errorcnt++;
2274         psp->state = RESYNC_AFTER_DECL_ERROR;
2275       }
2276       break;
2277     case WAITING_FOR_FALLBACK_ID:
2278       if( x[0]=='.' ){
2279         psp->state = WAITING_FOR_DECL_OR_RULE;
2280       }else if( !isupper(x[0]) ){
2281         ErrorMsg(psp->filename, psp->tokenlineno,
2282           "%%fallback argument \"%s\" should be a token", x);
2283         psp->errorcnt++;
2284       }else{
2285         struct symbol *sp = Symbol_new(x);
2286         if( psp->fallback==0 ){
2287           psp->fallback = sp;
2288         }else if( sp->fallback ){
2289           ErrorMsg(psp->filename, psp->tokenlineno,
2290             "More than one fallback assigned to token %s", x);
2291           psp->errorcnt++;
2292         }else{
2293           sp->fallback = psp->fallback;
2294           psp->gp->has_fallback = 1;
2295         }
2296       }
2297       break;
2298     case RESYNC_AFTER_RULE_ERROR:
2299 /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2300 **      break; */
2301     case RESYNC_AFTER_DECL_ERROR:
2302       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2303       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2304       break;
2305   }
2306 }
2307 
2308 /* In spite of its name, this function is really a scanner.  It read
2309 ** in the entire input file (all at once) then tokenizes it.  Each
2310 ** token is passed to the function "parseonetoken" which builds all
2311 ** the appropriate data structures in the global state vector "gp".
2312 */
2313 struct pstate ps;
Parse(gp)2314 void Parse(gp)
2315 struct lemon *gp;
2316 {
2317   FILE *fp;
2318   char *filebuf;
2319   size_t filesize;
2320   int lineno;
2321   int c;
2322   char *cp, *nextcp;
2323   int startline = 0;
2324 
2325   ps.gp = gp;
2326   ps.filename = gp->filename;
2327   ps.errorcnt = 0;
2328   ps.state = INITIALIZE;
2329 
2330   /* Begin by reading the input file */
2331   fp = fopen(ps.filename,"rb");
2332   if( fp==0 ){
2333     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2334     gp->errorcnt++;
2335     return;
2336   }
2337   fseek(fp,0,2);
2338   filesize = ftell(fp);
2339   rewind(fp);
2340   filebuf = (char *)malloc( filesize+1 );
2341   if( filebuf==0 ){
2342     ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
2343       filesize+1);
2344     fclose(fp);
2345     gp->errorcnt++;
2346     return;
2347   }
2348   if( fread(filebuf,1,filesize,fp)!=filesize ){
2349     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2350       filesize);
2351     free(filebuf);
2352     fclose(fp);
2353     gp->errorcnt++;
2354     return;
2355   }
2356   fclose(fp);
2357   filebuf[filesize] = 0;
2358 
2359   /* Now scan the text of the input file */
2360   lineno = 1;
2361   for(cp=filebuf; (c= *cp)!=0; ){
2362     if( c=='\n' ) lineno++;              /* Keep track of the line number */
2363     if( isspace(c) ){ cp++; continue; }  /* Skip all white space */
2364     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
2365       cp+=2;
2366       while( (c= *cp)!=0 && c!='\n' ) cp++;
2367       continue;
2368     }
2369     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
2370       cp+=2;
2371       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
2372         if( c=='\n' ) lineno++;
2373         cp++;
2374       }
2375       if( c ) cp++;
2376       continue;
2377     }
2378     ps.tokenstart = cp;                /* Mark the beginning of the token */
2379     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
2380     if( c=='\"' ){                     /* String literals */
2381       cp++;
2382       while( (c= *cp)!=0 && c!='\"' ){
2383         if( c=='\n' ) lineno++;
2384         cp++;
2385       }
2386       if( c==0 ){
2387         ErrorMsg(ps.filename,startline,
2388 "String starting on this line is not terminated before the end of the file.");
2389         ps.errorcnt++;
2390         nextcp = cp;
2391       }else{
2392         nextcp = cp+1;
2393       }
2394     }else if( c=='{' ){               /* A block of C code */
2395       int level;
2396       cp++;
2397       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
2398         if( c=='\n' ) lineno++;
2399         else if( c=='{' ) level++;
2400         else if( c=='}' ) level--;
2401         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
2402           int prevc;
2403           cp = &cp[2];
2404           prevc = 0;
2405           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
2406             if( c=='\n' ) lineno++;
2407             prevc = c;
2408             cp++;
2409 	  }
2410 	}else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
2411           cp = &cp[2];
2412           while( (c= *cp)!=0 && c!='\n' ) cp++;
2413           if( c ) lineno++;
2414 	}else if( c=='\'' || c=='\"' ){    /* String a character literals */
2415           int startchar, prevc;
2416           startchar = c;
2417           prevc = 0;
2418           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
2419             if( c=='\n' ) lineno++;
2420             if( prevc=='\\' ) prevc = 0;
2421             else              prevc = c;
2422 	  }
2423 	}
2424       }
2425       if( c==0 ){
2426         ErrorMsg(ps.filename,ps.tokenlineno,
2427 "C code starting on this line is not terminated before the end of the file.");
2428         ps.errorcnt++;
2429         nextcp = cp;
2430       }else{
2431         nextcp = cp+1;
2432       }
2433     }else if( isalnum(c) ){          /* Identifiers */
2434       while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2435       nextcp = cp;
2436     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
2437       cp += 3;
2438       nextcp = cp;
2439     }else{                          /* All other (one character) operators */
2440       cp++;
2441       nextcp = cp;
2442     }
2443     c = *cp;
2444     *cp = 0;                        /* Null terminate the token */
2445     parseonetoken(&ps);             /* Parse the token */
2446     *cp = c;                        /* Restore the buffer */
2447     cp = nextcp;
2448   }
2449   free(filebuf);                    /* Release the buffer after parsing */
2450   gp->rule = ps.firstrule;
2451   gp->errorcnt = ps.errorcnt;
2452 }
2453 /*************************** From the file "plink.c" *********************/
2454 /*
2455 ** Routines processing configuration follow-set propagation links
2456 ** in the LEMON parser generator.
2457 */
2458 static struct plink *plink_freelist = 0;
2459 
2460 /* Allocate a new plink */
Plink_new()2461 struct plink *Plink_new(){
2462   struct plink *new;
2463 
2464   if( plink_freelist==0 ){
2465     int i;
2466     int amt = 100;
2467     plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt );
2468     if( plink_freelist==0 ){
2469       fprintf(stderr,
2470       "Unable to allocate memory for a new follow-set propagation link.\n");
2471       exit(1);
2472     }
2473     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
2474     plink_freelist[amt-1].next = 0;
2475   }
2476   new = plink_freelist;
2477   plink_freelist = plink_freelist->next;
2478   return new;
2479 }
2480 
2481 /* Add a plink to a plink list */
Plink_add(plpp,cfp)2482 void Plink_add(plpp,cfp)
2483 struct plink **plpp;
2484 struct config *cfp;
2485 {
2486   struct plink *new;
2487   new = Plink_new();
2488   new->next = *plpp;
2489   *plpp = new;
2490   new->cfp = cfp;
2491 }
2492 
2493 /* Transfer every plink on the list "from" to the list "to" */
Plink_copy(to,from)2494 void Plink_copy(to,from)
2495 struct plink **to;
2496 struct plink *from;
2497 {
2498   struct plink *nextpl;
2499   while( from ){
2500     nextpl = from->next;
2501     from->next = *to;
2502     *to = from;
2503     from = nextpl;
2504   }
2505 }
2506 
2507 /* Delete every plink on the list */
Plink_delete(plp)2508 void Plink_delete(plp)
2509 struct plink *plp;
2510 {
2511   struct plink *nextpl;
2512 
2513   while( plp ){
2514     nextpl = plp->next;
2515     plp->next = plink_freelist;
2516     plink_freelist = plp;
2517     plp = nextpl;
2518   }
2519 }
2520 /*********************** From the file "report.c" **************************/
2521 /*
2522 ** Procedures for generating reports and tables in the LEMON parser generator.
2523 */
2524 
2525 /* Generate a filename with the given suffix.  Space to hold the
2526 ** name comes from malloc() and must be freed by the calling
2527 ** function.
