xref: /dpdk/drivers/net/hns3/hns3_rxtx.c (revision 2d287ea3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_bus_pci.h>
6 #include <rte_common.h>
7 #include <rte_cycles.h>
8 #include <rte_geneve.h>
9 #include <rte_vxlan.h>
10 #include <ethdev_driver.h>
11 #include <rte_io.h>
12 #include <rte_net.h>
13 #include <rte_malloc.h>
14 #if defined(RTE_ARCH_ARM64)
15 #include <rte_cpuflags.h>
16 #include <rte_vect.h>
17 #endif
18 
19 #include "hns3_common.h"
20 #include "hns3_rxtx.h"
21 #include "hns3_regs.h"
22 #include "hns3_logs.h"
23 #include "hns3_mp.h"
24 
25 #define HNS3_CFG_DESC_NUM(num)	((num) / 8 - 1)
26 #define HNS3_RX_RING_PREFETCTH_MASK	3
27 
28 static void
hns3_rx_queue_release_mbufs(struct hns3_rx_queue * rxq)29 hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq)
30 {
31 	uint16_t i;
32 
33 	/* Note: Fake rx queue will not enter here */
34 	if (rxq->sw_ring == NULL)
35 		return;
36 
37 	if (rxq->rx_rearm_nb == 0) {
38 		for (i = 0; i < rxq->nb_rx_desc; i++) {
39 			if (rxq->sw_ring[i].mbuf != NULL) {
40 				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
41 				rxq->sw_ring[i].mbuf = NULL;
42 			}
43 		}
44 	} else {
45 		for (i = rxq->next_to_use;
46 		     i != rxq->rx_rearm_start;
47 		     i = (i + 1) % rxq->nb_rx_desc) {
48 			if (rxq->sw_ring[i].mbuf != NULL) {
49 				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
50 				rxq->sw_ring[i].mbuf = NULL;
51 			}
52 		}
53 	}
54 
55 	for (i = 0; i < rxq->bulk_mbuf_num; i++)
56 		rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]);
57 	rxq->bulk_mbuf_num = 0;
58 
59 	if (rxq->pkt_first_seg) {
60 		rte_pktmbuf_free(rxq->pkt_first_seg);
61 		rxq->pkt_first_seg = NULL;
62 	}
63 }
64 
65 static void
hns3_tx_queue_release_mbufs(struct hns3_tx_queue * txq)66 hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq)
67 {
68 	uint16_t i;
69 
70 	/* Note: Fake tx queue will not enter here */
71 	if (txq->sw_ring) {
72 		for (i = 0; i < txq->nb_tx_desc; i++) {
73 			if (txq->sw_ring[i].mbuf) {
74 				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
75 				txq->sw_ring[i].mbuf = NULL;
76 			}
77 		}
78 	}
79 }
80 
81 static void
hns3_rx_queue_release(void * queue)82 hns3_rx_queue_release(void *queue)
83 {
84 	struct hns3_rx_queue *rxq = queue;
85 	if (rxq) {
86 		hns3_rx_queue_release_mbufs(rxq);
87 		if (rxq->mz)
88 			rte_memzone_free(rxq->mz);
89 		rte_free(rxq->sw_ring);
90 		rte_free(rxq);
91 	}
92 }
93 
94 static void
hns3_tx_queue_release(void * queue)95 hns3_tx_queue_release(void *queue)
96 {
97 	struct hns3_tx_queue *txq = queue;
98 	if (txq) {
99 		hns3_tx_queue_release_mbufs(txq);
100 		if (txq->mz)
101 			rte_memzone_free(txq->mz);
102 		rte_free(txq->sw_ring);
103 		rte_free(txq->free);
104 		rte_free(txq);
105 	}
106 }
107 
108 static void
hns3_rx_queue_release_lock(void * queue)109 hns3_rx_queue_release_lock(void *queue)
110 {
111 	struct hns3_rx_queue *rxq = queue;
112 	struct hns3_adapter *hns;
113 
114 	if (rxq == NULL)
