xref: /f-stack/dpdk/drivers/net/igc/base/igc_phy.c (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2020 Intel Corporation
3  */
4 
5 #include "igc_api.h"
6 
7 static s32 igc_wait_autoneg(struct igc_hw *hw);
8 static s32 igc_access_phy_wakeup_reg_bm(struct igc_hw *hw, u32 offset,
9 					  u16 *data, bool read, bool page_set);
10 static u32 igc_get_phy_addr_for_hv_page(u32 page);
11 static s32 igc_access_phy_debug_regs_hv(struct igc_hw *hw, u32 offset,
12 					  u16 *data, bool read);
13 
14 /* Cable length tables */
15 static const u16 igc_m88_cable_length_table[] = {
16 	0, 50, 80, 110, 140, 140, IGC_CABLE_LENGTH_UNDEFINED };
17 #define M88IGC_CABLE_LENGTH_TABLE_SIZE \
18 		(sizeof(igc_m88_cable_length_table) / \
19 		 sizeof(igc_m88_cable_length_table[0]))
20 
21 static const u16 igc_igp_2_cable_length_table[] = {
22 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
23 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
24 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
25 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
26 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
27 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
28 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
29 	124};
30 #define IGP02IGC_CABLE_LENGTH_TABLE_SIZE \
31 		(sizeof(igc_igp_2_cable_length_table) / \
32 		 sizeof(igc_igp_2_cable_length_table[0]))
33 
34 /**
35  *  igc_init_phy_ops_generic - Initialize PHY function pointers
36  *  @hw: pointer to the HW structure
37  *
38  *  Setups up the function pointers to no-op functions
39  **/
igc_init_phy_ops_generic(struct igc_hw * hw)40 void igc_init_phy_ops_generic(struct igc_hw *hw)
41 {
42 	struct igc_phy_info *phy = &hw->phy;
43 	DEBUGFUNC("igc_init_phy_ops_generic");
44 
45 	/* Initialize function pointers */
46 	phy->ops.init_params = igc_null_ops_generic;
47 	phy->ops.acquire = igc_null_ops_generic;
48 	phy->ops.check_polarity = igc_null_ops_generic;
49 	phy->ops.check_reset_block = igc_null_ops_generic;
50 	phy->ops.commit = igc_null_ops_generic;
51 	phy->ops.force_speed_duplex = igc_null_ops_generic;
52 	phy->ops.get_cfg_done = igc_null_ops_generic;
53 	phy->ops.get_cable_length = igc_null_ops_generic;
54 	phy->ops.get_info = igc_null_ops_generic;
55 	phy->ops.set_page = igc_null_set_page;
56 	phy->ops.read_reg = igc_null_read_reg;
57 	phy->ops.read_reg_locked = igc_null_read_reg;
58 	phy->ops.read_reg_page = igc_null_read_reg;
59 	phy->ops.release = igc_null_phy_generic;
60 	phy->ops.reset = igc_null_ops_generic;
61 	phy->ops.set_d0_lplu_state = igc_null_lplu_state;
62 	phy->ops.set_d3_lplu_state = igc_null_lplu_state;
63 	phy->ops.write_reg = igc_null_write_reg;
64 	phy->ops.write_reg_locked = igc_null_write_reg;
65 	phy->ops.write_reg_page = igc_null_write_reg;
66 	phy->ops.power_up = igc_null_phy_generic;
67 	phy->ops.power_down = igc_null_phy_generic;
68 	phy->ops.read_i2c_byte = igc_read_i2c_byte_null;
69 	phy->ops.write_i2c_byte = igc_write_i2c_byte_null;
70 	phy->ops.cfg_on_link_up = igc_null_ops_generic;
71 }
72 
73 /**
74  *  igc_null_set_page - No-op function, return 0
75  *  @hw: pointer to the HW structure
76  *  @data: dummy variable
77  **/
igc_null_set_page(struct igc_hw IGC_UNUSEDARG * hw,u16 IGC_UNUSEDARG data)78 s32 igc_null_set_page(struct igc_hw IGC_UNUSEDARG * hw,
79 			u16 IGC_UNUSEDARG data)
80 {
81 	DEBUGFUNC("igc_null_set_page");
82 	UNREFERENCED_2PARAMETER(hw, data);
83 	return IGC_SUCCESS;
84 }
85 
86 /**
87  *  igc_null_read_reg - No-op function, return 0
88  *  @hw: pointer to the HW structure
89  *  @offset: dummy variable
90  *  @data: dummy variable
91  **/
igc_null_read_reg(struct igc_hw IGC_UNUSEDARG * hw,u32 IGC_UNUSEDARG offset,u16 IGC_UNUSEDARG * data)92 s32 igc_null_read_reg(struct igc_hw IGC_UNUSEDARG * hw,
93 			u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG * data)
94 {
95 	DEBUGFUNC("igc_null_read_reg");
96 	UNREFERENCED_3PARAMETER(hw, offset, data);
97 	return IGC_SUCCESS;
98 }
99 
100 /**
101  *  igc_null_phy_generic - No-op function, return void
102  *  @hw: pointer to the HW structure
103  **/
igc_null_phy_generic(struct igc_hw IGC_UNUSEDARG * hw)104 void igc_null_phy_generic(struct igc_hw IGC_UNUSEDARG * hw)
105 {
106 	DEBUGFUNC("igc_null_phy_generic");
107 	UNREFERENCED_1PARAMETER(hw);
108 }
109 
110 /**
111  *  igc_null_lplu_state - No-op function, return 0
112  *  @hw: pointer to the HW structure
113  *  @active: dummy variable
114  **/
igc_null_lplu_state(struct igc_hw IGC_UNUSEDARG * hw,bool IGC_UNUSEDARG active)115 s32 igc_null_lplu_state(struct igc_hw IGC_UNUSEDARG * hw,
116 			  bool IGC_UNUSEDARG active)
117 {
118 	DEBUGFUNC("igc_null_lplu_state");
119 	UNREFERENCED_2PARAMETER(hw, active);
120 	return IGC_SUCCESS;
121 }
122 
123 /**
124  *  igc_null_write_reg - No-op function, return 0
125  *  @hw: pointer to the HW structure
126  *  @offset: dummy variable
127  *  @data: dummy variable
128  **/
igc_null_write_reg(struct igc_hw IGC_UNUSEDARG * hw,u32 IGC_UNUSEDARG offset,u16 IGC_UNUSEDARG data)129 s32 igc_null_write_reg(struct igc_hw IGC_UNUSEDARG * hw,
130 			 u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG data)
131 {
132 	DEBUGFUNC("igc_null_write_reg");
133 	UNREFERENCED_3PARAMETER(hw, offset, data);
134 	return IGC_SUCCESS;
135 }
136 
137 /**
138  *  igc_read_i2c_byte_null - No-op function, return 0
139  *  @hw: pointer to hardware structure
140  *  @byte_offset: byte offset to write
141  *  @dev_addr: device address
142  *  @data: data value read
143  *
144  **/
igc_read_i2c_byte_null(struct igc_hw IGC_UNUSEDARG * hw,u8 IGC_UNUSEDARG byte_offset,u8 IGC_UNUSEDARG dev_addr,u8 IGC_UNUSEDARG * data)145 s32 igc_read_i2c_byte_null(struct igc_hw IGC_UNUSEDARG * hw,
146 			     u8 IGC_UNUSEDARG byte_offset,
147 			     u8 IGC_UNUSEDARG dev_addr,
148 			     u8 IGC_UNUSEDARG * data)
149 {
150 	DEBUGFUNC("igc_read_i2c_byte_null");
151 	UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
152 	return IGC_SUCCESS;
153 }
154 
155 /**
156  *  igc_write_i2c_byte_null - No-op function, return 0
157  *  @hw: pointer to hardware structure
158  *  @byte_offset: byte offset to write
159  *  @dev_addr: device address
160  *  @data: data value to write
161  *
162  **/
igc_write_i2c_byte_null(struct igc_hw IGC_UNUSEDARG * hw,u8 IGC_UNUSEDARG byte_offset,u8 IGC_UNUSEDARG dev_addr,u8 IGC_UNUSEDARG data)163 s32 igc_write_i2c_byte_null(struct igc_hw IGC_UNUSEDARG * hw,
164 			      u8 IGC_UNUSEDARG byte_offset,
165 			      u8 IGC_UNUSEDARG dev_addr,
166 			      u8 IGC_UNUSEDARG data)
167 {
168 	DEBUGFUNC("igc_write_i2c_byte_null");
169 	UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
170 	return IGC_SUCCESS;
171 }
172 
173 /**
174  *  igc_check_reset_block_generic - Check if PHY reset is blocked
175  *  @hw: pointer to the HW structure
176  *
177  *  Read the PHY management control register and check whether a PHY reset
178  *  is blocked.  If a reset is not blocked return IGC_SUCCESS, otherwise
179  *  return IGC_BLK_PHY_RESET (12).
180  **/
igc_check_reset_block_generic(struct igc_hw * hw)181 s32 igc_check_reset_block_generic(struct igc_hw *hw)
182 {
183 	u32 manc;
184 
185 	DEBUGFUNC("igc_check_reset_block");
186 
187 	manc = IGC_READ_REG(hw, IGC_MANC);
188 
189 	return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
190 	       IGC_BLK_PHY_RESET : IGC_SUCCESS;
191 }
192 
193 /**
194  *  igc_get_phy_id - Retrieve the PHY ID and revision
195  *  @hw: pointer to the HW structure
196  *
197  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
198  *  revision in the hardware structure.
199  **/
igc_get_phy_id(struct igc_hw * hw)200 s32 igc_get_phy_id(struct igc_hw *hw)
201 {
202 	struct igc_phy_info *phy = &hw->phy;
203 	s32 ret_val = IGC_SUCCESS;
204 	u16 phy_id;
205 	u16 retry_count = 0;
206 
207 	DEBUGFUNC("igc_get_phy_id");
208 
209 	if (!phy->ops.read_reg)
210 		return IGC_SUCCESS;
211 
212 	while (retry_count < 2) {
213 		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
214 		if (ret_val)
215 			return ret_val;
216 
217 		phy->id = (u32)(phy_id << 16);
218 		usec_delay(20);
219 		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
220 		if (ret_val)
221 			return ret_val;
222 
223 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
224 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
225 
226 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
227 			return IGC_SUCCESS;
228 
229 		retry_count++;
230 	}
231 
232 	return IGC_SUCCESS;
233 }
234 
235 /**
236  *  igc_phy_reset_dsp_generic - Reset PHY DSP
237  *  @hw: pointer to the HW structure
238  *
239  *  Reset the digital signal processor.
240  **/
igc_phy_reset_dsp_generic(struct igc_hw * hw)241 s32 igc_phy_reset_dsp_generic(struct igc_hw *hw)
242 {
243 	s32 ret_val;
244 
245 	DEBUGFUNC("igc_phy_reset_dsp_generic");
246 
247 	if (!hw->phy.ops.write_reg)
248 		return IGC_SUCCESS;
249 
250 	ret_val = hw->phy.ops.write_reg(hw, M88IGC_PHY_GEN_CONTROL, 0xC1);
251 	if (ret_val)
252 		return ret_val;
253 
254 	return hw->phy.ops.write_reg(hw, M88IGC_PHY_GEN_CONTROL, 0);
255 }
256 
257 /**
258  *  igc_read_phy_reg_mdic - Read MDI control register
259  *  @hw: pointer to the HW structure
260  *  @offset: register offset to be read
261  *  @data: pointer to the read data
262  *
263  *  Reads the MDI control register in the PHY at offset and stores the
264  *  information read to data.
265  **/
igc_read_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 * data)266 s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
267 {
268 	struct igc_phy_info *phy = &hw->phy;
269 	u32 i, mdic = 0;
270 
271 	DEBUGFUNC("igc_read_phy_reg_mdic");
272 
273 	if (offset > MAX_PHY_REG_ADDRESS) {
274 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
275 		return -IGC_ERR_PARAM;
276 	}
277 
278 	/* Set up Op-code, Phy Address, and register offset in the MDI
279 	 * Control register.  The MAC will take care of interfacing with the
280 	 * PHY to retrieve the desired data.
281 	 */
282 	mdic = ((offset << IGC_MDIC_REG_SHIFT) |
283 		(phy->addr << IGC_MDIC_PHY_SHIFT) |
284 		(IGC_MDIC_OP_READ));
285 
286 	IGC_WRITE_REG(hw, IGC_MDIC, mdic);
287 
288 	/* Poll the ready bit to see if the MDI read completed
289 	 * Increasing the time out as testing showed failures with
290 	 * the lower time out
291 	 */
292 	for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
293 		usec_delay_irq(50);
294 		mdic = IGC_READ_REG(hw, IGC_MDIC);
295 		if (mdic & IGC_MDIC_READY)
296 			break;
297 	}
298 	if (!(mdic & IGC_MDIC_READY)) {
299 		DEBUGOUT("MDI Read did not complete\n");
300 		return -IGC_ERR_PHY;
301 	}
302 	if (mdic & IGC_MDIC_ERROR) {
303 		DEBUGOUT("MDI Error\n");
304 		return -IGC_ERR_PHY;
305 	}
306 	if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
307 		DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
308 			  offset,
309 			  (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
310 		return -IGC_ERR_PHY;
311 	}
312 	*data = (u16)mdic;
313 
314 	/* Allow some time after each MDIC transaction to avoid
315 	 * reading duplicate data in the next MDIC transaction.
316 	 */
317 	if (hw->mac.type == igc_pch2lan)
318 		usec_delay_irq(100);
319 
320 	return IGC_SUCCESS;
321 }
322 
323 /**
324  *  igc_write_phy_reg_mdic - Write MDI control register
325  *  @hw: pointer to the HW structure
326  *  @offset: register offset to write to
327  *  @data: data to write to register at offset
328  *
329  *  Writes data to MDI control register in the PHY at offset.
330  **/
igc_write_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 data)331 s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
332 {
333 	struct igc_phy_info *phy = &hw->phy;
334 	u32 i, mdic = 0;
335 
336 	DEBUGFUNC("igc_write_phy_reg_mdic");
337 
338 	if (offset > MAX_PHY_REG_ADDRESS) {
339 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
340 		return -IGC_ERR_PARAM;
341 	}
342 
343 	/* Set up Op-code, Phy Address, and register offset in the MDI
344 	 * Control register.  The MAC will take care of interfacing with the
345 	 * PHY to retrieve the desired data.
346 	 */
347 	mdic = (((u32)data) |
348 		(offset << IGC_MDIC_REG_SHIFT) |
349 		(phy->addr << IGC_MDIC_PHY_SHIFT) |
350 		(IGC_MDIC_OP_WRITE));
351 
352 	IGC_WRITE_REG(hw, IGC_MDIC, mdic);
353 
354 	/* Poll the ready bit to see if the MDI read completed
355 	 * Increasing the time out as testing showed failures with
356 	 * the lower time out
357 	 */
358 	for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
359 		usec_delay_irq(50);
360 		mdic = IGC_READ_REG(hw, IGC_MDIC);
361 		if (mdic & IGC_MDIC_READY)
362 			break;
363 	}
364 	if (!(mdic & IGC_MDIC_READY)) {
365 		DEBUGOUT("MDI Write did not complete\n");
366 		return -IGC_ERR_PHY;
367 	}
368 	if (mdic & IGC_MDIC_ERROR) {
369 		DEBUGOUT("MDI Error\n");
370 		return -IGC_ERR_PHY;
371 	}
372 	if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
373 		DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
374 			  offset,
375 			  (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
376 		return -IGC_ERR_PHY;
377 	}
378 
379 	/* Allow some time after each MDIC transaction to avoid
380 	 * reading duplicate data in the next MDIC transaction.
381 	 */
382 	if (hw->mac.type == igc_pch2lan)
383 		usec_delay_irq(100);
384 
385 	return IGC_SUCCESS;
386 }
387 
388 /**
389  *  igc_read_phy_reg_i2c - Read PHY register using i2c
390  *  @hw: pointer to the HW structure
391  *  @offset: register offset to be read
392  *  @data: pointer to the read data
393  *
394  *  Reads the PHY register at offset using the i2c interface and stores the
395  *  retrieved information in data.
396  **/
igc_read_phy_reg_i2c(struct igc_hw * hw,u32 offset,u16 * data)397 s32 igc_read_phy_reg_i2c(struct igc_hw *hw, u32 offset, u16 *data)
398 {
399 	struct igc_phy_info *phy = &hw->phy;
400 	u32 i, i2ccmd = 0;
401 
402 	DEBUGFUNC("igc_read_phy_reg_i2c");
403 
404 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
405 	 * register.  The MAC will take care of interfacing with the
406 	 * PHY to retrieve the desired data.
407 	 */
408 	i2ccmd = ((offset << IGC_I2CCMD_REG_ADDR_SHIFT) |
409 		  (phy->addr << IGC_I2CCMD_PHY_ADDR_SHIFT) |
410 		  (IGC_I2CCMD_OPCODE_READ));
411 
412 	IGC_WRITE_REG(hw, IGC_I2CCMD, i2ccmd);
413 
414 	/* Poll the ready bit to see if the I2C read completed */
415 	for (i = 0; i < IGC_I2CCMD_PHY_TIMEOUT; i++) {
416 		usec_delay(50);
417 		i2ccmd = IGC_READ_REG(hw, IGC_I2CCMD);
418 		if (i2ccmd & IGC_I2CCMD_READY)
419 			break;
420 	}
421 	if (!(i2ccmd & IGC_I2CCMD_READY)) {
422 		DEBUGOUT("I2CCMD Read did not complete\n");
423 		return -IGC_ERR_PHY;
424 	}
425 	if (i2ccmd & IGC_I2CCMD_ERROR) {
426 		DEBUGOUT("I2CCMD Error bit set\n");
427 		return -IGC_ERR_PHY;
428 	}
429 
430 	/* Need to byte-swap the 16-bit value. */
431 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
432 
433 	return IGC_SUCCESS;
434 }
435 
436 /**
437  *  igc_write_phy_reg_i2c - Write PHY register using i2c
438  *  @hw: pointer to the HW structure
439  *  @offset: register offset to write to
440  *  @data: data to write at register offset
441  *
442  *  Writes the data to PHY register at the offset using the i2c interface.
443  **/
igc_write_phy_reg_i2c(struct igc_hw * hw,u32 offset,u16 data)444 s32 igc_write_phy_reg_i2c(struct igc_hw *hw, u32 offset, u16 data)
445 {
446 	struct igc_phy_info *phy = &hw->phy;
447 	u32 i, i2ccmd = 0;
448 	u16 phy_data_swapped;
449 
450 	DEBUGFUNC("igc_write_phy_reg_i2c");
451 
452 	/* Prevent overwriting SFP I2C EEPROM which is at A0 address. */
453 	if (hw->phy.addr == 0 || hw->phy.addr > 7) {
454 		DEBUGOUT1("PHY I2C Address %d is out of range.\n",
455 			hw->phy.addr);
456 		return -IGC_ERR_CONFIG;
457 	}
458 
459 	/* Swap the data bytes for the I2C interface */
460 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
461 
462 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
463 	 * register.  The MAC will take care of interfacing with the
464 	 * PHY to retrieve the desired data.
465 	 */
466 	i2ccmd = ((offset << IGC_I2CCMD_REG_ADDR_SHIFT) |
467 		  (phy->addr << IGC_I2CCMD_PHY_ADDR_SHIFT) |
468 		  IGC_I2CCMD_OPCODE_WRITE |
469 		  phy_data_swapped);
470 
471 	IGC_WRITE_REG(hw, IGC_I2CCMD, i2ccmd);
472 
473 	/* Poll the ready bit to see if the I2C read completed */
474 	for (i = 0; i < IGC_I2CCMD_PHY_TIMEOUT; i++) {
475 		usec_delay(50);
476 		i2ccmd = IGC_READ_REG(hw, IGC_I2CCMD);
477 		if (i2ccmd & IGC_I2CCMD_READY)
478 			break;
479 	}
480 	if (!(i2ccmd & IGC_I2CCMD_READY)) {
481 		DEBUGOUT("I2CCMD Write did not complete\n");
482 		return -IGC_ERR_PHY;
483 	}
484 	if (i2ccmd & IGC_I2CCMD_ERROR) {
485 		DEBUGOUT("I2CCMD Error bit set\n");
486 		return -IGC_ERR_PHY;
487 	}
488 
489 	return IGC_SUCCESS;
490 }
491 
492 /**
493  *  igc_read_sfp_data_byte - Reads SFP module data.
494  *  @hw: pointer to the HW structure
495  *  @offset: byte location offset to be read
496  *  @data: read data buffer pointer
497  *
498  *  Reads one byte from SFP module data stored
499  *  in SFP resided EEPROM memory or SFP diagnostic area.