2528 */
file_makename(lemp,suffix)2529 PRIVATE char *file_makename(lemp,suffix)
2530 struct lemon *lemp;
2531 char *suffix;
2532 {
2533   char *name;
2534   char *cp;
2535 
2536   name = malloc( strlen(lemp->filename) + strlen(suffix) + 5 );
2537   if( name==0 ){
2538     fprintf(stderr,"Can't allocate space for a filename.\n");
2539     exit(1);
2540   }
2541 	/* skip directory, JK */
2542 	if (NULL == (cp = strrchr(lemp->filename, '/'))) {
2543 		cp = lemp->filename;
2544 	} else {
2545 		cp++;
2546 	}
2547   strcpy(name,cp);
2548   cp = strrchr(name,'.');
2549   if( cp ) *cp = 0;
2550   strcat(name,suffix);
2551   return name;
2552 }
2553 
2554 /* Open a file with a name based on the name of the input file,
2555 ** but with a different (specified) suffix, and return a pointer
2556 ** to the stream */
file_open(lemp,suffix,mode)2557 PRIVATE FILE *file_open(lemp,suffix,mode)
2558 struct lemon *lemp;
2559 char *suffix;
2560 char *mode;
2561 {
2562   FILE *fp;
2563 
2564   if( lemp->outname ) free(lemp->outname);
2565   lemp->outname = file_makename(lemp, suffix);
2566   fp = fopen(lemp->outname,mode);
2567   if( fp==0 && *mode=='w' ){
2568     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
2569     lemp->errorcnt++;
2570     return 0;
2571   }
2572   return fp;
2573 }
2574 
2575 /* Duplicate the input file without comments and without actions
2576 ** on rules */
Reprint(lemp)2577 void Reprint(lemp)
2578 struct lemon *lemp;
2579 {
2580   struct rule *rp;
2581   struct symbol *sp;
2582   int i, j, maxlen, len, ncolumns, skip;
2583   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
2584   maxlen = 10;
2585   for(i=0; i<lemp->nsymbol; i++){
2586     sp = lemp->symbols[i];
2587     len = strlen(sp->name);
2588     if( len>maxlen ) maxlen = len;
2589   }
2590   ncolumns = 76/(maxlen+5);
2591   if( ncolumns<1 ) ncolumns = 1;
2592   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
2593   for(i=0; i<skip; i++){
2594     printf("//");
2595     for(j=i; j<lemp->nsymbol; j+=skip){
2596       sp = lemp->symbols[j];
2597       assert( sp->index==j );
2598       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
2599     }
2600     printf("\n");
2601   }
2602   for(rp=lemp->rule; rp; rp=rp->next){
2603     printf("%s",rp->lhs->name);
2604 /*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
2605     printf(" ::=");
2606     for(i=0; i<rp->nrhs; i++){
2607       printf(" %s",rp->rhs[i]->name);
2608 /*      if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
2609     }
2610     printf(".");
2611     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
2612 /*    if( rp->code ) printf("\n    %s",rp->code); */
2613     printf("\n");
2614   }
2615 }
2616 
ConfigPrint(fp,cfp)2617 PRIVATE void ConfigPrint(fp,cfp)
2618 FILE *fp;
2619 struct config *cfp;
2620 {
2621   struct rule *rp;
2622   int i;
2623   rp = cfp->rp;
2624   fprintf(fp,"%s ::=",rp->lhs->name);
2625   for(i=0; i<=rp->nrhs; i++){
2626     if( i==cfp->dot ) fprintf(fp," *");
2627     if( i==rp->nrhs ) break;
2628     fprintf(fp," %s",rp->rhs[i]->name);
2629   }
2630 }
2631 
2632 /* #define TEST */
2633 #ifdef TEST
2634 /* Print a set */
SetPrint(out,set,lemp)2635 PRIVATE void SetPrint(out,set,lemp)
2636 FILE *out;
2637 char *set;
2638 struct lemon *lemp;
2639 {
2640   int i;
2641   char *spacer;
2642   spacer = "";
2643   fprintf(out,"%12s[","");
2644   for(i=0; i<lemp->nterminal; i++){
2645     if( SetFind(set,i) ){
2646       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
2647       spacer = " ";
2648     }
2649   }
2650   fprintf(out,"]\n");
2651 }
2652 
2653 /* Print a plink chain */
PlinkPrint(out,plp,tag)2654 void PlinkPrint(out,plp,tag)
2655 FILE *out;
2656 struct plink *plp;
2657 char *tag;
2658 {
2659   while( plp ){
2660     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->index);
2661     ConfigPrint(out,plp->cfp);
2662     fprintf(out,"\n");
2663     plp = plp->next;
2664   }
2665 }
2666 #endif
2667 
2668 /* Print an action to the given file descriptor.  Return FALSE if
2669 ** nothing was actually printed.
2670 */
PrintAction(struct action * ap,FILE * fp,int indent)2671 PRIVATE int PrintAction(struct action *ap, FILE *fp, int indent){
2672   int result = 1;
2673   switch( ap->type ){
2674     case SHIFT:
2675       fprintf(fp,"%*s shift  %d",indent,ap->sp->name,ap->x.stp->index);
2676       break;
2677     case REDUCE:
2678       fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
2679       break;
2680     case ACCEPT:
2681       fprintf(fp,"%*s accept",indent,ap->sp->name);
2682       break;
2683     case ERROR:
2684       fprintf(fp,"%*s error",indent,ap->sp->name);
2685       break;
2686     case CONFLICT:
2687       fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
2688         indent,ap->sp->name,ap->x.rp->index);
2689       break;
2690     case SH_RESOLVED:
2691     case RD_RESOLVED:
2692     case NOT_USED:
2693       result = 0;
2694       break;
2695   }
2696   return result;
2697 }
2698 
2699 /* Generate the "y.output" log file */
ReportOutput(lemp)2700 void ReportOutput(lemp)
2701 struct lemon *lemp;
2702 {
2703   int i;
2704   struct state *stp;
2705   struct config *cfp;
2706   struct action *ap;
2707   FILE *fp;
2708 
2709   fp = file_open(lemp,".out","w");
2710   if( fp==0 ) return;
2711   fprintf(fp," \b");
2712   for(i=0; i<lemp->nstate; i++){
2713     stp = lemp->sorted[i];
2714     fprintf(fp,"State %d:\n",stp->index);
2715     if( lemp->basisflag ) cfp=stp->bp;
2716     else                  cfp=stp->cfp;
2717     while( cfp ){
2718       char buf[20];
2719       if( cfp->dot==cfp->rp->nrhs ){
2720         sprintf(buf,"(%d)",cfp->rp->index);
2721         fprintf(fp,"    %5s ",buf);
2722       }else{
2723         fprintf(fp,"          ");
2724       }
2725       ConfigPrint(fp,cfp);
2726       fprintf(fp,"\n");
2727 #ifdef TEST
2728       SetPrint(fp,cfp->fws,lemp);
2729       PlinkPrint(fp,cfp->fplp,"To  ");
2730       PlinkPrint(fp,cfp->bplp,"From");
2731 #endif
2732       if( lemp->basisflag ) cfp=cfp->bp;
2733       else                  cfp=cfp->next;
2734     }
2735     fprintf(fp,"\n");
2736     for(ap=stp->ap; ap; ap=ap->next){
2737       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
2738     }
2739     fprintf(fp,"\n");
2740   }
2741   fclose(fp);
2742   return;
2743 }
2744 
2745   extern int access();
2746 /* Search for the file "name" which is in the same directory as
2747 ** the exacutable */
pathsearch(argv0,name,modemask)2748 PRIVATE char *pathsearch(argv0,name,modemask)
2749 char *argv0;
2750 char *name;
2751 int modemask;
2752 {
2753   char *pathlist;
2754   char *path,*cp;
2755   char c;
2756 
2757 #ifdef __WIN32__
2758   cp = strrchr(argv0,'\\');
2759 #else
2760   cp = strrchr(argv0,'/');
2761 #endif
2762   if( cp ){
2763     c = *cp;
2764     *cp = 0;
2765     path = (char *)malloc( strlen(argv0) + strlen(name) + 2 );
2766     if( path ) sprintf(path,"%s/%s",argv0,name);
2767     *cp = c;
2768   }else{
2769     pathlist = getenv("PATH");
2770     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
2771     path = (char *)malloc( strlen(pathlist)+strlen(name)+2 );
2772     if( path!=0 ){
2773       while( *pathlist ){
2774         cp = strchr(pathlist,':');
2775         if( cp==0 ) cp = &pathlist[strlen(pathlist)];
2776         c = *cp;
2777         *cp = 0;
2778         sprintf(path,"%s/%s",pathlist,name);
2779         *cp = c;
2780         if( c==0 ) pathlist = "";
2781         else pathlist = &cp[1];
2782         if( access(path,modemask)==0 ) break;
2783       }
2784     }
2785   }
2786   return path;
2787 }
2788 
2789 /* Given an action, compute the integer value for that action
2790 ** which is to be put in the action table of the generated machine.
2791 ** Return negative if no action should be generated.
2792 */
compute_action(lemp,ap)2793 PRIVATE int compute_action(lemp,ap)
2794 struct lemon *lemp;
2795 struct action *ap;
2796 {
2797   int act;
2798   switch( ap->type ){
2799     case SHIFT:  act = ap->x.stp->index;               break;
2800     case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
2801     case ERROR:  act = lemp->nstate + lemp->nrule;     break;
2802     case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
2803     default:     act = -1; break;
2804   }
2805   return act;
2806 }
2807 
2808 #define LINESIZE 1000
2809 /* The next cluster of routines are for reading the template file
2810 ** and writing the results to the generated parser */
2811 /* The first function transfers data from "in" to "out" until
2812 ** a line is seen which begins with "%%".  The line number is
2813 ** tracked.
2814 **
2815 ** if name!=0, then any word that begin with "Parse" is changed to
2816 ** begin with *name instead.
