xref: /dpdk/drivers/net/iavf/iavf_rxtx_vec_sse.c (revision 24b960a1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8 
9 #include "iavf.h"
10 #include "iavf_rxtx.h"
11 #include "iavf_rxtx_vec_common.h"
12 
13 #include <tmmintrin.h>
14 
15 #ifndef __INTEL_COMPILER
16 #pragma GCC diagnostic ignored "-Wcast-qual"
17 #endif
18 
19 static inline void
iavf_rxq_rearm(struct iavf_rx_queue * rxq)20 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
21 {
22 	int i;
23 	uint16_t rx_id;
24 
25 	volatile union iavf_rx_desc *rxdp;
26 	struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
27 	struct rte_mbuf *mb0, *mb1;
28 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
29 			RTE_PKTMBUF_HEADROOM);
30 	__m128i dma_addr0, dma_addr1;
31 
32 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
33 
34 	/* Pull 'n' more MBUFs into the software ring */
35 	if (rte_mempool_get_bulk(rxq->mp, (void *)rxp,
36 				 rxq->rx_free_thresh) < 0) {
37 		if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) {
38 			dma_addr0 = _mm_setzero_si128();
39 			for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
40 				rxp[i] = &rxq->fake_mbuf;
41 				_mm_store_si128((__m128i *)&rxdp[i].read,
42 						dma_addr0);
43 			}
44 		}
45 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46 			rxq->rx_free_thresh;
47 		return;
48 	}
49 
50 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
51 	for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) {
52 		__m128i vaddr0, vaddr1;
53 
54 		mb0 = rxp[0];
55 		mb1 = rxp[1];
56 
57 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
58 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
59 				offsetof(struct rte_mbuf, buf_addr) + 8);
60 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
61 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
62 
63 		/* convert pa to dma_addr hdr/data */
64 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
65 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
66 
67 		/* add headroom to pa values */
68 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
69 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
70 
71 		/* flush desc with pa dma_addr */
72 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
73 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
74 	}
75 
76 	rxq->rxrearm_start += rxq->rx_free_thresh;
77 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
78 		rxq->rxrearm_start = 0;
79 
80 	rxq->rxrearm_nb -= rxq->rx_free_thresh;
81 
82 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
83 			   (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
84 
85 	PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
86 		   "rearm_start=%u rearm_nb=%u",
87 		   rxq->port_id, rxq->queue_id,
88 		   rx_id, rxq->rxrearm_start, rxq->rxrearm_nb);
89 
90 	/* Update the tail pointer on the NIC */
91 	IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
92 }
93 
94 static inline void
desc_to_olflags_v(struct iavf_rx_queue * rxq,__m128i descs[4],struct rte_mbuf ** rx_pkts)95 desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
96 		  struct rte_mbuf **rx_pkts)
97 {
98 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
99 	__m128i rearm0, rearm1, rearm2, rearm3;
100 
101 	__m128i vlan0, vlan1, rss, l3_l4e;
102 
103 	/* mask everything except RSS, flow director and VLAN flags
104 	 * bit2 is for VLAN tag, bit11 for flow director indication
105 	 * bit13:12 for RSS indication.
106 	 */
107 	const __m128i rss_vlan_msk = _mm_set_epi32(
108 			0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
109 
110 	const __m128i cksum_mask = _mm_set_epi32(
111 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
112 			RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
113 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
114 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
115 			RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
116 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
117 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
118 			RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
119 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
120 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
121 			RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
122 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
123 
124 	/* map rss and vlan type to rss hash and vlan flag */
125 	const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
126 			0, 0, 0, 0,
127 			0, 0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
128 			0, 0, 0, 0);
129 
130 	const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
131 			0, 0, 0, 0,
132 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH, 0, 0,
133 			0, 0, RTE_MBUF_F_RX_FDIR, 0);
134 
135 	const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
136 			/* shift right 1 bit to make sure it not exceed 255 */
137 			(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
138 			 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
139 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
140 			 RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
141 			(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
142 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
143 			(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
144 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
145 			RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
146 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1);
147 
148 	vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
149 	vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
150 	vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
151 
152 	vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
153 	vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
154 
155 	rss = _mm_srli_epi32(vlan1, 11);
156 	rss = _mm_shuffle_epi8(rss_flags, rss);
157 
158 	l3_l4e = _mm_srli_epi32(vlan1, 22);
159 	l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
160 	/* then we shift left 1 bit */
161 	l3_l4e = _mm_slli_epi32(l3_l4e, 1);
162 	/* we need to mask out the redundant bits */
163 	l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
164 
165 	vlan0 = _mm_or_si128(vlan0, rss);
166 	vlan0 = _mm_or_si128(vlan0, l3_l4e);
167 
168 	/* At this point, we have the 4 sets of flags in the low 16-bits
169 	 * of each 32-bit value in vlan0.
