xref: /f-stack/dpdk/drivers/net/igc/base/igc_mac.c (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2020 Intel Corporation
3  */
4 
5 #include "igc_api.h"
6 
7 static s32 igc_validate_mdi_setting_generic(struct igc_hw *hw);
8 static void igc_set_lan_id_multi_port_pcie(struct igc_hw *hw);
9 static void igc_config_collision_dist_generic(struct igc_hw *hw);
10 static int igc_rar_set_generic(struct igc_hw *hw, u8 *addr, u32 index);
11 
12 /**
13  *  igc_init_mac_ops_generic - Initialize MAC function pointers
14  *  @hw: pointer to the HW structure
15  *
16  *  Setups up the function pointers to no-op functions
17  **/
igc_init_mac_ops_generic(struct igc_hw * hw)18 void igc_init_mac_ops_generic(struct igc_hw *hw)
19 {
20 	struct igc_mac_info *mac = &hw->mac;
21 	DEBUGFUNC("igc_init_mac_ops_generic");
22 
23 	/* General Setup */
24 	mac->ops.init_params = igc_null_ops_generic;
25 	mac->ops.init_hw = igc_null_ops_generic;
26 	mac->ops.reset_hw = igc_null_ops_generic;
27 	mac->ops.setup_physical_interface = igc_null_ops_generic;
28 	mac->ops.get_bus_info = igc_null_ops_generic;
29 	mac->ops.set_lan_id = igc_set_lan_id_multi_port_pcie;
30 	mac->ops.read_mac_addr = igc_read_mac_addr_generic;
31 	mac->ops.config_collision_dist = igc_config_collision_dist_generic;
32 	mac->ops.clear_hw_cntrs = igc_null_mac_generic;
33 	/* LED */
34 	mac->ops.cleanup_led = igc_null_ops_generic;
35 	mac->ops.setup_led = igc_null_ops_generic;
36 	mac->ops.blink_led = igc_null_ops_generic;
37 	mac->ops.led_on = igc_null_ops_generic;
38 	mac->ops.led_off = igc_null_ops_generic;
39 	/* LINK */
40 	mac->ops.setup_link = igc_null_ops_generic;
41 	mac->ops.get_link_up_info = igc_null_link_info;
42 	mac->ops.check_for_link = igc_null_ops_generic;
43 	/* Management */
44 	mac->ops.check_mng_mode = igc_null_mng_mode;
45 	/* VLAN, MC, etc. */
46 	mac->ops.update_mc_addr_list = igc_null_update_mc;
47 	mac->ops.clear_vfta = igc_null_mac_generic;
48 	mac->ops.write_vfta = igc_null_write_vfta;
49 	mac->ops.rar_set = igc_rar_set_generic;
50 	mac->ops.validate_mdi_setting = igc_validate_mdi_setting_generic;
51 }
52 
53 /**
54  *  igc_null_ops_generic - No-op function, returns 0
55  *  @hw: pointer to the HW structure
56  **/
igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG * hw)57 s32 igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG * hw)
58 {
59 	DEBUGFUNC("igc_null_ops_generic");
60 	UNREFERENCED_1PARAMETER(hw);
61 	return IGC_SUCCESS;
62 }
63 
64 /**
65  *  igc_null_mac_generic - No-op function, return void
66  *  @hw: pointer to the HW structure
67  **/
igc_null_mac_generic(struct igc_hw IGC_UNUSEDARG * hw)68 void igc_null_mac_generic(struct igc_hw IGC_UNUSEDARG * hw)
69 {
70 	DEBUGFUNC("igc_null_mac_generic");
71 	UNREFERENCED_1PARAMETER(hw);
72 }
73 
74 /**
75  *  igc_null_link_info - No-op function, return 0
76  *  @hw: pointer to the HW structure
77  *  @s: dummy variable
78  *  @d: dummy variable
79  **/
igc_null_link_info(struct igc_hw IGC_UNUSEDARG * hw,u16 IGC_UNUSEDARG * s,u16 IGC_UNUSEDARG * d)80 s32 igc_null_link_info(struct igc_hw IGC_UNUSEDARG * hw,
81 			 u16 IGC_UNUSEDARG * s, u16 IGC_UNUSEDARG * d)
82 {
83 	DEBUGFUNC("igc_null_link_info");
84 	UNREFERENCED_3PARAMETER(hw, s, d);
85 	return IGC_SUCCESS;
86 }
87 
88 /**
89  *  igc_null_mng_mode - No-op function, return false
90  *  @hw: pointer to the HW structure
91  **/
igc_null_mng_mode(struct igc_hw IGC_UNUSEDARG * hw)92 bool igc_null_mng_mode(struct igc_hw IGC_UNUSEDARG * hw)
93 {
94 	DEBUGFUNC("igc_null_mng_mode");
95 	UNREFERENCED_1PARAMETER(hw);
96 	return false;
97 }
98 
99 /**
100  *  igc_null_update_mc - No-op function, return void
101  *  @hw: pointer to the HW structure
102  *  @h: dummy variable
103  *  @a: dummy variable
104  **/
igc_null_update_mc(struct igc_hw IGC_UNUSEDARG * hw,u8 IGC_UNUSEDARG * h,u32 IGC_UNUSEDARG a)105 void igc_null_update_mc(struct igc_hw IGC_UNUSEDARG * hw,
106 			  u8 IGC_UNUSEDARG * h, u32 IGC_UNUSEDARG a)
107 {
108 	DEBUGFUNC("igc_null_update_mc");
109 	UNREFERENCED_3PARAMETER(hw, h, a);
110 }
111 
112 /**
113  *  igc_null_write_vfta - No-op function, return void
114  *  @hw: pointer to the HW structure
115  *  @a: dummy variable
116  *  @b: dummy variable
117  **/
igc_null_write_vfta(struct igc_hw IGC_UNUSEDARG * hw,u32 IGC_UNUSEDARG a,u32 IGC_UNUSEDARG b)118 void igc_null_write_vfta(struct igc_hw IGC_UNUSEDARG * hw,
119 			   u32 IGC_UNUSEDARG a, u32 IGC_UNUSEDARG b)
120 {
121 	DEBUGFUNC("igc_null_write_vfta");
122 	UNREFERENCED_3PARAMETER(hw, a, b);
123 }
124 
125 /**
126  *  igc_null_rar_set - No-op function, return 0
127  *  @hw: pointer to the HW structure
128  *  @h: dummy variable
129  *  @a: dummy variable
130  **/
igc_null_rar_set(struct igc_hw IGC_UNUSEDARG * hw,u8 IGC_UNUSEDARG * h,u32 IGC_UNUSEDARG a)131 int igc_null_rar_set(struct igc_hw IGC_UNUSEDARG * hw,
132 			u8 IGC_UNUSEDARG * h, u32 IGC_UNUSEDARG a)
133 {
134 	DEBUGFUNC("igc_null_rar_set");
135 	UNREFERENCED_3PARAMETER(hw, h, a);
136 	return IGC_SUCCESS;
137 }
138 
139 /**
140  *  igc_get_bus_info_pci_generic - Get PCI(x) bus information
141  *  @hw: pointer to the HW structure
142  *
143  *  Determines and stores the system bus information for a particular
144  *  network interface.  The following bus information is determined and stored:
145  *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
146  **/
igc_get_bus_info_pci_generic(struct igc_hw * hw)147 s32 igc_get_bus_info_pci_generic(struct igc_hw *hw)
148 {
149 	struct igc_mac_info *mac = &hw->mac;
150 	struct igc_bus_info *bus = &hw->bus;
151 	u32 status = IGC_READ_REG(hw, IGC_STATUS);
152 	s32 ret_val = IGC_SUCCESS;
153 
154 	DEBUGFUNC("igc_get_bus_info_pci_generic");
155 
156 	/* PCI or PCI-X? */
157 	bus->type = (status & IGC_STATUS_PCIX_MODE)
158 			? igc_bus_type_pcix
159 			: igc_bus_type_pci;
160 
161 	/* Bus speed */
162 	if (bus->type == igc_bus_type_pci) {
163 		bus->speed = (status & IGC_STATUS_PCI66)
164 			     ? igc_bus_speed_66
165 			     : igc_bus_speed_33;
166 	} else {
167 		switch (status & IGC_STATUS_PCIX_SPEED) {
168 		case IGC_STATUS_PCIX_SPEED_66:
169 			bus->speed = igc_bus_speed_66;
170 			break;
171 		case IGC_STATUS_PCIX_SPEED_100:
172 			bus->speed = igc_bus_speed_100;
173 			break;
174 		case IGC_STATUS_PCIX_SPEED_133:
175 			bus->speed = igc_bus_speed_133;
176 			break;
177 		default:
178 			bus->speed = igc_bus_speed_reserved;
179 			break;
180 		}
181 	}
182 
183 	/* Bus width */
184 	bus->width = (status & IGC_STATUS_BUS64)
185 		     ? igc_bus_width_64
186 		     : igc_bus_width_32;
187 
188 	/* Which PCI(-X) function? */
189 	mac->ops.set_lan_id(hw);
190 
191 	return ret_val;
192 }
193 
194 /**
195  *  igc_get_bus_info_pcie_generic - Get PCIe bus information
196  *  @hw: pointer to the HW structure
197  *
198  *  Determines and stores the system bus information for a particular
199  *  network interface.  The following bus information is determined and stored:
200  *  bus speed, bus width, type (PCIe), and PCIe function.
201  **/
igc_get_bus_info_pcie_generic(struct igc_hw * hw)202 s32 igc_get_bus_info_pcie_generic(struct igc_hw *hw)
203 {
204 	struct igc_mac_info *mac = &hw->mac;
205 	struct igc_bus_info *bus = &hw->bus;
206 	s32 ret_val;
207 	u16 pcie_link_status;
208 
209 	DEBUGFUNC("igc_get_bus_info_pcie_generic");
210 
211 	bus->type = igc_bus_type_pci_express;
212 
213 	ret_val = igc_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
214 					  &pcie_link_status);
215 	if (ret_val) {
216 		bus->width = igc_bus_width_unknown;
217 		bus->speed = igc_bus_speed_unknown;
218 	} else {
219 		switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
220 		case PCIE_LINK_SPEED_2500:
221 			bus->speed = igc_bus_speed_2500;
222 			break;
223 		case PCIE_LINK_SPEED_5000:
224 			bus->speed = igc_bus_speed_5000;
225 			break;
226 		default:
227 			bus->speed = igc_bus_speed_unknown;
228 			break;
229 		}
230 
231 		bus->width = (enum igc_bus_width)((pcie_link_status &
232 			      PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
233 	}
234 
235 	mac->ops.set_lan_id(hw);
236 
237 	return IGC_SUCCESS;
238 }
239 
240 /**
241  *  igc_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
242  *
243  *  @hw: pointer to the HW structure
244  *
245  *  Determines the LAN function id by reading memory-mapped registers
246  *  and swaps the port value if requested.