2817 */
tplt_xfer(name,in,out,lineno)2818 PRIVATE void tplt_xfer(name,in,out,lineno)
2819 char *name;
2820 FILE *in;
2821 FILE *out;
2822 int *lineno;
2823 {
2824   int i, iStart;
2825   char line[LINESIZE];
2826   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
2827     (*lineno)++;
2828     iStart = 0;
2829     if( name ){
2830       for(i=0; line[i]; i++){
2831         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
2832           && (i==0 || !isalpha(line[i-1]))
2833         ){
2834           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
2835           fprintf(out,"%s",name);
2836           i += 4;
2837           iStart = i+1;
2838         }
2839       }
2840     }
2841     fprintf(out,"%s",&line[iStart]);
2842   }
2843 }
2844 
2845 /* The next function finds the template file and opens it, returning
2846 ** a pointer to the opened file. */
tplt_open(lemp)2847 PRIVATE FILE *tplt_open(lemp)
2848 struct lemon *lemp;
2849 {
2850 
2851   char buf[1000];
2852   FILE *in;
2853   char *tpltname;
2854   char *cp;
2855 
2856   cp = strrchr(lemp->filename,'.');
2857   if( cp ){
2858     sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
2859   }else{
2860     sprintf(buf,"%s.lt",lemp->filename);
2861   }
2862   if( access(buf,004)==0 ){
2863     tpltname = buf;
2864   }else if( access(lemp->tmplname,004)==0 ){
2865     tpltname = lemp->tmplname;
2866   }else{
2867     tpltname = pathsearch(lemp->argv0,lemp->tmplname,0);
2868   }
2869   if( tpltname==0 ){
2870     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
2871     lemp->tmplname);
2872     lemp->errorcnt++;
2873     return 0;
2874   }
2875   in = fopen(tpltname,"r");
2876   if( in==0 ){
2877     fprintf(stderr,"Can't open the template file \"%s\".\n",lemp->tmplname);
2878     lemp->errorcnt++;
2879     return 0;
2880   }
2881   return in;
2882 }
2883 
2884 /* Print a string to the file and keep the linenumber up to date */
tplt_print(out,lemp,str,strln,lineno)2885 PRIVATE void tplt_print(out,lemp,str,strln,lineno)
2886 FILE *out;
2887 struct lemon *lemp;
2888 char *str;
2889 int strln;
2890 int *lineno;
2891 {
2892   if( str==0 ) return;
2893   fprintf(out,"#line %d \"%s\"\n",strln,lemp->filename); (*lineno)++;
2894   while( *str ){
2895     if( *str=='\n' ) (*lineno)++;
2896     putc(*str,out);
2897     str++;
2898   }
2899   fprintf(out,"\n#line %d \"%s\"\n",*lineno+2,lemp->outname); (*lineno)+=2;
2900   return;
2901 }
2902 
2903 /*
2904 ** The following routine emits code for the destructor for the
2905 ** symbol sp
2906 */
emit_destructor_code(out,sp,lemp,lineno)2907 PRIVATE void emit_destructor_code(out,sp,lemp,lineno)
2908 FILE *out;
2909 struct symbol *sp;
2910 struct lemon *lemp;
2911 int *lineno;
2912 {
2913  char *cp = 0;
2914 
2915  int linecnt = 0;
2916  if( sp->type==TERMINAL ){
2917    cp = lemp->tokendest;
2918    if( cp==0 ) return;
2919    fprintf(out,"#line %d \"%s\"\n{",lemp->tokendestln,lemp->filename);
2920  }else if( sp->destructor ){
2921    cp = sp->destructor;
2922    fprintf(out,"#line %d \"%s\"\n{",sp->destructorln,lemp->filename);
2923  }else{
2924    cp = lemp->vardest;
2925    if( cp==0 ) return;
2926    fprintf(out,"#line %d \"%s\"\n{",lemp->vardestln,lemp->filename);
2927  }
2928  for(; *cp; cp++){
2929    if( *cp=='$' && cp[1]=='$' ){
2930      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
2931      cp++;
2932      continue;
2933    }
2934    if( *cp=='\n' ) linecnt++;
2935    fputc(*cp,out);
2936  }
2937  (*lineno) += 3 + linecnt;
2938  fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
2939  return;
2940 }
2941 
2942 /*
2943 ** Return TRUE (non-zero) if the given symbol has a destructor.
2944 */
has_destructor(sp,lemp)2945 PRIVATE int has_destructor(sp, lemp)
2946 struct symbol *sp;
2947 struct lemon *lemp;
2948 {
2949   int ret;
2950   if( sp->type==TERMINAL ){
2951     ret = lemp->tokendest!=0;
2952   }else{
2953     ret = lemp->vardest!=0 || sp->destructor!=0;
2954   }
2955   return ret;
2956 }
2957 
2958 /*
2959 ** Generate code which executes when the rule "rp" is reduced.  Write
2960 ** the code to "out".  Make sure lineno stays up-to-date.
2961 */
emit_code(out,rp,lemp,lineno)2962 PRIVATE void emit_code(out,rp,lemp,lineno)
2963 FILE *out;
2964 struct rule *rp;
2965 struct lemon *lemp;
2966 int *lineno;
2967 {
2968  char *cp, *xp;
2969  int linecnt = 0;
2970  int i;
2971  char lhsused = 0;    /* True if the LHS element has been used */
2972  char used[MAXRHS];   /* True for each RHS element which is used */
2973 
2974  for(i=0; i<rp->nrhs; i++) used[i] = 0;
2975  lhsused = 0;
2976 
2977  /* Generate code to do the reduce action */
2978  if( rp->code ){
2979    fprintf(out,"#line %d \"%s\"\n{",rp->line,lemp->filename);
2980    for(cp=rp->code; *cp; cp++){
2981      if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
2982        char saved;
2983        for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
2984        saved = *xp;
2985        *xp = 0;
2986        if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
2987          fprintf(out,"yygotominor.yy%d",rp->lhs->dtnum);
2988          cp = xp;
2989          lhsused = 1;
2990        }else{
2991          for(i=0; i<rp->nrhs; i++){
2992            if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
2993              fprintf(out,"yymsp[%d].minor.yy%d",i-rp->nrhs+1,rp->rhs[i]->dtnum);
2994              cp = xp;
2995              used[i] = 1;
2996              break;
2997            }
2998          }
2999        }
3000        *xp = saved;
3001      }
3002      if( *cp=='\n' ) linecnt++;
3003      fputc(*cp,out);
3004    } /* End loop */
3005    (*lineno) += 3 + linecnt;
3006    fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
3007  } /* End if( rp->code ) */
3008 
3009  /* Check to make sure the LHS has been used */
3010  if( rp->lhsalias && !lhsused ){
3011    ErrorMsg(lemp->filename,rp->ruleline,
3012      "Label \"%s\" for \"%s(%s)\" is never used.",
3013        rp->lhsalias,rp->lhs->name,rp->lhsalias);
3014    lemp->errorcnt++;
3015  }
3016 
3017  /* Generate destructor code for RHS symbols which are not used in the
3018  ** reduce code */
3019  for(i=0; i<rp->nrhs; i++){
3020    if( rp->rhsalias[i] && !used[i] ){
3021      ErrorMsg(lemp->filename,rp->ruleline,
3022        "Label %s for \"%s(%s)\" is never used.",
3023        rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
3024      lemp->errorcnt++;
3025    }else if( rp->rhsalias[i]==0 ){
3026      if( has_destructor(rp->rhs[i],lemp) ){
3027        fprintf(out,"  yy_destructor(%d,&yymsp[%d].minor);\n",
3028           rp->rhs[i]->index,i-rp->nrhs+1); (*lineno)++;
3029      }else{
3030        fprintf(out,"        /* No destructor defined for %s */\n",
3031         rp->rhs[i]->name);
3032         (*lineno)++;
3033      }
3034    }
3035  }
3036  return;
3037 }
3038 
3039 /*
3040 ** Print the definition of the union used for the parser's data stack.
3041 ** This union contains fields for every possible data type for tokens
3042 ** and nonterminals.  In the process of computing and printing this
3043 ** union, also set the ".dtnum" field of every terminal and nonterminal
3044 ** symbol.
3045 */
print_stack_union(out,lemp,plineno,mhflag)3046 PRIVATE void print_stack_union(out,lemp,plineno,mhflag)
3047 FILE *out;                  /* The output stream */
3048 struct lemon *lemp;         /* The main info structure for this parser */
3049 int *plineno;               /* Pointer to the line number */
3050 int mhflag;                 /* True if generating makeheaders output */
3051 {
3052   int lineno;               /* The line number of the output */
3053   char **types;             /* A hash table of datatypes */
3054   int arraysize;            /* Size of the "types" array */
3055   int maxdtlength;          /* Maximum length of any ".datatype" field. */
3056   char *stddt;              /* Standardized name for a datatype */
3057   int i,j;                  /* Loop counters */
3058   int hash;                 /* For hashing the name of a type */
3059   char *name;               /* Name of the parser */
3060 
3061   /* Allocate and initialize types[] and allocate stddt[] */
3062   arraysize = lemp->nsymbol * 2;
3063   types = (char**)malloc( arraysize * sizeof(char*) );
3064   for(i=0; i<arraysize; i++) types[i] = 0;
3065   maxdtlength = 0;
3066   if( lemp->vartype ){
3067     maxdtlength = strlen(lemp->vartype);
3068   }
3069   for(i=0; i<lemp->nsymbol; i++){
3070     int len;
3071     struct symbol *sp = lemp->symbols[i];
3072     if( sp->datatype==0 ) continue;
3073     len = strlen(sp->datatype);
3074     if( len>maxdtlength ) maxdtlength = len;
3075   }
3076   stddt = (char*)malloc( maxdtlength*2 + 1 );
3077   if( types==0 || stddt==0 ){
3078     fprintf(stderr,"Out of memory.\n");
3079     exit(1);
3080   }
3081 
3082   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3083   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
3084   ** used for terminal symbols.  If there is no %default_type defined then
3085   ** 0 is also used as the .dtnum value for nonterminals which do not specify
3086   ** a datatype using the %type directive.