170 	 * We want to extract these, and merge them with the mbuf init data
171 	 * so we can do a single 16-byte write to the mbuf to set the flags
172 	 * and all the other initialization fields. Extracting the
173 	 * appropriate flags means that we have to do a shift and blend for
174 	 * each mbuf before we do the write.
175 	 */
176 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
177 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
178 	rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
179 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
180 
181 	/* write the rearm data and the olflags in one write */
182 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
183 			offsetof(struct rte_mbuf, rearm_data) + 8);
184 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
185 			RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
186 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
187 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
188 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
189 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
190 }
191 
192 static inline __m128i
flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)193 flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
194 {
195 #define FDID_MIS_MAGIC 0xFFFFFFFF
196 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
197 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
198 	const __m128i pkt_fdir_bit = _mm_set1_epi32(RTE_MBUF_F_RX_FDIR |
199 			RTE_MBUF_F_RX_FDIR_ID);
200 	/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
201 	const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
202 	__m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
203 			fdir_mis_mask);
204 	/* this XOR op results to bit-reverse the fdir_mask */
205 	fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
206 	const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
207 
208 	return fdir_flags;
209 }
210 
211 static inline void
flex_desc_to_olflags_v(struct iavf_rx_queue * rxq,__m128i descs[4],struct rte_mbuf ** rx_pkts)212 flex_desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
213 		       struct rte_mbuf **rx_pkts)
214 {
215 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
216 	__m128i rearm0, rearm1, rearm2, rearm3;
217 
218 	__m128i tmp_desc, flags, rss_vlan;
219 
220 	/* mask everything except checksum, RSS and VLAN flags.
221 	 * bit6:4 for checksum.
222 	 * bit12 for RSS indication.
223 	 * bit13 for VLAN indication.
224 	 */
225 	const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070,
226 						0x3070, 0x3070);
227 
228 	const __m128i cksum_mask = _mm_set_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
229 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
230 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
231 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
232 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
233 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
234 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
235 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
236 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
237 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
238 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
239 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
240 
241 	/* map the checksum, rss and vlan fields to the checksum, rss
242 	 * and vlan flag
243 	 */
244 	const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
245 			/* shift right 1 bit to make sure it not exceed 255 */
246 			(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
247 			 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
248 			(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
249 			 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
250 			(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
251 			 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
252 			(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
253 			 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
254 			(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
255 			(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
256 			(RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
257 			(RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
258 
259 	const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
260 			0, 0, 0, 0,
261 			0, 0, 0, 0,
262 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
263 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
264 			RTE_MBUF_F_RX_RSS_HASH, 0);
265 
266 	/* merge 4 descriptors */
267 	flags = _mm_unpackhi_epi32(descs[0], descs[1]);
268 	tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
269 	tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
270 	tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
271 
272 	/* checksum flags */
273 	tmp_desc = _mm_srli_epi32(tmp_desc, 4);
274 	flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
275 	/* then we shift left 1 bit */
276 	flags = _mm_slli_epi32(flags, 1);
277 	/* we need to mask out the redundant bits introduced by RSS or
278 	 * VLAN fields.
279 	 */
280 	flags = _mm_and_si128(flags, cksum_mask);
281 
282 	/* RSS, VLAN flag */
283 	tmp_desc = _mm_srli_epi32(tmp_desc, 8);
284 	rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
285 
286 	/* merge the flags */
287 	flags = _mm_or_si128(flags, rss_vlan);
288 
289 	if (rxq->fdir_enabled) {
290 		const __m128i fdir_id0_1 =
291 			_mm_unpackhi_epi32(descs[0], descs[1]);
292 
293 		const __m128i fdir_id2_3 =
294 			_mm_unpackhi_epi32(descs[2], descs[3]);
295 
296 		const __m128i fdir_id0_3 =
297 			_mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
298 
299 		const __m128i fdir_flags =
300 			flex_rxd_to_fdir_flags_vec(fdir_id0_3);
301 
302 		/* merge with fdir_flags */
303 		flags = _mm_or_si128(flags, fdir_flags);
304 
305 		/* write fdir_id to mbuf */
306 		rx_pkts[0]->hash.fdir.hi =
307 			_mm_extract_epi32(fdir_id0_3, 0);
308 
309 		rx_pkts[1]->hash.fdir.hi =
310 			_mm_extract_epi32(fdir_id0_3, 1);
311 
312 		rx_pkts[2]->hash.fdir.hi =
313 			_mm_extract_epi32(fdir_id0_3, 2);
314 
315 		rx_pkts[3]->hash.fdir.hi =
316 			_mm_extract_epi32(fdir_id0_3, 3);
317 	} /* if() on fdir_enabled */
318 
319 	/**
320 	 * At this point, we have the 4 sets of flags in the low 16-bits
321 	 * of each 32-bit value in flags.
322 	 * We want to extract these, and merge them with the mbuf init data
323 	 * so we can do a single 16-byte write to the mbuf to set the flags
324 	 * and all the other initialization fields. Extracting the
325 	 * appropriate flags means that we have to do a shift and blend for
326 	 * each mbuf before we do the write.