500  *  Function should be called with
501  *  IGC_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
502  *  IGC_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
503  *  access
504  **/
igc_read_sfp_data_byte(struct igc_hw * hw,u16 offset,u8 * data)505 s32 igc_read_sfp_data_byte(struct igc_hw *hw, u16 offset, u8 *data)
506 {
507 	u32 i = 0;
508 	u32 i2ccmd = 0;
509 	u32 data_local = 0;
510 
511 	DEBUGFUNC("igc_read_sfp_data_byte");
512 
513 	if (offset > IGC_I2CCMD_SFP_DIAG_ADDR(255)) {
514 		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
515 		return -IGC_ERR_PHY;
516 	}
517 
518 	/* Set up Op-code, EEPROM Address,in the I2CCMD
519 	 * register. The MAC will take care of interfacing with the
520 	 * EEPROM to retrieve the desired data.
521 	 */
522 	i2ccmd = ((offset << IGC_I2CCMD_REG_ADDR_SHIFT) |
523 		  IGC_I2CCMD_OPCODE_READ);
524 
525 	IGC_WRITE_REG(hw, IGC_I2CCMD, i2ccmd);
526 
527 	/* Poll the ready bit to see if the I2C read completed */
528 	for (i = 0; i < IGC_I2CCMD_PHY_TIMEOUT; i++) {
529 		usec_delay(50);
530 		data_local = IGC_READ_REG(hw, IGC_I2CCMD);
531 		if (data_local & IGC_I2CCMD_READY)
532 			break;
533 	}
534 	if (!(data_local & IGC_I2CCMD_READY)) {
535 		DEBUGOUT("I2CCMD Read did not complete\n");
536 		return -IGC_ERR_PHY;
537 	}
538 	if (data_local & IGC_I2CCMD_ERROR) {
539 		DEBUGOUT("I2CCMD Error bit set\n");
540 		return -IGC_ERR_PHY;
541 	}
542 	*data = (u8)data_local & 0xFF;
543 
544 	return IGC_SUCCESS;
545 }
546 
547 /**
548  *  igc_write_sfp_data_byte - Writes SFP module data.
549  *  @hw: pointer to the HW structure
550  *  @offset: byte location offset to write to
551  *  @data: data to write
552  *
553  *  Writes one byte to SFP module data stored
554  *  in SFP resided EEPROM memory or SFP diagnostic area.
555  *  Function should be called with
556  *  IGC_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
557  *  IGC_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
558  *  access
559  **/
igc_write_sfp_data_byte(struct igc_hw * hw,u16 offset,u8 data)560 s32 igc_write_sfp_data_byte(struct igc_hw *hw, u16 offset, u8 data)
561 {
562 	u32 i = 0;
563 	u32 i2ccmd = 0;
564 	u32 data_local = 0;
565 
566 	DEBUGFUNC("igc_write_sfp_data_byte");
567 
568 	if (offset > IGC_I2CCMD_SFP_DIAG_ADDR(255)) {
569 		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
570 		return -IGC_ERR_PHY;
571 	}
572 	/* The programming interface is 16 bits wide
573 	 * so we need to read the whole word first
574 	 * then update appropriate byte lane and write
575 	 * the updated word back.
576 	 */
577 	/* Set up Op-code, EEPROM Address,in the I2CCMD
578 	 * register. The MAC will take care of interfacing
579 	 * with an EEPROM to write the data given.
580 	 */
581 	i2ccmd = ((offset << IGC_I2CCMD_REG_ADDR_SHIFT) |
582 		  IGC_I2CCMD_OPCODE_READ);
583 	/* Set a command to read single word */
584 	IGC_WRITE_REG(hw, IGC_I2CCMD, i2ccmd);
585 	for (i = 0; i < IGC_I2CCMD_PHY_TIMEOUT; i++) {
586 		usec_delay(50);
587 		/* Poll the ready bit to see if lastly
588 		 * launched I2C operation completed
589 		 */
590 		i2ccmd = IGC_READ_REG(hw, IGC_I2CCMD);
591 		if (i2ccmd & IGC_I2CCMD_READY) {
592 			/* Check if this is READ or WRITE phase */
593 			if ((i2ccmd & IGC_I2CCMD_OPCODE_READ) ==
594 			    IGC_I2CCMD_OPCODE_READ) {
595 				/* Write the selected byte
596 				 * lane and update whole word
597 				 */
598 				data_local = i2ccmd & 0xFF00;
599 				data_local |= (u32)data;
600 				i2ccmd = ((offset <<
601 					IGC_I2CCMD_REG_ADDR_SHIFT) |
602 					IGC_I2CCMD_OPCODE_WRITE | data_local);
603 				IGC_WRITE_REG(hw, IGC_I2CCMD, i2ccmd);
604 			} else {
605 				break;
606 			}
607 		}
608 	}
609 	if (!(i2ccmd & IGC_I2CCMD_READY)) {
610 		DEBUGOUT("I2CCMD Write did not complete\n");
611 		return -IGC_ERR_PHY;
612 	}
613 	if (i2ccmd & IGC_I2CCMD_ERROR) {
614 		DEBUGOUT("I2CCMD Error bit set\n");
615 		return -IGC_ERR_PHY;
616 	}
617 	return IGC_SUCCESS;
618 }
619 
620 /**
621  *  igc_read_phy_reg_m88 - Read m88 PHY register
622  *  @hw: pointer to the HW structure
623  *  @offset: register offset to be read
624  *  @data: pointer to the read data
625  *
626  *  Acquires semaphore, if necessary, then reads the PHY register at offset
627  *  and storing the retrieved information in data.  Release any acquired
628  *  semaphores before exiting.
629  **/
igc_read_phy_reg_m88(struct igc_hw * hw,u32 offset,u16 * data)630 s32 igc_read_phy_reg_m88(struct igc_hw *hw, u32 offset, u16 *data)
631 {
632 	s32 ret_val;
633 
634 	DEBUGFUNC("igc_read_phy_reg_m88");
635 
636 	if (!hw->phy.ops.acquire)
637 		return IGC_SUCCESS;
638 
639 	ret_val = hw->phy.ops.acquire(hw);
640 	if (ret_val)
641 		return ret_val;
642 
643 	ret_val = igc_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
644 					  data);
645 
646 	hw->phy.ops.release(hw);
647 
648 	return ret_val;
649 }
650 
651 /**
652  *  igc_write_phy_reg_m88 - Write m88 PHY register
653  *  @hw: pointer to the HW structure
654  *  @offset: register offset to write to
655  *  @data: data to write at register offset
656  *
657  *  Acquires semaphore, if necessary, then writes the data to PHY register
658  *  at the offset.  Release any acquired semaphores before exiting.
659  **/
igc_write_phy_reg_m88(struct igc_hw * hw,u32 offset,u16 data)660 s32 igc_write_phy_reg_m88(struct igc_hw *hw, u32 offset, u16 data)
661 {
662 	s32 ret_val;
663 
664 	DEBUGFUNC("igc_write_phy_reg_m88");
665 
666 	if (!hw->phy.ops.acquire)
667 		return IGC_SUCCESS;
668 
669 	ret_val = hw->phy.ops.acquire(hw);
670 	if (ret_val)
671 		return ret_val;
672 
673 	ret_val = igc_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
674 					   data);
675 
676 	hw->phy.ops.release(hw);
677 
678 	return ret_val;
679 }
680 
681 /**
682  *  igc_set_page_igp - Set page as on IGP-like PHY(s)
683  *  @hw: pointer to the HW structure
684  *  @page: page to set (shifted left when necessary)
685  *
686  *  Sets PHY page required for PHY register access.  Assumes semaphore is
687  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
688  *  must set it appropriately (if necessary) after this function returns.
689  **/
igc_set_page_igp(struct igc_hw * hw,u16 page)690 s32 igc_set_page_igp(struct igc_hw *hw, u16 page)
691 {
692 	DEBUGFUNC("igc_set_page_igp");
693 
694 	DEBUGOUT1("Setting page 0x%x\n", page);
695 
696 	hw->phy.addr = 1;
697 
698 	return igc_write_phy_reg_mdic(hw, IGP01IGC_PHY_PAGE_SELECT, page);
699 }
700 
701 /**
702  *  __igc_read_phy_reg_igp - Read igp PHY register
703  *  @hw: pointer to the HW structure
704  *  @offset: register offset to be read
705  *  @data: pointer to the read data
706  *  @locked: semaphore has already been acquired or not
707  *
708  *  Acquires semaphore, if necessary, then reads the PHY register at offset
709  *  and stores the retrieved information in data.  Release any acquired
710  *  semaphores before exiting.
711  **/
__igc_read_phy_reg_igp(struct igc_hw * hw,u32 offset,u16 * data,bool locked)712 static s32 __igc_read_phy_reg_igp(struct igc_hw *hw, u32 offset, u16 *data,
713 				    bool locked)
714 {
715 	s32 ret_val = IGC_SUCCESS;
716 
717 	DEBUGFUNC("__igc_read_phy_reg_igp");
718 
719 	if (!locked) {
720 		if (!hw->phy.ops.acquire)
721 			return IGC_SUCCESS;
722 
723 		ret_val = hw->phy.ops.acquire(hw);
724 		if (ret_val)
725 			return ret_val;
726 	}
727 
728 	if (offset > MAX_PHY_MULTI_PAGE_REG)
729 		ret_val = igc_write_phy_reg_mdic(hw,
730 						   IGP01IGC_PHY_PAGE_SELECT,
731 						   (u16)offset);
732 	if (!ret_val)
733 		ret_val = igc_read_phy_reg_mdic(hw,
734 						  MAX_PHY_REG_ADDRESS & offset,
735 						  data);
736 	if (!locked)
737 		hw->phy.ops.release(hw);
738 
739 	return ret_val;
740 }
741 
742 /**
743  *  igc_read_phy_reg_igp - Read igp PHY register
744  *  @hw: pointer to the HW structure
745  *  @offset: register offset to be read
746  *  @data: pointer to the read data
747  *
748  *  Acquires semaphore then reads the PHY register at offset and stores the
749  *  retrieved information in data.
750  *  Release the acquired semaphore before exiting.
751  **/
igc_read_phy_reg_igp(struct igc_hw * hw,u32 offset,u16 * data)752 s32 igc_read_phy_reg_igp(struct igc_hw *hw, u32 offset, u16 *data)
753 {
754 	return __igc_read_phy_reg_igp(hw, offset, data, false);
755 }
756 
757 /**
758  *  igc_read_phy_reg_igp_locked - Read igp PHY register
759  *  @hw: pointer to the HW structure
760  *  @offset: register offset to be read
761  *  @data: pointer to the read data
762  *
763  *  Reads the PHY register at offset and stores the retrieved information
764  *  in data.  Assumes semaphore already acquired.
765  **/
igc_read_phy_reg_igp_locked(struct igc_hw * hw,u32 offset,u16 * data)766 s32 igc_read_phy_reg_igp_locked(struct igc_hw *hw, u32 offset, u16 *data)
767 {
768 	return __igc_read_phy_reg_igp(hw, offset, data, true);
769 }
770 
771 /**
772  *  igc_write_phy_reg_igp - Write igp PHY register
773  *  @hw: pointer to the HW structure
774  *  @offset: register offset to write to
775  *  @data: data to write at register offset
776  *  @locked: semaphore has already been acquired or not
777  *
778  *  Acquires semaphore, if necessary, then writes the data to PHY register
779  *  at the offset.  Release any acquired semaphores before exiting.
780  **/
__igc_write_phy_reg_igp(struct igc_hw * hw,u32 offset,u16 data,bool locked)781 static s32 __igc_write_phy_reg_igp(struct igc_hw *hw, u32 offset, u16 data,
782 				     bool locked)
783 {
784 	s32 ret_val = IGC_SUCCESS;
785 
786 	DEBUGFUNC("igc_write_phy_reg_igp");
787 
788 	if (!locked) {
789 		if (!hw->phy.ops.acquire)
790 			return IGC_SUCCESS;
791 
792 		ret_val = hw->phy.ops.acquire(hw);
793 		if (ret_val)
794 			return ret_val;
795 	}
796 
797 	if (offset > MAX_PHY_MULTI_PAGE_REG)
798 		ret_val = igc_write_phy_reg_mdic(hw,
799 						   IGP01IGC_PHY_PAGE_SELECT,
800 						   (u16)offset);
801 	if (!ret_val)
802 		ret_val = igc_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
803 						       offset,
804 						   data);
805 	if (!locked)
806 		hw->phy.ops.release(hw);
807 
808 	return ret_val;
809 }
810 
811 /**
812  *  igc_write_phy_reg_igp - Write igp PHY register
813  *  @hw: pointer to the HW structure
814  *  @offset: register offset to write to
815  *  @data: data to write at register offset
816  *
817  *  Acquires semaphore then writes the data to PHY register
818  *  at the offset.  Release any acquired semaphores before exiting.
819  **/
igc_write_phy_reg_igp(struct igc_hw * hw,u32 offset,u16 data)820 s32 igc_write_phy_reg_igp(struct igc_hw *hw, u32 offset, u16 data)
821 {
822 	return __igc_write_phy_reg_igp(hw, offset, data, false);
823 }
824 
825 /**
826  *  igc_write_phy_reg_igp_locked - Write igp PHY register
827  *  @hw: pointer to the HW structure
828  *  @offset: register offset to write to
829  *  @data: data to write at register offset
830  *
831  *  Writes the data to PHY register at the offset.
832  *  Assumes semaphore already acquired.
833  **/
igc_write_phy_reg_igp_locked(struct igc_hw * hw,u32 offset,u16 data)834 s32 igc_write_phy_reg_igp_locked(struct igc_hw *hw, u32 offset, u16 data)
835 {
836 	return __igc_write_phy_reg_igp(hw, offset, data, true);
837 }
838 
839 /**
840  *  __igc_read_kmrn_reg - Read kumeran register
841  *  @hw: pointer to the HW structure
842  *  @offset: register offset to be read
843  *  @data: pointer to the read data
844  *  @locked: semaphore has already been acquired or not
845  *
846  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
847  *  using the kumeran interface.  The information retrieved is stored in data.
848  *  Release any acquired semaphores before exiting.
849  **/
__igc_read_kmrn_reg(struct igc_hw * hw,u32 offset,u16 * data,bool locked)850 static s32 __igc_read_kmrn_reg(struct igc_hw *hw, u32 offset, u16 *data,
851 				 bool locked)
852 {
853 	u32 kmrnctrlsta;
854 
855 	DEBUGFUNC("__igc_read_kmrn_reg");
856 
857 	if (!locked) {
858 		s32 ret_val = IGC_SUCCESS;
859 
860 		if (!hw->phy.ops.acquire)
861 			return IGC_SUCCESS;
862 
863 		ret_val = hw->phy.ops.acquire(hw);
864 		if (ret_val)
865 			return ret_val;
866 	}
867 
868 	kmrnctrlsta = ((offset << IGC_KMRNCTRLSTA_OFFSET_SHIFT) &
869 		       IGC_KMRNCTRLSTA_OFFSET) | IGC_KMRNCTRLSTA_REN;
870 	IGC_WRITE_REG(hw, IGC_KMRNCTRLSTA, kmrnctrlsta);
871 	IGC_WRITE_FLUSH(hw);
872 
873 	usec_delay(2);
874 
875 	kmrnctrlsta = IGC_READ_REG(hw, IGC_KMRNCTRLSTA);
876 	*data = (u16)kmrnctrlsta;
877 
878 	if (!locked)
879 		hw->phy.ops.release(hw);
880 
881 	return IGC_SUCCESS;
882 }
883 
884 /**
885  *  igc_read_kmrn_reg_generic -  Read kumeran register
886  *  @hw: pointer to the HW structure
887  *  @offset: register offset to be read
888  *  @data: pointer to the read data
889  *
890  *  Acquires semaphore then reads the PHY register at offset using the
891  *  kumeran interface.  The information retrieved is stored in data.
892  *  Release the acquired semaphore before exiting.
893  **/
igc_read_kmrn_reg_generic(struct igc_hw * hw,u32 offset,u16 * data)894 s32 igc_read_kmrn_reg_generic(struct igc_hw *hw, u32 offset, u16 *data)
895 {
896 	return __igc_read_kmrn_reg(hw, offset, data, false);
897 }
898 
899 /**
900  *  igc_read_kmrn_reg_locked -  Read kumeran register
901  *  @hw: pointer to the HW structure
902  *  @offset: register offset to be read
903  *  @data: pointer to the read data
904  *
905  *  Reads the PHY register at offset using the kumeran interface.  The
906  *  information retrieved is stored in data.
907  *  Assumes semaphore already acquired.
908  **/
igc_read_kmrn_reg_locked(struct igc_hw * hw,u32 offset,u16 * data)909 s32 igc_read_kmrn_reg_locked(struct igc_hw *hw, u32 offset, u16 *data)
910 {
911 	return __igc_read_kmrn_reg(hw, offset, data, true);
912 }
913 
914 /**
915  *  __igc_write_kmrn_reg - Write kumeran register
916  *  @hw: pointer to the HW structure
917  *  @offset: register offset to write to
918  *  @data: data to write at register offset
919  *  @locked: semaphore has already been acquired or not
920  *
921  *  Acquires semaphore, if necessary.  Then write the data to PHY register
922  *  at the offset using the kumeran interface.  Release any acquired semaphores
923  *  before exiting.
924  **/
__igc_write_kmrn_reg(struct igc_hw * hw,u32 offset,u16 data,bool locked)925 static s32 __igc_write_kmrn_reg(struct igc_hw *hw, u32 offset, u16 data,
926 				  bool locked)
927 {
928 	u32 kmrnctrlsta;
929 
930 	DEBUGFUNC("igc_write_kmrn_reg_generic");
931 
932 	if (!locked) {
933 		s32 ret_val = IGC_SUCCESS;
934 
935 		if (!hw->phy.ops.acquire)
936 			return IGC_SUCCESS;
937 
938 		ret_val = hw->phy.ops.acquire(hw);
939 		if (ret_val)
940 			return ret_val;
941 	}
942 
943 	kmrnctrlsta = ((offset << IGC_KMRNCTRLSTA_OFFSET_SHIFT) &
944 		       IGC_KMRNCTRLSTA_OFFSET) | data;
945 	IGC_WRITE_REG(hw, IGC_KMRNCTRLSTA, kmrnctrlsta);
946 	IGC_WRITE_FLUSH(hw);
947 
948 	usec_delay(2);
949 
950 	if (!locked)
951 		hw->phy.ops.release(hw);
952 
953 	return IGC_SUCCESS;
954 }
955 
956 /**
957  *  igc_write_kmrn_reg_generic -  Write kumeran register
958  *  @hw: pointer to the HW structure
959  *  @offset: register offset to write to
960  *  @data: data to write at register offset
961  *
962  *  Acquires semaphore then writes the data to the PHY register at the offset
963  *  using the kumeran interface.  Release the acquired semaphore before exiting.
964  **/
igc_write_kmrn_reg_generic(struct igc_hw * hw,u32 offset,u16 data)965 s32 igc_write_kmrn_reg_generic(struct igc_hw *hw, u32 offset, u16 data)
966 {
967 	return __igc_write_kmrn_reg(hw, offset, data, false);
968 }
969 
970 /**
971  *  igc_write_kmrn_reg_locked -  Write kumeran register
972  *  @hw: pointer to the HW structure
973  *  @offset: register offset to write to
974  *  @data: data to write at register offset
975  *
976  *  Write the data to PHY register at the offset using the kumeran interface.
977  *  Assumes semaphore already acquired.
978  **/
igc_write_kmrn_reg_locked(struct igc_hw * hw,u32 offset,u16 data)979 s32 igc_write_kmrn_reg_locked(struct igc_hw *hw, u32 offset, u16 data)
980 {
981 	return __igc_write_kmrn_reg(hw, offset, data, true);
982 }
983 
984 /**
985  *  igc_set_master_slave_mode - Setup PHY for Master/slave mode
986  *  @hw: pointer to the HW structure
987  *
988  *  Sets up Master/slave mode
989  **/
igc_set_master_slave_mode(struct igc_hw * hw)990 static s32 igc_set_master_slave_mode(struct igc_hw *hw)
991 {
992 	s32 ret_val;
993 	u16 phy_data;
994 
995 	/* Resolve Master/Slave mode */
996 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
997 	if (ret_val)
998 		return ret_val;
999 
1000 	/* load defaults for future use */
1001 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
1002 				   ((phy_data & CR_1000T_MS_VALUE) ?
1003 				    igc_ms_force_master :
1004 				    igc_ms_force_slave) : igc_ms_auto;
1005 
1006 	switch (hw->phy.ms_type) {
1007 	case igc_ms_force_master:
1008 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1009 		break;
1010 	case igc_ms_force_slave:
1011 		phy_data |= CR_1000T_MS_ENABLE;
1012 		phy_data &= ~(CR_1000T_MS_VALUE);
1013 		break;
1014 	case igc_ms_auto:
1015 		phy_data &= ~CR_1000T_MS_ENABLE;
1016 		/* fall-through */
1017 	default:
1018 		break;
1019 	}
1020 
1021 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
1022 }
1023 
1024 /**
1025  *  igc_copper_link_setup_82577 - Setup 82577 PHY for copper link
1026  *  @hw: pointer to the HW structure
1027  *
1028  *  Sets up Carrier-sense on Transmit and downshift values.