247  **/
igc_set_lan_id_multi_port_pcie(struct igc_hw * hw)248 static void igc_set_lan_id_multi_port_pcie(struct igc_hw *hw)
249 {
250 	struct igc_bus_info *bus = &hw->bus;
251 	u32 reg;
252 
253 	/* The status register reports the correct function number
254 	 * for the device regardless of function swap state.
255 	 */
256 	reg = IGC_READ_REG(hw, IGC_STATUS);
257 	bus->func = (reg & IGC_STATUS_FUNC_MASK) >> IGC_STATUS_FUNC_SHIFT;
258 }
259 
260 /**
261  *  igc_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
262  *  @hw: pointer to the HW structure
263  *
264  *  Determines the LAN function id by reading PCI config space.
265  **/
igc_set_lan_id_multi_port_pci(struct igc_hw * hw)266 void igc_set_lan_id_multi_port_pci(struct igc_hw *hw)
267 {
268 	struct igc_bus_info *bus = &hw->bus;
269 	u16 pci_header_type;
270 	u32 status;
271 
272 	igc_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
273 	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
274 		status = IGC_READ_REG(hw, IGC_STATUS);
275 		bus->func = (status & IGC_STATUS_FUNC_MASK)
276 			    >> IGC_STATUS_FUNC_SHIFT;
277 	} else {
278 		bus->func = 0;
279 	}
280 }
281 
282 /**
283  *  igc_set_lan_id_single_port - Set LAN id for a single port device
284  *  @hw: pointer to the HW structure
285  *
286  *  Sets the LAN function id to zero for a single port device.
287  **/
igc_set_lan_id_single_port(struct igc_hw * hw)288 void igc_set_lan_id_single_port(struct igc_hw *hw)
289 {
290 	struct igc_bus_info *bus = &hw->bus;
291 
292 	bus->func = 0;
293 }
294 
295 /**
296  *  igc_clear_vfta_generic - Clear VLAN filter table
297  *  @hw: pointer to the HW structure
298  *
299  *  Clears the register array which contains the VLAN filter table by
300  *  setting all the values to 0.
301  **/
igc_clear_vfta_generic(struct igc_hw * hw)302 void igc_clear_vfta_generic(struct igc_hw *hw)
303 {
304 	u32 offset;
305 
306 	DEBUGFUNC("igc_clear_vfta_generic");
307 
308 	for (offset = 0; offset < IGC_VLAN_FILTER_TBL_SIZE; offset++) {
309 		IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, 0);
310 		IGC_WRITE_FLUSH(hw);
311 	}
312 }
313 
314 /**
315  *  igc_write_vfta_generic - Write value to VLAN filter table
316  *  @hw: pointer to the HW structure
317  *  @offset: register offset in VLAN filter table
318  *  @value: register value written to VLAN filter table
319  *
320  *  Writes value at the given offset in the register array which stores
321  *  the VLAN filter table.
322  **/
igc_write_vfta_generic(struct igc_hw * hw,u32 offset,u32 value)323 void igc_write_vfta_generic(struct igc_hw *hw, u32 offset, u32 value)
324 {
325 	DEBUGFUNC("igc_write_vfta_generic");
326 
327 	IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
328 	IGC_WRITE_FLUSH(hw);
329 }
330 
331 /**
332  *  igc_init_rx_addrs_generic - Initialize receive address's
333  *  @hw: pointer to the HW structure
334  *  @rar_count: receive address registers
335  *
336  *  Setup the receive address registers by setting the base receive address
337  *  register to the devices MAC address and clearing all the other receive
338  *  address registers to 0.
339  **/
igc_init_rx_addrs_generic(struct igc_hw * hw,u16 rar_count)340 void igc_init_rx_addrs_generic(struct igc_hw *hw, u16 rar_count)
341 {
342 	u32 i;
343 	u8 mac_addr[ETH_ADDR_LEN] = {0};
344 
345 	DEBUGFUNC("igc_init_rx_addrs_generic");
346 
347 	/* Setup the receive address */
348 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
349 
350 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
351 
352 	/* Zero out the other (rar_entry_count - 1) receive addresses */
353 	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count - 1);
354 	for (i = 1; i < rar_count; i++)
355 		hw->mac.ops.rar_set(hw, mac_addr, i);
356 }
357 
358 /**
359  *  igc_check_alt_mac_addr_generic - Check for alternate MAC addr
360  *  @hw: pointer to the HW structure
361  *
362  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
363  *  can be setup by pre-boot software and must be treated like a permanent
364  *  address and must override the actual permanent MAC address. If an
365  *  alternate MAC address is found it is programmed into RAR0, replacing
366  *  the permanent address that was installed into RAR0 by the Si on reset.
367  *  This function will return SUCCESS unless it encounters an error while
368  *  reading the EEPROM.
369  **/
igc_check_alt_mac_addr_generic(struct igc_hw * hw)370 s32 igc_check_alt_mac_addr_generic(struct igc_hw *hw)
371 {
372 	u32 i;
373 	s32 ret_val;
374 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
375 	u8 alt_mac_addr[ETH_ADDR_LEN];
376 
377 	DEBUGFUNC("igc_check_alt_mac_addr_generic");
378 
379 	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
380 	if (ret_val)
381 		return ret_val;
382 
383 	/* not supported on older hardware or 82573 */
384 	if (hw->mac.type < igc_82571 || hw->mac.type == igc_82573)
385 		return IGC_SUCCESS;
386 
387 	/* Alternate MAC address is handled by the option ROM for 82580
388 	 * and newer. SW support not required.
389 	 */
390 	if (hw->mac.type >= igc_82580)
391 		return IGC_SUCCESS;
392 
393 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
394 				   &nvm_alt_mac_addr_offset);
395 	if (ret_val) {
396 		DEBUGOUT("NVM Read Error\n");
397 		return ret_val;
398 	}
399 
400 	if (nvm_alt_mac_addr_offset == 0xFFFF ||
401 	    nvm_alt_mac_addr_offset == 0x0000)
402 		/* There is no Alternate MAC Address */
403 		return IGC_SUCCESS;
404 
405 	if (hw->bus.func == IGC_FUNC_1)
406 		nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
407 	if (hw->bus.func == IGC_FUNC_2)
408 		nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN2;
409 
410 	if (hw->bus.func == IGC_FUNC_3)
411 		nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN3;
412 	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
413 		offset = nvm_alt_mac_addr_offset + (i >> 1);
414 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
415 		if (ret_val) {
416 			DEBUGOUT("NVM Read Error\n");
417 			return ret_val;
418 		}
419 
420 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
421 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
422 	}
423 
424 	/* if multicast bit is set, the alternate address will not be used */
425 	if (alt_mac_addr[0] & 0x01) {
426 		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
427 		return IGC_SUCCESS;
428 	}
429 
430 	/* We have a valid alternate MAC address, and we want to treat it the
431 	 * same as the normal permanent MAC address stored by the HW into the
432 	 * RAR. Do this by mapping this address into RAR0.
433 	 */
434 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
435 
436 	return IGC_SUCCESS;
437 }
438 
439 /**
440  *  igc_rar_set_generic - Set receive address register
441  *  @hw: pointer to the HW structure
442  *  @addr: pointer to the receive address
443  *  @index: receive address array register
444  *
445  *  Sets the receive address array register at index to the address passed
446  *  in by addr.
447  **/
igc_rar_set_generic(struct igc_hw * hw,u8 * addr,u32 index)448 static int igc_rar_set_generic(struct igc_hw *hw, u8 *addr, u32 index)
449 {
450 	u32 rar_low, rar_high;
451 
452 	DEBUGFUNC("igc_rar_set_generic");
453 
454 	/* HW expects these in little endian so we reverse the byte order
455 	 * from network order (big endian) to little endian
456 	 */
457 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
458 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
459 
460 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
461 
462 	/* If MAC address zero, no need to set the AV bit */
463 	if (rar_low || rar_high)
464 		rar_high |= IGC_RAH_AV;
465 
466 	/* Some bridges will combine consecutive 32-bit writes into
467 	 * a single burst write, which will malfunction on some parts.
468 	 * The flushes avoid this.
469 	 */
470 	IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
471 	IGC_WRITE_FLUSH(hw);
472 	IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
473 	IGC_WRITE_FLUSH(hw);
474 
475 	return IGC_SUCCESS;
476 }
477 
478 /**
479  *  igc_hash_mc_addr_generic - Generate a multicast hash value
480  *  @hw: pointer to the HW structure
481  *  @mc_addr: pointer to a multicast address
482  *
483  *  Generates a multicast address hash value which is used to determine
484  *  the multicast filter table array address and new table value.
485  **/
igc_hash_mc_addr_generic(struct igc_hw * hw,u8 * mc_addr)486 u32 igc_hash_mc_addr_generic(struct igc_hw *hw, u8 *mc_addr)
487 {
488 	u32 hash_value, hash_mask;
489 	u8 bit_shift = 0;
490 
491 	DEBUGFUNC("igc_hash_mc_addr_generic");
492 
493 	/* Register count multiplied by bits per register */
494 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
495 
496 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
497 	 * where 0xFF would still fall within the hash mask.
498 	 */
499 	while (hash_mask >> bit_shift != 0xFF)
500 		bit_shift++;
501 
502 	/* The portion of the address that is used for the hash table
503 	 * is determined by the mc_filter_type setting.
504 	 * The algorithm is such that there is a total of 8 bits of shifting.
505 	 * The bit_shift for a mc_filter_type of 0 represents the number of
506 	 * left-shifts where the MSB of mc_addr[5] would still fall within
507 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
508 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
509 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
510 	 * cases are a variation of this algorithm...essentially raising the
511 	 * number of bits to shift mc_addr[5] left, while still keeping the
512 	 * 8-bit shifting total.
513 	 *
514 	 * For example, given the following Destination MAC Address and an
515 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
516 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
517 	 * values resulting from each mc_filter_type...
