1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <rte_ethdev_driver.h>
7 #include <rte_malloc.h>
8 
9 #include "iavf.h"
10 #include "iavf_rxtx.h"
11 #include "iavf_rxtx_vec_common.h"
12 
13 #include <tmmintrin.h>
14 
15 #ifndef __INTEL_COMPILER
16 #pragma GCC diagnostic ignored "-Wcast-qual"
17 #endif
18 
19 static inline void
iavf_rxq_rearm(struct iavf_rx_queue * rxq)20 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
21 {
22 	int i;
23 	uint16_t rx_id;
24 
25 	volatile union iavf_rx_desc *rxdp;
26 	struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
27 	struct rte_mbuf *mb0, *mb1;
28 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
29 			RTE_PKTMBUF_HEADROOM);
30 	__m128i dma_addr0, dma_addr1;
31 
32 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
33 
34 	/* Pull 'n' more MBUFs into the software ring */
35 	if (rte_mempool_get_bulk(rxq->mp, (void *)rxp,
36 				 rxq->rx_free_thresh) < 0) {
37 		if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) {
38 			dma_addr0 = _mm_setzero_si128();
39 			for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
40 				rxp[i] = &rxq->fake_mbuf;
41 				_mm_store_si128((__m128i *)&rxdp[i].read,
42 						dma_addr0);
43 			}
44 		}
45 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46 			rxq->rx_free_thresh;
47 		return;
48 	}
49 
50 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
51 	for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) {
52 		__m128i vaddr0, vaddr1;
53 
54 		mb0 = rxp[0];
55 		mb1 = rxp[1];
56 
57 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
58 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
59 				offsetof(struct rte_mbuf, buf_addr) + 8);
60 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
61 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
62 
63 		/* convert pa to dma_addr hdr/data */
64 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
65 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
66 
67 		/* add headroom to pa values */
68 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
69 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
70 
71 		/* flush desc with pa dma_addr */
72 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
73 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
74 	}
75 
76 	rxq->rxrearm_start += rxq->rx_free_thresh;
77 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
78 		rxq->rxrearm_start = 0;
79 
80 	rxq->rxrearm_nb -= rxq->rx_free_thresh;
81 
82 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
83 			   (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
84 
85 	PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
86 		   "rearm_start=%u rearm_nb=%u",
87 		   rxq->port_id, rxq->queue_id,
88 		   rx_id, rxq->rxrearm_start, rxq->rxrearm_nb);
89 
90 	/* Update the tail pointer on the NIC */
91 	IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
92 }
93 
94 static inline void
desc_to_olflags_v(struct iavf_rx_queue * rxq,__m128i descs[4],struct rte_mbuf ** rx_pkts)95 desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
96 		  struct rte_mbuf **rx_pkts)
97 {
98 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
99 	__m128i rearm0, rearm1, rearm2, rearm3;
100 
101 	__m128i vlan0, vlan1, rss, l3_l4e;
102 
103 	/* mask everything except RSS, flow director and VLAN flags
104 	 * bit2 is for VLAN tag, bit11 for flow director indication
105 	 * bit13:12 for RSS indication.
106 	 */
107 	const __m128i rss_vlan_msk = _mm_set_epi32(
108 			0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
109 
110 	const __m128i cksum_mask = _mm_set_epi32(
111 			PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
112 			PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
113 			PKT_RX_EIP_CKSUM_BAD,
114 			PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
115 			PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
116 			PKT_RX_EIP_CKSUM_BAD,
117 			PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
118 			PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
119 			PKT_RX_EIP_CKSUM_BAD,
120 			PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
121 			PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
122 			PKT_RX_EIP_CKSUM_BAD);
123 
124 	/* map rss and vlan type to rss hash and vlan flag */
125 	const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
126 			0, 0, 0, 0,
127 			0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
128 			0, 0, 0, 0);
129 
130 	const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
131 			0, 0, 0, 0,
132 			PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
133 			0, 0, PKT_RX_FDIR, 0);
134 
135 	const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
136 			/* shift right 1 bit to make sure it not exceed 255 */
137 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
138 			 PKT_RX_IP_CKSUM_BAD) >> 1,
139 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
140 			 PKT_RX_L4_CKSUM_BAD) >> 1,
141 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
142 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
143 			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
144 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
145 			PKT_RX_IP_CKSUM_BAD >> 1,
146 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
147 
148 	vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
149 	vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
150 	vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
151 
152 	vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
153 	vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
154 
155 	rss = _mm_srli_epi32(vlan1, 11);
156 	rss = _mm_shuffle_epi8(rss_flags, rss);
157 
158 	l3_l4e = _mm_srli_epi32(vlan1, 22);
159 	l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
160 	/* then we shift left 1 bit */
161 	l3_l4e = _mm_slli_epi32(l3_l4e, 1);
162 	/* we need to mask out the reduntant bits */
163 	l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
164 
165 	vlan0 = _mm_or_si128(vlan0, rss);
166 	vlan0 = _mm_or_si128(vlan0, l3_l4e);
167 
168 	/* At this point, we have the 4 sets of flags in the low 16-bits
169 	 * of each 32-bit value in vlan0.