1029  **/
igc_copper_link_setup_82577(struct igc_hw * hw)1030 s32 igc_copper_link_setup_82577(struct igc_hw *hw)
1031 {
1032 	s32 ret_val;
1033 	u16 phy_data;
1034 
1035 	DEBUGFUNC("igc_copper_link_setup_82577");
1036 
1037 	if (hw->phy.type == igc_phy_82580) {
1038 		ret_val = hw->phy.ops.reset(hw);
1039 		if (ret_val) {
1040 			DEBUGOUT("Error resetting the PHY.\n");
1041 			return ret_val;
1042 		}
1043 	}
1044 
1045 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
1046 	ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
1047 	if (ret_val)
1048 		return ret_val;
1049 
1050 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
1051 
1052 	/* Enable downshift */
1053 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
1054 
1055 	ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
1056 	if (ret_val)
1057 		return ret_val;
1058 
1059 	/* Set MDI/MDIX mode */
1060 	ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
1061 	if (ret_val)
1062 		return ret_val;
1063 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
1064 	/* Options:
1065 	 *   0 - Auto (default)
1066 	 *   1 - MDI mode
1067 	 *   2 - MDI-X mode
1068 	 */
1069 	switch (hw->phy.mdix) {
1070 	case 1:
1071 		break;
1072 	case 2:
1073 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
1074 		break;
1075 	case 0:
1076 	default:
1077 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
1078 		break;
1079 	}
1080 	ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
1081 	if (ret_val)
1082 		return ret_val;
1083 
1084 	return igc_set_master_slave_mode(hw);
1085 }
1086 
1087 /**
1088  *  igc_copper_link_setup_m88 - Setup m88 PHY's for copper link
1089  *  @hw: pointer to the HW structure
1090  *
1091  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
1092  *  and downshift values are set also.
1093  **/
igc_copper_link_setup_m88(struct igc_hw * hw)1094 s32 igc_copper_link_setup_m88(struct igc_hw *hw)
1095 {
1096 	struct igc_phy_info *phy = &hw->phy;
1097 	s32 ret_val;
1098 	u16 phy_data;
1099 
1100 	DEBUGFUNC("igc_copper_link_setup_m88");
1101 
1102 
1103 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
1104 	ret_val = phy->ops.read_reg(hw, M88IGC_PHY_SPEC_CTRL, &phy_data);
1105 	if (ret_val)
1106 		return ret_val;
1107 
1108 	/* For BM PHY this bit is downshift enable */
1109 	if (phy->type != igc_phy_bm)
1110 		phy_data |= M88IGC_PSCR_ASSERT_CRS_ON_TX;
1111 
1112 	/* Options:
1113 	 *   MDI/MDI-X = 0 (default)
1114 	 *   0 - Auto for all speeds
1115 	 *   1 - MDI mode
1116 	 *   2 - MDI-X mode
1117 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1118 	 */
1119 	phy_data &= ~M88IGC_PSCR_AUTO_X_MODE;
1120 
1121 	switch (phy->mdix) {
1122 	case 1:
1123 		phy_data |= M88IGC_PSCR_MDI_MANUAL_MODE;
1124 		break;
1125 	case 2:
1126 		phy_data |= M88IGC_PSCR_MDIX_MANUAL_MODE;
1127 		break;
1128 	case 3:
1129 		phy_data |= M88IGC_PSCR_AUTO_X_1000T;
1130 		break;
1131 	case 0:
1132 	default:
1133 		phy_data |= M88IGC_PSCR_AUTO_X_MODE;
1134 		break;
1135 	}
1136 
1137 	/* Options:
1138 	 *   disable_polarity_correction = 0 (default)
1139 	 *       Automatic Correction for Reversed Cable Polarity
1140 	 *   0 - Disabled
1141 	 *   1 - Enabled
1142 	 */
1143 	phy_data &= ~M88IGC_PSCR_POLARITY_REVERSAL;
1144 	if (phy->disable_polarity_correction)
1145 		phy_data |= M88IGC_PSCR_POLARITY_REVERSAL;
1146 
1147 	/* Enable downshift on BM (disabled by default) */
1148 	if (phy->type == igc_phy_bm) {
1149 		/* For 82574/82583, first disable then enable downshift */
1150 		if (phy->id == BMIGC_E_PHY_ID_R2) {
1151 			phy_data &= ~BMIGC_PSCR_ENABLE_DOWNSHIFT;
1152 			ret_val = phy->ops.write_reg(hw, M88IGC_PHY_SPEC_CTRL,
1153 						     phy_data);
1154 			if (ret_val)
1155 				return ret_val;
1156 			/* Commit the changes. */
1157 			ret_val = phy->ops.commit(hw);
1158 			if (ret_val) {
1159 				DEBUGOUT("Error committing the PHY changes\n");
1160 				return ret_val;
1161 			}
1162 		}
1163 
1164 		phy_data |= BMIGC_PSCR_ENABLE_DOWNSHIFT;
1165 	}
1166 
1167 	ret_val = phy->ops.write_reg(hw, M88IGC_PHY_SPEC_CTRL, phy_data);
1168 	if (ret_val)
1169 		return ret_val;
1170 
1171 	if (phy->type == igc_phy_m88 && phy->revision < IGC_REVISION_4 &&
1172 			phy->id != BMIGC_E_PHY_ID_R2) {
1173 		/* Force TX_CLK in the Extended PHY Specific Control Register
1174 		 * to 25MHz clock.
1175 		 */
1176 		ret_val = phy->ops.read_reg(hw, M88IGC_EXT_PHY_SPEC_CTRL,
1177 					    &phy_data);
1178 		if (ret_val)
1179 			return ret_val;
1180 
1181 		phy_data |= M88IGC_EPSCR_TX_CLK_25;
1182 
1183 		if (phy->revision == IGC_REVISION_2 &&
1184 				phy->id == M88E1111_I_PHY_ID) {
1185 			/* 82573L PHY - set the downshift counter to 5x. */
1186 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
1187 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1188 		} else {
1189 			/* Configure Master and Slave downshift values */
1190 			phy_data &= ~(M88IGC_EPSCR_MASTER_DOWNSHIFT_MASK |
1191 				     M88IGC_EPSCR_SLAVE_DOWNSHIFT_MASK);
1192 			phy_data |= (M88IGC_EPSCR_MASTER_DOWNSHIFT_1X |
1193 				     M88IGC_EPSCR_SLAVE_DOWNSHIFT_1X);
1194 		}
1195 		ret_val = phy->ops.write_reg(hw, M88IGC_EXT_PHY_SPEC_CTRL,
1196 					     phy_data);
1197 		if (ret_val)
1198 			return ret_val;
1199 	}
1200 
1201 	if (phy->type == igc_phy_bm && phy->id == BMIGC_E_PHY_ID_R2) {
1202 		/* Set PHY page 0, register 29 to 0x0003 */
1203 		ret_val = phy->ops.write_reg(hw, 29, 0x0003);
1204 		if (ret_val)
1205 			return ret_val;
1206 
1207 		/* Set PHY page 0, register 30 to 0x0000 */
1208 		ret_val = phy->ops.write_reg(hw, 30, 0x0000);
1209 		if (ret_val)
1210 			return ret_val;
1211 	}
1212 
1213 	/* Commit the changes. */
1214 	ret_val = phy->ops.commit(hw);
1215 	if (ret_val) {
1216 		DEBUGOUT("Error committing the PHY changes\n");
1217 		return ret_val;
1218 	}
1219 
1220 	if (phy->type == igc_phy_82578) {
1221 		ret_val = phy->ops.read_reg(hw, M88IGC_EXT_PHY_SPEC_CTRL,
1222 					    &phy_data);
1223 		if (ret_val)
1224 			return ret_val;
1225 
1226 		/* 82578 PHY - set the downshift count to 1x. */
1227 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
1228 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
1229 		ret_val = phy->ops.write_reg(hw, M88IGC_EXT_PHY_SPEC_CTRL,
1230 					     phy_data);
1231 		if (ret_val)
1232 			return ret_val;
1233 	}
1234 
1235 	return IGC_SUCCESS;
1236 }
1237 
1238 /**
1239  *  igc_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
1240  *  @hw: pointer to the HW structure
1241  *
1242  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
1243  *  Also enables and sets the downshift parameters.
1244  **/
igc_copper_link_setup_m88_gen2(struct igc_hw * hw)1245 s32 igc_copper_link_setup_m88_gen2(struct igc_hw *hw)
1246 {
1247 	struct igc_phy_info *phy = &hw->phy;
1248 	s32 ret_val;
1249 	u16 phy_data;
1250 
1251 	DEBUGFUNC("igc_copper_link_setup_m88_gen2");
1252 
1253 
1254 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
1255 	ret_val = phy->ops.read_reg(hw, M88IGC_PHY_SPEC_CTRL, &phy_data);
1256 	if (ret_val)
1257 		return ret_val;
1258 
1259 	/* Options:
1260 	 *   MDI/MDI-X = 0 (default)
1261 	 *   0 - Auto for all speeds
1262 	 *   1 - MDI mode
1263 	 *   2 - MDI-X mode
1264 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1265 	 */
1266 	phy_data &= ~M88IGC_PSCR_AUTO_X_MODE;
1267 
1268 	switch (phy->mdix) {
1269 	case 1:
1270 		phy_data |= M88IGC_PSCR_MDI_MANUAL_MODE;
1271 		break;
1272 	case 2:
1273 		phy_data |= M88IGC_PSCR_MDIX_MANUAL_MODE;
1274 		break;
1275 	case 3:
1276 		/* M88E1112 does not support this mode) */
1277 		if (phy->id != M88E1112_E_PHY_ID) {
1278 			phy_data |= M88IGC_PSCR_AUTO_X_1000T;
1279 			break;
1280 		}
1281 		/* Fall through */
1282 	case 0:
1283 	default:
1284 		phy_data |= M88IGC_PSCR_AUTO_X_MODE;
1285 		break;
1286 	}
1287 
1288 	/* Options:
1289 	 *   disable_polarity_correction = 0 (default)
1290 	 *       Automatic Correction for Reversed Cable Polarity
1291 	 *   0 - Disabled
1292 	 *   1 - Enabled
1293 	 */
1294 	phy_data &= ~M88IGC_PSCR_POLARITY_REVERSAL;
1295 	if (phy->disable_polarity_correction)
1296 		phy_data |= M88IGC_PSCR_POLARITY_REVERSAL;
1297 
1298 	/* Enable downshift and setting it to X6 */
1299 	if (phy->id == M88E1543_E_PHY_ID) {
1300 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
1301 		ret_val =
1302 		    phy->ops.write_reg(hw, M88IGC_PHY_SPEC_CTRL, phy_data);
1303 		if (ret_val)
1304 			return ret_val;
1305 
1306 		ret_val = phy->ops.commit(hw);
1307 		if (ret_val) {
1308 			DEBUGOUT("Error committing the PHY changes\n");
1309 			return ret_val;
1310 		}
1311 	}
1312 
1313 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
1314 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
1315 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
1316 
1317 	ret_val = phy->ops.write_reg(hw, M88IGC_PHY_SPEC_CTRL, phy_data);
1318 	if (ret_val)
1319 		return ret_val;
1320 
1321 	/* Commit the changes. */
1322 	ret_val = phy->ops.commit(hw);
1323 	if (ret_val) {
1324 		DEBUGOUT("Error committing the PHY changes\n");
1325 		return ret_val;
1326 	}
1327 
1328 	ret_val = igc_set_master_slave_mode(hw);
1329 	if (ret_val)
1330 		return ret_val;
1331 
1332 	return IGC_SUCCESS;
1333 }
1334 
1335 /**
1336  *  igc_copper_link_setup_igp - Setup igp PHY's for copper link
1337  *  @hw: pointer to the HW structure
1338  *
1339  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
1340  *  igp PHY's.
1341  **/
igc_copper_link_setup_igp(struct igc_hw * hw)1342 s32 igc_copper_link_setup_igp(struct igc_hw *hw)
1343 {
1344 	struct igc_phy_info *phy = &hw->phy;
1345 	s32 ret_val;
1346 	u16 data;
1347 
1348 	DEBUGFUNC("igc_copper_link_setup_igp");
1349 
1350 
1351 	ret_val = hw->phy.ops.reset(hw);
1352 	if (ret_val) {
1353 		DEBUGOUT("Error resetting the PHY.\n");
1354 		return ret_val;
1355 	}
1356 
1357 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
1358 	 * timeout issues when LFS is enabled.
1359 	 */
1360 	msec_delay(100);
1361 
1362 	/* The NVM settings will configure LPLU in D3 for
1363 	 * non-IGP1 PHYs.
1364 	 */
1365 	if (phy->type == igc_phy_igp) {
1366 		/* disable lplu d3 during driver init */
1367 		ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
1368 		if (ret_val) {
1369 			DEBUGOUT("Error Disabling LPLU D3\n");
1370 			return ret_val;
1371 		}
1372 	}
1373 
1374 	/* disable lplu d0 during driver init */
1375 	if (hw->phy.ops.set_d0_lplu_state) {
1376 		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
1377 		if (ret_val) {
1378 			DEBUGOUT("Error Disabling LPLU D0\n");
1379 			return ret_val;
1380 		}
1381 	}
1382 	/* Configure mdi-mdix settings */
1383 	ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_CTRL, &data);
1384 	if (ret_val)
1385 		return ret_val;
1386 
1387 	data &= ~IGP01IGC_PSCR_AUTO_MDIX;
1388 
1389 	switch (phy->mdix) {
1390 	case 1:
1391 		data &= ~IGP01IGC_PSCR_FORCE_MDI_MDIX;
1392 		break;
1393 	case 2:
1394 		data |= IGP01IGC_PSCR_FORCE_MDI_MDIX;
1395 		break;
1396 	case 0:
1397 	default:
1398 		data |= IGP01IGC_PSCR_AUTO_MDIX;
1399 		break;
1400 	}
1401 	ret_val = phy->ops.write_reg(hw, IGP01IGC_PHY_PORT_CTRL, data);
1402 	if (ret_val)
1403 		return ret_val;
1404 
1405 	/* set auto-master slave resolution settings */
1406 	if (hw->mac.autoneg) {
1407 		/* when autonegotiation advertisement is only 1000Mbps then we
1408 		 * should disable SmartSpeed and enable Auto MasterSlave
1409 		 * resolution as hardware default.
1410 		 */
1411 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
1412 			/* Disable SmartSpeed */
1413 			ret_val = phy->ops.read_reg(hw,
1414 						    IGP01IGC_PHY_PORT_CONFIG,
1415 						    &data);
1416 			if (ret_val)
1417 				return ret_val;
1418 
1419 			data &= ~IGP01IGC_PSCFR_SMART_SPEED;
1420 			ret_val = phy->ops.write_reg(hw,
1421 						     IGP01IGC_PHY_PORT_CONFIG,
1422 						     data);
1423 			if (ret_val)
1424 				return ret_val;
1425 
1426 			/* Set auto Master/Slave resolution process */
1427 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
1428 			if (ret_val)
1429 				return ret_val;
1430 
1431 			data &= ~CR_1000T_MS_ENABLE;
1432 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
1433 			if (ret_val)
1434 				return ret_val;
1435 		}
1436 
1437 		ret_val = igc_set_master_slave_mode(hw);
1438 	}
1439 
1440 	return ret_val;
1441 }
1442 
1443 /**
1444  *  igc_phy_setup_autoneg - Configure PHY for auto-negotiation
1445  *  @hw: pointer to the HW structure
1446  *
1447  *  Reads the MII auto-neg advertisement register and/or the 1000T control
1448  *  register and if the PHY is already setup for auto-negotiation, then
1449  *  return successful.  Otherwise, setup advertisement and flow control to
1450  *  the appropriate values for the wanted auto-negotiation.
1451  **/
igc_phy_setup_autoneg(struct igc_hw * hw)1452 s32 igc_phy_setup_autoneg(struct igc_hw *hw)
1453 {
1454 	struct igc_phy_info *phy = &hw->phy;
1455 	s32 ret_val;
1456 	u16 mii_autoneg_adv_reg;
1457 	u16 mii_1000t_ctrl_reg = 0;
1458 	u16 aneg_multigbt_an_ctrl = 0;
1459 
1460 	DEBUGFUNC("igc_phy_setup_autoneg");
1461 
1462 	phy->autoneg_advertised &= phy->autoneg_mask;
1463 
1464 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1465 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1466 	if (ret_val)
1467 		return ret_val;
1468 
1469 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1470 		/* Read the MII 1000Base-T Control Register (Address 9). */
1471 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1472 					    &mii_1000t_ctrl_reg);
1473 		if (ret_val)
1474 			return ret_val;
1475 	}
1476 
1477 	if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
1478 	    hw->phy.id == I225_I_PHY_ID) {
1479 	/* Read the MULTI GBT AN Control Register - reg 7.32 */
1480 		ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
1481 					    MMD_DEVADDR_SHIFT) |
1482 					    ANEG_MULTIGBT_AN_CTRL,
1483 					    &aneg_multigbt_an_ctrl);
1484 
1485 		if (ret_val)
1486 			return ret_val;
1487 	}
1488 
1489 	/* Need to parse both autoneg_advertised and fc and set up
1490 	 * the appropriate PHY registers.  First we will parse for
1491 	 * autoneg_advertised software override.  Since we can advertise
1492 	 * a plethora of combinations, we need to check each bit
1493 	 * individually.
1494 	 */
1495 
1496 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1497 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1498 	 * the  1000Base-T Control Register (Address 9).
1499 	 */
1500 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1501 				 NWAY_AR_100TX_HD_CAPS |
1502 				 NWAY_AR_10T_FD_CAPS   |
1503 				 NWAY_AR_10T_HD_CAPS);
1504 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1505 
1506 	DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
1507 
1508 	/* Do we want to advertise 10 Mb Half Duplex? */
1509 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1510 		DEBUGOUT("Advertise 10mb Half duplex\n");
1511 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1512 	}
1513 
1514 	/* Do we want to advertise 10 Mb Full Duplex? */
1515 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1516 		DEBUGOUT("Advertise 10mb Full duplex\n");
1517 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1518 	}
1519 
1520 	/* Do we want to advertise 100 Mb Half Duplex? */
1521 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1522 		DEBUGOUT("Advertise 100mb Half duplex\n");
1523 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1524 	}
1525 
1526 	/* Do we want to advertise 100 Mb Full Duplex? */
1527 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1528 		DEBUGOUT("Advertise 100mb Full duplex\n");
1529 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1530 	}
1531 
1532 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1533 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1534 		DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
1535 
1536 	/* Do we want to advertise 1000 Mb Full Duplex? */
1537 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1538 		DEBUGOUT("Advertise 1000mb Full duplex\n");
1539 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1540 	}
1541 
1542 	/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
1543 	if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
1544 		DEBUGOUT("Advertise 2500mb Half duplex request denied!\n");
1545 
1546 	/* Do we want to advertise 2500 Mb Full Duplex? */
1547 	if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
1548 		DEBUGOUT("Advertise 2500mb Full duplex\n");
1549 		aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
1550 	} else {
1551 		aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
1552 	}
1553 
1554 	/* Check for a software override of the flow control settings, and
1555 	 * setup the PHY advertisement registers accordingly.  If
1556 	 * auto-negotiation is enabled, then software will have to set the
1557 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1558 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1559 	 * negotiation.
1560 	 *
1561 	 * The possible values of the "fc" parameter are:
1562 	 *      0:  Flow control is completely disabled
1563 	 *      1:  Rx flow control is enabled (we can receive pause frames
1564 	 *          but not send pause frames).
1565 	 *      2:  Tx flow control is enabled (we can send pause frames
1566 	 *          but we do not support receiving pause frames).
1567 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1568 	 *  other:  No software override.  The flow control configuration
1569 	 *          in the EEPROM is used.
1570 	 */
1571 	switch (hw->fc.current_mode) {
1572 	case igc_fc_none:
1573 		/* Flow control (Rx & Tx) is completely disabled by a
1574 		 * software over-ride.
1575 		 */
1576 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1577 		break;
1578 	case igc_fc_rx_pause:
1579 		/* Rx Flow control is enabled, and Tx Flow control is
1580 		 * disabled, by a software over-ride.
1581 		 *
1582 		 * Since there really isn't a way to advertise that we are
1583 		 * capable of Rx Pause ONLY, we will advertise that we
1584 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1585 		 * (in igc_config_fc_after_link_up) we will disable the
1586 		 * hw's ability to send PAUSE frames.
1587 		 */
1588 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1589 		break;
1590 	case igc_fc_tx_pause:
1591 		/* Tx Flow control is enabled, and Rx Flow control is
1592 		 * disabled, by a software over-ride.
1593 		 */
1594 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1595 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1596 		break;
1597 	case igc_fc_full:
1598 		/* Flow control (both Rx and Tx) is enabled by a software
1599 		 * over-ride.