518 	 * [0] [1] [2] [3] [4] [5]
519 	 * 01  AA  00  12  34  56
520 	 * LSB		 MSB
521 	 *
522 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
523 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
524 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
525 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
526 	 */
527 	switch (hw->mac.mc_filter_type) {
528 	default:
529 	case 0:
530 		break;
531 	case 1:
532 		bit_shift += 1;
533 		break;
534 	case 2:
535 		bit_shift += 2;
536 		break;
537 	case 3:
538 		bit_shift += 4;
539 		break;
540 	}
541 
542 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
543 				  (((u16)mc_addr[5]) << bit_shift)));
544 
545 	return hash_value;
546 }
547 
548 /**
549  *  igc_update_mc_addr_list_generic - Update Multicast addresses
550  *  @hw: pointer to the HW structure
551  *  @mc_addr_list: array of multicast addresses to program
552  *  @mc_addr_count: number of multicast addresses to program
553  *
554  *  Updates entire Multicast Table Array.
555  *  The caller must have a packed mc_addr_list of multicast addresses.
556  **/
igc_update_mc_addr_list_generic(struct igc_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)557 void igc_update_mc_addr_list_generic(struct igc_hw *hw,
558 				       u8 *mc_addr_list, u32 mc_addr_count)
559 {
560 	u32 hash_value, hash_bit, hash_reg;
561 	int i;
562 
563 	DEBUGFUNC("igc_update_mc_addr_list_generic");
564 
565 	/* clear mta_shadow */
566 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
567 
568 	/* update mta_shadow from mc_addr_list */
569 	for (i = 0; (u32)i < mc_addr_count; i++) {
570 		hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
571 
572 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
573 		hash_bit = hash_value & 0x1F;
574 
575 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
576 		mc_addr_list += (ETH_ADDR_LEN);
577 	}
578 
579 	/* replace the entire MTA table */
580 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
581 		IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
582 	IGC_WRITE_FLUSH(hw);
583 }
584 
585 /**
586  *  igc_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
587  *  @hw: pointer to the HW structure
588  *
589  *  In certain situations, a system BIOS may report that the PCIx maximum
590  *  memory read byte count (MMRBC) value is higher than than the actual
591  *  value. We check the PCIx command register with the current PCIx status
592  *  register.
593  **/
igc_pcix_mmrbc_workaround_generic(struct igc_hw * hw)594 void igc_pcix_mmrbc_workaround_generic(struct igc_hw *hw)
595 {
596 	u16 cmd_mmrbc;
597 	u16 pcix_cmd;
598 	u16 pcix_stat_hi_word;
599 	u16 stat_mmrbc;
600 
601 	DEBUGFUNC("igc_pcix_mmrbc_workaround_generic");
602 
603 	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
604 	if (hw->bus.type != igc_bus_type_pcix)
605 		return;
606 
607 	igc_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
608 	igc_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
609 	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
610 		     PCIX_COMMAND_MMRBC_SHIFT;
611 	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
612 		      PCIX_STATUS_HI_MMRBC_SHIFT;
613 	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
614 		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
615 	if (cmd_mmrbc > stat_mmrbc) {
616 		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
617 		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
618 		igc_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
619 	}
620 }
621 
622 /**
623  *  igc_clear_hw_cntrs_base_generic - Clear base hardware counters
624  *  @hw: pointer to the HW structure
625  *
626  *  Clears the base hardware counters by reading the counter registers.
627  **/
igc_clear_hw_cntrs_base_generic(struct igc_hw * hw)628 void igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
629 {
630 	DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
631 
632 	IGC_READ_REG(hw, IGC_CRCERRS);
633 	IGC_READ_REG(hw, IGC_SYMERRS);
634 	IGC_READ_REG(hw, IGC_MPC);
635 	IGC_READ_REG(hw, IGC_SCC);
636 	IGC_READ_REG(hw, IGC_ECOL);
637 	IGC_READ_REG(hw, IGC_MCC);
638 	IGC_READ_REG(hw, IGC_LATECOL);
639 	IGC_READ_REG(hw, IGC_COLC);
640 	IGC_READ_REG(hw, IGC_DC);
641 	IGC_READ_REG(hw, IGC_SEC);
642 	IGC_READ_REG(hw, IGC_RLEC);
643 	IGC_READ_REG(hw, IGC_XONRXC);
644 	IGC_READ_REG(hw, IGC_XONTXC);
645 	IGC_READ_REG(hw, IGC_XOFFRXC);
646 	IGC_READ_REG(hw, IGC_XOFFTXC);
647 	IGC_READ_REG(hw, IGC_FCRUC);
648 	IGC_READ_REG(hw, IGC_GPRC);
649 	IGC_READ_REG(hw, IGC_BPRC);
650 	IGC_READ_REG(hw, IGC_MPRC);
651 	IGC_READ_REG(hw, IGC_GPTC);
652 	IGC_READ_REG(hw, IGC_GORCL);
653 	IGC_READ_REG(hw, IGC_GORCH);
654 	IGC_READ_REG(hw, IGC_GOTCL);
655 	IGC_READ_REG(hw, IGC_GOTCH);
656 	IGC_READ_REG(hw, IGC_RNBC);
657 	IGC_READ_REG(hw, IGC_RUC);
658 	IGC_READ_REG(hw, IGC_RFC);
659 	IGC_READ_REG(hw, IGC_ROC);
660 	IGC_READ_REG(hw, IGC_RJC);
661 	IGC_READ_REG(hw, IGC_TORL);
662 	IGC_READ_REG(hw, IGC_TORH);
663 	IGC_READ_REG(hw, IGC_TOTL);
664 	IGC_READ_REG(hw, IGC_TOTH);
665 	IGC_READ_REG(hw, IGC_TPR);
666 	IGC_READ_REG(hw, IGC_TPT);
667 	IGC_READ_REG(hw, IGC_MPTC);
668 	IGC_READ_REG(hw, IGC_BPTC);
669 }
670 
671 /**
672  *  igc_check_for_copper_link_generic - Check for link (Copper)
673  *  @hw: pointer to the HW structure
674  *
675  *  Checks to see of the link status of the hardware has changed.  If a
676  *  change in link status has been detected, then we read the PHY registers
677  *  to get the current speed/duplex if link exists.
678  **/
igc_check_for_copper_link_generic(struct igc_hw * hw)679 s32 igc_check_for_copper_link_generic(struct igc_hw *hw)
680 {
681 	struct igc_mac_info *mac = &hw->mac;
682 	s32 ret_val;
683 	bool link;
684 
685 	DEBUGFUNC("igc_check_for_copper_link");
686 
687 	/* We only want to go out to the PHY registers to see if Auto-Neg
688 	 * has completed and/or if our link status has changed.  The
689 	 * get_link_status flag is set upon receiving a Link Status
690 	 * Change or Rx Sequence Error interrupt.
691 	 */
692 	if (!mac->get_link_status)
693 		return IGC_SUCCESS;
694 
695 	/* First we want to see if the MII Status Register reports
696 	 * link.  If so, then we want to get the current speed/duplex
697 	 * of the PHY.
698 	 */
699 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
700 	if (ret_val)
701 		return ret_val;
702 
703 	if (!link)
704 		return IGC_SUCCESS; /* No link detected */
705 
706 	mac->get_link_status = false;
707 
708 	/* Check if there was DownShift, must be checked
709 	 * immediately after link-up
710 	 */
711 	igc_check_downshift_generic(hw);
712 
713 	/* If we are forcing speed/duplex, then we simply return since
714 	 * we have already determined whether we have link or not.
715 	 */
716 	if (!mac->autoneg)
717 		return -IGC_ERR_CONFIG;
718 
719 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
720 	 * of MAC speed/duplex configuration.  So we only need to
721 	 * configure Collision Distance in the MAC.
722 	 */
723 	mac->ops.config_collision_dist(hw);
724 
725 	/* Configure Flow Control now that Auto-Neg has completed.
726 	 * First, we need to restore the desired flow control
727 	 * settings because we may have had to re-autoneg with a
728 	 * different link partner.
729 	 */
730 	ret_val = igc_config_fc_after_link_up_generic(hw);
731 	if (ret_val)
732 		DEBUGOUT("Error configuring flow control\n");
733 
734 	return ret_val;
735 }
736 
737 /**
738  *  igc_check_for_fiber_link_generic - Check for link (Fiber)
739  *  @hw: pointer to the HW structure
740  *
741  *  Checks for link up on the hardware.  If link is not up and we have
742  *  a signal, then we need to force link up.
743  **/
igc_check_for_fiber_link_generic(struct igc_hw * hw)744 s32 igc_check_for_fiber_link_generic(struct igc_hw *hw)
745 {
746 	struct igc_mac_info *mac = &hw->mac;
747 	u32 rxcw;
748 	u32 ctrl;
749 	u32 status;
750 	s32 ret_val;
751 
752 	DEBUGFUNC("igc_check_for_fiber_link_generic");
753 
754 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
755 	status = IGC_READ_REG(hw, IGC_STATUS);
756 	rxcw = IGC_READ_REG(hw, IGC_RXCW);
757 
758 	/* If we don't have link (auto-negotiation failed or link partner
759 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
760 	 * and our link partner is not trying to auto-negotiate with us (we
761 	 * are receiving idles or data), we need to force link up. We also
762 	 * need to give auto-negotiation time to complete, in case the cable
763 	 * was just plugged in. The autoneg_failed flag does this.
764 	 */
765 	/* (ctrl & IGC_CTRL_SWDPIN1) == 1 == have signal */
766 	if ((ctrl & IGC_CTRL_SWDPIN1) && !(status & IGC_STATUS_LU) &&
767 	    !(rxcw & IGC_RXCW_C)) {
768 		if (!mac->autoneg_failed) {
769 			mac->autoneg_failed = true;
770 			return IGC_SUCCESS;
771 		}
772 		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
773 
774 		/* Disable auto-negotiation in the TXCW register */
775 		IGC_WRITE_REG(hw, IGC_TXCW, (mac->txcw & ~IGC_TXCW_ANE));
776 
777 		/* Force link-up and also force full-duplex. */
778 		ctrl = IGC_READ_REG(hw, IGC_CTRL);
779 		ctrl |= (IGC_CTRL_SLU | IGC_CTRL_FD);
780 		IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
781 
782 		/* Configure Flow Control after forcing link up. */
783 		ret_val = igc_config_fc_after_link_up_generic(hw);
784 		if (ret_val) {
785 			DEBUGOUT("Error configuring flow control\n");
786 			return ret_val;
787 		}
788 	} else if ((ctrl & IGC_CTRL_SLU) && (rxcw & IGC_RXCW_C)) {
789 		/* If we are forcing link and we are receiving /C/ ordered
790 		 * sets, re-enable auto-negotiation in the TXCW register
791 		 * and disable forced link in the Device Control register
792 		 * in an attempt to auto-negotiate with our link partner.