327 	 */
328 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10);
329 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10);
330 	rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10);
331 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10);
332 
333 	/* write the rearm data and the olflags in one write */
334 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
335 			 offsetof(struct rte_mbuf, rearm_data) + 8);
336 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
337 			 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
338 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
339 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
340 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
341 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
342 }
343 
344 #define PKTLEN_SHIFT     10
345 
346 static inline void
desc_to_ptype_v(__m128i descs[4],struct rte_mbuf ** rx_pkts,const uint32_t * type_table)347 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
348 		const uint32_t *type_table)
349 {
350 	__m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
351 	__m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
352 
353 	ptype0 = _mm_srli_epi64(ptype0, 30);
354 	ptype1 = _mm_srli_epi64(ptype1, 30);
355 
356 	rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)];
357 	rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)];
358 	rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)];
359 	rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)];
360 }
361 
362 static inline void
flex_desc_to_ptype_v(__m128i descs[4],struct rte_mbuf ** rx_pkts,const uint32_t * type_table)363 flex_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
364 		     const uint32_t *type_table)
365 {
366 	const __m128i ptype_mask =
367 			_mm_set_epi16(IAVF_RX_FLEX_DESC_PTYPE_M, 0x0,
368 				IAVF_RX_FLEX_DESC_PTYPE_M, 0x0,
369 				IAVF_RX_FLEX_DESC_PTYPE_M, 0x0,
370 				IAVF_RX_FLEX_DESC_PTYPE_M, 0x0);
371 
372 	__m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
373 	__m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
374 	__m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
375 
376 	ptype_all = _mm_and_si128(ptype_all, ptype_mask);
377 
378 	rx_pkts[0]->packet_type = type_table[_mm_extract_epi16(ptype_all, 1)];
379 	rx_pkts[1]->packet_type = type_table[_mm_extract_epi16(ptype_all, 3)];
380 	rx_pkts[2]->packet_type = type_table[_mm_extract_epi16(ptype_all, 5)];
381 	rx_pkts[3]->packet_type = type_table[_mm_extract_epi16(ptype_all, 7)];
382 }
383 
384 /**
385  * vPMD raw receive routine, only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
386  *
387  * Notice:
388  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
389  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
390  */
391 static inline uint16_t
_recv_raw_pkts_vec(struct iavf_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts,uint8_t * split_packet)392 _recv_raw_pkts_vec(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
393 		   uint16_t nb_pkts, uint8_t *split_packet)
394 {
395 	volatile union iavf_rx_desc *rxdp;
396 	struct rte_mbuf **sw_ring;
397 	uint16_t nb_pkts_recd;
398 	int pos;
399 	uint64_t var;
400 	__m128i shuf_msk;
401 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
402 
403 	__m128i crc_adjust = _mm_set_epi16(
404 				0, 0, 0,    /* ignore non-length fields */
405 				-rxq->crc_len, /* sub crc on data_len */
406 				0,          /* ignore high-16bits of pkt_len */
407 				-rxq->crc_len, /* sub crc on pkt_len */
408 				0, 0            /* ignore pkt_type field */
409 			);
410 	/* compile-time check the above crc_adjust layout is correct.
411 	 * NOTE: the first field (lowest address) is given last in set_epi16
412 	 * call above.
413 	 */
414 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
415 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
416 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
417 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
418 	__m128i dd_check, eop_check;
419 
420 	/* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
421 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
422 
423 	/* Just the act of getting into the function from the application is
424 	 * going to cost about 7 cycles
425 	 */
426 	rxdp = rxq->rx_ring + rxq->rx_tail;
427 
428 	rte_prefetch0(rxdp);
429 
430 	/* See if we need to rearm the RX queue - gives the prefetch a bit
431 	 * of time to act
432 	 */
433 	if (rxq->rxrearm_nb > rxq->rx_free_thresh)
434 		iavf_rxq_rearm(rxq);
435 
436 	/* Before we start moving massive data around, check to see if
437 	 * there is actually a packet available
438 	 */
439 	if (!(rxdp->wb.qword1.status_error_len &
440 	      rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
441 		return 0;
442 
443 	/* 4 packets DD mask */
444 	dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
445 
446 	/* 4 packets EOP mask */
447 	eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
448 
449 	/* mask to shuffle from desc. to mbuf */
450 	shuf_msk = _mm_set_epi8(
451 		7, 6, 5, 4,  /* octet 4~7, 32bits rss */
452 		3, 2,        /* octet 2~3, low 16 bits vlan_macip */
453 		15, 14,      /* octet 15~14, 16 bits data_len */
454 		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
455 		15, 14,      /* octet 15~14, low 16 bits pkt_len */
456 		0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */
457 		);
458 	/* Compile-time verify the shuffle mask
459 	 * NOTE: some field positions already verified above, but duplicated
460 	 * here for completeness in case of future modifications.