1600 		 */
1601 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1602 		break;
1603 	default:
1604 		DEBUGOUT("Flow control param set incorrectly\n");
1605 		return -IGC_ERR_CONFIG;
1606 	}
1607 
1608 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1609 	if (ret_val)
1610 		return ret_val;
1611 
1612 	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1613 
1614 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1615 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
1616 					     mii_1000t_ctrl_reg);
1617 
1618 	if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
1619 	    hw->phy.id == I225_I_PHY_ID)
1620 		ret_val = phy->ops.write_reg(hw,
1621 					     (STANDARD_AN_REG_MASK <<
1622 					     MMD_DEVADDR_SHIFT) |
1623 					     ANEG_MULTIGBT_AN_CTRL,
1624 					     aneg_multigbt_an_ctrl);
1625 
1626 	return ret_val;
1627 }
1628 
1629 /**
1630  *  igc_copper_link_autoneg - Setup/Enable autoneg for copper link
1631  *  @hw: pointer to the HW structure
1632  *
1633  *  Performs initial bounds checking on autoneg advertisement parameter, then
1634  *  configure to advertise the full capability.  Setup the PHY to autoneg
1635  *  and restart the negotiation process between the link partner.  If
1636  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1637  **/
igc_copper_link_autoneg(struct igc_hw * hw)1638 s32 igc_copper_link_autoneg(struct igc_hw *hw)
1639 {
1640 	struct igc_phy_info *phy = &hw->phy;
1641 	s32 ret_val;
1642 	u16 phy_ctrl;
1643 
1644 	DEBUGFUNC("igc_copper_link_autoneg");
1645 
1646 	/* Perform some bounds checking on the autoneg advertisement
1647 	 * parameter.
1648 	 */
1649 	phy->autoneg_advertised &= phy->autoneg_mask;
1650 
1651 	/* If autoneg_advertised is zero, we assume it was not defaulted
1652 	 * by the calling code so we set to advertise full capability.
1653 	 */
1654 	if (!phy->autoneg_advertised)
1655 		phy->autoneg_advertised = phy->autoneg_mask;
1656 
1657 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1658 	ret_val = igc_phy_setup_autoneg(hw);
1659 	if (ret_val) {
1660 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
1661 		return ret_val;
1662 	}
1663 	DEBUGOUT("Restarting Auto-Neg\n");
1664 
1665 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1666 	 * the Auto Neg Restart bit in the PHY control register.
1667 	 */
1668 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1669 	if (ret_val)
1670 		return ret_val;
1671 
1672 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1673 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1674 	if (ret_val)
1675 		return ret_val;
1676 
1677 	/* Does the user want to wait for Auto-Neg to complete here, or
1678 	 * check at a later time (for example, callback routine).
1679 	 */
1680 	if (phy->autoneg_wait_to_complete) {
1681 		ret_val = igc_wait_autoneg(hw);
1682 		if (ret_val) {
1683 			DEBUGOUT("Error while waiting for autoneg to complete\n");
1684 			return ret_val;
1685 		}
1686 	}
1687 
1688 	hw->mac.get_link_status = true;
1689 
1690 	return ret_val;
1691 }
1692 
1693 /**
1694  *  igc_setup_copper_link_generic - Configure copper link settings
1695  *  @hw: pointer to the HW structure
1696  *
1697  *  Calls the appropriate function to configure the link for auto-neg or forced
1698  *  speed and duplex.  Then we check for link, once link is established calls
1699  *  to configure collision distance and flow control are called.  If link is
1700  *  not established, we return -IGC_ERR_PHY (-2).
1701  **/
igc_setup_copper_link_generic(struct igc_hw * hw)1702 s32 igc_setup_copper_link_generic(struct igc_hw *hw)
1703 {
1704 	s32 ret_val;
1705 	bool link = false;
1706 
1707 	DEBUGFUNC("igc_setup_copper_link_generic");
1708 
1709 	if (hw->mac.autoneg) {
1710 		/* Setup autoneg and flow control advertisement and perform
1711 		 * autonegotiation.
1712 		 */
1713 		ret_val = igc_copper_link_autoneg(hw);
1714 		if (ret_val)
1715 			return ret_val;
1716 	} else {
1717 		/* PHY will be set to 10H, 10F, 100H or 100F
1718 		 * depending on user settings.
1719 		 */
1720 		DEBUGOUT("Forcing Speed and Duplex\n");
1721 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1722 		if (ret_val) {
1723 			DEBUGOUT("Error Forcing Speed and Duplex\n");
1724 			return ret_val;
1725 		}
1726 	}
1727 
1728 	/* Check link status. Wait up to 100 microseconds for link to become
1729 	 * valid.
1730 	 */
1731 	ret_val = igc_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1732 					     &link);
1733 	if (ret_val)
1734 		return ret_val;
1735 
1736 	if (link) {
1737 		DEBUGOUT("Valid link established!!!\n");
1738 		hw->mac.ops.config_collision_dist(hw);
1739 		ret_val = igc_config_fc_after_link_up_generic(hw);
1740 	} else {
1741 		DEBUGOUT("Unable to establish link!!!\n");
1742 	}
1743 
1744 	return ret_val;
1745 }
1746 
1747 /**
1748  *  igc_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1749  *  @hw: pointer to the HW structure
1750  *
1751  *  Calls the PHY setup function to force speed and duplex.  Clears the
1752  *  auto-crossover to force MDI manually.  Waits for link and returns
1753  *  successful if link up is successful, else -IGC_ERR_PHY (-2).
1754  **/
igc_phy_force_speed_duplex_igp(struct igc_hw * hw)1755 s32 igc_phy_force_speed_duplex_igp(struct igc_hw *hw)
1756 {
1757 	struct igc_phy_info *phy = &hw->phy;
1758 	s32 ret_val;
1759 	u16 phy_data;
1760 	bool link;
1761 
1762 	DEBUGFUNC("igc_phy_force_speed_duplex_igp");
1763 
1764 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1765 	if (ret_val)
1766 		return ret_val;
1767 
1768 	igc_phy_force_speed_duplex_setup(hw, &phy_data);
1769 
1770 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1771 	if (ret_val)
1772 		return ret_val;
1773 
1774 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1775 	 * forced whenever speed and duplex are forced.
1776 	 */
1777 	ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_CTRL, &phy_data);
1778 	if (ret_val)
1779 		return ret_val;
1780 
1781 	phy_data &= ~IGP01IGC_PSCR_AUTO_MDIX;
1782 	phy_data &= ~IGP01IGC_PSCR_FORCE_MDI_MDIX;
1783 
1784 	ret_val = phy->ops.write_reg(hw, IGP01IGC_PHY_PORT_CTRL, phy_data);
1785 	if (ret_val)
1786 		return ret_val;
1787 
1788 	DEBUGOUT1("IGP PSCR: %X\n", phy_data);
1789 
1790 	usec_delay(1);
1791 
1792 	if (phy->autoneg_wait_to_complete) {
1793 		DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
1794 
1795 		ret_val = igc_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1796 						     100000, &link);
1797 		if (ret_val)
1798 			return ret_val;
1799 
1800 		if (!link)
1801 			DEBUGOUT("Link taking longer than expected.\n");
1802 
1803 		/* Try once more */
1804 		ret_val = igc_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1805 						     100000, &link);
1806 	}
1807 
1808 	return ret_val;
1809 }
1810 
1811 /**
1812  *  igc_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1813  *  @hw: pointer to the HW structure
1814  *
1815  *  Calls the PHY setup function to force speed and duplex.  Clears the
1816  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1817  *  changes.  If time expires while waiting for link up, we reset the DSP.
1818  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1819  *  successful completion, else return corresponding error code.
1820  **/
igc_phy_force_speed_duplex_m88(struct igc_hw * hw)1821 s32 igc_phy_force_speed_duplex_m88(struct igc_hw *hw)
1822 {
1823 	struct igc_phy_info *phy = &hw->phy;
1824 	s32 ret_val;
1825 	u16 phy_data;
1826 	bool link;
1827 
1828 	DEBUGFUNC("igc_phy_force_speed_duplex_m88");
1829 
1830 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1831 	if (phy->type != igc_phy_i210) {
1832 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1833 		 * requires MDI forced whenever speed and duplex are forced.
1834 		 */
1835 		ret_val = phy->ops.read_reg(hw, M88IGC_PHY_SPEC_CTRL,
1836 					    &phy_data);
1837 		if (ret_val)
1838 			return ret_val;
1839 
1840 		phy_data &= ~M88IGC_PSCR_AUTO_X_MODE;
1841 		ret_val = phy->ops.write_reg(hw, M88IGC_PHY_SPEC_CTRL,
1842 					     phy_data);
1843 		if (ret_val)
1844 			return ret_val;
1845 
1846 		DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
1847 	}
1848 
1849 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1850 	if (ret_val)
1851 		return ret_val;
1852 
1853 	igc_phy_force_speed_duplex_setup(hw, &phy_data);
1854 
1855 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1856 	if (ret_val)
1857 		return ret_val;
1858 
1859 	/* Reset the phy to commit changes. */
1860 	ret_val = hw->phy.ops.commit(hw);
1861 	if (ret_val)
1862 		return ret_val;
1863 
1864 	if (phy->autoneg_wait_to_complete) {
1865 		DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
1866 
1867 		ret_val = igc_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1868 						     100000, &link);
1869 		if (ret_val)
1870 			return ret_val;
1871 
1872 		if (!link) {
1873 			bool reset_dsp = true;
1874 
1875 			switch (hw->phy.id) {
1876 			case I347AT4_E_PHY_ID:
1877 			case M88E1340M_E_PHY_ID:
1878 			case M88E1112_E_PHY_ID:
1879 			case M88E1543_E_PHY_ID:
1880 			case M88E1512_E_PHY_ID:
1881 			case I210_I_PHY_ID:
1882 			/* fall-through */
1883 			case I225_I_PHY_ID:
1884 			/* fall-through */
1885 				reset_dsp = false;
1886 				break;
1887 			default:
1888 				if (hw->phy.type != igc_phy_m88)
1889 					reset_dsp = false;
1890 				break;
1891 			}
1892 
1893 			if (!reset_dsp) {
1894 				DEBUGOUT("Link taking longer than expected.\n");
1895 			} else {
1896 				/* We didn't get link.
1897 				 * Reset the DSP and cross our fingers.
1898 				 */
1899 				ret_val = phy->ops.write_reg(hw,
1900 						M88IGC_PHY_PAGE_SELECT,
1901 						0x001d);
1902 				if (ret_val)
1903 					return ret_val;
1904 				ret_val = igc_phy_reset_dsp_generic(hw);
1905 				if (ret_val)
1906 					return ret_val;
1907 			}
1908 		}
1909 
1910 		/* Try once more */
1911 		ret_val = igc_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1912 						     100000, &link);
1913 		if (ret_val)
1914 			return ret_val;
1915 	}
1916 
1917 	if (hw->phy.type != igc_phy_m88)
1918 		return IGC_SUCCESS;
1919 
1920 	if (hw->phy.id == I347AT4_E_PHY_ID ||
1921 		hw->phy.id == M88E1340M_E_PHY_ID ||
1922 		hw->phy.id == M88E1112_E_PHY_ID)
1923 		return IGC_SUCCESS;
1924 	if (hw->phy.id == I210_I_PHY_ID)
1925 		return IGC_SUCCESS;
1926 	if (hw->phy.id == I225_I_PHY_ID)
1927 		return IGC_SUCCESS;
1928 	if (hw->phy.id == M88E1543_E_PHY_ID || hw->phy.id == M88E1512_E_PHY_ID)
1929 		return IGC_SUCCESS;
1930 	ret_val = phy->ops.read_reg(hw, M88IGC_EXT_PHY_SPEC_CTRL, &phy_data);
1931 	if (ret_val)
1932 		return ret_val;
1933 
1934 	/* Resetting the phy means we need to re-force TX_CLK in the
1935 	 * Extended PHY Specific Control Register to 25MHz clock from
1936 	 * the reset value of 2.5MHz.
1937 	 */
1938 	phy_data |= M88IGC_EPSCR_TX_CLK_25;
1939 	ret_val = phy->ops.write_reg(hw, M88IGC_EXT_PHY_SPEC_CTRL, phy_data);
1940 	if (ret_val)
1941 		return ret_val;
1942 
1943 	/* In addition, we must re-enable CRS on Tx for both half and full
1944 	 * duplex.
1945 	 */
1946 	ret_val = phy->ops.read_reg(hw, M88IGC_PHY_SPEC_CTRL, &phy_data);
1947 	if (ret_val)
1948 		return ret_val;
1949 
1950 	phy_data |= M88IGC_PSCR_ASSERT_CRS_ON_TX;
1951 	ret_val = phy->ops.write_reg(hw, M88IGC_PHY_SPEC_CTRL, phy_data);
1952 
1953 	return ret_val;
1954 }
1955 
1956 /**
1957  *  igc_phy_force_speed_duplex_ife - Force PHY speed & duplex
1958  *  @hw: pointer to the HW structure
1959  *
1960  *  Forces the speed and duplex settings of the PHY.
1961  *  This is a function pointer entry point only called by
1962  *  PHY setup routines.
1963  **/
igc_phy_force_speed_duplex_ife(struct igc_hw * hw)1964 s32 igc_phy_force_speed_duplex_ife(struct igc_hw *hw)
1965 {
1966 	struct igc_phy_info *phy = &hw->phy;
1967 	s32 ret_val;
1968 	u16 data;
1969 	bool link;
1970 
1971 	DEBUGFUNC("igc_phy_force_speed_duplex_ife");
1972 
1973 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
1974 	if (ret_val)
1975 		return ret_val;
1976 
1977 	igc_phy_force_speed_duplex_setup(hw, &data);
1978 
1979 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
1980 	if (ret_val)
1981 		return ret_val;
1982 
1983 	/* Disable MDI-X support for 10/100 */
1984 	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
1985 	if (ret_val)
1986 		return ret_val;
1987 
1988 	data &= ~IFE_PMC_AUTO_MDIX;
1989 	data &= ~IFE_PMC_FORCE_MDIX;
1990 
1991 	ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
1992 	if (ret_val)
1993 		return ret_val;
1994 
1995 	DEBUGOUT1("IFE PMC: %X\n", data);
1996 
1997 	usec_delay(1);
1998 
1999 	if (phy->autoneg_wait_to_complete) {
2000 		DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
2001 
2002 		ret_val = igc_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
2003 						     100000, &link);
2004 		if (ret_val)
2005 			return ret_val;
2006 
2007 		if (!link)
2008 			DEBUGOUT("Link taking longer than expected.\n");
2009 
2010 		/* Try once more */
2011 		ret_val = igc_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
2012 						     100000, &link);
2013 		if (ret_val)
2014 			return ret_val;
2015 	}
2016 
2017 	return IGC_SUCCESS;
2018 }
2019 
2020 /**
2021  *  igc_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
2022  *  @hw: pointer to the HW structure
2023  *  @phy_ctrl: pointer to current value of PHY_CONTROL
2024  *
2025  *  Forces speed and duplex on the PHY by doing the following: disable flow
2026  *  control, force speed/duplex on the MAC, disable auto speed detection,
2027  *  disable auto-negotiation, configure duplex, configure speed, configure
2028  *  the collision distance, write configuration to CTRL register.  The
2029  *  caller must write to the PHY_CONTROL register for these settings to
2030  *  take affect.
2031  **/
igc_phy_force_speed_duplex_setup(struct igc_hw * hw,u16 * phy_ctrl)2032 void igc_phy_force_speed_duplex_setup(struct igc_hw *hw, u16 *phy_ctrl)
2033 {
2034 	struct igc_mac_info *mac = &hw->mac;
2035 	u32 ctrl;
2036 
2037 	DEBUGFUNC("igc_phy_force_speed_duplex_setup");
2038 
2039 	/* Turn off flow control when forcing speed/duplex */
2040 	hw->fc.current_mode = igc_fc_none;
2041 
2042 	/* Force speed/duplex on the mac */
2043 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
2044 	ctrl |= (IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
2045 	ctrl &= ~IGC_CTRL_SPD_SEL;
2046 
2047 	/* Disable Auto Speed Detection */
2048 	ctrl &= ~IGC_CTRL_ASDE;
2049 
2050 	/* Disable autoneg on the phy */
2051 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
2052 
2053 	/* Forcing Full or Half Duplex? */
2054 	if (mac->forced_speed_duplex & IGC_ALL_HALF_DUPLEX) {
2055 		ctrl &= ~IGC_CTRL_FD;
2056 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
2057 		DEBUGOUT("Half Duplex\n");
2058 	} else {
2059 		ctrl |= IGC_CTRL_FD;
2060 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
2061 		DEBUGOUT("Full Duplex\n");
2062 	}
2063 
2064 	/* Forcing 10mb or 100mb? */
2065 	if (mac->forced_speed_duplex & IGC_ALL_100_SPEED) {
2066 		ctrl |= IGC_CTRL_SPD_100;
2067 		*phy_ctrl |= MII_CR_SPEED_100;
2068 		*phy_ctrl &= ~MII_CR_SPEED_1000;
2069 		DEBUGOUT("Forcing 100mb\n");
2070 	} else {
2071 		ctrl &= ~(IGC_CTRL_SPD_1000 | IGC_CTRL_SPD_100);
2072 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2073 		DEBUGOUT("Forcing 10mb\n");
2074 	}
2075 
2076 	hw->mac.ops.config_collision_dist(hw);
2077 
2078 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
2079 }
2080 
2081 /**
2082  *  igc_set_d3_lplu_state_generic - Sets low power link up state for D3
2083  *  @hw: pointer to the HW structure
2084  *  @active: boolean used to enable/disable lplu
2085  *
2086  *  Success returns 0, Failure returns 1
2087  *
2088  *  The low power link up (lplu) state is set to the power management level D3
2089  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
2090  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2091  *  is used during Dx states where the power conservation is most important.
2092  *  During driver activity, SmartSpeed should be enabled so performance is
2093  *  maintained.
2094  **/
igc_set_d3_lplu_state_generic(struct igc_hw * hw,bool active)2095 s32 igc_set_d3_lplu_state_generic(struct igc_hw *hw, bool active)
2096 {
2097 	struct igc_phy_info *phy = &hw->phy;
2098 	s32 ret_val;
2099 	u16 data;
2100 
2101 	DEBUGFUNC("igc_set_d3_lplu_state_generic");
2102 
2103 	if (!hw->phy.ops.read_reg)
2104 		return IGC_SUCCESS;
2105 
2106 	ret_val = phy->ops.read_reg(hw, IGP02IGC_PHY_POWER_MGMT, &data);
2107 	if (ret_val)
2108 		return ret_val;
2109 
2110 	if (!active) {
2111 		data &= ~IGP02IGC_PM_D3_LPLU;
2112 		ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
2113 					     data);
2114 		if (ret_val)
2115 			return ret_val;
2116 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2117 		 * during Dx states where the power conservation is most
2118 		 * important.  During driver activity we should enable
2119 		 * SmartSpeed, so performance is maintained.
2120 		 */
2121 		if (phy->smart_speed == igc_smart_speed_on) {
2122 			ret_val = phy->ops.read_reg(hw,
2123 						    IGP01IGC_PHY_PORT_CONFIG,
2124 						    &data);
2125 			if (ret_val)
2126 				return ret_val;
2127 
2128 			data |= IGP01IGC_PSCFR_SMART_SPEED;
2129 			ret_val = phy->ops.write_reg(hw,
2130 						     IGP01IGC_PHY_PORT_CONFIG,
2131 						     data);
2132 			if (ret_val)
2133 				return ret_val;
2134 		} else if (phy->smart_speed == igc_smart_speed_off) {
2135 			ret_val = phy->ops.read_reg(hw,
2136 						    IGP01IGC_PHY_PORT_CONFIG,
2137 						    &data);
2138 			if (ret_val)
2139 				return ret_val;
2140 
2141 			data &= ~IGP01IGC_PSCFR_SMART_SPEED;
2142 			ret_val = phy->ops.write_reg(hw,
2143 						     IGP01IGC_PHY_PORT_CONFIG,
2144 						     data);
2145 			if (ret_val)
2146 				return ret_val;
2147 		}
2148 	} else if ((phy->autoneg_advertised == IGC_ALL_SPEED_DUPLEX) ||
2149 		   (phy->autoneg_advertised == IGC_ALL_NOT_GIG) ||
2150 		   (phy->autoneg_advertised == IGC_ALL_10_SPEED)) {
2151 		data |= IGP02IGC_PM_D3_LPLU;
2152 		ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
2153 					     data);
2154 		if (ret_val)
2155 			return ret_val;
2156 
2157 		/* When LPLU is enabled, we should disable SmartSpeed */
2158 		ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
2159 					    &data);
2160 		if (ret_val)
2161 			return ret_val;
2162 
2163 		data &= ~IGP01IGC_PSCFR_SMART_SPEED;
2164 		ret_val = phy->ops.write_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
2165 					     data);
2166 	}
2167 
2168 	return ret_val;
2169 }
2170 
2171 /**
2172  *  igc_check_downshift_generic - Checks whether a downshift in speed occurred
2173  *  @hw: pointer to the HW structure
2174  *
2175  *  Success returns 0, Failure returns 1
2176  *
2177  *  A downshift is detected by querying the PHY link health.
