xref: /dpdk/drivers/net/i40e/i40e_rxtx.c (revision 1b73c2d1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14 
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27 
28 #include "i40e_logs.h"
29 #include "base/i40e_prototype.h"
30 #include "base/i40e_type.h"
31 #include "i40e_ethdev.h"
32 #include "i40e_rxtx.h"
33 
34 #define DEFAULT_TX_RS_THRESH   32
35 #define DEFAULT_TX_FREE_THRESH 32
36 
37 #define I40E_TX_MAX_BURST  32
38 
39 #define I40E_DMA_MEM_ALIGN 4096
40 
41 /* Base address of the HW descriptor ring should be 128B aligned. */
42 #define I40E_RING_BASE_ALIGN	128
43 
44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45 
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define I40E_TX_IEEE1588_TMST RTE_MBUF_F_TX_IEEE1588_TMST
48 #else
49 #define I40E_TX_IEEE1588_TMST 0
50 #endif
51 
52 #define I40E_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_IP_CKSUM |		 \
53 		RTE_MBUF_F_TX_L4_MASK |		 \
54 		RTE_MBUF_F_TX_TCP_SEG |		 \
55 		RTE_MBUF_F_TX_OUTER_IP_CKSUM)
56 
57 #define I40E_TX_OFFLOAD_MASK (RTE_MBUF_F_TX_OUTER_IPV4 |	\
58 		RTE_MBUF_F_TX_OUTER_IPV6 |	\
59 		RTE_MBUF_F_TX_IPV4 |		\
60 		RTE_MBUF_F_TX_IPV6 |		\
61 		RTE_MBUF_F_TX_IP_CKSUM |       \
62 		RTE_MBUF_F_TX_L4_MASK |        \
63 		RTE_MBUF_F_TX_OUTER_IP_CKSUM | \
64 		RTE_MBUF_F_TX_TCP_SEG |        \
65 		RTE_MBUF_F_TX_QINQ |       \
66 		RTE_MBUF_F_TX_VLAN |	\
67 		RTE_MBUF_F_TX_TUNNEL_MASK |	\
68 		RTE_MBUF_F_TX_OUTER_UDP_CKSUM |	\
69 		I40E_TX_IEEE1588_TMST)
70 
71 #define I40E_TX_OFFLOAD_NOTSUP_MASK \
72 		(RTE_MBUF_F_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
73 
74 #define I40E_TX_OFFLOAD_SIMPLE_SUP_MASK (RTE_MBUF_F_TX_IPV4 | \
75 		RTE_MBUF_F_TX_IPV6 | \
76 		RTE_MBUF_F_TX_OUTER_IPV4 | \
77 		RTE_MBUF_F_TX_OUTER_IPV6)
78 
79 #define I40E_TX_OFFLOAD_SIMPLE_NOTSUP_MASK \
80 		(RTE_MBUF_F_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_SIMPLE_SUP_MASK)
81 
82 static int
i40e_monitor_callback(const uint64_t value,const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ]__rte_unused)83 i40e_monitor_callback(const uint64_t value,
84 		const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
85 {
86 	const uint64_t m = rte_cpu_to_le_64(1 << I40E_RX_DESC_STATUS_DD_SHIFT);
87 	/*
88 	 * we expect the DD bit to be set to 1 if this descriptor was already
89 	 * written to.
90 	 */
91 	return (value & m) == m ? -1 : 0;
92 }
93 
94 int
i40e_get_monitor_addr(void * rx_queue,struct rte_power_monitor_cond * pmc)95 i40e_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
96 {
97 	struct i40e_rx_queue *rxq = rx_queue;
98 	volatile union i40e_rx_desc *rxdp;
99 	uint16_t desc;
100 
101 	desc = rxq->rx_tail;
102 	rxdp = &rxq->rx_ring[desc];
103 	/* watch for changes in status bit */
104 	pmc->addr = &rxdp->wb.qword1.status_error_len;
105 
106 	/* comparison callback */
107 	pmc->fn = i40e_monitor_callback;
108 
109 	/* registers are 64-bit */
110 	pmc->size = sizeof(uint64_t);
111 
112 	return 0;
113 }
114 
115 static inline void
i40e_rxd_to_vlan_tci(struct rte_mbuf * mb,volatile union i40e_rx_desc * rxdp)116 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
117 {
118 	if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
119 		(1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
120 		mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
121 		mb->vlan_tci =
122 			rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
123 		PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
124 			   rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
125 	} else {
126 		mb->vlan_tci = 0;
127 	}
128 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
129 	if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
130 		(1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
131 		mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED | RTE_MBUF_F_RX_QINQ |
132 			RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
133 		mb->vlan_tci_outer = mb->vlan_tci;
134 		mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
135 		PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
136 			   rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
137 			   rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
138 	} else {
139 		mb->vlan_tci_outer = 0;
140 	}
141 #endif
142 	PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
143 		   mb->vlan_tci, mb->vlan_tci_outer);
144 }
145 
146 /* Translate the rx descriptor status to pkt flags */
147 static inline uint64_t
i40e_rxd_status_to_pkt_flags(uint64_t qword)148 i40e_rxd_status_to_pkt_flags(uint64_t qword)
149 {
150 	uint64_t flags;
151 
152 	/* Check if RSS_HASH */
153 	flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
154 					I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
155 			I40E_RX_DESC_FLTSTAT_RSS_HASH) ? RTE_MBUF_F_RX_RSS_HASH : 0;
156 
157 	/* Check if FDIR Match */
158 	flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
159 							RTE_MBUF_F_RX_FDIR : 0);
160 
161 	return flags;
162 }
163 
164 static inline uint64_t
i40e_rxd_error_to_pkt_flags(uint64_t qword)165 i40e_rxd_error_to_pkt_flags(uint64_t qword)
166 {
167 	uint64_t flags = 0;
168 	uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
169 
170 #define I40E_RX_ERR_BITS 0x3f
171 	if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
172 		flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
173 		return flags;
174 	}
175 
176 	if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
177 		flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
178 	else
179 		flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
180 
181 	if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
182 		flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
183 	else
184 		flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
185 
186 	if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
187 		flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
188 
189 	return flags;
190 }
191 
192 /* Function to check and set the ieee1588 timesync index and get the
193  * appropriate flags.
194  */
195 #ifdef RTE_LIBRTE_IEEE1588
196 static inline uint64_t
i40e_get_iee15888_flags(struct rte_mbuf * mb,uint64_t qword)197 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
198 {
199 	uint64_t pkt_flags = 0;
200 	uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
201 				  | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
202 				    >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
203 
204 	if ((mb->packet_type & RTE_PTYPE_L2_MASK)
205 			== RTE_PTYPE_L2_ETHER_TIMESYNC)
206 		pkt_flags = RTE_MBUF_F_RX_IEEE1588_PTP;
207 	if (tsyn & 0x04) {
208 		pkt_flags |= RTE_MBUF_F_RX_IEEE1588_TMST;
209 		mb->timesync = tsyn & 0x03;
210 	}
211 
212 	return pkt_flags;
213 }
214 #endif
215 
216 static inline uint64_t
i40e_rxd_build_fdir(volatile union i40e_rx_desc * rxdp,struct rte_mbuf * mb)217 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
218 {
219 	uint64_t flags = 0;
220 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
221 	uint16_t flexbh, flexbl;
222 
223 	flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
224 		I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
225 		I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
226 	flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
227 		I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
228 		I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
229 
230 
231 	if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
232 		mb->hash.fdir.hi =
233 			rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
234 		flags |= RTE_MBUF_F_RX_FDIR_ID;
235 	} else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
236 		mb->hash.fdir.hi =
237 			rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
238 		flags |= RTE_MBUF_F_RX_FDIR_FLX;
239 	}
240 	if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
241 		mb->hash.fdir.lo =
242 			rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
243 		flags |= RTE_MBUF_F_RX_FDIR_FLX;
244 	}
245 #else
246 	mb->hash.fdir.hi =
247 		rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
248 	flags |= RTE_MBUF_F_RX_FDIR_ID;
249 #endif
250 	return flags;
251 }
252 
253 static inline void
i40e_parse_tunneling_params(uint64_t ol_flags,union i40e_tx_offload tx_offload,uint32_t * cd_tunneling)254 i40e_parse_tunneling_params(uint64_t ol_flags,
255 			    union i40e_tx_offload tx_offload,
256 			    uint32_t *cd_tunneling)
257 {
258 	/* EIPT: External (outer) IP header type */
259 	if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
260 		*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
261 	else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
262 		*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
263 	else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)
264 		*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
265 
266 	/* EIPLEN: External (outer) IP header length, in DWords */
267 	*cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
268 		I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
269 
270 	/* L4TUNT: L4 Tunneling Type */
271 	switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
272 	case RTE_MBUF_F_TX_TUNNEL_IPIP:
273 		/* for non UDP / GRE tunneling, set to 00b */
274 		break;
275 	case RTE_MBUF_F_TX_TUNNEL_VXLAN:
276 	case RTE_MBUF_F_TX_TUNNEL_GENEVE:
277 		*cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
278 		break;
279 	case RTE_MBUF_F_TX_TUNNEL_GRE:
280 		*cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
281 		break;
282 	default:
283 		PMD_TX_LOG(ERR, "Tunnel type not supported");
284 		return;
285 	}
286 
287 	/* L4TUNLEN: L4 Tunneling Length, in Words
288 	 *
289 	 * We depend on app to set rte_mbuf.l2_len correctly.
290 	 * For IP in GRE it should be set to the length of the GRE
291 	 * header;
292 	 * for MAC in GRE or MAC in UDP it should be set to the length
293 	 * of the GRE or UDP headers plus the inner MAC up to including
294 	 * its last Ethertype.
295 	 */
296 	*cd_tunneling |= (tx_offload.l2_len >> 1) <<
297 		I40E_TXD_CTX_QW0_NATLEN_SHIFT;
298 }
299 
300 static inline void
i40e_txd_enable_checksum(uint64_t ol_flags,uint32_t * td_cmd,uint32_t * td_offset,union i40e_tx_offload tx_offload)301 i40e_txd_enable_checksum(uint64_t ol_flags,
302 			uint32_t *td_cmd,
303 			uint32_t *td_offset,
304 			union i40e_tx_offload tx_offload)
305 {
306 	/* Set MACLEN */
307 	if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
308 		*td_offset |= (tx_offload.outer_l2_len >> 1)
309 				<< I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
310 	else
311 		*td_offset |= (tx_offload.l2_len >> 1)
312 			<< I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
313 
314 	/* Enable L3 checksum offloads */
315 	if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
316 		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
317 		*td_offset |= (tx_offload.l3_len >> 2)
318 				<< I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
319 	} else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
320 		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
321 		*td_offset |= (tx_offload.l3_len >> 2)
322 				<< I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
323 	} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
324 		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
325 		*td_offset |= (tx_offload.l3_len >> 2)
326 				<< I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
327 	}
328 
329 	if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
330 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
331 		*td_offset |= (tx_offload.l4_len >> 2)
332 			<< I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
333 		return;
334 	}
335 
336 	/* Enable L4 checksum offloads */
337 	switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
338 	case RTE_MBUF_F_TX_TCP_CKSUM:
339 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
340 		*td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
341 				I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
342 		break;
343 	case RTE_MBUF_F_TX_SCTP_CKSUM:
344 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
345 		*td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
346 				I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
347 		break;
348 	case RTE_MBUF_F_TX_UDP_CKSUM:
349 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
350 		*td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
351 				I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
352 		break;
353 	default:
354 		break;
355 	}
356 }
357 
358 /* Construct the tx flags */
359 static inline uint64_t
i40e_build_ctob(uint32_t td_cmd,uint32_t td_offset,unsigned int size,uint32_t td_tag)360 i40e_build_ctob(uint32_t td_cmd,
361 		uint32_t td_offset,
362 		unsigned int size,
363 		uint32_t td_tag)
364 {
365 	return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
366 			((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
367 			((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
368 			((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
369 			((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
370 }
371 
372 static inline int
i40e_xmit_cleanup(struct i40e_tx_queue * txq)373 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
374 {
375 	struct i40e_tx_entry *sw_ring = txq->sw_ring;
376 	volatile struct i40e_tx_desc *txd = txq->tx_ring;
377 	uint16_t last_desc_cleaned = txq->last_desc_cleaned;
378 	uint16_t nb_tx_desc = txq->nb_tx_desc;
379 	uint16_t desc_to_clean_to;
380 	uint16_t nb_tx_to_clean;
381 
382 	desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
383 	if (desc_to_clean_to >= nb_tx_desc)
384 		desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
385 
386 	desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
387 	if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
388 			rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
389 			rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
390 		PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
391 			   "(port=%d queue=%d)", desc_to_clean_to,
392 			   txq->port_id, txq->queue_id);
393 		return -1;
394 	}
395 
396 	if (last_desc_cleaned > desc_to_clean_to)
397 		nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
398 							desc_to_clean_to);
399 	else
400 		nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
401 					last_desc_cleaned);
402 
403 	txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
404 
405 	txq->last_desc_cleaned = desc_to_clean_to;
406 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
407 
408 	return 0;
409 }
410 
411 static inline int
412 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue * rxq)413 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
414 #else
415 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
416 #endif
417 {
418 	int ret = 0;
419 
420 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
421 	if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
422 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
423 			     "rxq->rx_free_thresh=%d, "
424 			     "RTE_PMD_I40E_RX_MAX_BURST=%d",
425 			     rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
426 		ret = -EINVAL;
427 	} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
428 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
429 			     "rxq->rx_free_thresh=%d, "
430 			     "rxq->nb_rx_desc=%d",
431 			     rxq->rx_free_thresh, rxq->nb_rx_desc);
432 		ret = -EINVAL;
433 	} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
434 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
435 			     "rxq->nb_rx_desc=%d, "
436 			     "rxq->rx_free_thresh=%d",
437 			     rxq->nb_rx_desc, rxq->rx_free_thresh);
438 		ret = -EINVAL;
439 	}
440 #else
441 	ret = -EINVAL;
442 #endif
443 
444 	return ret;
445 }
446 
447 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
448 #define I40E_LOOK_AHEAD 8
449 #if (I40E_LOOK_AHEAD != 8)
450 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
451 #endif
452 static inline int
i40e_rx_scan_hw_ring(struct i40e_rx_queue * rxq)453 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
454 {
455 	volatile union i40e_rx_desc *rxdp;
456 	struct i40e_rx_entry *rxep;
457 	struct rte_mbuf *mb;
458 	uint16_t pkt_len;
459 	uint64_t qword1;
460 	uint32_t rx_status;
461 	int32_t s[I40E_LOOK_AHEAD], var, nb_dd;
462 	int32_t i, j, nb_rx = 0;
463 	uint64_t pkt_flags;
464 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
465 
466 	rxdp = &rxq->rx_ring[rxq->rx_tail];
467 	rxep = &rxq->sw_ring[rxq->rx_tail];
468 
469 	qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
470 	rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
471 				I40E_RXD_QW1_STATUS_SHIFT;
472 
473 	/* Make sure there is at least 1 packet to receive */
474 	if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
475 		return 0;
476 
477 	/**
478 	 * Scan LOOK_AHEAD descriptors at a time to determine which
479 	 * descriptors reference packets that are ready to be received.
