xref: /dpdk/drivers/net/iavf/iavf_rxtx.c (revision 33db1613)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14 
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27 
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_ipsec_crypto.h"
31 #include "rte_pmd_iavf.h"
32 
33 /* Offset of mbuf dynamic field for protocol extraction's metadata */
34 int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
35 
36 /* Mask of mbuf dynamic flags for protocol extraction's type */
37 uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
38 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
39 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
40 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
41 uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
42 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
43 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
44 
45 uint8_t
iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)46 iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
47 {
48 	static uint8_t rxdid_map[] = {
49 		[IAVF_PROTO_XTR_NONE]      = IAVF_RXDID_COMMS_OVS_1,
50 		[IAVF_PROTO_XTR_VLAN]      = IAVF_RXDID_COMMS_AUX_VLAN,
51 		[IAVF_PROTO_XTR_IPV4]      = IAVF_RXDID_COMMS_AUX_IPV4,
52 		[IAVF_PROTO_XTR_IPV6]      = IAVF_RXDID_COMMS_AUX_IPV6,
53 		[IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
54 		[IAVF_PROTO_XTR_TCP]       = IAVF_RXDID_COMMS_AUX_TCP,
55 		[IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
56 		[IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] =
57 				IAVF_RXDID_COMMS_IPSEC_CRYPTO,
58 	};
59 
60 	return flex_type < RTE_DIM(rxdid_map) ?
61 				rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
62 }
63 
64 static int
iavf_monitor_callback(const uint64_t value,const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ]__rte_unused)65 iavf_monitor_callback(const uint64_t value,
66 		const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
67 {
68 	const uint64_t m = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
69 	/*
70 	 * we expect the DD bit to be set to 1 if this descriptor was already
71 	 * written to.
72 	 */
73 	return (value & m) == m ? -1 : 0;
74 }
75 
76 int
iavf_get_monitor_addr(void * rx_queue,struct rte_power_monitor_cond * pmc)77 iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
78 {
79 	struct iavf_rx_queue *rxq = rx_queue;
80 	volatile union iavf_rx_desc *rxdp;
81 	uint16_t desc;
82 
83 	desc = rxq->rx_tail;
84 	rxdp = &rxq->rx_ring[desc];
85 	/* watch for changes in status bit */
86 	pmc->addr = &rxdp->wb.qword1.status_error_len;
87 
88 	/* comparison callback */
89 	pmc->fn = iavf_monitor_callback;
90 
91 	/* registers are 64-bit */
92 	pmc->size = sizeof(uint64_t);
93 
94 	return 0;
95 }
96 
97 static inline int
check_rx_thresh(uint16_t nb_desc,uint16_t thresh)98 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
99 {
100 	/* The following constraints must be satisfied:
101 	 *   thresh < rxq->nb_rx_desc
102 	 */
103 	if (thresh >= nb_desc) {
104 		PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
105 			     thresh, nb_desc);
106 		return -EINVAL;
107 	}
108 	return 0;
109 }
110 
111 static inline int
check_tx_thresh(uint16_t nb_desc,uint16_t tx_rs_thresh,uint16_t tx_free_thresh)112 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
113 		uint16_t tx_free_thresh)
114 {
115 	/* TX descriptors will have their RS bit set after tx_rs_thresh
116 	 * descriptors have been used. The TX descriptor ring will be cleaned
117 	 * after tx_free_thresh descriptors are used or if the number of
118 	 * descriptors required to transmit a packet is greater than the
119 	 * number of free TX descriptors.
120 	 *
121 	 * The following constraints must be satisfied:
122 	 *  - tx_rs_thresh must be less than the size of the ring minus 2.
123 	 *  - tx_free_thresh must be less than the size of the ring minus 3.
124 	 *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
125 	 *  - tx_rs_thresh must be a divisor of the ring size.
126 	 *
127 	 * One descriptor in the TX ring is used as a sentinel to avoid a H/W
128 	 * race condition, hence the maximum threshold constraints. When set
129 	 * to zero use default values.
130 	 */
131 	if (tx_rs_thresh >= (nb_desc - 2)) {
132 		PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
133 			     "number of TX descriptors (%u) minus 2",
134 			     tx_rs_thresh, nb_desc);
135 		return -EINVAL;
136 	}
137 	if (tx_free_thresh >= (nb_desc - 3)) {
138 		PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
139 			     "number of TX descriptors (%u) minus 3.",
140 			     tx_free_thresh, nb_desc);
141 		return -EINVAL;
142 	}
143 	if (tx_rs_thresh > tx_free_thresh) {
144 		PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
145 			     "equal to tx_free_thresh (%u).",
146 			     tx_rs_thresh, tx_free_thresh);
147 		return -EINVAL;
148 	}
149 	if ((nb_desc % tx_rs_thresh) != 0) {
150 		PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
151 			     "number of TX descriptors (%u).",
152 			     tx_rs_thresh, nb_desc);
153 		return -EINVAL;
154 	}
155 
156 	return 0;
157 }
158 
159 static inline bool
check_rx_vec_allow(struct iavf_rx_queue * rxq)160 check_rx_vec_allow(struct iavf_rx_queue *rxq)
161 {
162 	if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
163 	    rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
164 		PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
165 		return true;
166 	}
167 
168 	PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
169 	return false;
170 }
171 
172 static inline bool
check_tx_vec_allow(struct iavf_tx_queue * txq)173 check_tx_vec_allow(struct iavf_tx_queue *txq)
174 {
175 	if (!(txq->offloads & IAVF_TX_NO_VECTOR_FLAGS) &&
176 	    txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
177 	    txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
178 		PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
179 		return true;
180 	}
181 	PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
182 	return false;
183 }
184 
185 static inline bool
check_rx_bulk_allow(struct iavf_rx_queue * rxq)186 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
187 {
188 	int ret = true;
189 
190 	if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
191 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
192 			     "rxq->rx_free_thresh=%d, "
193 			     "IAVF_RX_MAX_BURST=%d",
194 			     rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
195 		ret = false;
196 	} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
197 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
198 			     "rxq->nb_rx_desc=%d, "
199 			     "rxq->rx_free_thresh=%d",
200 			     rxq->nb_rx_desc, rxq->rx_free_thresh);
201 		ret = false;
202 	}
203 	return ret;
204 }
205 
206 static inline void
reset_rx_queue(struct iavf_rx_queue * rxq)207 reset_rx_queue(struct iavf_rx_queue *rxq)
208 {
209 	uint16_t len;
210 	uint32_t i;
211 
212 	if (!rxq)
213 		return;
214 
215 	len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
216 
217 	for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
218 		((volatile char *)rxq->rx_ring)[i] = 0;
219 
220 	memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
221 
222 	for (i = 0; i < IAVF_RX_MAX_BURST; i++)
223 		rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
224 
225 	/* for rx bulk */
226 	rxq->rx_nb_avail = 0;
227 	rxq->rx_next_avail = 0;
228 	rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
229 
230 	rxq->rx_tail = 0;
231 	rxq->nb_rx_hold = 0;
232 
233 	rte_pktmbuf_free(rxq->pkt_first_seg);
234 
235 	rxq->pkt_first_seg = NULL;
236 	rxq->pkt_last_seg = NULL;
237 	rxq->rxrearm_nb = 0;
238 	rxq->rxrearm_start = 0;
239 }
240 
241 static inline void
reset_tx_queue(struct iavf_tx_queue * txq)242 reset_tx_queue(struct iavf_tx_queue *txq)
243 {
244 	struct iavf_tx_entry *txe;
245 	uint32_t i, size;
246 	uint16_t prev;
247 
248 	if (!txq) {
249 		PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
250 		return;
251 	}
252 
253 	txe = txq->sw_ring;
254 	size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
255 	for (i = 0; i < size; i++)
256 		((volatile char *)txq->tx_ring)[i] = 0;
257 
258 	prev = (uint16_t)(txq->nb_tx_desc - 1);
259 	for (i = 0; i < txq->nb_tx_desc; i++) {
260 		txq->tx_ring[i].cmd_type_offset_bsz =
261 			rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
262 		txe[i].mbuf =  NULL;
263 		txe[i].last_id = i;
264 		txe[prev].next_id = i;
265 		prev = i;
266 	}
267 
268 	txq->tx_tail = 0;
269 	txq->nb_used = 0;
270 
271 	txq->last_desc_cleaned = txq->nb_tx_desc - 1;
272 	txq->nb_free = txq->nb_tx_desc - 1;
273 
274 	txq->next_dd = txq->rs_thresh - 1;
275 	txq->next_rs = txq->rs_thresh - 1;
276 }
277 
278 static int
alloc_rxq_mbufs(struct iavf_rx_queue * rxq)279 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
280 {
281 	volatile union iavf_rx_desc *rxd;
282 	struct rte_mbuf *mbuf = NULL;
283 	uint64_t dma_addr;
284 	uint16_t i, j;
285 
286 	for (i = 0; i < rxq->nb_rx_desc; i++) {
287 		mbuf = rte_mbuf_raw_alloc(rxq->mp);
288 		if (unlikely(!mbuf)) {
289 			for (j = 0; j < i; j++) {
290 				rte_pktmbuf_free_seg(rxq->sw_ring[j]);
291 				rxq->sw_ring[j] = NULL;
292 			}
293 			PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
294 			return -ENOMEM;
295 		}
296 
297 		rte_mbuf_refcnt_set(mbuf, 1);
298 		mbuf->next = NULL;
299 		mbuf->data_off = RTE_PKTMBUF_HEADROOM;
300 		mbuf->nb_segs = 1;
301 		mbuf->port = rxq->port_id;
302 
303 		dma_addr =
304 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
305 
306 		rxd = &rxq->rx_ring[i];
307 		rxd->read.pkt_addr = dma_addr;
308 		rxd->read.hdr_addr = 0;
309 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
310 		rxd->read.rsvd1 = 0;
311 		rxd->read.rsvd2 = 0;
312 #endif
313 
314 		rxq->sw_ring[i] = mbuf;
315 	}
316 
317 	return 0;
318 }
319 
320 static inline void
release_rxq_mbufs(struct iavf_rx_queue * rxq)321 release_rxq_mbufs(struct iavf_rx_queue *rxq)
322 {
323 	uint16_t i;
324 
325 	if (!rxq->sw_ring)
326 		return;
327 
328 	for (i = 0; i < rxq->nb_rx_desc; i++) {
329 		if (rxq->sw_ring[i]) {
330 			rte_pktmbuf_free_seg(rxq->sw_ring[i]);
331 			rxq->sw_ring[i] = NULL;
332 		}
333 	}
334 
335 	/* for rx bulk */
336 	if (rxq->rx_nb_avail == 0)
337 		return;
338 	for (i = 0; i < rxq->rx_nb_avail; i++) {
339 		struct rte_mbuf *mbuf;
340 
341 		mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
342 		rte_pktmbuf_free_seg(mbuf);
343 	}
344 	rxq->rx_nb_avail = 0;
345 }
346 
347 static inline void
release_txq_mbufs(struct iavf_tx_queue * txq)348 release_txq_mbufs(struct iavf_tx_queue *txq)
349 {
350 	uint16_t i;
351 
352 	if (!txq || !txq->sw_ring) {
353 		PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
354 		return;
355 	}
356 
357 	for (i = 0; i < txq->nb_tx_desc; i++) {
358 		if (txq->sw_ring[i].mbuf) {
359 			rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
360 			txq->sw_ring[i].mbuf = NULL;
361 		}
362 	}
363 }
364 
365 static const struct iavf_rxq_ops def_rxq_ops = {
366 	.release_mbufs = release_rxq_mbufs,
367 };
368 
369 static const struct iavf_txq_ops def_txq_ops = {
370 	.release_mbufs = release_txq_mbufs,
371 };
372 
373 static inline void
iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue * rxq,struct rte_mbuf * mb,volatile union iavf_rx_flex_desc * rxdp)374 iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
375 				    struct rte_mbuf *mb,
376 				    volatile union iavf_rx_flex_desc *rxdp)
377 {
378 	volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
379 			(volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
380 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
381 	uint16_t stat_err;
382 #endif
383 
384 	if (desc->flow_id != 0xFFFFFFFF) {
385 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
386 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
387 	}
388 
389 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
390 	stat_err = rte_le_to_cpu_16(desc->status_error0);
391 	if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
392 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
393 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
394 	}
395 #endif
396 }
397 
398 static inline void
iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue * rxq,struct rte_mbuf * mb,volatile union iavf_rx_flex_desc * rxdp)399 iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
400 				       struct rte_mbuf *mb,
401 				       volatile union iavf_rx_flex_desc *rxdp)
402 {
403 	volatile struct iavf_32b_rx_flex_desc_comms *desc =
404 			(volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
405 	uint16_t stat_err;
406 
407 	stat_err = rte_le_to_cpu_16(desc->status_error0);
408 	if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
409 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
410 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
411 	}
412 
413 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
414 	if (desc->flow_id != 0xFFFFFFFF) {
415 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
416 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
417 	}
418 
419 	if (rxq->xtr_ol_flag) {
420 		uint32_t metadata = 0;
421 
422 		stat_err = rte_le_to_cpu_16(desc->status_error1);
423 
424 		if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
425 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
426 
427 		if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
428 			metadata |=
429 				rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
430 
431 		if (metadata) {
432 			mb->ol_flags |= rxq->xtr_ol_flag;
433 
434 			*RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
435 		}
436 	}
437 #endif
438 }
439 
440 static inline void
iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue * rxq,struct rte_mbuf * mb,volatile union iavf_rx_flex_desc * rxdp)441 iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
442 				       struct rte_mbuf *mb,
443 				       volatile union iavf_rx_flex_desc *rxdp)
444 {
445 	volatile struct iavf_32b_rx_flex_desc_comms *desc =
446 			(volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
447 	uint16_t stat_err;
448 
449 	stat_err = rte_le_to_cpu_16(desc->status_error0);
450 	if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
451 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
452 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
453 	}
454 
455 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
456 	if (desc->flow_id != 0xFFFFFFFF) {
457 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
458 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
459 	}
460 
461 	if (rxq->xtr_ol_flag) {
462 		uint32_t metadata = 0;
463 
464 		if (desc->flex_ts.flex.aux0 != 0xFFFF)
465 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
466 		else if (desc->flex_ts.flex.aux1 != 0xFFFF)
467 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
468 
469 		if (metadata) {
470 			mb->ol_flags |= rxq->xtr_ol_flag;
471 
472 			*RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
473 		}
474 	}
475 #endif
476 }
477 
478 static const
479 iavf_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[IAVF_RXDID_LAST + 1] = {
480 	[IAVF_RXDID_LEGACY_0] = iavf_rxd_to_pkt_fields_by_comms_ovs,
481 	[IAVF_RXDID_LEGACY_1] = iavf_rxd_to_pkt_fields_by_comms_ovs,
482 	[IAVF_RXDID_COMMS_AUX_VLAN] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
483 	[IAVF_RXDID_COMMS_AUX_IPV4] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
484 	[IAVF_RXDID_COMMS_AUX_IPV6] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
485 	[IAVF_RXDID_COMMS_AUX_IPV6_FLOW] =
486 		iavf_rxd_to_pkt_fields_by_comms_aux_v1,
487 	[IAVF_RXDID_COMMS_AUX_TCP] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
488 	[IAVF_RXDID_COMMS_AUX_IP_OFFSET] =
489 		iavf_rxd_to_pkt_fields_by_comms_aux_v2,
490 	[IAVF_RXDID_COMMS_IPSEC_CRYPTO] =
491 		iavf_rxd_to_pkt_fields_by_comms_aux_v2,
492 	[IAVF_RXDID_COMMS_OVS_1] = iavf_rxd_to_pkt_fields_by_comms_ovs,
493 };
494 
495 static void
iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue * rxq,uint32_t rxdid)496 iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
497 {
498 	rxq->rxdid = rxdid;
499 
500 	switch (rxdid) {
501 	case IAVF_RXDID_COMMS_AUX_VLAN:
502 		rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
503 		break;
504 	case IAVF_RXDID_COMMS_AUX_IPV4:
505 		rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
506 		break;
507 	case IAVF_RXDID_COMMS_AUX_IPV6:
508 		rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
509 		break;
510 	case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
511 		rxq->xtr_ol_flag =
512 			rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
513 		break;
514 	case IAVF_RXDID_COMMS_AUX_TCP:
515 		rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
516 		break;
517 	case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
518 		rxq->xtr_ol_flag =
519 			rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
520 		break;
521 	case IAVF_RXDID_COMMS_IPSEC_CRYPTO:
522 		rxq->xtr_ol_flag =
523 			rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
524 		break;
525 	case IAVF_RXDID_COMMS_OVS_1:
526 	case IAVF_RXDID_LEGACY_0:
527 	case IAVF_RXDID_LEGACY_1:
528 		break;
529 	default:
530 		/* update this according to the RXDID for FLEX_DESC_NONE */
531 		rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
532 		break;
533 	}
534 
535 	if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
536 		rxq->xtr_ol_flag = 0;
537 }
538 
539 int
iavf_dev_rx_queue_setup(struct rte_eth_dev * dev,uint16_t queue_idx,uint16_t nb_desc,unsigned int socket_id,const struct rte_eth_rxconf * rx_conf,struct rte_mempool * mp)540 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
541 		       uint16_t nb_desc, unsigned int socket_id,
542 		       const struct rte_eth_rxconf *rx_conf,
543 		       struct rte_mempool *mp)
544 {
545 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
546 	struct iavf_adapter *ad =
547 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
548 	struct iavf_info *vf =
549 		IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
550 	struct iavf_vsi *vsi = &vf->vsi;
551 	struct iavf_rx_queue *rxq;
552 	const struct rte_memzone *mz;
553 	uint32_t ring_size;
554 	uint8_t proto_xtr;
555 	uint16_t len;
556 	uint16_t rx_free_thresh;
557 	uint64_t offloads;
558 
559 	PMD_INIT_FUNC_TRACE();
560 
561 	offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
562 
563 	if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
564 	    nb_desc > IAVF_MAX_RING_DESC ||
565 	    nb_desc < IAVF_MIN_RING_DESC) {
566 		PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
567 			     "invalid", nb_desc);
568 		return -EINVAL;
569 	}
570 
571 	/* Check free threshold */
572 	rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
573 			 IAVF_DEFAULT_RX_FREE_THRESH :
574 			 rx_conf->rx_free_thresh;
575 	if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
576 		return -EINVAL;
577 
578 	/* Free memory if needed */
579 	if (dev->data->rx_queues[queue_idx]) {
580 		iavf_dev_rx_queue_release(dev, queue_idx);
581 		dev->data->rx_queues[queue_idx] = NULL;
582 	}
583 
584 	/* Allocate the rx queue data structure */
585 	rxq = rte_zmalloc_socket("iavf rxq",
586 				 sizeof(struct iavf_rx_queue),
587 				 RTE_CACHE_LINE_SIZE,
588 				 socket_id);
589 	if (!rxq) {
590 		PMD_INIT_LOG(ERR, "Failed to allocate memory for "
591 			     "rx queue data structure");
592 		return -ENOMEM;
593 	}
594 
595 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
596 		proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
597 				IAVF_PROTO_XTR_NONE;
598 		rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
599 		rxq->proto_xtr = proto_xtr;
600 	} else {
601 		rxq->rxdid = IAVF_RXDID_LEGACY_1;
602 		rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
603 	}
604 
605 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
606 		struct virtchnl_vlan_supported_caps *stripping_support =
607 				&vf->vlan_v2_caps.offloads.stripping_support;
608 		uint32_t stripping_cap;
609 
610 		if (stripping_support->outer)
611 			stripping_cap = stripping_support->outer;
612 		else
613 			stripping_cap = stripping_support->inner;
614 
615 		if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
616 			rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
617 		else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
618 			rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
619 	} else {
620 		rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
621 	}
622 
623 	iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
624 
625 	rxq->mp = mp;
626 	rxq->nb_rx_desc = nb_desc;
627 	rxq->rx_free_thresh = rx_free_thresh;
628 	rxq->queue_id = queue_idx;
629 	rxq->port_id = dev->data->port_id;
630 	rxq->rx_deferred_start = rx_conf->rx_deferred_start;
631 	rxq->rx_hdr_len = 0;
632 	rxq->vsi = vsi;
633 	rxq->offloads = offloads;
634 
635 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
636 		rxq->crc_len = RTE_ETHER_CRC_LEN;
637 	else
638 		rxq->crc_len = 0;
639 
640 	len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
641 	rxq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
642 
643 	/* Allocate the software ring. */
644 	len = nb_desc + IAVF_RX_MAX_BURST;
645 	rxq->sw_ring =
646 		rte_zmalloc_socket("iavf rx sw ring",
647 				   sizeof(struct rte_mbuf *) * len,
648 				   RTE_CACHE_LINE_SIZE,
649 				   socket_id);
650 	if (!rxq->sw_ring) {
651 		PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
652 		rte_free(rxq);
653 		return -ENOMEM;
654 	}
655 
656 	/* Allocate the maximum number of RX ring hardware descriptor with
657 	 * a little more to support bulk allocate.