461 	 */
462 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
463 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
464 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
465 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
466 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
467 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
468 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
469 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
470 
471 	/* Cache is empty -> need to scan the buffer rings, but first move
472 	 * the next 'n' mbufs into the cache
473 	 */
474 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
475 
476 	/* A. load 4 packet in one loop
477 	 * [A*. mask out 4 unused dirty field in desc]
478 	 * B. copy 4 mbuf point from swring to rx_pkts
479 	 * C. calc the number of DD bits among the 4 packets
480 	 * [C*. extract the end-of-packet bit, if requested]
481 	 * D. fill info. from desc to mbuf
482 	 */
483 
484 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
485 	     pos += IAVF_VPMD_DESCS_PER_LOOP,
486 	     rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
487 		__m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
488 		__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
489 		__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
490 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
491 		__m128i mbp1;
492 #if defined(RTE_ARCH_X86_64)
493 		__m128i mbp2;
494 #endif
495 
496 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
497 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
498 		/* Read desc statuses backwards to avoid race condition */
499 		/* A.1 load desc[3] */
500 		descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
501 		rte_compiler_barrier();
502 
503 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
504 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
505 
506 #if defined(RTE_ARCH_X86_64)
507 		/* B.1 load 2 64 bit mbuf points */
508 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
509 #endif
510 
511 		/* A.1 load desc[2-0] */
512 		descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
513 		rte_compiler_barrier();
514 		descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
515 		rte_compiler_barrier();
516 		descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
517 
518 #if defined(RTE_ARCH_X86_64)
519 		/* B.2 copy 2 mbuf point into rx_pkts  */
520 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
521 #endif
522 
523 		if (split_packet) {
524 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
525 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
526 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
527 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
528 		}
529 
530 		/* avoid compiler reorder optimization */
531 		rte_compiler_barrier();
532 
533 		/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
534 		const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
535 		const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
536 
537 		/* merge the now-aligned packet length fields back in */
538 		descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
539 		descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
540 
541 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
542 		pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
543 		pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
544 
545 		/* C.1 4=>2 status err info only */
546 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
547 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
548 
549 		desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
550 
551 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
552 		pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
553 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
554 
555 		/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
556 		const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
557 		const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
558 
559 		/* merge the now-aligned packet length fields back in */
560 		descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
561 		descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
562 
563 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
564 		pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
565 		pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
566 
567 		/* C.2 get 4 pkts status err value  */
568 		zero = _mm_xor_si128(dd_check, dd_check);
569 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
570 
571 		/* D.3 copy final 3,4 data to rx_pkts */
572 		_mm_storeu_si128(
573 			(void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
574 			pkt_mb4);
575 		_mm_storeu_si128(
576 			(void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
577 			pkt_mb3);
578 
579 		/* D.2 pkt 1,2 remove crc */
580 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
581 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
582 
583 		/* C* extract and record EOP bit */
584 		if (split_packet) {
585 			__m128i eop_shuf_mask = _mm_set_epi8(
586 					0xFF, 0xFF, 0xFF, 0xFF,
587 					0xFF, 0xFF, 0xFF, 0xFF,
588 					0xFF, 0xFF, 0xFF, 0xFF,
589 					0x04, 0x0C, 0x00, 0x08
590 					);
591 
592 			/* and with mask to extract bits, flipping 1-0 */
593 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
594 			/* the staterr values are not in order, as the count
595 			 * of dd bits doesn't care. However, for end of
596 			 * packet tracking, we do care, so shuffle. This also
597 			 * compresses the 32-bit values to 8-bit
598 			 */
599 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
600 			/* store the resulting 32-bit value */
601 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
602 			split_packet += IAVF_VPMD_DESCS_PER_LOOP;
603 		}
604 
605 		/* C.3 calc available number of desc */
606 		staterr = _mm_and_si128(staterr, dd_check);
607 		staterr = _mm_packs_epi32(staterr, zero);
608 
609 		/* D.3 copy final 1,2 data to rx_pkts */
610 		_mm_storeu_si128(
611 			(void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
612 			pkt_mb2);
613 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
614 				 pkt_mb1);
615 		desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
616 		/* C.4 calc available number of desc */
617 		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
618 		nb_pkts_recd += var;
619 		if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
620 			break;
621 	}
622 
623 	/* Update our internal tail pointer */
624 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
625 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
626 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
627 
628 	return nb_pkts_recd;
629 }
630 
631 /**
632  * vPMD raw receive routine for flex RxD,
633  * only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
634  *
635  * Notice:
636  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
637  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
638  */
639 static inline uint16_t
_recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts,uint8_t * split_packet)640 _recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue *rxq,
