1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #ifndef _IAVF_RXTX_VEC_COMMON_H_
6 #define _IAVF_RXTX_VEC_COMMON_H_
7 #include <stdint.h>
8 #include <ethdev_driver.h>
9 #include <rte_malloc.h>
10 
11 #include "iavf.h"
12 #include "iavf_rxtx.h"
13 
14 #ifndef __INTEL_COMPILER
15 #pragma GCC diagnostic ignored "-Wcast-qual"
16 #endif
17 
18 static __rte_always_inline uint16_t
reassemble_packets(struct iavf_rx_queue * rxq,struct rte_mbuf ** rx_bufs,uint16_t nb_bufs,uint8_t * split_flags)19 reassemble_packets(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_bufs,
20 		   uint16_t nb_bufs, uint8_t *split_flags)
21 {
22 	struct rte_mbuf *pkts[IAVF_VPMD_RX_MAX_BURST];
23 	struct rte_mbuf *start = rxq->pkt_first_seg;
24 	struct rte_mbuf *end =  rxq->pkt_last_seg;
25 	unsigned int pkt_idx, buf_idx;
26 
27 	for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
28 		if (end) {
29 			/* processing a split packet */
30 			end->next = rx_bufs[buf_idx];
31 			rx_bufs[buf_idx]->data_len += rxq->crc_len;
32 
33 			start->nb_segs++;
34 			start->pkt_len += rx_bufs[buf_idx]->data_len;
35 			end = end->next;
36 
37 			if (!split_flags[buf_idx]) {
38 				/* it's the last packet of the set */
39 				start->hash = end->hash;
40 				start->vlan_tci = end->vlan_tci;
41 				start->ol_flags = end->ol_flags;
42 				/* we need to strip crc for the whole packet */
43 				start->pkt_len -= rxq->crc_len;
44 				if (end->data_len > rxq->crc_len) {
45 					end->data_len -= rxq->crc_len;
46 				} else {
47 					/* free up last mbuf */
48 					struct rte_mbuf *secondlast = start;
49 
50 					start->nb_segs--;
51 					while (secondlast->next != end)
52 						secondlast = secondlast->next;
53 					secondlast->data_len -= (rxq->crc_len -
54 							end->data_len);
55 					secondlast->next = NULL;
56 					rte_pktmbuf_free_seg(end);
57 				}
58 				pkts[pkt_idx++] = start;
59 				start = NULL;
60 				end = NULL;
61 			}
62 		} else {
63 			/* not processing a split packet */
64 			if (!split_flags[buf_idx]) {
65 				/* not a split packet, save and skip */
66 				pkts[pkt_idx++] = rx_bufs[buf_idx];
67 				continue;
68 			}
69 			end = start = rx_bufs[buf_idx];
70 			rx_bufs[buf_idx]->data_len += rxq->crc_len;
71 			rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
72 		}
73 	}
74 
75 	/* save the partial packet for next time */
76 	rxq->pkt_first_seg = start;
77 	rxq->pkt_last_seg = end;
78 	memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
79 	return pkt_idx;
80 }
81 
82 static __rte_always_inline int
iavf_tx_free_bufs(struct iavf_tx_queue * txq)83 iavf_tx_free_bufs(struct iavf_tx_queue *txq)
84 {
85 	struct iavf_tx_entry *txep;
86 	uint32_t n;
87 	uint32_t i;
88 	int nb_free = 0;
89 	struct rte_mbuf *m, *free[IAVF_VPMD_TX_MAX_FREE_BUF];
90 
91 	/* check DD bits on threshold descriptor */
92 	if ((txq->tx_ring[txq->next_dd].cmd_type_offset_bsz &
93 			rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
94 			rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE))
95 		return 0;
96 
97 	n = txq->rs_thresh;
98 
99 	 /* first buffer to free from S/W ring is at index
100 	  * tx_next_dd - (tx_rs_thresh-1)
101 	  */
102 	txep = &txq->sw_ring[txq->next_dd - (n - 1)];
103 	m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
104 	if (likely(m != NULL)) {
105 		free[0] = m;
106 		nb_free = 1;
107 		for (i = 1; i < n; i++) {
108 			m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
109 			if (likely(m != NULL)) {
110 				if (likely(m->pool == free[0]->pool)) {
111 					free[nb_free++] = m;
112 				} else {
113 					rte_mempool_put_bulk(free[0]->pool,
114 							     (void *)free,
115 							     nb_free);
116 					free[0] = m;
117 					nb_free = 1;
118 				}
119 			}
120 		}
121 		rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
122 	} else {
123 		for (i = 1; i < n; i++) {
124 			m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
125 			if (m)
126 				rte_mempool_put(m->pool, m);
127 		}
128 	}
129 