2178  **/
igc_check_downshift_generic(struct igc_hw * hw)2179 s32 igc_check_downshift_generic(struct igc_hw *hw)
2180 {
2181 	struct igc_phy_info *phy = &hw->phy;
2182 	s32 ret_val;
2183 	u16 phy_data, offset, mask;
2184 
2185 	DEBUGFUNC("igc_check_downshift_generic");
2186 
2187 	switch (phy->type) {
2188 	case igc_phy_i210:
2189 	case igc_phy_m88:
2190 	case igc_phy_gg82563:
2191 	case igc_phy_bm:
2192 	case igc_phy_82578:
2193 		offset = M88IGC_PHY_SPEC_STATUS;
2194 		mask = M88IGC_PSSR_DOWNSHIFT;
2195 		break;
2196 	case igc_phy_igp:
2197 	case igc_phy_igp_2:
2198 	case igc_phy_igp_3:
2199 		offset = IGP01IGC_PHY_LINK_HEALTH;
2200 		mask = IGP01IGC_PLHR_SS_DOWNGRADE;
2201 		break;
2202 	default:
2203 		/* speed downshift not supported */
2204 		phy->speed_downgraded = false;
2205 		return IGC_SUCCESS;
2206 	}
2207 
2208 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2209 
2210 	if (!ret_val)
2211 		phy->speed_downgraded = !!(phy_data & mask);
2212 
2213 	return ret_val;
2214 }
2215 
2216 /**
2217  *  igc_check_polarity_m88 - Checks the polarity.
2218  *  @hw: pointer to the HW structure
2219  *
2220  *  Success returns 0, Failure returns -IGC_ERR_PHY (-2)
2221  *
2222  *  Polarity is determined based on the PHY specific status register.
2223  **/
igc_check_polarity_m88(struct igc_hw * hw)2224 s32 igc_check_polarity_m88(struct igc_hw *hw)
2225 {
2226 	struct igc_phy_info *phy = &hw->phy;
2227 	s32 ret_val;
2228 	u16 data;
2229 
2230 	DEBUGFUNC("igc_check_polarity_m88");
2231 
2232 	ret_val = phy->ops.read_reg(hw, M88IGC_PHY_SPEC_STATUS, &data);
2233 
2234 	if (!ret_val)
2235 		phy->cable_polarity = ((data & M88IGC_PSSR_REV_POLARITY)
2236 				       ? igc_rev_polarity_reversed
2237 				       : igc_rev_polarity_normal);
2238 
2239 	return ret_val;
2240 }
2241 
2242 /**
2243  *  igc_check_polarity_igp - Checks the polarity.
2244  *  @hw: pointer to the HW structure
2245  *
2246  *  Success returns 0, Failure returns -IGC_ERR_PHY (-2)
2247  *
2248  *  Polarity is determined based on the PHY port status register, and the
2249  *  current speed (since there is no polarity at 100Mbps).
2250  **/
igc_check_polarity_igp(struct igc_hw * hw)2251 s32 igc_check_polarity_igp(struct igc_hw *hw)
2252 {
2253 	struct igc_phy_info *phy = &hw->phy;
2254 	s32 ret_val;
2255 	u16 data, offset, mask;
2256 
2257 	DEBUGFUNC("igc_check_polarity_igp");
2258 
2259 	/* Polarity is determined based on the speed of
2260 	 * our connection.
2261 	 */
2262 	ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_STATUS, &data);
2263 	if (ret_val)
2264 		return ret_val;
2265 
2266 	if ((data & IGP01IGC_PSSR_SPEED_MASK) ==
2267 	    IGP01IGC_PSSR_SPEED_1000MBPS) {
2268 		offset = IGP01IGC_PHY_PCS_INIT_REG;
2269 		mask = IGP01IGC_PHY_POLARITY_MASK;
2270 	} else {
2271 		/* This really only applies to 10Mbps since
2272 		 * there is no polarity for 100Mbps (always 0).
2273 		 */
2274 		offset = IGP01IGC_PHY_PORT_STATUS;
2275 		mask = IGP01IGC_PSSR_POLARITY_REVERSED;
2276 	}
2277 
2278 	ret_val = phy->ops.read_reg(hw, offset, &data);
2279 
2280 	if (!ret_val)
2281 		phy->cable_polarity = ((data & mask)
2282 				       ? igc_rev_polarity_reversed
2283 				       : igc_rev_polarity_normal);
2284 
2285 	return ret_val;
2286 }
2287 
2288 /**
2289  *  igc_check_polarity_ife - Check cable polarity for IFE PHY
2290  *  @hw: pointer to the HW structure
2291  *
2292  *  Polarity is determined on the polarity reversal feature being enabled.
2293  **/
igc_check_polarity_ife(struct igc_hw * hw)2294 s32 igc_check_polarity_ife(struct igc_hw *hw)
2295 {
2296 	struct igc_phy_info *phy = &hw->phy;
2297 	s32 ret_val;
2298 	u16 phy_data, offset, mask;
2299 
2300 	DEBUGFUNC("igc_check_polarity_ife");
2301 
2302 	/* Polarity is determined based on the reversal feature being enabled.
2303 	 */
2304 	if (phy->polarity_correction) {
2305 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
2306 		mask = IFE_PESC_POLARITY_REVERSED;
2307 	} else {
2308 		offset = IFE_PHY_SPECIAL_CONTROL;
2309 		mask = IFE_PSC_FORCE_POLARITY;
2310 	}
2311 
2312 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2313 
2314 	if (!ret_val)
2315 		phy->cable_polarity = ((phy_data & mask)
2316 				       ? igc_rev_polarity_reversed
2317 				       : igc_rev_polarity_normal);
2318 
2319 	return ret_val;
2320 }
2321 
2322 /**
2323  *  igc_wait_autoneg - Wait for auto-neg completion
2324  *  @hw: pointer to the HW structure
2325  *
2326  *  Waits for auto-negotiation to complete or for the auto-negotiation time
2327  *  limit to expire, which ever happens first.
2328  **/
igc_wait_autoneg(struct igc_hw * hw)2329 static s32 igc_wait_autoneg(struct igc_hw *hw)
2330 {
2331 	s32 ret_val = IGC_SUCCESS;
2332 	u16 i, phy_status;
2333 
2334 	DEBUGFUNC("igc_wait_autoneg");
2335 
2336 	if (!hw->phy.ops.read_reg)
2337 		return IGC_SUCCESS;
2338 
2339 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
2340 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
2341 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2342 		if (ret_val)
2343 			break;
2344 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2345 		if (ret_val)
2346 			break;
2347 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
2348 			break;
2349 		msec_delay(100);
2350 	}
2351 
2352 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
2353 	 * has completed.
2354 	 */
2355 	return ret_val;
2356 }
2357 
2358 /**
2359  *  igc_phy_has_link_generic - Polls PHY for link
2360  *  @hw: pointer to the HW structure
2361  *  @iterations: number of times to poll for link
2362  *  @usec_interval: delay between polling attempts
2363  *  @success: pointer to whether polling was successful or not
2364  *
2365  *  Polls the PHY status register for link, 'iterations' number of times.
2366  **/
igc_phy_has_link_generic(struct igc_hw * hw,u32 iterations,u32 usec_interval,bool * success)2367 s32 igc_phy_has_link_generic(struct igc_hw *hw, u32 iterations,
2368 			       u32 usec_interval, bool *success)
2369 {
2370 	s32 ret_val = IGC_SUCCESS;
2371 	u16 i, phy_status;
2372 
2373 	DEBUGFUNC("igc_phy_has_link_generic");
2374 
2375 	if (!hw->phy.ops.read_reg)
2376 		return IGC_SUCCESS;
2377 
2378 	for (i = 0; i < iterations; i++) {
2379 		/* Some PHYs require the PHY_STATUS register to be read
2380 		 * twice due to the link bit being sticky.  No harm doing
2381 		 * it across the board.
2382 		 */
2383 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2384 		if (ret_val) {
2385 			/* If the first read fails, another entity may have
2386 			 * ownership of the resources, wait and try again to
2387 			 * see if they have relinquished the resources yet.
2388 			 */
2389 			if (usec_interval >= 1000)
2390 				msec_delay(usec_interval / 1000);
2391 			else
2392 				usec_delay(usec_interval);
2393 		}
2394 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2395 		if (ret_val)
2396 			break;
2397 		if (phy_status & MII_SR_LINK_STATUS)
2398 			break;
2399 		if (usec_interval >= 1000)
2400 			msec_delay(usec_interval / 1000);
2401 		else
2402 			usec_delay(usec_interval);
2403 	}
2404 
2405 	*success = (i < iterations);
2406 
2407 	return ret_val;
2408 }
2409 
2410 /**
2411  *  igc_get_cable_length_m88 - Determine cable length for m88 PHY
2412  *  @hw: pointer to the HW structure
2413  *
2414  *  Reads the PHY specific status register to retrieve the cable length
2415  *  information.  The cable length is determined by averaging the minimum and
2416  *  maximum values to get the "average" cable length.  The m88 PHY has four
2417  *  possible cable length values, which are:
2418  *	Register Value		Cable Length
2419  *	0			< 50 meters
2420  *	1			50 - 80 meters
2421  *	2			80 - 110 meters
2422  *	3			110 - 140 meters
2423  *	4			> 140 meters
2424  **/
igc_get_cable_length_m88(struct igc_hw * hw)2425 s32 igc_get_cable_length_m88(struct igc_hw *hw)
2426 {
2427 	struct igc_phy_info *phy = &hw->phy;
2428 	s32 ret_val;
2429 	u16 phy_data, index;
2430 
2431 	DEBUGFUNC("igc_get_cable_length_m88");
2432 
2433 	ret_val = phy->ops.read_reg(hw, M88IGC_PHY_SPEC_STATUS, &phy_data);
2434 	if (ret_val)
2435 		return ret_val;
2436 
2437 	index = ((phy_data & M88IGC_PSSR_CABLE_LENGTH) >>
2438 		 M88IGC_PSSR_CABLE_LENGTH_SHIFT);
2439 
2440 	if (index >= M88IGC_CABLE_LENGTH_TABLE_SIZE - 1)
2441 		return -IGC_ERR_PHY;
2442 
2443 	phy->min_cable_length = igc_m88_cable_length_table[index];
2444 	phy->max_cable_length = igc_m88_cable_length_table[index + 1];
2445 
2446 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2447 
2448 	return IGC_SUCCESS;
2449 }
2450 
igc_get_cable_length_m88_gen2(struct igc_hw * hw)2451 s32 igc_get_cable_length_m88_gen2(struct igc_hw *hw)
2452 {
2453 	struct igc_phy_info *phy = &hw->phy;
2454 	s32 ret_val  = 0;
2455 	u16 phy_data, phy_data2, is_cm;
2456 	u16 index, default_page;
2457 
2458 	DEBUGFUNC("igc_get_cable_length_m88_gen2");
2459 
2460 	switch (hw->phy.id) {
2461 	case I210_I_PHY_ID:
2462 		/* Get cable length from PHY Cable Diagnostics Control Reg */
2463 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2464 					    (I347AT4_PCDL + phy->addr),
2465 					    &phy_data);
2466 		if (ret_val)
2467 			return ret_val;
2468 
2469 		/* Check if the unit of cable length is meters or cm */
2470 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2471 					    I347AT4_PCDC, &phy_data2);
2472 		if (ret_val)
2473 			return ret_val;
2474 
2475 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2476 
2477 		/* Populate the phy structure with cable length in meters */
2478 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2479 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2480 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
2481 		break;
2482 	case I225_I_PHY_ID:
2483 		if (ret_val)
2484 			return ret_val;
2485 		/* TODO - complete with Foxville data */
2486 		break;
2487 	case M88E1543_E_PHY_ID:
2488 	case M88E1512_E_PHY_ID:
2489 	case M88E1340M_E_PHY_ID:
2490 	case I347AT4_E_PHY_ID:
2491 		/* Remember the original page select and set it to 7 */
2492 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2493 					    &default_page);
2494 		if (ret_val)
2495 			return ret_val;
2496 
2497 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
2498 		if (ret_val)
2499 			return ret_val;
2500 
2501 		/* Get cable length from PHY Cable Diagnostics Control Reg */
2502 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
2503 					    &phy_data);
2504 		if (ret_val)
2505 			return ret_val;
2506 
2507 		/* Check if the unit of cable length is meters or cm */
2508 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
2509 		if (ret_val)
2510 			return ret_val;
2511 
2512 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2513 
2514 		/* Populate the phy structure with cable length in meters */
2515 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2516 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2517 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
2518 
2519 		/* Reset the page select to its original value */
2520 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2521 					     default_page);
2522 		if (ret_val)
2523 			return ret_val;
2524 		break;
2525 
2526 	case M88E1112_E_PHY_ID:
2527 		/* Remember the original page select and set it to 5 */
2528 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2529 					    &default_page);
2530 		if (ret_val)
2531 			return ret_val;
2532 
2533 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
2534 		if (ret_val)
2535 			return ret_val;
2536 
2537 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
2538 					    &phy_data);
2539 		if (ret_val)
2540 			return ret_val;
2541 
2542 		index = (phy_data & M88IGC_PSSR_CABLE_LENGTH) >>
2543 			M88IGC_PSSR_CABLE_LENGTH_SHIFT;
2544 
2545 		if (index >= M88IGC_CABLE_LENGTH_TABLE_SIZE - 1)
2546 			return -IGC_ERR_PHY;
2547 
2548 		phy->min_cable_length = igc_m88_cable_length_table[index];
2549 		phy->max_cable_length = igc_m88_cable_length_table[index + 1];
2550 
2551 		phy->cable_length = (phy->min_cable_length +
2552 				     phy->max_cable_length) / 2;
2553 
2554 		/* Reset the page select to its original value */
2555 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2556 					     default_page);
2557 		if (ret_val)
2558 			return ret_val;
2559 
2560 		break;
2561 	default:
2562 		return -IGC_ERR_PHY;
2563 	}
2564 
2565 	return ret_val;
2566 }
2567 
2568 /**
2569  *  igc_get_cable_length_igp_2 - Determine cable length for igp2 PHY
2570  *  @hw: pointer to the HW structure
2571  *
2572  *  The automatic gain control (agc) normalizes the amplitude of the
2573  *  received signal, adjusting for the attenuation produced by the
2574  *  cable.  By reading the AGC registers, which represent the
2575  *  combination of coarse and fine gain value, the value can be put
2576  *  into a lookup table to obtain the approximate cable length
2577  *  for each channel.
2578  **/
igc_get_cable_length_igp_2(struct igc_hw * hw)2579 s32 igc_get_cable_length_igp_2(struct igc_hw *hw)
2580 {
2581 	struct igc_phy_info *phy = &hw->phy;
2582 	s32 ret_val;
2583 	u16 phy_data, i, agc_value = 0;
2584 	u16 cur_agc_index, max_agc_index = 0;
2585 	u16 min_agc_index = IGP02IGC_CABLE_LENGTH_TABLE_SIZE - 1;
2586 	static const u16 agc_reg_array[IGP02IGC_PHY_CHANNEL_NUM] = {
2587 		IGP02IGC_PHY_AGC_A,
2588 		IGP02IGC_PHY_AGC_B,
2589 		IGP02IGC_PHY_AGC_C,
2590 		IGP02IGC_PHY_AGC_D
2591 	};
2592 
2593 	DEBUGFUNC("igc_get_cable_length_igp_2");
2594 
2595 	/* Read the AGC registers for all channels */
2596 	for (i = 0; i < IGP02IGC_PHY_CHANNEL_NUM; i++) {
2597 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
2598 		if (ret_val)
2599 			return ret_val;
2600 
2601 		/* Getting bits 15:9, which represent the combination of
2602 		 * coarse and fine gain values.  The result is a number
2603 		 * that can be put into the lookup table to obtain the
2604 		 * approximate cable length.
2605 		 */
2606 		cur_agc_index = ((phy_data >> IGP02IGC_AGC_LENGTH_SHIFT) &
2607 				 IGP02IGC_AGC_LENGTH_MASK);
2608 
2609 		/* Array index bound check. */
2610 		if (cur_agc_index >= IGP02IGC_CABLE_LENGTH_TABLE_SIZE ||
2611 				cur_agc_index == 0)
2612 			return -IGC_ERR_PHY;
2613 
2614 		/* Remove min & max AGC values from calculation. */
2615 		if (igc_igp_2_cable_length_table[min_agc_index] >
2616 		    igc_igp_2_cable_length_table[cur_agc_index])
2617 			min_agc_index = cur_agc_index;
2618 		if (igc_igp_2_cable_length_table[max_agc_index] <
2619 		    igc_igp_2_cable_length_table[cur_agc_index])
2620 			max_agc_index = cur_agc_index;
2621 
2622 		agc_value += igc_igp_2_cable_length_table[cur_agc_index];
2623 	}
2624 
2625 	agc_value -= (igc_igp_2_cable_length_table[min_agc_index] +
2626 		      igc_igp_2_cable_length_table[max_agc_index]);
2627 	agc_value /= (IGP02IGC_PHY_CHANNEL_NUM - 2);
2628 
2629 	/* Calculate cable length with the error range of +/- 10 meters. */
2630 	phy->min_cable_length = (((agc_value - IGP02IGC_AGC_RANGE) > 0) ?
2631 				 (agc_value - IGP02IGC_AGC_RANGE) : 0);
2632 	phy->max_cable_length = agc_value + IGP02IGC_AGC_RANGE;
2633 
2634 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2635 
2636 	return IGC_SUCCESS;
2637 }
2638 
2639 /**
2640  *  igc_get_phy_info_m88 - Retrieve PHY information
2641  *  @hw: pointer to the HW structure
2642  *
2643  *  Valid for only copper links.  Read the PHY status register (sticky read)
2644  *  to verify that link is up.  Read the PHY special control register to
2645  *  determine the polarity and 10base-T extended distance.  Read the PHY
2646  *  special status register to determine MDI/MDIx and current speed.  If
2647  *  speed is 1000, then determine cable length, local and remote receiver.
2648  **/
igc_get_phy_info_m88(struct igc_hw * hw)2649 s32 igc_get_phy_info_m88(struct igc_hw *hw)
2650 {
2651 	struct igc_phy_info *phy = &hw->phy;
2652 	s32  ret_val;
2653 	u16 phy_data;
2654 	bool link;
2655 
2656 	DEBUGFUNC("igc_get_phy_info_m88");
2657 
2658 	if (phy->media_type != igc_media_type_copper) {
2659 		DEBUGOUT("Phy info is only valid for copper media\n");
2660 		return -IGC_ERR_CONFIG;
2661 	}
2662 
2663 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
2664 	if (ret_val)
2665 		return ret_val;
2666 
2667 	if (!link) {
2668 		DEBUGOUT("Phy info is only valid if link is up\n");
2669 		return -IGC_ERR_CONFIG;
2670 	}
2671 
2672 	ret_val = phy->ops.read_reg(hw, M88IGC_PHY_SPEC_CTRL, &phy_data);
2673 	if (ret_val)
2674 		return ret_val;
2675 
2676 	phy->polarity_correction = !!(phy_data &
2677 				      M88IGC_PSCR_POLARITY_REVERSAL);
2678 
2679 	ret_val = igc_check_polarity_m88(hw);
2680 	if (ret_val)
2681 		return ret_val;
2682 
2683 	ret_val = phy->ops.read_reg(hw, M88IGC_PHY_SPEC_STATUS, &phy_data);
2684 	if (ret_val)
2685 		return ret_val;
2686 
2687 	phy->is_mdix = !!(phy_data & M88IGC_PSSR_MDIX);
2688 
2689 	if ((phy_data & M88IGC_PSSR_SPEED) == M88IGC_PSSR_1000MBS) {
2690 		ret_val = hw->phy.ops.get_cable_length(hw);
2691 		if (ret_val)
2692 			return ret_val;
2693 
2694 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2695 		if (ret_val)
2696 			return ret_val;
2697 
2698 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2699 				? igc_1000t_rx_status_ok
2700 				: igc_1000t_rx_status_not_ok;
2701 
2702 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2703 				 ? igc_1000t_rx_status_ok
2704 				 : igc_1000t_rx_status_not_ok;
2705 	} else {
2706 		/* Set values to "undefined" */
2707 		phy->cable_length = IGC_CABLE_LENGTH_UNDEFINED;
2708 		phy->local_rx = igc_1000t_rx_status_undefined;
2709 		phy->remote_rx = igc_1000t_rx_status_undefined;
2710 	}
2711 
2712 	return ret_val;
2713 }
2714 
2715 /**
2716  *  igc_get_phy_info_igp - Retrieve igp PHY information
2717  *  @hw: pointer to the HW structure
2718  *
2719  *  Read PHY status to determine if link is up.  If link is up, then
2720  *  set/determine 10base-T extended distance and polarity correction.  Read
2721  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2722  *  determine on the cable length, local and remote receiver.