170 	 * We want to extract these, and merge them with the mbuf init data
171 	 * so we can do a single 16-byte write to the mbuf to set the flags
172 	 * and all the other initialization fields. Extracting the
173 	 * appropriate flags means that we have to do a shift and blend for
174 	 * each mbuf before we do the write.
175 	 */
176 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
177 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
178 	rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
179 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
180 
181 	/* write the rearm data and the olflags in one write */
182 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
183 			offsetof(struct rte_mbuf, rearm_data) + 8);
184 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
185 			RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
186 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
187 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
188 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
189 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
190 }
191 
192 static inline __m128i
flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)193 flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
194 {
195 #define FDID_MIS_MAGIC 0xFFFFFFFF
196 	RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
197 	RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
198 	const __m128i pkt_fdir_bit = _mm_set1_epi32(PKT_RX_FDIR |
199 			PKT_RX_FDIR_ID);
200 	/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
201 	const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
202 	__m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
203 			fdir_mis_mask);
204 	/* this XOR op results to bit-reverse the fdir_mask */
205 	fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
206 	const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
207 
208 	return fdir_flags;
209 }
210 
211 static inline void
flex_desc_to_olflags_v(struct iavf_rx_queue * rxq,__m128i descs[4],struct rte_mbuf ** rx_pkts)212 flex_desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
213 		       struct rte_mbuf **rx_pkts)
214 {
215 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
216 	__m128i rearm0, rearm1, rearm2, rearm3;
217 
218 	__m128i tmp_desc, flags, rss_vlan;
219 
220 	/* mask everything except checksum, RSS and VLAN flags.
221 	 * bit6:4 for checksum.
222 	 * bit12 for RSS indication.
223 	 * bit13 for VLAN indication.
224 	 */
225 	const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070,
226 						0x3070, 0x3070);
227 
228 	const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_MASK |
229 						 PKT_RX_L4_CKSUM_MASK |
230 						 PKT_RX_EIP_CKSUM_BAD,
231 						 PKT_RX_IP_CKSUM_MASK |
232 						 PKT_RX_L4_CKSUM_MASK |
233 						 PKT_RX_EIP_CKSUM_BAD,
234 						 PKT_RX_IP_CKSUM_MASK |
235 						 PKT_RX_L4_CKSUM_MASK |
236 						 PKT_RX_EIP_CKSUM_BAD,
237 						 PKT_RX_IP_CKSUM_MASK |
238 						 PKT_RX_L4_CKSUM_MASK |
239 						 PKT_RX_EIP_CKSUM_BAD);
240 
241 	/* map the checksum, rss and vlan fields to the checksum, rss
242 	 * and vlan flag
243 	 */
244 	const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
245 			/* shift right 1 bit to make sure it not exceed 255 */
246 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
247 			 PKT_RX_IP_CKSUM_BAD) >> 1,
248 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
249 			 PKT_RX_IP_CKSUM_GOOD) >> 1,
250 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
251 			 PKT_RX_IP_CKSUM_BAD) >> 1,
252 			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
253 			 PKT_RX_IP_CKSUM_GOOD) >> 1,
254 			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
255 			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
256 			(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
257 			(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
258 
259 	const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
260 			0, 0, 0, 0,
261 			0, 0, 0, 0,
262 			PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
263 			PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
264 			PKT_RX_RSS_HASH, 0);
265 
266 	/* merge 4 descriptors */
267 	flags = _mm_unpackhi_epi32(descs[0], descs[1]);
268 	tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
269 	tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
270 	tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
271 
272 	/* checksum flags */
273 	tmp_desc = _mm_srli_epi32(tmp_desc, 4);
274 	flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
275 	/* then we shift left 1 bit */
276 	flags = _mm_slli_epi32(flags, 1);
277 	/* we need to mask out the redundant bits introduced by RSS or
278 	 * VLAN fields.
279 	 */
280 	flags = _mm_and_si128(flags, cksum_mask);
281 
282 	/* RSS, VLAN flag */
283 	tmp_desc = _mm_srli_epi32(tmp_desc, 8);
284 	rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
285 
286 	/* merge the flags */
287 	flags = _mm_or_si128(flags, rss_vlan);
288 
289 	if (rxq->fdir_enabled) {
290 		const __m128i fdir_id0_1 =
291 			_mm_unpackhi_epi32(descs[0], descs[1]);
292 
293 		const __m128i fdir_id2_3 =
294 			_mm_unpackhi_epi32(descs[2], descs[3]);
295 
296 		const __m128i fdir_id0_3 =
297 			_mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
298 
299 		const __m128i fdir_flags =
300 			flex_rxd_to_fdir_flags_vec(fdir_id0_3);
301 
302 		/* merge with fdir_flags */
303 		flags = _mm_or_si128(flags, fdir_flags);
304 
305 		/* write fdir_id to mbuf */
306 		rx_pkts[0]->hash.fdir.hi =
307 			_mm_extract_epi32(fdir_id0_3, 0);
308 
309 		rx_pkts[1]->hash.fdir.hi =
310 			_mm_extract_epi32(fdir_id0_3, 1);
311 
312 		rx_pkts[2]->hash.fdir.hi =
313 			_mm_extract_epi32(fdir_id0_3, 2);
314 
315 		rx_pkts[3]->hash.fdir.hi =
316 			_mm_extract_epi32(fdir_id0_3, 3);
317 	} /* if() on fdir_enabled */
318 
319 	/**
320 	 * At this point, we have the 4 sets of flags in the low 16-bits
321 	 * of each 32-bit value in flags.