480 	 */
481 	for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
482 			rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
483 		/* Read desc statuses backwards to avoid race condition */
484 		for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
485 			qword1 = rte_le_to_cpu_64(\
486 				rxdp[j].wb.qword1.status_error_len);
487 			s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
488 					I40E_RXD_QW1_STATUS_SHIFT;
489 		}
490 
491 		/* This barrier is to order loads of different words in the descriptor */
492 		rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
493 
494 		/* Compute how many status bits were set */
495 		for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++) {
496 			var = s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
497 #ifdef RTE_ARCH_ARM
498 			/* For Arm platforms, only compute continuous status bits */
499 			if (var)
500 				nb_dd += 1;
501 			else
502 				break;
503 #else
504 			nb_dd += var;
505 #endif
506 		}
507 
508 		nb_rx += nb_dd;
509 
510 		/* Translate descriptor info to mbuf parameters */
511 		for (j = 0; j < nb_dd; j++) {
512 			mb = rxep[j].mbuf;
513 			qword1 = rte_le_to_cpu_64(\
514 				rxdp[j].wb.qword1.status_error_len);
515 			pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
516 				I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
517 			mb->data_len = pkt_len;
518 			mb->pkt_len = pkt_len;
519 			mb->ol_flags = 0;
520 			i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
521 			pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
522 			pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
523 			mb->packet_type =
524 				ptype_tbl[(uint8_t)((qword1 &
525 				I40E_RXD_QW1_PTYPE_MASK) >>
526 				I40E_RXD_QW1_PTYPE_SHIFT)];
527 			if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
528 				mb->hash.rss = rte_le_to_cpu_32(\
529 					rxdp[j].wb.qword0.hi_dword.rss);
530 			if (pkt_flags & RTE_MBUF_F_RX_FDIR)
531 				pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
532 
533 #ifdef RTE_LIBRTE_IEEE1588
534 			pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
535 #endif
536 			mb->ol_flags |= pkt_flags;
537 
538 		}
539 
540 		for (j = 0; j < I40E_LOOK_AHEAD; j++)
541 			rxq->rx_stage[i + j] = rxep[j].mbuf;
542 
543 		if (nb_dd != I40E_LOOK_AHEAD)
544 			break;
545 	}
546 
547 	/* Clear software ring entries */
548 	for (i = 0; i < nb_rx; i++)
549 		rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
550 
551 	return nb_rx;
552 }
553 
554 static inline uint16_t
i40e_rx_fill_from_stage(struct i40e_rx_queue * rxq,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)555 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
556 			struct rte_mbuf **rx_pkts,
557 			uint16_t nb_pkts)
558 {
559 	uint16_t i;
560 	struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
561 
562 	nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
563 
564 	for (i = 0; i < nb_pkts; i++)
565 		rx_pkts[i] = stage[i];
566 
567 	rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
568 	rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
569 
570 	return nb_pkts;
571 }
572 
573 static inline int
i40e_rx_alloc_bufs(struct i40e_rx_queue * rxq)574 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
575 {
576 	volatile union i40e_rx_desc *rxdp;
577 	struct i40e_rx_entry *rxep;
578 	struct rte_mbuf *mb;
579 	uint16_t alloc_idx, i;
580 	uint64_t dma_addr;
581 	int diag;
582 
583 	/* Allocate buffers in bulk */
584 	alloc_idx = (uint16_t)(rxq->rx_free_trigger -
585 				(rxq->rx_free_thresh - 1));
586 	rxep = &(rxq->sw_ring[alloc_idx]);
587 	diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
588 					rxq->rx_free_thresh);
589 	if (unlikely(diag != 0)) {
590 		PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
591 		return -ENOMEM;
592 	}
593 
594 	rxdp = &rxq->rx_ring[alloc_idx];
595 	for (i = 0; i < rxq->rx_free_thresh; i++) {
596 		if (likely(i < (rxq->rx_free_thresh - 1)))
597 			/* Prefetch next mbuf */
598 			rte_prefetch0(rxep[i + 1].mbuf);
599 
600 		mb = rxep[i].mbuf;
601 		rte_mbuf_refcnt_set(mb, 1);
602 		mb->next = NULL;
603 		mb->data_off = RTE_PKTMBUF_HEADROOM;
604 		mb->nb_segs = 1;
605 		mb->port = rxq->port_id;
606 		dma_addr = rte_cpu_to_le_64(\
607 			rte_mbuf_data_iova_default(mb));
608 		rxdp[i].read.hdr_addr = 0;
609 		rxdp[i].read.pkt_addr = dma_addr;
610 	}
611 
612 	/* Update rx tail register */
613 	I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
614 
615 	rxq->rx_free_trigger =
616 		(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
617 	if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
618 		rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
619 
620 	return 0;
621 }
622 
623 static inline uint16_t
rx_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)624 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
625 {
626 	struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
627 	struct rte_eth_dev *dev;
628 	uint16_t nb_rx = 0;
629 
630 	if (!nb_pkts)
631 		return 0;
632 
633 	if (rxq->rx_nb_avail)
634 		return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
635 
636 	nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
637 	rxq->rx_next_avail = 0;
638 	rxq->rx_nb_avail = nb_rx;
639 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
640 
641 	if (rxq->rx_tail > rxq->rx_free_trigger) {
642 		if (i40e_rx_alloc_bufs(rxq) != 0) {
643 			uint16_t i, j;
644 
645 			dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
646 			dev->data->rx_mbuf_alloc_failed +=
647 				rxq->rx_free_thresh;
648 
649 			rxq->rx_nb_avail = 0;
650 			rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
651 			for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
652 				rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
653 
654 			return 0;
655 		}
656 	}
657 
658 	if (rxq->rx_tail >= rxq->nb_rx_desc)
659 		rxq->rx_tail = 0;
660 
661 	if (rxq->rx_nb_avail)
662 		return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
663 
664 	return 0;
665 }
666 
667 static uint16_t
i40e_recv_pkts_bulk_alloc(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)668 i40e_recv_pkts_bulk_alloc(void *rx_queue,
669 			  struct rte_mbuf **rx_pkts,
670 			  uint16_t nb_pkts)
671 {
672 	uint16_t nb_rx = 0, n, count;
673 
674 	if (unlikely(nb_pkts == 0))
675 		return 0;
676 
677 	if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
678 		return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
679 
680 	while (nb_pkts) {
681 		n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
682 		count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
683 		nb_rx = (uint16_t)(nb_rx + count);
684 		nb_pkts = (uint16_t)(nb_pkts - count);
685 		if (count < n)
686 			break;
687 	}
688 
689 	return nb_rx;
690 }
691 #else
692 static uint16_t
i40e_recv_pkts_bulk_alloc(void __rte_unused * rx_queue,struct rte_mbuf __rte_unused ** rx_pkts,uint16_t __rte_unused nb_pkts)693 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
694 			  struct rte_mbuf __rte_unused **rx_pkts,
695 			  uint16_t __rte_unused nb_pkts)
696 {
697 	return 0;
698 }
699 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
700 
701 uint16_t
i40e_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)702 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
703 {
704 	struct i40e_rx_queue *rxq;
705 	volatile union i40e_rx_desc *rx_ring;
706 	volatile union i40e_rx_desc *rxdp;
707 	union i40e_rx_desc rxd;
708 	struct i40e_rx_entry *sw_ring;
709 	struct i40e_rx_entry *rxe;
710 	struct rte_eth_dev *dev;
711 	struct rte_mbuf *rxm;
712 	struct rte_mbuf *nmb;
713 	uint16_t nb_rx;
714 	uint32_t rx_status;
715 	uint64_t qword1;
716 	uint16_t rx_packet_len;
717 	uint16_t rx_id, nb_hold;
718 	uint64_t dma_addr;
719 	uint64_t pkt_flags;
720 	uint32_t *ptype_tbl;
721 
722 	nb_rx = 0;
723 	nb_hold = 0;
724 	rxq = rx_queue;
725 	rx_id = rxq->rx_tail;
726 	rx_ring = rxq->rx_ring;
727 	sw_ring = rxq->sw_ring;
728 	ptype_tbl = rxq->vsi->adapter->ptype_tbl;
729 
730 	while (nb_rx < nb_pkts) {
731 		rxdp = &rx_ring[rx_id];
732 		qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
733 		rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
734 				>> I40E_RXD_QW1_STATUS_SHIFT;
735 
736 		/* Check the DD bit first */
737 		if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
738 			break;
739 
740 		nmb = rte_mbuf_raw_alloc(rxq->mp);
741 		if (unlikely(!nmb)) {
742 			dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
743 			dev->data->rx_mbuf_alloc_failed++;
744 			break;
745 		}
746 
747 		/**
748 		 * Use acquire fence to ensure that qword1 which includes DD
749 		 * bit is loaded before loading of other descriptor words.
750 		 */
751 		rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
752 
753 		rxd = *rxdp;
754 		nb_hold++;
755 		rxe = &sw_ring[rx_id];
756 		rx_id++;
757 		if (unlikely(rx_id == rxq->nb_rx_desc))
758 			rx_id = 0;
759 
760 		/* Prefetch next mbuf */
761 		rte_prefetch0(sw_ring[rx_id].mbuf);
762 
763 		/**
764 		 * When next RX descriptor is on a cache line boundary,
765 		 * prefetch the next 4 RX descriptors and next 8 pointers
766 		 * to mbufs.
767 		 */
768 		if ((rx_id & 0x3) == 0) {
769 			rte_prefetch0(&rx_ring[rx_id]);
770 			rte_prefetch0(&sw_ring[rx_id]);
771 		}
772 		rxm = rxe->mbuf;
773 		rxe->mbuf = nmb;
774 		dma_addr =
775 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
776 		rxdp->read.hdr_addr = 0;
777 		rxdp->read.pkt_addr = dma_addr;
778 
779 		rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
780 				I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
781 
782 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
783 		rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
784 		rxm->nb_segs = 1;
785 		rxm->next = NULL;
786 		rxm->pkt_len = rx_packet_len;
787 		rxm->data_len = rx_packet_len;
788 		rxm->port = rxq->port_id;
789 		rxm->ol_flags = 0;
790 		i40e_rxd_to_vlan_tci(rxm, &rxd);
791 		pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
792 		pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
793 		rxm->packet_type =
794 			ptype_tbl[(uint8_t)((qword1 &
795 			I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
796 		if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
797 			rxm->hash.rss =
798 				rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
799 		if (pkt_flags & RTE_MBUF_F_RX_FDIR)
800 			pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
801 
802 #ifdef RTE_LIBRTE_IEEE1588
803 		pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
804 #endif
805 		rxm->ol_flags |= pkt_flags;
806 
807 		rx_pkts[nb_rx++] = rxm;
808 	}
809 	rxq->rx_tail = rx_id;
810 
811 	/**
812 	 * If the number of free RX descriptors is greater than the RX free
813 	 * threshold of the queue, advance the receive tail register of queue.
814 	 * Update that register with the value of the last processed RX
815 	 * descriptor minus 1.
816 	 */
817 	nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
818 	if (nb_hold > rxq->rx_free_thresh) {
819 		rx_id = (uint16_t) ((rx_id == 0) ?
820 			(rxq->nb_rx_desc - 1) : (rx_id - 1));
821 		I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
822 		nb_hold = 0;
823 	}
824 	rxq->nb_rx_hold = nb_hold;
825 
826 	return nb_rx;
827 }
828 
829 uint16_t
i40e_recv_scattered_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)830 i40e_recv_scattered_pkts(void *rx_queue,
831 			 struct rte_mbuf **rx_pkts,
832 			 uint16_t nb_pkts)
833 {
834 	struct i40e_rx_queue *rxq = rx_queue;
835 	volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
836 	volatile union i40e_rx_desc *rxdp;
837 	union i40e_rx_desc rxd;
838 	struct i40e_rx_entry *sw_ring = rxq->sw_ring;
839 	struct i40e_rx_entry *rxe;
840 	struct rte_mbuf *first_seg = rxq->pkt_first_seg;
841 	struct rte_mbuf *last_seg = rxq->pkt_last_seg;
842 	struct rte_mbuf *nmb, *rxm;
843 	uint16_t rx_id = rxq->rx_tail;
844 	uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
845 	struct rte_eth_dev *dev;
846 	uint32_t rx_status;
847 	uint64_t qword1;
848 	uint64_t dma_addr;
849 	uint64_t pkt_flags;
850 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
851 
852 	while (nb_rx < nb_pkts) {
853 		rxdp = &rx_ring[rx_id];
854 		qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
855 		rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
856 					I40E_RXD_QW1_STATUS_SHIFT;
857 
858 		/* Check the DD bit */
859 		if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
860 			break;
861 
862 		nmb = rte_mbuf_raw_alloc(rxq->mp);
863 		if (unlikely(!nmb)) {
864 			dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
865 			dev->data->rx_mbuf_alloc_failed++;
866 			break;
867 		}
868 
869 		/**
870 		 * Use acquire fence to ensure that qword1 which includes DD
871 		 * bit is loaded before loading of other descriptor words.
872 		 */
873 		rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
874 
875 		rxd = *rxdp;
876 		nb_hold++;
877 		rxe = &sw_ring[rx_id];
878 		rx_id++;
879 		if (rx_id == rxq->nb_rx_desc)
880 			rx_id = 0;
881 
882 		/* Prefetch next mbuf */
883 		rte_prefetch0(sw_ring[rx_id].mbuf);
884 
885 		/**
886 		 * When next RX descriptor is on a cache line boundary,
887 		 * prefetch the next 4 RX descriptors and next 8 pointers
888 		 * to mbufs.
889 		 */
890 		if ((rx_id & 0x3) == 0) {
891 			rte_prefetch0(&rx_ring[rx_id]);
892 			rte_prefetch0(&sw_ring[rx_id]);
893 		}
894 
895 		rxm = rxe->mbuf;
896 		rxe->mbuf = nmb;
897 		dma_addr =
898 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
899 
900 		/* Set data buffer address and data length of the mbuf */
901 		rxdp->read.hdr_addr = 0;
902 		rxdp->read.pkt_addr = dma_addr;
903 		rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
904 					I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
905 		rxm->data_len = rx_packet_len;
906 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
907 
908 		/**
909 		 * If this is the first buffer of the received packet, set the
910 		 * pointer to the first mbuf of the packet and initialize its
911 		 * context. Otherwise, update the total length and the number
912 		 * of segments of the current scattered packet, and update the
913 		 * pointer to the last mbuf of the current packet.
914 		 */
915 		if (!first_seg) {
916 			first_seg = rxm;
917 			first_seg->nb_segs = 1;
918 			first_seg->pkt_len = rx_packet_len;
919 		} else {
920 			first_seg->pkt_len =
921 				(uint16_t)(first_seg->pkt_len +
922 						rx_packet_len);
923 			first_seg->nb_segs++;
924 			last_seg->next = rxm;
925 		}
926 
927 		/**
928 		 * If this is not the last buffer of the received packet,
929 		 * update the pointer to the last mbuf of the current scattered
930 		 * packet and continue to parse the RX ring.
931 		 */
932 		if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
933 			last_seg = rxm;
934 			continue;
935 		}
936 
937 		/**
938 		 * This is the last buffer of the received packet. If the CRC
939 		 * is not stripped by the hardware:
940 		 *  - Subtract the CRC length from the total packet length.
941 		 *  - If the last buffer only contains the whole CRC or a part
942 		 *  of it, free the mbuf associated to the last buffer. If part
943 		 *  of the CRC is also contained in the previous mbuf, subtract
944 		 *  the length of that CRC part from the data length of the
945 		 *  previous mbuf.
946 		 */
947 		rxm->next = NULL;
948 		if (unlikely(rxq->crc_len > 0)) {
949 			first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
950 			if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
951 				rte_pktmbuf_free_seg(rxm);
952 				first_seg->nb_segs--;
953 				last_seg->data_len =
954 					(uint16_t)(last_seg->data_len -
955 					(RTE_ETHER_CRC_LEN - rx_packet_len));
956 				last_seg->next = NULL;
957 			} else
958 				rxm->data_len = (uint16_t)(rx_packet_len -
959 							RTE_ETHER_CRC_LEN);
960 		}
961 
962 		first_seg->port = rxq->port_id;
963 		first_seg->ol_flags = 0;
964 		i40e_rxd_to_vlan_tci(first_seg, &rxd);
965 		pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
966 		pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
967 		first_seg->packet_type =
968 			ptype_tbl[(uint8_t)((qword1 &
969 			I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
970 		if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
971 			first_seg->hash.rss =
972 				rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
973 		if (pkt_flags & RTE_MBUF_F_RX_FDIR)
974 			pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
975 
976 #ifdef RTE_LIBRTE_IEEE1588
977 		pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
978 #endif
979 		first_seg->ol_flags |= pkt_flags;
980 
981 		/* Prefetch data of first segment, if configured to do so. */
982 		rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
983 			first_seg->data_off));
984 		rx_pkts[nb_rx++] = first_seg;
985 		first_seg = NULL;
986 	}
987 
988 	/* Record index of the next RX descriptor to probe. */
989 	rxq->rx_tail = rx_id;
990 	rxq->pkt_first_seg = first_seg;
991 	rxq->pkt_last_seg = last_seg;
992 
993 	/**
994 	 * If the number of free RX descriptors is greater than the RX free
995 	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
996 	 * register. Update the RDT with the value of the last processed RX
997 	 * descriptor minus 1, to guarantee that the RDT register is never
998 	 * equal to the RDH register, which creates a "full" ring situation
999 	 * from the hardware point of view.