115 		return;
116 
117 	hns = rxq->hns;
118 	rte_spinlock_lock(&hns->hw.lock);
119 	hns3_rx_queue_release(queue);
120 	rte_spinlock_unlock(&hns->hw.lock);
121 }
122 
123 void
hns3_dev_rx_queue_release(struct rte_eth_dev * dev,uint16_t queue_id)124 hns3_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t queue_id)
125 {
126 	hns3_rx_queue_release_lock(dev->data->rx_queues[queue_id]);
127 }
128 
129 static void
hns3_tx_queue_release_lock(void * queue)130 hns3_tx_queue_release_lock(void *queue)
131 {
132 	struct hns3_tx_queue *txq = queue;
133 	struct hns3_adapter *hns;
134 
135 	if (txq == NULL)
136 		return;
137 
138 	hns = txq->hns;
139 	rte_spinlock_lock(&hns->hw.lock);
140 	hns3_tx_queue_release(queue);
141 	rte_spinlock_unlock(&hns->hw.lock);
142 }
143 
144 void
hns3_dev_tx_queue_release(struct rte_eth_dev * dev,uint16_t queue_id)145 hns3_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t queue_id)
146 {
147 	hns3_tx_queue_release_lock(dev->data->tx_queues[queue_id]);
148 }
149 
150 static void
hns3_fake_rx_queue_release(struct hns3_rx_queue * queue)151 hns3_fake_rx_queue_release(struct hns3_rx_queue *queue)
152 {
153 	struct hns3_rx_queue *rxq = queue;
154 	struct hns3_adapter *hns;
155 	struct hns3_hw *hw;
156 	uint16_t idx;
157 
158 	if (rxq == NULL)
159 		return;
160 
161 	hns = rxq->hns;
162 	hw = &hns->hw;
163 	idx = rxq->queue_id;
164 	if (hw->fkq_data.rx_queues[idx]) {
165 		hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
166 		hw->fkq_data.rx_queues[idx] = NULL;
167 	}
168 
169 	/* free fake rx queue arrays */
170 	if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) {
171 		hw->fkq_data.nb_fake_rx_queues = 0;
172 		rte_free(hw->fkq_data.rx_queues);
173 		hw->fkq_data.rx_queues = NULL;
174 	}
175 }
176 
177 static void
hns3_fake_tx_queue_release(struct hns3_tx_queue * queue)178 hns3_fake_tx_queue_release(struct hns3_tx_queue *queue)
179 {
180 	struct hns3_tx_queue *txq = queue;
181 	struct hns3_adapter *hns;
182 	struct hns3_hw *hw;
183 	uint16_t idx;
184 
185 	if (txq == NULL)
186 		return;
187 
188 	hns = txq->hns;
189 	hw = &hns->hw;
190 	idx = txq->queue_id;
191 	if (hw->fkq_data.tx_queues[idx]) {
192 		hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
193 		hw->fkq_data.tx_queues[idx] = NULL;
194 	}
195 
196 	/* free fake tx queue arrays */
197 	if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) {
198 		hw->fkq_data.nb_fake_tx_queues = 0;
199 		rte_free(hw->fkq_data.tx_queues);
200 		hw->fkq_data.tx_queues = NULL;
201 	}
202 }
203 
204 static void
hns3_free_rx_queues(struct rte_eth_dev * dev)205 hns3_free_rx_queues(struct rte_eth_dev *dev)
206 {
207 	struct hns3_adapter *hns = dev->data->dev_private;
208 	struct hns3_fake_queue_data *fkq_data;
209 	struct hns3_hw *hw = &hns->hw;
210 	uint16_t nb_rx_q;
211 	uint16_t i;
212 
213 	nb_rx_q = hw->data->nb_rx_queues;
214 	for (i = 0; i < nb_rx_q; i++) {
215 		if (dev->data->rx_queues[i]) {
216 			hns3_rx_queue_release(dev->data->rx_queues[i]);