658 	 */
659 	len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
660 	ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
661 			      IAVF_DMA_MEM_ALIGN);
662 	mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
663 				      ring_size, IAVF_RING_BASE_ALIGN,
664 				      socket_id);
665 	if (!mz) {
666 		PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
667 		rte_free(rxq->sw_ring);
668 		rte_free(rxq);
669 		return -ENOMEM;
670 	}
671 	/* Zero all the descriptors in the ring. */
672 	memset(mz->addr, 0, ring_size);
673 	rxq->rx_ring_phys_addr = mz->iova;
674 	rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
675 
676 	rxq->mz = mz;
677 	reset_rx_queue(rxq);
678 	rxq->q_set = true;
679 	dev->data->rx_queues[queue_idx] = rxq;
680 	rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
681 	rxq->ops = &def_rxq_ops;
682 
683 	if (check_rx_bulk_allow(rxq) == true) {
684 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
685 			     "satisfied. Rx Burst Bulk Alloc function will be "
686 			     "used on port=%d, queue=%d.",
687 			     rxq->port_id, rxq->queue_id);
688 	} else {
689 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
690 			     "not satisfied, Scattered Rx is requested "
691 			     "on port=%d, queue=%d.",
692 			     rxq->port_id, rxq->queue_id);
693 		ad->rx_bulk_alloc_allowed = false;
694 	}
695 
696 	if (check_rx_vec_allow(rxq) == false)
697 		ad->rx_vec_allowed = false;
698 
699 	return 0;
700 }
701 
702 int
iavf_dev_tx_queue_setup(struct rte_eth_dev * dev,uint16_t queue_idx,uint16_t nb_desc,unsigned int socket_id,const struct rte_eth_txconf * tx_conf)703 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
704 		       uint16_t queue_idx,
705 		       uint16_t nb_desc,
706 		       unsigned int socket_id,
707 		       const struct rte_eth_txconf *tx_conf)
708 {
709 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
710 	struct iavf_adapter *adapter =
711 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
712 	struct iavf_info *vf =
713 		IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
714 	struct iavf_tx_queue *txq;
715 	const struct rte_memzone *mz;
716 	uint32_t ring_size;
717 	uint16_t tx_rs_thresh, tx_free_thresh;
718 	uint64_t offloads;
719 
720 	PMD_INIT_FUNC_TRACE();
721 
722 	offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
723 
724 	if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
725 	    nb_desc > IAVF_MAX_RING_DESC ||
726 	    nb_desc < IAVF_MIN_RING_DESC) {
727 		PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
728 			    "invalid", nb_desc);
729 		return -EINVAL;
730 	}
731 
732 	tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
733 		tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
734 	tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
735 		tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
736 	if (check_tx_thresh(nb_desc, tx_rs_thresh, tx_free_thresh) != 0)
737 		return -EINVAL;
738 
739 	/* Free memory if needed. */
740 	if (dev->data->tx_queues[queue_idx]) {
741 		iavf_dev_tx_queue_release(dev, queue_idx);
742 		dev->data->tx_queues[queue_idx] = NULL;
743 	}
744 
745 	/* Allocate the TX queue data structure. */
746 	txq = rte_zmalloc_socket("iavf txq",
747 				 sizeof(struct iavf_tx_queue),
748 				 RTE_CACHE_LINE_SIZE,
749 				 socket_id);
750 	if (!txq) {
751 		PMD_INIT_LOG(ERR, "Failed to allocate memory for "
752 			     "tx queue structure");
753 		return -ENOMEM;
754 	}
755 
756 	if (adapter->vf.vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
757 		struct virtchnl_vlan_supported_caps *insertion_support =
758 			&adapter->vf.vlan_v2_caps.offloads.insertion_support;
759 		uint32_t insertion_cap;
760 
761 		if (insertion_support->outer)
762 			insertion_cap = insertion_support->outer;
763 		else
764 			insertion_cap = insertion_support->inner;
765 
766 		if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
767 			txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
768 		else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
769 			txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
770 	} else {
771 		txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
772 	}
773 
774 	txq->nb_tx_desc = nb_desc;
775 	txq->rs_thresh = tx_rs_thresh;
776 	txq->free_thresh = tx_free_thresh;
777 	txq->queue_id = queue_idx;
778 	txq->port_id = dev->data->port_id;
779 	txq->offloads = offloads;
780 	txq->tx_deferred_start = tx_conf->tx_deferred_start;
781 
782 	if (iavf_ipsec_crypto_supported(adapter))
783 		txq->ipsec_crypto_pkt_md_offset =
784 			iavf_security_get_pkt_md_offset(adapter);
785 
786 	/* Allocate software ring */
787 	txq->sw_ring =
788 		rte_zmalloc_socket("iavf tx sw ring",
789 				   sizeof(struct iavf_tx_entry) * nb_desc,
790 				   RTE_CACHE_LINE_SIZE,
791 				   socket_id);
792 	if (!txq->sw_ring) {
793 		PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
794 		rte_free(txq);
795 		return -ENOMEM;
796 	}
797 
798 	/* Allocate TX hardware ring descriptors. */
799 	ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
800 	ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
801 	mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
802 				      ring_size, IAVF_RING_BASE_ALIGN,
803 				      socket_id);
804 	if (!mz) {
805 		PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
806 		rte_free(txq->sw_ring);
807 		rte_free(txq);
808 		return -ENOMEM;
809 	}
810 	txq->tx_ring_phys_addr = mz->iova;
811 	txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
812 
813 	txq->mz = mz;
814 	reset_tx_queue(txq);
815 	txq->q_set = true;
816 	dev->data->tx_queues[queue_idx] = txq;
817 	txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
818 	txq->ops = &def_txq_ops;
819 
820 	if (check_tx_vec_allow(txq) == false) {
821 		struct iavf_adapter *ad =
822 			IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
823 		ad->tx_vec_allowed = false;
824 	}
825 
826 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
827 	    vf->tm_conf.committed) {
828 		int tc;
829 		for (tc = 0; tc < vf->qos_cap->num_elem; tc++) {
830 			if (txq->queue_id >= vf->qtc_map[tc].start_queue_id &&
831 			    txq->queue_id < (vf->qtc_map[tc].start_queue_id +
832 			    vf->qtc_map[tc].queue_count))
833 				break;
834 		}
835 		if (tc >= vf->qos_cap->num_elem) {
836 			PMD_INIT_LOG(ERR, "Queue TC mapping is not correct");
837 			return -EINVAL;
838 		}
839 		txq->tc = tc;
840 	}
841 
842 	return 0;
843 }
844 
845 int
iavf_dev_rx_queue_start(struct rte_eth_dev * dev,uint16_t rx_queue_id)846 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
847 {
848 	struct iavf_adapter *adapter =
849 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
850 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
851 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
852 	struct iavf_rx_queue *rxq;
853 	int err = 0;
854 
855 	PMD_DRV_FUNC_TRACE();
856 
857 	if (rx_queue_id >= dev->data->nb_rx_queues)
858 		return -EINVAL;
859 
860 	rxq = dev->data->rx_queues[rx_queue_id];
861 
862 	err = alloc_rxq_mbufs(rxq);
863 	if (err) {
864 		PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
865 		return err;
866 	}
867 
868 	rte_wmb();
869 
870 	/* Init the RX tail register. */
871 	IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
872 	IAVF_WRITE_FLUSH(hw);
873 
874 	/* Ready to switch the queue on */
875 	if (!vf->lv_enabled)
876 		err = iavf_switch_queue(adapter, rx_queue_id, true, true);
877 	else
878 		err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
879 
880 	if (err) {
881 		release_rxq_mbufs(rxq);
882 		PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
883 			    rx_queue_id);
884 	} else {
885 		dev->data->rx_queue_state[rx_queue_id] =
886 			RTE_ETH_QUEUE_STATE_STARTED;
887 	}
888 
889 	return err;
890 }
891 
892 int
iavf_dev_tx_queue_start(struct rte_eth_dev * dev,uint16_t tx_queue_id)893 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
894 {
895 	struct iavf_adapter *adapter =
896 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
897 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
898 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
899 	struct iavf_tx_queue *txq;
900 	int err = 0;
901 
902 	PMD_DRV_FUNC_TRACE();
903 
904 	if (tx_queue_id >= dev->data->nb_tx_queues)
905 		return -EINVAL;
906 
907 	txq = dev->data->tx_queues[tx_queue_id];
908 
909 	/* Init the RX tail register. */
910 	IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
911 	IAVF_WRITE_FLUSH(hw);
912 
913 	/* Ready to switch the queue on */
914 	if (!vf->lv_enabled)
915 		err = iavf_switch_queue(adapter, tx_queue_id, false, true);
916 	else
917 		err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
918 
919 	if (err)
920 		PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
921 			    tx_queue_id);
922 	else
923 		dev->data->tx_queue_state[tx_queue_id] =
924 			RTE_ETH_QUEUE_STATE_STARTED;
925 
926 	return err;
927 }
928 
929 int
iavf_dev_rx_queue_stop(struct rte_eth_dev * dev,uint16_t rx_queue_id)930 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
931 {
932 	struct iavf_adapter *adapter =
933 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
934 	struct iavf_rx_queue *rxq;
935 	int err;
936 
937 	PMD_DRV_FUNC_TRACE();
938 
939 	if (rx_queue_id >= dev->data->nb_rx_queues)
940 		return -EINVAL;
941 
942 	err = iavf_switch_queue(adapter, rx_queue_id, true, false);
943 	if (err) {
944 		PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
945 			    rx_queue_id);
946 		return err;
947 	}
948 
949 	rxq = dev->data->rx_queues[rx_queue_id];
950 	rxq->ops->release_mbufs(rxq);
951 	reset_rx_queue(rxq);
952 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
953 
954 	return 0;
955 }
956 
957 int
iavf_dev_tx_queue_stop(struct rte_eth_dev * dev,uint16_t tx_queue_id)958 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
959 {
960 	struct iavf_adapter *adapter =
961 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
962 	struct iavf_tx_queue *txq;
963 	int err;
964 
965 	PMD_DRV_FUNC_TRACE();
966 
967 	if (tx_queue_id >= dev->data->nb_tx_queues)
968 		return -EINVAL;
969 
970 	err = iavf_switch_queue(adapter, tx_queue_id, false, false);
971 	if (err) {
972 		PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
973 			    tx_queue_id);
974 		return err;
975 	}
976 
977 	txq = dev->data->tx_queues[tx_queue_id];
978 	txq->ops->release_mbufs(txq);
979 	reset_tx_queue(txq);
980 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
981 
982 	return 0;
983 }
984 
985 void
iavf_dev_rx_queue_release(struct rte_eth_dev * dev,uint16_t qid)986 iavf_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
987 {
988 	struct iavf_rx_queue *q = dev->data->rx_queues[qid];
989 
990 	if (!q)
991 		return;
992 
993 	q->ops->release_mbufs(q);
994 	rte_free(q->sw_ring);
995 	rte_memzone_free(q->mz);
996 	rte_free(q);
997 }
998 
999 void
iavf_dev_tx_queue_release(struct rte_eth_dev * dev,uint16_t qid)1000 iavf_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1001 {
1002 	struct iavf_tx_queue *q = dev->data->tx_queues[qid];
1003 
1004 	if (!q)
1005 		return;
1006 
1007 	q->ops->release_mbufs(q);
1008 	rte_free(q->sw_ring);
1009 	rte_memzone_free(q->mz);
1010 	rte_free(q);
1011 }
1012 
1013 void
iavf_stop_queues(struct rte_eth_dev * dev)1014 iavf_stop_queues(struct rte_eth_dev *dev)
1015 {
1016 	struct iavf_adapter *adapter =
1017 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1018 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1019 	struct iavf_rx_queue *rxq;
1020 	struct iavf_tx_queue *txq;
1021 	int ret, i;
1022 
1023 	/* Stop All queues */
1024 	if (!vf->lv_enabled) {
1025 		ret = iavf_disable_queues(adapter);
1026 		if (ret)
1027 			PMD_DRV_LOG(WARNING, "Fail to stop queues");
1028 	} else {
1029 		ret = iavf_disable_queues_lv(adapter);
1030 		if (ret)
1031 			PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
1032 	}
1033 
1034 	if (ret)
1035 		PMD_DRV_LOG(WARNING, "Fail to stop queues");
1036 
1037 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
1038 		txq = dev->data->tx_queues[i];
1039 		if (!txq)
1040 			continue;
1041 		txq->ops->release_mbufs(txq);
1042 		reset_tx_queue(txq);
1043 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1044 	}
1045 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1046 		rxq = dev->data->rx_queues[i];
1047 		if (!rxq)
1048 			continue;
1049 		rxq->ops->release_mbufs(rxq);
1050 		reset_rx_queue(rxq);
1051 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1052 	}
1053 }
1054 
1055 #define IAVF_RX_FLEX_ERR0_BITS	\
1056 	((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |	\
1057 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |	\
1058 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |	\
1059 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |	\
1060 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |	\
1061 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1062 
1063 static inline void
iavf_rxd_to_vlan_tci(struct rte_mbuf * mb,volatile union iavf_rx_desc * rxdp)1064 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
1065 {
1066 	if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1067 		(1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1068 		mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1069 		mb->vlan_tci =
1070 			rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1071 	} else {
1072 		mb->vlan_tci = 0;
1073 	}
1074 }
1075 
1076 static inline void
iavf_flex_rxd_to_vlan_tci(struct rte_mbuf * mb,volatile union iavf_rx_flex_desc * rxdp)1077 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
1078 			  volatile union iavf_rx_flex_desc *rxdp)
1079 {
1080 	if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
1081 		(1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1082 		mb->ol_flags |= RTE_MBUF_F_RX_VLAN |
1083 				RTE_MBUF_F_RX_VLAN_STRIPPED;
1084 		mb->vlan_tci =
1085 			rte_le_to_cpu_16(rxdp->wb.l2tag1);
1086 	} else {
1087 		mb->vlan_tci = 0;
1088 	}
1089 
1090 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1091 	if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1092 	    (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1093 		mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED |
1094 				RTE_MBUF_F_RX_QINQ |
1095 				RTE_MBUF_F_RX_VLAN_STRIPPED |
1096 				RTE_MBUF_F_RX_VLAN;
1097 		mb->vlan_tci_outer = mb->vlan_tci;
1098 		mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1099 		PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1100 			   rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1101 			   rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1102 	} else {
1103 		mb->vlan_tci_outer = 0;
1104 	}
1105 #endif
1106 }
1107 
1108 static inline void
iavf_flex_rxd_to_ipsec_crypto_said_get(struct rte_mbuf * mb,volatile union iavf_rx_flex_desc * rxdp)1109 iavf_flex_rxd_to_ipsec_crypto_said_get(struct rte_mbuf *mb,
1110 			  volatile union iavf_rx_flex_desc *rxdp)
1111 {
1112 	volatile struct iavf_32b_rx_flex_desc_comms_ipsec *desc =
1113 		(volatile struct iavf_32b_rx_flex_desc_comms_ipsec *)rxdp;
1114 
1115 	mb->dynfield1[0] = desc->ipsec_said &
1116 			 IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_SAID_MASK;
1117 	}
1118 
1119 static inline void
iavf_flex_rxd_to_ipsec_crypto_status(struct rte_mbuf * mb,volatile union iavf_rx_flex_desc * rxdp,struct iavf_ipsec_crypto_stats * stats)1120 iavf_flex_rxd_to_ipsec_crypto_status(struct rte_mbuf *mb,
1121 			  volatile union iavf_rx_flex_desc *rxdp,
1122 			  struct iavf_ipsec_crypto_stats *stats)
1123 {
1124 	uint16_t status1 = rte_le_to_cpu_64(rxdp->wb.status_error1);
1125 
1126 	if (status1 & BIT(IAVF_RX_FLEX_DESC_STATUS1_IPSEC_CRYPTO_PROCESSED)) {
1127 		uint16_t ipsec_status;
1128 
1129 		mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
1130 
1131 		ipsec_status = status1 &
1132 			IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_STATUS_MASK;
1133 