1000 	 */
1001 	nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1002 	if (nb_hold > rxq->rx_free_thresh) {
1003 		rx_id = (uint16_t)(rx_id == 0 ?
1004 			(rxq->nb_rx_desc - 1) : (rx_id - 1));
1005 		I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1006 		nb_hold = 0;
1007 	}
1008 	rxq->nb_rx_hold = nb_hold;
1009 
1010 	return nb_rx;
1011 }
1012 
1013 /* Check if the context descriptor is needed for TX offloading */
1014 static inline uint16_t
i40e_calc_context_desc(uint64_t flags)1015 i40e_calc_context_desc(uint64_t flags)
1016 {
1017 	static uint64_t mask = RTE_MBUF_F_TX_OUTER_IP_CKSUM |
1018 		RTE_MBUF_F_TX_TCP_SEG |
1019 		RTE_MBUF_F_TX_QINQ |
1020 		RTE_MBUF_F_TX_TUNNEL_MASK;
1021 
1022 #ifdef RTE_LIBRTE_IEEE1588
1023 	mask |= RTE_MBUF_F_TX_IEEE1588_TMST;
1024 #endif
1025 
1026 	return (flags & mask) ? 1 : 0;
1027 }
1028 
1029 /* set i40e TSO context descriptor */
1030 static inline uint64_t
i40e_set_tso_ctx(struct rte_mbuf * mbuf,union i40e_tx_offload tx_offload)1031 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
1032 {
1033 	uint64_t ctx_desc = 0;
1034 	uint32_t cd_cmd, hdr_len, cd_tso_len;
1035 
1036 	if (!tx_offload.l4_len) {
1037 		PMD_DRV_LOG(DEBUG, "L4 length set to 0");
1038 		return ctx_desc;
1039 	}
1040 
1041 	hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
1042 	hdr_len += (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
1043 		   tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
1044 
1045 	cd_cmd = I40E_TX_CTX_DESC_TSO;
1046 	cd_tso_len = mbuf->pkt_len - hdr_len;
1047 	ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1048 		((uint64_t)cd_tso_len <<
1049 		 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1050 		((uint64_t)mbuf->tso_segsz <<
1051 		 I40E_TXD_CTX_QW1_MSS_SHIFT);
1052 
1053 	return ctx_desc;
1054 }
1055 
1056 /* HW requires that Tx buffer size ranges from 1B up to (16K-1)B. */
1057 #define I40E_MAX_DATA_PER_TXD \
1058 	(I40E_TXD_QW1_TX_BUF_SZ_MASK >> I40E_TXD_QW1_TX_BUF_SZ_SHIFT)
1059 /* Calculate the number of TX descriptors needed for each pkt */
1060 static inline uint16_t
i40e_calc_pkt_desc(struct rte_mbuf * tx_pkt)1061 i40e_calc_pkt_desc(struct rte_mbuf *tx_pkt)
1062 {
1063 	struct rte_mbuf *txd = tx_pkt;
1064 	uint16_t count = 0;
1065 
1066 	while (txd != NULL) {
1067 		count += DIV_ROUND_UP(txd->data_len, I40E_MAX_DATA_PER_TXD);
1068 		txd = txd->next;
1069 	}
1070 
1071 	return count;
1072 }
1073 
1074 uint16_t
i40e_xmit_pkts(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1075 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1076 {
1077 	struct i40e_tx_queue *txq;
1078 	struct i40e_tx_entry *sw_ring;
1079 	struct i40e_tx_entry *txe, *txn;
1080 	volatile struct i40e_tx_desc *txd;
1081 	volatile struct i40e_tx_desc *txr;
1082 	struct rte_mbuf *tx_pkt;
1083 	struct rte_mbuf *m_seg;
1084 	uint32_t cd_tunneling_params;
1085 	uint16_t tx_id;
1086 	uint16_t nb_tx;
1087 	uint32_t td_cmd;
1088 	uint32_t td_offset;
1089 	uint32_t td_tag;
1090 	uint64_t ol_flags;
1091 	uint16_t nb_used;
1092 	uint16_t nb_ctx;
1093 	uint16_t tx_last;
1094 	uint16_t slen;
1095 	uint64_t buf_dma_addr;
1096 	union i40e_tx_offload tx_offload = {0};
1097 
1098 	txq = tx_queue;
1099 	sw_ring = txq->sw_ring;
1100 	txr = txq->tx_ring;
1101 	tx_id = txq->tx_tail;
1102 	txe = &sw_ring[tx_id];
1103 
1104 	/* Check if the descriptor ring needs to be cleaned. */
1105 	if (txq->nb_tx_free < txq->tx_free_thresh)
1106 		(void)i40e_xmit_cleanup(txq);
1107 
1108 	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1109 		td_cmd = 0;
1110 		td_tag = 0;
1111 		td_offset = 0;
1112 
1113 		tx_pkt = *tx_pkts++;
1114 		RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1115 
1116 		ol_flags = tx_pkt->ol_flags;
1117 		tx_offload.l2_len = tx_pkt->l2_len;
1118 		tx_offload.l3_len = tx_pkt->l3_len;
1119 		tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1120 		tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1121 		tx_offload.l4_len = tx_pkt->l4_len;
1122 		tx_offload.tso_segsz = tx_pkt->tso_segsz;
1123 
1124 		/* Calculate the number of context descriptors needed. */
1125 		nb_ctx = i40e_calc_context_desc(ol_flags);
1126 
1127 		/**
1128 		 * The number of descriptors that must be allocated for
1129 		 * a packet equals to the number of the segments of that
1130 		 * packet plus 1 context descriptor if needed.
1131 		 * Recalculate the needed tx descs when TSO enabled in case
1132 		 * the mbuf data size exceeds max data size that hw allows
1133 		 * per tx desc.
1134 		 */
1135 		if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
1136 			nb_used = (uint16_t)(i40e_calc_pkt_desc(tx_pkt) +
1137 					     nb_ctx);
1138 		else
1139 			nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1140 		tx_last = (uint16_t)(tx_id + nb_used - 1);
1141 
1142 		/* Circular ring */
1143 		if (tx_last >= txq->nb_tx_desc)
1144 			tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1145 
1146 		if (nb_used > txq->nb_tx_free) {
1147 			if (i40e_xmit_cleanup(txq) != 0) {
1148 				if (nb_tx == 0)
1149 					return 0;
1150 				goto end_of_tx;
1151 			}
1152 			if (unlikely(nb_used > txq->tx_rs_thresh)) {
1153 				while (nb_used > txq->nb_tx_free) {
1154 					if (i40e_xmit_cleanup(txq) != 0) {
1155 						if (nb_tx == 0)
1156 							return 0;
1157 						goto end_of_tx;
1158 					}
1159 				}
1160 			}
1161 		}
1162 
1163 		/* Descriptor based VLAN insertion */
1164 		if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
1165 			td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1166 			td_tag = tx_pkt->vlan_tci;
1167 		}
1168 
1169 		/* Always enable CRC offload insertion */
1170 		td_cmd |= I40E_TX_DESC_CMD_ICRC;
1171 
1172 		/* Fill in tunneling parameters if necessary */
1173 		cd_tunneling_params = 0;
1174 		if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
1175 			i40e_parse_tunneling_params(ol_flags, tx_offload,
1176 						    &cd_tunneling_params);
1177 		/* Enable checksum offloading */
1178 		if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1179 			i40e_txd_enable_checksum(ol_flags, &td_cmd,
1180 						 &td_offset, tx_offload);
1181 
1182 		if (nb_ctx) {
1183 			/* Setup TX context descriptor if required */
1184 			volatile struct i40e_tx_context_desc *ctx_txd =
1185 				(volatile struct i40e_tx_context_desc *)\
1186 							&txr[tx_id];
1187 			uint16_t cd_l2tag2 = 0;
1188 			uint64_t cd_type_cmd_tso_mss =
1189 				I40E_TX_DESC_DTYPE_CONTEXT;
1190 
1191 			txn = &sw_ring[txe->next_id];
1192 			RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1193 			if (txe->mbuf != NULL) {
1194 				rte_pktmbuf_free_seg(txe->mbuf);
1195 				txe->mbuf = NULL;
1196 			}
1197 
1198 			/* TSO enabled means no timestamp */
1199 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
1200 				cd_type_cmd_tso_mss |=
1201 					i40e_set_tso_ctx(tx_pkt, tx_offload);
1202 			else {
1203 #ifdef RTE_LIBRTE_IEEE1588
1204 				if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
1205 					cd_type_cmd_tso_mss |=
1206 						((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1207 						 I40E_TXD_CTX_QW1_CMD_SHIFT);
1208 #endif
1209 			}
1210 
1211 			ctx_txd->tunneling_params =
1212 				rte_cpu_to_le_32(cd_tunneling_params);
1213 			if (ol_flags & RTE_MBUF_F_TX_QINQ) {
1214 				cd_l2tag2 = tx_pkt->vlan_tci_outer;
1215 				cd_type_cmd_tso_mss |=
1216 					((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1217 						I40E_TXD_CTX_QW1_CMD_SHIFT);
1218 			}
1219 			ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1220 			ctx_txd->type_cmd_tso_mss =
1221 				rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1222 
1223 			PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1224 				"tunneling_params: %#x;\n"
1225 				"l2tag2: %#hx;\n"
1226 				"rsvd: %#hx;\n"
1227 				"type_cmd_tso_mss: %#"PRIx64";\n",
1228 				tx_pkt, tx_id,
1229 				ctx_txd->tunneling_params,
1230 				ctx_txd->l2tag2,
1231 				ctx_txd->rsvd,
1232 				ctx_txd->type_cmd_tso_mss);
1233 
1234 			txe->last_id = tx_last;
1235 			tx_id = txe->next_id;
1236 			txe = txn;
1237 		}
1238 
1239 		m_seg = tx_pkt;
1240 		do {
1241 			txd = &txr[tx_id];
1242 			txn = &sw_ring[txe->next_id];
1243 
1244 			if (txe->mbuf)
1245 				rte_pktmbuf_free_seg(txe->mbuf);
1246 			txe->mbuf = m_seg;
1247 
1248 			/* Setup TX Descriptor */
1249 			slen = m_seg->data_len;
1250 			buf_dma_addr = rte_mbuf_data_iova(m_seg);
1251 
1252 			while ((ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
1253 				unlikely(slen > I40E_MAX_DATA_PER_TXD)) {
1254 				txd->buffer_addr =
1255 					rte_cpu_to_le_64(buf_dma_addr);
1256 				txd->cmd_type_offset_bsz =
1257 					i40e_build_ctob(td_cmd,
1258 					td_offset, I40E_MAX_DATA_PER_TXD,
1259 					td_tag);
1260 
1261 				buf_dma_addr += I40E_MAX_DATA_PER_TXD;
1262 				slen -= I40E_MAX_DATA_PER_TXD;
1263 
1264 				txe->last_id = tx_last;
1265 				tx_id = txe->next_id;
1266 				txe = txn;
1267 				txd = &txr[tx_id];
1268 				txn = &sw_ring[txe->next_id];
1269 			}
1270 			PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1271 				"buf_dma_addr: %#"PRIx64";\n"
1272 				"td_cmd: %#x;\n"
1273 				"td_offset: %#x;\n"
1274 				"td_len: %u;\n"
1275 				"td_tag: %#x;\n",
1276 				tx_pkt, tx_id, buf_dma_addr,
1277 				td_cmd, td_offset, slen, td_tag);
1278 
1279 			txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1280 			txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1281 						td_offset, slen, td_tag);
1282 			txe->last_id = tx_last;
1283 			tx_id = txe->next_id;
1284 			txe = txn;
1285 			m_seg = m_seg->next;
1286 		} while (m_seg != NULL);
1287 
1288 		/* The last packet data descriptor needs End Of Packet (EOP) */
1289 		td_cmd |= I40E_TX_DESC_CMD_EOP;
1290 		txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1291 		txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1292 
1293 		if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1294 			PMD_TX_LOG(DEBUG,
1295 				   "Setting RS bit on TXD id="
1296 				   "%4u (port=%d queue=%d)",
1297 				   tx_last, txq->port_id, txq->queue_id);
1298 
1299 			td_cmd |= I40E_TX_DESC_CMD_RS;
1300 
1301 			/* Update txq RS bit counters */
1302 			txq->nb_tx_used = 0;
1303 		}
1304 
1305 		txd->cmd_type_offset_bsz |=
1306 			rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1307 					I40E_TXD_QW1_CMD_SHIFT);
1308 	}
1309 
1310 end_of_tx:
1311 	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1312 		   (unsigned) txq->port_id, (unsigned) txq->queue_id,
1313 		   (unsigned) tx_id, (unsigned) nb_tx);
1314 
1315 	rte_io_wmb();
1316 	I40E_PCI_REG_WC_WRITE_RELAXED(txq->qtx_tail, tx_id);
1317 	txq->tx_tail = tx_id;
1318 
1319 	return nb_tx;
1320 }
1321 
1322 static __rte_always_inline int
i40e_tx_free_bufs(struct i40e_tx_queue * txq)1323 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1324 {
1325 	struct i40e_tx_entry *txep;
1326 	uint16_t tx_rs_thresh = txq->tx_rs_thresh;
1327 	uint16_t i = 0, j = 0;
1328 	struct rte_mbuf *free[RTE_I40E_TX_MAX_FREE_BUF_SZ];
1329 	const uint16_t k = RTE_ALIGN_FLOOR(tx_rs_thresh, RTE_I40E_TX_MAX_FREE_BUF_SZ);
1330 	const uint16_t m = tx_rs_thresh % RTE_I40E_TX_MAX_FREE_BUF_SZ;
1331 
1332 	if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1333 			rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1334 			rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1335 		return 0;
1336 
1337 	txep = &txq->sw_ring[txq->tx_next_dd - (tx_rs_thresh - 1)];
1338 
1339 	for (i = 0; i < tx_rs_thresh; i++)
1340 		rte_prefetch0((txep + i)->mbuf);
1341 
1342 	if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) {
1343 		if (k) {
1344 			for (j = 0; j != k; j += RTE_I40E_TX_MAX_FREE_BUF_SZ) {
1345 				for (i = 0; i < RTE_I40E_TX_MAX_FREE_BUF_SZ; ++i, ++txep) {
1346 					free[i] = txep->mbuf;
1347 					txep->mbuf = NULL;
1348 				}
1349 				rte_mempool_put_bulk(free[0]->pool, (void **)free,
1350 						RTE_I40E_TX_MAX_FREE_BUF_SZ);
1351 			}
1352 		}
1353 
1354 		if (m) {
1355 			for (i = 0; i < m; ++i, ++txep) {
1356 				free[i] = txep->mbuf;
1357 				txep->mbuf = NULL;
1358 			}
1359 			rte_mempool_put_bulk(free[0]->pool, (void **)free, m);
1360 		}
1361 	} else {
1362 		for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1363 			rte_pktmbuf_free_seg(txep->mbuf);
1364 			txep->mbuf = NULL;
1365 		}
1366 	}
1367 
1368 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1369 	txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1370 	if (txq->tx_next_dd >= txq->nb_tx_desc)
1371 		txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1372 
1373 	return txq->tx_rs_thresh;
1374 }
1375 
1376 /* Populate 4 descriptors with data from 4 mbufs */
1377 static inline void
tx4(volatile struct i40e_tx_desc * txdp,struct rte_mbuf ** pkts)1378 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1379 {
1380 	uint64_t dma_addr;
1381 	uint32_t i;
1382 
1383 	for (i = 0; i < 4; i++, txdp++, pkts++) {
1384 		dma_addr = rte_mbuf_data_iova(*pkts);
1385 		txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1386 		txdp->cmd_type_offset_bsz =
1387 			i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1388 					(*pkts)->data_len, 0);
1389 	}
1390 }
1391 
1392 /* Populate 1 descriptor with data from 1 mbuf */
1393 static inline void
tx1(volatile struct i40e_tx_desc * txdp,struct rte_mbuf ** pkts)1394 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1395 {
1396 	uint64_t dma_addr;
1397 
1398 	dma_addr = rte_mbuf_data_iova(*pkts);
1399 	txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1400 	txdp->cmd_type_offset_bsz =
1401 		i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1402 				(*pkts)->data_len, 0);
1403 }
1404 
1405 /* Fill hardware descriptor ring with mbuf data */
1406 static inline void
i40e_tx_fill_hw_ring(struct i40e_tx_queue * txq,struct rte_mbuf ** pkts,uint16_t nb_pkts)1407 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1408 		     struct rte_mbuf **pkts,
1409 		     uint16_t nb_pkts)
1410 {
1411 	volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1412 	struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1413 	const int N_PER_LOOP = 4;
1414 	const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1415 	int mainpart, leftover;
1416 	int i, j;
1417 
1418 	mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1419 	leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1420 	for (i = 0; i < mainpart; i += N_PER_LOOP) {
1421 		for (j = 0; j < N_PER_LOOP; ++j) {
1422 			(txep + i + j)->mbuf = *(pkts + i + j);
1423 		}
1424 		tx4(txdp + i, pkts + i);
1425 	}
1426 	if (unlikely(leftover > 0)) {
1427 		for (i = 0; i < leftover; ++i) {
1428 			(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1429 			tx1(txdp + mainpart + i, pkts + mainpart + i);
1430 		}
1431 	}
1432 }
1433 
1434 static inline uint16_t
tx_xmit_pkts(struct i40e_tx_queue * txq,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1435 tx_xmit_pkts(struct i40e_tx_queue *txq,
1436 	     struct rte_mbuf **tx_pkts,
1437 	     uint16_t nb_pkts)
1438 {
1439 	volatile struct i40e_tx_desc *txr = txq->tx_ring;
1440 	uint16_t n = 0;
1441 
1442 	/**
1443 	 * Begin scanning the H/W ring for done descriptors when the number
1444 	 * of available descriptors drops below tx_free_thresh. For each done
1445 	 * descriptor, free the associated buffer.
