xref: /dpdk/drivers/net/ice/ice_rxtx_vec_sse.c (revision 7be78d02)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4 
5 #include "ice_rxtx_vec_common.h"
6 
7 #include <tmmintrin.h>
8 
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12 
13 static inline __m128i
ice_flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)14 ice_flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
15 {
16 #define FDID_MIS_MAGIC 0xFFFFFFFF
17 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
18 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
19 	const __m128i pkt_fdir_bit = _mm_set1_epi32(RTE_MBUF_F_RX_FDIR |
20 			RTE_MBUF_F_RX_FDIR_ID);
21 	/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
22 	const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
23 	__m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
24 			fdir_mis_mask);
25 	/* this XOR op results to bit-reverse the fdir_mask */
26 	fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
27 	const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
28 
29 	return fdir_flags;
30 }
31 
32 static inline void
ice_rxq_rearm(struct ice_rx_queue * rxq)33 ice_rxq_rearm(struct ice_rx_queue *rxq)
34 {
35 	int i;
36 	uint16_t rx_id;
37 	volatile union ice_rx_flex_desc *rxdp;
38 	struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
39 	struct rte_mbuf *mb0, *mb1;
40 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
41 					  RTE_PKTMBUF_HEADROOM);
42 	__m128i dma_addr0, dma_addr1;
43 
44 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
45 
46 	/* Pull 'n' more MBUFs into the software ring */
47 	if (rte_mempool_get_bulk(rxq->mp,
48 				 (void *)rxep,
49 				 ICE_RXQ_REARM_THRESH) < 0) {
50 		if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
51 		    rxq->nb_rx_desc) {
52 			dma_addr0 = _mm_setzero_si128();
53 			for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
54 				rxep[i].mbuf = &rxq->fake_mbuf;
55 				_mm_store_si128((__m128i *)&rxdp[i].read,
56 						dma_addr0);
57 			}
58 		}
59 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
60 			ICE_RXQ_REARM_THRESH;
61 		return;
62 	}
63 
64 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
65 	for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
66 		__m128i vaddr0, vaddr1;
67 
68 		mb0 = rxep[0].mbuf;
69 		mb1 = rxep[1].mbuf;
70 
71 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
72 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
73 				 offsetof(struct rte_mbuf, buf_addr) + 8);
74 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
75 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
76 
77 		/* convert pa to dma_addr hdr/data */
78 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
79 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
80 
81 		/* add headroom to pa values */
82 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
83 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
84 
85 		/* flush desc with pa dma_addr */
86 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
87 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
88 	}
89 
90 	rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
91 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
92 		rxq->rxrearm_start = 0;
93 
94 	rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
95 
96 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
97 			   (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
98 
99 	/* Update the tail pointer on the NIC */
100 	ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
101 }
102 
103 static inline void
ice_rx_desc_to_olflags_v(struct ice_rx_queue * rxq,__m128i descs[4],struct rte_mbuf ** rx_pkts)104 ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
105 			 struct rte_mbuf **rx_pkts)
106 {
107 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
108 	__m128i rearm0, rearm1, rearm2, rearm3;
109 
110 	__m128i tmp_desc, flags, rss_vlan;
111 
112 	/* mask everything except checksum, RSS and VLAN flags.
113 	 * bit6:4 for checksum.
114 	 * bit12 for RSS indication.
115 	 * bit13 for VLAN indication.