793 		 */
794 		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
795 		IGC_WRITE_REG(hw, IGC_TXCW, mac->txcw);
796 		IGC_WRITE_REG(hw, IGC_CTRL, (ctrl & ~IGC_CTRL_SLU));
797 
798 		mac->serdes_has_link = true;
799 	}
800 
801 	return IGC_SUCCESS;
802 }
803 
804 /**
805  *  igc_check_for_serdes_link_generic - Check for link (Serdes)
806  *  @hw: pointer to the HW structure
807  *
808  *  Checks for link up on the hardware.  If link is not up and we have
809  *  a signal, then we need to force link up.
810  **/
igc_check_for_serdes_link_generic(struct igc_hw * hw)811 s32 igc_check_for_serdes_link_generic(struct igc_hw *hw)
812 {
813 	struct igc_mac_info *mac = &hw->mac;
814 	u32 rxcw;
815 	u32 ctrl;
816 	u32 status;
817 	s32 ret_val;
818 
819 	DEBUGFUNC("igc_check_for_serdes_link_generic");
820 
821 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
822 	status = IGC_READ_REG(hw, IGC_STATUS);
823 	rxcw = IGC_READ_REG(hw, IGC_RXCW);
824 
825 	/* If we don't have link (auto-negotiation failed or link partner
826 	 * cannot auto-negotiate), and our link partner is not trying to
827 	 * auto-negotiate with us (we are receiving idles or data),
828 	 * we need to force link up. We also need to give auto-negotiation
829 	 * time to complete.
830 	 */
831 	/* (ctrl & IGC_CTRL_SWDPIN1) == 1 == have signal */
832 	if (!(status & IGC_STATUS_LU) && !(rxcw & IGC_RXCW_C)) {
833 		if (!mac->autoneg_failed) {
834 			mac->autoneg_failed = true;
835 			return IGC_SUCCESS;
836 		}
837 		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
838 
839 		/* Disable auto-negotiation in the TXCW register */
840 		IGC_WRITE_REG(hw, IGC_TXCW, (mac->txcw & ~IGC_TXCW_ANE));
841 
842 		/* Force link-up and also force full-duplex. */
843 		ctrl = IGC_READ_REG(hw, IGC_CTRL);
844 		ctrl |= (IGC_CTRL_SLU | IGC_CTRL_FD);
845 		IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
846 
847 		/* Configure Flow Control after forcing link up. */
848 		ret_val = igc_config_fc_after_link_up_generic(hw);
849 		if (ret_val) {
850 			DEBUGOUT("Error configuring flow control\n");
851 			return ret_val;
852 		}
853 	} else if ((ctrl & IGC_CTRL_SLU) && (rxcw & IGC_RXCW_C)) {
854 		/* If we are forcing link and we are receiving /C/ ordered
855 		 * sets, re-enable auto-negotiation in the TXCW register
856 		 * and disable forced link in the Device Control register
857 		 * in an attempt to auto-negotiate with our link partner.
858 		 */
859 		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
860 		IGC_WRITE_REG(hw, IGC_TXCW, mac->txcw);
861 		IGC_WRITE_REG(hw, IGC_CTRL, (ctrl & ~IGC_CTRL_SLU));
862 
863 		mac->serdes_has_link = true;
864 	} else if (!(IGC_TXCW_ANE & IGC_READ_REG(hw, IGC_TXCW))) {
865 		/* If we force link for non-auto-negotiation switch, check
866 		 * link status based on MAC synchronization for internal
867 		 * serdes media type.
868 		 */
869 		/* SYNCH bit and IV bit are sticky. */
870 		usec_delay(10);
871 		rxcw = IGC_READ_REG(hw, IGC_RXCW);
872 		if (rxcw & IGC_RXCW_SYNCH) {
873 			if (!(rxcw & IGC_RXCW_IV)) {
874 				mac->serdes_has_link = true;
875 				DEBUGOUT("SERDES: Link up - forced.\n");
876 			}
877 		} else {
878 			mac->serdes_has_link = false;
879 			DEBUGOUT("SERDES: Link down - force failed.\n");
880 		}
881 	}
882 
883 	if (IGC_TXCW_ANE & IGC_READ_REG(hw, IGC_TXCW)) {
884 		status = IGC_READ_REG(hw, IGC_STATUS);
885 		if (status & IGC_STATUS_LU) {
886 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
887 			usec_delay(10);
888 			rxcw = IGC_READ_REG(hw, IGC_RXCW);
889 			if (rxcw & IGC_RXCW_SYNCH) {
890 				if (!(rxcw & IGC_RXCW_IV)) {
891 					mac->serdes_has_link = true;
892 					DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
893 				} else {
894 					mac->serdes_has_link = false;
895 					DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
896 				}
897 			} else {
898 				mac->serdes_has_link = false;
899 				DEBUGOUT("SERDES: Link down - no sync.\n");
900 			}
901 		} else {
902 			mac->serdes_has_link = false;
903 			DEBUGOUT("SERDES: Link down - autoneg failed\n");
904 		}
905 	}
906 
907 	return IGC_SUCCESS;
908 }
909 
910 /**
911  *  igc_set_default_fc_generic - Set flow control default values
912  *  @hw: pointer to the HW structure
913  *
914  *  Read the EEPROM for the default values for flow control and store the
915  *  values.
916  **/
igc_set_default_fc_generic(struct igc_hw * hw)917 s32 igc_set_default_fc_generic(struct igc_hw *hw)
918 {
919 	s32 ret_val;
920 	u16 nvm_data;
921 	u16 nvm_offset = 0;
922 
923 	DEBUGFUNC("igc_set_default_fc_generic");
924 
925 	/* Read and store word 0x0F of the EEPROM. This word contains bits
926 	 * that determine the hardware's default PAUSE (flow control) mode,
927 	 * a bit that determines whether the HW defaults to enabling or
928 	 * disabling auto-negotiation, and the direction of the
929 	 * SW defined pins. If there is no SW over-ride of the flow
930 	 * control setting, then the variable hw->fc will
931 	 * be initialized based on a value in the EEPROM.
932 	 */
933 	if (hw->mac.type == igc_i350) {
934 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
935 		ret_val = hw->nvm.ops.read(hw,
936 					   NVM_INIT_CONTROL2_REG +
937 					   nvm_offset,
938 					   1, &nvm_data);
939 	} else {
940 		ret_val = hw->nvm.ops.read(hw,
941 					   NVM_INIT_CONTROL2_REG,
942 					   1, &nvm_data);
943 	}
944 
945 	if (ret_val) {
946 		DEBUGOUT("NVM Read Error\n");
947 		return ret_val;
948 	}
949 
950 	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
951 		hw->fc.requested_mode = igc_fc_none;
952 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
953 		 NVM_WORD0F_ASM_DIR)
954 		hw->fc.requested_mode = igc_fc_tx_pause;
955 	else
956 		hw->fc.requested_mode = igc_fc_full;
957 
958 	return IGC_SUCCESS;
959 }
960 
961 /**
962  *  igc_setup_link_generic - Setup flow control and link settings
963  *  @hw: pointer to the HW structure
964  *
965  *  Determines which flow control settings to use, then configures flow
966  *  control.  Calls the appropriate media-specific link configuration
967  *  function.  Assuming the adapter has a valid link partner, a valid link
968  *  should be established.  Assumes the hardware has previously been reset
969  *  and the transmitter and receiver are not enabled.
970  **/
igc_setup_link_generic(struct igc_hw * hw)971 s32 igc_setup_link_generic(struct igc_hw *hw)
972 {
973 	s32 ret_val;
974 
975 	DEBUGFUNC("igc_setup_link_generic");
976 
977 	/* In the case of the phy reset being blocked, we already have a link.
978 	 * We do not need to set it up again.
979 	 */
980 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
981 		return IGC_SUCCESS;
982 
983 	/* If requested flow control is set to default, set flow control
984 	 * based on the EEPROM flow control settings.
985 	 */
986 	if (hw->fc.requested_mode == igc_fc_default)
987 		hw->fc.requested_mode = igc_fc_full;
988 
989 	/* Save off the requested flow control mode for use later.  Depending
990 	 * on the link partner's capabilities, we may or may not use this mode.
991 	 */
992 	hw->fc.current_mode = hw->fc.requested_mode;
993 
994 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
995 		hw->fc.current_mode);
996 
997 	/* Call the necessary media_type subroutine to configure the link. */
998 	ret_val = hw->mac.ops.setup_physical_interface(hw);
999 	if (ret_val)
1000 		return ret_val;
1001 
1002 	/* Initialize the flow control address, type, and PAUSE timer
1003 	 * registers to their default values.  This is done even if flow
1004 	 * control is disabled, because it does not hurt anything to
1005 	 * initialize these registers.
1006 	 */
1007 	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1008 	IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
1009 	IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1010 	IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
1011 
1012 	IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
1013 
1014 	return igc_set_fc_watermarks_generic(hw);
1015 }
1016 
1017 /**
1018  *  igc_commit_fc_settings_generic - Configure flow control
1019  *  @hw: pointer to the HW structure
1020  *
1021  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
1022  *  base on the flow control settings in igc_mac_info.
1023  **/
igc_commit_fc_settings_generic(struct igc_hw * hw)1024 s32 igc_commit_fc_settings_generic(struct igc_hw *hw)
1025 {
1026 	struct igc_mac_info *mac = &hw->mac;
1027 	u32 txcw;
1028 
1029 	DEBUGFUNC("igc_commit_fc_settings_generic");
1030 
1031 	/* Check for a software override of the flow control settings, and
1032 	 * setup the device accordingly.  If auto-negotiation is enabled, then
1033 	 * software will have to set the "PAUSE" bits to the correct value in
1034 	 * the Transmit Config Word Register (TXCW) and re-start auto-
1035 	 * negotiation.  However, if auto-negotiation is disabled, then
1036 	 * software will have to manually configure the two flow control enable
1037 	 * bits in the CTRL register.
1038 	 *
1039 	 * The possible values of the "fc" parameter are:
1040 	 *      0:  Flow control is completely disabled
1041 	 *      1:  Rx flow control is enabled (we can receive pause frames,
1042 	 *          but not send pause frames).
1043 	 *      2:  Tx flow control is enabled (we can send pause frames but we
1044 	 *          do not support receiving pause frames).