3087   */
3088   for(i=0; i<lemp->nsymbol; i++){
3089     struct symbol *sp = lemp->symbols[i];
3090     char *cp;
3091     if( sp==lemp->errsym ){
3092       sp->dtnum = arraysize+1;
3093       continue;
3094     }
3095     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
3096       sp->dtnum = 0;
3097       continue;
3098     }
3099     cp = sp->datatype;
3100     if( cp==0 ) cp = lemp->vartype;
3101     j = 0;
3102     while( isspace(*cp) ) cp++;
3103     while( *cp ) stddt[j++] = *cp++;
3104     while( j>0 && isspace(stddt[j-1]) ) j--;
3105     stddt[j] = 0;
3106     hash = 0;
3107     for(j=0; stddt[j]; j++){
3108       hash = hash*53 + stddt[j];
3109     }
3110     hash = (hash & 0x7fffffff)%arraysize;
3111     while( types[hash] ){
3112       if( strcmp(types[hash],stddt)==0 ){
3113         sp->dtnum = hash + 1;
3114         break;
3115       }
3116       hash++;
3117       if( hash>=arraysize ) hash = 0;
3118     }
3119     if( types[hash]==0 ){
3120       sp->dtnum = hash + 1;
3121       types[hash] = (char*)malloc( strlen(stddt)+1 );
3122       if( types[hash]==0 ){
3123         fprintf(stderr,"Out of memory.\n");
3124         exit(1);
3125       }
3126       strcpy(types[hash],stddt);
3127     }
3128   }
3129 
3130   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3131   name = lemp->name ? lemp->name : "Parse";
3132   lineno = *plineno;
3133   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
3134   fprintf(out,"#define %sTOKENTYPE %s\n",name,
3135     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
3136   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
3137   fprintf(out,"typedef union {\n"); lineno++;
3138   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
3139   for(i=0; i<arraysize; i++){
3140     if( types[i]==0 ) continue;
3141     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
3142     free(types[i]);
3143   }
3144   fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
3145   free(stddt);
3146   free(types);
3147   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
3148   *plineno = lineno;
3149 }
3150 
3151 /*
3152 ** Return the name of a C datatype able to represent values between
3153 ** lwr and upr, inclusive.
3154 */
minimum_size_type(int lwr,int upr)3155 static const char *minimum_size_type(int lwr, int upr){
3156   if( lwr>=0 ){
3157     if( upr<=255 ){
3158       return "unsigned char";
3159     }else if( upr<65535 ){
3160       return "unsigned short int";
3161     }else{
3162       return "unsigned int";
3163     }
3164   }else if( lwr>=-127 && upr<=127 ){
3165     return "signed char";
3166   }else if( lwr>=-32767 && upr<32767 ){
3167     return "short";
3168   }else{
3169     return "int";
3170   }
3171 }
3172 
3173 /*
3174 ** Each state contains a set of token transaction and a set of
3175 ** nonterminal transactions.  Each of these sets makes an instance
3176 ** of the following structure.  An array of these structures is used
3177 ** to order the creation of entries in the yy_action[] table.
3178 */
3179 struct axset {
3180   struct state *stp;   /* A pointer to a state */
3181   int isTkn;           /* True to use tokens.  False for non-terminals */
3182   int nAction;         /* Number of actions */
3183 };
3184 
3185 /*
3186 ** Compare to axset structures for sorting purposes
3187 */
axset_compare(const void * a,const void * b)3188 static int axset_compare(const void *a, const void *b){
3189   struct axset *p1 = (struct axset*)a;
3190   struct axset *p2 = (struct axset*)b;
3191   return p2->nAction - p1->nAction;
3192 }
3193 
3194 /* Generate C source code for the parser */
ReportTable(lemp,mhflag)3195 void ReportTable(lemp, mhflag)
3196 struct lemon *lemp;
3197 int mhflag;     /* Output in makeheaders format if true */
3198 {
3199   FILE *out, *in;
3200   char line[LINESIZE];
3201   int  lineno;
3202   struct state *stp;
3203   struct action *ap;
3204   struct rule *rp;
3205   struct acttab *pActtab;
3206   int i, j, n;
3207   int mnTknOfst, mxTknOfst;
3208   int mnNtOfst, mxNtOfst;
3209   struct axset *ax;
3210   char *name;
3211 
3212   in = tplt_open(lemp);
3213   if( in==0 ) return;
3214   out = file_open(lemp,".c","w");
3215   if( out==0 ){
3216     fclose(in);
3217     return;
3218   }
3219   lineno = 1;
3220   tplt_xfer(lemp->name,in,out,&lineno);
3221 
3222   /* Generate the include code, if any */
3223   tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno);
3224   if( mhflag ){
3225     name = file_makename(lemp, ".h");
3226     fprintf(out,"#include \"%s\"\n", name); lineno++;
3227     free(name);
3228   }
3229   tplt_xfer(lemp->name,in,out,&lineno);
3230 
3231   /* Generate #defines for all tokens */
3232   if( mhflag ){
3233     char *prefix;
3234     fprintf(out,"#if INTERFACE\n"); lineno++;
3235     if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3236     else                    prefix = "";
3237     for(i=1; i<lemp->nterminal; i++){
3238       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3239       lineno++;
3240     }
3241     fprintf(out,"#endif\n"); lineno++;
3242   }
3243   tplt_xfer(lemp->name,in,out,&lineno);
3244 
3245   /* Generate the defines */
3246   fprintf(out,"/* \001 */\n");
3247   fprintf(out,"#define YYCODETYPE %s\n",
3248     minimum_size_type(0, lemp->nsymbol+5)); lineno++;
3249   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
3250   fprintf(out,"#define YYACTIONTYPE %s\n",
3251     minimum_size_type(0, lemp->nstate+lemp->nrule+5));  lineno++;
3252   print_stack_union(out,lemp,&lineno,mhflag);
3253   if( lemp->stacksize ){
3254     if( atoi(lemp->stacksize)<=0 ){
3255       ErrorMsg(lemp->filename,0,
3256 "Illegal stack size: [%s].  The stack size should be an integer constant.",
3257         lemp->stacksize);
3258       lemp->errorcnt++;
3259       lemp->stacksize = "100";
3260     }
3261     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
3262   }else{
3263     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
3264   }
3265   if( mhflag ){
3266     fprintf(out,"#if INTERFACE\n"); lineno++;
3267   }
3268   name = lemp->name ? lemp->name : "Parse";
3269   if( lemp->arg && lemp->arg[0] ){
3270     i = strlen(lemp->arg);
3271     while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
3272     while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
3273     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
3274     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
3275     fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
3276                  name,lemp->arg,&lemp->arg[i]);  lineno++;
3277     fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
3278                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
3279   }else{
3280     fprintf(out,"#define %sARG_SDECL\n",name);  lineno++;
3281     fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
3282     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
3283     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
3284   }
3285   if( mhflag ){
3286     fprintf(out,"#endif\n"); lineno++;
3287   }
3288   fprintf(out,"#define YYNSTATE %d\n",lemp->nstate);  lineno++;
3289   fprintf(out,"#define YYNRULE %d\n",lemp->nrule);  lineno++;
3290   fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index);  lineno++;
3291   fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum);  lineno++;
3292   if( lemp->has_fallback ){
3293     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
3294   }
3295   tplt_xfer(lemp->name,in,out,&lineno);
3296 
3297   /* Generate the action table and its associates:
3298   **
3299   **  yy_action[]        A single table containing all actions.
3300   **  yy_lookahead[]     A table containing the lookahead for each entry in
3301   **                     yy_action.  Used to detect hash collisions.
3302   **  yy_shift_ofst[]    For each state, the offset into yy_action for
3303   **                     shifting terminals.
3304   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
3305   **                     shifting non-terminals after a reduce.
3306   **  yy_default[]       Default action for each state.
3307   */
3308 
3309   /* Compute the actions on all states and count them up */
3310   ax = malloc( sizeof(ax[0])*lemp->nstate*2 );
3311   if( ax==0 ){
3312     fprintf(stderr,"malloc failed\n");
3313     exit(1);
3314   }
3315   for(i=0; i<lemp->nstate; i++){
3316     stp = lemp->sorted[i];
3317     stp->nTknAct = stp->nNtAct = 0;
3318     stp->iDflt = lemp->nstate + lemp->nrule;
3319     stp->iTknOfst = NO_OFFSET;
3320     stp->iNtOfst = NO_OFFSET;
3321     for(ap=stp->ap; ap; ap=ap->next){
3322       if( compute_action(lemp,ap)>=0 ){
3323         if( ap->sp->index<lemp->nterminal ){
3324           stp->nTknAct++;
3325         }else if( ap->sp->index<lemp->nsymbol ){
3326           stp->nNtAct++;
3327         }else{
3328           stp->iDflt = compute_action(lemp, ap);
3329         }
3330       }
3331     }
3332     ax[i*2].stp = stp;
3333     ax[i*2].isTkn = 1;
3334     ax[i*2].nAction = stp->nTknAct;
3335     ax[i*2+1].stp = stp;
3336     ax[i*2+1].isTkn = 0;
3337     ax[i*2+1].nAction = stp->nNtAct;
3338   }
3339   mxTknOfst = mnTknOfst = 0;
3340   mxNtOfst = mnNtOfst = 0;
3341 
3342   /* Compute the action table.  In order to try to keep the size of the
3343   ** action table to a minimum, the heuristic of placing the largest action
3344   ** sets first is used.