116 	 */
117 	const __m128i desc_mask = _mm_set_epi32(0x30f0, 0x30f0,
118 						0x30f0, 0x30f0);
119 	const __m128i cksum_mask = _mm_set_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
120 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
121 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
122 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
123 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
124 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
125 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
126 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
127 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
128 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
129 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
130 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
131 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
132 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
133 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
134 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
135 
136 	/* map the checksum, rss and vlan fields to the checksum, rss
137 	 * and vlan flag
138 	 */
139 	const __m128i cksum_flags =
140 		_mm_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
141 		 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
142 		  RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
143 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
144 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
145 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
146 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
147 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
148 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
149 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
150 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
151 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
152 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
153 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
154 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
155 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
156 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
157 		/**
158 		 * shift right 20 bits to use the low two bits to indicate
159 		 * outer checksum status
160 		 * shift right 1 bit to make sure it not exceed 255
161 		 */
162 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
163 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
164 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
165 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
166 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
167 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
168 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
169 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
170 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
171 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
172 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
173 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
174 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
175 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
176 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
177 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
178 
179 	const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
180 			0, 0, 0, 0,
181 			0, 0, 0, 0,
182 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
183 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
184 			RTE_MBUF_F_RX_RSS_HASH, 0);
185 
186 	/* merge 4 descriptors */
187 	flags = _mm_unpackhi_epi32(descs[0], descs[1]);
188 	tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
189 	tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
190 	tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
191 
192 	/* checksum flags */
193 	tmp_desc = _mm_srli_epi32(tmp_desc, 4);
194 	flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
195 	/* then we shift left 1 bit */
196 	flags = _mm_slli_epi32(flags, 1);
197 
198 	__m128i l4_outer_mask = _mm_set_epi32(0x6, 0x6, 0x6, 0x6);
199 	__m128i l4_outer_flags = _mm_and_si128(flags, l4_outer_mask);
200 	l4_outer_flags = _mm_slli_epi32(l4_outer_flags, 20);
201 
202 	__m128i l3_l4_mask = _mm_set_epi32(~0x6, ~0x6, ~0x6, ~0x6);
203 	__m128i l3_l4_flags = _mm_and_si128(flags, l3_l4_mask);
204 	flags = _mm_or_si128(l3_l4_flags, l4_outer_flags);
205 	/* we need to mask out the redundant bits introduced by RSS or
206 	 * VLAN fields.
207 	 */
208 	flags = _mm_and_si128(flags, cksum_mask);
209 
210 	/* RSS, VLAN flag */
211 	tmp_desc = _mm_srli_epi32(tmp_desc, 8);
212 	rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
213 
214 	/* merge the flags */
215 	flags = _mm_or_si128(flags, rss_vlan);
216 
217 	if (rxq->fdir_enabled) {
218 		const __m128i fdir_id0_1 =
219 			_mm_unpackhi_epi32(descs[0], descs[1]);
220 
221 		const __m128i fdir_id2_3 =
222 			_mm_unpackhi_epi32(descs[2], descs[3]);
223 
224 		const __m128i fdir_id0_3 =
225 			_mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
226 
227 		const __m128i fdir_flags =
228 			ice_flex_rxd_to_fdir_flags_vec(fdir_id0_3);
229 
230 		/* merge with fdir_flags */
231 		flags = _mm_or_si128(flags, fdir_flags);
232 
233 		/* write fdir_id to mbuf */
234 		rx_pkts[0]->hash.fdir.hi =
235 			_mm_extract_epi32(fdir_id0_3, 0);
236 
237 		rx_pkts[1]->hash.fdir.hi =
238 			_mm_extract_epi32(fdir_id0_3, 1);
239 
240 		rx_pkts[2]->hash.fdir.hi =
241 			_mm_extract_epi32(fdir_id0_3, 2);
242 
243 		rx_pkts[3]->hash.fdir.hi =
244 			_mm_extract_epi32(fdir_id0_3, 3);
245 	} /* if() on fdir_enabled */
246 
247 	/**
248 	 * At this point, we have the 4 sets of flags in the low 16-bits
249 	 * of each 32-bit value in flags.
250 	 * We want to extract these, and merge them with the mbuf init data
251 	 * so we can do a single 16-byte write to the mbuf to set the flags
252 	 * and all the other initialization fields. Extracting the
253 	 * appropriate flags means that we have to do a shift and blend for
254 	 * each mbuf before we do the write.