322 	 * We want to extract these, and merge them with the mbuf init data
323 	 * so we can do a single 16-byte write to the mbuf to set the flags
324 	 * and all the other initialization fields. Extracting the
325 	 * appropriate flags means that we have to do a shift and blend for
326 	 * each mbuf before we do the write.
327 	 */
328 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10);
329 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10);
330 	rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10);
331 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10);
332 
333 	/* write the rearm data and the olflags in one write */
334 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
335 			 offsetof(struct rte_mbuf, rearm_data) + 8);
336 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
337 			 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
338 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
339 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
340 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
341 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
342 }
343 
344 #define PKTLEN_SHIFT     10
345 
346 static inline void
desc_to_ptype_v(__m128i descs[4],struct rte_mbuf ** rx_pkts,const uint32_t * type_table)347 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
348 		const uint32_t *type_table)
349 {
350 	__m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
351 	__m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
352 
353 	ptype0 = _mm_srli_epi64(ptype0, 30);
354 	ptype1 = _mm_srli_epi64(ptype1, 30);
355 
356 	rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)];
357 	rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)];
358 	rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)];
359 	rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)];
360 }
361 
362 static inline void
flex_desc_to_ptype_v(__m128i descs[4],struct rte_mbuf ** rx_pkts,const uint32_t * type_table)363 flex_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
364 		     const uint32_t *type_table)
365 {
366 	const __m128i ptype_mask = _mm_set_epi16(0, IAVF_RX_FLEX_DESC_PTYPE_M,
367 						 0, IAVF_RX_FLEX_DESC_PTYPE_M,
368 						 0, IAVF_RX_FLEX_DESC_PTYPE_M,
369 						 0, IAVF_RX_FLEX_DESC_PTYPE_M);
370 	__m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
371 	__m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
372 	__m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
373 
374 	ptype_all = _mm_and_si128(ptype_all, ptype_mask);
375 
376 	rx_pkts[0]->packet_type = type_table[_mm_extract_epi16(ptype_all, 1)];
377 	rx_pkts[1]->packet_type = type_table[_mm_extract_epi16(ptype_all, 3)];
378 	rx_pkts[2]->packet_type = type_table[_mm_extract_epi16(ptype_all, 5)];
379 	rx_pkts[3]->packet_type = type_table[_mm_extract_epi16(ptype_all, 7)];
380 }
381 
382 /**
383  * vPMD raw receive routine, only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
384  *
385  * Notice:
386  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
387  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
388  */
389 static inline uint16_t
_recv_raw_pkts_vec(struct iavf_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts,uint8_t * split_packet)390 _recv_raw_pkts_vec(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
391 		   uint16_t nb_pkts, uint8_t *split_packet)
392 {
393 	volatile union iavf_rx_desc *rxdp;
394 	struct rte_mbuf **sw_ring;
395 	uint16_t nb_pkts_recd;
396 	int pos;
397 	uint64_t var;
398 	__m128i shuf_msk;
399 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
400 
401 	__m128i crc_adjust = _mm_set_epi16(
402 				0, 0, 0,    /* ignore non-length fields */
403 				-rxq->crc_len, /* sub crc on data_len */
404 				0,          /* ignore high-16bits of pkt_len */
405 				-rxq->crc_len, /* sub crc on pkt_len */
406 				0, 0            /* ignore pkt_type field */
407 			);
408 	/* compile-time check the above crc_adjust layout is correct.
409 	 * NOTE: the first field (lowest address) is given last in set_epi16
410 	 * call above.
411 	 */
412 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
413 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
414 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
415 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
416 	__m128i dd_check, eop_check;
417 
418 	/* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
419 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
420 
421 	/* Just the act of getting into the function from the application is
422 	 * going to cost about 7 cycles
423 	 */
424 	rxdp = rxq->rx_ring + rxq->rx_tail;
425 
426 	rte_prefetch0(rxdp);
427 
428 	/* See if we need to rearm the RX queue - gives the prefetch a bit
429 	 * of time to act
430 	 */
431 	if (rxq->rxrearm_nb > rxq->rx_free_thresh)
432 		iavf_rxq_rearm(rxq);
433 
434 	/* Before we start moving massive data around, check to see if
435 	 * there is actually a packet available
436 	 */
437 	if (!(rxdp->wb.qword1.status_error_len &
438 	      rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
439 		return 0;
440 
441 	/* 4 packets DD mask */
442 	dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
443 
444 	/* 4 packets EOP mask */
445 	eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
446 
447 	/* mask to shuffle from desc. to mbuf */
448 	shuf_msk = _mm_set_epi8(
449 		7, 6, 5, 4,  /* octet 4~7, 32bits rss */
450 		3, 2,        /* octet 2~3, low 16 bits vlan_macip */
451 		15, 14,      /* octet 15~14, 16 bits data_len */
452 		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
453 		15, 14,      /* octet 15~14, low 16 bits pkt_len */
454 		0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */
455 		);
456 	/* Compile-time verify the shuffle mask
457 	 * NOTE: some field positions already verified above, but duplicated
458 	 * here for completeness in case of future modifications.