1446 	 */
1447 	if (txq->nb_tx_free < txq->tx_free_thresh)
1448 		i40e_tx_free_bufs(txq);
1449 
1450 	/* Use available descriptor only */
1451 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1452 	if (unlikely(!nb_pkts))
1453 		return 0;
1454 
1455 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1456 	if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1457 		n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1458 		i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1459 		txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1460 			rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1461 						I40E_TXD_QW1_CMD_SHIFT);
1462 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1463 		txq->tx_tail = 0;
1464 	}
1465 
1466 	/* Fill hardware descriptor ring with mbuf data */
1467 	i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1468 	txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1469 
1470 	/* Determine if RS bit needs to be set */
1471 	if (txq->tx_tail > txq->tx_next_rs) {
1472 		txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1473 			rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1474 						I40E_TXD_QW1_CMD_SHIFT);
1475 		txq->tx_next_rs =
1476 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1477 		if (txq->tx_next_rs >= txq->nb_tx_desc)
1478 			txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1479 	}
1480 
1481 	if (txq->tx_tail >= txq->nb_tx_desc)
1482 		txq->tx_tail = 0;
1483 
1484 	/* Update the tx tail register */
1485 	I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1486 
1487 	return nb_pkts;
1488 }
1489 
1490 static uint16_t
i40e_xmit_pkts_simple(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1491 i40e_xmit_pkts_simple(void *tx_queue,
1492 		      struct rte_mbuf **tx_pkts,
1493 		      uint16_t nb_pkts)
1494 {
1495 	uint16_t nb_tx = 0;
1496 
1497 	if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1498 		return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1499 						tx_pkts, nb_pkts);
1500 
1501 	while (nb_pkts) {
1502 		uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1503 						I40E_TX_MAX_BURST);
1504 
1505 		ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1506 						&tx_pkts[nb_tx], num);
1507 		nb_tx = (uint16_t)(nb_tx + ret);
1508 		nb_pkts = (uint16_t)(nb_pkts - ret);
1509 		if (ret < num)
1510 			break;
1511 	}
1512 
1513 	return nb_tx;
1514 }
1515 
1516 static uint16_t
i40e_xmit_pkts_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1517 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1518 		   uint16_t nb_pkts)
1519 {
1520 	uint16_t nb_tx = 0;
1521 	struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
1522 
1523 	while (nb_pkts) {
1524 		uint16_t ret, num;
1525 
1526 		/* cross rs_thresh boundary is not allowed */
1527 		num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1528 		ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
1529 						num);
1530 		nb_tx += ret;
1531 		nb_pkts -= ret;
1532 		if (ret < num)
1533 			break;
1534 	}
1535 
1536 	return nb_tx;
1537 }
1538 
1539 /*********************************************************************
1540  *
1541  *  TX simple prep functions
1542  *
1543  **********************************************************************/
1544 uint16_t
i40e_simple_prep_pkts(__rte_unused void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1545 i40e_simple_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1546 		      uint16_t nb_pkts)
1547 {
1548 	int i;
1549 	uint64_t ol_flags;
1550 	struct rte_mbuf *m;
1551 
1552 	for (i = 0; i < nb_pkts; i++) {
1553 		m = tx_pkts[i];
1554 		ol_flags = m->ol_flags;
1555 
1556 		if (m->nb_segs != 1) {
1557 			rte_errno = EINVAL;
1558 			return i;
1559 		}
1560 
1561 		if (ol_flags & I40E_TX_OFFLOAD_SIMPLE_NOTSUP_MASK) {
1562 			rte_errno = ENOTSUP;
1563 			return i;
1564 		}
1565 
1566 		/* check the size of packet */
1567 		if (m->pkt_len < I40E_TX_MIN_PKT_LEN ||
1568 		    m->pkt_len > I40E_FRAME_SIZE_MAX) {
1569 			rte_errno = EINVAL;
1570 			return i;
1571 		}
1572 	}
1573 	return i;
1574 }
1575 
1576 /*********************************************************************
1577  *
1578  *  TX prep functions
1579  *
1580  **********************************************************************/
1581 uint16_t
i40e_prep_pkts(__rte_unused void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)1582 i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1583 		uint16_t nb_pkts)
1584 {
1585 	int i, ret;
1586 	uint64_t ol_flags;
1587 	struct rte_mbuf *m;
1588 
1589 	for (i = 0; i < nb_pkts; i++) {
1590 		m = tx_pkts[i];
1591 		ol_flags = m->ol_flags;
1592 
1593 		/* Check for m->nb_segs to not exceed the limits. */
1594 		if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
1595 			if (m->nb_segs > I40E_TX_MAX_MTU_SEG ||
1596 			    m->pkt_len > I40E_FRAME_SIZE_MAX) {
1597 				rte_errno = EINVAL;
1598 				return i;
1599 			}
1600 		} else if (m->nb_segs > I40E_TX_MAX_SEG ||
1601 			   m->tso_segsz < I40E_MIN_TSO_MSS ||
1602 			   m->tso_segsz > I40E_MAX_TSO_MSS ||
1603 			   m->pkt_len > I40E_TSO_FRAME_SIZE_MAX) {
1604 			/* MSS outside the range (256B - 9674B) are considered
1605 			 * malicious
1606 			 */
1607 			rte_errno = EINVAL;
1608 			return i;
1609 		}
1610 
1611 		if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1612 			rte_errno = ENOTSUP;
1613 			return i;
1614 		}
1615 
1616 		/* check the size of packet */
1617 		if (m->pkt_len < I40E_TX_MIN_PKT_LEN) {
1618 			rte_errno = EINVAL;
1619 			return i;
1620 		}
1621 
1622 #ifdef RTE_ETHDEV_DEBUG_TX
1623 		ret = rte_validate_tx_offload(m);
1624 		if (ret != 0) {
1625 			rte_errno = -ret;
1626 			return i;
1627 		}
1628 #endif
1629 		ret = rte_net_intel_cksum_prepare(m);
1630 		if (ret != 0) {
1631 			rte_errno = -ret;
1632 			return i;
1633 		}
1634 	}
1635 	return i;
1636 }
1637 
1638 /*
1639  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1640  * application used, which assume having sequential ones. But from driver's
1641  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1642  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1643  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1644  * use queue_idx from 0 to 95 to access queues, while real queue would be
1645  * different. This function will do a queue mapping to find VSI the queue
1646  * belongs to.
1647  */
1648 static struct i40e_vsi*
i40e_pf_get_vsi_by_qindex(struct i40e_pf * pf,uint16_t queue_idx)1649 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1650 {
1651 	/* the queue in MAIN VSI range */
1652 	if (queue_idx < pf->main_vsi->nb_qps)
1653 		return pf->main_vsi;
1654 
1655 	queue_idx -= pf->main_vsi->nb_qps;
1656 
1657 	/* queue_idx is greater than VMDQ VSIs range */
1658 	if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1659 		PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1660 		return NULL;
1661 	}
1662 
1663 	return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1664 }
1665 
1666 static uint16_t
i40e_get_queue_offset_by_qindex(struct i40e_pf * pf,uint16_t queue_idx)1667 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1668 {
1669 	/* the queue in MAIN VSI range */
1670 	if (queue_idx < pf->main_vsi->nb_qps)
1671 		return queue_idx;
1672 
1673 	/* It's VMDQ queues */
1674 	queue_idx -= pf->main_vsi->nb_qps;
1675 
1676 	if (pf->nb_cfg_vmdq_vsi)
1677 		return queue_idx % pf->vmdq_nb_qps;
1678 	else {
1679 		PMD_INIT_LOG(ERR, "Fail to get queue offset");
1680 		return (uint16_t)(-1);
1681 	}
1682 }
1683 
1684 int
i40e_dev_rx_queue_start(struct rte_eth_dev * dev,uint16_t rx_queue_id)1685 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1686 {
1687 	struct i40e_rx_queue *rxq;
1688 	int err;
1689 	struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1690 
1691 	PMD_INIT_FUNC_TRACE();
1692 
1693 	rxq = dev->data->rx_queues[rx_queue_id];
1694 	if (!rxq || !rxq->q_set) {
1695 		PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
1696 			    rx_queue_id);
1697 		return -EINVAL;
1698 	}
1699 
1700 	if (rxq->rx_deferred_start)
1701 		PMD_DRV_LOG(WARNING, "RX queue %u is deferred start",
1702 			    rx_queue_id);
1703 
1704 	err = i40e_alloc_rx_queue_mbufs(rxq);
1705 	if (err) {
1706 		PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1707 		return err;
1708 	}
1709 
1710 	/* Init the RX tail register. */
1711 	I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1712 
1713 	err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1714 	if (err) {
1715 		PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1716 			    rx_queue_id);
1717 
1718 		i40e_rx_queue_release_mbufs(rxq);
1719 		i40e_reset_rx_queue(rxq);
1720 		return err;
1721 	}
1722 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1723 
1724 	return 0;
1725 }
1726 
1727 int
i40e_dev_rx_queue_stop(struct rte_eth_dev * dev,uint16_t rx_queue_id)1728 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1729 {
1730 	struct i40e_rx_queue *rxq;
1731 	int err;
1732 	struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1733 
1734 	rxq = dev->data->rx_queues[rx_queue_id];
1735 	if (!rxq || !rxq->q_set) {
1736 		PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
1737 				rx_queue_id);
1738 		return -EINVAL;
1739 	}
1740 
1741 	/*
1742 	 * rx_queue_id is queue id application refers to, while
1743 	 * rxq->reg_idx is the real queue index.
1744 	 */
1745 	err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1746 	if (err) {
1747 		PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1748 			    rx_queue_id);
1749 		return err;
1750 	}
1751 	i40e_rx_queue_release_mbufs(rxq);
1752 	i40e_reset_rx_queue(rxq);
1753 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1754 
1755 	return 0;
1756 }
1757 
1758 int
i40e_dev_tx_queue_start(struct rte_eth_dev * dev,uint16_t tx_queue_id)1759 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1760 {
1761 	int err;
1762 	struct i40e_tx_queue *txq;
1763 	struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1764 
1765 	PMD_INIT_FUNC_TRACE();
1766 
1767 	txq = dev->data->tx_queues[tx_queue_id];
1768 	if (!txq || !txq->q_set) {
1769 		PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
1770 			    tx_queue_id);
1771 		return -EINVAL;
1772 	}
1773 
1774 	if (txq->tx_deferred_start)
1775 		PMD_DRV_LOG(WARNING, "TX queue %u is deferred start",
1776 			    tx_queue_id);
1777 
1778 	/*
1779 	 * tx_queue_id is queue id application refers to, while
1780 	 * rxq->reg_idx is the real queue index.
1781 	 */
1782 	err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1783 	if (err) {
1784 		PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1785 			    tx_queue_id);
1786 		return err;
1787 	}
1788 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1789 
1790 	return 0;
1791 }
1792 
1793 int
i40e_dev_tx_queue_stop(struct rte_eth_dev * dev,uint16_t tx_queue_id)1794 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1795 {
1796 	struct i40e_tx_queue *txq;
1797 	int err;
1798 	struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1799 
1800 	txq = dev->data->tx_queues[tx_queue_id];
1801 	if (!txq || !txq->q_set) {
1802 		PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
1803 			tx_queue_id);
1804 		return -EINVAL;
1805 	}
1806 
1807 	/*
1808 	 * tx_queue_id is queue id application refers to, while
1809 	 * txq->reg_idx is the real queue index.
1810 	 */
1811 	err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1812 	if (err) {
1813 		PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1814 			    tx_queue_id);
1815 		return err;
1816 	}
1817 
1818 	i40e_tx_queue_release_mbufs(txq);
1819 	i40e_reset_tx_queue(txq);
1820 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1821 
1822 	return 0;
1823 }
1824 
1825 const uint32_t *
i40e_dev_supported_ptypes_get(struct rte_eth_dev * dev)1826 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1827 {
1828 	static const uint32_t ptypes[] = {
1829 		/* refers to i40e_rxd_pkt_type_mapping() */
1830 		RTE_PTYPE_L2_ETHER,
1831 		RTE_PTYPE_L2_ETHER_TIMESYNC,
1832 		RTE_PTYPE_L2_ETHER_LLDP,
1833 		RTE_PTYPE_L2_ETHER_ARP,
1834 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1835 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1836 		RTE_PTYPE_L4_FRAG,
1837 		RTE_PTYPE_L4_ICMP,
1838 		RTE_PTYPE_L4_NONFRAG,
1839 		RTE_PTYPE_L4_SCTP,
1840 		RTE_PTYPE_L4_TCP,
1841 		RTE_PTYPE_L4_UDP,
1842 		RTE_PTYPE_TUNNEL_GRENAT,
1843 		RTE_PTYPE_TUNNEL_IP,
1844 		RTE_PTYPE_INNER_L2_ETHER,
1845 		RTE_PTYPE_INNER_L2_ETHER_VLAN,
1846 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1847 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1848 		RTE_PTYPE_INNER_L4_FRAG,
1849 		RTE_PTYPE_INNER_L4_ICMP,
1850 		RTE_PTYPE_INNER_L4_NONFRAG,
1851 		RTE_PTYPE_INNER_L4_SCTP,
1852 		RTE_PTYPE_INNER_L4_TCP,
1853 		RTE_PTYPE_INNER_L4_UDP,
1854 		RTE_PTYPE_UNKNOWN
1855 	};
1856 
1857 	if (dev->rx_pkt_burst == i40e_recv_pkts ||
1858 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1859 	    dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1860 #endif
1861 	    dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1862 	    dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1863 	    dev->rx_pkt_burst == i40e_recv_pkts_vec ||
1864 #ifdef CC_AVX512_SUPPORT
1865 	    dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx512 ||
1866 	    dev->rx_pkt_burst == i40e_recv_pkts_vec_avx512 ||
1867 #endif
1868 	    dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
1869 	    dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2)
1870 		return ptypes;
1871 	return NULL;
1872 }
1873 
1874 static int
i40e_dev_first_queue(uint16_t idx,void ** queues,int num)1875 i40e_dev_first_queue(uint16_t idx, void **queues, int num)
1876 {
1877 	uint16_t i;
1878 
1879 	for (i = 0; i < num; i++) {
1880 		if (i != idx && queues[i])
1881 			return 0;
1882 	}
1883 
1884 	return 1;
1885 }
1886 
1887 static int
i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev * dev,struct i40e_rx_queue * rxq)1888 i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev *dev,
1889 				struct i40e_rx_queue *rxq)
1890 {
1891 	struct i40e_adapter *ad =
1892 		I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1893 	int use_def_burst_func =
1894 		check_rx_burst_bulk_alloc_preconditions(rxq);
1895 	uint16_t buf_size =
1896 		(uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
1897 			   RTE_PKTMBUF_HEADROOM);
1898 	int use_scattered_rx =
1899 		(rxq->max_pkt_len > buf_size);
1900 
1901 	if (i40e_rx_queue_init(rxq) != I40E_SUCCESS) {
1902 		PMD_DRV_LOG(ERR,
1903 			    "Failed to do RX queue initialization");
1904 		return -EINVAL;
1905 	}
1906 
1907 	if (i40e_dev_first_queue(rxq->queue_id,
1908 				 dev->data->rx_queues,
1909 				 dev->data->nb_rx_queues)) {
1910 		/**
1911 		 * If it is the first queue to setup,
1912 		 * set all flags to default and call
1913 		 * i40e_set_rx_function.