130 	/* buffers were freed, update counters */
131 	txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
132 	txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
133 	if (txq->next_dd >= txq->nb_tx_desc)
134 		txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
135 
136 	return txq->rs_thresh;
137 }
138 
139 static __rte_always_inline void
tx_backlog_entry(struct iavf_tx_entry * txep,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)140 tx_backlog_entry(struct iavf_tx_entry *txep,
141 		 struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
142 {
143 	int i;
144 
145 	for (i = 0; i < (int)nb_pkts; ++i)
146 		txep[i].mbuf = tx_pkts[i];
147 }
148 
149 static inline void
_iavf_rx_queue_release_mbufs_vec(struct iavf_rx_queue * rxq)150 _iavf_rx_queue_release_mbufs_vec(struct iavf_rx_queue *rxq)
151 {
152 	const unsigned int mask = rxq->nb_rx_desc - 1;
153 	unsigned int i;
154 
155 	if (!rxq->sw_ring || rxq->rxrearm_nb >= rxq->nb_rx_desc)
156 		return;
157 
158 	/* free all mbufs that are valid in the ring */
159 	if (rxq->rxrearm_nb == 0) {
160 		for (i = 0; i < rxq->nb_rx_desc; i++) {
161 			if (rxq->sw_ring[i])
162 				rte_pktmbuf_free_seg(rxq->sw_ring[i]);
163 		}
164 	} else {
165 		for (i = rxq->rx_tail;
166 		     i != rxq->rxrearm_start;
167 		     i = (i + 1) & mask) {
168 			if (rxq->sw_ring[i])
169 				rte_pktmbuf_free_seg(rxq->sw_ring[i]);
170 		}
171 	}
172 
173 	rxq->rxrearm_nb = rxq->nb_rx_desc;
174 
175 	/* set all entries to NULL */
176 	memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
177 }
178 
179 static inline void
_iavf_tx_queue_release_mbufs_vec(struct iavf_tx_queue * txq)180 _iavf_tx_queue_release_mbufs_vec(struct iavf_tx_queue *txq)
181 {
182 	unsigned i;
183 	const uint16_t max_desc = (uint16_t)(txq->nb_tx_desc - 1);
184 
185 	if (!txq->sw_ring || txq->nb_free == max_desc)
186 		return;
187 
188 	i = txq->next_dd - txq->rs_thresh + 1;
189 	if (txq->tx_tail < i) {
190 		for (; i < txq->nb_tx_desc; i++) {
191 			rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
192 			txq->sw_ring[i].mbuf = NULL;
193 		}
194 		i = 0;
195 	}
196 }
197 
198 static inline int
iavf_rxq_vec_setup_default(struct iavf_rx_queue * rxq)199 iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq)
200 {
201 	uintptr_t p;
202 	struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
203 
204 	mb_def.nb_segs = 1;
205 	mb_def.data_off = RTE_PKTMBUF_HEADROOM;
206 	mb_def.port = rxq->port_id;
207 	rte_mbuf_refcnt_set(&mb_def, 1);
208 
209 	/* prevent compiler reordering: rearm_data covers previous fields */
210 	rte_compiler_barrier();
211 	p = (uintptr_t)&mb_def.rearm_data;
212 	rxq->mbuf_initializer = *(uint64_t *)p;
213 	return 0;
214 }
215 
216 static inline int
iavf_rx_vec_queue_default(struct iavf_rx_queue * rxq)217 iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq)
218 {
219 	if (!rxq)
220 		return -1;
221 
222 	if (!rte_is_power_of_2(rxq->nb_rx_desc))
223 		return -1;
224 
225 	if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST)
226 		return -1;
227 
228 	if (rxq->nb_rx_desc % rxq->rx_free_thresh)
229 		return -1;
230 
231 	if (rxq->proto_xtr != IAVF_PROTO_XTR_NONE)
232 		return -1;
233 
234 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
235 		return -1;
236 
237 	if (rxq->offloads & IAVF_RX_VECTOR_OFFLOAD)
238 		return IAVF_VECTOR_OFFLOAD_PATH;
239 
240 	return IAVF_VECTOR_PATH;
241 }
242 
243 static inline int
iavf_tx_vec_queue_default(struct iavf_tx_queue * txq)244 iavf_tx_vec_queue_default(struct iavf_tx_queue *txq)
245 {
246 	if (!txq)
247 		return -1;
248 
249 	if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST ||
250 	    txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF)
251 		return -1;
252 
253 	if (txq->offloads & IAVF_TX_NO_VECTOR_FLAGS)
254 		return -1;
255 
256 	if (txq->offloads & IAVF_TX_VECTOR_OFFLOAD)
257 		return IAVF_VECTOR_OFFLOAD_PATH;
258 
259 	return IAVF_VECTOR_PATH;
260 }
261 
262 static inline int