459 	 */
460 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
461 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
462 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
463 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
464 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
465 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
466 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
467 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
468 
469 	/* Cache is empty -> need to scan the buffer rings, but first move
470 	 * the next 'n' mbufs into the cache
471 	 */
472 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
473 
474 	/* A. load 4 packet in one loop
475 	 * [A*. mask out 4 unused dirty field in desc]
476 	 * B. copy 4 mbuf point from swring to rx_pkts
477 	 * C. calc the number of DD bits among the 4 packets
478 	 * [C*. extract the end-of-packet bit, if requested]
479 	 * D. fill info. from desc to mbuf
480 	 */
481 
482 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
483 	     pos += IAVF_VPMD_DESCS_PER_LOOP,
484 	     rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
485 		__m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
486 		__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
487 		__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
488 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
489 		__m128i mbp1;
490 #if defined(RTE_ARCH_X86_64)
491 		__m128i mbp2;
492 #endif
493 
494 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
495 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
496 		/* Read desc statuses backwards to avoid race condition */
497 		/* A.1 load 4 pkts desc */
498 		descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
499 		rte_compiler_barrier();
500 
501 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
502 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
503 
504 #if defined(RTE_ARCH_X86_64)
505 		/* B.1 load 2 64 bit mbuf points */
506 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
507 #endif
508 
509 		descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
510 		rte_compiler_barrier();
511 		/* B.1 load 2 mbuf point */
512 		descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
513 		rte_compiler_barrier();
514 		descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
515 
516 #if defined(RTE_ARCH_X86_64)
517 		/* B.2 copy 2 mbuf point into rx_pkts  */
518 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
519 #endif
520 
521 		if (split_packet) {
522 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
523 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
524 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
525 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
526 		}
527 
528 		/* avoid compiler reorder optimization */
529 		rte_compiler_barrier();
530 
531 		/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
532 		const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
533 		const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
534 
535 		/* merge the now-aligned packet length fields back in */
536 		descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
537 		descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
538 
539 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
540 		pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
541 		pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
542 
543 		/* C.1 4=>2 status err info only */
544 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
545 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
546 
547 		desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
548 
549 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
550 		pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
551 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
552 
553 		/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
554 		const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
555 		const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
556 
557 		/* merge the now-aligned packet length fields back in */
558 		descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
559 		descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
560 
561 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
562 		pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
563 		pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
564 
565 		/* C.2 get 4 pkts status err value  */
566 		zero = _mm_xor_si128(dd_check, dd_check);
567 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
568 
569 		/* D.3 copy final 3,4 data to rx_pkts */
570 		_mm_storeu_si128(
571 			(void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
572 			pkt_mb4);
573 		_mm_storeu_si128(
574 			(void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
575 			pkt_mb3);
576 
577 		/* D.2 pkt 1,2 remove crc */
578 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
579 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
580 
581 		/* C* extract and record EOP bit */
582 		if (split_packet) {
583 			__m128i eop_shuf_mask = _mm_set_epi8(
584 					0xFF, 0xFF, 0xFF, 0xFF,
585 					0xFF, 0xFF, 0xFF, 0xFF,
586 					0xFF, 0xFF, 0xFF, 0xFF,
587 					0x04, 0x0C, 0x00, 0x08
588 					);
589 
590 			/* and with mask to extract bits, flipping 1-0 */
591 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
592 			/* the staterr values are not in order, as the count
593 			 * count of dd bits doesn't care. However, for end of
594 			 * packet tracking, we do care, so shuffle. This also
595 			 * compresses the 32-bit values to 8-bit
596 			 */
597 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
598 			/* store the resulting 32-bit value */
599 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
600 			split_packet += IAVF_VPMD_DESCS_PER_LOOP;
601 		}
602 
603 		/* C.3 calc available number of desc */
604 		staterr = _mm_and_si128(staterr, dd_check);
605 		staterr = _mm_packs_epi32(staterr, zero);
606 
607 		/* D.3 copy final 1,2 data to rx_pkts */
608 		_mm_storeu_si128(
609 			(void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
610 			pkt_mb2);
611 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
612 				 pkt_mb1);
613 		desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
614 		/* C.4 calc avaialbe number of desc */
615 		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
616 		nb_pkts_recd += var;
617 		if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
618 			break;
619 	}
620 
621 	/* Update our internal tail pointer */
622 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
623 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
624 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
625 
626 	return nb_pkts_recd;
627 }
628 
629 /**
630  * vPMD raw receive routine for flex RxD,
631  * only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
632  *
633  * Notice:
634  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
635  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
636  */
637 static inline uint16_t
_recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts,uint8_t * split_packet)638 _recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue *rxq,