1914 		 */
1915 		ad->rx_bulk_alloc_allowed = true;
1916 		ad->rx_vec_allowed = true;
1917 		dev->data->scattered_rx = use_scattered_rx;
1918 		if (use_def_burst_func)
1919 			ad->rx_bulk_alloc_allowed = false;
1920 		i40e_set_rx_function(dev);
1921 		return 0;
1922 	} else if (ad->rx_vec_allowed && !rte_is_power_of_2(rxq->nb_rx_desc)) {
1923 		PMD_DRV_LOG(ERR, "Vector mode is allowed, but descriptor"
1924 			    " number %d of queue %d isn't power of 2",
1925 			    rxq->nb_rx_desc, rxq->queue_id);
1926 		return -EINVAL;
1927 	}
1928 
1929 	/* check bulk alloc conflict */
1930 	if (ad->rx_bulk_alloc_allowed && use_def_burst_func) {
1931 		PMD_DRV_LOG(ERR, "Can't use default burst.");
1932 		return -EINVAL;
1933 	}
1934 	/* check scattered conflict */
1935 	if (!dev->data->scattered_rx && use_scattered_rx) {
1936 		PMD_DRV_LOG(ERR, "Scattered rx is required.");
1937 		return -EINVAL;
1938 	}
1939 	/* check vector conflict */
1940 	if (ad->rx_vec_allowed && i40e_rxq_vec_setup(rxq)) {
1941 		PMD_DRV_LOG(ERR, "Failed vector rx setup.");
1942 		return -EINVAL;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 int
i40e_dev_rx_queue_setup(struct rte_eth_dev * dev,uint16_t queue_idx,uint16_t nb_desc,unsigned int socket_id,const struct rte_eth_rxconf * rx_conf,struct rte_mempool * mp)1949 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1950 			uint16_t queue_idx,
1951 			uint16_t nb_desc,
1952 			unsigned int socket_id,
1953 			const struct rte_eth_rxconf *rx_conf,
1954 			struct rte_mempool *mp)
1955 {
1956 	struct i40e_adapter *ad =
1957 		I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1958 	struct i40e_vsi *vsi;
1959 	struct i40e_pf *pf = NULL;
1960 	struct i40e_rx_queue *rxq;
1961 	const struct rte_memzone *rz;
1962 	uint32_t ring_size;
1963 	uint16_t len, i;
1964 	uint16_t reg_idx, base, bsf, tc_mapping;
1965 	int q_offset, use_def_burst_func = 1;
1966 	uint64_t offloads;
1967 
1968 	offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1969 
1970 	pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1971 	vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1972 	if (!vsi)
1973 		return -EINVAL;
1974 	q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
1975 	if (q_offset < 0)
1976 		return -EINVAL;
1977 	reg_idx = vsi->base_queue + q_offset;
1978 
1979 	if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1980 	    (nb_desc > I40E_MAX_RING_DESC) ||
1981 	    (nb_desc < I40E_MIN_RING_DESC)) {
1982 		PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1983 			    "invalid", nb_desc);
1984 		return -EINVAL;
1985 	}
1986 
1987 	/* Free memory if needed */
1988 	if (dev->data->rx_queues[queue_idx]) {
1989 		i40e_rx_queue_release(dev->data->rx_queues[queue_idx]);
1990 		dev->data->rx_queues[queue_idx] = NULL;
1991 	}
1992 
1993 	/* Allocate the rx queue data structure */
1994 	rxq = rte_zmalloc_socket("i40e rx queue",
1995 				 sizeof(struct i40e_rx_queue),
1996 				 RTE_CACHE_LINE_SIZE,
1997 				 socket_id);
1998 	if (!rxq) {
1999 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2000 			    "rx queue data structure");
2001 		return -ENOMEM;
2002 	}
2003 	rxq->mp = mp;
2004 	rxq->nb_rx_desc = nb_desc;
2005 	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2006 	rxq->queue_id = queue_idx;
2007 	rxq->reg_idx = reg_idx;
2008 	rxq->port_id = dev->data->port_id;
2009 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
2010 		rxq->crc_len = RTE_ETHER_CRC_LEN;
2011 	else
2012 		rxq->crc_len = 0;
2013 	rxq->drop_en = rx_conf->rx_drop_en;
2014 	rxq->vsi = vsi;
2015 	rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2016 	rxq->offloads = offloads;
2017 
2018 	/* Allocate the maximum number of RX ring hardware descriptor. */
2019 	len = I40E_MAX_RING_DESC;
2020 
2021 	/**
2022 	 * Allocating a little more memory because vectorized/bulk_alloc Rx
2023 	 * functions doesn't check boundaries each time.
2024 	 */
2025 	len += RTE_PMD_I40E_RX_MAX_BURST;
2026 
2027 	ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
2028 			      I40E_DMA_MEM_ALIGN);
2029 
2030 	rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
2031 			      ring_size, I40E_RING_BASE_ALIGN, socket_id);
2032 	if (!rz) {
2033 		i40e_rx_queue_release(rxq);
2034 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
2035 		return -ENOMEM;
2036 	}
2037 
2038 	rxq->mz = rz;
2039 	/* Zero all the descriptors in the ring. */
2040 	memset(rz->addr, 0, ring_size);
2041 
2042 	rxq->rx_ring_phys_addr = rz->iova;
2043 	rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2044 
2045 	len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
2046 
2047 	/* Allocate the software ring. */
2048 	rxq->sw_ring =
2049 		rte_zmalloc_socket("i40e rx sw ring",
2050 				   sizeof(struct i40e_rx_entry) * len,
2051 				   RTE_CACHE_LINE_SIZE,
2052 				   socket_id);
2053 	if (!rxq->sw_ring) {
2054 		i40e_rx_queue_release(rxq);
2055 		PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
2056 		return -ENOMEM;
2057 	}
2058 
2059 	i40e_reset_rx_queue(rxq);
2060 	rxq->q_set = TRUE;
2061 
2062 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2063 		if (!(vsi->enabled_tc & (1 << i)))
2064 			continue;
2065 		tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2066 		base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2067 			I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2068 		bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2069 			I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2070 
2071 		if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2072 			rxq->dcb_tc = i;
2073 	}
2074 
2075 	if (dev->data->dev_started) {
2076 		if (i40e_dev_rx_queue_setup_runtime(dev, rxq)) {
2077 			i40e_rx_queue_release(rxq);
2078 			return -EINVAL;
2079 		}
2080 	} else {
2081 		use_def_burst_func =
2082 			check_rx_burst_bulk_alloc_preconditions(rxq);
2083 		if (!use_def_burst_func) {
2084 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2085 			PMD_INIT_LOG(DEBUG,
2086 			  "Rx Burst Bulk Alloc Preconditions are "
2087 			  "satisfied. Rx Burst Bulk Alloc function will be "
2088 			  "used on port=%d, queue=%d.",
2089 			  rxq->port_id, rxq->queue_id);
2090 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2091 		} else {
2092 			PMD_INIT_LOG(DEBUG,
2093 			  "Rx Burst Bulk Alloc Preconditions are "
2094 			  "not satisfied, Scattered Rx is requested, "
2095 			  "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
2096 			  "not enabled on port=%d, queue=%d.",
2097 			  rxq->port_id, rxq->queue_id);
2098 			ad->rx_bulk_alloc_allowed = false;
2099 		}
2100 	}
2101 
2102 	dev->data->rx_queues[queue_idx] = rxq;
2103 	return 0;
2104 }
2105 
2106 void
i40e_dev_rx_queue_release(struct rte_eth_dev * dev,uint16_t qid)2107 i40e_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
2108 {
2109 	i40e_rx_queue_release(dev->data->rx_queues[qid]);
2110 }
2111 
2112 void
i40e_dev_tx_queue_release(struct rte_eth_dev * dev,uint16_t qid)2113 i40e_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
2114 {
2115 	i40e_tx_queue_release(dev->data->tx_queues[qid]);
2116 }
2117 
2118 void
i40e_rx_queue_release(void * rxq)2119 i40e_rx_queue_release(void *rxq)
2120 {
2121 	struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
2122 
2123 	if (!q) {
2124 		PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2125 		return;
2126 	}
2127 
2128 	i40e_rx_queue_release_mbufs(q);
2129 	rte_free(q->sw_ring);
2130 	rte_memzone_free(q->mz);
2131 	rte_free(q);
2132 }
2133 
2134 uint32_t
i40e_dev_rx_queue_count(void * rx_queue)2135 i40e_dev_rx_queue_count(void *rx_queue)
2136 {
2137 #define I40E_RXQ_SCAN_INTERVAL 4
2138 	volatile union i40e_rx_desc *rxdp;
2139 	struct i40e_rx_queue *rxq;
2140 	uint16_t desc = 0;
2141 
2142 	rxq = rx_queue;
2143 	rxdp = &(rxq->rx_ring[rxq->rx_tail]);
2144 	while ((desc < rxq->nb_rx_desc) &&
2145 		((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2146 		I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2147 				(1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
2148 		/**
2149 		 * Check the DD bit of a rx descriptor of each 4 in a group,
2150 		 * to avoid checking too frequently and downgrading performance
2151 		 * too much.
2152 		 */
2153 		desc += I40E_RXQ_SCAN_INTERVAL;
2154 		rxdp += I40E_RXQ_SCAN_INTERVAL;
2155 		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2156 			rxdp = &(rxq->rx_ring[rxq->rx_tail +
2157 					desc - rxq->nb_rx_desc]);
2158 	}
2159 
2160 	return desc;
2161 }
2162 
2163 int
i40e_dev_rx_descriptor_status(void * rx_queue,uint16_t offset)2164 i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
2165 {
2166 	struct i40e_rx_queue *rxq = rx_queue;
2167 	volatile uint64_t *status;
2168 	uint64_t mask;
2169 	uint32_t desc;
2170 
2171 	if (unlikely(offset >= rxq->nb_rx_desc))
2172 		return -EINVAL;
2173 
2174 	if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2175 		return RTE_ETH_RX_DESC_UNAVAIL;
2176 
2177 	desc = rxq->rx_tail + offset;
2178 	if (desc >= rxq->nb_rx_desc)
2179 		desc -= rxq->nb_rx_desc;
2180 
2181 	status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2182 	mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
2183 		<< I40E_RXD_QW1_STATUS_SHIFT);
2184 	if (*status & mask)
2185 		return RTE_ETH_RX_DESC_DONE;
2186 
2187 	return RTE_ETH_RX_DESC_AVAIL;
2188 }
2189 
2190 int
i40e_dev_tx_descriptor_status(void * tx_queue,uint16_t offset)2191 i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
2192 {
2193 	struct i40e_tx_queue *txq = tx_queue;
2194 	volatile uint64_t *status;
2195 	uint64_t mask, expect;
2196 	uint32_t desc;
2197 
2198 	if (unlikely(offset >= txq->nb_tx_desc))
2199 		return -EINVAL;
2200 
2201 	desc = txq->tx_tail + offset;
2202 	/* go to next desc that has the RS bit */
2203 	desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2204 		txq->tx_rs_thresh;
2205 	if (desc >= txq->nb_tx_desc) {
2206 		desc -= txq->nb_tx_desc;
2207 		if (desc >= txq->nb_tx_desc)
2208 			desc -= txq->nb_tx_desc;
2209 	}
2210 
2211 	status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2212 	mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
2213 	expect = rte_cpu_to_le_64(
2214 		I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
2215 	if ((*status & mask) == expect)
2216 		return RTE_ETH_TX_DESC_DONE;
2217 
2218 	return RTE_ETH_TX_DESC_FULL;
2219 }
2220 
2221 static int
i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev * dev,struct i40e_tx_queue * txq)2222 i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev *dev,
2223 				struct i40e_tx_queue *txq)
2224 {
2225 	struct i40e_adapter *ad =
2226 		I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2227 
2228 	if (i40e_tx_queue_init(txq) != I40E_SUCCESS) {
2229 		PMD_DRV_LOG(ERR,
2230 			    "Failed to do TX queue initialization");
2231 		return -EINVAL;
2232 	}
2233 
2234 	if (i40e_dev_first_queue(txq->queue_id,
2235 				 dev->data->tx_queues,
2236 				 dev->data->nb_tx_queues)) {
2237 		/**
2238 		 * If it is the first queue to setup,
2239 		 * set all flags and call
2240 		 * i40e_set_tx_function.
2241 		 */
2242 		i40e_set_tx_function_flag(dev, txq);
2243 		i40e_set_tx_function(dev);
2244 		return 0;
2245 	}
2246 
2247 	/* check vector conflict */
2248 	if (ad->tx_vec_allowed) {
2249 		if (txq->tx_rs_thresh > RTE_I40E_TX_MAX_FREE_BUF_SZ ||
2250 		    i40e_txq_vec_setup(txq)) {
2251 			PMD_DRV_LOG(ERR, "Failed vector tx setup.");
2252 			return -EINVAL;
2253 		}
2254 	}
2255 	/* check simple tx conflict */
2256 	if (ad->tx_simple_allowed) {
2257 		if ((txq->offloads & ~RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) != 0 ||
2258 				txq->tx_rs_thresh < RTE_PMD_I40E_TX_MAX_BURST) {
2259 			PMD_DRV_LOG(ERR, "No-simple tx is required.");
2260 			return -EINVAL;
2261 		}
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 int
i40e_dev_tx_queue_setup(struct rte_eth_dev * dev,uint16_t queue_idx,uint16_t nb_desc,unsigned int socket_id,const struct rte_eth_txconf * tx_conf)2268 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2269 			uint16_t queue_idx,
2270 			uint16_t nb_desc,
2271 			unsigned int socket_id,
2272 			const struct rte_eth_txconf *tx_conf)
2273 {
2274 	struct i40e_vsi *vsi;
2275 	struct i40e_pf *pf = NULL;
2276 	struct i40e_tx_queue *txq;
2277 	const struct rte_memzone *tz;
2278 	uint32_t ring_size;
2279 	uint16_t tx_rs_thresh, tx_free_thresh;
2280 	uint16_t reg_idx, i, base, bsf, tc_mapping;
2281 	int q_offset;
2282 	uint64_t offloads;
2283 
2284 	offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2285 
2286 	pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2287 	vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2288 	if (!vsi)
2289 		return -EINVAL;
2290 	q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
2291 	if (q_offset < 0)
2292 		return -EINVAL;
2293 	reg_idx = vsi->base_queue + q_offset;
2294 
2295 	if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2296 	    (nb_desc > I40E_MAX_RING_DESC) ||
2297 	    (nb_desc < I40E_MIN_RING_DESC)) {
2298 		PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2299 			    "invalid", nb_desc);
2300 		return -EINVAL;
2301 	}
2302 
2303 	/**
2304 	 * The following two parameters control the setting of the RS bit on
2305 	 * transmit descriptors. TX descriptors will have their RS bit set
2306 	 * after txq->tx_rs_thresh descriptors have been used. The TX
2307 	 * descriptor ring will be cleaned after txq->tx_free_thresh
2308 	 * descriptors are used or if the number of descriptors required to
2309 	 * transmit a packet is greater than the number of free TX descriptors.