3345   */
3346   qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
3347   pActtab = acttab_alloc();
3348   for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
3349     stp = ax[i].stp;
3350     if( ax[i].isTkn ){
3351       for(ap=stp->ap; ap; ap=ap->next){
3352         int action;
3353         if( ap->sp->index>=lemp->nterminal ) continue;
3354         action = compute_action(lemp, ap);
3355         if( action<0 ) continue;
3356         acttab_action(pActtab, ap->sp->index, action);
3357       }
3358       stp->iTknOfst = acttab_insert(pActtab);
3359       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
3360       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
3361     }else{
3362       for(ap=stp->ap; ap; ap=ap->next){
3363         int action;
3364         if( ap->sp->index<lemp->nterminal ) continue;
3365         if( ap->sp->index==lemp->nsymbol ) continue;
3366         action = compute_action(lemp, ap);
3367         if( action<0 ) continue;
3368         acttab_action(pActtab, ap->sp->index, action);
3369       }
3370       stp->iNtOfst = acttab_insert(pActtab);
3371       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
3372       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
3373     }
3374   }
3375   free(ax);
3376 
3377   /* Output the yy_action table */
3378   fprintf(out,"static YYACTIONTYPE yy_action[] = {\n"); lineno++;
3379   n = acttab_size(pActtab);
3380   for(i=j=0; i<n; i++){
3381     int action = acttab_yyaction(pActtab, i);
3382     if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
3383     if( j==0 ) fprintf(out," /* %5d */ ", i);
3384     fprintf(out, " %4d,", action);
3385     if( j==9 || i==n-1 ){
3386       fprintf(out, "\n"); lineno++;
3387       j = 0;
3388     }else{
3389       j++;
3390     }
3391   }
3392   fprintf(out, "};\n"); lineno++;
3393 
3394   /* Output the yy_lookahead table */
3395   fprintf(out,"static YYCODETYPE yy_lookahead[] = {\n"); lineno++;
3396   for(i=j=0; i<n; i++){
3397     int la = acttab_yylookahead(pActtab, i);
3398     if( la<0 ) la = lemp->nsymbol;
3399     if( j==0 ) fprintf(out," /* %5d */ ", i);
3400     fprintf(out, " %4d,", la);
3401     if( j==9 || i==n-1 ){
3402       fprintf(out, "\n"); lineno++;
3403       j = 0;
3404     }else{
3405       j++;
3406     }
3407   }
3408   fprintf(out, "};\n"); lineno++;
3409 
3410   /* Output the yy_shift_ofst[] table */
3411   fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
3412   fprintf(out, "static %s yy_shift_ofst[] = {\n",
3413           minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
3414   n = lemp->nstate;
3415   for(i=j=0; i<n; i++){
3416     int ofst;
3417     stp = lemp->sorted[i];
3418     ofst = stp->iTknOfst;
3419     if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
3420     if( j==0 ) fprintf(out," /* %5d */ ", i);
3421     fprintf(out, " %4d,", ofst);
3422     if( j==9 || i==n-1 ){
3423       fprintf(out, "\n"); lineno++;
3424       j = 0;
3425     }else{
3426       j++;
3427     }
3428   }
3429   fprintf(out, "};\n"); lineno++;
3430 
3431   /* Output the yy_reduce_ofst[] table */
3432   fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
3433   fprintf(out, "static %s yy_reduce_ofst[] = {\n",
3434           minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
3435   n = lemp->nstate;
3436   for(i=j=0; i<n; i++){
3437     int ofst;
3438     stp = lemp->sorted[i];
3439     ofst = stp->iNtOfst;
3440     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
3441     if( j==0 ) fprintf(out," /* %5d */ ", i);
3442     fprintf(out, " %4d,", ofst);
3443     if( j==9 || i==n-1 ){
3444       fprintf(out, "\n"); lineno++;
3445       j = 0;
3446     }else{
3447       j++;
3448     }
3449   }
3450   fprintf(out, "};\n"); lineno++;
3451 
3452   /* Output the default action table */
3453   fprintf(out, "static YYACTIONTYPE yy_default[] = {\n"); lineno++;
3454   n = lemp->nstate;
3455   for(i=j=0; i<n; i++){
3456     stp = lemp->sorted[i];
3457     if( j==0 ) fprintf(out," /* %5d */ ", i);
3458     fprintf(out, " %4d,", stp->iDflt);
3459     if( j==9 || i==n-1 ){
3460       fprintf(out, "\n"); lineno++;
3461       j = 0;
3462     }else{
3463       j++;
3464     }
3465   }
3466   fprintf(out, "};\n"); lineno++;
3467   tplt_xfer(lemp->name,in,out,&lineno);
3468 
3469   /* Generate the table of fallback tokens.
3470   */
3471   if( lemp->has_fallback ){
3472     for(i=0; i<lemp->nterminal; i++){
3473       struct symbol *p = lemp->symbols[i];
3474       if( p->fallback==0 ){
3475         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
3476       }else{
3477         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
3478           p->name, p->fallback->name);
3479       }
3480       lineno++;
3481     }
3482   }
3483   tplt_xfer(lemp->name, in, out, &lineno);
3484 
3485   /* Generate a table containing the symbolic name of every symbol
3486   */
3487   for(i=0; i<lemp->nsymbol; i++){
3488     sprintf(line,"\"%s\",",lemp->symbols[i]->name);
3489     fprintf(out,"  %-15s",line);
3490     if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
3491   }
3492   if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
3493   tplt_xfer(lemp->name,in,out,&lineno);
3494 
3495   /* Generate a table containing a text string that describes every
3496   ** rule in the rule set of the grammer.  This information is used
3497   ** when tracing REDUCE actions.
3498   */
3499   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
3500     assert( rp->index==i );
3501     fprintf(out," /* %3d */ \"%s ::=", i, rp->lhs->name);
3502     for(j=0; j<rp->nrhs; j++) fprintf(out," %s",rp->rhs[j]->name);
3503     fprintf(out,"\",\n"); lineno++;
3504   }
3505   tplt_xfer(lemp->name,in,out,&lineno);
3506 
3507   /* Generate code which executes every time a symbol is popped from
3508   ** the stack while processing errors or while destroying the parser.
3509   ** (In other words, generate the %destructor actions)
3510   */
3511   if( lemp->tokendest ){
3512     for(i=0; i<lemp->nsymbol; i++){
3513       struct symbol *sp = lemp->symbols[i];
3514       if( sp==0 || sp->type!=TERMINAL ) continue;
3515       fprintf(out,"    case %d:\n",sp->index); lineno++;
3516     }
3517     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
3518     if( i<lemp->nsymbol ){
3519       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3520       fprintf(out,"      break;\n"); lineno++;
3521     }
3522   }
3523   for(i=0; i<lemp->nsymbol; i++){
3524     struct symbol *sp = lemp->symbols[i];
3525     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
3526     fprintf(out,"    case %d:\n",sp->index); lineno++;
3527     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3528     fprintf(out,"      break;\n"); lineno++;
3529   }
3530   if( lemp->vardest ){
3531     struct symbol *dflt_sp = 0;
3532     for(i=0; i<lemp->nsymbol; i++){
3533       struct symbol *sp = lemp->symbols[i];
3534       if( sp==0 || sp->type==TERMINAL ||
3535           sp->index<=0 || sp->destructor!=0 ) continue;
3536       fprintf(out,"    case %d:\n",sp->index); lineno++;
3537       dflt_sp = sp;
3538     }
3539     if( dflt_sp!=0 ){
3540       emit_destructor_code(out,dflt_sp,lemp,&lineno);
3541       fprintf(out,"      break;\n"); lineno++;
3542     }
3543   }
3544   tplt_xfer(lemp->name,in,out,&lineno);
3545 
3546   /* Generate code which executes whenever the parser stack overflows */
3547   tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno);
3548   tplt_xfer(lemp->name,in,out,&lineno);
3549 
3550   /* Generate the table of rule information
3551   **
3552   ** Note: This code depends on the fact that rules are number
3553   ** sequentually beginning with 0.