641 			    struct rte_mbuf **rx_pkts,
642 			    uint16_t nb_pkts, uint8_t *split_packet)
643 {
644 	volatile union iavf_rx_flex_desc *rxdp;
645 	struct rte_mbuf **sw_ring;
646 	uint16_t nb_pkts_recd;
647 	int pos;
648 	uint64_t var;
649 	struct iavf_adapter *adapter = rxq->vsi->adapter;
650 	uint64_t offloads = adapter->dev_data->dev_conf.rxmode.offloads;
651 	const uint32_t *ptype_tbl = adapter->ptype_tbl;
652 	__m128i crc_adjust = _mm_set_epi16
653 				(0, 0, 0,       /* ignore non-length fields */
654 				 -rxq->crc_len, /* sub crc on data_len */
655 				 0,          /* ignore high-16bits of pkt_len */
656 				 -rxq->crc_len, /* sub crc on pkt_len */
657 				 0, 0           /* ignore pkt_type field */
658 				);
659 	const __m128i zero = _mm_setzero_si128();
660 	/* mask to shuffle from desc. to mbuf */
661 	const __m128i shuf_msk = _mm_set_epi8
662 			(0xFF, 0xFF,
663 			 0xFF, 0xFF,  /* rss hash parsed separately */
664 			 11, 10,      /* octet 10~11, 16 bits vlan_macip */
665 			 5, 4,        /* octet 4~5, 16 bits data_len */
666 			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
667 			 5, 4,        /* octet 4~5, low 16 bits pkt_len */
668 			 0xFF, 0xFF,  /* pkt_type set as unknown */
669 			 0xFF, 0xFF   /* pkt_type set as unknown */
670 			);
671 	const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
672 						   0xFF, 0xFF,
673 						   0xFF, 0xFF,
674 						   0xFF, 0xFF,
675 						   0xFF, 0xFF,
676 						   0xFF, 0xFF,
677 						   0x04, 0x0C,
678 						   0x00, 0x08);
679 
680 	/**
681 	 * compile-time check the above crc_adjust layout is correct.
682 	 * NOTE: the first field (lowest address) is given last in set_epi16
683 	 * call above.
684 	 */
685 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
686 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
687 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
688 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
689 
690 	/* 4 packets DD mask */
691 	const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
692 						0x0000000100000001LL);
693 	/* 4 packets EOP mask */
694 	const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
695 						 0x0000000200000002LL);
696 
697 	/* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
698 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
699 
700 	/* Just the act of getting into the function from the application is
701 	 * going to cost about 7 cycles
702 	 */
703 	rxdp = (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
704 
705 	rte_prefetch0(rxdp);
706 
707 	/* See if we need to rearm the RX queue - gives the prefetch a bit
708 	 * of time to act
709 	 */
710 	if (rxq->rxrearm_nb > rxq->rx_free_thresh)
711 		iavf_rxq_rearm(rxq);
712 
713 	/* Before we start moving massive data around, check to see if
714 	 * there is actually a packet available
715 	 */
716 	if (!(rxdp->wb.status_error0 &
717 	      rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
718 		return 0;
719 
720 	/**
721 	 * Compile-time verify the shuffle mask
722 	 * NOTE: some field positions already verified above, but duplicated
723 	 * here for completeness in case of future modifications.
724 	 */
725 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
726 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
727 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
728 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
729 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
730 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
731 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
732 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
733 
734 	/* Cache is empty -> need to scan the buffer rings, but first move
735 	 * the next 'n' mbufs into the cache
736 	 */
737 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
738 
739 	/* A. load 4 packet in one loop
740 	 * [A*. mask out 4 unused dirty field in desc]
741 	 * B. copy 4 mbuf point from swring to rx_pkts
742 	 * C. calc the number of DD bits among the 4 packets
743 	 * [C*. extract the end-of-packet bit, if requested]
744 	 * D. fill info. from desc to mbuf
745 	 */
746 
747 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
748 	     pos += IAVF_VPMD_DESCS_PER_LOOP,
749 	     rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
750 		__m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
751 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
752 		__m128i staterr, sterr_tmp1, sterr_tmp2;
753 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
754 		__m128i mbp1;
755 #if defined(RTE_ARCH_X86_64)
756 		__m128i mbp2;
757 #endif
758 
759 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
760 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
761 		/* Read desc statuses backwards to avoid race condition */
762 		/* A.1 load desc[3] */
763 		descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
764 		rte_compiler_barrier();
765 
766 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
767 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
768 
769 #if defined(RTE_ARCH_X86_64)
770 		/* B.1 load 2 64 bit mbuf points */
771 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
772 #endif
773 
774 		/* A.1 load desc[2-0] */
775 		descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
776 		rte_compiler_barrier();
777 		descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
778 		rte_compiler_barrier();
779 		descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
780 
781 #if defined(RTE_ARCH_X86_64)
782 		/* B.2 copy 2 mbuf point into rx_pkts  */
783 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
784 #endif
785 
786 		if (split_packet) {
787 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
788 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
789 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
790 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
791 		}
792 
793 		/* avoid compiler reorder optimization */
794 		rte_compiler_barrier();
795 
796 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
797 		pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
798 		pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
799 
800 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
801 		pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
802 		pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
803 
804 		/* C.1 4=>2 filter staterr info only */
805 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
806 		/* C.1 4=>2 filter staterr info only */
807 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
808 
809 		flex_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
810 
811 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
812 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
813 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
814 
815 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
816 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
817 		pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
818 
819 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
820 		/**
821 		 * needs to load 2nd 16B of each desc for RSS hash parsing,
822 		 * will cause performance drop to get into this context.