2310 	 *
2311 	 * The following constraints must be satisfied:
2312 	 *  - tx_rs_thresh must be greater than 0.
2313 	 *  - tx_rs_thresh must be less than the size of the ring minus 2.
2314 	 *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2315 	 *  - tx_rs_thresh must be a divisor of the ring size.
2316 	 *  - tx_free_thresh must be greater than 0.
2317 	 *  - tx_free_thresh must be less than the size of the ring minus 3.
2318 	 *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2319 	 *
2320 	 * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2321 	 * race condition, hence the maximum threshold constraints. When set
2322 	 * to zero use default values.
2323 	 */
2324 	tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2325 		tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2326 	/* force tx_rs_thresh to adapt an aggressive tx_free_thresh */
2327 	tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2328 		nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2329 	if (tx_conf->tx_rs_thresh > 0)
2330 		tx_rs_thresh = tx_conf->tx_rs_thresh;
2331 	if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2332 		PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2333 				"exceed nb_desc. (tx_rs_thresh=%u "
2334 				"tx_free_thresh=%u nb_desc=%u port=%d queue=%d)",
2335 				(unsigned int)tx_rs_thresh,
2336 				(unsigned int)tx_free_thresh,
2337 				(unsigned int)nb_desc,
2338 				(int)dev->data->port_id,
2339 				(int)queue_idx);
2340 		return I40E_ERR_PARAM;
2341 	}
2342 	if (tx_rs_thresh >= (nb_desc - 2)) {
2343 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2344 			     "number of TX descriptors minus 2. "
2345 			     "(tx_rs_thresh=%u port=%d queue=%d)",
2346 			     (unsigned int)tx_rs_thresh,
2347 			     (int)dev->data->port_id,
2348 			     (int)queue_idx);
2349 		return I40E_ERR_PARAM;
2350 	}
2351 	if (tx_free_thresh >= (nb_desc - 3)) {
2352 		PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
2353 			     "number of TX descriptors minus 3. "
2354 			     "(tx_free_thresh=%u port=%d queue=%d)",
2355 			     (unsigned int)tx_free_thresh,
2356 			     (int)dev->data->port_id,
2357 			     (int)queue_idx);
2358 		return I40E_ERR_PARAM;
2359 	}
2360 	if (tx_rs_thresh > tx_free_thresh) {
2361 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2362 			     "equal to tx_free_thresh. (tx_free_thresh=%u"
2363 			     " tx_rs_thresh=%u port=%d queue=%d)",
2364 			     (unsigned int)tx_free_thresh,
2365 			     (unsigned int)tx_rs_thresh,
2366 			     (int)dev->data->port_id,
2367 			     (int)queue_idx);
2368 		return I40E_ERR_PARAM;
2369 	}
2370 	if ((nb_desc % tx_rs_thresh) != 0) {
2371 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2372 			     "number of TX descriptors. (tx_rs_thresh=%u"
2373 			     " port=%d queue=%d)",
2374 			     (unsigned int)tx_rs_thresh,
2375 			     (int)dev->data->port_id,
2376 			     (int)queue_idx);
2377 		return I40E_ERR_PARAM;
2378 	}
2379 	if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2380 		PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2381 			     "tx_rs_thresh is greater than 1. "
2382 			     "(tx_rs_thresh=%u port=%d queue=%d)",
2383 			     (unsigned int)tx_rs_thresh,
2384 			     (int)dev->data->port_id,
2385 			     (int)queue_idx);
2386 		return I40E_ERR_PARAM;
2387 	}
2388 
2389 	/* Free memory if needed. */
2390 	if (dev->data->tx_queues[queue_idx]) {
2391 		i40e_tx_queue_release(dev->data->tx_queues[queue_idx]);
2392 		dev->data->tx_queues[queue_idx] = NULL;
2393 	}
2394 
2395 	/* Allocate the TX queue data structure. */
2396 	txq = rte_zmalloc_socket("i40e tx queue",
2397 				  sizeof(struct i40e_tx_queue),
2398 				  RTE_CACHE_LINE_SIZE,
2399 				  socket_id);
2400 	if (!txq) {
2401 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2402 			    "tx queue structure");
2403 		return -ENOMEM;
2404 	}
2405 
2406 	/* Allocate TX hardware ring descriptors. */
2407 	ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2408 	ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2409 	tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2410 			      ring_size, I40E_RING_BASE_ALIGN, socket_id);
2411 	if (!tz) {
2412 		i40e_tx_queue_release(txq);
2413 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2414 		return -ENOMEM;
2415 	}
2416 
2417 	txq->mz = tz;
2418 	txq->nb_tx_desc = nb_desc;
2419 	txq->tx_rs_thresh = tx_rs_thresh;
2420 	txq->tx_free_thresh = tx_free_thresh;
2421 	txq->pthresh = tx_conf->tx_thresh.pthresh;
2422 	txq->hthresh = tx_conf->tx_thresh.hthresh;
2423 	txq->wthresh = tx_conf->tx_thresh.wthresh;
2424 	txq->queue_id = queue_idx;
2425 	txq->reg_idx = reg_idx;
2426 	txq->port_id = dev->data->port_id;
2427 	txq->offloads = offloads;
2428 	txq->vsi = vsi;
2429 	txq->tx_deferred_start = tx_conf->tx_deferred_start;
2430 
2431 	txq->tx_ring_phys_addr = tz->iova;
2432 	txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2433 
2434 	/* Allocate software ring */
2435 	txq->sw_ring =
2436 		rte_zmalloc_socket("i40e tx sw ring",
2437 				   sizeof(struct i40e_tx_entry) * nb_desc,
2438 				   RTE_CACHE_LINE_SIZE,
2439 				   socket_id);
2440 	if (!txq->sw_ring) {
2441 		i40e_tx_queue_release(txq);
2442 		PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2443 		return -ENOMEM;
2444 	}
2445 
2446 	i40e_reset_tx_queue(txq);
2447 	txq->q_set = TRUE;
2448 
2449 	for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2450 		if (!(vsi->enabled_tc & (1 << i)))
2451 			continue;
2452 		tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2453 		base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2454 			I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2455 		bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2456 			I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2457 
2458 		if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2459 			txq->dcb_tc = i;
2460 	}
2461 
2462 	if (dev->data->dev_started) {
2463 		if (i40e_dev_tx_queue_setup_runtime(dev, txq)) {
2464 			i40e_tx_queue_release(txq);
2465 			return -EINVAL;
2466 		}
2467 	} else {
2468 		/**
2469 		 * Use a simple TX queue without offloads or
2470 		 * multi segs if possible
2471 		 */
2472 		i40e_set_tx_function_flag(dev, txq);
2473 	}
2474 	dev->data->tx_queues[queue_idx] = txq;
2475 
2476 	return 0;
2477 }
2478 
2479 void
i40e_tx_queue_release(void * txq)2480 i40e_tx_queue_release(void *txq)
2481 {
2482 	struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2483 
2484 	if (!q) {
2485 		PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2486 		return;
2487 	}
2488 
2489 	i40e_tx_queue_release_mbufs(q);
2490 	rte_free(q->sw_ring);
2491 	rte_memzone_free(q->mz);
2492 	rte_free(q);
2493 }
2494 
2495 const struct rte_memzone *
i40e_memzone_reserve(const char * name,uint32_t len,int socket_id)2496 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2497 {
2498 	const struct rte_memzone *mz;
2499 
2500 	mz = rte_memzone_lookup(name);
2501 	if (mz)
2502 		return mz;
2503 
2504 	mz = rte_memzone_reserve_aligned(name, len, socket_id,
2505 			RTE_MEMZONE_IOVA_CONTIG, I40E_RING_BASE_ALIGN);
2506 	return mz;
2507 }
2508 
2509 void
i40e_rx_queue_release_mbufs(struct i40e_rx_queue * rxq)2510 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2511 {
2512 	uint16_t i;
2513 
2514 	/* SSE Vector driver has a different way of releasing mbufs. */
2515 	if (rxq->rx_using_sse) {
2516 		i40e_rx_queue_release_mbufs_vec(rxq);
2517 		return;
2518 	}
2519 
2520 	if (!rxq->sw_ring) {
2521 		PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2522 		return;
2523 	}
2524 
2525 	for (i = 0; i < rxq->nb_rx_desc; i++) {
2526 		if (rxq->sw_ring[i].mbuf) {
2527 			rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2528 			rxq->sw_ring[i].mbuf = NULL;
2529 		}
2530 	}
2531 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2532 	if (rxq->rx_nb_avail == 0)
2533 		return;
2534 	for (i = 0; i < rxq->rx_nb_avail; i++) {
2535 		struct rte_mbuf *mbuf;
2536 
2537 		mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2538 		rte_pktmbuf_free_seg(mbuf);
2539 	}
2540 	rxq->rx_nb_avail = 0;
2541 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2542 }
2543 
2544 void
i40e_reset_rx_queue(struct i40e_rx_queue * rxq)2545 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2546 {
2547 	unsigned i;
2548 	uint16_t len;
2549 
2550 	if (!rxq) {
2551 		PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2552 		return;
2553 	}
2554 
2555 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2556 	if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2557 		len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2558 	else
2559 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2560 		len = rxq->nb_rx_desc;
2561 
2562 	for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2563 		((volatile char *)rxq->rx_ring)[i] = 0;
2564 
2565 	memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2566 	for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2567 		rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2568 
2569 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2570 	rxq->rx_nb_avail = 0;
2571 	rxq->rx_next_avail = 0;
2572 	rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2573 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2574 	rxq->rx_tail = 0;
2575 	rxq->nb_rx_hold = 0;
2576 
2577 	rte_pktmbuf_free(rxq->pkt_first_seg);
2578 
2579 	rxq->pkt_first_seg = NULL;
2580 	rxq->pkt_last_seg = NULL;
2581 
2582 	rxq->rxrearm_start = 0;
2583 	rxq->rxrearm_nb = 0;
2584 }
2585 
2586 void
i40e_tx_queue_release_mbufs(struct i40e_tx_queue * txq)2587 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2588 {
2589 	struct rte_eth_dev *dev;
2590 	uint16_t i;
2591 
2592 	if (!txq || !txq->sw_ring) {
2593 		PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
2594 		return;
2595 	}
2596 
2597 	dev = &rte_eth_devices[txq->port_id];
2598 
2599 	/**
2600 	 *  vPMD tx will not set sw_ring's mbuf to NULL after free,
2601 	 *  so need to free remains more carefully.
2602 	 */
2603 #ifdef CC_AVX512_SUPPORT
2604 	if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx512) {
2605 		struct i40e_vec_tx_entry *swr = (void *)txq->sw_ring;
2606 
2607 		i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2608 		if (txq->tx_tail < i) {
2609 			for (; i < txq->nb_tx_desc; i++) {
2610 				rte_pktmbuf_free_seg(swr[i].mbuf);
2611 				swr[i].mbuf = NULL;
2612 			}
2613 			i = 0;
2614 		}
2615 		for (; i < txq->tx_tail; i++) {
2616 			rte_pktmbuf_free_seg(swr[i].mbuf);
2617 			swr[i].mbuf = NULL;
2618 		}
2619 		return;
2620 	}
2621 #endif
2622 	if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx2 ||
2623 			dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
2624 		i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2625 		if (txq->tx_tail < i) {
2626 			for (; i < txq->nb_tx_desc; i++) {
2627 				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2628 				txq->sw_ring[i].mbuf = NULL;
2629 			}
2630 			i = 0;
2631 		}
2632 		for (; i < txq->tx_tail; i++) {
2633 			rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2634 			txq->sw_ring[i].mbuf = NULL;
2635 		}
2636 	} else {
2637 		for (i = 0; i < txq->nb_tx_desc; i++) {
2638 			if (txq->sw_ring[i].mbuf) {
2639 				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2640 				txq->sw_ring[i].mbuf = NULL;
2641 			}
2642 		}
2643 	}
2644 }
2645 
2646 static int
i40e_tx_done_cleanup_full(struct i40e_tx_queue * txq,uint32_t free_cnt)2647 i40e_tx_done_cleanup_full(struct i40e_tx_queue *txq,
2648 			uint32_t free_cnt)
2649 {
2650 	struct i40e_tx_entry *swr_ring = txq->sw_ring;
2651 	uint16_t i, tx_last, tx_id;
2652 	uint16_t nb_tx_free_last;
2653 	uint16_t nb_tx_to_clean;
2654 	uint32_t pkt_cnt;
2655 
2656 	/* Start free mbuf from the next of tx_tail */
2657 	tx_last = txq->tx_tail;
2658 	tx_id  = swr_ring[tx_last].next_id;
2659 
2660 	if (txq->nb_tx_free == 0 && i40e_xmit_cleanup(txq))
2661 		return 0;
2662 
2663 	nb_tx_to_clean = txq->nb_tx_free;
2664 	nb_tx_free_last = txq->nb_tx_free;
2665 	if (!free_cnt)
2666 		free_cnt = txq->nb_tx_desc;
2667 
2668 	/* Loop through swr_ring to count the amount of
2669 	 * freeable mubfs and packets.