1045 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1046 	 */
1047 	switch (hw->fc.current_mode) {
1048 	case igc_fc_none:
1049 		/* Flow control completely disabled by a software over-ride. */
1050 		txcw = (IGC_TXCW_ANE | IGC_TXCW_FD);
1051 		break;
1052 	case igc_fc_rx_pause:
1053 		/* Rx Flow control is enabled and Tx Flow control is disabled
1054 		 * by a software over-ride. Since there really isn't a way to
1055 		 * advertise that we are capable of Rx Pause ONLY, we will
1056 		 * advertise that we support both symmetric and asymmetric Rx
1057 		 * PAUSE.  Later, we will disable the adapter's ability to send
1058 		 * PAUSE frames.
1059 		 */
1060 		txcw = (IGC_TXCW_ANE | IGC_TXCW_FD | IGC_TXCW_PAUSE_MASK);
1061 		break;
1062 	case igc_fc_tx_pause:
1063 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
1064 		 * by a software over-ride.
1065 		 */
1066 		txcw = (IGC_TXCW_ANE | IGC_TXCW_FD | IGC_TXCW_ASM_DIR);
1067 		break;
1068 	case igc_fc_full:
1069 		/* Flow control (both Rx and Tx) is enabled by a software
1070 		 * over-ride.
1071 		 */
1072 		txcw = (IGC_TXCW_ANE | IGC_TXCW_FD | IGC_TXCW_PAUSE_MASK);
1073 		break;
1074 	default:
1075 		DEBUGOUT("Flow control param set incorrectly\n");
1076 		return -IGC_ERR_CONFIG;
1077 	}
1078 
1079 	IGC_WRITE_REG(hw, IGC_TXCW, txcw);
1080 	mac->txcw = txcw;
1081 
1082 	return IGC_SUCCESS;
1083 }
1084 
1085 /**
1086  *  igc_poll_fiber_serdes_link_generic - Poll for link up
1087  *  @hw: pointer to the HW structure
1088  *
1089  *  Polls for link up by reading the status register, if link fails to come
1090  *  up with auto-negotiation, then the link is forced if a signal is detected.
1091  **/
igc_poll_fiber_serdes_link_generic(struct igc_hw * hw)1092 s32 igc_poll_fiber_serdes_link_generic(struct igc_hw *hw)
1093 {
1094 	struct igc_mac_info *mac = &hw->mac;
1095 	u32 i, status;
1096 	s32 ret_val;
1097 
1098 	DEBUGFUNC("igc_poll_fiber_serdes_link_generic");
1099 
1100 	/* If we have a signal (the cable is plugged in, or assumed true for
1101 	 * serdes media) then poll for a "Link-Up" indication in the Device
1102 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
1103 	 * seconds (Auto-negotiation should complete in less than 500
1104 	 * milliseconds even if the other end is doing it in SW).
1105 	 */
1106 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1107 		msec_delay(10);
1108 		status = IGC_READ_REG(hw, IGC_STATUS);
1109 		if (status & IGC_STATUS_LU)
1110 			break;
1111 	}
1112 	if (i == FIBER_LINK_UP_LIMIT) {
1113 		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1114 		mac->autoneg_failed = true;
1115 		/* AutoNeg failed to achieve a link, so we'll call
1116 		 * mac->check_for_link. This routine will force the
1117 		 * link up if we detect a signal. This will allow us to
1118 		 * communicate with non-autonegotiating link partners.
1119 		 */
1120 		ret_val = mac->ops.check_for_link(hw);
1121 		if (ret_val) {
1122 			DEBUGOUT("Error while checking for link\n");
1123 			return ret_val;
1124 		}
1125 		mac->autoneg_failed = false;
1126 	} else {
1127 		mac->autoneg_failed = false;
1128 		DEBUGOUT("Valid Link Found\n");
1129 	}
1130 
1131 	return IGC_SUCCESS;
1132 }
1133 
1134 /**
1135  *  igc_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
1136  *  @hw: pointer to the HW structure
1137  *
1138  *  Configures collision distance and flow control for fiber and serdes
1139  *  links.  Upon successful setup, poll for link.
1140  **/
igc_setup_fiber_serdes_link_generic(struct igc_hw * hw)1141 s32 igc_setup_fiber_serdes_link_generic(struct igc_hw *hw)
1142 {
1143 	u32 ctrl;
1144 	s32 ret_val;
1145 
1146 	DEBUGFUNC("igc_setup_fiber_serdes_link_generic");
1147 
1148 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
1149 
1150 	/* Take the link out of reset */
1151 	ctrl &= ~IGC_CTRL_LRST;
1152 
1153 	hw->mac.ops.config_collision_dist(hw);
1154 
1155 	ret_val = igc_commit_fc_settings_generic(hw);
1156 	if (ret_val)
1157 		return ret_val;
1158 
1159 	/* Since auto-negotiation is enabled, take the link out of reset (the
1160 	 * link will be in reset, because we previously reset the chip). This
1161 	 * will restart auto-negotiation.  If auto-negotiation is successful
1162 	 * then the link-up status bit will be set and the flow control enable
1163 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
1164 	 */
1165 	DEBUGOUT("Auto-negotiation enabled\n");
1166 
1167 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
1168 	IGC_WRITE_FLUSH(hw);
1169 	msec_delay(1);
1170 
1171 	/* For these adapters, the SW definable pin 1 is set when the optics
1172 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
1173 	 * indication.
1174 	 */
1175 	if (hw->phy.media_type == igc_media_type_internal_serdes ||
1176 	    (IGC_READ_REG(hw, IGC_CTRL) & IGC_CTRL_SWDPIN1)) {
1177 		ret_val = igc_poll_fiber_serdes_link_generic(hw);
1178 	} else {
1179 		DEBUGOUT("No signal detected\n");
1180 	}
1181 
1182 	return ret_val;
1183 }
1184 
1185 /**
1186  *  igc_config_collision_dist_generic - Configure collision distance
1187  *  @hw: pointer to the HW structure
1188  *
1189  *  Configures the collision distance to the default value and is used
1190  *  during link setup.
1191  **/
igc_config_collision_dist_generic(struct igc_hw * hw)1192 static void igc_config_collision_dist_generic(struct igc_hw *hw)
1193 {
1194 	u32 tctl;
1195 
1196 	DEBUGFUNC("igc_config_collision_dist_generic");
1197 
1198 	tctl = IGC_READ_REG(hw, IGC_TCTL);
1199 
1200 	tctl &= ~IGC_TCTL_COLD;
1201 	tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
1202 
1203 	IGC_WRITE_REG(hw, IGC_TCTL, tctl);
1204 	IGC_WRITE_FLUSH(hw);
1205 }
1206 
1207 /**
1208  *  igc_set_fc_watermarks_generic - Set flow control high/low watermarks
1209  *  @hw: pointer to the HW structure
1210  *
1211  *  Sets the flow control high/low threshold (watermark) registers.  If
1212  *  flow control XON frame transmission is enabled, then set XON frame
1213  *  transmission as well.
1214  **/
igc_set_fc_watermarks_generic(struct igc_hw * hw)1215 s32 igc_set_fc_watermarks_generic(struct igc_hw *hw)
1216 {
1217 	u32 fcrtl = 0, fcrth = 0;
1218 
1219 	DEBUGFUNC("igc_set_fc_watermarks_generic");
1220 
1221 	/* Set the flow control receive threshold registers.  Normally,
1222 	 * these registers will be set to a default threshold that may be
1223 	 * adjusted later by the driver's runtime code.  However, if the
1224 	 * ability to transmit pause frames is not enabled, then these
1225 	 * registers will be set to 0.
1226 	 */
1227 	if (hw->fc.current_mode & igc_fc_tx_pause) {
1228 		/* We need to set up the Receive Threshold high and low water
1229 		 * marks as well as (optionally) enabling the transmission of
1230 		 * XON frames.
1231 		 */
1232 		fcrtl = hw->fc.low_water;
1233 		if (hw->fc.send_xon)
1234 			fcrtl |= IGC_FCRTL_XONE;
1235 
1236 		fcrth = hw->fc.high_water;
1237 	}
1238 	IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
1239 	IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
1240 
1241 	return IGC_SUCCESS;
1242 }
1243 
1244 /**
1245  *  igc_force_mac_fc_generic - Force the MAC's flow control settings
1246  *  @hw: pointer to the HW structure
1247  *
1248  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
1249  *  device control register to reflect the adapter settings.  TFCE and RFCE
1250  *  need to be explicitly set by software when a copper PHY is used because
1251  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
1252  *  also configure these bits when link is forced on a fiber connection.
1253  **/
igc_force_mac_fc_generic(struct igc_hw * hw)1254 s32 igc_force_mac_fc_generic(struct igc_hw *hw)
1255 {
1256 	u32 ctrl;
1257 
1258 	DEBUGFUNC("igc_force_mac_fc_generic");
1259 
1260 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
1261 
1262 	/* Because we didn't get link via the internal auto-negotiation
1263 	 * mechanism (we either forced link or we got link via PHY
1264 	 * auto-neg), we have to manually enable/disable transmit an
1265 	 * receive flow control.
1266 	 *
1267 	 * The "Case" statement below enables/disable flow control
1268 	 * according to the "hw->fc.current_mode" parameter.
1269 	 *
1270 	 * The possible values of the "fc" parameter are:
1271 	 *      0:  Flow control is completely disabled
1272 	 *      1:  Rx flow control is enabled (we can receive pause
1273 	 *          frames but not send pause frames).
1274 	 *      2:  Tx flow control is enabled (we can send pause frames
1275 	 *          frames but we do not receive pause frames).
1276 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1277 	 *  other:  No other values should be possible at this point.
1278 	 */
1279 	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1280 
1281 	switch (hw->fc.current_mode) {
1282 	case igc_fc_none:
1283 		ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
1284 		break;
1285 	case igc_fc_rx_pause:
1286 		ctrl &= (~IGC_CTRL_TFCE);
1287 		ctrl |= IGC_CTRL_RFCE;
1288 		break;
1289 	case igc_fc_tx_pause:
1290 		ctrl &= (~IGC_CTRL_RFCE);
1291 		ctrl |= IGC_CTRL_TFCE;
1292 		break;
1293 	case igc_fc_full:
1294 		ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
1295 		break;
1296 	default:
1297 		DEBUGOUT("Flow control param set incorrectly\n");
1298 		return -IGC_ERR_CONFIG;
1299 	}
1300 
1301 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
1302 
1303 	return IGC_SUCCESS;
1304 }
1305 
1306 /**
1307  *  igc_config_fc_after_link_up_generic - Configures flow control after link
1308  *  @hw: pointer to the HW structure
1309  *
1310  *  Checks the status of auto-negotiation after link up to ensure that the
1311  *  speed and duplex were not forced.  If the link needed to be forced, then
1312  *  flow control needs to be forced also.  If auto-negotiation is enabled
1313  *  and did not fail, then we configure flow control based on our link
1314  *  partner.