639 			    struct rte_mbuf **rx_pkts,
640 			    uint16_t nb_pkts, uint8_t *split_packet)
641 {
642 	volatile union iavf_rx_flex_desc *rxdp;
643 	struct rte_mbuf **sw_ring;
644 	uint16_t nb_pkts_recd;
645 	int pos;
646 	uint64_t var;
647 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
648 	__m128i crc_adjust = _mm_set_epi16
649 				(0, 0, 0,       /* ignore non-length fields */
650 				 -rxq->crc_len, /* sub crc on data_len */
651 				 0,          /* ignore high-16bits of pkt_len */
652 				 -rxq->crc_len, /* sub crc on pkt_len */
653 				 0, 0           /* ignore pkt_type field */
654 				);
655 	const __m128i zero = _mm_setzero_si128();
656 	/* mask to shuffle from desc. to mbuf */
657 	const __m128i shuf_msk = _mm_set_epi8
658 			(0xFF, 0xFF,
659 			 0xFF, 0xFF,  /* rss hash parsed separately */
660 			 11, 10,      /* octet 10~11, 16 bits vlan_macip */
661 			 5, 4,        /* octet 4~5, 16 bits data_len */
662 			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
663 			 5, 4,        /* octet 4~5, low 16 bits pkt_len */
664 			 0xFF, 0xFF,  /* pkt_type set as unknown */
665 			 0xFF, 0xFF   /* pkt_type set as unknown */
666 			);
667 	const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
668 						   0xFF, 0xFF,
669 						   0xFF, 0xFF,
670 						   0xFF, 0xFF,
671 						   0xFF, 0xFF,
672 						   0xFF, 0xFF,
673 						   0x04, 0x0C,
674 						   0x00, 0x08);
675 
676 	/**
677 	 * compile-time check the above crc_adjust layout is correct.
678 	 * NOTE: the first field (lowest address) is given last in set_epi16
679 	 * call above.
680 	 */
681 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
682 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
683 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
684 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
685 
686 	/* 4 packets DD mask */
687 	const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
688 						0x0000000100000001LL);
689 	/* 4 packets EOP mask */
690 	const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
691 						 0x0000000200000002LL);
692 
693 	/* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
694 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
695 
696 	/* Just the act of getting into the function from the application is
697 	 * going to cost about 7 cycles
698 	 */
699 	rxdp = (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
700 
701 	rte_prefetch0(rxdp);
702 
703 	/* See if we need to rearm the RX queue - gives the prefetch a bit
704 	 * of time to act
705 	 */
706 	if (rxq->rxrearm_nb > rxq->rx_free_thresh)
707 		iavf_rxq_rearm(rxq);
708 
709 	/* Before we start moving massive data around, check to see if
710 	 * there is actually a packet available
711 	 */
712 	if (!(rxdp->wb.status_error0 &
713 	      rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
714 		return 0;
715 
716 	/**
717 	 * Compile-time verify the shuffle mask
718 	 * NOTE: some field positions already verified above, but duplicated
719 	 * here for completeness in case of future modifications.
720 	 */
721 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
722 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
723 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
724 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
725 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
726 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
727 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
728 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
729 
730 	/* Cache is empty -> need to scan the buffer rings, but first move
731 	 * the next 'n' mbufs into the cache
732 	 */
733 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
734 
735 	/* A. load 4 packet in one loop
736 	 * [A*. mask out 4 unused dirty field in desc]
737 	 * B. copy 4 mbuf point from swring to rx_pkts
738 	 * C. calc the number of DD bits among the 4 packets
739 	 * [C*. extract the end-of-packet bit, if requested]
740 	 * D. fill info. from desc to mbuf
741 	 */
742 
743 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
744 	     pos += IAVF_VPMD_DESCS_PER_LOOP,
745 	     rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
746 		__m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
747 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
748 		__m128i staterr, sterr_tmp1, sterr_tmp2;
749 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
750 		__m128i mbp1;
751 #if defined(RTE_ARCH_X86_64)
752 		__m128i mbp2;
753 #endif
754 
755 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
756 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
757 		/* Read desc statuses backwards to avoid race condition */
758 		/* A.1 load 4 pkts desc */
759 		descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
760 		rte_compiler_barrier();
761 
762 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
763 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
764 
765 #if defined(RTE_ARCH_X86_64)
766 		/* B.1 load 2 64 bit mbuf points */
767 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
768 #endif
769 
770 		descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
771 		rte_compiler_barrier();
772 		/* B.1 load 2 mbuf point */
773 		descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
774 		rte_compiler_barrier();
775 		descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
776 
777 #if defined(RTE_ARCH_X86_64)
778 		/* B.2 copy 2 mbuf point into rx_pkts  */
779 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
780 #endif
781 
782 		if (split_packet) {
783 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
784 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
785 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
786 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
787 		}
788 
789 		/* avoid compiler reorder optimization */
790 		rte_compiler_barrier();
791 
792 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
793 		pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
794 		pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
795 
796 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
797 		pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
798 		pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
799 
800 		/* C.1 4=>2 filter staterr info only */
801 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
802 		/* C.1 4=>2 filter staterr info only */
803 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
804 
805 		flex_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
806 
807 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
808 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
809 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
810 
811 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
812 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
813 		pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
814 
815 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
816 		/**
817 		 * needs to load 2nd 16B of each desc for RSS hash parsing,
818 		 * will cause performance drop to get into this context.