2670 	 */
2671 	for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2672 		for (i = 0; i < nb_tx_to_clean &&
2673 			pkt_cnt < free_cnt &&
2674 			tx_id != tx_last; i++) {
2675 			if (swr_ring[tx_id].mbuf != NULL) {
2676 				rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2677 				swr_ring[tx_id].mbuf = NULL;
2678 
2679 				/*
2680 				 * last segment in the packet,
2681 				 * increment packet count
2682 				 */
2683 				pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2684 			}
2685 
2686 			tx_id = swr_ring[tx_id].next_id;
2687 		}
2688 
2689 		if (txq->tx_rs_thresh > txq->nb_tx_desc -
2690 			txq->nb_tx_free || tx_id == tx_last)
2691 			break;
2692 
2693 		if (pkt_cnt < free_cnt) {
2694 			if (i40e_xmit_cleanup(txq))
2695 				break;
2696 
2697 			nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2698 			nb_tx_free_last = txq->nb_tx_free;
2699 		}
2700 	}
2701 
2702 	return (int)pkt_cnt;
2703 }
2704 
2705 static int
i40e_tx_done_cleanup_simple(struct i40e_tx_queue * txq,uint32_t free_cnt)2706 i40e_tx_done_cleanup_simple(struct i40e_tx_queue *txq,
2707 			uint32_t free_cnt)
2708 {
2709 	int i, n, cnt;
2710 
2711 	if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2712 		free_cnt = txq->nb_tx_desc;
2713 
2714 	cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2715 
2716 	for (i = 0; i < cnt; i += n) {
2717 		if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2718 			break;
2719 
2720 		n = i40e_tx_free_bufs(txq);
2721 
2722 		if (n == 0)
2723 			break;
2724 	}
2725 
2726 	return i;
2727 }
2728 
2729 static int
i40e_tx_done_cleanup_vec(struct i40e_tx_queue * txq __rte_unused,uint32_t free_cnt __rte_unused)2730 i40e_tx_done_cleanup_vec(struct i40e_tx_queue *txq __rte_unused,
2731 			uint32_t free_cnt __rte_unused)
2732 {
2733 	return -ENOTSUP;
2734 }
2735 int
i40e_tx_done_cleanup(void * txq,uint32_t free_cnt)2736 i40e_tx_done_cleanup(void *txq, uint32_t free_cnt)
2737 {
2738 	struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2739 	struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
2740 	struct i40e_adapter *ad =
2741 		I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2742 
2743 	if (ad->tx_simple_allowed) {
2744 		if (ad->tx_vec_allowed)
2745 			return i40e_tx_done_cleanup_vec(q, free_cnt);
2746 		else
2747 			return i40e_tx_done_cleanup_simple(q, free_cnt);
2748 	} else {
2749 		return i40e_tx_done_cleanup_full(q, free_cnt);
2750 	}
2751 }
2752 
2753 void
i40e_reset_tx_queue(struct i40e_tx_queue * txq)2754 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2755 {
2756 	struct i40e_tx_entry *txe;
2757 	uint16_t i, prev, size;
2758 
2759 	if (!txq) {
2760 		PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2761 		return;
2762 	}
2763 
2764 	txe = txq->sw_ring;
2765 	size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2766 	for (i = 0; i < size; i++)
2767 		((volatile char *)txq->tx_ring)[i] = 0;
2768 
2769 	prev = (uint16_t)(txq->nb_tx_desc - 1);
2770 	for (i = 0; i < txq->nb_tx_desc; i++) {
2771 		volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2772 
2773 		txd->cmd_type_offset_bsz =
2774 			rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2775 		txe[i].mbuf =  NULL;
2776 		txe[i].last_id = i;
2777 		txe[prev].next_id = i;
2778 		prev = i;
2779 	}
2780 
2781 	txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2782 	txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2783 
2784 	txq->tx_tail = 0;
2785 	txq->nb_tx_used = 0;
2786 
2787 	txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2788 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2789 }
2790 
2791 /* Init the TX queue in hardware */
2792 int
i40e_tx_queue_init(struct i40e_tx_queue * txq)2793 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2794 {
2795 	enum i40e_status_code err = I40E_SUCCESS;
2796 	struct i40e_vsi *vsi = txq->vsi;
2797 	struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2798 	uint16_t pf_q = txq->reg_idx;
2799 	struct i40e_hmc_obj_txq tx_ctx;
2800 	uint32_t qtx_ctl;
2801 
2802 	/* clear the context structure first */
2803 	memset(&tx_ctx, 0, sizeof(tx_ctx));
2804 	tx_ctx.new_context = 1;
2805 	tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2806 	tx_ctx.qlen = txq->nb_tx_desc;
2807 
2808 #ifdef RTE_LIBRTE_IEEE1588
2809 	tx_ctx.timesync_ena = 1;
2810 #endif
2811 	tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2812 	if (vsi->type == I40E_VSI_FDIR)
2813 		tx_ctx.fd_ena = TRUE;
2814 
2815 	err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2816 	if (err != I40E_SUCCESS) {
2817 		PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2818 		return err;
2819 	}
2820 
2821 	err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2822 	if (err != I40E_SUCCESS) {
2823 		PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2824 		return err;
2825 	}
2826 
2827 	/* Now associate this queue with this PCI function */
2828 	qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2829 	qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2830 					I40E_QTX_CTL_PF_INDX_MASK);
2831 	I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2832 	I40E_WRITE_FLUSH(hw);
2833 
2834 	txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2835 
2836 	return err;
2837 }
2838 
2839 int
i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue * rxq)2840 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2841 {
2842 	struct i40e_rx_entry *rxe = rxq->sw_ring;
2843 	uint64_t dma_addr;
2844 	uint16_t i;
2845 
2846 	for (i = 0; i < rxq->nb_rx_desc; i++) {
2847 		volatile union i40e_rx_desc *rxd;
2848 		struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2849 
2850 		if (unlikely(!mbuf)) {
2851 			PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2852 			return -ENOMEM;
2853 		}
2854 
2855 		rte_mbuf_refcnt_set(mbuf, 1);
2856 		mbuf->next = NULL;
2857 		mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2858 		mbuf->nb_segs = 1;
2859 		mbuf->port = rxq->port_id;
2860 
2861 		dma_addr =
2862 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2863 
2864 		rxd = &rxq->rx_ring[i];
2865 		rxd->read.pkt_addr = dma_addr;
2866 		rxd->read.hdr_addr = 0;
2867 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2868 		rxd->read.rsvd1 = 0;
2869 		rxd->read.rsvd2 = 0;
2870 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2871 
2872 		rxe[i].mbuf = mbuf;
2873 	}
2874 
2875 	return 0;
2876 }
2877 
2878 /*
2879  * Calculate the buffer length, and check the jumbo frame
2880  * and maximum packet length.
2881  */
2882 static int
i40e_rx_queue_config(struct i40e_rx_queue * rxq)2883 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2884 {
2885 	struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2886 	struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2887 	struct rte_eth_dev_data *data = pf->dev_data;
2888 	uint16_t buf_size;
2889 
2890 	buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2891 		RTE_PKTMBUF_HEADROOM);
2892 
2893 	switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2894 			I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2895 	case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2896 		rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2897 				(1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2898 		rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2899 				(1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2900 		rxq->hs_mode = i40e_header_split_enabled;
2901 		break;
2902 	case I40E_FLAG_HEADER_SPLIT_DISABLED:
2903 	default:
2904 		rxq->rx_hdr_len = 0;
2905 		rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
2906 			(1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2907 		rxq->hs_mode = i40e_header_split_none;
2908 		break;
2909 	}
2910 
2911 	rxq->max_pkt_len =
2912 		RTE_MIN(hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len,
2913 				data->mtu + I40E_ETH_OVERHEAD);
2914 	if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
2915 		rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2916 		PMD_DRV_LOG(ERR, "maximum packet length must be "
2917 			    "larger than %u and smaller than %u",
2918 			    (uint32_t)RTE_ETHER_MIN_LEN,
2919 			    (uint32_t)I40E_FRAME_SIZE_MAX);
2920 		return I40E_ERR_CONFIG;
2921 	}
2922 
2923 	return 0;
2924 }
2925 
2926 /* Init the RX queue in hardware */
2927 int
i40e_rx_queue_init(struct i40e_rx_queue * rxq)2928 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2929 {
2930 	int err = I40E_SUCCESS;
2931 	struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2932 	struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2933 	uint16_t pf_q = rxq->reg_idx;
2934 	uint16_t buf_size;
2935 	struct i40e_hmc_obj_rxq rx_ctx;
2936 
2937 	err = i40e_rx_queue_config(rxq);
2938 	if (err < 0) {
2939 		PMD_DRV_LOG(ERR, "Failed to config RX queue");
2940 		return err;
2941 	}
2942 
2943 	/* Clear the context structure first */
2944 	memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2945 	rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2946 	rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2947 
2948 	rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2949 	rx_ctx.qlen = rxq->nb_rx_desc;
2950 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2951 	rx_ctx.dsize = 1;
2952 #endif
2953 	rx_ctx.dtype = rxq->hs_mode;
2954 	if (rxq->hs_mode)
2955 		rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2956 	else
2957 		rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2958 	rx_ctx.rxmax = rxq->max_pkt_len;
2959 	rx_ctx.tphrdesc_ena = 1;
2960 	rx_ctx.tphwdesc_ena = 1;
2961 	rx_ctx.tphdata_ena = 1;
2962 	rx_ctx.tphhead_ena = 1;
2963 	rx_ctx.lrxqthresh = 2;
2964 	rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2965 	rx_ctx.l2tsel = 1;
2966 	/* showiv indicates if inner VLAN is stripped inside of tunnel
2967 	 * packet. When set it to 1, vlan information is stripped from
2968 	 * the inner header, but the hardware does not put it in the
2969 	 * descriptor. So set it zero by default.
2970 	 */
2971 	rx_ctx.showiv = 0;
2972 	rx_ctx.prefena = 1;
2973 
2974 	err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2975 	if (err != I40E_SUCCESS) {
2976 		PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2977 		return err;
2978 	}
2979 	err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2980 	if (err != I40E_SUCCESS) {
2981 		PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2982 		return err;
2983 	}
2984 
2985 	rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2986 
2987 	buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2988 		RTE_PKTMBUF_HEADROOM);
2989 
2990 	/* Check if scattered RX needs to be used. */
2991 	if (rxq->max_pkt_len > buf_size)
2992 		dev_data->scattered_rx = 1;
2993 
2994 	/* Init the RX tail register. */
2995 	I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2996 
2997 	return 0;
2998 }
2999 
3000 void
i40e_dev_clear_queues(struct rte_eth_dev * dev)3001 i40e_dev_clear_queues(struct rte_eth_dev *dev)
3002 {
3003 	uint16_t i;
3004 
3005 	PMD_INIT_FUNC_TRACE();
3006 
3007 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
3008 		if (!dev->data->tx_queues[i])
3009 			continue;
3010 		i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
3011 		i40e_reset_tx_queue(dev->data->tx_queues[i]);
3012 	}
3013 
3014 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
3015 		if (!dev->data->rx_queues[i])
3016 			continue;
3017 		i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
3018 		i40e_reset_rx_queue(dev->data->rx_queues[i]);
3019 	}
3020 }
3021 
3022 void
i40e_dev_free_queues(struct rte_eth_dev * dev)3023 i40e_dev_free_queues(struct rte_eth_dev *dev)
3024 {
3025 	uint16_t i;
3026 
3027 	PMD_INIT_FUNC_TRACE();
3028 
3029 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
3030 		if (!dev->data->rx_queues[i])
3031 			continue;
3032 		i40e_rx_queue_release(dev->data->rx_queues[i]);
3033 		dev->data->rx_queues[i] = NULL;
3034 	}
3035 
3036 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
3037 		if (!dev->data->tx_queues[i])
3038 			continue;
3039 		i40e_tx_queue_release(dev->data->tx_queues[i]);
3040 		dev->data->tx_queues[i] = NULL;
3041 	}
3042 }
3043 
3044 enum i40e_status_code
i40e_fdir_setup_tx_resources(struct i40e_pf * pf)3045 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
3046 {
3047 	struct i40e_tx_queue *txq;
3048 	const struct rte_memzone *tz = NULL;
3049 	struct rte_eth_dev *dev;
3050 	uint32_t ring_size;
3051 
3052 	if (!pf) {
3053 		PMD_DRV_LOG(ERR, "PF is not available");
3054 		return I40E_ERR_BAD_PTR;
3055 	}
3056 
3057 	dev = &rte_eth_devices[pf->dev_data->port_id];
3058 
3059 	/* Allocate the TX queue data structure. */
3060 	txq = rte_zmalloc_socket("i40e fdir tx queue",
3061 				  sizeof(struct i40e_tx_queue),
3062 				  RTE_CACHE_LINE_SIZE,
3063 				  SOCKET_ID_ANY);
3064 	if (!txq) {
3065 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3066 					"tx queue structure.");
3067 		return I40E_ERR_NO_MEMORY;
3068 	}
3069 
3070 	/* Allocate TX hardware ring descriptors. */
3071 	ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
3072 	ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3073 
3074 	tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
3075 				      I40E_FDIR_QUEUE_ID, ring_size,
3076 				      I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3077 	if (!tz) {
3078 		i40e_tx_queue_release(txq);
3079 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
3080 		return I40E_ERR_NO_MEMORY;
3081 	}
3082 
3083 	txq->mz = tz;
3084 	txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
3085 	txq->queue_id = I40E_FDIR_QUEUE_ID;
3086 	txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3087 	txq->vsi = pf->fdir.fdir_vsi;
3088 
3089 	txq->tx_ring_phys_addr = tz->iova;
3090 	txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
3091 
3092 	/*
3093 	 * don't need to allocate software ring and reset for the fdir
3094 	 * program queue just set the queue has been configured.
3095 	 */
3096 	txq->q_set = TRUE;
3097 	pf->fdir.txq = txq;
3098 	pf->fdir.txq_available_buf_count = I40E_FDIR_PRG_PKT_CNT;
3099 
3100 	return I40E_SUCCESS;
3101 }
3102 
3103 enum i40e_status_code
i40e_fdir_setup_rx_resources(struct i40e_pf * pf)3104 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
3105 {
3106 	struct i40e_rx_queue *rxq;
3107 	const struct rte_memzone *rz = NULL;
3108 	uint32_t ring_size;
3109 	struct rte_eth_dev *dev;
3110 
3111 	if (!pf) {
3112 		PMD_DRV_LOG(ERR, "PF is not available");
3113 		return I40E_ERR_BAD_PTR;
3114 	}
3115 
3116 	dev = &rte_eth_devices[pf->dev_data->port_id];
3117 
3118 	/* Allocate the RX queue data structure. */
3119 	rxq = rte_zmalloc_socket("i40e fdir rx queue",
3120 				  sizeof(struct i40e_rx_queue),
3121 				  RTE_CACHE_LINE_SIZE,
3122 				  SOCKET_ID_ANY);
3123 	if (!rxq) {
3124 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3125 					"rx queue structure.");
3126 		return I40E_ERR_NO_MEMORY;
3127 	}
3128 
3129 	/* Allocate RX hardware ring descriptors. */
3130 	ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
3131 	ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3132 
3133 	rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
3134 				      I40E_FDIR_QUEUE_ID, ring_size,
3135 				      I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3136 	if (!rz) {
3137 		i40e_rx_queue_release(rxq);
3138 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
3139 		return I40E_ERR_NO_MEMORY;
3140 	}
3141 
3142 	rxq->mz = rz;
3143 	rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
3144 	rxq->queue_id = I40E_FDIR_QUEUE_ID;
3145 	rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3146 	rxq->vsi = pf->fdir.fdir_vsi;
3147 
3148 	rxq->rx_ring_phys_addr = rz->iova;
3149 	memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
3150 	rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
3151 
3152 	/*
3153 	 * Don't need to allocate software ring and reset for the fdir
3154 	 * rx queue, just set the queue has been configured.
3155 	 */
3156 	rxq->q_set = TRUE;
3157 	pf->fdir.rxq = rxq;
3158 
3159 	return I40E_SUCCESS;
3160 }
3161 
3162 void
i40e_rxq_info_get(struct rte_eth_dev * dev,uint16_t queue_id,struct rte_eth_rxq_info * qinfo)3163 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3164 	struct rte_eth_rxq_info *qinfo)
3165 {
3166 	struct i40e_rx_queue *rxq;
3167 
3168 	rxq = dev->data->rx_queues[queue_id];
3169 
3170 	qinfo->mp = rxq->mp;
3171 	qinfo->scattered_rx = dev->data->scattered_rx;
3172 	qinfo->nb_desc = rxq->nb_rx_desc;
3173 
3174 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
3175 	qinfo->conf.rx_drop_en = rxq->drop_en;
3176 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
3177 	qinfo->conf.offloads = rxq->offloads;
3178 }
3179 
3180 void
i40e_txq_info_get(struct rte_eth_dev * dev,uint16_t queue_id,struct rte_eth_txq_info * qinfo)3181 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3182 	struct rte_eth_txq_info *qinfo)
3183 {
3184 	struct i40e_tx_queue *txq;
3185 
3186 	txq = dev->data->tx_queues[queue_id];
3187 
3188 	qinfo->nb_desc = txq->nb_tx_desc;
3189 
3190 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
3191 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
3192 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
3193 
3194 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
3195 	qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
3196 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
3197 	qinfo->conf.offloads = txq->offloads;
3198 }
3199 
3200 #ifdef RTE_ARCH_X86
3201 static inline bool
get_avx_supported(bool request_avx512)3202 get_avx_supported(bool request_avx512)
3203 {
3204 	if (request_avx512) {
3205 		if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3206 		rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3207 		rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3208 #ifdef CC_AVX512_SUPPORT
3209 			return true;
3210 #else
3211 		PMD_DRV_LOG(NOTICE,
3212 			"AVX512 is not supported in build env");
3213 		return false;
3214 #endif
3215 	} else {
3216 		if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
3217 		rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 &&
3218 		rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
3219 #ifdef CC_AVX2_SUPPORT
3220 			return true;
3221 #else
3222 		PMD_DRV_LOG(NOTICE,
3223 			"AVX2 is not supported in build env");
3224 		return false;
3225 #endif
3226 	}
3227 
3228 	return false;
3229 }
3230 #endif /* RTE_ARCH_X86 */
3231 
3232 
3233 void __rte_cold
i40e_set_rx_function(struct rte_eth_dev * dev)3234 i40e_set_rx_function(struct rte_eth_dev *dev)
3235 {
3236 	struct i40e_adapter *ad =
3237 		I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3238 	uint16_t rx_using_sse, i;
3239 	/* In order to allow Vector Rx there are a few configuration
3240 	 * conditions to be met and Rx Bulk Allocation should be allowed.