1134 
1135 		if (unlikely(ipsec_status !=
1136 			IAVF_IPSEC_CRYPTO_STATUS_SUCCESS)) {
1137 			mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
1138 
1139 			switch (ipsec_status) {
1140 			case IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS:
1141 				stats->ierrors.sad_miss++;
1142 				break;
1143 			case IAVF_IPSEC_CRYPTO_STATUS_NOT_PROCESSED:
1144 				stats->ierrors.not_processed++;
1145 				break;
1146 			case IAVF_IPSEC_CRYPTO_STATUS_ICV_CHECK_FAIL:
1147 				stats->ierrors.icv_check++;
1148 				break;
1149 			case IAVF_IPSEC_CRYPTO_STATUS_LENGTH_ERR:
1150 				stats->ierrors.ipsec_length++;
1151 				break;
1152 			case IAVF_IPSEC_CRYPTO_STATUS_MISC_ERR:
1153 				stats->ierrors.misc++;
1154 				break;
1155 }
1156 
1157 			stats->ierrors.count++;
1158 			return;
1159 		}
1160 
1161 		stats->icount++;
1162 		stats->ibytes += rxdp->wb.pkt_len & 0x3FFF;
1163 
1164 		if (rxdp->wb.rxdid == IAVF_RXDID_COMMS_IPSEC_CRYPTO &&
1165 			ipsec_status !=
1166 				IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS)
1167 			iavf_flex_rxd_to_ipsec_crypto_said_get(mb, rxdp);
1168 	}
1169 }
1170 
1171 
1172 /* Translate the rx descriptor status and error fields to pkt flags */
1173 static inline uint64_t
iavf_rxd_to_pkt_flags(uint64_t qword)1174 iavf_rxd_to_pkt_flags(uint64_t qword)
1175 {
1176 	uint64_t flags;
1177 	uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
1178 
1179 #define IAVF_RX_ERR_BITS 0x3f
1180 
1181 	/* Check if RSS_HASH */
1182 	flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
1183 					IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
1184 			IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? RTE_MBUF_F_RX_RSS_HASH : 0;
1185 
1186 	/* Check if FDIR Match */
1187 	flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
1188 				RTE_MBUF_F_RX_FDIR : 0);
1189 
1190 	if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
1191 		flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1192 		return flags;
1193 	}
1194 
1195 	if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
1196 		flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1197 	else
1198 		flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1199 
1200 	if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
1201 		flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1202 	else
1203 		flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1204 
1205 	/* TODO: Oversize error bit is not processed here */
1206 
1207 	return flags;
1208 }
1209 
1210 static inline uint64_t
iavf_rxd_build_fdir(volatile union iavf_rx_desc * rxdp,struct rte_mbuf * mb)1211 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
1212 {
1213 	uint64_t flags = 0;
1214 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1215 	uint16_t flexbh;
1216 
1217 	flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
1218 		IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
1219 		IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
1220 
1221 	if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1222 		mb->hash.fdir.hi =
1223 			rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1224 		flags |= RTE_MBUF_F_RX_FDIR_ID;
1225 	}
1226 #else
1227 	mb->hash.fdir.hi =
1228 		rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1229 	flags |= RTE_MBUF_F_RX_FDIR_ID;
1230 #endif
1231 	return flags;
1232 }
1233 
1234 #define IAVF_RX_FLEX_ERR0_BITS	\
1235 	((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |	\
1236 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |	\
1237 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |	\
1238 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |	\
1239 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |	\
1240 	 (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1241 
1242 /* Rx L3/L4 checksum */
1243 static inline uint64_t
iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)1244 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
1245 {
1246 	uint64_t flags = 0;
1247 
1248 	/* check if HW has decoded the packet and checksum */
1249 	if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1250 		return 0;
1251 
1252 	if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
1253 		flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1254 		return flags;
1255 	}
1256 
1257 	if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1258 		flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1259 	else
1260 		flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1261 
1262 	if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1263 		flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1264 	else
1265 		flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1266 
1267 	if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1268 		flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1269 
1270 	return flags;
1271 }
1272 
1273 /* If the number of free RX descriptors is greater than the RX free
1274  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1275  * register. Update the RDT with the value of the last processed RX
1276  * descriptor minus 1, to guarantee that the RDT register is never
1277  * equal to the RDH register, which creates a "full" ring situation
1278  * from the hardware point of view.
1279  */
1280 static inline void
iavf_update_rx_tail(struct iavf_rx_queue * rxq,uint16_t nb_hold,uint16_t rx_id)1281 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
1282 {
1283 	nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1284 
1285 	if (nb_hold > rxq->rx_free_thresh) {
1286 		PMD_RX_LOG(DEBUG,
1287 			   "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
1288 			   rxq->port_id, rxq->queue_id, rx_id, nb_hold);
1289 		rx_id = (uint16_t)((rx_id == 0) ?
1290 			(rxq->nb_rx_desc - 1) : (rx_id - 1));
1291 		IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1292 		nb_hold = 0;
1293 	}
1294 	rxq->nb_rx_hold = nb_hold;
1295 }
1296 
1297 /* implement recv_pkts */
1298 uint16_t
iavf_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)1299 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1300 {
1301 	volatile union iavf_rx_desc *rx_ring;
1302 	volatile union iavf_rx_desc *rxdp;
1303 	struct iavf_rx_queue *rxq;
1304 	union iavf_rx_desc rxd;
1305 	struct rte_mbuf *rxe;
1306 	struct rte_eth_dev *dev;
1307 	struct rte_mbuf *rxm;
1308 	struct rte_mbuf *nmb;
1309 	uint16_t nb_rx;
1310 	uint32_t rx_status;
1311 	uint64_t qword1;
1312 	uint16_t rx_packet_len;
1313 	uint16_t rx_id, nb_hold;
1314 	uint64_t dma_addr;
1315 	uint64_t pkt_flags;
1316 	const uint32_t *ptype_tbl;
1317 
1318 	nb_rx = 0;
1319 	nb_hold = 0;
1320 	rxq = rx_queue;
1321 	rx_id = rxq->rx_tail;
1322 	rx_ring = rxq->rx_ring;
1323 	ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1324 
1325 	while (nb_rx < nb_pkts) {
1326 		rxdp = &rx_ring[rx_id];
1327 		qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1328 		rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1329 			    IAVF_RXD_QW1_STATUS_SHIFT;
1330 
1331 		/* Check the DD bit first */
1332 		if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1333 			break;
1334 		IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1335 
1336 		nmb = rte_mbuf_raw_alloc(rxq->mp);
1337 		if (unlikely(!nmb)) {
1338 			dev = &rte_eth_devices[rxq->port_id];
1339 			dev->data->rx_mbuf_alloc_failed++;
1340 			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1341 				   "queue_id=%u", rxq->port_id, rxq->queue_id);
1342 			break;
1343 		}
1344 
1345 		rxd = *rxdp;
1346 		nb_hold++;
1347 		rxe = rxq->sw_ring[rx_id];
1348 		rxq->sw_ring[rx_id] = nmb;
1349 		rx_id++;
1350 		if (unlikely(rx_id == rxq->nb_rx_desc))
1351 			rx_id = 0;
1352 
1353 		/* Prefetch next mbuf */
1354 		rte_prefetch0(rxq->sw_ring[rx_id]);
1355 
1356 		/* When next RX descriptor is on a cache line boundary,
1357 		 * prefetch the next 4 RX descriptors and next 8 pointers
1358 		 * to mbufs.
1359 		 */
1360 		if ((rx_id & 0x3) == 0) {
1361 			rte_prefetch0(&rx_ring[rx_id]);
1362 			rte_prefetch0(rxq->sw_ring[rx_id]);
1363 		}
1364 		rxm = rxe;
1365 		dma_addr =
1366 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1367 		rxdp->read.hdr_addr = 0;
1368 		rxdp->read.pkt_addr = dma_addr;
1369 
1370 		rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1371 				IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1372 
1373 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
1374 		rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1375 		rxm->nb_segs = 1;
1376 		rxm->next = NULL;
1377 		rxm->pkt_len = rx_packet_len;
1378 		rxm->data_len = rx_packet_len;
1379 		rxm->port = rxq->port_id;
1380 		rxm->ol_flags = 0;
1381 		iavf_rxd_to_vlan_tci(rxm, &rxd);
1382 		pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1383 		rxm->packet_type =
1384 			ptype_tbl[(uint8_t)((qword1 &
1385 			IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1386 
1387 		if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1388 			rxm->hash.rss =
1389 				rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1390 
1391 		if (pkt_flags & RTE_MBUF_F_RX_FDIR)
1392 			pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1393 
1394 		rxm->ol_flags |= pkt_flags;
1395 
1396 		rx_pkts[nb_rx++] = rxm;
1397 	}
1398 	rxq->rx_tail = rx_id;
1399 
1400 	iavf_update_rx_tail(rxq, nb_hold, rx_id);
1401 
1402 	return nb_rx;
1403 }
1404 
1405 /* implement recv_pkts for flexible Rx descriptor */
1406 uint16_t
iavf_recv_pkts_flex_rxd(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)1407 iavf_recv_pkts_flex_rxd(void *rx_queue,
1408 			struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1409 {
1410 	volatile union iavf_rx_desc *rx_ring;
1411 	volatile union iavf_rx_flex_desc *rxdp;
1412 	struct iavf_rx_queue *rxq;
1413 	union iavf_rx_flex_desc rxd;
1414 	struct rte_mbuf *rxe;
1415 	struct rte_eth_dev *dev;
1416 	struct rte_mbuf *rxm;
1417 	struct rte_mbuf *nmb;
1418 	uint16_t nb_rx;
1419 	uint16_t rx_stat_err0;
1420 	uint16_t rx_packet_len;
1421 	uint16_t rx_id, nb_hold;
1422 	uint64_t dma_addr;
1423 	uint64_t pkt_flags;
1424 	const uint32_t *ptype_tbl;
1425 
1426 	nb_rx = 0;
1427 	nb_hold = 0;
1428 	rxq = rx_queue;
1429 	rx_id = rxq->rx_tail;
1430 	rx_ring = rxq->rx_ring;
1431 	ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1432 
1433 	struct iavf_adapter *ad = rxq->vsi->adapter;
1434 	uint64_t ts_ns;
1435 
1436 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1437 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1438 		if (sw_cur_time - ad->hw_time_update > 4) {
1439 			if (iavf_get_phc_time(ad))
1440 				PMD_DRV_LOG(ERR, "get physical time failed");
1441 			ad->hw_time_update = sw_cur_time;
1442 		}
1443 	}
1444 
1445 	while (nb_rx < nb_pkts) {
1446 		rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1447 		rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1448 
1449 		/* Check the DD bit first */
1450 		if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1451 			break;
1452 		IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1453 
1454 		nmb = rte_mbuf_raw_alloc(rxq->mp);
1455 		if (unlikely(!nmb)) {
1456 			dev = &rte_eth_devices[rxq->port_id];
1457 			dev->data->rx_mbuf_alloc_failed++;
1458 			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1459 				   "queue_id=%u", rxq->port_id, rxq->queue_id);
1460 			break;
1461 		}
1462 
1463 		rxd = *rxdp;
1464 		nb_hold++;
1465 		rxe = rxq->sw_ring[rx_id];
1466 		rxq->sw_ring[rx_id] = nmb;
1467 		rx_id++;
1468 		if (unlikely(rx_id == rxq->nb_rx_desc))
1469 			rx_id = 0;
1470 
1471 		/* Prefetch next mbuf */
1472 		rte_prefetch0(rxq->sw_ring[rx_id]);
1473 
1474 		/* When next RX descriptor is on a cache line boundary,
1475 		 * prefetch the next 4 RX descriptors and next 8 pointers
1476 		 * to mbufs.
1477 		 */
1478 		if ((rx_id & 0x3) == 0) {
1479 			rte_prefetch0(&rx_ring[rx_id]);
1480 			rte_prefetch0(rxq->sw_ring[rx_id]);
1481 		}
1482 		rxm = rxe;
1483 		dma_addr =
1484 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1485 		rxdp->read.hdr_addr = 0;
1486 		rxdp->read.pkt_addr = dma_addr;
1487 
1488 		rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1489 				IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1490 
1491 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
1492 		rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1493 		rxm->nb_segs = 1;
1494 		rxm->next = NULL;
1495 		rxm->pkt_len = rx_packet_len;
1496 		rxm->data_len = rx_packet_len;
1497 		rxm->port = rxq->port_id;
1498 		rxm->ol_flags = 0;
1499 		rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1500 			rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1501 		iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
1502 		iavf_flex_rxd_to_ipsec_crypto_status(rxm, &rxd,
1503 				&rxq->stats.ipsec_crypto);
1504 		rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
1505 		pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1506 
1507 		if (iavf_timestamp_dynflag > 0) {
1508 			ts_ns = iavf_tstamp_convert_32b_64b(ad->phc_time,
1509 				rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
1510 
1511 			ad->phc_time = ts_ns;
1512 			ad->hw_time_update = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1513 
1514 			*RTE_MBUF_DYNFIELD(rxm,
1515 				iavf_timestamp_dynfield_offset,
1516 				rte_mbuf_timestamp_t *) = ts_ns;
1517 			rxm->ol_flags |= iavf_timestamp_dynflag;
1518 		}
1519 
1520 		rxm->ol_flags |= pkt_flags;
1521 
1522 		rx_pkts[nb_rx++] = rxm;
1523 	}
1524 	rxq->rx_tail = rx_id;
1525 
1526 	iavf_update_rx_tail(rxq, nb_hold, rx_id);
1527 
1528 	return nb_rx;
1529 }
1530 
1531 /* implement recv_scattered_pkts for flexible Rx descriptor */
1532 uint16_t
iavf_recv_scattered_pkts_flex_rxd(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)1533 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1534 				  uint16_t nb_pkts)
1535 {
1536 	struct iavf_rx_queue *rxq = rx_queue;
1537 	union iavf_rx_flex_desc rxd;
1538 	struct rte_mbuf *rxe;
1539 	struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1540 	struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1541 	struct rte_mbuf *nmb, *rxm;
1542 	uint16_t rx_id = rxq->rx_tail;
1543 	uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1544 	struct rte_eth_dev *dev;
1545 	uint16_t rx_stat_err0;
1546 	uint64_t dma_addr;
1547 	uint64_t pkt_flags;
1548 	struct iavf_adapter *ad = rxq->vsi->adapter;
1549 	uint64_t ts_ns;
1550 
1551 	volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1552 	volatile union iavf_rx_flex_desc *rxdp;
1553 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1554 
1555 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1556 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1557 		if (sw_cur_time - ad->hw_time_update > 4) {
1558 			if (iavf_get_phc_time(ad))
1559 				PMD_DRV_LOG(ERR, "get physical time failed");
1560 			ad->hw_time_update = sw_cur_time;
1561 		}
1562 	}
1563 
1564 	while (nb_rx < nb_pkts) {
1565 		rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1566 		rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1567 
1568 		/* Check the DD bit */
1569 		if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1570 			break;
1571 		IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1572 
1573 		nmb = rte_mbuf_raw_alloc(rxq->mp);
1574 		if (unlikely(!nmb)) {
1575 			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1576 				   "queue_id=%u", rxq->port_id, rxq->queue_id);
1577 			dev = &rte_eth_devices[rxq->port_id];
1578 			dev->data->rx_mbuf_alloc_failed++;
1579 			break;
1580 		}
1581 
1582 		rxd = *rxdp;
1583 		nb_hold++;
1584 		rxe = rxq->sw_ring[rx_id];
1585 		rxq->sw_ring[rx_id] = nmb;
1586 		rx_id++;
1587 		if (rx_id == rxq->nb_rx_desc)
1588 			rx_id = 0;
1589 
1590 		/* Prefetch next mbuf */
1591 		rte_prefetch0(rxq->sw_ring[rx_id]);
1592 
1593 		/* When next RX descriptor is on a cache line boundary,
1594 		 * prefetch the next 4 RX descriptors and next 8 pointers
1595 		 * to mbufs.
