1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4 
5 #include "ice_rxtx_vec_common.h"
6 
7 #include <tmmintrin.h>
8 
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12 
13 static inline __m128i
ice_flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)14 ice_flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
15 {
16 #define FDID_MIS_MAGIC 0xFFFFFFFF
17 	RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
18 	RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
19 	const __m128i pkt_fdir_bit = _mm_set1_epi32(PKT_RX_FDIR |
20 			PKT_RX_FDIR_ID);
21 	/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
22 	const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
23 	__m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
24 			fdir_mis_mask);
25 	/* this XOR op results to bit-reverse the fdir_mask */
26 	fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
27 	const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
28 
29 	return fdir_flags;
30 }
31 
32 static inline void
ice_rxq_rearm(struct ice_rx_queue * rxq)33 ice_rxq_rearm(struct ice_rx_queue *rxq)
34 {
35 	int i;
36 	uint16_t rx_id;
37 	volatile union ice_rx_flex_desc *rxdp;
38 	struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
39 	struct rte_mbuf *mb0, *mb1;
40 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
41 					  RTE_PKTMBUF_HEADROOM);
42 	__m128i dma_addr0, dma_addr1;
43 
44 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
45 
46 	/* Pull 'n' more MBUFs into the software ring */
47 	if (rte_mempool_get_bulk(rxq->mp,
48 				 (void *)rxep,
49 				 ICE_RXQ_REARM_THRESH) < 0) {
50 		if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
51 		    rxq->nb_rx_desc) {
52 			dma_addr0 = _mm_setzero_si128();
53 			for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
54 				rxep[i].mbuf = &rxq->fake_mbuf;
55 				_mm_store_si128((__m128i *)&rxdp[i].read,
56 						dma_addr0);
57 			}
58 		}
59 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
60 			ICE_RXQ_REARM_THRESH;
61 		return;
62 	}
63 
64 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
65 	for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
66 		__m128i vaddr0, vaddr1;
67 
68 		mb0 = rxep[0].mbuf;
69 		mb1 = rxep[1].mbuf;
70 
71 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
72 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
73 				 offsetof(struct rte_mbuf, buf_addr) + 8);
74 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
75 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
76 
77 		/* convert pa to dma_addr hdr/data */
78 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
79 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
80 
81 		/* add headroom to pa values */
82 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
83 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
84 
85 		/* flush desc with pa dma_addr */
86 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
87 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
88 	}
89 
90 	rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
91 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
92 		rxq->rxrearm_start = 0;
93 
94 	rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
95 
96 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
97 			   (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
98 
99 	/* Update the tail pointer on the NIC */
100 	ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
101 }
102 
103 static inline void
ice_rx_desc_to_olflags_v(struct ice_rx_queue * rxq,__m128i descs[4],struct rte_mbuf ** rx_pkts)104 ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
105 			 struct rte_mbuf **rx_pkts)
106 {
107 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
108 	__m128i rearm0, rearm1, rearm2, rearm3;
109 
110 	__m128i tmp_desc, flags, rss_vlan;
111 
112 	/* mask everything except checksum, RSS and VLAN flags.
113 	 * bit6:4 for checksum.
114 	 * bit12 for RSS indication.
115 	 * bit13 for VLAN indication.