819 		 */
820 		if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
821 				DEV_RX_OFFLOAD_RSS_HASH) {
822 			/* load bottom half of every 32B desc */
823 			const __m128i raw_desc_bh3 =
824 				_mm_load_si128
825 					((void *)(&rxdp[3].wb.status_error1));
826 			rte_compiler_barrier();
827 			const __m128i raw_desc_bh2 =
828 				_mm_load_si128
829 					((void *)(&rxdp[2].wb.status_error1));
830 			rte_compiler_barrier();
831 			const __m128i raw_desc_bh1 =
832 				_mm_load_si128
833 					((void *)(&rxdp[1].wb.status_error1));
834 			rte_compiler_barrier();
835 			const __m128i raw_desc_bh0 =
836 				_mm_load_si128
837 					((void *)(&rxdp[0].wb.status_error1));
838 
839 			/**
840 			 * to shift the 32b RSS hash value to the
841 			 * highest 32b of each 128b before mask
842 			 */
843 			__m128i rss_hash3 =
844 				_mm_slli_epi64(raw_desc_bh3, 32);
845 			__m128i rss_hash2 =
846 				_mm_slli_epi64(raw_desc_bh2, 32);
847 			__m128i rss_hash1 =
848 				_mm_slli_epi64(raw_desc_bh1, 32);
849 			__m128i rss_hash0 =
850 				_mm_slli_epi64(raw_desc_bh0, 32);
851 
852 			__m128i rss_hash_msk =
853 				_mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
854 
855 			rss_hash3 = _mm_and_si128
856 					(rss_hash3, rss_hash_msk);
857 			rss_hash2 = _mm_and_si128
858 					(rss_hash2, rss_hash_msk);
859 			rss_hash1 = _mm_and_si128
860 					(rss_hash1, rss_hash_msk);
861 			rss_hash0 = _mm_and_si128
862 					(rss_hash0, rss_hash_msk);
863 
864 			pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
865 			pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
866 			pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
867 			pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
868 		} /* if() on RSS hash parsing */
869 #endif
870 
871 		/* C.2 get 4 pkts staterr value  */
872 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
873 
874 		/* D.3 copy final 3,4 data to rx_pkts */
875 		_mm_storeu_si128
876 			((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
877 			 pkt_mb3);
878 		_mm_storeu_si128
879 			((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
880 			 pkt_mb2);
881 
882 		/* C* extract and record EOP bit */
883 		if (split_packet) {
884 			/* and with mask to extract bits, flipping 1-0 */
885 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
886 			/* the staterr values are not in order, as the count
887 			 * count of dd bits doesn't care. However, for end of
888 			 * packet tracking, we do care, so shuffle. This also
889 			 * compresses the 32-bit values to 8-bit
890 			 */
891 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
892 			/* store the resulting 32-bit value */
893 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
894 			split_packet += IAVF_VPMD_DESCS_PER_LOOP;
895 		}
896 
897 		/* C.3 calc available number of desc */
898 		staterr = _mm_and_si128(staterr, dd_check);
899 		staterr = _mm_packs_epi32(staterr, zero);
900 
901 		/* D.3 copy final 1,2 data to rx_pkts */
902 		_mm_storeu_si128
903 			((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
904 			 pkt_mb1);
905 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
906 				 pkt_mb0);
907 		flex_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
908 		/* C.4 calc available number of desc */
909 		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
910 		nb_pkts_recd += var;
911 		if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
912 			break;
913 	}
914 
915 	/* Update our internal tail pointer */
916 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
917 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
918 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
919 
920 	return nb_pkts_recd;
921 }
922 
923 /* Notice:
924  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
925  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
926  *   numbers of DD bits
927  */
928 uint16_t
iavf_recv_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)929 iavf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
930 		  uint16_t nb_pkts)
931 {
932 	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
933 }
934 
935 /* Notice:
936  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
937  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
938  *   numbers of DD bits
939  */
940 uint16_t
iavf_recv_pkts_vec_flex_rxd(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)941 iavf_recv_pkts_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
942 			    uint16_t nb_pkts)
943 {
944 	return _recv_raw_pkts_vec_flex_rxd(rx_queue, rx_pkts, nb_pkts, NULL);
945 }
946 
947 /**
948  * vPMD receive routine that reassembles single burst of 32 scattered packets
949  *
950  * Notice:
951  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
952  */
953 static uint16_t
iavf_recv_scattered_burst_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)954 iavf_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
955 			      uint16_t nb_pkts)
956 {
957 	struct iavf_rx_queue *rxq = rx_queue;
958 	uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
959 	unsigned int i = 0;
960 
961 	/* get some new buffers */
962 	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
963 					      split_flags);
964 	if (nb_bufs == 0)
965 		return 0;
966 
967 	/* happy day case, full burst + no packets to be joined */
968 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
969 
970 	if (!rxq->pkt_first_seg &&
971 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
972 	    split_fl64[2] == 0 && split_fl64[3] == 0)
973 		return nb_bufs;
974 
975 	/* reassemble any packets that need reassembly*/
976 	if (!rxq->pkt_first_seg) {
977 		/* find the first split flag, and only reassemble then*/
978 		while (i < nb_bufs && !split_flags[i])
979 			i++;
980 		if (i == nb_bufs)
981 			return nb_bufs;
982 		rxq->pkt_first_seg = rx_pkts[i];
983 	}
984 	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
985 		&split_flags[i]);
986 }
987 
988 /**
989  * vPMD receive routine that reassembles scattered packets.