1596 		 */
1597 		if ((rx_id & 0x3) == 0) {
1598 			rte_prefetch0(&rx_ring[rx_id]);
1599 			rte_prefetch0(rxq->sw_ring[rx_id]);
1600 		}
1601 
1602 		rxm = rxe;
1603 		dma_addr =
1604 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1605 
1606 		/* Set data buffer address and data length of the mbuf */
1607 		rxdp->read.hdr_addr = 0;
1608 		rxdp->read.pkt_addr = dma_addr;
1609 		rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1610 				IAVF_RX_FLX_DESC_PKT_LEN_M;
1611 		rxm->data_len = rx_packet_len;
1612 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
1613 
1614 		/* If this is the first buffer of the received packet, set the
1615 		 * pointer to the first mbuf of the packet and initialize its
1616 		 * context. Otherwise, update the total length and the number
1617 		 * of segments of the current scattered packet, and update the
1618 		 * pointer to the last mbuf of the current packet.
1619 		 */
1620 		if (!first_seg) {
1621 			first_seg = rxm;
1622 			first_seg->nb_segs = 1;
1623 			first_seg->pkt_len = rx_packet_len;
1624 		} else {
1625 			first_seg->pkt_len =
1626 				(uint16_t)(first_seg->pkt_len +
1627 						rx_packet_len);
1628 			first_seg->nb_segs++;
1629 			last_seg->next = rxm;
1630 		}
1631 
1632 		/* If this is not the last buffer of the received packet,
1633 		 * update the pointer to the last mbuf of the current scattered
1634 		 * packet and continue to parse the RX ring.
1635 		 */
1636 		if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1637 			last_seg = rxm;
1638 			continue;
1639 		}
1640 
1641 		/* This is the last buffer of the received packet. If the CRC
1642 		 * is not stripped by the hardware:
1643 		 *  - Subtract the CRC length from the total packet length.
1644 		 *  - If the last buffer only contains the whole CRC or a part
1645 		 *  of it, free the mbuf associated to the last buffer. If part
1646 		 *  of the CRC is also contained in the previous mbuf, subtract
1647 		 *  the length of that CRC part from the data length of the
1648 		 *  previous mbuf.
1649 		 */
1650 		rxm->next = NULL;
1651 		if (unlikely(rxq->crc_len > 0)) {
1652 			first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1653 			if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1654 				rte_pktmbuf_free_seg(rxm);
1655 				first_seg->nb_segs--;
1656 				last_seg->data_len =
1657 					(uint16_t)(last_seg->data_len -
1658 					(RTE_ETHER_CRC_LEN - rx_packet_len));
1659 				last_seg->next = NULL;
1660 			} else {
1661 				rxm->data_len = (uint16_t)(rx_packet_len -
1662 							RTE_ETHER_CRC_LEN);
1663 			}
1664 		}
1665 
1666 		first_seg->port = rxq->port_id;
1667 		first_seg->ol_flags = 0;
1668 		first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1669 			rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1670 		iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
1671 		iavf_flex_rxd_to_ipsec_crypto_status(first_seg, &rxd,
1672 				&rxq->stats.ipsec_crypto);
1673 		rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
1674 		pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1675 
1676 		if (iavf_timestamp_dynflag > 0) {
1677 			ts_ns = iavf_tstamp_convert_32b_64b(ad->phc_time,
1678 				rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
1679 
1680 			ad->phc_time = ts_ns;
1681 			ad->hw_time_update = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1682 
1683 			*RTE_MBUF_DYNFIELD(first_seg,
1684 				iavf_timestamp_dynfield_offset,
1685 				rte_mbuf_timestamp_t *) = ts_ns;
1686 			first_seg->ol_flags |= iavf_timestamp_dynflag;
1687 		}
1688 
1689 		first_seg->ol_flags |= pkt_flags;
1690 
1691 		/* Prefetch data of first segment, if configured to do so. */
1692 		rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1693 					  first_seg->data_off));
1694 		rx_pkts[nb_rx++] = first_seg;
1695 		first_seg = NULL;
1696 	}
1697 
1698 	/* Record index of the next RX descriptor to probe. */
1699 	rxq->rx_tail = rx_id;
1700 	rxq->pkt_first_seg = first_seg;
1701 	rxq->pkt_last_seg = last_seg;
1702 
1703 	iavf_update_rx_tail(rxq, nb_hold, rx_id);
1704 
1705 	return nb_rx;
1706 }
1707 
1708 /* implement recv_scattered_pkts  */
1709 uint16_t
iavf_recv_scattered_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)1710 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1711 			uint16_t nb_pkts)
1712 {
1713 	struct iavf_rx_queue *rxq = rx_queue;
1714 	union iavf_rx_desc rxd;
1715 	struct rte_mbuf *rxe;
1716 	struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1717 	struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1718 	struct rte_mbuf *nmb, *rxm;
1719 	uint16_t rx_id = rxq->rx_tail;
1720 	uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1721 	struct rte_eth_dev *dev;
1722 	uint32_t rx_status;
1723 	uint64_t qword1;
1724 	uint64_t dma_addr;
1725 	uint64_t pkt_flags;
1726 
1727 	volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1728 	volatile union iavf_rx_desc *rxdp;
1729 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1730 
1731 	while (nb_rx < nb_pkts) {
1732 		rxdp = &rx_ring[rx_id];
1733 		qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1734 		rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1735 			    IAVF_RXD_QW1_STATUS_SHIFT;
1736 
1737 		/* Check the DD bit */
1738 		if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1739 			break;
1740 		IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1741 
1742 		nmb = rte_mbuf_raw_alloc(rxq->mp);
1743 		if (unlikely(!nmb)) {
1744 			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1745 				   "queue_id=%u", rxq->port_id, rxq->queue_id);
1746 			dev = &rte_eth_devices[rxq->port_id];
1747 			dev->data->rx_mbuf_alloc_failed++;
1748 			break;
1749 		}
1750 
1751 		rxd = *rxdp;
1752 		nb_hold++;
1753 		rxe = rxq->sw_ring[rx_id];
1754 		rxq->sw_ring[rx_id] = nmb;
1755 		rx_id++;
1756 		if (rx_id == rxq->nb_rx_desc)
1757 			rx_id = 0;
1758 
1759 		/* Prefetch next mbuf */
1760 		rte_prefetch0(rxq->sw_ring[rx_id]);
1761 
1762 		/* When next RX descriptor is on a cache line boundary,
1763 		 * prefetch the next 4 RX descriptors and next 8 pointers
1764 		 * to mbufs.
1765 		 */
1766 		if ((rx_id & 0x3) == 0) {
1767 			rte_prefetch0(&rx_ring[rx_id]);
1768 			rte_prefetch0(rxq->sw_ring[rx_id]);
1769 		}
1770 
1771 		rxm = rxe;
1772 		dma_addr =
1773 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1774 
1775 		/* Set data buffer address and data length of the mbuf */
1776 		rxdp->read.hdr_addr = 0;
1777 		rxdp->read.pkt_addr = dma_addr;
1778 		rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1779 				 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1780 		rxm->data_len = rx_packet_len;
1781 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
1782 
1783 		/* If this is the first buffer of the received packet, set the
1784 		 * pointer to the first mbuf of the packet and initialize its
1785 		 * context. Otherwise, update the total length and the number
1786 		 * of segments of the current scattered packet, and update the
1787 		 * pointer to the last mbuf of the current packet.
1788 		 */
1789 		if (!first_seg) {
1790 			first_seg = rxm;
1791 			first_seg->nb_segs = 1;
1792 			first_seg->pkt_len = rx_packet_len;
1793 		} else {
1794 			first_seg->pkt_len =
1795 				(uint16_t)(first_seg->pkt_len +
1796 						rx_packet_len);
1797 			first_seg->nb_segs++;
1798 			last_seg->next = rxm;
1799 		}
1800 
1801 		/* If this is not the last buffer of the received packet,
1802 		 * update the pointer to the last mbuf of the current scattered
1803 		 * packet and continue to parse the RX ring.
1804 		 */
1805 		if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1806 			last_seg = rxm;
1807 			continue;
1808 		}
1809 
1810 		/* This is the last buffer of the received packet. If the CRC
1811 		 * is not stripped by the hardware:
1812 		 *  - Subtract the CRC length from the total packet length.
1813 		 *  - If the last buffer only contains the whole CRC or a part
1814 		 *  of it, free the mbuf associated to the last buffer. If part
1815 		 *  of the CRC is also contained in the previous mbuf, subtract
1816 		 *  the length of that CRC part from the data length of the
1817 		 *  previous mbuf.
1818 		 */
1819 		rxm->next = NULL;
1820 		if (unlikely(rxq->crc_len > 0)) {
1821 			first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1822 			if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1823 				rte_pktmbuf_free_seg(rxm);
1824 				first_seg->nb_segs--;
1825 				last_seg->data_len =
1826 					(uint16_t)(last_seg->data_len -
1827 					(RTE_ETHER_CRC_LEN - rx_packet_len));
1828 				last_seg->next = NULL;
1829 			} else
1830 				rxm->data_len = (uint16_t)(rx_packet_len -
1831 							RTE_ETHER_CRC_LEN);
1832 		}
1833 
1834 		first_seg->port = rxq->port_id;
1835 		first_seg->ol_flags = 0;
1836 		iavf_rxd_to_vlan_tci(first_seg, &rxd);
1837 		pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1838 		first_seg->packet_type =
1839 			ptype_tbl[(uint8_t)((qword1 &
1840 			IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1841 
1842 		if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1843 			first_seg->hash.rss =
1844 				rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1845 
1846 		if (pkt_flags & RTE_MBUF_F_RX_FDIR)
1847 			pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1848 
1849 		first_seg->ol_flags |= pkt_flags;
1850 
1851 		/* Prefetch data of first segment, if configured to do so. */
1852 		rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1853 					  first_seg->data_off));
1854 		rx_pkts[nb_rx++] = first_seg;
1855 		first_seg = NULL;
1856 	}
1857 
1858 	/* Record index of the next RX descriptor to probe. */
1859 	rxq->rx_tail = rx_id;
1860 	rxq->pkt_first_seg = first_seg;
1861 	rxq->pkt_last_seg = last_seg;
1862 
1863 	iavf_update_rx_tail(rxq, nb_hold, rx_id);
1864 
1865 	return nb_rx;
1866 }
1867 
1868 #define IAVF_LOOK_AHEAD 8
1869 static inline int
iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)1870 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq,
1871 			    struct rte_mbuf **rx_pkts,
1872 			    uint16_t nb_pkts)
1873 {
1874 	volatile union iavf_rx_flex_desc *rxdp;
1875 	struct rte_mbuf **rxep;
1876 	struct rte_mbuf *mb;
1877 	uint16_t stat_err0;
1878 	uint16_t pkt_len;
1879 	int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
1880 	int32_t i, j, nb_rx = 0;
1881 	int32_t nb_staged = 0;
1882 	uint64_t pkt_flags;
1883 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1884 	struct iavf_adapter *ad = rxq->vsi->adapter;
1885 	uint64_t ts_ns;
1886 
1887 	rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1888 	rxep = &rxq->sw_ring[rxq->rx_tail];
1889 
1890 	stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1891 
1892 	/* Make sure there is at least 1 packet to receive */
1893 	if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1894 		return 0;
1895 
1896 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1897 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1898 		if (sw_cur_time - ad->hw_time_update > 4) {
1899 			if (iavf_get_phc_time(ad))
1900 				PMD_DRV_LOG(ERR, "get physical time failed");
1901 			ad->hw_time_update = sw_cur_time;
1902 		}
1903 	}
1904 
1905 	/* Scan LOOK_AHEAD descriptors at a time to determine which
1906 	 * descriptors reference packets that are ready to be received.
1907 	 */
1908 	for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1909 	     rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1910 		/* Read desc statuses backwards to avoid race condition */
1911 		for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1912 			s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1913 
1914 		/* This barrier is to order loads of different words in the descriptor */
1915 		rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
1916 
1917 		/* Compute how many contiguous DD bits were set */
1918 		for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
1919 			var = s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1920 #ifdef RTE_ARCH_ARM
1921 			/* For Arm platforms, count only contiguous descriptors
1922 			 * whose DD bit is set to 1. On Arm platforms, reads of
1923 			 * descriptors can be reordered. Since the CPU may
1924 			 * be reading the descriptors as the NIC updates them
1925 			 * in memory, it is possbile that the DD bit for a
1926 			 * descriptor earlier in the queue is read as not set
1927 			 * while the DD bit for a descriptor later in the queue
1928 			 * is read as set.
1929 			 */
1930 			if (var)
1931 				nb_dd += 1;
1932 			else
1933 				break;
1934 #else
1935 			nb_dd += var;
1936 #endif
1937 		}
1938 
1939 		/* Translate descriptor info to mbuf parameters */
1940 		for (j = 0; j < nb_dd; j++) {
1941 			IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1942 					  rxq->rx_tail +
1943 					  i * IAVF_LOOK_AHEAD + j);
1944 
1945 			mb = rxep[j];
1946 			pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1947 				IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1948 			mb->data_len = pkt_len;
1949 			mb->pkt_len = pkt_len;
1950 			mb->ol_flags = 0;
1951 
1952 			mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1953 				rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1954 			iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
1955 			iavf_flex_rxd_to_ipsec_crypto_status(mb, &rxdp[j],
1956 				&rxq->stats.ipsec_crypto);
1957 			rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
1958 			stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1959 			pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1960 
1961 			if (iavf_timestamp_dynflag > 0) {
1962 				ts_ns = iavf_tstamp_convert_32b_64b(ad->phc_time,
1963 					rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high));
1964 
1965 				ad->phc_time = ts_ns;
1966 				ad->hw_time_update = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1967 
1968 				*RTE_MBUF_DYNFIELD(mb,
1969 					iavf_timestamp_dynfield_offset,
1970 					rte_mbuf_timestamp_t *) = ts_ns;
1971 				mb->ol_flags |= iavf_timestamp_dynflag;
1972 			}
1973 
1974 			mb->ol_flags |= pkt_flags;
1975 
1976 			/* Put up to nb_pkts directly into buffers */
1977 			if ((i + j) < nb_pkts) {
1978 				rx_pkts[i + j] = rxep[j];
1979 				nb_rx++;
1980 			} else {
1981 				/* Stage excess pkts received */
1982 				rxq->rx_stage[nb_staged] = rxep[j];
1983 				nb_staged++;
1984 			}
1985 		}
1986 
1987 		if (nb_dd != IAVF_LOOK_AHEAD)
1988 			break;
1989 	}
1990 
1991 	/* Update rxq->rx_nb_avail to reflect number of staged pkts */
1992 	rxq->rx_nb_avail = nb_staged;
1993 
1994 	/* Clear software ring entries */
1995 	for (i = 0; i < (nb_rx + nb_staged); i++)
1996 		rxq->sw_ring[rxq->rx_tail + i] = NULL;
1997 
1998 	return nb_rx;
1999 }
2000 
2001 static inline int
iavf_rx_scan_hw_ring(struct iavf_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)2002 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2003 {
2004 	volatile union iavf_rx_desc *rxdp;
2005 	struct rte_mbuf **rxep;
2006 	struct rte_mbuf *mb;
2007 	uint16_t pkt_len;
2008 	uint64_t qword1;
2009 	uint32_t rx_status;
2010 	int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
2011 	int32_t i, j, nb_rx = 0;
2012 	int32_t nb_staged = 0;
2013 	uint64_t pkt_flags;
2014 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2015 
2016 	rxdp = &rxq->rx_ring[rxq->rx_tail];
2017 	rxep = &rxq->sw_ring[rxq->rx_tail];
2018 
2019 	qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
2020 	rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
2021 		    IAVF_RXD_QW1_STATUS_SHIFT;
2022 
2023 	/* Make sure there is at least 1 packet to receive */
2024 	if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
2025 		return 0;
2026 
2027 	/* Scan LOOK_AHEAD descriptors at a time to determine which
2028 	 * descriptors reference packets that are ready to be received.
2029 	 */
2030 	for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
2031 	     rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
2032 		/* Read desc statuses backwards to avoid race condition */
2033 		for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
2034 			qword1 = rte_le_to_cpu_64(
2035 				rxdp[j].wb.qword1.status_error_len);
2036 			s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
2037 			       IAVF_RXD_QW1_STATUS_SHIFT;
2038 		}
2039 
2040 		/* This barrier is to order loads of different words in the descriptor */
2041 		rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
2042 
2043 		/* Compute how many contiguous DD bits were set */
2044 		for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
2045 			var = s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
2046 #ifdef RTE_ARCH_ARM
2047 			/* For Arm platforms, count only contiguous descriptors
2048 			 * whose DD bit is set to 1. On Arm platforms, reads of
2049 			 * descriptors can be reordered. Since the CPU may
2050 			 * be reading the descriptors as the NIC updates them
2051 			 * in memory, it is possbile that the DD bit for a
2052 			 * descriptor earlier in the queue is read as not set
2053 			 * while the DD bit for a descriptor later in the queue
2054 			 * is read as set.