116 	 */
117 	const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070,
118 						0x3070, 0x3070);
119 
120 	const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_MASK |
121 						 PKT_RX_L4_CKSUM_MASK |
122 						 PKT_RX_EIP_CKSUM_BAD,
123 						 PKT_RX_IP_CKSUM_MASK |
124 						 PKT_RX_L4_CKSUM_MASK |
125 						 PKT_RX_EIP_CKSUM_BAD,
126 						 PKT_RX_IP_CKSUM_MASK |
127 						 PKT_RX_L4_CKSUM_MASK |
128 						 PKT_RX_EIP_CKSUM_BAD,
129 						 PKT_RX_IP_CKSUM_MASK |
130 						 PKT_RX_L4_CKSUM_MASK |
131 						 PKT_RX_EIP_CKSUM_BAD);
132 
133 	/* map the checksum, rss and vlan fields to the checksum, rss
134 	 * and vlan flag
135 	 */
136 	const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
137 			/* shift right 1 bit to make sure it not exceed 255 */
138 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
139 			 PKT_RX_IP_CKSUM_BAD) >> 1,
140 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
141 			 PKT_RX_IP_CKSUM_GOOD) >> 1,
142 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
143 			 PKT_RX_IP_CKSUM_BAD) >> 1,
144 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
145 			 PKT_RX_IP_CKSUM_GOOD) >> 1,
146 			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
147 			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
148 			(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
149 			(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
150 
151 	const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
152 			0, 0, 0, 0,
153 			0, 0, 0, 0,
154 			PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
155 			PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
156 			PKT_RX_RSS_HASH, 0);
157 
158 	/* merge 4 descriptors */
159 	flags = _mm_unpackhi_epi32(descs[0], descs[1]);
160 	tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
161 	tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
162 	tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
163 
164 	/* checksum flags */
165 	tmp_desc = _mm_srli_epi32(tmp_desc, 4);
166 	flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
167 	/* then we shift left 1 bit */
168 	flags = _mm_slli_epi32(flags, 1);
169 	/* we need to mask out the reduntant bits introduced by RSS or
170 	 * VLAN fields.
171 	 */
172 	flags = _mm_and_si128(flags, cksum_mask);
173 
174 	/* RSS, VLAN flag */
175 	tmp_desc = _mm_srli_epi32(tmp_desc, 8);
176 	rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
177 
178 	/* merge the flags */
179 	flags = _mm_or_si128(flags, rss_vlan);
180 
181 	if (rxq->fdir_enabled) {
182 		const __m128i fdir_id0_1 =
183 			_mm_unpackhi_epi32(descs[0], descs[1]);
184 
185 		const __m128i fdir_id2_3 =
186 			_mm_unpackhi_epi32(descs[2], descs[3]);
187 
188 		const __m128i fdir_id0_3 =
189 			_mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
190 
191 		const __m128i fdir_flags =
192 			ice_flex_rxd_to_fdir_flags_vec(fdir_id0_3);
193 
194 		/* merge with fdir_flags */
195 		flags = _mm_or_si128(flags, fdir_flags);
196 
197 		/* write fdir_id to mbuf */
198 		rx_pkts[0]->hash.fdir.hi =
199 			_mm_extract_epi32(fdir_id0_3, 0);
200 
201 		rx_pkts[1]->hash.fdir.hi =
202 			_mm_extract_epi32(fdir_id0_3, 1);
203 
204 		rx_pkts[2]->hash.fdir.hi =
205 			_mm_extract_epi32(fdir_id0_3, 2);
206 
207 		rx_pkts[3]->hash.fdir.hi =
208 			_mm_extract_epi32(fdir_id0_3, 3);
209 	} /* if() on fdir_enabled */
210 
211 	/**
212 	 * At this point, we have the 4 sets of flags in the low 16-bits
213 	 * of each 32-bit value in flags.
214 	 * We want to extract these, and merge them with the mbuf init data
215 	 * so we can do a single 16-byte write to the mbuf to set the flags
216 	 * and all the other initialization fields. Extracting the
217 	 * appropriate flags means that we have to do a shift and blend for
218 	 * each mbuf before we do the write.