823 		 */
824 		if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
825 			/* load bottom half of every 32B desc */
826 			const __m128i raw_desc_bh3 =
827 				_mm_load_si128
828 					((void *)(&rxdp[3].wb.status_error1));
829 			rte_compiler_barrier();
830 			const __m128i raw_desc_bh2 =
831 				_mm_load_si128
832 					((void *)(&rxdp[2].wb.status_error1));
833 			rte_compiler_barrier();
834 			const __m128i raw_desc_bh1 =
835 				_mm_load_si128
836 					((void *)(&rxdp[1].wb.status_error1));
837 			rte_compiler_barrier();
838 			const __m128i raw_desc_bh0 =
839 				_mm_load_si128
840 					((void *)(&rxdp[0].wb.status_error1));
841 
842 			/**
843 			 * to shift the 32b RSS hash value to the
844 			 * highest 32b of each 128b before mask
845 			 */
846 			__m128i rss_hash3 =
847 				_mm_slli_epi64(raw_desc_bh3, 32);
848 			__m128i rss_hash2 =
849 				_mm_slli_epi64(raw_desc_bh2, 32);
850 			__m128i rss_hash1 =
851 				_mm_slli_epi64(raw_desc_bh1, 32);
852 			__m128i rss_hash0 =
853 				_mm_slli_epi64(raw_desc_bh0, 32);
854 
855 			__m128i rss_hash_msk =
856 				_mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
857 
858 			rss_hash3 = _mm_and_si128
859 					(rss_hash3, rss_hash_msk);
860 			rss_hash2 = _mm_and_si128
861 					(rss_hash2, rss_hash_msk);
862 			rss_hash1 = _mm_and_si128
863 					(rss_hash1, rss_hash_msk);
864 			rss_hash0 = _mm_and_si128
865 					(rss_hash0, rss_hash_msk);
866 
867 			pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
868 			pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
869 			pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
870 			pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
871 		} /* if() on RSS hash parsing */
872 #endif
873 
874 		/* C.2 get 4 pkts staterr value  */
875 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
876 
877 		/* D.3 copy final 3,4 data to rx_pkts */
878 		_mm_storeu_si128
879 			((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
880 			 pkt_mb3);
881 		_mm_storeu_si128
882 			((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
883 			 pkt_mb2);
884 
885 		/* C* extract and record EOP bit */
886 		if (split_packet) {
887 			/* and with mask to extract bits, flipping 1-0 */
888 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
889 			/* the staterr values are not in order, as the count
890 			 * of dd bits doesn't care. However, for end of
891 			 * packet tracking, we do care, so shuffle. This also
892 			 * compresses the 32-bit values to 8-bit
893 			 */
894 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
895 			/* store the resulting 32-bit value */
896 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
897 			split_packet += IAVF_VPMD_DESCS_PER_LOOP;
898 		}
899 
900 		/* C.3 calc available number of desc */
901 		staterr = _mm_and_si128(staterr, dd_check);
902 		staterr = _mm_packs_epi32(staterr, zero);
903 
904 		/* D.3 copy final 1,2 data to rx_pkts */
905 		_mm_storeu_si128
906 			((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
907 			 pkt_mb1);
908 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
909 				 pkt_mb0);
910 		flex_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
911 		/* C.4 calc available number of desc */
912 		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
913 		nb_pkts_recd += var;
914 		if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
915 			break;
916 	}
917 
918 	/* Update our internal tail pointer */
919 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
920 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
921 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
922 
923 	return nb_pkts_recd;
924 }
925 
926 /* Notice:
927  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
928  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
929  *   numbers of DD bits
930  */
931 uint16_t
iavf_recv_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)932 iavf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
933 		  uint16_t nb_pkts)
934 {
935 	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
936 }
937 
938 /* Notice:
939  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
940  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
941  *   numbers of DD bits
942  */
943 uint16_t
iavf_recv_pkts_vec_flex_rxd(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)944 iavf_recv_pkts_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
945 			    uint16_t nb_pkts)
946 {
947 	return _recv_raw_pkts_vec_flex_rxd(rx_queue, rx_pkts, nb_pkts, NULL);
948 }
949 
950 /**
951  * vPMD receive routine that reassembles single burst of 32 scattered packets
952  *
953  * Notice:
954  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
955  */
956 static uint16_t
iavf_recv_scattered_burst_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)957 iavf_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
958 			      uint16_t nb_pkts)
959 {
960 	struct iavf_rx_queue *rxq = rx_queue;
961 	uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
962 	unsigned int i = 0;
963 
964 	/* get some new buffers */
965 	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
966 					      split_flags);
967 	if (nb_bufs == 0)
968 		return 0;
969 
970 	/* happy day case, full burst + no packets to be joined */
971 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
972 
973 	if (!rxq->pkt_first_seg &&
974 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
975 	    split_fl64[2] == 0 && split_fl64[3] == 0)
976 		return nb_bufs;
977 
978 	/* reassemble any packets that need reassembly*/
979 	if (!rxq->pkt_first_seg) {
980 		/* find the first split flag, and only reassemble then*/
981 		while (i < nb_bufs && !split_flags[i])
982 			i++;
983 		if (i == nb_bufs)
984 			return nb_bufs;
985 		rxq->pkt_first_seg = rx_pkts[i];
986 	}
987 	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
988 		&split_flags[i]);
989 }
990 
991 /**
992  * vPMD receive routine that reassembles scattered packets.