1315  **/
igc_config_fc_after_link_up_generic(struct igc_hw * hw)1316 s32 igc_config_fc_after_link_up_generic(struct igc_hw *hw)
1317 {
1318 	struct igc_mac_info *mac = &hw->mac;
1319 	s32 ret_val = IGC_SUCCESS;
1320 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1321 	u16 speed, duplex;
1322 
1323 	DEBUGFUNC("igc_config_fc_after_link_up_generic");
1324 
1325 	/* Check for the case where we have fiber media and auto-neg failed
1326 	 * so we had to force link.  In this case, we need to force the
1327 	 * configuration of the MAC to match the "fc" parameter.
1328 	 */
1329 	if (mac->autoneg_failed) {
1330 		if (hw->phy.media_type == igc_media_type_copper)
1331 			ret_val = igc_force_mac_fc_generic(hw);
1332 	}
1333 
1334 	if (ret_val) {
1335 		DEBUGOUT("Error forcing flow control settings\n");
1336 		return ret_val;
1337 	}
1338 
1339 	/* Check for the case where we have copper media and auto-neg is
1340 	 * enabled.  In this case, we need to check and see if Auto-Neg
1341 	 * has completed, and if so, how the PHY and link partner has
1342 	 * flow control configured.
1343 	 */
1344 	if (hw->phy.media_type == igc_media_type_copper && mac->autoneg) {
1345 		/* Read the MII Status Register and check to see if AutoNeg
1346 		 * has completed.  We read this twice because this reg has
1347 		 * some "sticky" (latched) bits.
1348 		 */
1349 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1350 		if (ret_val)
1351 			return ret_val;
1352 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1353 		if (ret_val)
1354 			return ret_val;
1355 
1356 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1357 			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
1358 			return ret_val;
1359 		}
1360 
1361 		/* The AutoNeg process has completed, so we now need to
1362 		 * read both the Auto Negotiation Advertisement
1363 		 * Register (Address 4) and the Auto_Negotiation Base
1364 		 * Page Ability Register (Address 5) to determine how
1365 		 * flow control was negotiated.
1366 		 */
1367 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
1368 					       &mii_nway_adv_reg);
1369 		if (ret_val)
1370 			return ret_val;
1371 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
1372 					       &mii_nway_lp_ability_reg);
1373 		if (ret_val)
1374 			return ret_val;
1375 
1376 		/* Two bits in the Auto Negotiation Advertisement Register
1377 		 * (Address 4) and two bits in the Auto Negotiation Base
1378 		 * Page Ability Register (Address 5) determine flow control
1379 		 * for both the PHY and the link partner.  The following
1380 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1381 		 * 1999, describes these PAUSE resolution bits and how flow
1382 		 * control is determined based upon these settings.
1383 		 * NOTE:  DC = Don't Care
1384 		 *
1385 		 *   LOCAL DEVICE  |   LINK PARTNER
1386 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1387 		 *-------|---------|-------|---------|--------------------
1388 		 *   0   |    0    |  DC   |   DC    | igc_fc_none
1389 		 *   0   |    1    |   0   |   DC    | igc_fc_none
1390 		 *   0   |    1    |   1   |    0    | igc_fc_none
1391 		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
1392 		 *   1   |    0    |   0   |   DC    | igc_fc_none
1393 		 *   1   |   DC    |   1   |   DC    | igc_fc_full
1394 		 *   1   |    1    |   0   |    0    | igc_fc_none
1395 		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
1396 		 *
1397 		 * Are both PAUSE bits set to 1?  If so, this implies
1398 		 * Symmetric Flow Control is enabled at both ends.  The
1399 		 * ASM_DIR bits are irrelevant per the spec.
1400 		 *
1401 		 * For Symmetric Flow Control:
1402 		 *
1403 		 *   LOCAL DEVICE  |   LINK PARTNER
1404 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1405 		 *-------|---------|-------|---------|--------------------
1406 		 *   1   |   DC    |   1   |   DC    | IGC_fc_full
1407 		 *
1408 		 */
1409 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1410 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1411 			/* Now we need to check if the user selected Rx ONLY
1412 			 * of pause frames.  In this case, we had to advertise
1413 			 * FULL flow control because we could not advertise Rx
1414 			 * ONLY. Hence, we must now check to see if we need to
1415 			 * turn OFF the TRANSMISSION of PAUSE frames.
1416 			 */
1417 			if (hw->fc.requested_mode == igc_fc_full) {
1418 				hw->fc.current_mode = igc_fc_full;
1419 				DEBUGOUT("Flow Control = FULL.\n");
1420 			} else {
1421 				hw->fc.current_mode = igc_fc_rx_pause;
1422 				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1423 			}
1424 		}
1425 		/* For receiving PAUSE frames ONLY.
1426 		 *
1427 		 *   LOCAL DEVICE  |   LINK PARTNER
1428 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1429 		 *-------|---------|-------|---------|--------------------
1430 		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
1431 		 */
1432 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1433 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1434 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1435 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1436 			hw->fc.current_mode = igc_fc_tx_pause;
1437 			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
1438 		}
1439 		/* For transmitting PAUSE frames ONLY.
1440 		 *
1441 		 *   LOCAL DEVICE  |   LINK PARTNER
1442 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1443 		 *-------|---------|-------|---------|--------------------
1444 		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
1445 		 */
1446 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1447 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1448 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1449 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1450 			hw->fc.current_mode = igc_fc_rx_pause;
1451 			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1452 		} else {
1453 			/* Per the IEEE spec, at this point flow control
1454 			 * should be disabled.
1455 			 */
1456 			hw->fc.current_mode = igc_fc_none;
1457 			DEBUGOUT("Flow Control = NONE.\n");
1458 		}
1459 
1460 		/* Now we need to do one last check...  If we auto-
1461 		 * negotiated to HALF DUPLEX, flow control should not be
1462 		 * enabled per IEEE 802.3 spec.
1463 		 */
1464 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1465 		if (ret_val) {
1466 			DEBUGOUT("Error getting link speed and duplex\n");
1467 			return ret_val;
1468 		}
1469 
1470 		if (duplex == HALF_DUPLEX)
1471 			hw->fc.current_mode = igc_fc_none;
1472 
1473 		/* Now we call a subroutine to actually force the MAC
1474 		 * controller to use the correct flow control settings.
1475 		 */
1476 		ret_val = igc_force_mac_fc_generic(hw);
1477 		if (ret_val) {
1478 			DEBUGOUT("Error forcing flow control settings\n");
1479 			return ret_val;
1480 		}
1481 	}
1482 
1483 	return IGC_SUCCESS;
1484 }
1485 
1486 /**
1487  *  igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1488  *  @hw: pointer to the HW structure
1489  *  @speed: stores the current speed
1490  *  @duplex: stores the current duplex
1491  *
1492  *  Read the status register for the current speed/duplex and store the current
1493  *  speed and duplex for copper connections.
1494  **/
igc_get_speed_and_duplex_copper_generic(struct igc_hw * hw,u16 * speed,u16 * duplex)1495 s32 igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, u16 *speed,
1496 					      u16 *duplex)
1497 {
1498 	u32 status;
1499 
1500 	DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
1501 
1502 	status = IGC_READ_REG(hw, IGC_STATUS);
1503 	if (status & IGC_STATUS_SPEED_1000) {
1504 		/* For I225, STATUS will indicate 1G speed in both 1 Gbps
1505 		 * and 2.5 Gbps link modes. An additional bit is used
1506 		 * to differentiate between 1 Gbps and 2.5 Gbps.
1507 		 */
1508 		if (hw->mac.type == igc_i225 &&
1509 		    (status & IGC_STATUS_SPEED_2500)) {
1510 			*speed = SPEED_2500;
1511 			DEBUGOUT("2500 Mbs, ");
1512 		} else {
1513 			*speed = SPEED_1000;
1514 			DEBUGOUT("1000 Mbs, ");
1515 		}
1516 	} else if (status & IGC_STATUS_SPEED_100) {
1517 		*speed = SPEED_100;
1518 		DEBUGOUT("100 Mbs, ");
1519 	} else {
1520 		*speed = SPEED_10;
1521 		DEBUGOUT("10 Mbs, ");
1522 	}
1523 
1524 	if (status & IGC_STATUS_FD) {
1525 		*duplex = FULL_DUPLEX;
1526 		DEBUGOUT("Full Duplex\n");
1527 	} else {
1528 		*duplex = HALF_DUPLEX;
1529 		DEBUGOUT("Half Duplex\n");
1530 	}
1531 
1532 	return IGC_SUCCESS;
1533 }
1534 
1535 /**
1536  *  igc_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1537  *  @hw: pointer to the HW structure
1538  *  @speed: stores the current speed
1539  *  @duplex: stores the current duplex
1540  *
1541  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1542  *  for fiber/serdes links.