219 	 */
220 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10);
221 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10);
222 	rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10);
223 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10);
224 
225 	/* write the rearm data and the olflags in one write */
226 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
227 			 offsetof(struct rte_mbuf, rearm_data) + 8);
228 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
229 			 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
230 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
231 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
232 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
233 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
234 }
235 
236 static inline void
ice_rx_desc_to_ptype_v(__m128i descs[4],struct rte_mbuf ** rx_pkts,uint32_t * ptype_tbl)237 ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
238 		       uint32_t *ptype_tbl)
239 {
240 	const __m128i ptype_mask = _mm_set_epi16(ICE_RX_FLEX_DESC_PTYPE_M, 0,
241 						 ICE_RX_FLEX_DESC_PTYPE_M, 0,
242 						 ICE_RX_FLEX_DESC_PTYPE_M, 0,
243 						 ICE_RX_FLEX_DESC_PTYPE_M, 0);
244 	__m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
245 	__m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
246 	__m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
247 
248 	ptype_all = _mm_and_si128(ptype_all, ptype_mask);
249 
250 	rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 1)];
251 	rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 3)];
252 	rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 5)];
253 	rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 7)];
254 }
255 
256 /**
257  * vPMD raw receive routine, only accept(nb_pkts >= ICE_DESCS_PER_LOOP)
258  *
259  * Notice:
260  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
261  * - floor align nb_pkts to a ICE_DESCS_PER_LOOP power-of-two
262  */
263 static inline uint16_t
_ice_recv_raw_pkts_vec(struct ice_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts,uint8_t * split_packet)264 _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
265 		       uint16_t nb_pkts, uint8_t *split_packet)
266 {
267 	volatile union ice_rx_flex_desc *rxdp;
268 	struct ice_rx_entry *sw_ring;
269 	uint16_t nb_pkts_recd;
270 	int pos;
271 	uint64_t var;
272 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
273 	__m128i crc_adjust = _mm_set_epi16
274 				(0, 0, 0,       /* ignore non-length fields */
275 				 -rxq->crc_len, /* sub crc on data_len */
276 				 0,          /* ignore high-16bits of pkt_len */
277 				 -rxq->crc_len, /* sub crc on pkt_len */
278 				 0, 0           /* ignore pkt_type field */
279 				);
280 	const __m128i zero = _mm_setzero_si128();
281 	/* mask to shuffle from desc. to mbuf */
282 	const __m128i shuf_msk = _mm_set_epi8
283 			(0xFF, 0xFF,
284 			 0xFF, 0xFF,  /* rss hash parsed separately */
285 			 11, 10,      /* octet 10~11, 16 bits vlan_macip */
286 			 5, 4,        /* octet 4~5, 16 bits data_len */
287 			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
288 			 5, 4,        /* octet 4~5, low 16 bits pkt_len */
289 			 0xFF, 0xFF,  /* pkt_type set as unknown */
290 			 0xFF, 0xFF   /* pkt_type set as unknown */
291 			);
292 	const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
293 						   0xFF, 0xFF,
294 						   0xFF, 0xFF,
295 						   0xFF, 0xFF,
296 						   0xFF, 0xFF,
297 						   0xFF, 0xFF,
298 						   0x04, 0x0C,
299 						   0x00, 0x08);
300 
301 	/**
302 	 * compile-time check the above crc_adjust layout is correct.
303 	 * NOTE: the first field (lowest address) is given last in set_epi16
304 	 * call above.
305 	 */
306 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
307 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
308 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
309 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
310 
311 	/* 4 packets DD mask */
312 	const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
313 						0x0000000100000001LL);
314 	/* 4 packets EOP mask */
315 	const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
316 						 0x0000000200000002LL);
317 
318 	/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP */
319 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP);
320 
321 	/* Just the act of getting into the function from the application is
322 	 * going to cost about 7 cycles
323 	 */
324 	rxdp = rxq->rx_ring + rxq->rx_tail;
325 
326 	rte_prefetch0(rxdp);
327 
328 	/* See if we need to rearm the RX queue - gives the prefetch a bit
329 	 * of time to act
330 	 */
331 	if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
332 		ice_rxq_rearm(rxq);
333 
334 	/* Before we start moving massive data around, check to see if
335 	 * there is actually a packet available
336 	 */
337 	if (!(rxdp->wb.status_error0 &
338 	      rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
339 		return 0;
340 
341 	/**
342 	 * Compile-time verify the shuffle mask
343 	 * NOTE: some field positions already verified above, but duplicated
344 	 * here for completeness in case of future modifications.