993  */
994 uint16_t
iavf_recv_scattered_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)995 iavf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
996 			     uint16_t nb_pkts)
997 {
998 	uint16_t retval = 0;
999 
1000 	while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1001 		uint16_t burst;
1002 
1003 		burst = iavf_recv_scattered_burst_vec(rx_queue,
1004 						      rx_pkts + retval,
1005 						      IAVF_VPMD_RX_MAX_BURST);
1006 		retval += burst;
1007 		nb_pkts -= burst;
1008 		if (burst < IAVF_VPMD_RX_MAX_BURST)
1009 			return retval;
1010 	}
1011 
1012 	return retval + iavf_recv_scattered_burst_vec(rx_queue,
1013 						      rx_pkts + retval,
1014 						      nb_pkts);
1015 }
1016 
1017 /**
1018  * vPMD receive routine that reassembles single burst of 32 scattered packets
1019  * for flex RxD
1020  *
1021  * Notice:
1022  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
1023  */
1024 static uint16_t
iavf_recv_scattered_burst_vec_flex_rxd(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)1025 iavf_recv_scattered_burst_vec_flex_rxd(void *rx_queue,
1026 				       struct rte_mbuf **rx_pkts,
1027 				       uint16_t nb_pkts)
1028 {
1029 	struct iavf_rx_queue *rxq = rx_queue;
1030 	uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1031 	unsigned int i = 0;
1032 
1033 	/* get some new buffers */
1034 	uint16_t nb_bufs = _recv_raw_pkts_vec_flex_rxd(rxq, rx_pkts, nb_pkts,
1035 					      split_flags);
1036 	if (nb_bufs == 0)
1037 		return 0;
1038 
1039 	/* happy day case, full burst + no packets to be joined */
1040 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
1041 
1042 	if (!rxq->pkt_first_seg &&
1043 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
1044 	    split_fl64[2] == 0 && split_fl64[3] == 0)
1045 		return nb_bufs;
1046 
1047 	/* reassemble any packets that need reassembly*/
1048 	if (!rxq->pkt_first_seg) {
1049 		/* find the first split flag, and only reassemble then*/
1050 		while (i < nb_bufs && !split_flags[i])
1051 			i++;
1052 		if (i == nb_bufs)
1053 			return nb_bufs;
1054 		rxq->pkt_first_seg = rx_pkts[i];
1055 	}
1056 	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
1057 		&split_flags[i]);
1058 }
1059 
1060 /**
1061  * vPMD receive routine that reassembles scattered packets for flex RxD
1062  */
1063 uint16_t
iavf_recv_scattered_pkts_vec_flex_rxd(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)1064 iavf_recv_scattered_pkts_vec_flex_rxd(void *rx_queue,
1065 				      struct rte_mbuf **rx_pkts,
1066 				      uint16_t nb_pkts)
1067 {
1068 	uint16_t retval = 0;
1069 
1070 	while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1071 		uint16_t burst;
1072 
1073 		burst = iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1074 						rx_pkts + retval,
1075 						IAVF_VPMD_RX_MAX_BURST);
1076 		retval += burst;
1077 		nb_pkts -= burst;
1078 		if (burst < IAVF_VPMD_RX_MAX_BURST)
1079 			return retval;
1080 	}
1081 
1082 	return retval + iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1083 						      rx_pkts + retval,
1084 						      nb_pkts);
1085 }
1086 
1087 static inline void
vtx1(volatile struct iavf_tx_desc * txdp,struct rte_mbuf * pkt,uint64_t flags)1088 vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)
1089 {
1090 	uint64_t high_qw =
1091 			(IAVF_TX_DESC_DTYPE_DATA |
1092 			 ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
1093 			 ((uint64_t)pkt->data_len <<
1094 			  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
1095 
1096 	__m128i descriptor = _mm_set_epi64x(high_qw,
1097 					    pkt->buf_iova + pkt->data_off);
1098 	_mm_store_si128((__m128i *)txdp, descriptor);
1099 }
1100 
1101 static inline void
iavf_vtx(volatile struct iavf_tx_desc * txdp,struct rte_mbuf ** pkt,uint16_t nb_pkts,uint64_t flags)1102 iavf_vtx(volatile struct iavf_tx_desc *txdp, struct rte_mbuf **pkt,
1103 	uint16_t nb_pkts,  uint64_t flags)
1104 {
1105 	int i;
1106 
1107 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
1108 		vtx1(txdp, *pkt, flags);
1109 }
1110 
1111 uint16_t
iavf_xmit_fixed_burst_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1112 iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1113 			 uint16_t nb_pkts)