2723  **/
igc_get_phy_info_igp(struct igc_hw * hw)2724 s32 igc_get_phy_info_igp(struct igc_hw *hw)
2725 {
2726 	struct igc_phy_info *phy = &hw->phy;
2727 	s32 ret_val;
2728 	u16 data;
2729 	bool link;
2730 
2731 	DEBUGFUNC("igc_get_phy_info_igp");
2732 
2733 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
2734 	if (ret_val)
2735 		return ret_val;
2736 
2737 	if (!link) {
2738 		DEBUGOUT("Phy info is only valid if link is up\n");
2739 		return -IGC_ERR_CONFIG;
2740 	}
2741 
2742 	phy->polarity_correction = true;
2743 
2744 	ret_val = igc_check_polarity_igp(hw);
2745 	if (ret_val)
2746 		return ret_val;
2747 
2748 	ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_STATUS, &data);
2749 	if (ret_val)
2750 		return ret_val;
2751 
2752 	phy->is_mdix = !!(data & IGP01IGC_PSSR_MDIX);
2753 
2754 	if ((data & IGP01IGC_PSSR_SPEED_MASK) ==
2755 	    IGP01IGC_PSSR_SPEED_1000MBPS) {
2756 		ret_val = phy->ops.get_cable_length(hw);
2757 		if (ret_val)
2758 			return ret_val;
2759 
2760 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2761 		if (ret_val)
2762 			return ret_val;
2763 
2764 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2765 				? igc_1000t_rx_status_ok
2766 				: igc_1000t_rx_status_not_ok;
2767 
2768 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2769 				 ? igc_1000t_rx_status_ok
2770 				 : igc_1000t_rx_status_not_ok;
2771 	} else {
2772 		phy->cable_length = IGC_CABLE_LENGTH_UNDEFINED;
2773 		phy->local_rx = igc_1000t_rx_status_undefined;
2774 		phy->remote_rx = igc_1000t_rx_status_undefined;
2775 	}
2776 
2777 	return ret_val;
2778 }
2779 
2780 /**
2781  *  igc_get_phy_info_ife - Retrieves various IFE PHY states
2782  *  @hw: pointer to the HW structure
2783  *
2784  *  Populates "phy" structure with various feature states.
2785  **/
igc_get_phy_info_ife(struct igc_hw * hw)2786 s32 igc_get_phy_info_ife(struct igc_hw *hw)
2787 {
2788 	struct igc_phy_info *phy = &hw->phy;
2789 	s32 ret_val;
2790 	u16 data;
2791 	bool link;
2792 
2793 	DEBUGFUNC("igc_get_phy_info_ife");
2794 
2795 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
2796 	if (ret_val)
2797 		return ret_val;
2798 
2799 	if (!link) {
2800 		DEBUGOUT("Phy info is only valid if link is up\n");
2801 		return -IGC_ERR_CONFIG;
2802 	}
2803 
2804 	ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2805 	if (ret_val)
2806 		return ret_val;
2807 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2808 
2809 	if (phy->polarity_correction) {
2810 		ret_val = igc_check_polarity_ife(hw);
2811 		if (ret_val)
2812 			return ret_val;
2813 	} else {
2814 		/* Polarity is forced */
2815 		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2816 				       ? igc_rev_polarity_reversed
2817 				       : igc_rev_polarity_normal);
2818 	}
2819 
2820 	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
2821 	if (ret_val)
2822 		return ret_val;
2823 
2824 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2825 
2826 	/* The following parameters are undefined for 10/100 operation. */
2827 	phy->cable_length = IGC_CABLE_LENGTH_UNDEFINED;
2828 	phy->local_rx = igc_1000t_rx_status_undefined;
2829 	phy->remote_rx = igc_1000t_rx_status_undefined;
2830 
2831 	return IGC_SUCCESS;
2832 }
2833 
2834 /**
2835  *  igc_phy_sw_reset_generic - PHY software reset
2836  *  @hw: pointer to the HW structure
2837  *
2838  *  Does a software reset of the PHY by reading the PHY control register and
2839  *  setting/write the control register reset bit to the PHY.
2840  **/
igc_phy_sw_reset_generic(struct igc_hw * hw)2841 s32 igc_phy_sw_reset_generic(struct igc_hw *hw)
2842 {
2843 	s32 ret_val;
2844 	u16 phy_ctrl;
2845 
2846 	DEBUGFUNC("igc_phy_sw_reset_generic");
2847 
2848 	if (!hw->phy.ops.read_reg)
2849 		return IGC_SUCCESS;
2850 
2851 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2852 	if (ret_val)
2853 		return ret_val;
2854 
2855 	phy_ctrl |= MII_CR_RESET;
2856 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2857 	if (ret_val)
2858 		return ret_val;
2859 
2860 	usec_delay(1);
2861 
2862 	return ret_val;
2863 }
2864 
2865 /**
2866  *  igc_phy_hw_reset_generic - PHY hardware reset
2867  *  @hw: pointer to the HW structure
2868  *
2869  *  Verify the reset block is not blocking us from resetting.  Acquire
2870  *  semaphore (if necessary) and read/set/write the device control reset
2871  *  bit in the PHY.  Wait the appropriate delay time for the device to
2872  *  reset and release the semaphore (if necessary).
2873  **/
igc_phy_hw_reset_generic(struct igc_hw * hw)2874 s32 igc_phy_hw_reset_generic(struct igc_hw *hw)
2875 {
2876 	struct igc_phy_info *phy = &hw->phy;
2877 	s32 ret_val;
2878 	u32 ctrl;
2879 
2880 	DEBUGFUNC("igc_phy_hw_reset_generic");
2881 
2882 	if (phy->ops.check_reset_block) {
2883 		ret_val = phy->ops.check_reset_block(hw);
2884 		if (ret_val)
2885 			return IGC_SUCCESS;
2886 	}
2887 
2888 	ret_val = phy->ops.acquire(hw);
2889 	if (ret_val)
2890 		return ret_val;
2891 
2892 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
2893 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
2894 	IGC_WRITE_FLUSH(hw);
2895 
2896 	usec_delay(phy->reset_delay_us);
2897 
2898 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
2899 	IGC_WRITE_FLUSH(hw);
2900 
2901 	usec_delay(150);
2902 
2903 	phy->ops.release(hw);
2904 
2905 	return ret_val;
2906 }
2907 
2908 /**
2909  *  igc_get_cfg_done_generic - Generic configuration done
2910  *  @hw: pointer to the HW structure
2911  *
2912  *  Generic function to wait 10 milli-seconds for configuration to complete
2913  *  and return success.
2914  **/
igc_get_cfg_done_generic(struct igc_hw IGC_UNUSEDARG * hw)2915 s32 igc_get_cfg_done_generic(struct igc_hw IGC_UNUSEDARG * hw)
2916 {
2917 	DEBUGFUNC("igc_get_cfg_done_generic");
2918 	UNREFERENCED_1PARAMETER(hw);
2919 
2920 	msec_delay_irq(10);
2921 
2922 	return IGC_SUCCESS;
2923 }
2924 
2925 /**
2926  *  igc_phy_init_script_igp3 - Inits the IGP3 PHY
2927  *  @hw: pointer to the HW structure
2928  *
2929  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2930  **/
igc_phy_init_script_igp3(struct igc_hw * hw)2931 s32 igc_phy_init_script_igp3(struct igc_hw *hw)
2932 {
2933 	DEBUGOUT("Running IGP 3 PHY init script\n");
2934 
2935 	/* PHY init IGP 3 */
2936 	/* Enable rise/fall, 10-mode work in class-A */
2937 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2938 	/* Remove all caps from Replica path filter */
2939 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2940 	/* Bias trimming for ADC, AFE and Driver (Default) */
2941 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2942 	/* Increase Hybrid poly bias */
2943 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2944 	/* Add 4% to Tx amplitude in Gig mode */
2945 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2946 	/* Disable trimming (TTT) */
2947 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2948 	/* Poly DC correction to 94.6% + 2% for all channels */
2949 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2950 	/* ABS DC correction to 95.9% */
2951 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2952 	/* BG temp curve trim */
2953 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2954 	/* Increasing ADC OPAMP stage 1 currents to max */
2955 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2956 	/* Force 1000 ( required for enabling PHY regs configuration) */
2957 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2958 	/* Set upd_freq to 6 */
2959 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2960 	/* Disable NPDFE */
2961 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2962 	/* Disable adaptive fixed FFE (Default) */
2963 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2964 	/* Enable FFE hysteresis */
2965 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2966 	/* Fixed FFE for short cable lengths */
2967 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2968 	/* Fixed FFE for medium cable lengths */
2969 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2970 	/* Fixed FFE for long cable lengths */
2971 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2972 	/* Enable Adaptive Clip Threshold */
2973 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2974 	/* AHT reset limit to 1 */
2975 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2976 	/* Set AHT master delay to 127 msec */
2977 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2978 	/* Set scan bits for AHT */
2979 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2980 	/* Set AHT Preset bits */
2981 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2982 	/* Change integ_factor of channel A to 3 */
2983 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2984 	/* Change prop_factor of channels BCD to 8 */
2985 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2986 	/* Change cg_icount + enable integbp for channels BCD */
2987 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2988 	/* Change cg_icount + enable integbp + change prop_factor_master
2989 	 * to 8 for channel A
2990 	 */
2991 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2992 	/* Disable AHT in Slave mode on channel A */
2993 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2994 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2995 	 * Enable SPD+B2B
2996 	 */
2997 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2998 	/* Enable restart AN on an1000_dis change */
2999 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
3000 	/* Enable wh_fifo read clock in 10/100 modes */
3001 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
3002 	/* Restart AN, Speed selection is 1000 */
3003 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
3004 
3005 	return IGC_SUCCESS;
3006 }
3007 
3008 /**
3009  *  igc_get_phy_type_from_id - Get PHY type from id
3010  *  @phy_id: phy_id read from the phy
3011  *
3012  *  Returns the phy type from the id.
3013  **/
igc_get_phy_type_from_id(u32 phy_id)3014 enum igc_phy_type igc_get_phy_type_from_id(u32 phy_id)
3015 {
3016 	enum igc_phy_type phy_type = igc_phy_unknown;
3017 
3018 	switch (phy_id) {
3019 	case M88IGC_I_PHY_ID:
3020 	case M88IGC_E_PHY_ID:
3021 	case M88E1111_I_PHY_ID:
3022 	case M88E1011_I_PHY_ID:
3023 	case M88E1543_E_PHY_ID:
3024 	case M88E1512_E_PHY_ID:
3025 	case I347AT4_E_PHY_ID:
3026 	case M88E1112_E_PHY_ID:
3027 	case M88E1340M_E_PHY_ID:
3028 		phy_type = igc_phy_m88;
3029 		break;
3030 	case IGP01IGC_I_PHY_ID: /* IGP 1 & 2 share this */
3031 		phy_type = igc_phy_igp_2;
3032 		break;
3033 	case GG82563_E_PHY_ID:
3034 		phy_type = igc_phy_gg82563;
3035 		break;
3036 	case IGP03IGC_E_PHY_ID:
3037 		phy_type = igc_phy_igp_3;
3038 		break;
3039 	case IFE_E_PHY_ID:
3040 	case IFE_PLUS_E_PHY_ID:
3041 	case IFE_C_E_PHY_ID:
3042 		phy_type = igc_phy_ife;
3043 		break;
3044 	case BMIGC_E_PHY_ID:
3045 	case BMIGC_E_PHY_ID_R2:
3046 		phy_type = igc_phy_bm;
3047 		break;
3048 	case I82578_E_PHY_ID:
3049 		phy_type = igc_phy_82578;
3050 		break;
3051 	case I82577_E_PHY_ID:
3052 		phy_type = igc_phy_82577;
3053 		break;
3054 	case I82579_E_PHY_ID:
3055 		phy_type = igc_phy_82579;
3056 		break;
3057 	case I217_E_PHY_ID:
3058 		phy_type = igc_phy_i217;
3059 		break;
3060 	case I82580_I_PHY_ID:
3061 		phy_type = igc_phy_82580;
3062 		break;
3063 	case I210_I_PHY_ID:
3064 		phy_type = igc_phy_i210;
3065 		break;
3066 	case I225_I_PHY_ID:
3067 		phy_type = igc_phy_i225;
3068 		break;
3069 	default:
3070 		phy_type = igc_phy_unknown;
3071 		break;
3072 	}
3073 	return phy_type;
3074 }
3075 
3076 /**
3077  *  igc_determine_phy_address - Determines PHY address.
3078  *  @hw: pointer to the HW structure
3079  *
3080  *  This uses a trial and error method to loop through possible PHY
3081  *  addresses. It tests each by reading the PHY ID registers and
3082  *  checking for a match.
3083  **/
igc_determine_phy_address(struct igc_hw * hw)3084 s32 igc_determine_phy_address(struct igc_hw *hw)
3085 {
3086 	u32 phy_addr = 0;
3087 	u32 i;
3088 	enum igc_phy_type phy_type = igc_phy_unknown;
3089 
3090 	hw->phy.id = phy_type;
3091 
3092 	for (phy_addr = 0; phy_addr < IGC_MAX_PHY_ADDR; phy_addr++) {
3093 		hw->phy.addr = phy_addr;
3094 		i = 0;
3095 
3096 		do {
3097 			igc_get_phy_id(hw);
3098 			phy_type = igc_get_phy_type_from_id(hw->phy.id);
3099 
3100 			/* If phy_type is valid, break - we found our
3101 			 * PHY address
3102 			 */
3103 			if (phy_type != igc_phy_unknown)
3104 				return IGC_SUCCESS;
3105 
3106 			msec_delay(1);
3107 			i++;
3108 		} while (i < 10);
3109 	}
3110 
3111 	return -IGC_ERR_PHY_TYPE;
3112 }
3113 
3114 /**
3115  *  igc_get_phy_addr_for_bm_page - Retrieve PHY page address
3116  *  @page: page to access
3117  *  @reg: register to access
3118  *
3119  *  Returns the phy address for the page requested.
3120  **/
igc_get_phy_addr_for_bm_page(u32 page,u32 reg)3121 static u32 igc_get_phy_addr_for_bm_page(u32 page, u32 reg)
3122 {
3123 	u32 phy_addr = 2;
3124 
3125 	if (page >= 768 || (page == 0 && reg == 25) || reg == 31)
3126 		phy_addr = 1;
3127 
3128 	return phy_addr;
3129 }
3130 
3131 /**
3132  *  igc_write_phy_reg_bm - Write BM PHY register
3133  *  @hw: pointer to the HW structure
3134  *  @offset: register offset to write to
3135  *  @data: data to write at register offset
3136  *
3137  *  Acquires semaphore, if necessary, then writes the data to PHY register
3138  *  at the offset.  Release any acquired semaphores before exiting.
3139  **/
igc_write_phy_reg_bm(struct igc_hw * hw,u32 offset,u16 data)3140 s32 igc_write_phy_reg_bm(struct igc_hw *hw, u32 offset, u16 data)
3141 {
3142 	s32 ret_val;
3143 	u32 page = offset >> IGP_PAGE_SHIFT;
3144 
3145 	DEBUGFUNC("igc_write_phy_reg_bm");
3146 
3147 	ret_val = hw->phy.ops.acquire(hw);
3148 	if (ret_val)
3149 		return ret_val;
3150 
3151 	/* Page 800 works differently than the rest so it has its own func */
3152 	if (page == BM_WUC_PAGE) {
3153 		ret_val = igc_access_phy_wakeup_reg_bm(hw, offset, &data,
3154 							 false, false);
3155 		goto release;
3156 	}
3157 
3158 	hw->phy.addr = igc_get_phy_addr_for_bm_page(page, offset);
3159 
3160 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3161 		u32 page_shift, page_select;
3162 
3163 		/* Page select is register 31 for phy address 1 and 22 for
3164 		 * phy address 2 and 3. Page select is shifted only for
3165 		 * phy address 1.
3166 		 */
3167 		if (hw->phy.addr == 1) {
3168 			page_shift = IGP_PAGE_SHIFT;
3169 			page_select = IGP01IGC_PHY_PAGE_SELECT;
3170 		} else {
3171 			page_shift = 0;
3172 			page_select = BM_PHY_PAGE_SELECT;
3173 		}
3174 
3175 		/* Page is shifted left, PHY expects (page x 32) */
3176 		ret_val = igc_write_phy_reg_mdic(hw, page_select,
3177 						   (page << page_shift));
3178 		if (ret_val)
3179 			goto release;
3180 	}
3181 
3182 	ret_val = igc_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3183 					   data);
3184 
3185 release:
3186 	hw->phy.ops.release(hw);
3187 	return ret_val;
3188 }
3189 
3190 /**
3191  *  igc_read_phy_reg_bm - Read BM PHY register
3192  *  @hw: pointer to the HW structure
3193  *  @offset: register offset to be read
3194  *  @data: pointer to the read data
3195  *
3196  *  Acquires semaphore, if necessary, then reads the PHY register at offset
3197  *  and storing the retrieved information in data.  Release any acquired
3198  *  semaphores before exiting.
3199  **/
igc_read_phy_reg_bm(struct igc_hw * hw,u32 offset,u16 * data)3200 s32 igc_read_phy_reg_bm(struct igc_hw *hw, u32 offset, u16 *data)
3201 {
3202 	s32 ret_val;
3203 	u32 page = offset >> IGP_PAGE_SHIFT;
3204 
3205 	DEBUGFUNC("igc_read_phy_reg_bm");
3206 
3207 	ret_val = hw->phy.ops.acquire(hw);
3208 	if (ret_val)
3209 		return ret_val;
3210 
3211 	/* Page 800 works differently than the rest so it has its own func */
3212 	if (page == BM_WUC_PAGE) {
3213 		ret_val = igc_access_phy_wakeup_reg_bm(hw, offset, data,
3214 							 true, false);
3215 		goto release;
3216 	}
3217 
3218 	hw->phy.addr = igc_get_phy_addr_for_bm_page(page, offset);
3219 
3220 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3221 		u32 page_shift, page_select;
3222 
3223 		/* Page select is register 31 for phy address 1 and 22 for
3224 		 * phy address 2 and 3. Page select is shifted only for
3225 		 * phy address 1.
3226 		 */
3227 		if (hw->phy.addr == 1) {
3228 			page_shift = IGP_PAGE_SHIFT;
3229 			page_select = IGP01IGC_PHY_PAGE_SELECT;
3230 		} else {
3231 			page_shift = 0;
3232 			page_select = BM_PHY_PAGE_SELECT;
3233 		}
3234 
3235 		/* Page is shifted left, PHY expects (page x 32) */
3236 		ret_val = igc_write_phy_reg_mdic(hw, page_select,
3237 						   (page << page_shift));
3238 		if (ret_val)
3239 			goto release;
3240 	}
3241 
3242 	ret_val = igc_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3243 					  data);
3244 release:
3245 	hw->phy.ops.release(hw);
3246 	return ret_val;
3247 }
3248 
3249 /**
3250  *  igc_read_phy_reg_bm2 - Read BM PHY register
3251  *  @hw: pointer to the HW structure
3252  *  @offset: register offset to be read
3253  *  @data: pointer to the read data
3254  *
3255  *  Acquires semaphore, if necessary, then reads the PHY register at offset
3256  *  and storing the retrieved information in data.  Release any acquired
3257  *  semaphores before exiting.
3258  **/
igc_read_phy_reg_bm2(struct igc_hw * hw,u32 offset,u16 * data)3259 s32 igc_read_phy_reg_bm2(struct igc_hw *hw, u32 offset, u16 *data)
3260 {
3261 	s32 ret_val;
3262 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
3263 
3264 	DEBUGFUNC("igc_read_phy_reg_bm2");
3265 
3266 	ret_val = hw->phy.ops.acquire(hw);
3267 	if (ret_val)
3268 		return ret_val;
3269 
3270 	/* Page 800 works differently than the rest so it has its own func */
3271 	if (page == BM_WUC_PAGE) {
3272 		ret_val = igc_access_phy_wakeup_reg_bm(hw, offset, data,
3273 							 true, false);
3274 		goto release;
3275 	}
3276 
3277 	hw->phy.addr = 1;
3278 
3279 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3280 		/* Page is shifted left, PHY expects (page x 32) */
3281 		ret_val = igc_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
3282 						   page);
3283 
3284 		if (ret_val)
3285 			goto release;
3286 	}
3287 
3288 	ret_val = igc_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3289 					  data);
3290 release:
3291 	hw->phy.ops.release(hw);
3292 	return ret_val;
3293 }
3294 
3295 /**
3296  *  igc_write_phy_reg_bm2 - Write BM PHY register
3297  *  @hw: pointer to the HW structure
3298  *  @offset: register offset to write to
3299  *  @data: data to write at register offset
3300  *
3301  *  Acquires semaphore, if necessary, then writes the data to PHY register
3302  *  at the offset.  Release any acquired semaphores before exiting.