iavf_rx_vec_dev_check_default(struct rte_eth_dev * dev)263 iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev)
264 {
265 	int i;
266 	struct iavf_rx_queue *rxq;
267 	int ret;
268 	int result = 0;
269 
270 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
271 		rxq = dev->data->rx_queues[i];
272 		ret = iavf_rx_vec_queue_default(rxq);
273 
274 		if (ret < 0)
275 			return -1;
276 		if (ret > result)
277 			result = ret;
278 	}
279 
280 	return result;
281 }
282 
283 static inline int
iavf_tx_vec_dev_check_default(struct rte_eth_dev * dev)284 iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev)
285 {
286 	int i;
287 	struct iavf_tx_queue *txq;
288 	int ret;
289 	int result = 0;
290 
291 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
292 		txq = dev->data->tx_queues[i];
293 		ret = iavf_tx_vec_queue_default(txq);
294 
295 		if (ret < 0)
296 			return -1;
297 		if (ret > result)
298 			result = ret;
299 	}
300 
301 	return result;
302 }
303 
304 /******************************************************************************
305  * If user knows a specific offload is not enabled by APP,
306  * the macro can be commented to save the effort of fast path.
307  * Currently below 2 features are supported in TX path,
308  * 1, checksum offload
309  * 2, VLAN/QINQ insertion
310  ******************************************************************************/
311 #define IAVF_TX_CSUM_OFFLOAD
312 #define IAVF_TX_VLAN_QINQ_OFFLOAD
313 
314 static __rte_always_inline void
iavf_txd_enable_offload(__rte_unused struct rte_mbuf * tx_pkt,uint64_t * txd_hi)315 iavf_txd_enable_offload(__rte_unused struct rte_mbuf *tx_pkt,
316 			uint64_t *txd_hi)
317 {
318 #if defined(IAVF_TX_CSUM_OFFLOAD) || defined(IAVF_TX_VLAN_QINQ_OFFLOAD)
319 	uint64_t ol_flags = tx_pkt->ol_flags;
320 #endif
321 	uint32_t td_cmd = 0;
322 #ifdef IAVF_TX_CSUM_OFFLOAD
323 	uint32_t td_offset = 0;
324 #endif
325 
326 #ifdef IAVF_TX_CSUM_OFFLOAD
327 	/* Set MACLEN */
328 	td_offset |= (tx_pkt->l2_len >> 1) <<
329 		     IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
330 
331 	/* Enable L3 checksum offloads */
332 	if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
333 		td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
334 		td_offset |= (tx_pkt->l3_len >> 2) <<
335 			     IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
336 	} else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
337 		td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
338 		td_offset |= (tx_pkt->l3_len >> 2) <<
339 			     IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
340 	} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
341 		td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
342 		td_offset |= (tx_pkt->l3_len >> 2) <<
343 			     IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
344 	}
345 
346 	/* Enable L4 checksum offloads */
347 	switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
348 	case RTE_MBUF_F_TX_TCP_CKSUM:
349 		td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
350 		td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
351 			     IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
352 		break;
353 	case RTE_MBUF_F_TX_SCTP_CKSUM:
354 		td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
355 		td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
356 			     IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
357 		break;
358 	case RTE_MBUF_F_TX_UDP_CKSUM:
359 		td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
360 		td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
361 			     IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
362 		break;
363 	default:
364 		break;
365 	}
366 
367 	*txd_hi |= ((uint64_t)td_offset) << IAVF_TXD_QW1_OFFSET_SHIFT;
368 #endif
369 
370 #ifdef IAVF_TX_VLAN_QINQ_OFFLOAD
371 	if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
372 		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
373 		*txd_hi |= ((uint64_t)tx_pkt->vlan_tci <<
374 			    IAVF_TXD_QW1_L2TAG1_SHIFT);