255 	 */
256 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x30);
257 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x30);
258 	rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x30);
259 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x30);
260 
261 	/* write the rearm data and the olflags in one write */
262 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
263 			 offsetof(struct rte_mbuf, rearm_data) + 8);
264 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
265 			 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
266 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
267 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
268 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
269 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
270 }
271 
272 static inline void
ice_rx_desc_to_ptype_v(__m128i descs[4],struct rte_mbuf ** rx_pkts,uint32_t * ptype_tbl)273 ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
274 		       uint32_t *ptype_tbl)
275 {
276 	const __m128i ptype_mask = _mm_set_epi16(ICE_RX_FLEX_DESC_PTYPE_M, 0,
277 						 ICE_RX_FLEX_DESC_PTYPE_M, 0,
278 						 ICE_RX_FLEX_DESC_PTYPE_M, 0,
279 						 ICE_RX_FLEX_DESC_PTYPE_M, 0);
280 	__m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
281 	__m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
282 	__m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
283 
284 	ptype_all = _mm_and_si128(ptype_all, ptype_mask);
285 
286 	rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 1)];
287 	rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 3)];
288 	rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 5)];
289 	rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 7)];
290 }
291 
292 /**
293  * vPMD raw receive routine, only accept(nb_pkts >= ICE_DESCS_PER_LOOP)
294  *
295  * Notice:
296  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
297  * - floor align nb_pkts to a ICE_DESCS_PER_LOOP power-of-two
298  */
299 static inline uint16_t
_ice_recv_raw_pkts_vec(struct ice_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts,uint8_t * split_packet)300 _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
301 		       uint16_t nb_pkts, uint8_t *split_packet)
302 {
303 	volatile union ice_rx_flex_desc *rxdp;
304 	struct ice_rx_entry *sw_ring;
305 	uint16_t nb_pkts_recd;
306 	int pos;
307 	uint64_t var;
308 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
309 	__m128i crc_adjust = _mm_set_epi16
310 				(0, 0, 0,       /* ignore non-length fields */
311 				 -rxq->crc_len, /* sub crc on data_len */
312 				 0,          /* ignore high-16bits of pkt_len */
313 				 -rxq->crc_len, /* sub crc on pkt_len */
314 				 0, 0           /* ignore pkt_type field */
315 				);
316 	const __m128i zero = _mm_setzero_si128();
317 	/* mask to shuffle from desc. to mbuf */
318 	const __m128i shuf_msk = _mm_set_epi8
319 			(0xFF, 0xFF,
320 			 0xFF, 0xFF,  /* rss hash parsed separately */
321 			 11, 10,      /* octet 10~11, 16 bits vlan_macip */
322 			 5, 4,        /* octet 4~5, 16 bits data_len */
323 			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
324 			 5, 4,        /* octet 4~5, low 16 bits pkt_len */
325 			 0xFF, 0xFF,  /* pkt_type set as unknown */
326 			 0xFF, 0xFF   /* pkt_type set as unknown */
327 			);
328 	const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
329 						   0xFF, 0xFF,
330 						   0xFF, 0xFF,
331 						   0xFF, 0xFF,
332 						   0xFF, 0xFF,
333 						   0xFF, 0xFF,
334 						   0x04, 0x0C,
335 						   0x00, 0x08);
336 
337 	/**
338 	 * compile-time check the above crc_adjust layout is correct.
339 	 * NOTE: the first field (lowest address) is given last in set_epi16
340 	 * call above.
341 	 */
342 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
343 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
344 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
345 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
346 
347 	/* 4 packets DD mask */
348 	const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
349 						0x0000000100000001LL);
350 	/* 4 packets EOP mask */
351 	const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
352 						 0x0000000200000002LL);
353 
354 	/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP */
355 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP);
356 
357 	/* Just the act of getting into the function from the application is
358 	 * going to cost about 7 cycles
359 	 */
360 	rxdp = rxq->rx_ring + rxq->rx_tail;
361 
362 	rte_prefetch0(rxdp);
363 
364 	/* See if we need to rearm the RX queue - gives the prefetch a bit
365 	 * of time to act
366 	 */
367 	if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
368 		ice_rxq_rearm(rxq);
369 
370 	/* Before we start moving massive data around, check to see if
371 	 * there is actually a packet available
372 	 */
373 	if (!(rxdp->wb.status_error0 &
374 	      rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
375 		return 0;
376 
377 	/**
378 	 * Compile-time verify the shuffle mask
379 	 * NOTE: some field positions already verified above, but duplicated
380 	 * here for completeness in case of future modifications.