217 			dev->data->rx_queues[i] = NULL;
218 		}
219 	}
220 
221 	/* Free fake Rx queues */
222 	fkq_data = &hw->fkq_data;
223 	for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) {
224 		if (fkq_data->rx_queues[i])
225 			hns3_fake_rx_queue_release(fkq_data->rx_queues[i]);
226 	}
227 }
228 
229 static void
hns3_free_tx_queues(struct rte_eth_dev * dev)230 hns3_free_tx_queues(struct rte_eth_dev *dev)
231 {
232 	struct hns3_adapter *hns = dev->data->dev_private;
233 	struct hns3_fake_queue_data *fkq_data;
234 	struct hns3_hw *hw = &hns->hw;
235 	uint16_t nb_tx_q;
236 	uint16_t i;
237 
238 	nb_tx_q = hw->data->nb_tx_queues;
239 	for (i = 0; i < nb_tx_q; i++) {
240 		if (dev->data->tx_queues[i]) {
241 			hns3_tx_queue_release(dev->data->tx_queues[i]);
242 			dev->data->tx_queues[i] = NULL;
243 		}
244 	}
245 
246 	/* Free fake Tx queues */
247 	fkq_data = &hw->fkq_data;
248 	for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) {
249 		if (fkq_data->tx_queues[i])
250 			hns3_fake_tx_queue_release(fkq_data->tx_queues[i]);
251 	}
252 }
253 
254 void
hns3_free_all_queues(struct rte_eth_dev * dev)255 hns3_free_all_queues(struct rte_eth_dev *dev)
256 {
257 	hns3_free_rx_queues(dev);
258 	hns3_free_tx_queues(dev);
259 }
260 
261 static int
hns3_alloc_rx_queue_mbufs(struct hns3_hw * hw,struct hns3_rx_queue * rxq)262 hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq)
263 {
264 	struct rte_mbuf *mbuf;
265 	uint64_t dma_addr;
266 	uint16_t i;
267 
268 	for (i = 0; i < rxq->nb_rx_desc; i++) {
269 		mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
270 		if (unlikely(mbuf == NULL)) {
271 			hns3_err(hw, "Failed to allocate RXD[%u] for rx queue!",
272 				 i);
273 			hns3_rx_queue_release_mbufs(rxq);
274 			return -ENOMEM;
275 		}
276 
277 		rte_mbuf_refcnt_set(mbuf, 1);
278 		mbuf->next = NULL;
279 		mbuf->data_off = RTE_PKTMBUF_HEADROOM;
280 		mbuf->nb_segs = 1;
281 		mbuf->port = rxq->port_id;
282 
283 		rxq->sw_ring[i].mbuf = mbuf;
284 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
285 		rxq->rx_ring[i].addr = dma_addr;
286 		rxq->rx_ring[i].rx.bd_base_info = 0;
287 	}
288 
289 	return 0;
290 }
291 
292 static int
hns3_buf_size2type(uint32_t buf_size)293 hns3_buf_size2type(uint32_t buf_size)
294 {
295 	int bd_size_type;
296 
297 	switch (buf_size) {
298 	case 512:
299 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
300 		break;
301 	case 1024:
302 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
303 		break;
304 	case 4096:
305 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
306 		break;
307 	default:
308 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
309 	}
310 
311 	return bd_size_type;
312 }
313 
314 static void
hns3_init_rx_queue_hw(struct hns3_rx_queue * rxq)315 hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq)
316 {
317 	uint32_t rx_buf_len = rxq->rx_buf_len;
318 	uint64_t dma_addr = rxq->rx_ring_phys_addr;
319 
320 	hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr);