2055 			 */
2056 			if (var)
2057 				nb_dd += 1;
2058 			else
2059 				break;
2060 #else
2061 			nb_dd += var;
2062 #endif
2063 		}
2064 
2065 		/* Translate descriptor info to mbuf parameters */
2066 		for (j = 0; j < nb_dd; j++) {
2067 			IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
2068 					 rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
2069 
2070 			mb = rxep[j];
2071 			qword1 = rte_le_to_cpu_64
2072 					(rxdp[j].wb.qword1.status_error_len);
2073 			pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
2074 				  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
2075 			mb->data_len = pkt_len;
2076 			mb->pkt_len = pkt_len;
2077 			mb->ol_flags = 0;
2078 			iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
2079 			pkt_flags = iavf_rxd_to_pkt_flags(qword1);
2080 			mb->packet_type =
2081 				ptype_tbl[(uint8_t)((qword1 &
2082 				IAVF_RXD_QW1_PTYPE_MASK) >>
2083 				IAVF_RXD_QW1_PTYPE_SHIFT)];
2084 
2085 			if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
2086 				mb->hash.rss = rte_le_to_cpu_32(
2087 					rxdp[j].wb.qword0.hi_dword.rss);
2088 
2089 			if (pkt_flags & RTE_MBUF_F_RX_FDIR)
2090 				pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
2091 
2092 			mb->ol_flags |= pkt_flags;
2093 
2094 			/* Put up to nb_pkts directly into buffers */
2095 			if ((i + j) < nb_pkts) {
2096 				rx_pkts[i + j] = rxep[j];
2097 				nb_rx++;
2098 			} else { /* Stage excess pkts received */
2099 				rxq->rx_stage[nb_staged] = rxep[j];
2100 				nb_staged++;
2101 			}
2102 		}
2103 
2104 		if (nb_dd != IAVF_LOOK_AHEAD)
2105 			break;
2106 	}
2107 
2108 	/* Update rxq->rx_nb_avail to reflect number of staged pkts */
2109 	rxq->rx_nb_avail = nb_staged;
2110 
2111 	/* Clear software ring entries */
2112 	for (i = 0; i < (nb_rx + nb_staged); i++)
2113 		rxq->sw_ring[rxq->rx_tail + i] = NULL;
2114 
2115 	return nb_rx;
2116 }
2117 
2118 static inline uint16_t
iavf_rx_fill_from_stage(struct iavf_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)2119 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
2120 		       struct rte_mbuf **rx_pkts,
2121 		       uint16_t nb_pkts)
2122 {
2123 	uint16_t i;
2124 	struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
2125 
2126 	nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
2127 
2128 	for (i = 0; i < nb_pkts; i++)
2129 		rx_pkts[i] = stage[i];
2130 
2131 	rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
2132 	rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
2133 
2134 	return nb_pkts;
2135 }
2136 
2137 static inline int
iavf_rx_alloc_bufs(struct iavf_rx_queue * rxq)2138 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
2139 {
2140 	volatile union iavf_rx_desc *rxdp;
2141 	struct rte_mbuf **rxep;
2142 	struct rte_mbuf *mb;
2143 	uint16_t alloc_idx, i;
2144 	uint64_t dma_addr;
2145 	int diag;
2146 
2147 	/* Allocate buffers in bulk */
2148 	alloc_idx = (uint16_t)(rxq->rx_free_trigger -
2149 				(rxq->rx_free_thresh - 1));
2150 	rxep = &rxq->sw_ring[alloc_idx];
2151 	diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
2152 				    rxq->rx_free_thresh);
2153 	if (unlikely(diag != 0)) {
2154 		PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
2155 		return -ENOMEM;
2156 	}
2157 
2158 	rxdp = &rxq->rx_ring[alloc_idx];
2159 	for (i = 0; i < rxq->rx_free_thresh; i++) {
2160 		if (likely(i < (rxq->rx_free_thresh - 1)))
2161 			/* Prefetch next mbuf */
2162 			rte_prefetch0(rxep[i + 1]);
2163 
2164 		mb = rxep[i];
2165 		rte_mbuf_refcnt_set(mb, 1);
2166 		mb->next = NULL;
2167 		mb->data_off = RTE_PKTMBUF_HEADROOM;
2168 		mb->nb_segs = 1;
2169 		mb->port = rxq->port_id;
2170 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
2171 		rxdp[i].read.hdr_addr = 0;
2172 		rxdp[i].read.pkt_addr = dma_addr;
2173 	}
2174 
2175 	/* Update rx tail register */
2176 	rte_wmb();
2177 	IAVF_PCI_REG_WC_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
2178 
2179 	rxq->rx_free_trigger =
2180 		(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
2181 	if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
2182 		rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2183 
2184 	return 0;
2185 }
2186 
2187 static inline uint16_t
rx_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)2188 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2189 {
2190 	struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
2191 	uint16_t nb_rx = 0;
2192 
2193 	if (!nb_pkts)
2194 		return 0;
2195 
2196 	if (rxq->rx_nb_avail)
2197 		return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
2198 
2199 	if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
2200 		nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq, rx_pkts, nb_pkts);
2201 	else
2202 		nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq, rx_pkts, nb_pkts);
2203 
2204 	rxq->rx_next_avail = 0;
2205 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx + rxq->rx_nb_avail);
2206 
2207 	if (rxq->rx_tail > rxq->rx_free_trigger) {
2208 		if (iavf_rx_alloc_bufs(rxq) != 0) {
2209 			uint16_t i, j, nb_staged;
2210 
2211 			/* TODO: count rx_mbuf_alloc_failed here */
2212 
2213 			nb_staged = rxq->rx_nb_avail;
2214 			rxq->rx_nb_avail = 0;
2215 
2216 			rxq->rx_tail = (uint16_t)(rxq->rx_tail - (nb_rx + nb_staged));
2217 			for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++) {
2218 				rxq->sw_ring[j] = rx_pkts[i];
2219 				rx_pkts[i] = NULL;
2220 			}
2221 			for (i = 0, j = rxq->rx_tail + nb_rx; i < nb_staged; i++, j++) {
2222 				rxq->sw_ring[j] = rxq->rx_stage[i];
2223 				rx_pkts[i] = NULL;
2224 			}
2225 
2226 			return 0;
2227 		}
2228 	}
2229 
2230 	if (rxq->rx_tail >= rxq->nb_rx_desc)
2231 		rxq->rx_tail = 0;
2232 
2233 	PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
2234 		   rxq->port_id, rxq->queue_id,
2235 		   rxq->rx_tail, nb_rx);
2236 
2237 	return nb_rx;
2238 }
2239 
2240 static uint16_t
iavf_recv_pkts_bulk_alloc(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)2241 iavf_recv_pkts_bulk_alloc(void *rx_queue,
2242 			 struct rte_mbuf **rx_pkts,
2243 			 uint16_t nb_pkts)
2244 {
2245 	uint16_t nb_rx = 0, n, count;
2246 
2247 	if (unlikely(nb_pkts == 0))
2248 		return 0;
2249 
2250 	if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
2251 		return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
2252 
2253 	while (nb_pkts) {
2254 		n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
2255 		count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
2256 		nb_rx = (uint16_t)(nb_rx + count);
2257 		nb_pkts = (uint16_t)(nb_pkts - count);
2258 		if (count < n)
2259 			break;
2260 	}
2261 
2262 	return nb_rx;
2263 }
2264 
2265 static inline int
iavf_xmit_cleanup(struct iavf_tx_queue * txq)2266 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
2267 {
2268 	struct iavf_tx_entry *sw_ring = txq->sw_ring;
2269 	uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2270 	uint16_t nb_tx_desc = txq->nb_tx_desc;
2271 	uint16_t desc_to_clean_to;
2272 	uint16_t nb_tx_to_clean;
2273 
2274 	volatile struct iavf_tx_desc *txd = txq->tx_ring;
2275 
2276 	desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
2277 	if (desc_to_clean_to >= nb_tx_desc)
2278 		desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2279 
2280 	desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2281 	if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
2282 			rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
2283 			rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
2284 		PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2285 			   "(port=%d queue=%d)", desc_to_clean_to,
2286 			   txq->port_id, txq->queue_id);
2287 		return -1;
2288 	}
2289 
2290 	if (last_desc_cleaned > desc_to_clean_to)
2291 		nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2292 							desc_to_clean_to);
2293 	else
2294 		nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2295 					last_desc_cleaned);
2296 
2297 	txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2298 
2299 	txq->last_desc_cleaned = desc_to_clean_to;
2300 	txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
2301 
2302 	return 0;
2303 }
2304 
2305 /* Check if the context descriptor is needed for TX offloading */
2306 static inline uint16_t
iavf_calc_context_desc(uint64_t flags,uint8_t vlan_flag)2307 iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
2308 {
2309 	if (flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG |
2310 			RTE_MBUF_F_TX_TUNNEL_MASK))
2311 		return 1;
2312 	if (flags & RTE_MBUF_F_TX_VLAN &&
2313 	    vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2314 		return 1;
2315 	return 0;
2316 }
2317 
2318 static inline void
iavf_fill_ctx_desc_cmd_field(volatile uint64_t * field,struct rte_mbuf * m,uint8_t vlan_flag)2319 iavf_fill_ctx_desc_cmd_field(volatile uint64_t *field, struct rte_mbuf *m,
2320 		uint8_t vlan_flag)
2321 {
2322 	uint64_t cmd = 0;
2323 
2324 	/* TSO enabled */
2325 	if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
2326 		cmd = IAVF_TX_CTX_DESC_TSO << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2327 
2328 	if (m->ol_flags & RTE_MBUF_F_TX_VLAN &&
2329 			vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
2330 		cmd |= IAVF_TX_CTX_DESC_IL2TAG2
2331 			<< IAVF_TXD_CTX_QW1_CMD_SHIFT;
2332 	}
2333 
2334 	*field |= cmd;
2335 }
2336 
2337 static inline void
iavf_fill_ctx_desc_ipsec_field(volatile uint64_t * field,struct iavf_ipsec_crypto_pkt_metadata * ipsec_md)2338 iavf_fill_ctx_desc_ipsec_field(volatile uint64_t *field,
2339 	struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
2340 {
2341 	uint64_t ipsec_field =
2342 		(uint64_t)ipsec_md->ctx_desc_ipsec_params <<
2343 			IAVF_TXD_CTX_QW1_IPSEC_PARAMS_CIPHERBLK_SHIFT;
2344 
2345 	*field |= ipsec_field;
2346 }
2347 
2348 
2349 static inline void
iavf_fill_ctx_desc_tunnelling_field(volatile uint64_t * qw0,const struct rte_mbuf * m)2350 iavf_fill_ctx_desc_tunnelling_field(volatile uint64_t *qw0,
2351 		const struct rte_mbuf *m)
2352 {
2353 	uint64_t eip_typ = IAVF_TX_CTX_DESC_EIPT_NONE;
2354 	uint64_t eip_len = 0;
2355 	uint64_t eip_noinc = 0;
2356 	/* Default - IP_ID is increment in each segment of LSO */
2357 
2358 	switch (m->ol_flags & (RTE_MBUF_F_TX_OUTER_IPV4 |
2359 			RTE_MBUF_F_TX_OUTER_IPV6 |
2360 			RTE_MBUF_F_TX_OUTER_IP_CKSUM)) {
2361 	case RTE_MBUF_F_TX_OUTER_IPV4:
2362 		eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_NO_CHECKSUM_OFFLOAD;
2363 		eip_len = m->outer_l3_len >> 2;
2364 	break;
2365 	case RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM:
2366 		eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_CHECKSUM_OFFLOAD;
2367 		eip_len = m->outer_l3_len >> 2;
2368 	break;
2369 	case RTE_MBUF_F_TX_OUTER_IPV6:
2370 		eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV6;
2371 		eip_len = m->outer_l3_len >> 2;
2372 	break;
2373 	}
2374 
2375 	*qw0 = eip_typ << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPT_SHIFT |
2376 		eip_len << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPLEN_SHIFT |
2377 		eip_noinc << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIP_NOINC_SHIFT;
2378 }
2379 
2380 static inline uint16_t
iavf_fill_ctx_desc_segmentation_field(volatile uint64_t * field,struct rte_mbuf * m,struct iavf_ipsec_crypto_pkt_metadata * ipsec_md)2381 iavf_fill_ctx_desc_segmentation_field(volatile uint64_t *field,
2382 	struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
2383 {
2384 	uint64_t segmentation_field = 0;
2385 	uint64_t total_length = 0;
2386 
2387 	if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
2388 		total_length = ipsec_md->l4_payload_len;
2389 	} else {
2390 		total_length = m->pkt_len - (m->l2_len + m->l3_len + m->l4_len);
2391 
2392 		if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2393 			total_length -= m->outer_l3_len;
2394 	}
2395 
2396 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
2397 	if (!m->l4_len || !m->tso_segsz)
2398 		PMD_TX_LOG(DEBUG, "L4 length %d, LSO Segment size %d",
2399 			 m->l4_len, m->tso_segsz);
2400 	if (m->tso_segsz < 88)
2401 		PMD_TX_LOG(DEBUG, "LSO Segment size %d is less than minimum %d",
2402 			m->tso_segsz, 88);
2403 #endif
2404 	segmentation_field =
2405 		(((uint64_t)total_length << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) &
2406 				IAVF_TXD_CTX_QW1_TSO_LEN_MASK) |
2407 		(((uint64_t)m->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT) &
2408 				IAVF_TXD_CTX_QW1_MSS_MASK);
2409 
2410 	*field |= segmentation_field;
2411 
2412 	return total_length;
2413 }
2414 
2415 
2416 struct iavf_tx_context_desc_qws {
2417 	__le64 qw0;
2418 	__le64 qw1;
2419 };
2420 
2421 static inline void
iavf_fill_context_desc(volatile struct iavf_tx_context_desc * desc,struct rte_mbuf * m,struct iavf_ipsec_crypto_pkt_metadata * ipsec_md,uint16_t * tlen,uint8_t vlan_flag)2422 iavf_fill_context_desc(volatile struct iavf_tx_context_desc *desc,
2423 	struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md,
2424 	uint16_t *tlen, uint8_t vlan_flag)
2425 {
2426 	volatile struct iavf_tx_context_desc_qws *desc_qws =
2427 			(volatile struct iavf_tx_context_desc_qws *)desc;
2428 	/* fill descriptor type field */
2429 	desc_qws->qw1 = IAVF_TX_DESC_DTYPE_CONTEXT;
2430 
2431 	/* fill command field */
2432 	iavf_fill_ctx_desc_cmd_field(&desc_qws->qw1, m, vlan_flag);
2433 
2434 	/* fill segmentation field */
2435 	if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) {
2436 		/* fill IPsec field */
2437 		if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2438 			iavf_fill_ctx_desc_ipsec_field(&desc_qws->qw1,
2439 				ipsec_md);
2440 
2441 		*tlen = iavf_fill_ctx_desc_segmentation_field(&desc_qws->qw1,
2442 				m, ipsec_md);
2443 	}
2444 
2445 	/* fill tunnelling field */
2446 	if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2447 		iavf_fill_ctx_desc_tunnelling_field(&desc_qws->qw0, m);
2448 	else
2449 		desc_qws->qw0 = 0;
2450 
2451 	desc_qws->qw0 = rte_cpu_to_le_64(desc_qws->qw0);
2452 	desc_qws->qw1 = rte_cpu_to_le_64(desc_qws->qw1);
2453 
2454 	if (vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2455 		desc->l2tag2 = m->vlan_tci;
2456 }
2457 
2458 
2459 static inline void
iavf_fill_ipsec_desc(volatile struct iavf_tx_ipsec_desc * desc,const struct iavf_ipsec_crypto_pkt_metadata * md,uint16_t * ipsec_len)2460 iavf_fill_ipsec_desc(volatile struct iavf_tx_ipsec_desc *desc,
2461 	const struct iavf_ipsec_crypto_pkt_metadata *md, uint16_t *ipsec_len)
2462 {
2463 	desc->qw0 = rte_cpu_to_le_64(((uint64_t)md->l4_payload_len <<
2464 		IAVF_IPSEC_TX_DESC_QW0_L4PAYLEN_SHIFT) |
2465 		((uint64_t)md->esn << IAVF_IPSEC_TX_DESC_QW0_IPSECESN_SHIFT) |
2466 		((uint64_t)md->esp_trailer_len <<
2467 				IAVF_IPSEC_TX_DESC_QW0_TRAILERLEN_SHIFT));
2468 
2469 	desc->qw1 = rte_cpu_to_le_64(((uint64_t)md->sa_idx <<
2470 		IAVF_IPSEC_TX_DESC_QW1_IPSECSA_SHIFT) |
2471 		((uint64_t)md->next_proto <<
2472 				IAVF_IPSEC_TX_DESC_QW1_IPSECNH_SHIFT) |
2473 		((uint64_t)(md->len_iv & 0x3) <<
2474 				IAVF_IPSEC_TX_DESC_QW1_IVLEN_SHIFT) |
2475 		((uint64_t)(md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
2476 				1ULL : 0ULL) <<
2477 				IAVF_IPSEC_TX_DESC_QW1_UDP_SHIFT) |
2478 		(uint64_t)IAVF_TX_DESC_DTYPE_IPSEC);
2479 
2480 	/**
2481 	 * TODO: Pre-calculate this in the Session initialization
2482 	 *
2483 	 * Calculate IPsec length required in data descriptor func when TSO
2484 	 * offload is enabled
2485 	 */
2486 	*ipsec_len = sizeof(struct rte_esp_hdr) + (md->len_iv >> 2) +
2487 			(md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
2488 			sizeof(struct rte_udp_hdr) : 0);
2489 }
2490 
2491 static inline void
iavf_build_data_desc_cmd_offset_fields(volatile uint64_t * qw1,struct rte_mbuf * m,uint8_t vlan_flag)2492 iavf_build_data_desc_cmd_offset_fields(volatile uint64_t *qw1,