3554   */
3555   for(rp=lemp->rule; rp; rp=rp->next){
3556     fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
3557   }
3558   tplt_xfer(lemp->name,in,out,&lineno);
3559 
3560   /* Generate code which execution during each REDUCE action */
3561   for(rp=lemp->rule; rp; rp=rp->next){
3562     fprintf(out,"      case %d:\n",rp->index); lineno++;
3563     emit_code(out,rp,lemp,&lineno);
3564     fprintf(out,"        break;\n"); lineno++;
3565   }
3566   tplt_xfer(lemp->name,in,out,&lineno);
3567 
3568   /* Generate code which executes if a parse fails */
3569   tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno);
3570   tplt_xfer(lemp->name,in,out,&lineno);
3571 
3572   /* Generate code which executes when a syntax error occurs */
3573   tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno);
3574   tplt_xfer(lemp->name,in,out,&lineno);
3575 
3576   /* Generate code which executes when the parser accepts its input */
3577   tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno);
3578   tplt_xfer(lemp->name,in,out,&lineno);
3579 
3580   /* Append any addition code the user desires */
3581   tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno);
3582 
3583   fclose(in);
3584   fclose(out);
3585   return;
3586 }
3587 
3588 /* Generate a header file for the parser */
ReportHeader(lemp)3589 void ReportHeader(lemp)
3590 struct lemon *lemp;
3591 {
3592   FILE *out, *in;
3593   char *prefix;
3594   char line[LINESIZE];
3595   char pattern[LINESIZE];
3596   int i;
3597 
3598   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3599   else                    prefix = "";
3600   in = file_open(lemp,".h","r");
3601   if( in ){
3602     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
3603       sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3604       if( strcmp(line,pattern) ) break;
3605     }
3606     fclose(in);
3607     if( i==lemp->nterminal ){
3608       /* No change in the file.  Don't rewrite it. */
3609       return;
3610     }
3611   }
3612   out = file_open(lemp,".h","w");
3613   if( out ){
3614     for(i=1; i<lemp->nterminal; i++){
3615       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3616     }
3617     fclose(out);
3618   }
3619   return;
3620 }
3621 
3622 /* Reduce the size of the action tables, if possible, by making use
3623 ** of defaults.
3624 **
3625 ** In this version, we take the most frequent REDUCE action and make
3626 ** it the default.  Only default a reduce if there are more than one.
3627 */
CompressTables(lemp)3628 void CompressTables(lemp)
3629 struct lemon *lemp;
3630 {
3631   struct state *stp;
3632   struct action *ap, *ap2;
3633   struct rule *rp, *rp2, *rbest;
3634   int nbest, n;
3635   int i;
3636 
3637   for(i=0; i<lemp->nstate; i++){
3638     stp = lemp->sorted[i];
3639     nbest = 0;
3640     rbest = 0;
3641 
3642     for(ap=stp->ap; ap; ap=ap->next){
3643       if( ap->type!=REDUCE ) continue;
3644       rp = ap->x.rp;
3645       if( rp==rbest ) continue;
3646       n = 1;
3647       for(ap2=ap->next; ap2; ap2=ap2->next){
3648         if( ap2->type!=REDUCE ) continue;
3649         rp2 = ap2->x.rp;
3650         if( rp2==rbest ) continue;
3651         if( rp2==rp ) n++;
3652       }
3653       if( n>nbest ){
3654         nbest = n;
3655         rbest = rp;
3656       }
3657     }
3658 
3659     /* Do not make a default if the number of rules to default
3660     ** is not at least 2 */
3661     if( nbest<2 ) continue;
3662 
3663 
3664     /* Combine matching REDUCE actions into a single default */
3665     for(ap=stp->ap; ap; ap=ap->next){
3666       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
3667     }
3668     assert( ap );
3669     ap->sp = Symbol_new("{default}");
3670     for(ap=ap->next; ap; ap=ap->next){
3671       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
3672     }
3673     stp->ap = Action_sort(stp->ap);
3674   }
3675 }
3676 
3677 /***************** From the file "set.c" ************************************/
3678 /*
3679 ** Set manipulation routines for the LEMON parser generator.
3680 */
3681 
3682 static int global_size = 0;
3683 
3684 /* Set the set size */
SetSize(n)3685 void SetSize(n)
3686 int n;
3687 {
3688   global_size = n+1;
3689 }
3690 
3691 /* Allocate a new set */
SetNew()3692 char *SetNew(){
3693   char *s;
3694   int i;
3695   s = (char*)malloc( global_size );
3696   if( s==0 ){
3697     memory_error();
3698   }
3699   for(i=0; i<global_size; i++) s[i] = 0;
3700   return s;
3701 }
3702 
3703 /* Deallocate a set */
SetFree(s)3704 void SetFree(s)
3705 char *s;
3706 {
3707   free(s);
3708 }
3709 
3710 /* Add a new element to the set.  Return TRUE if the element was added
3711 ** and FALSE if it was already there. */
SetAdd(s,e)3712 int SetAdd(s,e)
3713 char *s;
3714 int e;
3715 {
3716   int rv;
3717   rv = s[e];
3718   s[e] = 1;
3719   return !rv;
3720 }
3721 
3722 /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
SetUnion(s1,s2)3723 int SetUnion(s1,s2)
3724 char *s1;
3725 char *s2;
3726 {
3727   int i, progress;
3728   progress = 0;
3729   for(i=0; i<global_size; i++){
3730     if( s2[i]==0 ) continue;
3731     if( s1[i]==0 ){
3732       progress = 1;
3733       s1[i] = 1;
3734     }
3735   }
3736   return progress;
3737 }
3738 /********************** From the file "table.c" ****************************/
3739 /*
3740 ** All code in this file has been automatically generated
3741 ** from a specification in the file
3742 **              "table.q"
3743 ** by the associative array code building program "aagen".
3744 ** Do not edit this file!  Instead, edit the specification
3745 ** file, then rerun aagen.
3746 */
3747 /*
3748 ** Code for processing tables in the LEMON parser generator.
3749 */
3750 
strhash(x)3751 PRIVATE int strhash(x)
3752 char *x;
3753 {
3754   int h = 0;
3755   while( *x) h = h*13 + *(x++);
3756   return h;
3757 }
3758 
3759 /* Works like strdup, sort of.  Save a string in malloced memory, but
3760 ** keep strings in a table so that the same string is not in more
3761 ** than one place.
3762 */
Strsafe(y)3763 char *Strsafe(y)
3764 char *y;
3765 {
3766   char *z;
3767 
3768   z = Strsafe_find(y);
3769   if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){
3770     strcpy(z,y);
3771     Strsafe_insert(z);
3772   }
3773   MemoryCheck(z);
3774   return z;
3775 }
3776 
3777 /* There is one instance of the following structure for each
3778 ** associative array of type "x1".
3779 */
3780 struct s_x1 {
3781   int size;               /* The number of available slots. */
3782                           /*   Must be a power of 2 greater than or */
3783                           /*   equal to 1 */
3784   int count;              /* Number of currently slots filled */
3785   struct s_x1node *tbl;  /* The data stored here */
3786   struct s_x1node **ht;  /* Hash table for lookups */
3787 };
3788 
3789 /* There is one instance of this structure for every data element
3790 ** in an associative array of type "x1".
3791 */
3792 typedef struct s_x1node {
3793   char *data;                  /* The data */
3794   struct s_x1node *next;   /* Next entry with the same hash */
3795   struct s_x1node **from;  /* Previous link */
3796 } x1node;
3797 
3798 /* There is only one instance of the array, which is the following */
3799 static struct s_x1 *x1a;
3800 
3801 /* Allocate a new associative array */
Strsafe_init()3802 void Strsafe_init(){
3803   if( x1a ) return;
3804   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
3805   if( x1a ){
3806     x1a->size = 1024;
3807     x1a->count = 0;
3808     x1a->tbl = (x1node*)malloc(
3809       (sizeof(x1node) + sizeof(x1node*))*1024 );
3810     if( x1a->tbl==0 ){
3811       free(x1a);
3812       x1a = 0;
3813     }else{
3814       int i;
3815       x1a->ht = (x1node**)&(x1a->tbl[1024]);
3816       for(i=0; i<1024; i++) x1a->ht[i] = 0;
3817     }
3818   }
3819 }
3820 /* Insert a new record into the array.  Return TRUE if successful.
3821 ** Prior data with the same key is NOT overwritten */
Strsafe_insert(data)3822 int Strsafe_insert(data)
3823 char *data;
3824 {
3825   x1node *np;
3826   int h;
3827   int ph;
3828 
3829   if( x1a==0 ) return 0;
3830   ph = strhash(data);
3831   h = ph & (x1a->size-1);
3832   np = x1a->ht[h];
3833   while( np ){
3834     if( strcmp(np->data,data)==0 ){
3835       /* An existing entry with the same key is found. */
3836       /* Fail because overwrite is not allows. */
3837       return 0;
3838     }
3839     np = np->next;
3840   }
3841   if( x1a->count>=x1a->size ){
3842     /* Need to make the hash table bigger */
3843     int i,size;
3844     struct s_x1 array;
3845     array.size = size = x1a->size*2;
3846     array.count = x1a->count;
3847     array.tbl = (x1node*)malloc(
3848       (sizeof(x1node) + sizeof(x1node*))*size );
3849     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
3850     array.ht = (x1node**)&(array.tbl[size]);
3851     for(i=0; i<size; i++) array.ht[i] = 0;
3852     for(i=0; i<x1a->count; i++){
3853       x1node *oldnp, *newnp;
3854       oldnp = &(x1a->tbl[i]);
3855       h = strhash(oldnp->data) & (size-1);
3856       newnp = &(array.tbl[i]);
3857       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
3858       newnp->next = array.ht[h];
3859       newnp->data = oldnp->data;
3860       newnp->from = &(array.ht[h]);
3861       array.ht[h] = newnp;
3862     }
3863     free(x1a->tbl);
3864     *x1a = array;
3865   }
3866   /* Insert the new data */
3867   h = ph & (x1a->size-1);
3868   np = &(x1a->tbl[x1a->count++]);
3869   np->data = data;
3870   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
3871   np->next = x1a->ht[h];
3872   x1a->ht[h] = np;
3873   np->from = &(x1a->ht[h]);
3874   return 1;
3875 }
3876 
3877 /* Return a pointer to data assigned to the given key.  Return NULL
3878 ** if no such key. */
Strsafe_find(key)3879 char *Strsafe_find(key)
3880 char *key;
3881 {
3882   int h;
3883   x1node *np;
3884 
3885   if( x1a==0 ) return 0;
3886   h = strhash(key) & (x1a->size-1);
3887   np = x1a->ht[h];
3888   while( np ){
3889     if( strcmp(np->data,key)==0 ) break;
3890     np = np->next;
3891   }
3892   return np ? np->data : 0;
3893 }
3894 
3895 /* Return a pointer to the (terminal or nonterminal) symbol "x".