3303  **/
igc_write_phy_reg_bm2(struct igc_hw * hw,u32 offset,u16 data)3304 s32 igc_write_phy_reg_bm2(struct igc_hw *hw, u32 offset, u16 data)
3305 {
3306 	s32 ret_val;
3307 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
3308 
3309 	DEBUGFUNC("igc_write_phy_reg_bm2");
3310 
3311 	ret_val = hw->phy.ops.acquire(hw);
3312 	if (ret_val)
3313 		return ret_val;
3314 
3315 	/* Page 800 works differently than the rest so it has its own func */
3316 	if (page == BM_WUC_PAGE) {
3317 		ret_val = igc_access_phy_wakeup_reg_bm(hw, offset, &data,
3318 							 false, false);
3319 		goto release;
3320 	}
3321 
3322 	hw->phy.addr = 1;
3323 
3324 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3325 		/* Page is shifted left, PHY expects (page x 32) */
3326 		ret_val = igc_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
3327 						   page);
3328 
3329 		if (ret_val)
3330 			goto release;
3331 	}
3332 
3333 	ret_val = igc_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3334 					   data);
3335 
3336 release:
3337 	hw->phy.ops.release(hw);
3338 	return ret_val;
3339 }
3340 
3341 /**
3342  *  igc_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
3343  *  @hw: pointer to the HW structure
3344  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
3345  *
3346  *  Assumes semaphore already acquired and phy_reg points to a valid memory
3347  *  address to store contents of the BM_WUC_ENABLE_REG register.
3348  **/
igc_enable_phy_wakeup_reg_access_bm(struct igc_hw * hw,u16 * phy_reg)3349 s32 igc_enable_phy_wakeup_reg_access_bm(struct igc_hw *hw, u16 *phy_reg)
3350 {
3351 	s32 ret_val;
3352 	u16 temp;
3353 
3354 	DEBUGFUNC("igc_enable_phy_wakeup_reg_access_bm");
3355 
3356 	if (!phy_reg)
3357 		return -IGC_ERR_PARAM;
3358 
3359 	/* All page select, port ctrl and wakeup registers use phy address 1 */
3360 	hw->phy.addr = 1;
3361 
3362 	/* Select Port Control Registers page */
3363 	ret_val = igc_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
3364 	if (ret_val) {
3365 		DEBUGOUT("Could not set Port Control page\n");
3366 		return ret_val;
3367 	}
3368 
3369 	ret_val = igc_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
3370 	if (ret_val) {
3371 		DEBUGOUT2("Could not read PHY register %d.%d\n",
3372 			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3373 		return ret_val;
3374 	}
3375 
3376 	/* Enable both PHY wakeup mode and Wakeup register page writes.
3377 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
3378 	 */
3379 	temp = *phy_reg;
3380 	temp |= BM_WUC_ENABLE_BIT;
3381 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
3382 
3383 	ret_val = igc_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
3384 	if (ret_val) {
3385 		DEBUGOUT2("Could not write PHY register %d.%d\n",
3386 			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3387 		return ret_val;
3388 	}
3389 
3390 	/* Select Host Wakeup Registers page - caller now able to write
3391 	 * registers on the Wakeup registers page
3392 	 */
3393 	return igc_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
3394 }
3395 
3396 /**
3397  *  igc_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
3398  *  @hw: pointer to the HW structure
3399  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
3400  *
3401  *  Restore BM_WUC_ENABLE_REG to its original value.
3402  *
3403  *  Assumes semaphore already acquired and *phy_reg is the contents of the
3404  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
3405  *  caller.
3406  **/
igc_disable_phy_wakeup_reg_access_bm(struct igc_hw * hw,u16 * phy_reg)3407 s32 igc_disable_phy_wakeup_reg_access_bm(struct igc_hw *hw, u16 *phy_reg)
3408 {
3409 	s32 ret_val;
3410 
3411 	DEBUGFUNC("igc_disable_phy_wakeup_reg_access_bm");
3412 
3413 	if (!phy_reg)
3414 		return -IGC_ERR_PARAM;
3415 
3416 	/* Select Port Control Registers page */
3417 	ret_val = igc_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
3418 	if (ret_val) {
3419 		DEBUGOUT("Could not set Port Control page\n");
3420 		return ret_val;
3421 	}
3422 
3423 	/* Restore 769.17 to its original value */
3424 	ret_val = igc_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
3425 	if (ret_val)
3426 		DEBUGOUT2("Could not restore PHY register %d.%d\n",
3427 			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3428 
3429 	return ret_val;
3430 }
3431 
3432 /**
3433  *  igc_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
3434  *  @hw: pointer to the HW structure
3435  *  @offset: register offset to be read or written
3436  *  @data: pointer to the data to read or write
3437  *  @read: determines if operation is read or write
3438  *  @page_set: BM_WUC_PAGE already set and access enabled
3439  *
3440  *  Read the PHY register at offset and store the retrieved information in
3441  *  data, or write data to PHY register at offset.  Note the procedure to
3442  *  access the PHY wakeup registers is different than reading the other PHY
3443  *  registers. It works as such:
3444  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
3445  *  2) Set page to 800 for host (801 if we were manageability)
3446  *  3) Write the address using the address opcode (0x11)
3447  *  4) Read or write the data using the data opcode (0x12)
3448  *  5) Restore 769.17.2 to its original value
3449  *
3450  *  Steps 1 and 2 are done by igc_enable_phy_wakeup_reg_access_bm() and
3451  *  step 5 is done by igc_disable_phy_wakeup_reg_access_bm().
3452  *
3453  *  Assumes semaphore is already acquired.  When page_set==true, assumes
3454  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
3455  *  is responsible for calls to igc_[enable|disable]_phy_wakeup_reg_bm()).
3456  **/
igc_access_phy_wakeup_reg_bm(struct igc_hw * hw,u32 offset,u16 * data,bool read,bool page_set)3457 static s32 igc_access_phy_wakeup_reg_bm(struct igc_hw *hw, u32 offset,
3458 					  u16 *data, bool read, bool page_set)
3459 {
3460 	s32 ret_val;
3461 	u16 reg = BM_PHY_REG_NUM(offset);
3462 	u16 page = BM_PHY_REG_PAGE(offset);
3463 	u16 phy_reg = 0;
3464 
3465 	DEBUGFUNC("igc_access_phy_wakeup_reg_bm");
3466 
3467 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
3468 	if (hw->mac.type == igc_pchlan &&
3469 		!(IGC_READ_REG(hw, IGC_PHY_CTRL) & IGC_PHY_CTRL_GBE_DISABLE))
3470 		DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
3471 			  page);
3472 
3473 	if (!page_set) {
3474 		/* Enable access to PHY wakeup registers */
3475 		ret_val = igc_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
3476 		if (ret_val) {
3477 			DEBUGOUT("Could not enable PHY wakeup reg access\n");
3478 			return ret_val;
3479 		}
3480 	}
3481 
3482 	DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
3483 
3484 	/* Write the Wakeup register page offset value using opcode 0x11 */
3485 	ret_val = igc_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
3486 	if (ret_val) {
3487 		DEBUGOUT1("Could not write address opcode to page %d\n", page);
3488 		return ret_val;
3489 	}
3490 
3491 	if (read) {
3492 		/* Read the Wakeup register page value using opcode 0x12 */
3493 		ret_val = igc_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
3494 						  data);
3495 	} else {
3496 		/* Write the Wakeup register page value using opcode 0x12 */
3497 		ret_val = igc_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
3498 						   *data);
3499 	}
3500 
3501 	if (ret_val) {
3502 		DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
3503 		return ret_val;
3504 	}
3505 
3506 	if (!page_set)
3507 		ret_val = igc_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
3508 
3509 	return ret_val;
3510 }
3511 
3512 /**
3513  * igc_power_up_phy_copper - Restore copper link in case of PHY power down
3514  * @hw: pointer to the HW structure
3515  *
3516  * In the case of a PHY power down to save power, or to turn off link during a
3517  * driver unload, or wake on lan is not enabled, restore the link to previous
3518  * settings.
3519  **/
igc_power_up_phy_copper(struct igc_hw * hw)3520 void igc_power_up_phy_copper(struct igc_hw *hw)
3521 {
3522 	u16 mii_reg = 0;
3523 
3524 	/* The PHY will retain its settings across a power down/up cycle */
3525 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
3526 	mii_reg &= ~MII_CR_POWER_DOWN;
3527 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
3528 }
3529 
3530 /**
3531  * igc_power_down_phy_copper - Restore copper link in case of PHY power down
3532  * @hw: pointer to the HW structure
3533  *
3534  * In the case of a PHY power down to save power, or to turn off link during a
3535  * driver unload, or wake on lan is not enabled, restore the link to previous
3536  * settings.
3537  **/
igc_power_down_phy_copper(struct igc_hw * hw)3538 void igc_power_down_phy_copper(struct igc_hw *hw)
3539 {
3540 	u16 mii_reg = 0;
3541 
3542 	/* The PHY will retain its settings across a power down/up cycle */
3543 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
3544 	mii_reg |= MII_CR_POWER_DOWN;
3545 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
3546 	msec_delay(1);
3547 }
3548 
3549 /**
3550  *  __igc_read_phy_reg_hv -  Read HV PHY register
3551  *  @hw: pointer to the HW structure
3552  *  @offset: register offset to be read
3553  *  @data: pointer to the read data
3554  *  @locked: semaphore has already been acquired or not
3555  *  @page_set: BM_WUC_PAGE already set and access enabled
3556  *
3557  *  Acquires semaphore, if necessary, then reads the PHY register at offset
3558  *  and stores the retrieved information in data.  Release any acquired
3559  *  semaphore before exiting.
3560  **/
__igc_read_phy_reg_hv(struct igc_hw * hw,u32 offset,u16 * data,bool locked,bool page_set)3561 static s32 __igc_read_phy_reg_hv(struct igc_hw *hw, u32 offset, u16 *data,
3562 				   bool locked, bool page_set)
3563 {
3564 	s32 ret_val;
3565 	u16 page = BM_PHY_REG_PAGE(offset);
3566 	u16 reg = BM_PHY_REG_NUM(offset);
3567 	u32 phy_addr = hw->phy.addr = igc_get_phy_addr_for_hv_page(page);
3568 
3569 	DEBUGFUNC("__igc_read_phy_reg_hv");
3570 
3571 	if (!locked) {
3572 		ret_val = hw->phy.ops.acquire(hw);
3573 		if (ret_val)
3574 			return ret_val;
3575 	}
3576 	/* Page 800 works differently than the rest so it has its own func */
3577 	if (page == BM_WUC_PAGE) {
3578 		ret_val = igc_access_phy_wakeup_reg_bm(hw, offset, data,
3579 							 true, page_set);
3580 		goto out;
3581 	}
3582 
3583 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3584 		ret_val = igc_access_phy_debug_regs_hv(hw, offset,
3585 							 data, true);
3586 		goto out;
3587 	}
3588 
3589 	if (!page_set) {
3590 		if (page == HV_INTC_FC_PAGE_START)
3591 			page = 0;
3592 
3593 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3594 			/* Page is shifted left, PHY expects (page x 32) */
3595 			ret_val = igc_set_page_igp(hw,
3596 						     (page << IGP_PAGE_SHIFT));
3597 
3598 			hw->phy.addr = phy_addr;
3599 
3600 			if (ret_val)
3601 				goto out;
3602 		}
3603 	}
3604 
3605 	DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3606 		  page << IGP_PAGE_SHIFT, reg);
3607 
3608 	ret_val = igc_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3609 					  data);
3610 out:
3611 	if (!locked)
3612 		hw->phy.ops.release(hw);
3613 
3614 	return ret_val;
3615 }
3616 
3617 /**
3618  *  igc_read_phy_reg_hv -  Read HV PHY register
3619  *  @hw: pointer to the HW structure
3620  *  @offset: register offset to be read
3621  *  @data: pointer to the read data
3622  *
3623  *  Acquires semaphore then reads the PHY register at offset and stores
3624  *  the retrieved information in data.  Release the acquired semaphore
3625  *  before exiting.
3626  **/
igc_read_phy_reg_hv(struct igc_hw * hw,u32 offset,u16 * data)3627 s32 igc_read_phy_reg_hv(struct igc_hw *hw, u32 offset, u16 *data)
3628 {
3629 	return __igc_read_phy_reg_hv(hw, offset, data, false, false);
3630 }
3631 
3632 /**
3633  *  igc_read_phy_reg_hv_locked -  Read HV PHY register
3634  *  @hw: pointer to the HW structure
3635  *  @offset: register offset to be read
3636  *  @data: pointer to the read data
3637  *
3638  *  Reads the PHY register at offset and stores the retrieved information
3639  *  in data.  Assumes semaphore already acquired.
3640  **/
igc_read_phy_reg_hv_locked(struct igc_hw * hw,u32 offset,u16 * data)3641 s32 igc_read_phy_reg_hv_locked(struct igc_hw *hw, u32 offset, u16 *data)
3642 {
3643 	return __igc_read_phy_reg_hv(hw, offset, data, true, false);
3644 }
3645 
3646 /**
3647  *  igc_read_phy_reg_page_hv - Read HV PHY register
3648  *  @hw: pointer to the HW structure
3649  *  @offset: register offset to write to
3650  *  @data: data to write at register offset
3651  *
3652  *  Reads the PHY register at offset and stores the retrieved information
3653  *  in data.  Assumes semaphore already acquired and page already set.
3654  **/
igc_read_phy_reg_page_hv(struct igc_hw * hw,u32 offset,u16 * data)3655 s32 igc_read_phy_reg_page_hv(struct igc_hw *hw, u32 offset, u16 *data)
3656 {
3657 	return __igc_read_phy_reg_hv(hw, offset, data, true, true);
3658 }
3659 
3660 /**
3661  *  __igc_write_phy_reg_hv - Write HV PHY register
3662  *  @hw: pointer to the HW structure
3663  *  @offset: register offset to write to
3664  *  @data: data to write at register offset
3665  *  @locked: semaphore has already been acquired or not
3666  *  @page_set: BM_WUC_PAGE already set and access enabled
3667  *
3668  *  Acquires semaphore, if necessary, then writes the data to PHY register
3669  *  at the offset.  Release any acquired semaphores before exiting.
3670  **/
__igc_write_phy_reg_hv(struct igc_hw * hw,u32 offset,u16 data,bool locked,bool page_set)3671 static s32 __igc_write_phy_reg_hv(struct igc_hw *hw, u32 offset, u16 data,
3672 				    bool locked, bool page_set)
3673 {
3674 	s32 ret_val;
3675 	u16 page = BM_PHY_REG_PAGE(offset);
3676 	u16 reg = BM_PHY_REG_NUM(offset);
3677 	u32 phy_addr = hw->phy.addr = igc_get_phy_addr_for_hv_page(page);
3678 
3679 	DEBUGFUNC("__igc_write_phy_reg_hv");
3680 
3681 	if (!locked) {
3682 		ret_val = hw->phy.ops.acquire(hw);
3683 		if (ret_val)
3684 			return ret_val;
3685 	}
3686 	/* Page 800 works differently than the rest so it has its own func */
3687 	if (page == BM_WUC_PAGE) {
3688 		ret_val = igc_access_phy_wakeup_reg_bm(hw, offset, &data,
3689 							 false, page_set);
3690 		goto out;
3691 	}
3692 
3693 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3694 		ret_val = igc_access_phy_debug_regs_hv(hw, offset,
3695 							 &data, false);
3696 		goto out;
3697 	}
3698 
3699 	if (!page_set) {
3700 		if (page == HV_INTC_FC_PAGE_START)
3701 			page = 0;
3702 
3703 		/*
3704 		 * Workaround MDIO accesses being disabled after entering IEEE
3705 		 * Power Down (when bit 11 of the PHY Control register is set)
3706 		 */
3707 		if (hw->phy.type == igc_phy_82578 &&
3708 				hw->phy.revision >= 1 &&
3709 				hw->phy.addr == 2 &&
3710 				!(MAX_PHY_REG_ADDRESS & reg) &&
3711 				(data & (1 << 11))) {
3712 			u16 data2 = 0x7EFF;
3713 			ret_val = igc_access_phy_debug_regs_hv(hw,
3714 								(1 << 6) | 0x3,
3715 								&data2, false);
3716 			if (ret_val)
3717 				goto out;
3718 		}
3719 
3720 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3721 			/* Page is shifted left, PHY expects (page x 32) */
3722 			ret_val = igc_set_page_igp(hw,
3723 						     (page << IGP_PAGE_SHIFT));
3724 
3725 			hw->phy.addr = phy_addr;
3726 
3727 			if (ret_val)
3728 				goto out;
3729 		}
3730 	}
3731 
3732 	DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3733 		  page << IGP_PAGE_SHIFT, reg);
3734 
3735 	ret_val = igc_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3736 					   data);
3737 
3738 out:
3739 	if (!locked)
3740 		hw->phy.ops.release(hw);
3741 
3742 	return ret_val;
3743 }
3744 
3745 /**
3746  *  igc_write_phy_reg_hv - Write HV PHY register
3747  *  @hw: pointer to the HW structure
3748  *  @offset: register offset to write to
3749  *  @data: data to write at register offset
3750  *
3751  *  Acquires semaphore then writes the data to PHY register at the offset.
3752  *  Release the acquired semaphores before exiting.
3753  **/
igc_write_phy_reg_hv(struct igc_hw * hw,u32 offset,u16 data)3754 s32 igc_write_phy_reg_hv(struct igc_hw *hw, u32 offset, u16 data)
3755 {
3756 	return __igc_write_phy_reg_hv(hw, offset, data, false, false);
3757 }
3758 
3759 /**
3760  *  igc_write_phy_reg_hv_locked - Write HV PHY register
3761  *  @hw: pointer to the HW structure
3762  *  @offset: register offset to write to
3763  *  @data: data to write at register offset
3764  *
3765  *  Writes the data to PHY register at the offset.  Assumes semaphore
3766  *  already acquired.
3767  **/
igc_write_phy_reg_hv_locked(struct igc_hw * hw,u32 offset,u16 data)3768 s32 igc_write_phy_reg_hv_locked(struct igc_hw *hw, u32 offset, u16 data)
3769 {
3770 	return __igc_write_phy_reg_hv(hw, offset, data, true, false);
3771 }
3772 
3773 /**
3774  *  igc_write_phy_reg_page_hv - Write HV PHY register
3775  *  @hw: pointer to the HW structure
3776  *  @offset: register offset to write to
3777  *  @data: data to write at register offset
3778  *
3779  *  Writes the data to PHY register at the offset.  Assumes semaphore
3780  *  already acquired and page already set.
3781  **/
igc_write_phy_reg_page_hv(struct igc_hw * hw,u32 offset,u16 data)3782 s32 igc_write_phy_reg_page_hv(struct igc_hw *hw, u32 offset, u16 data)
3783 {
3784 	return __igc_write_phy_reg_hv(hw, offset, data, true, true);
3785 }
3786 
3787 /**
3788  *  igc_get_phy_addr_for_hv_page - Get PHY address based on page
3789  *  @page: page to be accessed
3790  **/
igc_get_phy_addr_for_hv_page(u32 page)3791 static u32 igc_get_phy_addr_for_hv_page(u32 page)
3792 {
3793 	u32 phy_addr = 2;
3794 
3795 	if (page >= HV_INTC_FC_PAGE_START)
3796 		phy_addr = 1;
3797 
3798 	return phy_addr;
3799 }
3800 
3801 /**
3802  * igc_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3803  * @hw: pointer to the HW structure
3804  * @offset: register offset to be read or written
3805  * @data: pointer to the data to be read or written
3806  * @read: determines if operation is read or write
3807  *
3808  * Reads the PHY register at offset and stores the retrieved information
3809  * in data.  Assumes semaphore already acquired.  Note that the procedure
3810  * to access these regs uses the address port and data port to read/write.
3811  * These accesses done with PHY address 2 and without using pages.
3812  **/
igc_access_phy_debug_regs_hv(struct igc_hw * hw,u32 offset,u16 * data,bool read)3813 static s32 igc_access_phy_debug_regs_hv(struct igc_hw *hw, u32 offset,
3814 					  u16 *data, bool read)
3815 {
3816 	s32 ret_val;
3817 	u32 addr_reg;
3818 	u32 data_reg;
3819 
3820 	DEBUGFUNC("igc_access_phy_debug_regs_hv");
3821 
3822 	/* This takes care of the difference with desktop vs mobile phy */
3823 	addr_reg = ((hw->phy.type == igc_phy_82578) ?
3824 		    I82578_ADDR_REG : I82577_ADDR_REG);
3825 	data_reg = addr_reg + 1;
3826 
3827 	/* All operations in this function are phy address 2 */
3828 	hw->phy.addr = 2;
3829 
3830 	/* masking with 0x3F to remove the page from offset */
3831 	ret_val = igc_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3832 	if (ret_val) {
3833 		DEBUGOUT("Could not write the Address Offset port register\n");
3834 		return ret_val;
3835 	}
3836 
3837 	/* Read or write the data value next */
3838 	if (read)
3839 		ret_val = igc_read_phy_reg_mdic(hw, data_reg, data);
3840 	else
3841 		ret_val = igc_write_phy_reg_mdic(hw, data_reg, *data);
3842 
3843 	if (ret_val)
3844 		DEBUGOUT("Could not access the Data port register\n");
3845 
3846 	return ret_val;
3847 }
3848 
3849 /**
3850  *  igc_link_stall_workaround_hv - Si workaround
3851  *  @hw: pointer to the HW structure
3852  *
3853  *  This function works around a Si bug where the link partner can get
3854  *  a link up indication before the PHY does.  If small packets are sent
3855  *  by the link partner they can be placed in the packet buffer without
3856  *  being properly accounted for by the PHY and will stall preventing
3857  *  further packets from being received.  The workaround is to clear the
3858  *  packet buffer after the PHY detects link up.