2493 		struct rte_mbuf *m, uint8_t vlan_flag)
2494 {
2495 	uint64_t command = 0;
2496 	uint64_t offset = 0;
2497 	uint64_t l2tag1 = 0;
2498 
2499 	*qw1 = IAVF_TX_DESC_DTYPE_DATA;
2500 
2501 	command = (uint64_t)IAVF_TX_DESC_CMD_ICRC;
2502 
2503 	/* Descriptor based VLAN insertion */
2504 	if ((vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) &&
2505 			m->ol_flags & RTE_MBUF_F_TX_VLAN) {
2506 		command |= (uint64_t)IAVF_TX_DESC_CMD_IL2TAG1;
2507 		l2tag1 |= m->vlan_tci;
2508 	}
2509 
2510 	/* Set MACLEN */
2511 	offset |= (m->l2_len >> 1) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2512 
2513 	/* Enable L3 checksum offloading inner */
2514 	if (m->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
2515 		command |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
2516 		offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2517 	} else if (m->ol_flags & RTE_MBUF_F_TX_IPV4) {
2518 		command |= IAVF_TX_DESC_CMD_IIPT_IPV4;
2519 		offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2520 	} else if (m->ol_flags & RTE_MBUF_F_TX_IPV6) {
2521 		command |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2522 		offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2523 	}
2524 
2525 	if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2526 		command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2527 		offset |= (m->l4_len >> 2) <<
2528 			      IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2529 	}
2530 
2531 	/* Enable L4 checksum offloads */
2532 	switch (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2533 	case RTE_MBUF_F_TX_TCP_CKSUM:
2534 		command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2535 		offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2536 				IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2537 		break;
2538 	case RTE_MBUF_F_TX_SCTP_CKSUM:
2539 		command |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2540 		offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2541 				IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2542 		break;
2543 	case RTE_MBUF_F_TX_UDP_CKSUM:
2544 		command |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2545 		offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2546 				IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2547 		break;
2548 	}
2549 
2550 	*qw1 = rte_cpu_to_le_64((((uint64_t)command <<
2551 		IAVF_TXD_DATA_QW1_CMD_SHIFT) & IAVF_TXD_DATA_QW1_CMD_MASK) |
2552 		(((uint64_t)offset << IAVF_TXD_DATA_QW1_OFFSET_SHIFT) &
2553 		IAVF_TXD_DATA_QW1_OFFSET_MASK) |
2554 		((uint64_t)l2tag1 << IAVF_TXD_DATA_QW1_L2TAG1_SHIFT));
2555 }
2556 
2557 static inline void
iavf_fill_data_desc(volatile struct iavf_tx_desc * desc,struct rte_mbuf * m,uint64_t desc_template,uint16_t tlen,uint16_t ipseclen)2558 iavf_fill_data_desc(volatile struct iavf_tx_desc *desc,
2559 	struct rte_mbuf *m, uint64_t desc_template,
2560 	uint16_t tlen, uint16_t ipseclen)
2561 {
2562 	uint32_t hdrlen = m->l2_len;
2563 	uint32_t bufsz = 0;
2564 
2565 	/* fill data descriptor qw1 from template */
2566 	desc->cmd_type_offset_bsz = desc_template;
2567 
2568 	/* set data buffer address */
2569 	desc->buffer_addr = rte_mbuf_data_iova(m);
2570 
2571 	/* calculate data buffer size less set header lengths */
2572 	if ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) &&
2573 			(m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
2574 					RTE_MBUF_F_TX_UDP_SEG))) {
2575 		hdrlen += m->outer_l3_len;
2576 		if (m->ol_flags & RTE_MBUF_F_TX_L4_MASK)
2577 			hdrlen += m->l3_len + m->l4_len;
2578 		else
2579 			hdrlen += m->l3_len;
2580 		if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2581 			hdrlen += ipseclen;
2582 		bufsz = hdrlen + tlen;
2583 	} else if ((m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) &&
2584 			(m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
2585 					RTE_MBUF_F_TX_UDP_SEG))) {
2586 		hdrlen += m->outer_l3_len + m->l3_len + ipseclen;
2587 		if (m->ol_flags & RTE_MBUF_F_TX_L4_MASK)
2588 			hdrlen += m->l4_len;
2589 		bufsz = hdrlen + tlen;
2590 
2591 	} else {
2592 		bufsz = m->data_len;
2593 	}
2594 
2595 	/* set data buffer size */
2596 	desc->cmd_type_offset_bsz |=
2597 		(((uint64_t)bufsz << IAVF_TXD_DATA_QW1_TX_BUF_SZ_SHIFT) &
2598 		IAVF_TXD_DATA_QW1_TX_BUF_SZ_MASK);
2599 
2600 	desc->buffer_addr = rte_cpu_to_le_64(desc->buffer_addr);
2601 	desc->cmd_type_offset_bsz = rte_cpu_to_le_64(desc->cmd_type_offset_bsz);
2602 }
2603 
2604 
2605 static struct iavf_ipsec_crypto_pkt_metadata *
iavf_ipsec_crypto_get_pkt_metadata(const struct iavf_tx_queue * txq,struct rte_mbuf * m)2606 iavf_ipsec_crypto_get_pkt_metadata(const struct iavf_tx_queue *txq,
2607 		struct rte_mbuf *m)
2608 {
2609 	if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2610 		return RTE_MBUF_DYNFIELD(m, txq->ipsec_crypto_pkt_md_offset,
2611 				struct iavf_ipsec_crypto_pkt_metadata *);
2612 
2613 	return NULL;
2614 }
2615 
2616 /* TX function */
2617 uint16_t
iavf_xmit_pkts(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)2618 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2619 {
2620 	struct iavf_tx_queue *txq = tx_queue;
2621 	volatile struct iavf_tx_desc *txr = txq->tx_ring;
2622 	struct iavf_tx_entry *txe_ring = txq->sw_ring;
2623 	struct iavf_tx_entry *txe, *txn;
2624 	struct rte_mbuf *mb, *mb_seg;
2625 	uint16_t desc_idx, desc_idx_last;
2626 	uint16_t idx;
2627 
2628 
2629 	/* Check if the descriptor ring needs to be cleaned. */
2630 	if (txq->nb_free < txq->free_thresh)
2631 		iavf_xmit_cleanup(txq);
2632 
2633 	desc_idx = txq->tx_tail;
2634 	txe = &txe_ring[desc_idx];
2635 
2636 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_DESC_RING
2637 		iavf_dump_tx_entry_ring(txq);
2638 		iavf_dump_tx_desc_ring(txq);
2639 #endif
2640 
2641 
2642 	for (idx = 0; idx < nb_pkts; idx++) {
2643 		volatile struct iavf_tx_desc *ddesc;
2644 		struct iavf_ipsec_crypto_pkt_metadata *ipsec_md;
2645 
2646 		uint16_t nb_desc_ctx, nb_desc_ipsec;
2647 		uint16_t nb_desc_data, nb_desc_required;
2648 		uint16_t tlen = 0, ipseclen = 0;
2649 		uint64_t ddesc_template = 0;
2650 		uint64_t ddesc_cmd = 0;
2651 
2652 		mb = tx_pkts[idx];
2653 
2654 		RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
2655 
2656 		/**
2657 		 * Get metadata for ipsec crypto from mbuf dynamic fields if
2658 		 * security offload is specified.
2659 		 */
2660 		ipsec_md = iavf_ipsec_crypto_get_pkt_metadata(txq, mb);
2661 
2662 		nb_desc_data = mb->nb_segs;
2663 		nb_desc_ctx =
2664 			iavf_calc_context_desc(mb->ol_flags, txq->vlan_flag);
2665 		nb_desc_ipsec = !!(mb->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD);
2666 
2667 		/**
2668 		 * The number of descriptors that must be allocated for
2669 		 * a packet equals to the number of the segments of that
2670 		 * packet plus the context and ipsec descriptors if needed.
2671 		 */
2672 		nb_desc_required = nb_desc_data + nb_desc_ctx + nb_desc_ipsec;
2673 
2674 		desc_idx_last = (uint16_t)(desc_idx + nb_desc_required - 1);
2675 
2676 		/* wrap descriptor ring */
2677 		if (desc_idx_last >= txq->nb_tx_desc)
2678 			desc_idx_last =
2679 				(uint16_t)(desc_idx_last - txq->nb_tx_desc);
2680 
2681 		PMD_TX_LOG(DEBUG,
2682 			"port_id=%u queue_id=%u tx_first=%u tx_last=%u",
2683 			txq->port_id, txq->queue_id, desc_idx, desc_idx_last);
2684 
2685 		if (nb_desc_required > txq->nb_free) {
2686 			if (iavf_xmit_cleanup(txq)) {
2687 				if (idx == 0)
2688 					return 0;
2689 				goto end_of_tx;
2690 			}
2691 			if (unlikely(nb_desc_required > txq->rs_thresh)) {
2692 				while (nb_desc_required > txq->nb_free) {
2693 					if (iavf_xmit_cleanup(txq)) {
2694 						if (idx == 0)
2695 							return 0;
2696 						goto end_of_tx;
2697 					}
2698 				}
2699 			}
2700 		}
2701 
2702 		iavf_build_data_desc_cmd_offset_fields(&ddesc_template, mb,
2703 			txq->vlan_flag);
2704 
2705 			/* Setup TX context descriptor if required */
2706 		if (nb_desc_ctx) {
2707 			volatile struct iavf_tx_context_desc *ctx_desc =
2708 				(volatile struct iavf_tx_context_desc *)
2709 					&txr[desc_idx];
2710 
2711 			/* clear QW0 or the previous writeback value
2712 			 * may impact next write
2713 			 */
2714 			*(volatile uint64_t *)ctx_desc = 0;
2715 
2716 			txn = &txe_ring[txe->next_id];
2717 			RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2718 
2719 			if (txe->mbuf) {
2720 				rte_pktmbuf_free_seg(txe->mbuf);
2721 				txe->mbuf = NULL;
2722 			}
2723 
2724 			iavf_fill_context_desc(ctx_desc, mb, ipsec_md, &tlen,
2725 				txq->vlan_flag);
2726 			IAVF_DUMP_TX_DESC(txq, ctx_desc, desc_idx);
2727 
2728 			txe->last_id = desc_idx_last;
2729 			desc_idx = txe->next_id;
2730 			txe = txn;
2731 			}
2732 
2733 		if (nb_desc_ipsec) {
2734 			volatile struct iavf_tx_ipsec_desc *ipsec_desc =
2735 				(volatile struct iavf_tx_ipsec_desc *)
2736 					&txr[desc_idx];
2737 
2738 			txn = &txe_ring[txe->next_id];
2739 			RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2740 
2741 			if (txe->mbuf) {
2742 				rte_pktmbuf_free_seg(txe->mbuf);
2743 				txe->mbuf = NULL;
2744 		}
2745 
2746 			iavf_fill_ipsec_desc(ipsec_desc, ipsec_md, &ipseclen);
2747 
2748 			IAVF_DUMP_TX_DESC(txq, ipsec_desc, desc_idx);
2749 
2750 			txe->last_id = desc_idx_last;
2751 			desc_idx = txe->next_id;
2752 			txe = txn;
2753 		}
2754 
2755 		mb_seg = mb;
2756 
2757 		do {
2758 			ddesc = (volatile struct iavf_tx_desc *)
2759 					&txr[desc_idx];
2760 
2761 			txn = &txe_ring[txe->next_id];
2762 			RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2763 
2764 			if (txe->mbuf)
2765 				rte_pktmbuf_free_seg(txe->mbuf);
2766 
2767 			txe->mbuf = mb_seg;
2768 			iavf_fill_data_desc(ddesc, mb_seg,
2769 					ddesc_template, tlen, ipseclen);
2770 
2771 			IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx);
2772 
2773 			txe->last_id = desc_idx_last;
2774 			desc_idx = txe->next_id;
2775 			txe = txn;
2776 			mb_seg = mb_seg->next;
2777 		} while (mb_seg);
2778 
2779 		/* The last packet data descriptor needs End Of Packet (EOP) */
2780 		ddesc_cmd = IAVF_TX_DESC_CMD_EOP;
2781 
2782 		txq->nb_used = (uint16_t)(txq->nb_used + nb_desc_required);
2783 		txq->nb_free = (uint16_t)(txq->nb_free - nb_desc_required);
2784 
2785 		if (txq->nb_used >= txq->rs_thresh) {
2786 			PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2787 				   "%4u (port=%d queue=%d)",
2788 				   desc_idx_last, txq->port_id, txq->queue_id);
2789 
2790 			ddesc_cmd |= IAVF_TX_DESC_CMD_RS;
2791 
2792 			/* Update txq RS bit counters */
2793 			txq->nb_used = 0;
2794 		}
2795 
2796 		ddesc->cmd_type_offset_bsz |= rte_cpu_to_le_64(ddesc_cmd <<
2797 				IAVF_TXD_DATA_QW1_CMD_SHIFT);
2798 
2799 		IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx - 1);
2800 	}
2801 
2802 end_of_tx:
2803 	rte_wmb();
2804 
2805 	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2806 		   txq->port_id, txq->queue_id, desc_idx, idx);
2807 
2808 	IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, desc_idx);
2809 	txq->tx_tail = desc_idx;
2810 
2811 	return idx;
2812 }
2813 
2814 /* Check if the packet with vlan user priority is transmitted in the
2815  * correct queue.
2816  */
2817 static int
iavf_check_vlan_up2tc(struct iavf_tx_queue * txq,struct rte_mbuf * m)2818 iavf_check_vlan_up2tc(struct iavf_tx_queue *txq, struct rte_mbuf *m)
2819 {
2820 	struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2821 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2822 	uint16_t up;
2823 
2824 	up = m->vlan_tci >> IAVF_VLAN_TAG_PCP_OFFSET;
2825 
2826 	if (!(vf->qos_cap->cap[txq->tc].tc_prio & BIT(up))) {
2827 		PMD_TX_LOG(ERR, "packet with vlan pcp %u cannot transmit in queue %u\n",
2828 			up, txq->queue_id);
2829 		return -1;
2830 	} else {
2831 		return 0;
2832 	}
2833 }
2834 
2835 /* TX prep functions */
2836 uint16_t
iavf_prep_pkts(__rte_unused void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)2837 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2838 	      uint16_t nb_pkts)
2839 {
2840 	int i, ret;
2841 	uint64_t ol_flags;
2842 	struct rte_mbuf *m;
2843 	struct iavf_tx_queue *txq = tx_queue;
2844 	struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2845 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2846 
2847 	for (i = 0; i < nb_pkts; i++) {
2848 		m = tx_pkts[i];
2849 		ol_flags = m->ol_flags;
2850 
2851 		/* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2852 		if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
2853 			if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2854 				rte_errno = EINVAL;
2855 				return i;
2856 			}
2857 		} else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2858 			   (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2859 			/* MSS outside the range are considered malicious */
2860 			rte_errno = EINVAL;
2861 			return i;
2862 		}
2863 
2864 		if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2865 			rte_errno = ENOTSUP;
2866 			return i;
2867 		}
2868 
2869 #ifdef RTE_ETHDEV_DEBUG_TX
2870 		ret = rte_validate_tx_offload(m);
2871 		if (ret != 0) {
2872 			rte_errno = -ret;
2873 			return i;
2874 		}
2875 #endif
2876 		ret = rte_net_intel_cksum_prepare(m);
2877 		if (ret != 0) {
2878 			rte_errno = -ret;
2879 			return i;
2880 		}
2881 
2882 		if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
2883 		    ol_flags & (RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN)) {
2884 			ret = iavf_check_vlan_up2tc(txq, m);
2885 			if (ret != 0) {
2886 				rte_errno = -ret;
2887 				return i;
2888 			}
2889 		}
2890 	}
2891 
2892 	return i;
2893 }
2894 
2895 /* choose rx function*/
2896 void
iavf_set_rx_function(struct rte_eth_dev * dev)2897 iavf_set_rx_function(struct rte_eth_dev *dev)
2898 {
2899 	struct iavf_adapter *adapter =
2900 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2901 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2902 
2903 #ifdef RTE_ARCH_X86
2904 	struct iavf_rx_queue *rxq;
2905 	int i;
2906 	int check_ret;
2907 	bool use_avx2 = false;
2908 	bool use_avx512 = false;
2909 	bool use_flex = false;
2910 
2911 	check_ret = iavf_rx_vec_dev_check(dev);
2912 	if (check_ret >= 0 &&
2913 	    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2914 		if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2915 		     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2916 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2917 			use_avx2 = true;
2918 
2919 #ifdef CC_AVX512_SUPPORT
2920 		if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2921 		    rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2922 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2923 			use_avx512 = true;
2924 #endif
2925 
2926 		if (vf->vf_res->vf_cap_flags &
2927 			VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2928 			use_flex = true;
2929 
2930 		for (i = 0; i < dev->data->nb_rx_queues; i++) {
2931 			rxq = dev->data->rx_queues[i];
2932 			(void)iavf_rxq_vec_setup(rxq);
2933 		}
2934 
2935 		if (dev->data->scattered_rx) {
2936 			if (!use_avx512) {
2937 				PMD_DRV_LOG(DEBUG,
2938 					    "Using %sVector Scattered Rx (port %d).",
2939 					    use_avx2 ? "avx2 " : "",
2940 					    dev->data->port_id);
2941 			} else {
2942 				if (check_ret == IAVF_VECTOR_PATH)
2943 					PMD_DRV_LOG(DEBUG,
2944 						    "Using AVX512 Vector Scattered Rx (port %d).",
2945 						    dev->data->port_id);
2946 				else
2947 					PMD_DRV_LOG(DEBUG,
2948 						    "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
2949 						    dev->data->port_id);
2950 			}
2951 			if (use_flex) {
2952 				dev->rx_pkt_burst = use_avx2 ?