345 	 */
346 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
347 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
348 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
349 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
350 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
351 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
352 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
353 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
354 
355 	/* Cache is empty -> need to scan the buffer rings, but first move
356 	 * the next 'n' mbufs into the cache
357 	 */
358 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
359 
360 	/* A. load 4 packet in one loop
361 	 * [A*. mask out 4 unused dirty field in desc]
362 	 * B. copy 4 mbuf point from swring to rx_pkts
363 	 * C. calc the number of DD bits among the 4 packets
364 	 * [C*. extract the end-of-packet bit, if requested]
365 	 * D. fill info. from desc to mbuf
366 	 */
367 
368 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
369 	     pos += ICE_DESCS_PER_LOOP,
370 	     rxdp += ICE_DESCS_PER_LOOP) {
371 		__m128i descs[ICE_DESCS_PER_LOOP];
372 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
373 		__m128i staterr, sterr_tmp1, sterr_tmp2;
374 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
375 		__m128i mbp1;
376 #if defined(RTE_ARCH_X86_64)
377 		__m128i mbp2;
378 #endif
379 
380 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
381 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
382 		/* Read desc statuses backwards to avoid race condition */
383 		/* A.1 load 4 pkts desc */
384 		descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
385 		rte_compiler_barrier();
386 
387 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
388 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
389 
390 #if defined(RTE_ARCH_X86_64)
391 		/* B.1 load 2 64 bit mbuf points */
392 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
393 #endif
394 
395 		descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
396 		rte_compiler_barrier();
397 		/* B.1 load 2 mbuf point */
398 		descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
399 		rte_compiler_barrier();
400 		descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
401 
402 #if defined(RTE_ARCH_X86_64)
403 		/* B.2 copy 2 mbuf point into rx_pkts  */
404 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
405 #endif
406 
407 		if (split_packet) {
408 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
409 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
410 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
411 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
412 		}
413 
414 		/* avoid compiler reorder optimization */
415 		rte_compiler_barrier();
416 
417 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
418 		pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
419 		pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
420 
421 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
422 		pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
423 		pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
424 
425 		/* C.1 4=>2 filter staterr info only */
426 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
427 		/* C.1 4=>2 filter staterr info only */
428 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
429 
430 		ice_rx_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
431 
432 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
433 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
434 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
435 
436 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
437 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
438 		pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
439 
440 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
441 		/**
442 		 * needs to load 2nd 16B of each desc for RSS hash parsing,
443 		 * will cause performance drop to get into this context.
444 		 */
445 		if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
446 				DEV_RX_OFFLOAD_RSS_HASH) {
447 			/* load bottom half of every 32B desc */
448 			const __m128i raw_desc_bh3 =
449 				_mm_load_si128
450 					((void *)(&rxdp[3].wb.status_error1));
451 			rte_compiler_barrier();
452 			const __m128i raw_desc_bh2 =
453 				_mm_load_si128
454 					((void *)(&rxdp[2].wb.status_error1));
455 			rte_compiler_barrier();
456 			const __m128i raw_desc_bh1 =
457 				_mm_load_si128
458 					((void *)(&rxdp[1].wb.status_error1));
459 			rte_compiler_barrier();
460 			const __m128i raw_desc_bh0 =
461 				_mm_load_si128
462 					((void *)(&rxdp[0].wb.status_error1));
463 
464 			/**
465 			 * to shift the 32b RSS hash value to the
466 			 * highest 32b of each 128b before mask