1543  **/
1544 s32
igc_get_speed_and_duplex_fiber_serdes_generic(struct igc_hw * hw,u16 * speed,u16 * duplex)1545 igc_get_speed_and_duplex_fiber_serdes_generic(struct igc_hw *hw,
1546 				u16 *speed, u16 *duplex)
1547 {
1548 	DEBUGFUNC("igc_get_speed_and_duplex_fiber_serdes_generic");
1549 	UNREFERENCED_1PARAMETER(hw);
1550 
1551 	*speed = SPEED_1000;
1552 	*duplex = FULL_DUPLEX;
1553 
1554 	return IGC_SUCCESS;
1555 }
1556 
1557 /**
1558  *  igc_get_hw_semaphore_generic - Acquire hardware semaphore
1559  *  @hw: pointer to the HW structure
1560  *
1561  *  Acquire the HW semaphore to access the PHY or NVM
1562  **/
igc_get_hw_semaphore_generic(struct igc_hw * hw)1563 s32 igc_get_hw_semaphore_generic(struct igc_hw *hw)
1564 {
1565 	u32 swsm;
1566 	s32 timeout = hw->nvm.word_size + 1;
1567 	s32 i = 0;
1568 
1569 	DEBUGFUNC("igc_get_hw_semaphore_generic");
1570 
1571 	/* Get the SW semaphore */
1572 	while (i < timeout) {
1573 		swsm = IGC_READ_REG(hw, IGC_SWSM);
1574 		if (!(swsm & IGC_SWSM_SMBI))
1575 			break;
1576 
1577 		usec_delay(50);
1578 		i++;
1579 	}
1580 
1581 	if (i == timeout) {
1582 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1583 		return -IGC_ERR_NVM;
1584 	}
1585 
1586 	/* Get the FW semaphore. */
1587 	for (i = 0; i < timeout; i++) {
1588 		swsm = IGC_READ_REG(hw, IGC_SWSM);
1589 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
1590 
1591 		/* Semaphore acquired if bit latched */
1592 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
1593 			break;
1594 
1595 		usec_delay(50);
1596 	}
1597 
1598 	if (i == timeout) {
1599 		/* Release semaphores */
1600 		igc_put_hw_semaphore_generic(hw);
1601 		DEBUGOUT("Driver can't access the NVM\n");
1602 		return -IGC_ERR_NVM;
1603 	}
1604 
1605 	return IGC_SUCCESS;
1606 }
1607 
1608 /**
1609  *  igc_put_hw_semaphore_generic - Release hardware semaphore
1610  *  @hw: pointer to the HW structure
1611  *
1612  *  Release hardware semaphore used to access the PHY or NVM
1613  **/
igc_put_hw_semaphore_generic(struct igc_hw * hw)1614 void igc_put_hw_semaphore_generic(struct igc_hw *hw)
1615 {
1616 	u32 swsm;
1617 
1618 	DEBUGFUNC("igc_put_hw_semaphore_generic");
1619 
1620 	swsm = IGC_READ_REG(hw, IGC_SWSM);
1621 
1622 	swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
1623 
1624 	IGC_WRITE_REG(hw, IGC_SWSM, swsm);
1625 }
1626 
1627 /**
1628  *  igc_get_auto_rd_done_generic - Check for auto read completion
1629  *  @hw: pointer to the HW structure
1630  *
1631  *  Check EEPROM for Auto Read done bit.
1632  **/
igc_get_auto_rd_done_generic(struct igc_hw * hw)1633 s32 igc_get_auto_rd_done_generic(struct igc_hw *hw)
1634 {
1635 	s32 i = 0;
1636 
1637 	DEBUGFUNC("igc_get_auto_rd_done_generic");
1638 
1639 	while (i < AUTO_READ_DONE_TIMEOUT) {
1640 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
1641 			break;
1642 		msec_delay(1);
1643 		i++;
1644 	}
1645 
1646 	if (i == AUTO_READ_DONE_TIMEOUT) {
1647 		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1648 		return -IGC_ERR_RESET;
1649 	}
1650 
1651 	return IGC_SUCCESS;
1652 }
1653 
1654 /**
1655  *  igc_valid_led_default_generic - Verify a valid default LED config
1656  *  @hw: pointer to the HW structure
1657  *  @data: pointer to the NVM (EEPROM)
1658  *
1659  *  Read the EEPROM for the current default LED configuration.  If the
1660  *  LED configuration is not valid, set to a valid LED configuration.
1661  **/
igc_valid_led_default_generic(struct igc_hw * hw,u16 * data)1662 s32 igc_valid_led_default_generic(struct igc_hw *hw, u16 *data)
1663 {
1664 	s32 ret_val;
1665 
1666 	DEBUGFUNC("igc_valid_led_default_generic");
1667 
1668 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1669 	if (ret_val) {
1670 		DEBUGOUT("NVM Read Error\n");
1671 		return ret_val;
1672 	}
1673 
1674 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1675 		*data = ID_LED_DEFAULT;
1676 
1677 	return IGC_SUCCESS;
1678 }
1679 
1680 /**
1681  *  igc_id_led_init_generic -
1682  *  @hw: pointer to the HW structure
1683  *
1684  **/
igc_id_led_init_generic(struct igc_hw * hw)1685 s32 igc_id_led_init_generic(struct igc_hw *hw)
1686 {
1687 	struct igc_mac_info *mac = &hw->mac;
1688 	s32 ret_val;
1689 	const u32 ledctl_mask = 0x000000FF;
1690 	const u32 ledctl_on = IGC_LEDCTL_MODE_LED_ON;
1691 	const u32 ledctl_off = IGC_LEDCTL_MODE_LED_OFF;
1692 	u16 data, i, temp;
1693 	const u16 led_mask = 0x0F;
1694 
1695 	DEBUGFUNC("igc_id_led_init_generic");
1696 
1697 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1698 	if (ret_val)
1699 		return ret_val;
1700 
1701 	mac->ledctl_default = IGC_READ_REG(hw, IGC_LEDCTL);
1702 	mac->ledctl_mode1 = mac->ledctl_default;
1703 	mac->ledctl_mode2 = mac->ledctl_default;
1704 
1705 	for (i = 0; i < 4; i++) {
1706 		temp = (data >> (i << 2)) & led_mask;
1707 		switch (temp) {
1708 		case ID_LED_ON1_DEF2:
1709 		case ID_LED_ON1_ON2:
1710 		case ID_LED_ON1_OFF2:
1711 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1712 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1713 			break;
1714 		case ID_LED_OFF1_DEF2:
1715 		case ID_LED_OFF1_ON2:
1716 		case ID_LED_OFF1_OFF2:
1717 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1718 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1719 			break;
1720 		default:
1721 			/* Do nothing */
1722 			break;
1723 		}
1724 		switch (temp) {
1725 		case ID_LED_DEF1_ON2:
1726 		case ID_LED_ON1_ON2:
1727 		case ID_LED_OFF1_ON2:
1728 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1729 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1730 			break;
1731 		case ID_LED_DEF1_OFF2:
1732 		case ID_LED_ON1_OFF2:
1733 		case ID_LED_OFF1_OFF2:
1734 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1735 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1736 			break;
1737 		default:
1738 			/* Do nothing */
1739 			break;
1740 		}
1741 	}
1742 
1743 	return IGC_SUCCESS;
1744 }
1745 
1746 /**
1747  *  igc_setup_led_generic - Configures SW controllable LED
1748  *  @hw: pointer to the HW structure
1749  *
1750  *  This prepares the SW controllable LED for use and saves the current state
1751  *  of the LED so it can be later restored.
1752  **/
igc_setup_led_generic(struct igc_hw * hw)1753 s32 igc_setup_led_generic(struct igc_hw *hw)
1754 {
1755 	u32 ledctl;
1756 
1757 	DEBUGFUNC("igc_setup_led_generic");
1758 
1759 	if (hw->mac.ops.setup_led != igc_setup_led_generic)
1760 		return -IGC_ERR_CONFIG;
1761 
1762 	if (hw->phy.media_type == igc_media_type_fiber) {
1763 		ledctl = IGC_READ_REG(hw, IGC_LEDCTL);
1764 		hw->mac.ledctl_default = ledctl;
1765 		/* Turn off LED0 */
1766 		ledctl &= ~(IGC_LEDCTL_LED0_IVRT | IGC_LEDCTL_LED0_BLINK |
1767 			    IGC_LEDCTL_LED0_MODE_MASK);
1768 		ledctl |= (IGC_LEDCTL_MODE_LED_OFF <<
1769 			   IGC_LEDCTL_LED0_MODE_SHIFT);
1770 		IGC_WRITE_REG(hw, IGC_LEDCTL, ledctl);
1771 	} else if (hw->phy.media_type == igc_media_type_copper) {
1772 		IGC_WRITE_REG(hw, IGC_LEDCTL, hw->mac.ledctl_mode1);
1773 	}
1774 
1775 	return IGC_SUCCESS;
1776 }
1777 
1778 /**
1779  *  igc_cleanup_led_generic - Set LED config to default operation
1780  *  @hw: pointer to the HW structure
1781  *
1782  *  Remove the current LED configuration and set the LED configuration
1783  *  to the default value, saved from the EEPROM.
1784  **/
igc_cleanup_led_generic(struct igc_hw * hw)1785 s32 igc_cleanup_led_generic(struct igc_hw *hw)
1786 {
1787 	DEBUGFUNC("igc_cleanup_led_generic");
1788 
1789 	IGC_WRITE_REG(hw, IGC_LEDCTL, hw->mac.ledctl_default);
1790 	return IGC_SUCCESS;
1791 }
1792 
1793 /**
1794  *  igc_blink_led_generic - Blink LED
1795  *  @hw: pointer to the HW structure
1796  *
1797  *  Blink the LEDs which are set to be on.
1798  **/
igc_blink_led_generic(struct igc_hw * hw)1799 s32 igc_blink_led_generic(struct igc_hw *hw)
1800 {
1801 	u32 ledctl_blink = 0;
1802 	u32 i;
1803 
1804 	DEBUGFUNC("igc_blink_led_generic");
1805 
1806 	if (hw->phy.media_type == igc_media_type_fiber) {
1807 		/* always blink LED0 for PCI-E fiber */
1808 		ledctl_blink = IGC_LEDCTL_LED0_BLINK |
1809 		     (IGC_LEDCTL_MODE_LED_ON << IGC_LEDCTL_LED0_MODE_SHIFT);
1810 	} else {
1811 		/* Set the blink bit for each LED that's "on" (0x0E)
1812 		 * (or "off" if inverted) in ledctl_mode2.  The blink
1813 		 * logic in hardware only works when mode is set to "on"
1814 		 * so it must be changed accordingly when the mode is
1815 		 * "off" and inverted.
1816 		 */
1817 		ledctl_blink = hw->mac.ledctl_mode2;
1818 		for (i = 0; i < 32; i += 8) {
1819 			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1820 			    IGC_LEDCTL_LED0_MODE_MASK;
1821 			u32 led_default = hw->mac.ledctl_default >> i;
1822 
1823 			if ((!(led_default & IGC_LEDCTL_LED0_IVRT) &&
1824 			     mode == IGC_LEDCTL_MODE_LED_ON) ||
1825 			    ((led_default & IGC_LEDCTL_LED0_IVRT) &&
1826 			     mode == IGC_LEDCTL_MODE_LED_OFF)) {
1827 				ledctl_blink &=
1828 				    ~(IGC_LEDCTL_LED0_MODE_MASK << i);
1829 				ledctl_blink |= (IGC_LEDCTL_LED0_BLINK |
1830 						 IGC_LEDCTL_MODE_LED_ON) << i;
1831 			}
1832 		}
1833 	}
1834 
1835 	IGC_WRITE_REG(hw, IGC_LEDCTL, ledctl_blink);
1836 
1837 	return IGC_SUCCESS;
1838 }
1839 
1840 /**
1841  *  igc_led_on_generic - Turn LED on
1842  *  @hw: pointer to the HW structure
1843  *
1844  *  Turn LED on.