375 	}
376 #endif
377 
378 	*txd_hi |= ((uint64_t)td_cmd) << IAVF_TXD_QW1_CMD_SHIFT;
379 }
380 
381 #ifdef CC_AVX2_SUPPORT
382 static __rte_always_inline void
iavf_rxq_rearm_common(struct iavf_rx_queue * rxq,__rte_unused bool avx512)383 iavf_rxq_rearm_common(struct iavf_rx_queue *rxq, __rte_unused bool avx512)
384 {
385 	int i;
386 	uint16_t rx_id;
387 	volatile union iavf_rx_desc *rxdp;
388 	struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
389 
390 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
391 
392 	/* Pull 'n' more MBUFs into the software ring */
393 	if (rte_mempool_get_bulk(rxq->mp,
394 				 (void *)rxp,
395 				 IAVF_RXQ_REARM_THRESH) < 0) {
396 		if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
397 		    rxq->nb_rx_desc) {
398 			__m128i dma_addr0;
399 
400 			dma_addr0 = _mm_setzero_si128();
401 			for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
402 				rxp[i] = &rxq->fake_mbuf;
403 				_mm_store_si128((__m128i *)&rxdp[i].read,
404 						dma_addr0);
405 			}
406 		}
407 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
408 			IAVF_RXQ_REARM_THRESH;
409 		return;
410 	}
411 
412 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
413 	struct rte_mbuf *mb0, *mb1;
414 	__m128i dma_addr0, dma_addr1;
415 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
416 			RTE_PKTMBUF_HEADROOM);
417 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
418 	for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
419 		__m128i vaddr0, vaddr1;
420 
421 		mb0 = rxp[0];
422 		mb1 = rxp[1];
423 
424 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
425 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
426 				offsetof(struct rte_mbuf, buf_addr) + 8);
427 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
428 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
429 
430 		/* convert pa to dma_addr hdr/data */
431 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
432 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
433 
434 		/* add headroom to pa values */
435 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
436 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
437 
438 		/* flush desc with pa dma_addr */
439 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
440 		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
441 	}
442 #else
443 #ifdef CC_AVX512_SUPPORT
444 	if (avx512) {
445 		struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
446 		struct rte_mbuf *mb4, *mb5, *mb6, *mb7;
447 		__m512i dma_addr0_3, dma_addr4_7;
448 		__m512i hdr_room = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
449 		/* Initialize the mbufs in vector, process 8 mbufs in one loop */
450 		for (i = 0; i < IAVF_RXQ_REARM_THRESH;
451 				i += 8, rxp += 8, rxdp += 8) {
452 			__m128i vaddr0, vaddr1, vaddr2, vaddr3;
453 			__m128i vaddr4, vaddr5, vaddr6, vaddr7;
454 			__m256i vaddr0_1, vaddr2_3;
455 			__m256i vaddr4_5, vaddr6_7;
456 			__m512i vaddr0_3, vaddr4_7;
457 
458 			mb0 = rxp[0];
459 			mb1 = rxp[1];
460 			mb2 = rxp[2];
461 			mb3 = rxp[3];
462 			mb4 = rxp[4];
463 			mb5 = rxp[5];
464 			mb6 = rxp[6];
465 			mb7 = rxp[7];
466 
467 			/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
468 			RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
469 					offsetof(struct rte_mbuf, buf_addr) + 8);
470 			vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
471 			vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
472 			vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
473 			vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
474 			vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr);
475 			vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr);
476 			vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr);
477 			vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr);
478 
479 			/**
480 			 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
481 			 * into the high lanes. Similarly for 2 & 3, and so on.