3896 ** Create a new symbol if this is the first time "x" has been seen.
3897 */
Symbol_new(x)3898 struct symbol *Symbol_new(x)
3899 char *x;
3900 {
3901   struct symbol *sp;
3902 
3903   sp = Symbol_find(x);
3904   if( sp==0 ){
3905     sp = (struct symbol *)malloc( sizeof(struct symbol) );
3906     MemoryCheck(sp);
3907     sp->name = Strsafe(x);
3908     sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
3909     sp->rule = 0;
3910     sp->fallback = 0;
3911     sp->prec = -1;
3912     sp->assoc = UNK;
3913     sp->firstset = 0;
3914     sp->lambda = Bo_FALSE;
3915     sp->destructor = 0;
3916     sp->datatype = 0;
3917     Symbol_insert(sp,sp->name);
3918   }
3919   return sp;
3920 }
3921 
3922 /* Compare two symbols for working purposes
3923 **
3924 ** Symbols that begin with upper case letters (terminals or tokens)
3925 ** must sort before symbols that begin with lower case letters
3926 ** (non-terminals).  Other than that, the order does not matter.
3927 **
3928 ** We find experimentally that leaving the symbols in their original
3929 ** order (the order they appeared in the grammar file) gives the
3930 ** smallest parser tables in SQLite.
3931 */
Symbolcmpp(struct symbol ** a,struct symbol ** b)3932 int Symbolcmpp(struct symbol **a, struct symbol **b){
3933   int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
3934   int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
3935   return i1-i2;
3936 }
3937 
3938 /* There is one instance of the following structure for each
3939 ** associative array of type "x2".
3940 */
3941 struct s_x2 {
3942   int size;               /* The number of available slots. */
3943                           /*   Must be a power of 2 greater than or */
3944                           /*   equal to 1 */
3945   int count;              /* Number of currently slots filled */
3946   struct s_x2node *tbl;  /* The data stored here */
3947   struct s_x2node **ht;  /* Hash table for lookups */
3948 };
3949 
3950 /* There is one instance of this structure for every data element
3951 ** in an associative array of type "x2".
3952 */
3953 typedef struct s_x2node {
3954   struct symbol *data;                  /* The data */
3955   char *key;                   /* The key */
3956   struct s_x2node *next;   /* Next entry with the same hash */
3957   struct s_x2node **from;  /* Previous link */
3958 } x2node;
3959 
3960 /* There is only one instance of the array, which is the following */
3961 static struct s_x2 *x2a;
3962 
3963 /* Allocate a new associative array */
Symbol_init()3964 void Symbol_init(){
3965   if( x2a ) return;
3966   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
3967   if( x2a ){
3968     x2a->size = 128;
3969     x2a->count = 0;
3970     x2a->tbl = (x2node*)malloc(
3971       (sizeof(x2node) + sizeof(x2node*))*128 );
3972     if( x2a->tbl==0 ){
3973       free(x2a);
3974       x2a = 0;
3975     }else{
3976       int i;
3977       x2a->ht = (x2node**)&(x2a->tbl[128]);
3978       for(i=0; i<128; i++) x2a->ht[i] = 0;
3979     }
3980   }
3981 }
3982 /* Insert a new record into the array.  Return TRUE if successful.
3983 ** Prior data with the same key is NOT overwritten */
Symbol_insert(data,key)3984 int Symbol_insert(data,key)
3985 struct symbol *data;
3986 char *key;
3987 {
3988   x2node *np;
3989   int h;
3990   int ph;
3991 
3992   if( x2a==0 ) return 0;
3993   ph = strhash(key);
3994   h = ph & (x2a->size-1);
3995   np = x2a->ht[h];
3996   while( np ){
3997     if( strcmp(np->key,key)==0 ){
3998       /* An existing entry with the same key is found. */
3999       /* Fail because overwrite is not allows. */
4000       return 0;
4001     }
4002     np = np->next;
4003   }
4004   if( x2a->count>=x2a->size ){
4005     /* Need to make the hash table bigger */
4006     int i,size;
4007     struct s_x2 array;
4008     array.size = size = x2a->size*2;
4009     array.count = x2a->count;
4010     array.tbl = (x2node*)malloc(
4011       (sizeof(x2node) + sizeof(x2node*))*size );
4012     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
4013     array.ht = (x2node**)&(array.tbl[size]);
4014     for(i=0; i<size; i++) array.ht[i] = 0;
4015     for(i=0; i<x2a->count; i++){
4016       x2node *oldnp, *newnp;
4017       oldnp = &(x2a->tbl[i]);
4018       h = strhash(oldnp->key) & (size-1);
4019       newnp = &(array.tbl[i]);
4020       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4021       newnp->next = array.ht[h];
4022       newnp->key = oldnp->key;
4023       newnp->data = oldnp->data;
4024       newnp->from = &(array.ht[h]);
4025       array.ht[h] = newnp;
4026     }
4027     free(x2a->tbl);
4028     *x2a = array;
4029   }
4030   /* Insert the new data */
4031   h = ph & (x2a->size-1);
4032   np = &(x2a->tbl[x2a->count++]);
4033   np->key = key;
4034   np->data = data;
4035   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
4036   np->next = x2a->ht[h];
4037   x2a->ht[h] = np;
4038   np->from = &(x2a->ht[h]);
4039   return 1;
4040 }
4041 
4042 /* Return a pointer to data assigned to the given key.  Return NULL
4043 ** if no such key. */
Symbol_find(key)4044 struct symbol *Symbol_find(key)
4045 char *key;
4046 {
4047   int h;
4048   x2node *np;
4049 
4050   if( x2a==0 ) return 0;
4051   h = strhash(key) & (x2a->size-1);
4052   np = x2a->ht[h];
4053   while( np ){
4054     if( strcmp(np->key,key)==0 ) break;
4055     np = np->next;
4056   }
4057   return np ? np->data : 0;
4058 }
4059 
4060 /* Return the n-th data.  Return NULL if n is out of range. */
Symbol_Nth(n)4061 struct symbol *Symbol_Nth(n)
4062 int n;
4063 {
4064   struct symbol *data;
4065   if( x2a && n>0 && n<=x2a->count ){
4066     data = x2a->tbl[n-1].data;
4067   }else{
4068     data = 0;
4069   }
4070   return data;
4071 }
4072 
4073 /* Return the size of the array */
Symbol_count()4074 int Symbol_count()
4075 {
4076   return x2a ? x2a->count : 0;
4077 }
4078 
4079 /* Return an array of pointers to all data in the table.
4080 ** The array is obtained from malloc.  Return NULL if memory allocation
4081 ** problems, or if the array is empty. */
Symbol_arrayof()4082 struct symbol **Symbol_arrayof()
4083 {
4084   struct symbol **array;
4085   int i,size;
4086   if( x2a==0 ) return 0;
4087   size = x2a->count;
4088   array = (struct symbol **)malloc( sizeof(struct symbol *)*size );
4089   if( array ){
4090     for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
4091   }
4092   return array;
4093 }
4094 
4095 /* Compare two configurations */
Configcmp(a,b)4096 int Configcmp(a,b)
4097 struct config *a;
4098 struct config *b;
4099 {
4100   int x;
4101   x = a->rp->index - b->rp->index;
4102   if( x==0 ) x = a->dot - b->dot;
4103   return x;
4104 }
4105 
4106 /* Compare two states */
statecmp(a,b)4107 PRIVATE int statecmp(a,b)
4108 struct config *a;
4109 struct config *b;
4110 {
4111   int rc;
4112   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
4113     rc = a->rp->index - b->rp->index;
4114     if( rc==0 ) rc = a->dot - b->dot;
4115   }
4116   if( rc==0 ){
4117     if( a ) rc = 1;
4118     if( b ) rc = -1;
4119   }
4120   return rc;
4121 }
4122 
4123 /* Hash a state */
statehash(a)4124 PRIVATE int statehash(a)
4125 struct config *a;
4126 {
4127   int h=0;
4128   while( a ){
4129     h = h*571 + a->rp->index*37 + a->dot;
4130     a = a->bp;
4131   }
4132   return h;
4133 }
4134 
4135 /* Allocate a new state structure */
State_new()4136 struct state *State_new()
4137 {
4138   struct state *new;
4139   new = (struct state *)malloc( sizeof(struct state) );
4140   MemoryCheck(new);
4141   return new;
4142 }
4143 
4144 /* There is one instance of the following structure for each
4145 ** associative array of type "x3".