381 	 */
382 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
383 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
384 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
385 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
386 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
387 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
388 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
389 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
390 
391 	/* Cache is empty -> need to scan the buffer rings, but first move
392 	 * the next 'n' mbufs into the cache
393 	 */
394 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
395 
396 	/* A. load 4 packet in one loop
397 	 * [A*. mask out 4 unused dirty field in desc]
398 	 * B. copy 4 mbuf point from swring to rx_pkts
399 	 * C. calc the number of DD bits among the 4 packets
400 	 * [C*. extract the end-of-packet bit, if requested]
401 	 * D. fill info. from desc to mbuf
402 	 */
403 
404 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
405 	     pos += ICE_DESCS_PER_LOOP,
406 	     rxdp += ICE_DESCS_PER_LOOP) {
407 		__m128i descs[ICE_DESCS_PER_LOOP];
408 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
409 		__m128i staterr, sterr_tmp1, sterr_tmp2;
410 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
411 		__m128i mbp1;
412 #if defined(RTE_ARCH_X86_64)
413 		__m128i mbp2;
414 #endif
415 
416 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
417 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
418 		/* Read desc statuses backwards to avoid race condition */
419 		/* A.1 load desc[3] */
420 		descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
421 		rte_compiler_barrier();
422 
423 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
424 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
425 
426 #if defined(RTE_ARCH_X86_64)
427 		/* B.1 load 2 64 bit mbuf points */
428 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
429 #endif
430 
431 		/* A.1 load desc[2-0] */
432 		descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
433 		rte_compiler_barrier();
434 		descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
435 		rte_compiler_barrier();
436 		descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
437 
438 #if defined(RTE_ARCH_X86_64)
439 		/* B.2 copy 2 mbuf point into rx_pkts  */
440 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
441 #endif
442 
443 		if (split_packet) {
444 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
445 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
446 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
447 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
448 		}
449 
450 		/* avoid compiler reorder optimization */
451 		rte_compiler_barrier();
452 
453 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
454 		pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
455 		pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
456 
457 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
458 		pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
459 		pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
460 
461 		/* C.1 4=>2 filter staterr info only */
462 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
463 		/* C.1 4=>2 filter staterr info only */
464 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
465 
466 		ice_rx_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
467 
468 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
469 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
470 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
471 
472 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
473 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
474 		pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
475 
476 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
477 		/**
478 		 * needs to load 2nd 16B of each desc for RSS hash parsing,
479 		 * will cause performance drop to get into this context.
480 		 */
481 		if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
482 				RTE_ETH_RX_OFFLOAD_RSS_HASH) {
483 			/* load bottom half of every 32B desc */
484 			const __m128i raw_desc_bh3 =
485 				_mm_load_si128
486 					((void *)(&rxdp[3].wb.status_error1));
487 			rte_compiler_barrier();
488 			const __m128i raw_desc_bh2 =
489 				_mm_load_si128
490 					((void *)(&rxdp[2].wb.status_error1));
491 			rte_compiler_barrier();
492 			const __m128i raw_desc_bh1 =
493 				_mm_load_si128
494 					((void *)(&rxdp[1].wb.status_error1));
495 			rte_compiler_barrier();
496 			const __m128i raw_desc_bh0 =
497 				_mm_load_si128
498 					((void *)(&rxdp[0].wb.status_error1));
499 
500 			/**
501 			 * to shift the 32b RSS hash value to the
502 			 * highest 32b of each 128b before mask