990  */
991 uint16_t
iavf_recv_scattered_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)992 iavf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
993 			     uint16_t nb_pkts)
994 {
995 	uint16_t retval = 0;
996 
997 	while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
998 		uint16_t burst;
999 
1000 		burst = iavf_recv_scattered_burst_vec(rx_queue,
1001 						      rx_pkts + retval,
1002 						      IAVF_VPMD_RX_MAX_BURST);
1003 		retval += burst;
1004 		nb_pkts -= burst;
1005 		if (burst < IAVF_VPMD_RX_MAX_BURST)
1006 			return retval;
1007 	}
1008 
1009 	return retval + iavf_recv_scattered_burst_vec(rx_queue,
1010 						      rx_pkts + retval,
1011 						      nb_pkts);
1012 }
1013 
1014 /**
1015  * vPMD receive routine that reassembles single burst of 32 scattered packets
1016  * for flex RxD
1017  *
1018  * Notice:
1019  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
1020  */
1021 static uint16_t
iavf_recv_scattered_burst_vec_flex_rxd(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)1022 iavf_recv_scattered_burst_vec_flex_rxd(void *rx_queue,
1023 				       struct rte_mbuf **rx_pkts,
1024 				       uint16_t nb_pkts)
1025 {
1026 	struct iavf_rx_queue *rxq = rx_queue;
1027 	uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1028 	unsigned int i = 0;
1029 
1030 	/* get some new buffers */
1031 	uint16_t nb_bufs = _recv_raw_pkts_vec_flex_rxd(rxq, rx_pkts, nb_pkts,
1032 					      split_flags);
1033 	if (nb_bufs == 0)
1034 		return 0;
1035 
1036 	/* happy day case, full burst + no packets to be joined */
1037 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
1038 
1039 	if (!rxq->pkt_first_seg &&
1040 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
1041 	    split_fl64[2] == 0 && split_fl64[3] == 0)
1042 		return nb_bufs;
1043 
1044 	/* reassemble any packets that need reassembly*/
1045 	if (!rxq->pkt_first_seg) {
1046 		/* find the first split flag, and only reassemble then*/
1047 		while (i < nb_bufs && !split_flags[i])
1048 			i++;
1049 		if (i == nb_bufs)
1050 			return nb_bufs;
1051 		rxq->pkt_first_seg = rx_pkts[i];
1052 	}
1053 	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
1054 		&split_flags[i]);
1055 }
1056 
1057 /**
1058  * vPMD receive routine that reassembles scattered packets for flex RxD
1059  */
1060 uint16_t
iavf_recv_scattered_pkts_vec_flex_rxd(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)1061 iavf_recv_scattered_pkts_vec_flex_rxd(void *rx_queue,
1062 				      struct rte_mbuf **rx_pkts,
1063 				      uint16_t nb_pkts)
1064 {
1065 	uint16_t retval = 0;
1066 
1067 	while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1068 		uint16_t burst;
1069 
1070 		burst = iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1071 						rx_pkts + retval,
1072 						IAVF_VPMD_RX_MAX_BURST);
1073 		retval += burst;
1074 		nb_pkts -= burst;
1075 		if (burst < IAVF_VPMD_RX_MAX_BURST)
1076 			return retval;
1077 	}
1078 
1079 	return retval + iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1080 						      rx_pkts + retval,
1081 						      nb_pkts);
1082 }
1083 
1084 static inline void
vtx1(volatile struct iavf_tx_desc * txdp,struct rte_mbuf * pkt,uint64_t flags)1085 vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)
1086 {
1087 	uint64_t high_qw =
1088 			(IAVF_TX_DESC_DTYPE_DATA |
1089 			 ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
1090 			 ((uint64_t)pkt->data_len <<
1091 			  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
1092 
1093 	__m128i descriptor = _mm_set_epi64x(high_qw,
1094 					    pkt->buf_iova + pkt->data_off);
1095 	_mm_store_si128((__m128i *)txdp, descriptor);
1096 }
1097 
1098 static inline void
iavf_vtx(volatile struct iavf_tx_desc * txdp,struct rte_mbuf ** pkt,uint16_t nb_pkts,uint64_t flags)1099 iavf_vtx(volatile struct iavf_tx_desc *txdp, struct rte_mbuf **pkt,
1100 	uint16_t nb_pkts,  uint64_t flags)
1101 {
1102 	int i;
1103 
1104 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
1105 		vtx1(txdp, *pkt, flags);
1106 }
1107 
1108 uint16_t
iavf_xmit_fixed_burst_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1109 iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1110 			 uint16_t nb_pkts)