321 	hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG,
322 		       (uint32_t)(dma_addr >> 32));
323 
324 	hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG,
325 		       hns3_buf_size2type(rx_buf_len));
326 	hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG,
327 		       HNS3_CFG_DESC_NUM(rxq->nb_rx_desc));
328 }
329 
330 static void
hns3_init_tx_queue_hw(struct hns3_tx_queue * txq)331 hns3_init_tx_queue_hw(struct hns3_tx_queue *txq)
332 {
333 	uint64_t dma_addr = txq->tx_ring_phys_addr;
334 
335 	hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr);
336 	hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG,
337 		       (uint32_t)(dma_addr >> 32));
338 
339 	hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG,
340 		       HNS3_CFG_DESC_NUM(txq->nb_tx_desc));
341 }
342 
343 void
hns3_update_all_queues_pvid_proc_en(struct hns3_hw * hw)344 hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw)
345 {
346 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
347 	uint16_t nb_tx_q = hw->data->nb_tx_queues;
348 	struct hns3_rx_queue *rxq;
349 	struct hns3_tx_queue *txq;
350 	bool pvid_en;
351 	int i;
352 
353 	pvid_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE;
354 	for (i = 0; i < hw->cfg_max_queues; i++) {
355 		if (i < nb_rx_q) {
356 			rxq = hw->data->rx_queues[i];
357 			if (rxq != NULL)
358 				rxq->pvid_sw_discard_en = pvid_en;
359 		}
360 		if (i < nb_tx_q) {
361 			txq = hw->data->tx_queues[i];
362 			if (txq != NULL)
363 				txq->pvid_sw_shift_en = pvid_en;
364 		}
365 	}
366 }
367 
368 static void
hns3_stop_unused_queue(void * tqp_base,enum hns3_ring_type queue_type)369 hns3_stop_unused_queue(void *tqp_base, enum hns3_ring_type queue_type)
370 {
371 	uint32_t reg_offset;
372 	uint32_t reg;
373 
374 	reg_offset = queue_type == HNS3_RING_TYPE_TX ?
375 				   HNS3_RING_TX_EN_REG : HNS3_RING_RX_EN_REG;
376 	reg = hns3_read_reg(tqp_base, reg_offset);
377 	reg &= ~BIT(HNS3_RING_EN_B);
378 	hns3_write_reg(tqp_base, reg_offset, reg);
379 }
380 
381 void
hns3_enable_all_queues(struct hns3_hw * hw,bool en)382 hns3_enable_all_queues(struct hns3_hw *hw, bool en)
383 {
384 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
385 	uint16_t nb_tx_q = hw->data->nb_tx_queues;
386 	struct hns3_rx_queue *rxq;
387 	struct hns3_tx_queue *txq;
388 	uint32_t rcb_reg;
389 	void *tqp_base;
390 	int i;
391 
392 	for (i = 0; i < hw->cfg_max_queues; i++) {
393 		if (hns3_dev_get_support(hw, INDEP_TXRX)) {
394 			rxq = i < nb_rx_q ? hw->data->rx_queues[i] : NULL;
395 			txq = i < nb_tx_q ? hw->data->tx_queues[i] : NULL;
396 
397 			tqp_base = (void *)((char *)hw->io_base +
398 					hns3_get_tqp_reg_offset(i));
399 			/*
400 			 * If queue struct is not initialized, it means the
401 			 * related HW ring has not been initialized yet.
402 			 * So, these queues should be disabled before enable
403 			 * the tqps to avoid a HW exception since the queues
404 			 * are enabled by default.