503 			 */
504 			__m128i rss_hash3 =
505 				_mm_slli_epi64(raw_desc_bh3, 32);
506 			__m128i rss_hash2 =
507 				_mm_slli_epi64(raw_desc_bh2, 32);
508 			__m128i rss_hash1 =
509 				_mm_slli_epi64(raw_desc_bh1, 32);
510 			__m128i rss_hash0 =
511 				_mm_slli_epi64(raw_desc_bh0, 32);
512 
513 			__m128i rss_hash_msk =
514 				_mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
515 
516 			rss_hash3 = _mm_and_si128
517 					(rss_hash3, rss_hash_msk);
518 			rss_hash2 = _mm_and_si128
519 					(rss_hash2, rss_hash_msk);
520 			rss_hash1 = _mm_and_si128
521 					(rss_hash1, rss_hash_msk);
522 			rss_hash0 = _mm_and_si128
523 					(rss_hash0, rss_hash_msk);
524 
525 			pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
526 			pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
527 			pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
528 			pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
529 		} /* if() on RSS hash parsing */
530 #endif
531 
532 		/* C.2 get 4 pkts staterr value  */
533 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
534 
535 		/* D.3 copy final 3,4 data to rx_pkts */
536 		_mm_storeu_si128
537 			((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
538 			 pkt_mb3);
539 		_mm_storeu_si128
540 			((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
541 			 pkt_mb2);
542 
543 		/* C* extract and record EOP bit */
544 		if (split_packet) {
545 			/* and with mask to extract bits, flipping 1-0 */
546 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
547 			/* the staterr values are not in order, as the count
548 			 * of dd bits doesn't care. However, for end of
549 			 * packet tracking, we do care, so shuffle. This also
550 			 * compresses the 32-bit values to 8-bit
551 			 */
552 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
553 			/* store the resulting 32-bit value */
554 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
555 			split_packet += ICE_DESCS_PER_LOOP;
556 		}
557 
558 		/* C.3 calc available number of desc */
559 		staterr = _mm_and_si128(staterr, dd_check);
560 		staterr = _mm_packs_epi32(staterr, zero);
561 
562 		/* D.3 copy final 1,2 data to rx_pkts */
563 		_mm_storeu_si128
564 			((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
565 			 pkt_mb1);
566 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
567 				 pkt_mb0);
568 		ice_rx_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
569 		/* C.4 calc available number of desc */
570 		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
571 		nb_pkts_recd += var;
572 		if (likely(var != ICE_DESCS_PER_LOOP))
573 			break;
574 	}
575 
576 	/* Update our internal tail pointer */
577 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
578 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
579 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
580 
581 	return nb_pkts_recd;
582 }
583 
584 /**
585  * Notice:
586  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
587  * - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
588  *   numbers of DD bits
589  */
590 uint16_t
ice_recv_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)591 ice_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
592 		  uint16_t nb_pkts)
593 {
594 	return _ice_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
595 }
596 
597 /**
598  * vPMD receive routine that reassembles single burst of 32 scattered packets
599  *
600  * Notice:
601  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
602  */
603 static uint16_t
ice_recv_scattered_burst_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)604 ice_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
605 			     uint16_t nb_pkts)
606 {
607 	struct ice_rx_queue *rxq = rx_queue;
608 	uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
609 
610 	/* get some new buffers */
611 	uint16_t nb_bufs = _ice_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
612 						  split_flags);
613 	if (nb_bufs == 0)
614 		return 0;
615 
616 	/* happy day case, full burst + no packets to be joined */
617 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
618 
619 	if (!rxq->pkt_first_seg &&
620 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
621 	    split_fl64[2] == 0 && split_fl64[3] == 0)
622 		return nb_bufs;
623 
624 	/* reassemble any packets that need reassembly*/
625 	unsigned int i = 0;
626 
627 	if (!rxq->pkt_first_seg) {
628 		/* find the first split flag, and only reassemble then*/
629 		while (i < nb_bufs && !split_flags[i])
630 			i++;
631 		if (i == nb_bufs)
632 			return nb_bufs;
633 		rxq->pkt_first_seg = rx_pkts[i];
634 	}
635 	return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
636 					     &split_flags[i]);
637 }
638 
639 /**
640  * vPMD receive routine that reassembles scattered packets.