2953 					iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2954 					iavf_recv_scattered_pkts_vec_flex_rxd;
2955 #ifdef CC_AVX512_SUPPORT
2956 				if (use_avx512) {
2957 					if (check_ret == IAVF_VECTOR_PATH)
2958 						dev->rx_pkt_burst =
2959 							iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2960 					else
2961 						dev->rx_pkt_burst =
2962 							iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload;
2963 				}
2964 #endif
2965 			} else {
2966 				dev->rx_pkt_burst = use_avx2 ?
2967 					iavf_recv_scattered_pkts_vec_avx2 :
2968 					iavf_recv_scattered_pkts_vec;
2969 #ifdef CC_AVX512_SUPPORT
2970 				if (use_avx512) {
2971 					if (check_ret == IAVF_VECTOR_PATH)
2972 						dev->rx_pkt_burst =
2973 							iavf_recv_scattered_pkts_vec_avx512;
2974 					else
2975 						dev->rx_pkt_burst =
2976 							iavf_recv_scattered_pkts_vec_avx512_offload;
2977 				}
2978 #endif
2979 			}
2980 		} else {
2981 			if (!use_avx512) {
2982 				PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2983 					    use_avx2 ? "avx2 " : "",
2984 					    dev->data->port_id);
2985 			} else {
2986 				if (check_ret == IAVF_VECTOR_PATH)
2987 					PMD_DRV_LOG(DEBUG,
2988 						    "Using AVX512 Vector Rx (port %d).",
2989 						    dev->data->port_id);
2990 				else
2991 					PMD_DRV_LOG(DEBUG,
2992 						    "Using AVX512 OFFLOAD Vector Rx (port %d).",
2993 						    dev->data->port_id);
2994 			}
2995 			if (use_flex) {
2996 				dev->rx_pkt_burst = use_avx2 ?
2997 					iavf_recv_pkts_vec_avx2_flex_rxd :
2998 					iavf_recv_pkts_vec_flex_rxd;
2999 #ifdef CC_AVX512_SUPPORT
3000 				if (use_avx512) {
3001 					if (check_ret == IAVF_VECTOR_PATH)
3002 						dev->rx_pkt_burst =
3003 							iavf_recv_pkts_vec_avx512_flex_rxd;
3004 					else
3005 						dev->rx_pkt_burst =
3006 							iavf_recv_pkts_vec_avx512_flex_rxd_offload;
3007 				}
3008 #endif
3009 			} else {
3010 				dev->rx_pkt_burst = use_avx2 ?
3011 					iavf_recv_pkts_vec_avx2 :
3012 					iavf_recv_pkts_vec;
3013 #ifdef CC_AVX512_SUPPORT
3014 				if (use_avx512) {
3015 					if (check_ret == IAVF_VECTOR_PATH)
3016 						dev->rx_pkt_burst =
3017 							iavf_recv_pkts_vec_avx512;
3018 					else
3019 						dev->rx_pkt_burst =
3020 							iavf_recv_pkts_vec_avx512_offload;
3021 				}
3022 #endif
3023 			}
3024 		}
3025 
3026 		return;
3027 	}
3028 
3029 #endif
3030 	if (dev->data->scattered_rx) {
3031 		PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
3032 			    dev->data->port_id);
3033 		if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
3034 			dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
3035 		else
3036 			dev->rx_pkt_burst = iavf_recv_scattered_pkts;
3037 	} else if (adapter->rx_bulk_alloc_allowed) {
3038 		PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
3039 			    dev->data->port_id);
3040 		dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
3041 	} else {
3042 		PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
3043 			    dev->data->port_id);
3044 		if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
3045 			dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
3046 		else
3047 			dev->rx_pkt_burst = iavf_recv_pkts;
3048 	}
3049 }
3050 
3051 /* choose tx function*/
3052 void
iavf_set_tx_function(struct rte_eth_dev * dev)3053 iavf_set_tx_function(struct rte_eth_dev *dev)
3054 {
3055 #ifdef RTE_ARCH_X86
3056 	struct iavf_tx_queue *txq;
3057 	int i;
3058 	int check_ret;
3059 	bool use_sse = false;
3060 	bool use_avx2 = false;
3061 	bool use_avx512 = false;
3062 
3063 	check_ret = iavf_tx_vec_dev_check(dev);
3064 
3065 	if (check_ret >= 0 &&
3066 	    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3067 		/* SSE and AVX2 not support offload path yet. */
3068 		if (check_ret == IAVF_VECTOR_PATH) {
3069 			use_sse = true;
3070 			if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3071 			     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3072 			    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3073 				use_avx2 = true;
3074 		}
3075 #ifdef CC_AVX512_SUPPORT
3076 		if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3077 		    rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
3078 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
3079 			use_avx512 = true;
3080 #endif
3081 
3082 		if (!use_sse && !use_avx2 && !use_avx512)
3083 			goto normal;
3084 
3085 		if (!use_avx512) {
3086 			PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3087 				    use_avx2 ? "avx2 " : "",
3088 				    dev->data->port_id);
3089 			dev->tx_pkt_burst = use_avx2 ?
3090 					    iavf_xmit_pkts_vec_avx2 :
3091 					    iavf_xmit_pkts_vec;
3092 		}
3093 		dev->tx_pkt_prepare = NULL;
3094 #ifdef CC_AVX512_SUPPORT
3095 		if (use_avx512) {
3096 			if (check_ret == IAVF_VECTOR_PATH) {
3097 				dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
3098 				PMD_DRV_LOG(DEBUG, "Using AVX512 Vector Tx (port %d).",
3099 					    dev->data->port_id);
3100 			} else {
3101 				dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512_offload;
3102 				dev->tx_pkt_prepare = iavf_prep_pkts;
3103 				PMD_DRV_LOG(DEBUG, "Using AVX512 OFFLOAD Vector Tx (port %d).",
3104 					    dev->data->port_id);
3105 			}
3106 		}
3107 #endif
3108 
3109 		for (i = 0; i < dev->data->nb_tx_queues; i++) {
3110 			txq = dev->data->tx_queues[i];
3111 			if (!txq)
3112 				continue;
3113 #ifdef CC_AVX512_SUPPORT
3114 			if (use_avx512)
3115 				iavf_txq_vec_setup_avx512(txq);
3116 			else
3117 				iavf_txq_vec_setup(txq);
3118 #else
3119 			iavf_txq_vec_setup(txq);
3120 #endif
3121 		}
3122 
3123 		return;
3124 	}
3125 
3126 normal:
3127 #endif
3128 	PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
3129 		    dev->data->port_id);
3130 	dev->tx_pkt_burst = iavf_xmit_pkts;
3131 	dev->tx_pkt_prepare = iavf_prep_pkts;
3132 }
3133 
3134 static int
iavf_tx_done_cleanup_full(struct iavf_tx_queue * txq,uint32_t free_cnt)3135 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
3136 			uint32_t free_cnt)
3137 {
3138 	struct iavf_tx_entry *swr_ring = txq->sw_ring;
3139 	uint16_t i, tx_last, tx_id;
3140 	uint16_t nb_tx_free_last;
3141 	uint16_t nb_tx_to_clean;
3142 	uint32_t pkt_cnt;
3143 
3144 	/* Start free mbuf from the next of tx_tail */
3145 	tx_last = txq->tx_tail;
3146 	tx_id  = swr_ring[tx_last].next_id;
3147 
3148 	if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
3149 		return 0;
3150 
3151 	nb_tx_to_clean = txq->nb_free;
3152 	nb_tx_free_last = txq->nb_free;
3153 	if (!free_cnt)
3154 		free_cnt = txq->nb_tx_desc;
3155 
3156 	/* Loop through swr_ring to count the amount of
3157 	 * freeable mubfs and packets.
3158 	 */
3159 	for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
3160 		for (i = 0; i < nb_tx_to_clean &&
3161 			pkt_cnt < free_cnt &&
3162 			tx_id != tx_last; i++) {
3163 			if (swr_ring[tx_id].mbuf != NULL) {
3164 				rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
3165 				swr_ring[tx_id].mbuf = NULL;
3166 
3167 				/*
3168 				 * last segment in the packet,
3169 				 * increment packet count
3170 				 */
3171 				pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
3172 			}
3173 
3174 			tx_id = swr_ring[tx_id].next_id;
3175 		}
3176 
3177 		if (txq->rs_thresh > txq->nb_tx_desc -
3178 			txq->nb_free || tx_id == tx_last)
3179 			break;
3180 
3181 		if (pkt_cnt < free_cnt) {
3182 			if (iavf_xmit_cleanup(txq))
3183 				break;
3184 
3185 			nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
3186 			nb_tx_free_last = txq->nb_free;
3187 		}
3188 	}
3189 
3190 	return (int)pkt_cnt;
3191 }
3192 
3193 int
iavf_dev_tx_done_cleanup(void * txq,uint32_t free_cnt)3194 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
3195 {
3196 	struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
3197 
3198 	return iavf_tx_done_cleanup_full(q, free_cnt);
3199 }
3200 
3201 void
iavf_dev_rxq_info_get(struct rte_eth_dev * dev,uint16_t queue_id,struct rte_eth_rxq_info * qinfo)3202 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3203 		     struct rte_eth_rxq_info *qinfo)
3204 {
3205 	struct iavf_rx_queue *rxq;
3206 
3207 	rxq = dev->data->rx_queues[queue_id];
3208 
3209 	qinfo->mp = rxq->mp;
3210 	qinfo->scattered_rx = dev->data->scattered_rx;
3211 	qinfo->nb_desc = rxq->nb_rx_desc;
3212 
3213 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
3214 	qinfo->conf.rx_drop_en = true;
3215 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
3216 }
3217 
3218 void
iavf_dev_txq_info_get(struct rte_eth_dev * dev,uint16_t queue_id,struct rte_eth_txq_info * qinfo)3219 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3220 		     struct rte_eth_txq_info *qinfo)
3221 {
3222 	struct iavf_tx_queue *txq;
3223 
3224 	txq = dev->data->tx_queues[queue_id];
3225 
3226 	qinfo->nb_desc = txq->nb_tx_desc;
3227 
3228 	qinfo->conf.tx_free_thresh = txq->free_thresh;
3229 	qinfo->conf.tx_rs_thresh = txq->rs_thresh;
3230 	qinfo->conf.offloads = txq->offloads;
3231 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
3232 }
3233 
3234 /* Get the number of used descriptors of a rx queue */
3235 uint32_t
iavf_dev_rxq_count(void * rx_queue)3236 iavf_dev_rxq_count(void *rx_queue)
3237 {
3238 #define IAVF_RXQ_SCAN_INTERVAL 4
3239 	volatile union iavf_rx_desc *rxdp;
3240 	struct iavf_rx_queue *rxq;
3241 	uint16_t desc = 0;
3242 
3243 	rxq = rx_queue;
3244 	rxdp = &rxq->rx_ring[rxq->rx_tail];
3245 
3246 	while ((desc < rxq->nb_rx_desc) &&
3247 	       ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
3248 		 IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
3249 	       (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
3250 		/* Check the DD bit of a rx descriptor of each 4 in a group,
3251 		 * to avoid checking too frequently and downgrading performance
3252 		 * too much.
3253 		 */
3254 		desc += IAVF_RXQ_SCAN_INTERVAL;
3255 		rxdp += IAVF_RXQ_SCAN_INTERVAL;
3256 		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3257 			rxdp = &(rxq->rx_ring[rxq->rx_tail +
3258 					desc - rxq->nb_rx_desc]);
3259 	}
3260 
3261 	return desc;
3262 }
3263 
3264 int
iavf_dev_rx_desc_status(void * rx_queue,uint16_t offset)3265 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
3266 {
3267 	struct iavf_rx_queue *rxq = rx_queue;
3268 	volatile uint64_t *status;
3269 	uint64_t mask;
3270 	uint32_t desc;
3271 
3272 	if (unlikely(offset >= rxq->nb_rx_desc))
3273 		return -EINVAL;
3274 
3275 	if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
3276 		return RTE_ETH_RX_DESC_UNAVAIL;
3277 
3278 	desc = rxq->rx_tail + offset;
3279 	if (desc >= rxq->nb_rx_desc)
3280 		desc -= rxq->nb_rx_desc;
3281 
3282 	status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
3283 	mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
3284 		<< IAVF_RXD_QW1_STATUS_SHIFT);
3285 	if (*status & mask)
3286 		return RTE_ETH_RX_DESC_DONE;
3287 
3288 	return RTE_ETH_RX_DESC_AVAIL;
3289 }
3290 
3291 int
iavf_dev_tx_desc_status(void * tx_queue,uint16_t offset)3292 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
3293 {
3294 	struct iavf_tx_queue *txq = tx_queue;
3295 	volatile uint64_t *status;
3296 	uint64_t mask, expect;
3297 	uint32_t desc;
3298 
3299 	if (unlikely(offset >= txq->nb_tx_desc))
3300 		return -EINVAL;
3301 
3302 	desc = txq->tx_tail + offset;
3303 	/* go to next desc that has the RS bit */
3304 	desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
3305 		txq->rs_thresh;
3306 	if (desc >= txq->nb_tx_desc) {
3307 		desc -= txq->nb_tx_desc;
3308 		if (desc >= txq->nb_tx_desc)
3309 			desc -= txq->nb_tx_desc;
3310 	}
3311 
3312 	status = &txq->tx_ring[desc].cmd_type_offset_bsz;
3313 	mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
3314 	expect = rte_cpu_to_le_64(
3315 		 IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
3316 	if ((*status & mask) == expect)
3317 		return RTE_ETH_TX_DESC_DONE;
3318 
3319 	return RTE_ETH_TX_DESC_FULL;
3320 }
3321 
3322 static inline uint32_t
iavf_get_default_ptype(uint16_t ptype)3323 iavf_get_default_ptype(uint16_t ptype)
3324 {
3325 	static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
3326 		__rte_cache_aligned = {
3327 		/* L2 types */
3328 		/* [0] reserved */
3329 		[1] = RTE_PTYPE_L2_ETHER,
3330 		[2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3331 		/* [3] - [5] reserved */
3332 		[6] = RTE_PTYPE_L2_ETHER_LLDP,
3333 		/* [7] - [10] reserved */
3334 		[11] = RTE_PTYPE_L2_ETHER_ARP,
3335 		/* [12] - [21] reserved */
3336 
3337 		/* Non tunneled IPv4 */
3338 		[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3339 		       RTE_PTYPE_L4_FRAG,
3340 		[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3341 		       RTE_PTYPE_L4_NONFRAG,
3342 		[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3343 		       RTE_PTYPE_L4_UDP,
3344 		/* [25] reserved */
3345 		[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3346 		       RTE_PTYPE_L4_TCP,
3347 		[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3348 		       RTE_PTYPE_L4_SCTP,
3349 		[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3350 		       RTE_PTYPE_L4_ICMP,
3351 
3352 		/* IPv4 --> IPv4 */
3353 		[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3354 		       RTE_PTYPE_TUNNEL_IP |
3355 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3356 		       RTE_PTYPE_INNER_L4_FRAG,
3357 		[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3358 		       RTE_PTYPE_TUNNEL_IP |
3359 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3360 		       RTE_PTYPE_INNER_L4_NONFRAG,
3361 		[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3362 		       RTE_PTYPE_TUNNEL_IP |
3363 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3364 		       RTE_PTYPE_INNER_L4_UDP,
3365 		/* [32] reserved */
3366 		[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3367 		       RTE_PTYPE_TUNNEL_IP |
3368 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3369 		       RTE_PTYPE_INNER_L4_TCP,
3370 		[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3371 		       RTE_PTYPE_TUNNEL_IP |
3372 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3373 		       RTE_PTYPE_INNER_L4_SCTP,
3374 		[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3375 		       RTE_PTYPE_TUNNEL_IP |
3376 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3377 		       RTE_PTYPE_INNER_L4_ICMP,
3378 
3379 		/* IPv4 --> IPv6 */
3380 		[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3381 		       RTE_PTYPE_TUNNEL_IP |
3382 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3383 		       RTE_PTYPE_INNER_L4_FRAG,
3384 		[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3385 		       RTE_PTYPE_TUNNEL_IP |
3386 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3387 		       RTE_PTYPE_INNER_L4_NONFRAG,
3388 		[38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3389 		       RTE_PTYPE_TUNNEL_IP |
3390 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3391 		       RTE_PTYPE_INNER_L4_UDP,
3392 		/* [39] reserved */
3393 		[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3394 		       RTE_PTYPE_TUNNEL_IP |
3395 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3396 		       RTE_PTYPE_INNER_L4_TCP,
3397 		[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3398 		       RTE_PTYPE_TUNNEL_IP |
3399 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3400 		       RTE_PTYPE_INNER_L4_SCTP,
3401 		[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3402 		       RTE_PTYPE_TUNNEL_IP |
3403 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3404 		       RTE_PTYPE_INNER_L4_ICMP,
3405 
3406 		/* IPv4 --> GRE/Teredo/VXLAN */
3407 		[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3408 		       RTE_PTYPE_TUNNEL_GRENAT,
3409 
3410 		/* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3411 		[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3412 		       RTE_PTYPE_TUNNEL_GRENAT |
3413 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3414 		       RTE_PTYPE_INNER_L4_FRAG,
3415 		[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3416 		       RTE_PTYPE_TUNNEL_GRENAT |
3417 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3418 		       RTE_PTYPE_INNER_L4_NONFRAG,
3419 		[46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3420 		       RTE_PTYPE_TUNNEL_GRENAT |
3421 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3422 		       RTE_PTYPE_INNER_L4_UDP,
3423 		/* [47] reserved */
3424 		[48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3425 		       RTE_PTYPE_TUNNEL_GRENAT |
3426 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3427 		       RTE_PTYPE_INNER_L4_TCP,
3428 		[49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3429 		       RTE_PTYPE_TUNNEL_GRENAT |
3430 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3431 		       RTE_PTYPE_INNER_L4_SCTP,
3432 		[50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3433 		       RTE_PTYPE_TUNNEL_GRENAT |
3434 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3435 		       RTE_PTYPE_INNER_L4_ICMP,
3436 
3437 		/* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3438 		[51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3439 		       RTE_PTYPE_TUNNEL_GRENAT |
3440 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3441 		       RTE_PTYPE_INNER_L4_FRAG,
3442 		[52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3443 		       RTE_PTYPE_TUNNEL_GRENAT |
3444 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3445 		       RTE_PTYPE_INNER_L4_NONFRAG,
3446 		[53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3447 		       RTE_PTYPE_TUNNEL_GRENAT |
3448 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3449 		       RTE_PTYPE_INNER_L4_UDP,
3450 		/* [54] reserved */
3451 		[55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3452 		       RTE_PTYPE_TUNNEL_GRENAT |
3453 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3454 		       RTE_PTYPE_INNER_L4_TCP,
3455 		[56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3456 		       RTE_PTYPE_TUNNEL_GRENAT |
3457 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3458 		       RTE_PTYPE_INNER_L4_SCTP,
3459 		[57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3460 		       RTE_PTYPE_TUNNEL_GRENAT |
3461 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3462 		       RTE_PTYPE_INNER_L4_ICMP,
3463 
3464 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3465 		[58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3466 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3467 
3468 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3469 		[59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3470 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3471 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3472 		       RTE_PTYPE_INNER_L4_FRAG,
3473 		[60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3474 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3475 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3476 		       RTE_PTYPE_INNER_L4_NONFRAG,
3477 		[61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3478 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3479 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3480 		       RTE_PTYPE_INNER_L4_UDP,
3481 		/* [62] reserved */