1111 {
1112 	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1113 	volatile struct iavf_tx_desc *txdp;
1114 	struct iavf_tx_entry *txep;
1115 	uint16_t n, nb_commit, tx_id;
1116 	uint64_t flags = IAVF_TX_DESC_CMD_EOP | 0x04;  /* bit 2 must be set */
1117 	uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
1118 	int i;
1119 
1120 	/* cross rx_thresh boundary is not allowed */
1121 	nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
1122 
1123 	if (txq->nb_free < txq->free_thresh)
1124 		iavf_tx_free_bufs(txq);
1125 
1126 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
1127 	if (unlikely(nb_pkts == 0))
1128 		return 0;
1129 	nb_commit = nb_pkts;
1130 
1131 	tx_id = txq->tx_tail;
1132 	txdp = &txq->tx_ring[tx_id];
1133 	txep = &txq->sw_ring[tx_id];
1134 
1135 	txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
1136 
1137 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
1138 	if (nb_commit >= n) {
1139 		tx_backlog_entry(txep, tx_pkts, n);
1140 
1141 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
1142 			vtx1(txdp, *tx_pkts, flags);
1143 
1144 		vtx1(txdp, *tx_pkts++, rs);
1145 
1146 		nb_commit = (uint16_t)(nb_commit - n);
1147 
1148 		tx_id = 0;
1149 		txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
1150 
1151 		/* avoid reach the end of ring */
1152 		txdp = &txq->tx_ring[tx_id];
1153 		txep = &txq->sw_ring[tx_id];
1154 	}
1155 
1156 	tx_backlog_entry(txep, tx_pkts, nb_commit);
1157 
1158 	iavf_vtx(txdp, tx_pkts, nb_commit, flags);
1159 
1160 	tx_id = (uint16_t)(tx_id + nb_commit);
1161 	if (tx_id > txq->next_rs) {
1162 		txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
1163 			rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
1164 					 IAVF_TXD_QW1_CMD_SHIFT);
1165 		txq->next_rs =
1166 			(uint16_t)(txq->next_rs + txq->rs_thresh);
1167 	}
1168 
1169 	txq->tx_tail = tx_id;
1170 
1171 	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u",
1172 		   txq->port_id, txq->queue_id, tx_id, nb_pkts);
1173 
1174 	IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1175 
1176 	return nb_pkts;
1177 }
1178 
1179 uint16_t
iavf_xmit_pkts_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1180 iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1181 		   uint16_t nb_pkts)
1182 {
1183 	uint16_t nb_tx = 0;
1184 	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1185 
1186 	while (nb_pkts) {
1187 		uint16_t ret, num;
1188 
1189 		num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1190 		ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
1191 		nb_tx += ret;
1192 		nb_pkts -= ret;
1193 		if (ret < num)
1194 			break;
1195 	}
1196 
1197 	return nb_tx;
1198 }
1199 
1200 static void __rte_cold
iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue * rxq)1201 iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue *rxq)
1202 {
1203 	_iavf_rx_queue_release_mbufs_vec(rxq);
1204 }
1205 
1206 static void __rte_cold
iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue * txq)1207 iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue *txq)
1208 {
1209 	_iavf_tx_queue_release_mbufs_vec(txq);
1210 }
1211 
1212 static const struct iavf_rxq_ops sse_vec_rxq_ops = {
1213 	.release_mbufs = iavf_rx_queue_release_mbufs_sse,
1214 };
1215 
1216 static const struct iavf_txq_ops sse_vec_txq_ops = {
1217 	.release_mbufs = iavf_tx_queue_release_mbufs_sse,
1218 };
1219 
1220 int __rte_cold
iavf_txq_vec_setup(struct iavf_tx_queue * txq)1221 iavf_txq_vec_setup(struct iavf_tx_queue *txq)
1222 {
1223 	txq->ops = &sse_vec_txq_ops;
1224 	return 0;
1225 }
1226 
1227 int __rte_cold
iavf_rxq_vec_setup(struct iavf_rx_queue * rxq)1228 iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
1229 {
1230 	rxq->ops = &sse_vec_rxq_ops;
1231 	return iavf_rxq_vec_setup_default(rxq);
1232 }
1233 
1234 int __rte_cold
iavf_rx_vec_dev_check(struct rte_eth_dev * dev)1235 iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
1236 {
1237 	return iavf_rx_vec_dev_check_default(dev);
1238 }
1239 
1240 int __rte_cold
iavf_tx_vec_dev_check(struct rte_eth_dev * dev)1241 iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
1242 {
1243 	return iavf_tx_vec_dev_check_default(dev);
1244 }
1245