3859  **/
igc_link_stall_workaround_hv(struct igc_hw * hw)3860 s32 igc_link_stall_workaround_hv(struct igc_hw *hw)
3861 {
3862 	s32 ret_val = IGC_SUCCESS;
3863 	u16 data;
3864 
3865 	DEBUGFUNC("igc_link_stall_workaround_hv");
3866 
3867 	if (hw->phy.type != igc_phy_82578)
3868 		return IGC_SUCCESS;
3869 
3870 	/* Do not apply workaround if in PHY loopback bit 14 set */
3871 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
3872 	if (data & PHY_CONTROL_LB)
3873 		return IGC_SUCCESS;
3874 
3875 	/* check if link is up and at 1Gbps */
3876 	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
3877 	if (ret_val)
3878 		return ret_val;
3879 
3880 	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3881 		 BM_CS_STATUS_SPEED_MASK);
3882 
3883 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3884 		     BM_CS_STATUS_SPEED_1000))
3885 		return IGC_SUCCESS;
3886 
3887 	msec_delay(200);
3888 
3889 	/* flush the packets in the fifo buffer */
3890 	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3891 					(HV_MUX_DATA_CTRL_GEN_TO_MAC |
3892 					 HV_MUX_DATA_CTRL_FORCE_SPEED));
3893 	if (ret_val)
3894 		return ret_val;
3895 
3896 	return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3897 				     HV_MUX_DATA_CTRL_GEN_TO_MAC);
3898 }
3899 
3900 /**
3901  *  igc_check_polarity_82577 - Checks the polarity.
3902  *  @hw: pointer to the HW structure
3903  *
3904  *  Success returns 0, Failure returns -IGC_ERR_PHY (-2)
3905  *
3906  *  Polarity is determined based on the PHY specific status register.
3907  **/
igc_check_polarity_82577(struct igc_hw * hw)3908 s32 igc_check_polarity_82577(struct igc_hw *hw)
3909 {
3910 	struct igc_phy_info *phy = &hw->phy;
3911 	s32 ret_val;
3912 	u16 data;
3913 
3914 	DEBUGFUNC("igc_check_polarity_82577");
3915 
3916 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3917 
3918 	if (!ret_val)
3919 		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3920 				       ? igc_rev_polarity_reversed
3921 				       : igc_rev_polarity_normal);
3922 
3923 	return ret_val;
3924 }
3925 
3926 /**
3927  *  igc_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3928  *  @hw: pointer to the HW structure
3929  *
3930  *  Calls the PHY setup function to force speed and duplex.
3931  **/
igc_phy_force_speed_duplex_82577(struct igc_hw * hw)3932 s32 igc_phy_force_speed_duplex_82577(struct igc_hw *hw)
3933 {
3934 	struct igc_phy_info *phy = &hw->phy;
3935 	s32 ret_val;
3936 	u16 phy_data;
3937 	bool link = false;
3938 
3939 	DEBUGFUNC("igc_phy_force_speed_duplex_82577");
3940 
3941 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
3942 	if (ret_val)
3943 		return ret_val;
3944 
3945 	igc_phy_force_speed_duplex_setup(hw, &phy_data);
3946 
3947 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
3948 	if (ret_val)
3949 		return ret_val;
3950 
3951 	usec_delay(1);
3952 
3953 	if (phy->autoneg_wait_to_complete) {
3954 		DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
3955 
3956 		ret_val = igc_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3957 						     100000, &link);
3958 		if (ret_val)
3959 			return ret_val;
3960 
3961 		if (!link)
3962 			DEBUGOUT("Link taking longer than expected.\n");
3963 
3964 		/* Try once more */
3965 		ret_val = igc_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3966 						     100000, &link);
3967 	}
3968 
3969 	return ret_val;
3970 }
3971 
3972 /**
3973  *  igc_get_phy_info_82577 - Retrieve I82577 PHY information
3974  *  @hw: pointer to the HW structure
3975  *
3976  *  Read PHY status to determine if link is up.  If link is up, then
3977  *  set/determine 10base-T extended distance and polarity correction.  Read
3978  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3979  *  determine on the cable length, local and remote receiver.
3980  **/
igc_get_phy_info_82577(struct igc_hw * hw)3981 s32 igc_get_phy_info_82577(struct igc_hw *hw)
3982 {
3983 	struct igc_phy_info *phy = &hw->phy;
3984 	s32 ret_val;
3985 	u16 data;
3986 	bool link;
3987 
3988 	DEBUGFUNC("igc_get_phy_info_82577");
3989 
3990 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
3991 	if (ret_val)
3992 		return ret_val;
3993 
3994 	if (!link) {
3995 		DEBUGOUT("Phy info is only valid if link is up\n");
3996 		return -IGC_ERR_CONFIG;
3997 	}
3998 
3999 	phy->polarity_correction = true;
4000 
4001 	ret_val = igc_check_polarity_82577(hw);
4002 	if (ret_val)
4003 		return ret_val;
4004 
4005 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
4006 	if (ret_val)
4007 		return ret_val;
4008 
4009 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
4010 
4011 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
4012 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
4013 		ret_val = hw->phy.ops.get_cable_length(hw);
4014 		if (ret_val)
4015 			return ret_val;
4016 
4017 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
4018 		if (ret_val)
4019 			return ret_val;
4020 
4021 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
4022 				? igc_1000t_rx_status_ok
4023 				: igc_1000t_rx_status_not_ok;
4024 
4025 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
4026 				 ? igc_1000t_rx_status_ok
4027 				 : igc_1000t_rx_status_not_ok;
4028 	} else {
4029 		phy->cable_length = IGC_CABLE_LENGTH_UNDEFINED;
4030 		phy->local_rx = igc_1000t_rx_status_undefined;
4031 		phy->remote_rx = igc_1000t_rx_status_undefined;
4032 	}
4033 
4034 	return IGC_SUCCESS;
4035 }
4036 
4037 /**
4038  *  igc_get_cable_length_82577 - Determine cable length for 82577 PHY
4039  *  @hw: pointer to the HW structure
4040  *
4041  * Reads the diagnostic status register and verifies result is valid before
4042  * placing it in the phy_cable_length field.
4043  **/
igc_get_cable_length_82577(struct igc_hw * hw)4044 s32 igc_get_cable_length_82577(struct igc_hw *hw)
4045 {
4046 	struct igc_phy_info *phy = &hw->phy;
4047 	s32 ret_val;
4048 	u16 phy_data, length;
4049 
4050 	DEBUGFUNC("igc_get_cable_length_82577");
4051 
4052 	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
4053 	if (ret_val)
4054 		return ret_val;
4055 
4056 	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
4057 		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
4058 
4059 	if (length == IGC_CABLE_LENGTH_UNDEFINED)
4060 		return -IGC_ERR_PHY;
4061 
4062 	phy->cable_length = length;
4063 
4064 	return IGC_SUCCESS;
4065 }
4066 
4067 /**
4068  *  igc_write_phy_reg_gs40g - Write GS40G  PHY register
4069  *  @hw: pointer to the HW structure
4070  *  @offset: register offset to write to
4071  *  @data: data to write at register offset
4072  *
4073  *  Acquires semaphore, if necessary, then writes the data to PHY register
4074  *  at the offset.  Release any acquired semaphores before exiting.
4075  **/
igc_write_phy_reg_gs40g(struct igc_hw * hw,u32 offset,u16 data)4076 s32 igc_write_phy_reg_gs40g(struct igc_hw *hw, u32 offset, u16 data)
4077 {
4078 	s32 ret_val;
4079 	u16 page = offset >> GS40G_PAGE_SHIFT;
4080 
4081 	DEBUGFUNC("igc_write_phy_reg_gs40g");
4082 
4083 	offset = offset & GS40G_OFFSET_MASK;
4084 	ret_val = hw->phy.ops.acquire(hw);
4085 	if (ret_val)
4086 		return ret_val;
4087 
4088 	ret_val = igc_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
4089 	if (ret_val)
4090 		goto release;
4091 	ret_val = igc_write_phy_reg_mdic(hw, offset, data);
4092 
4093 release:
4094 	hw->phy.ops.release(hw);
4095 	return ret_val;
4096 }
4097 
4098 /**
4099  *  igc_read_phy_reg_gs40g - Read GS40G  PHY register
4100  *  @hw: pointer to the HW structure
4101  *  @offset: lower half is register offset to read to
4102  *     upper half is page to use.
4103  *  @data: data to read at register offset
4104  *
4105  *  Acquires semaphore, if necessary, then reads the data in the PHY register
4106  *  at the offset.  Release any acquired semaphores before exiting.
4107  **/
igc_read_phy_reg_gs40g(struct igc_hw * hw,u32 offset,u16 * data)4108 s32 igc_read_phy_reg_gs40g(struct igc_hw *hw, u32 offset, u16 *data)
4109 {
4110 	s32 ret_val;
4111 	u16 page = offset >> GS40G_PAGE_SHIFT;
4112 
4113 	DEBUGFUNC("igc_read_phy_reg_gs40g");
4114 
4115 	offset = offset & GS40G_OFFSET_MASK;
4116 	ret_val = hw->phy.ops.acquire(hw);
4117 	if (ret_val)
4118 		return ret_val;
4119 
4120 	ret_val = igc_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
4121 	if (ret_val)
4122 		goto release;
4123 	ret_val = igc_read_phy_reg_mdic(hw, offset, data);
4124 
4125 release:
4126 	hw->phy.ops.release(hw);
4127 	return ret_val;
4128 }
4129 
4130 /**
4131  *  igc_write_phy_reg_gpy - Write GPY PHY register
4132  *  @hw: pointer to the HW structure
4133  *  @offset: register offset to write to
4134  *  @data: data to write at register offset
4135  *
4136  *  Acquires semaphore, if necessary, then writes the data to PHY register
4137  *  at the offset.  Release any acquired semaphores before exiting.
4138  **/
igc_write_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 data)4139 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
4140 {
4141 	s32 ret_val;
4142 	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
4143 
4144 	DEBUGFUNC("igc_write_phy_reg_gpy");
4145 
4146 	offset = offset & GPY_REG_MASK;
4147 
4148 	if (!dev_addr) {
4149 		ret_val = hw->phy.ops.acquire(hw);
4150 		if (ret_val)
4151 			return ret_val;
4152 		ret_val = igc_write_phy_reg_mdic(hw, offset, data);
4153 		if (ret_val)
4154 			return ret_val;
4155 		hw->phy.ops.release(hw);
4156 	} else {
4157 		ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
4158 						data);
4159 	}
4160 	return ret_val;
4161 }
4162 
4163 /**
4164  *  igc_read_phy_reg_gpy - Read GPY PHY register
4165  *  @hw: pointer to the HW structure
4166  *  @offset: lower half is register offset to read to
4167  *     upper half is MMD to use.
4168  *  @data: data to read at register offset
4169  *
4170  *  Acquires semaphore, if necessary, then reads the data in the PHY register
4171  *  at the offset.  Release any acquired semaphores before exiting.
4172  **/
igc_read_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 * data)4173 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
4174 {
4175 	s32 ret_val;
4176 	u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
4177 
4178 	DEBUGFUNC("igc_read_phy_reg_gpy");
4179 
4180 	offset = offset & GPY_REG_MASK;
4181 
4182 	if (!dev_addr) {
4183 		ret_val = hw->phy.ops.acquire(hw);
4184 		if (ret_val)
4185 			return ret_val;
4186 		ret_val = igc_read_phy_reg_mdic(hw, offset, data);
4187 		if (ret_val)
4188 			return ret_val;
4189 		hw->phy.ops.release(hw);
4190 	} else {
4191 		ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
4192 					       data);
4193 	}
4194 	return ret_val;
4195 }
4196 
4197 /**
4198  *  igc_read_phy_reg_mphy - Read mPHY control register
4199  *  @hw: pointer to the HW structure
4200  *  @address: address to be read
4201  *  @data: pointer to the read data
4202  *
4203  *  Reads the mPHY control register in the PHY at offset and stores the
4204  *  information read to data.
4205  **/
igc_read_phy_reg_mphy(struct igc_hw * hw,u32 address,u32 * data)4206 s32 igc_read_phy_reg_mphy(struct igc_hw *hw, u32 address, u32 *data)
4207 {
4208 	u32 mphy_ctrl = 0;
4209 	bool locked = false;
4210 	bool ready;
4211 
4212 	DEBUGFUNC("igc_read_phy_reg_mphy");
4213 
4214 	/* Check if mPHY is ready to read/write operations */
4215 	ready = igc_is_mphy_ready(hw);
4216 	if (!ready)
4217 		return -IGC_ERR_PHY;
4218 
4219 	/* Check if mPHY access is disabled and enable it if so */
4220 	mphy_ctrl = IGC_READ_REG(hw, IGC_MPHY_ADDR_CTRL);
4221 	if (mphy_ctrl & IGC_MPHY_DIS_ACCESS) {
4222 		locked = true;
4223 		ready = igc_is_mphy_ready(hw);
4224 		if (!ready)
4225 			return -IGC_ERR_PHY;
4226 		mphy_ctrl |= IGC_MPHY_ENA_ACCESS;
4227 		IGC_WRITE_REG(hw, IGC_MPHY_ADDR_CTRL, mphy_ctrl);
4228 	}
4229 
4230 	/* Set the address that we want to read */
4231 	ready = igc_is_mphy_ready(hw);
4232 	if (!ready)
4233 		return -IGC_ERR_PHY;
4234 
4235 	/* We mask address, because we want to use only current lane */
4236 	mphy_ctrl = (mphy_ctrl & ~IGC_MPHY_ADDRESS_MASK &
4237 		~IGC_MPHY_ADDRESS_FNC_OVERRIDE) |
4238 		(address & IGC_MPHY_ADDRESS_MASK);
4239 	IGC_WRITE_REG(hw, IGC_MPHY_ADDR_CTRL, mphy_ctrl);
4240 
4241 	/* Read data from the address */
4242 	ready = igc_is_mphy_ready(hw);
4243 	if (!ready)
4244 		return -IGC_ERR_PHY;
4245 	*data = IGC_READ_REG(hw, IGC_MPHY_DATA);
4246 
4247 	/* Disable access to mPHY if it was originally disabled */
4248 	if (locked)
4249 		ready = igc_is_mphy_ready(hw);
4250 	if (!ready)
4251 		return -IGC_ERR_PHY;
4252 	IGC_WRITE_REG(hw, IGC_MPHY_ADDR_CTRL,
4253 			IGC_MPHY_DIS_ACCESS);
4254 
4255 	return IGC_SUCCESS;
4256 }
4257 
4258 /**
4259  *  igc_write_phy_reg_mphy - Write mPHY control register
4260  *  @hw: pointer to the HW structure
4261  *  @address: address to write to
4262  *  @data: data to write to register at offset
4263  *  @line_override: used when we want to use different line than default one
4264  *
4265  *  Writes data to mPHY control register.
4266  **/
igc_write_phy_reg_mphy(struct igc_hw * hw,u32 address,u32 data,bool line_override)4267 s32 igc_write_phy_reg_mphy(struct igc_hw *hw, u32 address, u32 data,
4268 			     bool line_override)
4269 {
4270 	u32 mphy_ctrl = 0;
4271 	bool locked = false;
4272 	bool ready;
4273 
4274 	DEBUGFUNC("igc_write_phy_reg_mphy");
4275 
4276 	/* Check if mPHY is ready to read/write operations */
4277 	ready = igc_is_mphy_ready(hw);
4278 	if (!ready)
4279 		return -IGC_ERR_PHY;
4280 
4281 	/* Check if mPHY access is disabled and enable it if so */
4282 	mphy_ctrl = IGC_READ_REG(hw, IGC_MPHY_ADDR_CTRL);
4283 	if (mphy_ctrl & IGC_MPHY_DIS_ACCESS) {
4284 		locked = true;
4285 		ready = igc_is_mphy_ready(hw);
4286 		if (!ready)
4287 			return -IGC_ERR_PHY;
4288 		mphy_ctrl |= IGC_MPHY_ENA_ACCESS;
4289 		IGC_WRITE_REG(hw, IGC_MPHY_ADDR_CTRL, mphy_ctrl);
4290 	}
4291 
4292 	/* Set the address that we want to read */
4293 	ready = igc_is_mphy_ready(hw);
4294 	if (!ready)
4295 		return -IGC_ERR_PHY;
4296 
4297 	/* We mask address, because we want to use only current lane */
4298 	if (line_override)
4299 		mphy_ctrl |= IGC_MPHY_ADDRESS_FNC_OVERRIDE;
4300 	else
4301 		mphy_ctrl &= ~IGC_MPHY_ADDRESS_FNC_OVERRIDE;
4302 	mphy_ctrl = (mphy_ctrl & ~IGC_MPHY_ADDRESS_MASK) |
4303 		(address & IGC_MPHY_ADDRESS_MASK);
4304 	IGC_WRITE_REG(hw, IGC_MPHY_ADDR_CTRL, mphy_ctrl);
4305 
4306 	/* Read data from the address */
4307 	ready = igc_is_mphy_ready(hw);
4308 	if (!ready)
4309 		return -IGC_ERR_PHY;
4310 	IGC_WRITE_REG(hw, IGC_MPHY_DATA, data);
4311 
4312 	/* Disable access to mPHY if it was originally disabled */
4313 	if (locked)
4314 		ready = igc_is_mphy_ready(hw);
4315 	if (!ready)
4316 		return -IGC_ERR_PHY;
4317 	IGC_WRITE_REG(hw, IGC_MPHY_ADDR_CTRL,
4318 			IGC_MPHY_DIS_ACCESS);
4319 
4320 	return IGC_SUCCESS;
4321 }
4322 
4323 /**
4324  *  igc_is_mphy_ready - Check if mPHY control register is not busy
4325  *  @hw: pointer to the HW structure
4326  *
4327  *  Returns mPHY control register status.
4328  **/
igc_is_mphy_ready(struct igc_hw * hw)4329 bool igc_is_mphy_ready(struct igc_hw *hw)
4330 {
4331 	u16 retry_count = 0;
4332 	u32 mphy_ctrl = 0;
4333 	bool ready = false;
4334 
4335 	while (retry_count < 2) {
4336 		mphy_ctrl = IGC_READ_REG(hw, IGC_MPHY_ADDR_CTRL);
4337 		if (mphy_ctrl & IGC_MPHY_BUSY) {
4338 			usec_delay(20);
4339 			retry_count++;
4340 			continue;
4341 		}
4342 		ready = true;
4343 		break;
4344 	}
4345 
4346 	if (!ready)
4347 		DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
4348 
4349 	return ready;
4350 }
4351 
4352 /**
4353  *  __igc_access_xmdio_reg - Read/write XMDIO register
4354  *  @hw: pointer to the HW structure
4355  *  @address: XMDIO address to program
4356  *  @dev_addr: device address to program
4357  *  @data: pointer to value to read/write from/to the XMDIO address
4358  *  @read: boolean flag to indicate read or write
4359  **/
__igc_access_xmdio_reg(struct igc_hw * hw,u16 address,u8 dev_addr,u16 * data,bool read)4360 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
4361 				    u8 dev_addr, u16 *data, bool read)
4362 {
4363 	s32 ret_val;
4364 
4365 	DEBUGFUNC("__igc_access_xmdio_reg");
4366 
4367 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
4368 	if (ret_val)
4369 		return ret_val;
4370 
4371 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
4372 	if (ret_val)
4373 		return ret_val;
4374 
4375 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
4376 					dev_addr);
4377 	if (ret_val)
4378 		return ret_val;
4379 
4380 	if (read)
4381 		ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
4382 	else
4383 		ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
4384 	if (ret_val)
4385 		return ret_val;
4386 
4387 	/* Recalibrate the device back to 0 */
4388 	ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
4389 	if (ret_val)
4390 		return ret_val;
4391 
4392 	return ret_val;
4393 }
4394 
4395 /**
4396  *  igc_read_xmdio_reg - Read XMDIO register
4397  *  @hw: pointer to the HW structure
4398  *  @addr: XMDIO address to program
4399  *  @dev_addr: device address to program
4400  *  @data: value to be read from the EMI address
4401  **/
igc_read_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 * data)4402 s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 *data)
4403 {
4404 	DEBUGFUNC("igc_read_xmdio_reg");
4405 
4406 	return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
4407 }
4408 
4409 /**
4410  *  igc_write_xmdio_reg - Write XMDIO register
4411  *  @hw: pointer to the HW structure
4412  *  @addr: XMDIO address to program
4413  *  @dev_addr: device address to program
4414  *  @data: value to be written to the XMDIO address
4415  **/
igc_write_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 data)4416 s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 data)
4417 {
4418 	DEBUGFUNC("igc_write_xmdio_reg");
4419 
4420 	return __igc_access_xmdio_reg(hw, addr, dev_addr, &data,
4421 				false);
4422 }
4423