3241 	 */
3242 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3243 #ifdef RTE_ARCH_X86
3244 		ad->rx_use_avx512 = false;
3245 		ad->rx_use_avx2 = false;
3246 #endif
3247 		if (i40e_rx_vec_dev_conf_condition_check(dev) ||
3248 		    !ad->rx_bulk_alloc_allowed) {
3249 			PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
3250 				     " Vector Rx preconditions",
3251 				     dev->data->port_id);
3252 
3253 			ad->rx_vec_allowed = false;
3254 		}
3255 		if (ad->rx_vec_allowed) {
3256 			for (i = 0; i < dev->data->nb_rx_queues; i++) {
3257 				struct i40e_rx_queue *rxq =
3258 					dev->data->rx_queues[i];
3259 
3260 				if (rxq && i40e_rxq_vec_setup(rxq)) {
3261 					ad->rx_vec_allowed = false;
3262 					break;
3263 				}
3264 			}
3265 #ifdef RTE_ARCH_X86
3266 			ad->rx_use_avx512 = get_avx_supported(1);
3267 
3268 			if (!ad->rx_use_avx512)
3269 				ad->rx_use_avx2 = get_avx_supported(0);
3270 #endif
3271 		}
3272 	}
3273 
3274 	if (ad->rx_vec_allowed  &&
3275 	    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3276 #ifdef RTE_ARCH_X86
3277 		if (dev->data->scattered_rx) {
3278 			if (ad->rx_use_avx512) {
3279 #ifdef CC_AVX512_SUPPORT
3280 				PMD_DRV_LOG(NOTICE,
3281 					"Using AVX512 Vector Scattered Rx (port %d).",
3282 					dev->data->port_id);
3283 				dev->rx_pkt_burst =
3284 					i40e_recv_scattered_pkts_vec_avx512;
3285 #endif
3286 			} else {
3287 				PMD_INIT_LOG(DEBUG,
3288 					"Using %sVector Scattered Rx (port %d).",
3289 					ad->rx_use_avx2 ? "avx2 " : "",
3290 					dev->data->port_id);
3291 				dev->rx_pkt_burst = ad->rx_use_avx2 ?
3292 					i40e_recv_scattered_pkts_vec_avx2 :
3293 					i40e_recv_scattered_pkts_vec;
3294 			}
3295 		} else {
3296 			if (ad->rx_use_avx512) {
3297 #ifdef CC_AVX512_SUPPORT
3298 				PMD_DRV_LOG(NOTICE,
3299 					"Using AVX512 Vector Rx (port %d).",
3300 					dev->data->port_id);
3301 				dev->rx_pkt_burst =
3302 					i40e_recv_pkts_vec_avx512;
3303 #endif
3304 			} else {
3305 				PMD_INIT_LOG(DEBUG,
3306 					"Using %sVector Rx (port %d).",
3307 					ad->rx_use_avx2 ? "avx2 " : "",
3308 					dev->data->port_id);
3309 				dev->rx_pkt_burst = ad->rx_use_avx2 ?
3310 					i40e_recv_pkts_vec_avx2 :
3311 					i40e_recv_pkts_vec;
3312 			}
3313 		}
3314 #else /* RTE_ARCH_X86 */
3315 		if (dev->data->scattered_rx) {
3316 			PMD_INIT_LOG(DEBUG,
3317 				     "Using Vector Scattered Rx (port %d).",
3318 				     dev->data->port_id);
3319 			dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
3320 		} else {
3321 			PMD_INIT_LOG(DEBUG, "Using Vector Rx (port %d).",
3322 				     dev->data->port_id);
3323 			dev->rx_pkt_burst = i40e_recv_pkts_vec;
3324 		}
3325 #endif /* RTE_ARCH_X86 */
3326 	} else if (!dev->data->scattered_rx && ad->rx_bulk_alloc_allowed) {
3327 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
3328 				    "satisfied. Rx Burst Bulk Alloc function "
3329 				    "will be used on port=%d.",
3330 			     dev->data->port_id);
3331 
3332 		dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
3333 	} else {
3334 		/* Simple Rx Path. */
3335 		PMD_INIT_LOG(DEBUG, "Simple Rx path will be used on port=%d.",
3336 			     dev->data->port_id);
3337 		dev->rx_pkt_burst = dev->data->scattered_rx ?
3338 					i40e_recv_scattered_pkts :
3339 					i40e_recv_pkts;
3340 	}
3341 
3342 	/* Propagate information about RX function choice through all queues. */
3343 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3344 		rx_using_sse =
3345 			(dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3346 			 dev->rx_pkt_burst == i40e_recv_pkts_vec ||
3347 #ifdef CC_AVX512_SUPPORT
3348 			 dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx512 ||
3349 			 dev->rx_pkt_burst == i40e_recv_pkts_vec_avx512 ||
3350 #endif
3351 			 dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
3352 			 dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2);
3353 
3354 		for (i = 0; i < dev->data->nb_rx_queues; i++) {
3355 			struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3356 
3357 			if (rxq)
3358 				rxq->rx_using_sse = rx_using_sse;
3359 		}
3360 	}
3361 }
3362 
3363 static const struct {
3364 	eth_rx_burst_t pkt_burst;
3365 	const char *info;
3366 } i40e_rx_burst_infos[] = {
3367 	{ i40e_recv_scattered_pkts,          "Scalar Scattered" },
3368 	{ i40e_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3369 	{ i40e_recv_pkts,                    "Scalar" },
3370 #ifdef RTE_ARCH_X86
3371 #ifdef CC_AVX512_SUPPORT
3372 	{ i40e_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3373 	{ i40e_recv_pkts_vec_avx512,           "Vector AVX512" },
3374 #endif
3375 	{ i40e_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3376 	{ i40e_recv_pkts_vec_avx2,           "Vector AVX2" },
3377 	{ i40e_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3378 	{ i40e_recv_pkts_vec,                "Vector SSE" },
3379 #elif defined(RTE_ARCH_ARM64)
3380 	{ i40e_recv_scattered_pkts_vec,      "Vector Neon Scattered" },
3381 	{ i40e_recv_pkts_vec,                "Vector Neon" },
3382 #elif defined(RTE_ARCH_PPC_64)
3383 	{ i40e_recv_scattered_pkts_vec,      "Vector AltiVec Scattered" },
3384 	{ i40e_recv_pkts_vec,                "Vector AltiVec" },
3385 #endif
3386 };
3387 
3388 int
i40e_rx_burst_mode_get(struct rte_eth_dev * dev,__rte_unused uint16_t queue_id,struct rte_eth_burst_mode * mode)3389 i40e_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3390 		       struct rte_eth_burst_mode *mode)
3391 {
3392 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3393 	int ret = -EINVAL;
3394 	unsigned int i;
3395 
3396 	for (i = 0; i < RTE_DIM(i40e_rx_burst_infos); ++i) {
3397 		if (pkt_burst == i40e_rx_burst_infos[i].pkt_burst) {
3398 			snprintf(mode->info, sizeof(mode->info), "%s",
3399 				 i40e_rx_burst_infos[i].info);
3400 			ret = 0;
3401 			break;
3402 		}
3403 	}
3404 
3405 	return ret;
3406 }
3407 
3408 void __rte_cold
i40e_set_tx_function_flag(struct rte_eth_dev * dev,struct i40e_tx_queue * txq)3409 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3410 {
3411 	struct i40e_adapter *ad =
3412 		I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3413 
3414 	/* Use a simple Tx queue if possible (only fast free is allowed) */
3415 	ad->tx_simple_allowed =
3416 		(txq->offloads ==
3417 		 (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
3418 		 txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST);
3419 	ad->tx_vec_allowed = (ad->tx_simple_allowed &&
3420 			txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ);
3421 
3422 	if (ad->tx_vec_allowed)
3423 		PMD_INIT_LOG(DEBUG, "Vector Tx can be enabled on Tx queue %u.",
3424 				txq->queue_id);
3425 	else if (ad->tx_simple_allowed)
3426 		PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3427 				txq->queue_id);
3428 	else
3429 		PMD_INIT_LOG(DEBUG,
3430 				"Neither simple nor vector Tx enabled on Tx queue %u\n",
3431 				txq->queue_id);
3432 }
3433 
3434 void __rte_cold
i40e_set_tx_function(struct rte_eth_dev * dev)3435 i40e_set_tx_function(struct rte_eth_dev *dev)
3436 {
3437 	struct i40e_adapter *ad =
3438 		I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3439 	int i;
3440 
3441 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3442 #ifdef RTE_ARCH_X86
3443 		ad->tx_use_avx2 = false;
3444 		ad->tx_use_avx512 = false;
3445 #endif
3446 		if (ad->tx_vec_allowed) {
3447 			for (i = 0; i < dev->data->nb_tx_queues; i++) {
3448 				struct i40e_tx_queue *txq =
3449 					dev->data->tx_queues[i];
3450 
3451 				if (txq && i40e_txq_vec_setup(txq)) {
3452 					ad->tx_vec_allowed = false;
3453 					break;
3454 				}
3455 			}
3456 #ifdef RTE_ARCH_X86
3457 			ad->tx_use_avx512 = get_avx_supported(1);
3458 
3459 			if (!ad->tx_use_avx512)
3460 				ad->tx_use_avx2 = get_avx_supported(0);
3461 #endif
3462 		}
3463 	}
3464 
3465 	if (ad->tx_simple_allowed) {
3466 		if (ad->tx_vec_allowed &&
3467 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3468 #ifdef RTE_ARCH_X86
3469 			if (ad->tx_use_avx512) {
3470 #ifdef CC_AVX512_SUPPORT
3471 				PMD_DRV_LOG(NOTICE, "Using AVX512 Vector Tx (port %d).",
3472 					    dev->data->port_id);
3473 				dev->tx_pkt_burst = i40e_xmit_pkts_vec_avx512;
3474 #endif
3475 			} else {
3476 				PMD_INIT_LOG(DEBUG, "Using %sVector Tx (port %d).",
3477 					     ad->tx_use_avx2 ? "avx2 " : "",
3478 					     dev->data->port_id);
3479 				dev->tx_pkt_burst = ad->tx_use_avx2 ?
3480 						    i40e_xmit_pkts_vec_avx2 :
3481 						    i40e_xmit_pkts_vec;
3482 			}
3483 #else /* RTE_ARCH_X86 */
3484 			PMD_INIT_LOG(DEBUG, "Using Vector Tx (port %d).",
3485 				     dev->data->port_id);
3486 			dev->tx_pkt_burst = i40e_xmit_pkts_vec;
3487 #endif /* RTE_ARCH_X86 */
3488 		} else {
3489 			PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3490 			dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3491 		}
3492 		dev->tx_pkt_prepare = i40e_simple_prep_pkts;
3493 	} else {
3494 		PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3495 		dev->tx_pkt_burst = i40e_xmit_pkts;
3496 		dev->tx_pkt_prepare = i40e_prep_pkts;
3497 	}
3498 }
3499 
3500 static const struct {
3501 	eth_tx_burst_t pkt_burst;
3502 	const char *info;
3503 } i40e_tx_burst_infos[] = {
3504 	{ i40e_xmit_pkts_simple,   "Scalar Simple" },
3505 	{ i40e_xmit_pkts,          "Scalar" },
3506 #ifdef RTE_ARCH_X86
3507 #ifdef CC_AVX512_SUPPORT
3508 	{ i40e_xmit_pkts_vec_avx512, "Vector AVX512" },
3509 #endif
3510 	{ i40e_xmit_pkts_vec_avx2, "Vector AVX2" },
3511 	{ i40e_xmit_pkts_vec,      "Vector SSE" },
3512 #elif defined(RTE_ARCH_ARM64)
3513 	{ i40e_xmit_pkts_vec,      "Vector Neon" },
3514 #elif defined(RTE_ARCH_PPC_64)
3515 	{ i40e_xmit_pkts_vec,      "Vector AltiVec" },
3516 #endif
3517 };
3518 
3519 int
i40e_tx_burst_mode_get(struct rte_eth_dev * dev,__rte_unused uint16_t queue_id,struct rte_eth_burst_mode * mode)3520 i40e_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3521 		       struct rte_eth_burst_mode *mode)
3522 {
3523 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3524 	int ret = -EINVAL;
3525 	unsigned int i;
3526 
3527 	for (i = 0; i < RTE_DIM(i40e_tx_burst_infos); ++i) {
3528 		if (pkt_burst == i40e_tx_burst_infos[i].pkt_burst) {
3529 			snprintf(mode->info, sizeof(mode->info), "%s",
3530 				 i40e_tx_burst_infos[i].info);
3531 			ret = 0;
3532 			break;
3533 		}
3534 	}
3535 
3536 	return ret;
3537 }
3538 
3539 void __rte_cold
i40e_set_default_ptype_table(struct rte_eth_dev * dev)3540 i40e_set_default_ptype_table(struct rte_eth_dev *dev)
3541 {
3542 	struct i40e_adapter *ad =
3543 		I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3544 	int i;
3545 
3546 	for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
3547 		ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
3548 }
3549 
3550 void __rte_cold
i40e_set_default_pctype_table(struct rte_eth_dev * dev)3551 i40e_set_default_pctype_table(struct rte_eth_dev *dev)
3552 {
3553 	struct i40e_adapter *ad =
3554 			I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3555 	struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3556 	int i;
3557 
3558 	for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
3559 		ad->pctypes_tbl[i] = 0ULL;
3560 	ad->flow_types_mask = 0ULL;
3561 	ad->pctypes_mask = 0ULL;
3562 
3563 	ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
3564 				(1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
3565 	ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
3566 				(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
3567 	ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
3568 				(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
3569 	ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
3570 				(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
3571 	ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
3572 				(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
3573 	ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
3574 				(1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
3575 	ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
3576 				(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
3577 	ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
3578 				(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
3579 	ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
3580 				(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
3581 	ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
3582 				(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
3583 	ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
3584 				(1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
3585 
3586 	if (hw->mac.type == I40E_MAC_X722 ||
3587 		hw->mac.type == I40E_MAC_X722_VF) {
3588 		ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3589 			(1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
3590 		ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3591 			(1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
3592 		ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
3593 			(1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
3594 		ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3595 			(1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
3596 		ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3597 			(1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
3598 		ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
3599 			(1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
3600 	}
3601 
3602 	for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
3603 		if (ad->pctypes_tbl[i])
3604 			ad->flow_types_mask |= (1ULL << i);
3605 		ad->pctypes_mask |= ad->pctypes_tbl[i];
3606 	}
3607 }
3608 
3609 #ifndef CC_AVX2_SUPPORT
3610 uint16_t
i40e_recv_pkts_vec_avx2(void __rte_unused * rx_queue,struct rte_mbuf __rte_unused ** rx_pkts,uint16_t __rte_unused nb_pkts)3611 i40e_recv_pkts_vec_avx2(void __rte_unused *rx_queue,
3612 			struct rte_mbuf __rte_unused **rx_pkts,
3613 			uint16_t __rte_unused nb_pkts)
3614 {
3615 	return 0;
3616 }
3617 
3618 uint16_t
i40e_recv_scattered_pkts_vec_avx2(void __rte_unused * rx_queue,struct rte_mbuf __rte_unused ** rx_pkts,uint16_t __rte_unused nb_pkts)3619 i40e_recv_scattered_pkts_vec_avx2(void __rte_unused *rx_queue,
3620 			struct rte_mbuf __rte_unused **rx_pkts,
3621 			uint16_t __rte_unused nb_pkts)
3622 {
3623 	return 0;
3624 }
3625 
3626 uint16_t
i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,struct rte_mbuf __rte_unused ** tx_pkts,uint16_t __rte_unused nb_pkts)3627 i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,
3628 			  struct rte_mbuf __rte_unused **tx_pkts,
3629 			  uint16_t __rte_unused nb_pkts)
3630 {
3631 	return 0;
3632 }
3633 #endif /* ifndef CC_AVX2_SUPPORT */
3634