4146 */
4147 struct s_x3 {
4148   int size;               /* The number of available slots. */
4149                           /*   Must be a power of 2 greater than or */
4150                           /*   equal to 1 */
4151   int count;              /* Number of currently slots filled */
4152   struct s_x3node *tbl;  /* The data stored here */
4153   struct s_x3node **ht;  /* Hash table for lookups */
4154 };
4155 
4156 /* There is one instance of this structure for every data element
4157 ** in an associative array of type "x3".
4158 */
4159 typedef struct s_x3node {
4160   struct state *data;                  /* The data */
4161   struct config *key;                   /* The key */
4162   struct s_x3node *next;   /* Next entry with the same hash */
4163   struct s_x3node **from;  /* Previous link */
4164 } x3node;
4165 
4166 /* There is only one instance of the array, which is the following */
4167 static struct s_x3 *x3a;
4168 
4169 /* Allocate a new associative array */
State_init()4170 void State_init(){
4171   if( x3a ) return;
4172   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
4173   if( x3a ){
4174     x3a->size = 128;
4175     x3a->count = 0;
4176     x3a->tbl = (x3node*)malloc(
4177       (sizeof(x3node) + sizeof(x3node*))*128 );
4178     if( x3a->tbl==0 ){
4179       free(x3a);
4180       x3a = 0;
4181     }else{
4182       int i;
4183       x3a->ht = (x3node**)&(x3a->tbl[128]);
4184       for(i=0; i<128; i++) x3a->ht[i] = 0;
4185     }
4186   }
4187 }
4188 /* Insert a new record into the array.  Return TRUE if successful.
4189 ** Prior data with the same key is NOT overwritten */
State_insert(data,key)4190 int State_insert(data,key)
4191 struct state *data;
4192 struct config *key;
4193 {
4194   x3node *np;
4195   int h;
4196   int ph;
4197 
4198   if( x3a==0 ) return 0;
4199   ph = statehash(key);
4200   h = ph & (x3a->size-1);
4201   np = x3a->ht[h];
4202   while( np ){
4203     if( statecmp(np->key,key)==0 ){
4204       /* An existing entry with the same key is found. */
4205       /* Fail because overwrite is not allows. */
4206       return 0;
4207     }
4208     np = np->next;
4209   }
4210   if( x3a->count>=x3a->size ){
4211     /* Need to make the hash table bigger */
4212     int i,size;
4213     struct s_x3 array;
4214     array.size = size = x3a->size*2;
4215     array.count = x3a->count;
4216     array.tbl = (x3node*)malloc(
4217       (sizeof(x3node) + sizeof(x3node*))*size );
4218     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
4219     array.ht = (x3node**)&(array.tbl[size]);
4220     for(i=0; i<size; i++) array.ht[i] = 0;
4221     for(i=0; i<x3a->count; i++){
4222       x3node *oldnp, *newnp;
4223       oldnp = &(x3a->tbl[i]);
4224       h = statehash(oldnp->key) & (size-1);
4225       newnp = &(array.tbl[i]);
4226       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4227       newnp->next = array.ht[h];
4228       newnp->key = oldnp->key;
4229       newnp->data = oldnp->data;
4230       newnp->from = &(array.ht[h]);
4231       array.ht[h] = newnp;
4232     }
4233     free(x3a->tbl);
4234     *x3a = array;
4235   }
4236   /* Insert the new data */
4237   h = ph & (x3a->size-1);
4238   np = &(x3a->tbl[x3a->count++]);
4239   np->key = key;
4240   np->data = data;
4241   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
4242   np->next = x3a->ht[h];
4243   x3a->ht[h] = np;
4244   np->from = &(x3a->ht[h]);
4245   return 1;
4246 }
4247 
4248 /* Return a pointer to data assigned to the given key.  Return NULL
4249 ** if no such key. */
State_find(key)4250 struct state *State_find(key)
4251 struct config *key;
4252 {
4253   int h;
4254   x3node *np;
4255 
4256   if( x3a==0 ) return 0;
4257   h = statehash(key) & (x3a->size-1);
4258   np = x3a->ht[h];
4259   while( np ){
4260     if( statecmp(np->key,key)==0 ) break;
4261     np = np->next;
4262   }
4263   return np ? np->data : 0;
4264 }
4265 
4266 /* Return an array of pointers to all data in the table.
4267 ** The array is obtained from malloc.  Return NULL if memory allocation
4268 ** problems, or if the array is empty. */
State_arrayof()4269 struct state **State_arrayof()
4270 {
4271   struct state **array;
4272   int i,size;
4273   if( x3a==0 ) return 0;
4274   size = x3a->count;
4275   array = (struct state **)malloc( sizeof(struct state *)*size );
4276   if( array ){
4277     for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
4278   }
4279   return array;
4280 }
4281 
4282 /* Hash a configuration */
confighash(a)4283 PRIVATE int confighash(a)
4284 struct config *a;
4285 {
4286   int h=0;
4287   h = h*571 + a->rp->index*37 + a->dot;
4288   return h;
4289 }
4290 
4291 /* There is one instance of the following structure for each
4292 ** associative array of type "x4".
4293 */
4294 struct s_x4 {
4295   int size;               /* The number of available slots. */
4296                           /*   Must be a power of 2 greater than or */
4297                           /*   equal to 1 */
4298   int count;              /* Number of currently slots filled */
4299   struct s_x4node *tbl;  /* The data stored here */
4300   struct s_x4node **ht;  /* Hash table for lookups */
4301 };
4302 
4303 /* There is one instance of this structure for every data element
4304 ** in an associative array of type "x4".
4305 */
4306 typedef struct s_x4node {
4307   struct config *data;                  /* The data */
4308   struct s_x4node *next;   /* Next entry with the same hash */
4309   struct s_x4node **from;  /* Previous link */
4310 } x4node;
4311 
4312 /* There is only one instance of the array, which is the following */
4313 static struct s_x4 *x4a;
4314 
4315 /* Allocate a new associative array */
Configtable_init()4316 void Configtable_init(){
4317   if( x4a ) return;
4318   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
4319   if( x4a ){
4320     x4a->size = 64;
4321     x4a->count = 0;
4322     x4a->tbl = (x4node*)malloc(
4323       (sizeof(x4node) + sizeof(x4node*))*64 );
4324     if( x4a->tbl==0 ){
4325       free(x4a);
4326       x4a = 0;
4327     }else{
4328       int i;
4329       x4a->ht = (x4node**)&(x4a->tbl[64]);
4330       for(i=0; i<64; i++) x4a->ht[i] = 0;
4331     }
4332   }
4333 }
4334 /* Insert a new record into the array.  Return TRUE if successful.
4335 ** Prior data with the same key is NOT overwritten */
Configtable_insert(data)4336 int Configtable_insert(data)
4337 struct config *data;
4338 {
4339   x4node *np;
4340   int h;
4341   int ph;
4342 
4343   if( x4a==0 ) return 0;
4344   ph = confighash(data);
4345   h = ph & (x4a->size-1);
4346   np = x4a->ht[h];
4347   while( np ){
4348     if( Configcmp(np->data,data)==0 ){
4349       /* An existing entry with the same key is found. */
4350       /* Fail because overwrite is not allows. */
4351       return 0;
4352     }
4353     np = np->next;
4354   }
4355   if( x4a->count>=x4a->size ){
4356     /* Need to make the hash table bigger */
4357     int i,size;
4358     struct s_x4 array;
4359     array.size = size = x4a->size*2;
4360     array.count = x4a->count;
4361     array.tbl = (x4node*)malloc(
4362       (sizeof(x4node) + sizeof(x4node*))*size );
4363     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
4364     array.ht = (x4node**)&(array.tbl[size]);
4365     for(i=0; i<size; i++) array.ht[i] = 0;
4366     for(i=0; i<x4a->count; i++){
4367       x4node *oldnp, *newnp;
4368       oldnp = &(x4a->tbl[i]);
4369       h = confighash(oldnp->data) & (size-1);
4370       newnp = &(array.tbl[i]);
4371       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4372       newnp->next = array.ht[h];
4373       newnp->data = oldnp->data;
4374       newnp->from = &(array.ht[h]);
4375       array.ht[h] = newnp;
4376     }
4377     free(x4a->tbl);
4378     *x4a = array;
4379   }
4380   /* Insert the new data */
4381   h = ph & (x4a->size-1);
4382   np = &(x4a->tbl[x4a->count++]);
4383   np->data = data;
4384   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
4385   np->next = x4a->ht[h];
4386   x4a->ht[h] = np;
4387   np->from = &(x4a->ht[h]);
4388   return 1;
4389 }
4390 
4391 /* Return a pointer to data assigned to the given key.  Return NULL
4392 ** if no such key. */
Configtable_find(key)4393 struct config *Configtable_find(key)
4394 struct config *key;
4395 {
4396   int h;
4397   x4node *np;
4398 
4399   if( x4a==0 ) return 0;
4400   h = confighash(key) & (x4a->size-1);
4401   np = x4a->ht[h];
4402   while( np ){
4403     if( Configcmp(np->data,key)==0 ) break;
4404     np = np->next;
4405   }
4406   return np ? np->data : 0;
4407 }
4408 
4409 /* Remove all data from the table.  Pass each data to the function "f"
4410 ** as it is removed.  ("f" may be null to avoid this step.) */
4411 void Configtable_clear(f)
4412 int(*f)(/* struct config * */);
4413 {
4414   int i;
4415   if( x4a==0 || x4a->count==0 ) return;
4416   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
4417   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
4418   x4a->count = 0;
4419   return;
4420 }
4421