482 			 */
483 			vaddr0_1 =
484 				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
485 							vaddr1, 1);
486 			vaddr2_3 =
487 				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
488 							vaddr3, 1);
489 			vaddr4_5 =
490 				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr4),
491 							vaddr5, 1);
492 			vaddr6_7 =
493 				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr6),
494 							vaddr7, 1);
495 			vaddr0_3 =
496 				_mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1),
497 							vaddr2_3, 1);
498 			vaddr4_7 =
499 				_mm512_inserti64x4(_mm512_castsi256_si512(vaddr4_5),
500 							vaddr6_7, 1);
501 
502 			/* convert pa to dma_addr hdr/data */
503 			dma_addr0_3 = _mm512_unpackhi_epi64(vaddr0_3, vaddr0_3);
504 			dma_addr4_7 = _mm512_unpackhi_epi64(vaddr4_7, vaddr4_7);
505 
506 			/* add headroom to pa values */
507 			dma_addr0_3 = _mm512_add_epi64(dma_addr0_3, hdr_room);
508 			dma_addr4_7 = _mm512_add_epi64(dma_addr4_7, hdr_room);
509 
510 			/* flush desc with pa dma_addr */
511 			_mm512_store_si512((__m512i *)&rxdp->read, dma_addr0_3);
512 			_mm512_store_si512((__m512i *)&(rxdp + 4)->read, dma_addr4_7);
513 		}
514 	} else
515 #endif
516 	{
517 		struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
518 		__m256i dma_addr0_1, dma_addr2_3;
519 		__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
520 		/* Initialize the mbufs in vector, process 4 mbufs in one loop */
521 		for (i = 0; i < IAVF_RXQ_REARM_THRESH;
522 				i += 4, rxp += 4, rxdp += 4) {
523 			__m128i vaddr0, vaddr1, vaddr2, vaddr3;
524 			__m256i vaddr0_1, vaddr2_3;
525 
526 			mb0 = rxp[0];
527 			mb1 = rxp[1];
528 			mb2 = rxp[2];
529 			mb3 = rxp[3];
530 
531 			/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
532 			RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
533 					offsetof(struct rte_mbuf, buf_addr) + 8);
534 			vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
535 			vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
536 			vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
537 			vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
538 
539 			/**
540 			 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
541 			 * into the high lanes. Similarly for 2 & 3
542 			 */
543 			vaddr0_1 =
544 				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
545 							vaddr1, 1);
546 			vaddr2_3 =
547 				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
548 							vaddr3, 1);
549 
550 			/* convert pa to dma_addr hdr/data */
551 			dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
552 			dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
553 
554 			/* add headroom to pa values */
555 			dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
556 			dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
557 
558 			/* flush desc with pa dma_addr */
559 			_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
560 			_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
561 		}
562 	}
563 
564 #endif
565 
566 	rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
567 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
568 		rxq->rxrearm_start = 0;
569 
570 	rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
571 
572 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
573 			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
574 
575 	/* Update the tail pointer on the NIC */
576 	IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
577 }
578 #endif
579 
580 #endif
581