1114 {
1115 	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1116 	volatile struct iavf_tx_desc *txdp;
1117 	struct iavf_tx_entry *txep;
1118 	uint16_t n, nb_commit, tx_id;
1119 	uint64_t flags = IAVF_TX_DESC_CMD_EOP | 0x04;  /* bit 2 must be set */
1120 	uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
1121 	int i;
1122 
1123 	if (txq->nb_free < txq->free_thresh)
1124 		iavf_tx_free_bufs(txq);
1125 
1126 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
1127 	if (unlikely(nb_pkts == 0))
1128 		return 0;
1129 	nb_commit = nb_pkts;
1130 
1131 	tx_id = txq->tx_tail;
1132 	txdp = &txq->tx_ring[tx_id];
1133 	txep = &txq->sw_ring[tx_id];
1134 
1135 	txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
1136 
1137 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
1138 	if (nb_commit >= n) {
1139 		tx_backlog_entry(txep, tx_pkts, n);
1140 
1141 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
1142 			vtx1(txdp, *tx_pkts, flags);
1143 
1144 		vtx1(txdp, *tx_pkts++, rs);
1145 
1146 		nb_commit = (uint16_t)(nb_commit - n);
1147 
1148 		tx_id = 0;
1149 		txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
1150 
1151 		/* avoid reach the end of ring */
1152 		txdp = &txq->tx_ring[tx_id];
1153 		txep = &txq->sw_ring[tx_id];
1154 	}
1155 
1156 	tx_backlog_entry(txep, tx_pkts, nb_commit);
1157 
1158 	iavf_vtx(txdp, tx_pkts, nb_commit, flags);
1159 
1160 	tx_id = (uint16_t)(tx_id + nb_commit);
1161 	if (tx_id > txq->next_rs) {
1162 		txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
1163 			rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
1164 					 IAVF_TXD_QW1_CMD_SHIFT);
1165 		txq->next_rs =
1166 			(uint16_t)(txq->next_rs + txq->rs_thresh);
1167 	}
1168 
1169 	txq->tx_tail = tx_id;
1170 
1171 	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u",
1172 		   txq->port_id, txq->queue_id, tx_id, nb_pkts);
1173 
1174 	IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1175 
1176 	return nb_pkts;
1177 }
1178 
1179 uint16_t
iavf_xmit_pkts_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1180 iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1181 		   uint16_t nb_pkts)
1182 {
1183 	uint16_t nb_tx = 0;
1184 	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1185 
1186 	while (nb_pkts) {
1187 		uint16_t ret, num;
1188 
1189 		/* cross rs_thresh boundary is not allowed */
1190 		num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1191 		ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
1192 		nb_tx += ret;
1193 		nb_pkts -= ret;
1194 		if (ret < num)
1195 			break;
1196 	}
1197 
1198 	return nb_tx;
1199 }
1200 
1201 static void __rte_cold
iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue * rxq)1202 iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue *rxq)
1203 {
1204 	_iavf_rx_queue_release_mbufs_vec(rxq);
1205 }
1206 
1207 static void __rte_cold
iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue * txq)1208 iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue *txq)
1209 {
1210 	_iavf_tx_queue_release_mbufs_vec(txq);
1211 }
1212 
1213 static const struct iavf_rxq_ops sse_vec_rxq_ops = {
1214 	.release_mbufs = iavf_rx_queue_release_mbufs_sse,
1215 };
1216 
1217 static const struct iavf_txq_ops sse_vec_txq_ops = {
1218 	.release_mbufs = iavf_tx_queue_release_mbufs_sse,
1219 };
1220 
1221 int __rte_cold
iavf_txq_vec_setup(struct iavf_tx_queue * txq)1222 iavf_txq_vec_setup(struct iavf_tx_queue *txq)
1223 {
1224 	txq->ops = &sse_vec_txq_ops;
1225 	return 0;
1226 }
1227 
1228 int __rte_cold
iavf_rxq_vec_setup(struct iavf_rx_queue * rxq)1229 iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
1230 {
1231 	rxq->ops = &sse_vec_rxq_ops;
1232 	return iavf_rxq_vec_setup_default(rxq);
1233 }
1234 
1235 int __rte_cold
iavf_rx_vec_dev_check(struct rte_eth_dev * dev)1236 iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
1237 {
1238 	return iavf_rx_vec_dev_check_default(dev);
1239 }
1240 
1241 int __rte_cold
iavf_tx_vec_dev_check(struct rte_eth_dev * dev)1242 iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
1243 {
1244 	return iavf_tx_vec_dev_check_default(dev);
1245 }
1246