467 			 */
468 			__m128i rss_hash3 =
469 				_mm_slli_epi64(raw_desc_bh3, 32);
470 			__m128i rss_hash2 =
471 				_mm_slli_epi64(raw_desc_bh2, 32);
472 			__m128i rss_hash1 =
473 				_mm_slli_epi64(raw_desc_bh1, 32);
474 			__m128i rss_hash0 =
475 				_mm_slli_epi64(raw_desc_bh0, 32);
476 
477 			__m128i rss_hash_msk =
478 				_mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
479 
480 			rss_hash3 = _mm_and_si128
481 					(rss_hash3, rss_hash_msk);
482 			rss_hash2 = _mm_and_si128
483 					(rss_hash2, rss_hash_msk);
484 			rss_hash1 = _mm_and_si128
485 					(rss_hash1, rss_hash_msk);
486 			rss_hash0 = _mm_and_si128
487 					(rss_hash0, rss_hash_msk);
488 
489 			pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
490 			pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
491 			pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
492 			pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
493 		} /* if() on RSS hash parsing */
494 #endif
495 
496 		/* C.2 get 4 pkts staterr value  */
497 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
498 
499 		/* D.3 copy final 3,4 data to rx_pkts */
500 		_mm_storeu_si128
501 			((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
502 			 pkt_mb3);
503 		_mm_storeu_si128
504 			((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
505 			 pkt_mb2);
506 
507 		/* C* extract and record EOP bit */
508 		if (split_packet) {
509 			/* and with mask to extract bits, flipping 1-0 */
510 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
511 			/* the staterr values are not in order, as the count
512 			 * count of dd bits doesn't care. However, for end of
513 			 * packet tracking, we do care, so shuffle. This also
514 			 * compresses the 32-bit values to 8-bit
515 			 */
516 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
517 			/* store the resulting 32-bit value */
518 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
519 			split_packet += ICE_DESCS_PER_LOOP;
520 		}
521 
522 		/* C.3 calc available number of desc */
523 		staterr = _mm_and_si128(staterr, dd_check);
524 		staterr = _mm_packs_epi32(staterr, zero);
525 
526 		/* D.3 copy final 1,2 data to rx_pkts */
527 		_mm_storeu_si128
528 			((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
529 			 pkt_mb1);
530 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
531 				 pkt_mb0);
532 		ice_rx_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
533 		/* C.4 calc avaialbe number of desc */
534 		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
535 		nb_pkts_recd += var;
536 		if (likely(var != ICE_DESCS_PER_LOOP))
537 			break;
538 	}
539 
540 	/* Update our internal tail pointer */
541 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
542 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
543 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
544 
545 	return nb_pkts_recd;
546 }
547 
548 /**
549  * Notice:
550  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
551  * - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
552  *   numbers of DD bits
553  */
554 uint16_t
ice_recv_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)555 ice_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
556 		  uint16_t nb_pkts)
557 {
558 	return _ice_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
559 }
560 
561 /**
562  * vPMD receive routine that reassembles single burst of 32 scattered packets
563  *
564  * Notice:
565  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
566  */
567 static uint16_t
ice_recv_scattered_burst_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)568 ice_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
569 			     uint16_t nb_pkts)
570 {
571 	struct ice_rx_queue *rxq = rx_queue;
572 	uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
573 
574 	/* get some new buffers */
575 	uint16_t nb_bufs = _ice_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
576 						  split_flags);
577 	if (nb_bufs == 0)
578 		return 0;
579 
580 	/* happy day case, full burst + no packets to be joined */
581 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
582 
583 	if (!rxq->pkt_first_seg &&
584 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
585 	    split_fl64[2] == 0 && split_fl64[3] == 0)
586 		return nb_bufs;
587 
588 	/* reassemble any packets that need reassembly*/
589 	unsigned int i = 0;
590 
591 	if (!rxq->pkt_first_seg) {
592 		/* find the first split flag, and only reassemble then*/
593 		while (i < nb_bufs && !split_flags[i])
594 			i++;
595 		if (i == nb_bufs)
596 			return nb_bufs;
597 		rxq->pkt_first_seg = rx_pkts[i];
598 	}
599 	return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
600 					     &split_flags[i]);
601 }
602 
603 /**
604  * vPMD receive routine that reassembles scattered packets.