3482 		[63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3483 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3484 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3485 		       RTE_PTYPE_INNER_L4_TCP,
3486 		[64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3487 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3488 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3489 		       RTE_PTYPE_INNER_L4_SCTP,
3490 		[65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3491 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3492 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3493 		       RTE_PTYPE_INNER_L4_ICMP,
3494 
3495 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3496 		[66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3497 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3498 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3499 		       RTE_PTYPE_INNER_L4_FRAG,
3500 		[67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3501 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3502 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3503 		       RTE_PTYPE_INNER_L4_NONFRAG,
3504 		[68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3505 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3506 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3507 		       RTE_PTYPE_INNER_L4_UDP,
3508 		/* [69] reserved */
3509 		[70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3510 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3511 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3512 		       RTE_PTYPE_INNER_L4_TCP,
3513 		[71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3514 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3515 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3516 		       RTE_PTYPE_INNER_L4_SCTP,
3517 		[72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3518 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3519 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3520 		       RTE_PTYPE_INNER_L4_ICMP,
3521 		/* [73] - [87] reserved */
3522 
3523 		/* Non tunneled IPv6 */
3524 		[88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3525 		       RTE_PTYPE_L4_FRAG,
3526 		[89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3527 		       RTE_PTYPE_L4_NONFRAG,
3528 		[90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3529 		       RTE_PTYPE_L4_UDP,
3530 		/* [91] reserved */
3531 		[92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3532 		       RTE_PTYPE_L4_TCP,
3533 		[93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3534 		       RTE_PTYPE_L4_SCTP,
3535 		[94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3536 		       RTE_PTYPE_L4_ICMP,
3537 
3538 		/* IPv6 --> IPv4 */
3539 		[95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3540 		       RTE_PTYPE_TUNNEL_IP |
3541 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3542 		       RTE_PTYPE_INNER_L4_FRAG,
3543 		[96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3544 		       RTE_PTYPE_TUNNEL_IP |
3545 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3546 		       RTE_PTYPE_INNER_L4_NONFRAG,
3547 		[97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3548 		       RTE_PTYPE_TUNNEL_IP |
3549 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3550 		       RTE_PTYPE_INNER_L4_UDP,
3551 		/* [98] reserved */
3552 		[99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3553 		       RTE_PTYPE_TUNNEL_IP |
3554 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3555 		       RTE_PTYPE_INNER_L4_TCP,
3556 		[100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3557 			RTE_PTYPE_TUNNEL_IP |
3558 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3559 			RTE_PTYPE_INNER_L4_SCTP,
3560 		[101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3561 			RTE_PTYPE_TUNNEL_IP |
3562 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3563 			RTE_PTYPE_INNER_L4_ICMP,
3564 
3565 		/* IPv6 --> IPv6 */
3566 		[102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3567 			RTE_PTYPE_TUNNEL_IP |
3568 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3569 			RTE_PTYPE_INNER_L4_FRAG,
3570 		[103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3571 			RTE_PTYPE_TUNNEL_IP |
3572 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3573 			RTE_PTYPE_INNER_L4_NONFRAG,
3574 		[104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3575 			RTE_PTYPE_TUNNEL_IP |
3576 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3577 			RTE_PTYPE_INNER_L4_UDP,
3578 		/* [105] reserved */
3579 		[106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3580 			RTE_PTYPE_TUNNEL_IP |
3581 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3582 			RTE_PTYPE_INNER_L4_TCP,
3583 		[107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3584 			RTE_PTYPE_TUNNEL_IP |
3585 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3586 			RTE_PTYPE_INNER_L4_SCTP,
3587 		[108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3588 			RTE_PTYPE_TUNNEL_IP |
3589 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3590 			RTE_PTYPE_INNER_L4_ICMP,
3591 
3592 		/* IPv6 --> GRE/Teredo/VXLAN */
3593 		[109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3594 			RTE_PTYPE_TUNNEL_GRENAT,
3595 
3596 		/* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3597 		[110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3598 			RTE_PTYPE_TUNNEL_GRENAT |
3599 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3600 			RTE_PTYPE_INNER_L4_FRAG,
3601 		[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3602 			RTE_PTYPE_TUNNEL_GRENAT |
3603 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3604 			RTE_PTYPE_INNER_L4_NONFRAG,
3605 		[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3606 			RTE_PTYPE_TUNNEL_GRENAT |
3607 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3608 			RTE_PTYPE_INNER_L4_UDP,
3609 		/* [113] reserved */
3610 		[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3611 			RTE_PTYPE_TUNNEL_GRENAT |
3612 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3613 			RTE_PTYPE_INNER_L4_TCP,
3614 		[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3615 			RTE_PTYPE_TUNNEL_GRENAT |
3616 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3617 			RTE_PTYPE_INNER_L4_SCTP,
3618 		[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3619 			RTE_PTYPE_TUNNEL_GRENAT |
3620 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3621 			RTE_PTYPE_INNER_L4_ICMP,
3622 
3623 		/* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3624 		[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3625 			RTE_PTYPE_TUNNEL_GRENAT |
3626 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3627 			RTE_PTYPE_INNER_L4_FRAG,
3628 		[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3629 			RTE_PTYPE_TUNNEL_GRENAT |
3630 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3631 			RTE_PTYPE_INNER_L4_NONFRAG,
3632 		[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3633 			RTE_PTYPE_TUNNEL_GRENAT |
3634 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3635 			RTE_PTYPE_INNER_L4_UDP,
3636 		/* [120] reserved */
3637 		[121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3638 			RTE_PTYPE_TUNNEL_GRENAT |
3639 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3640 			RTE_PTYPE_INNER_L4_TCP,
3641 		[122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3642 			RTE_PTYPE_TUNNEL_GRENAT |
3643 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3644 			RTE_PTYPE_INNER_L4_SCTP,
3645 		[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3646 			RTE_PTYPE_TUNNEL_GRENAT |
3647 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3648 			RTE_PTYPE_INNER_L4_ICMP,
3649 
3650 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3651 		[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3652 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3653 
3654 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3655 		[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3656 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3657 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3658 			RTE_PTYPE_INNER_L4_FRAG,
3659 		[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3660 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3661 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3662 			RTE_PTYPE_INNER_L4_NONFRAG,
3663 		[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3664 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3665 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3666 			RTE_PTYPE_INNER_L4_UDP,
3667 		/* [128] reserved */
3668 		[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3669 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3670 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3671 			RTE_PTYPE_INNER_L4_TCP,
3672 		[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3673 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3674 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3675 			RTE_PTYPE_INNER_L4_SCTP,
3676 		[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3677 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3678 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3679 			RTE_PTYPE_INNER_L4_ICMP,
3680 
3681 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3682 		[132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3683 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3684 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3685 			RTE_PTYPE_INNER_L4_FRAG,
3686 		[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3687 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3688 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3689 			RTE_PTYPE_INNER_L4_NONFRAG,
3690 		[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3691 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3692 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3693 			RTE_PTYPE_INNER_L4_UDP,
3694 		/* [135] reserved */
3695 		[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3696 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3697 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3698 			RTE_PTYPE_INNER_L4_TCP,
3699 		[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3700 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3701 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3702 			RTE_PTYPE_INNER_L4_SCTP,
3703 		[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3704 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3705 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3706 			RTE_PTYPE_INNER_L4_ICMP,
3707 		/* [139] - [299] reserved */
3708 
3709 		/* PPPoE */
3710 		[300] = RTE_PTYPE_L2_ETHER_PPPOE,
3711 		[301] = RTE_PTYPE_L2_ETHER_PPPOE,
3712 
3713 		/* PPPoE --> IPv4 */
3714 		[302] = RTE_PTYPE_L2_ETHER_PPPOE |
3715 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3716 			RTE_PTYPE_L4_FRAG,
3717 		[303] = RTE_PTYPE_L2_ETHER_PPPOE |
3718 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3719 			RTE_PTYPE_L4_NONFRAG,
3720 		[304] = RTE_PTYPE_L2_ETHER_PPPOE |
3721 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3722 			RTE_PTYPE_L4_UDP,
3723 		[305] = RTE_PTYPE_L2_ETHER_PPPOE |
3724 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3725 			RTE_PTYPE_L4_TCP,
3726 		[306] = RTE_PTYPE_L2_ETHER_PPPOE |
3727 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3728 			RTE_PTYPE_L4_SCTP,
3729 		[307] = RTE_PTYPE_L2_ETHER_PPPOE |
3730 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3731 			RTE_PTYPE_L4_ICMP,
3732 
3733 		/* PPPoE --> IPv6 */
3734 		[308] = RTE_PTYPE_L2_ETHER_PPPOE |
3735 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3736 			RTE_PTYPE_L4_FRAG,
3737 		[309] = RTE_PTYPE_L2_ETHER_PPPOE |
3738 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3739 			RTE_PTYPE_L4_NONFRAG,
3740 		[310] = RTE_PTYPE_L2_ETHER_PPPOE |
3741 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3742 			RTE_PTYPE_L4_UDP,
3743 		[311] = RTE_PTYPE_L2_ETHER_PPPOE |
3744 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3745 			RTE_PTYPE_L4_TCP,
3746 		[312] = RTE_PTYPE_L2_ETHER_PPPOE |
3747 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3748 			RTE_PTYPE_L4_SCTP,
3749 		[313] = RTE_PTYPE_L2_ETHER_PPPOE |
3750 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3751 			RTE_PTYPE_L4_ICMP,
3752 		/* [314] - [324] reserved */
3753 
3754 		/* IPv4/IPv6 --> GTPC/GTPU */
3755 		[325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3756 			RTE_PTYPE_TUNNEL_GTPC,
3757 		[326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3758 			RTE_PTYPE_TUNNEL_GTPC,
3759 		[327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3760 			RTE_PTYPE_TUNNEL_GTPC,
3761 		[328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3762 			RTE_PTYPE_TUNNEL_GTPC,
3763 		[329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3764 			RTE_PTYPE_TUNNEL_GTPU,
3765 		[330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3766 			RTE_PTYPE_TUNNEL_GTPU,
3767 
3768 		/* IPv4 --> GTPU --> IPv4 */
3769 		[331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3770 			RTE_PTYPE_TUNNEL_GTPU |
3771 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3772 			RTE_PTYPE_INNER_L4_FRAG,
3773 		[332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3774 			RTE_PTYPE_TUNNEL_GTPU |
3775 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3776 			RTE_PTYPE_INNER_L4_NONFRAG,
3777 		[333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3778 			RTE_PTYPE_TUNNEL_GTPU |
3779 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3780 			RTE_PTYPE_INNER_L4_UDP,
3781 		[334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3782 			RTE_PTYPE_TUNNEL_GTPU |
3783 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3784 			RTE_PTYPE_INNER_L4_TCP,
3785 		[335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3786 			RTE_PTYPE_TUNNEL_GTPU |
3787 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3788 			RTE_PTYPE_INNER_L4_ICMP,
3789 
3790 		/* IPv6 --> GTPU --> IPv4 */
3791 		[336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3792 			RTE_PTYPE_TUNNEL_GTPU |
3793 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3794 			RTE_PTYPE_INNER_L4_FRAG,
3795 		[337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3796 			RTE_PTYPE_TUNNEL_GTPU |
3797 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3798 			RTE_PTYPE_INNER_L4_NONFRAG,
3799 		[338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3800 			RTE_PTYPE_TUNNEL_GTPU |
3801 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3802 			RTE_PTYPE_INNER_L4_UDP,
3803 		[339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3804 			RTE_PTYPE_TUNNEL_GTPU |
3805 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3806 			RTE_PTYPE_INNER_L4_TCP,
3807 		[340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3808 			RTE_PTYPE_TUNNEL_GTPU |
3809 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3810 			RTE_PTYPE_INNER_L4_ICMP,
3811 
3812 		/* IPv4 --> GTPU --> IPv6 */
3813 		[341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3814 			RTE_PTYPE_TUNNEL_GTPU |
3815 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3816 			RTE_PTYPE_INNER_L4_FRAG,
3817 		[342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3818 			RTE_PTYPE_TUNNEL_GTPU |
3819 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3820 			RTE_PTYPE_INNER_L4_NONFRAG,
3821 		[343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3822 			RTE_PTYPE_TUNNEL_GTPU |
3823 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3824 			RTE_PTYPE_INNER_L4_UDP,
3825 		[344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3826 			RTE_PTYPE_TUNNEL_GTPU |
3827 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3828 			RTE_PTYPE_INNER_L4_TCP,
3829 		[345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3830 			RTE_PTYPE_TUNNEL_GTPU |
3831 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3832 			RTE_PTYPE_INNER_L4_ICMP,
3833 
3834 		/* IPv6 --> GTPU --> IPv6 */
3835 		[346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3836 			RTE_PTYPE_TUNNEL_GTPU |
3837 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3838 			RTE_PTYPE_INNER_L4_FRAG,
3839 		[347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3840 			RTE_PTYPE_TUNNEL_GTPU |
3841 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3842 			RTE_PTYPE_INNER_L4_NONFRAG,
3843 		[348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3844 			RTE_PTYPE_TUNNEL_GTPU |
3845 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3846 			RTE_PTYPE_INNER_L4_UDP,
3847 		[349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3848 			RTE_PTYPE_TUNNEL_GTPU |
3849 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3850 			RTE_PTYPE_INNER_L4_TCP,
3851 		[350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3852 			RTE_PTYPE_TUNNEL_GTPU |
3853 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3854 			RTE_PTYPE_INNER_L4_ICMP,
3855 
3856 		/* IPv4 --> UDP ECPRI */
3857 		[372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3858 			RTE_PTYPE_L4_UDP,
3859 		[373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3860 			RTE_PTYPE_L4_UDP,
3861 		[374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3862 			RTE_PTYPE_L4_UDP,
3863 		[375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3864 			RTE_PTYPE_L4_UDP,
3865 		[376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3866 			RTE_PTYPE_L4_UDP,
3867 		[377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3868 			RTE_PTYPE_L4_UDP,
3869 		[378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3870 			RTE_PTYPE_L4_UDP,
3871 		[379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3872 			RTE_PTYPE_L4_UDP,
3873 		[380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3874 			RTE_PTYPE_L4_UDP,
3875 		[381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3876 			RTE_PTYPE_L4_UDP,
3877 
3878 		/* IPV6 --> UDP ECPRI */
3879 		[382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3880 			RTE_PTYPE_L4_UDP,
3881 		[383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3882 			RTE_PTYPE_L4_UDP,
3883 		[384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3884 			RTE_PTYPE_L4_UDP,
3885 		[385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3886 			RTE_PTYPE_L4_UDP,
3887 		[386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3888 			RTE_PTYPE_L4_UDP,
3889 		[387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3890 			RTE_PTYPE_L4_UDP,
3891 		[388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3892 			RTE_PTYPE_L4_UDP,
3893 		[389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3894 			RTE_PTYPE_L4_UDP,
3895 		[390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3896 			RTE_PTYPE_L4_UDP,
3897 		[391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3898 			RTE_PTYPE_L4_UDP,
3899 		/* All others reserved */
3900 	};
3901 
3902 	return ptype_tbl[ptype];
3903 }
3904 
3905 void __rte_cold
iavf_set_default_ptype_table(struct rte_eth_dev * dev)3906 iavf_set_default_ptype_table(struct rte_eth_dev *dev)
3907 {
3908 	struct iavf_adapter *ad =
3909 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3910 	int i;
3911 
3912 	for (i = 0; i < IAVF_MAX_PKT_TYPE; i++)
3913 		ad->ptype_tbl[i] = iavf_get_default_ptype(i);
3914 }
3915