1845  **/
igc_led_on_generic(struct igc_hw * hw)1846 s32 igc_led_on_generic(struct igc_hw *hw)
1847 {
1848 	u32 ctrl;
1849 
1850 	DEBUGFUNC("igc_led_on_generic");
1851 
1852 	switch (hw->phy.media_type) {
1853 	case igc_media_type_fiber:
1854 		ctrl = IGC_READ_REG(hw, IGC_CTRL);
1855 		ctrl &= ~IGC_CTRL_SWDPIN0;
1856 		ctrl |= IGC_CTRL_SWDPIO0;
1857 		IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
1858 		break;
1859 	case igc_media_type_copper:
1860 		IGC_WRITE_REG(hw, IGC_LEDCTL, hw->mac.ledctl_mode2);
1861 		break;
1862 	default:
1863 		break;
1864 	}
1865 
1866 	return IGC_SUCCESS;
1867 }
1868 
1869 /**
1870  *  igc_led_off_generic - Turn LED off
1871  *  @hw: pointer to the HW structure
1872  *
1873  *  Turn LED off.
1874  **/
igc_led_off_generic(struct igc_hw * hw)1875 s32 igc_led_off_generic(struct igc_hw *hw)
1876 {
1877 	u32 ctrl;
1878 
1879 	DEBUGFUNC("igc_led_off_generic");
1880 
1881 	switch (hw->phy.media_type) {
1882 	case igc_media_type_fiber:
1883 		ctrl = IGC_READ_REG(hw, IGC_CTRL);
1884 		ctrl |= IGC_CTRL_SWDPIN0;
1885 		ctrl |= IGC_CTRL_SWDPIO0;
1886 		IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
1887 		break;
1888 	case igc_media_type_copper:
1889 		IGC_WRITE_REG(hw, IGC_LEDCTL, hw->mac.ledctl_mode1);
1890 		break;
1891 	default:
1892 		break;
1893 	}
1894 
1895 	return IGC_SUCCESS;
1896 }
1897 
1898 /**
1899  *  igc_set_pcie_no_snoop_generic - Set PCI-express capabilities
1900  *  @hw: pointer to the HW structure
1901  *  @no_snoop: bitmap of snoop events
1902  *
1903  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1904  **/
igc_set_pcie_no_snoop_generic(struct igc_hw * hw,u32 no_snoop)1905 void igc_set_pcie_no_snoop_generic(struct igc_hw *hw, u32 no_snoop)
1906 {
1907 	u32 gcr;
1908 
1909 	DEBUGFUNC("igc_set_pcie_no_snoop_generic");
1910 
1911 	if (hw->bus.type != igc_bus_type_pci_express)
1912 		return;
1913 
1914 	if (no_snoop) {
1915 		gcr = IGC_READ_REG(hw, IGC_GCR);
1916 		gcr &= ~(PCIE_NO_SNOOP_ALL);
1917 		gcr |= no_snoop;
1918 		IGC_WRITE_REG(hw, IGC_GCR, gcr);
1919 	}
1920 }
1921 
1922 /**
1923  *  igc_disable_pcie_master_generic - Disables PCI-express master access
1924  *  @hw: pointer to the HW structure
1925  *
1926  *  Returns IGC_SUCCESS if successful, else returns -10
1927  *  (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1928  *  the master requests to be disabled.
1929  *
1930  *  Disables PCI-Express master access and verifies there are no pending
1931  *  requests.
1932  **/
igc_disable_pcie_master_generic(struct igc_hw * hw)1933 s32 igc_disable_pcie_master_generic(struct igc_hw *hw)
1934 {
1935 	u32 ctrl;
1936 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1937 
1938 	DEBUGFUNC("igc_disable_pcie_master_generic");
1939 
1940 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
1941 	ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
1942 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
1943 
1944 	while (timeout) {
1945 		if (!(IGC_READ_REG(hw, IGC_STATUS) &
1946 		      IGC_STATUS_GIO_MASTER_ENABLE) ||
1947 				IGC_REMOVED(hw->hw_addr))
1948 			break;
1949 		usec_delay(100);
1950 		timeout--;
1951 	}
1952 
1953 	if (!timeout) {
1954 		DEBUGOUT("Master requests are pending.\n");
1955 		return -IGC_ERR_MASTER_REQUESTS_PENDING;
1956 	}
1957 
1958 	return IGC_SUCCESS;
1959 }
1960 
1961 /**
1962  *  igc_reset_adaptive_generic - Reset Adaptive Interframe Spacing
1963  *  @hw: pointer to the HW structure
1964  *
1965  *  Reset the Adaptive Interframe Spacing throttle to default values.
1966  **/
igc_reset_adaptive_generic(struct igc_hw * hw)1967 void igc_reset_adaptive_generic(struct igc_hw *hw)
1968 {
1969 	struct igc_mac_info *mac = &hw->mac;
1970 
1971 	DEBUGFUNC("igc_reset_adaptive_generic");
1972 
1973 	if (!mac->adaptive_ifs) {
1974 		DEBUGOUT("Not in Adaptive IFS mode!\n");
1975 		return;
1976 	}
1977 
1978 	mac->current_ifs_val = 0;
1979 	mac->ifs_min_val = IFS_MIN;
1980 	mac->ifs_max_val = IFS_MAX;
1981 	mac->ifs_step_size = IFS_STEP;
1982 	mac->ifs_ratio = IFS_RATIO;
1983 
1984 	mac->in_ifs_mode = false;
1985 	IGC_WRITE_REG(hw, IGC_AIT, 0);
1986 }
1987 
1988 /**
1989  *  igc_update_adaptive_generic - Update Adaptive Interframe Spacing
1990  *  @hw: pointer to the HW structure
1991  *
1992  *  Update the Adaptive Interframe Spacing Throttle value based on the
1993  *  time between transmitted packets and time between collisions.
1994  **/
igc_update_adaptive_generic(struct igc_hw * hw)1995 void igc_update_adaptive_generic(struct igc_hw *hw)
1996 {
1997 	struct igc_mac_info *mac = &hw->mac;
1998 
1999 	DEBUGFUNC("igc_update_adaptive_generic");
2000 
2001 	if (!mac->adaptive_ifs) {
2002 		DEBUGOUT("Not in Adaptive IFS mode!\n");
2003 		return;
2004 	}
2005 
2006 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
2007 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
2008 			mac->in_ifs_mode = true;
2009 			if (mac->current_ifs_val < mac->ifs_max_val) {
2010 				if (!mac->current_ifs_val)
2011 					mac->current_ifs_val = mac->ifs_min_val;
2012 				else
2013 					mac->current_ifs_val +=
2014 						mac->ifs_step_size;
2015 				IGC_WRITE_REG(hw, IGC_AIT,
2016 						mac->current_ifs_val);
2017 			}
2018 		}
2019 	} else {
2020 		if (mac->in_ifs_mode &&
2021 		    mac->tx_packet_delta <= MIN_NUM_XMITS) {
2022 			mac->current_ifs_val = 0;
2023 			mac->in_ifs_mode = false;
2024 			IGC_WRITE_REG(hw, IGC_AIT, 0);
2025 		}
2026 	}
2027 }
2028 
2029 /**
2030  *  igc_validate_mdi_setting_generic - Verify MDI/MDIx settings
2031  *  @hw: pointer to the HW structure
2032  *
2033  *  Verify that when not using auto-negotiation that MDI/MDIx is correctly
2034  *  set, which is forced to MDI mode only.
2035  **/
igc_validate_mdi_setting_generic(struct igc_hw * hw)2036 static s32 igc_validate_mdi_setting_generic(struct igc_hw *hw)
2037 {
2038 	DEBUGFUNC("igc_validate_mdi_setting_generic");
2039 
2040 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
2041 		DEBUGOUT("Invalid MDI setting detected\n");
2042 		hw->phy.mdix = 1;
2043 		return -IGC_ERR_CONFIG;
2044 	}
2045 
2046 	return IGC_SUCCESS;
2047 }
2048 
2049 /**
2050  *  igc_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
2051  *  @hw: pointer to the HW structure
2052  *
2053  *  Validate the MDI/MDIx setting, allowing for auto-crossover during forced
2054  *  operation.
2055  **/
2056 s32
igc_validate_mdi_setting_crossover_generic(struct igc_hw IGC_UNUSEDARG * hw)2057 igc_validate_mdi_setting_crossover_generic(struct igc_hw IGC_UNUSEDARG * hw)
2058 {
2059 	DEBUGFUNC("igc_validate_mdi_setting_crossover_generic");
2060 	UNREFERENCED_1PARAMETER(hw);
2061 
2062 	return IGC_SUCCESS;
2063 }
2064 
2065 /**
2066  *  igc_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
2067  *  @hw: pointer to the HW structure
2068  *  @reg: 32bit register offset such as IGC_SCTL
2069  *  @offset: register offset to write to
2070  *  @data: data to write at register offset
2071  *
2072  *  Writes an address/data control type register.  There are several of these
2073  *  and they all have the format address << 8 | data and bit 31 is polled for
2074  *  completion.
2075  **/
igc_write_8bit_ctrl_reg_generic(struct igc_hw * hw,u32 reg,u32 offset,u8 data)2076 s32 igc_write_8bit_ctrl_reg_generic(struct igc_hw *hw, u32 reg,
2077 				      u32 offset, u8 data)
2078 {
2079 	u32 i, regvalue = 0;
2080 
2081 	DEBUGFUNC("igc_write_8bit_ctrl_reg_generic");
2082 
2083 	/* Set up the address and data */
2084 	regvalue = ((u32)data) | (offset << IGC_GEN_CTL_ADDRESS_SHIFT);
2085 	IGC_WRITE_REG(hw, reg, regvalue);
2086 
2087 	/* Poll the ready bit to see if the MDI read completed */
2088 	for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
2089 		usec_delay(5);
2090 		regvalue = IGC_READ_REG(hw, reg);
2091 		if (regvalue & IGC_GEN_CTL_READY)
2092 			break;
2093 	}
2094 	if (!(regvalue & IGC_GEN_CTL_READY)) {
2095 		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
2096 		return -IGC_ERR_PHY;
2097 	}
2098 
2099 	return IGC_SUCCESS;
2100 }
2101