605  */
606 uint16_t
ice_recv_scattered_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)607 ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
608 			    uint16_t nb_pkts)
609 {
610 	uint16_t retval = 0;
611 
612 	while (nb_pkts > ICE_VPMD_RX_BURST) {
613 		uint16_t burst;
614 
615 		burst = ice_recv_scattered_burst_vec(rx_queue,
616 						     rx_pkts + retval,
617 						     ICE_VPMD_RX_BURST);
618 		retval += burst;
619 		nb_pkts -= burst;
620 		if (burst < ICE_VPMD_RX_BURST)
621 			return retval;
622 	}
623 
624 	return retval + ice_recv_scattered_burst_vec(rx_queue,
625 						     rx_pkts + retval,
626 						     nb_pkts);
627 }
628 
629 static inline void
ice_vtx1(volatile struct ice_tx_desc * txdp,struct rte_mbuf * pkt,uint64_t flags)630 ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt,
631 	 uint64_t flags)
632 {
633 	uint64_t high_qw =
634 		(ICE_TX_DESC_DTYPE_DATA |
635 		 ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
636 		 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
637 
638 	__m128i descriptor = _mm_set_epi64x(high_qw,
639 					    pkt->buf_iova + pkt->data_off);
640 	_mm_store_si128((__m128i *)txdp, descriptor);
641 }
642 
643 static inline void
ice_vtx(volatile struct ice_tx_desc * txdp,struct rte_mbuf ** pkt,uint16_t nb_pkts,uint64_t flags)644 ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
645 	uint16_t nb_pkts, uint64_t flags)
646 {
647 	int i;
648 
649 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
650 		ice_vtx1(txdp, *pkt, flags);
651 }
652 
653 static uint16_t
ice_xmit_fixed_burst_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)654 ice_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
655 			 uint16_t nb_pkts)
656 {
657 	struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
658 	volatile struct ice_tx_desc *txdp;
659 	struct ice_tx_entry *txep;
660 	uint16_t n, nb_commit, tx_id;
661 	uint64_t flags = ICE_TD_CMD;
662 	uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
663 	int i;
664 
665 	/* cross rx_thresh boundary is not allowed */
666 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
667 
668 	if (txq->nb_tx_free < txq->tx_free_thresh)
669 		ice_tx_free_bufs(txq);
670 
671 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
672 	nb_commit = nb_pkts;
673 	if (unlikely(nb_pkts == 0))
674 		return 0;
675 
676 	tx_id = txq->tx_tail;
677 	txdp = &txq->tx_ring[tx_id];
678 	txep = &txq->sw_ring[tx_id];
679 
680 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
681 
682 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
683 	if (nb_commit >= n) {
684 		ice_tx_backlog_entry(txep, tx_pkts, n);
685 
686 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
687 			ice_vtx1(txdp, *tx_pkts, flags);
688 
689 		ice_vtx1(txdp, *tx_pkts++, rs);
690 
691 		nb_commit = (uint16_t)(nb_commit - n);
692 
693 		tx_id = 0;
694 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
695 
696 		/* avoid reach the end of ring */
697 		txdp = &txq->tx_ring[tx_id];
698 		txep = &txq->sw_ring[tx_id];
699 	}
700 
701 	ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
702 
703 	ice_vtx(txdp, tx_pkts, nb_commit, flags);
704 
705 	tx_id = (uint16_t)(tx_id + nb_commit);
706 	if (tx_id > txq->tx_next_rs) {
707 		txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
708 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
709 					 ICE_TXD_QW1_CMD_S);
710 		txq->tx_next_rs =
711 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
712 	}
713 
714 	txq->tx_tail = tx_id;
715 
716 	ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
717 
718 	return nb_pkts;
719 }
720 
721 uint16_t
ice_xmit_pkts_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)722 ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
723 		  uint16_t nb_pkts)
724 {
725 	uint16_t nb_tx = 0;
726 	struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
727 
728 	while (nb_pkts) {
729 		uint16_t ret, num;
730 
731 		num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
732 		ret = ice_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
733 		nb_tx += ret;
734 		nb_pkts -= ret;
735 		if (ret < num)
736 			break;
737 	}
738 
739 	return nb_tx;
740 }
741 
742 int __rte_cold
ice_rxq_vec_setup(struct ice_rx_queue * rxq)743 ice_rxq_vec_setup(struct ice_rx_queue *rxq)
744 {
745 	if (!rxq)
746 		return -1;
747 
748 	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs_vec;
749 	return ice_rxq_vec_setup_default(rxq);
750 }
751 
752 int __rte_cold
ice_txq_vec_setup(struct ice_tx_queue __rte_unused * txq)753 ice_txq_vec_setup(struct ice_tx_queue __rte_unused *txq)
754 {
755 	if (!txq)
756 		return -1;
757 
758 	txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs_vec;
759 	return 0;
760 }
761 
762 int __rte_cold
ice_rx_vec_dev_check(struct rte_eth_dev * dev)763 ice_rx_vec_dev_check(struct rte_eth_dev *dev)
764 {
765 	return ice_rx_vec_dev_check_default(dev);
766 }
767 
768 int __rte_cold
ice_tx_vec_dev_check(struct rte_eth_dev * dev)769 ice_tx_vec_dev_check(struct rte_eth_dev *dev)
770 {
771 	return ice_tx_vec_dev_check_default(dev);
772 }
773