641  */
642 uint16_t
ice_recv_scattered_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)643 ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
644 			    uint16_t nb_pkts)
645 {
646 	uint16_t retval = 0;
647 
648 	while (nb_pkts > ICE_VPMD_RX_BURST) {
649 		uint16_t burst;
650 
651 		burst = ice_recv_scattered_burst_vec(rx_queue,
652 						     rx_pkts + retval,
653 						     ICE_VPMD_RX_BURST);
654 		retval += burst;
655 		nb_pkts -= burst;
656 		if (burst < ICE_VPMD_RX_BURST)
657 			return retval;
658 	}
659 
660 	return retval + ice_recv_scattered_burst_vec(rx_queue,
661 						     rx_pkts + retval,
662 						     nb_pkts);
663 }
664 
665 static inline void
ice_vtx1(volatile struct ice_tx_desc * txdp,struct rte_mbuf * pkt,uint64_t flags)666 ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt,
667 	 uint64_t flags)
668 {
669 	uint64_t high_qw =
670 		(ICE_TX_DESC_DTYPE_DATA |
671 		 ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
672 		 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
673 
674 	__m128i descriptor = _mm_set_epi64x(high_qw,
675 					    pkt->buf_iova + pkt->data_off);
676 	_mm_store_si128((__m128i *)txdp, descriptor);
677 }
678 
679 static inline void
ice_vtx(volatile struct ice_tx_desc * txdp,struct rte_mbuf ** pkt,uint16_t nb_pkts,uint64_t flags)680 ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
681 	uint16_t nb_pkts, uint64_t flags)
682 {
683 	int i;
684 
685 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
686 		ice_vtx1(txdp, *pkt, flags);
687 }
688 
689 static uint16_t
ice_xmit_fixed_burst_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)690 ice_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
691 			 uint16_t nb_pkts)
692 {
693 	struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
694 	volatile struct ice_tx_desc *txdp;
695 	struct ice_tx_entry *txep;
696 	uint16_t n, nb_commit, tx_id;
697 	uint64_t flags = ICE_TD_CMD;
698 	uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
699 	int i;
700 
701 	/* cross rx_thresh boundary is not allowed */
702 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
703 
704 	if (txq->nb_tx_free < txq->tx_free_thresh)
705 		ice_tx_free_bufs_vec(txq);
706 
707 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
708 	nb_commit = nb_pkts;
709 	if (unlikely(nb_pkts == 0))
710 		return 0;
711 
712 	tx_id = txq->tx_tail;
713 	txdp = &txq->tx_ring[tx_id];
714 	txep = &txq->sw_ring[tx_id];
715 
716 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
717 
718 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
719 	if (nb_commit >= n) {
720 		ice_tx_backlog_entry(txep, tx_pkts, n);
721 
722 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
723 			ice_vtx1(txdp, *tx_pkts, flags);
724 
725 		ice_vtx1(txdp, *tx_pkts++, rs);
726 
727 		nb_commit = (uint16_t)(nb_commit - n);
728 
729 		tx_id = 0;
730 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
731 
732 		/* avoid reach the end of ring */
733 		txdp = &txq->tx_ring[tx_id];
734 		txep = &txq->sw_ring[tx_id];
735 	}
736 
737 	ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
738 
739 	ice_vtx(txdp, tx_pkts, nb_commit, flags);
740 
741 	tx_id = (uint16_t)(tx_id + nb_commit);
742 	if (tx_id > txq->tx_next_rs) {
743 		txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
744 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
745 					 ICE_TXD_QW1_CMD_S);
746 		txq->tx_next_rs =
747 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
748 	}
749 
750 	txq->tx_tail = tx_id;
751 
752 	ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
753 
754 	return nb_pkts;
755 }
756 
757 uint16_t
ice_xmit_pkts_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)758 ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
759 		  uint16_t nb_pkts)
760 {
761 	uint16_t nb_tx = 0;
762 	struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
763 
764 	while (nb_pkts) {
765 		uint16_t ret, num;
766 
767 		num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
768 		ret = ice_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
769 		nb_tx += ret;
770 		nb_pkts -= ret;
771 		if (ret < num)
772 			break;
773 	}
774 
775 	return nb_tx;
776 }
777 
778 int __rte_cold
ice_rxq_vec_setup(struct ice_rx_queue * rxq)779 ice_rxq_vec_setup(struct ice_rx_queue *rxq)
780 {
781 	if (!rxq)
782 		return -1;
783 
784 	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs_vec;
785 	return ice_rxq_vec_setup_default(rxq);
786 }
787 
788 int __rte_cold
ice_txq_vec_setup(struct ice_tx_queue __rte_unused * txq)789 ice_txq_vec_setup(struct ice_tx_queue __rte_unused *txq)
790 {
791 	if (!txq)
792 		return -1;
793 
794 	txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs_vec;
795 	return 0;
796 }
797 
798 int __rte_cold
ice_rx_vec_dev_check(struct rte_eth_dev * dev)799 ice_rx_vec_dev_check(struct rte_eth_dev *dev)
800 {
801 	return ice_rx_vec_dev_check_default(dev);
802 }
803 
804 int __rte_cold
ice_tx_vec_dev_check(struct rte_eth_dev * dev)805 ice_tx_vec_dev_check(struct rte_eth_dev *dev)
806 {
807 	return ice_tx_vec_dev_check_default(dev);
808 }
809