405 			 */
406 			if (rxq == NULL)
407 				hns3_stop_unused_queue(tqp_base,
408 							HNS3_RING_TYPE_RX);
409 			if (txq == NULL)
410 				hns3_stop_unused_queue(tqp_base,
411 							HNS3_RING_TYPE_TX);
412 		} else {
413 			rxq = i < nb_rx_q ? hw->data->rx_queues[i] :
414 			      hw->fkq_data.rx_queues[i - nb_rx_q];
415 
416 			tqp_base = rxq->io_base;
417 		}
418 		/*
419 		 * This is the master switch that used to control the enabling
420 		 * of a pair of Tx and Rx queues. Both the Rx and Tx point to
421 		 * the same register
422 		 */
423 		rcb_reg = hns3_read_reg(tqp_base, HNS3_RING_EN_REG);
424 		if (en)
425 			rcb_reg |= BIT(HNS3_RING_EN_B);
426 		else
427 			rcb_reg &= ~BIT(HNS3_RING_EN_B);
428 		hns3_write_reg(tqp_base, HNS3_RING_EN_REG, rcb_reg);
429 	}
430 }
431 
432 static void
hns3_enable_txq(struct hns3_tx_queue * txq,bool en)433 hns3_enable_txq(struct hns3_tx_queue *txq, bool en)
434 {
435 	struct hns3_hw *hw = &txq->hns->hw;
436 	uint32_t reg;
437 
438 	if (hns3_dev_get_support(hw, INDEP_TXRX)) {
439 		reg = hns3_read_dev(txq, HNS3_RING_TX_EN_REG);
440 		if (en)
441 			reg |= BIT(HNS3_RING_EN_B);
442 		else
443 			reg &= ~BIT(HNS3_RING_EN_B);
444 		hns3_write_dev(txq, HNS3_RING_TX_EN_REG, reg);
445 	}
446 	txq->enabled = en;
447 }
448 
449 static void
hns3_enable_rxq(struct hns3_rx_queue * rxq,bool en)450 hns3_enable_rxq(struct hns3_rx_queue *rxq, bool en)
451 {
452 	struct hns3_hw *hw = &rxq->hns->hw;
453 	uint32_t reg;
454 
455 	if (hns3_dev_get_support(hw, INDEP_TXRX)) {
456 		reg = hns3_read_dev(rxq, HNS3_RING_RX_EN_REG);
457 		if (en)
458 			reg |= BIT(HNS3_RING_EN_B);
459 		else
460 			reg &= ~BIT(HNS3_RING_EN_B);
461 		hns3_write_dev(rxq, HNS3_RING_RX_EN_REG, reg);
462 	}
463 	rxq->enabled = en;
464 }
465 
466 int
hns3_start_all_txqs(struct rte_eth_dev * dev)467 hns3_start_all_txqs(struct rte_eth_dev *dev)
468 {
469 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470 	struct hns3_tx_queue *txq;
471 	uint16_t i, j;
472 
473 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
474 		txq = hw->data->tx_queues[i];
475 		if (!txq) {
476 			hns3_err(hw, "Tx queue %u not available or setup.", i);
477 			goto start_txqs_fail;
478 		}
479 		/*
480 		 * Tx queue is enabled by default. Therefore, the Tx queues
481 		 * needs to be disabled when deferred_start is set. There is
482 		 * another master switch used to control the enabling of a pair
483 		 * of Tx and Rx queues. And the master switch is disabled by
484 		 * default.
485 		 */
486 		if (txq->tx_deferred_start)
487 			hns3_enable_txq(txq, false);
488 		else
489 			hns3_enable_txq(txq, true);
490 	}
491 	return 0;
492 
493 start_txqs_fail:
494 	for (j = 0; j < i; j++) {
495 		txq = hw->data->tx_queues[j];
496 		hns3_enable_txq(txq, false);
497 	}
498 	return -EINVAL;
499 }
500 
501 int
hns3_start_all_rxqs(struct rte_eth_dev * dev)502 hns3_start_all_rxqs(struct rte_eth_dev *dev)
503 {
504 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
505 	struct hns3_rx_queue *rxq;
506 	uint16_t i, j;
507 
508 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
509 		rxq = hw->data->rx_queues[i];
510 		if (!rxq) {
511 			hns3_err(hw, "Rx queue %u not available or setup.", i);
512 			goto start_rxqs_fail;
513 		}
514 		/*
515 		 * Rx queue is enabled by default. Therefore, the Rx queues
516 		 * needs to be disabled when deferred_start is set. There is
517 		 * another master switch used to control the enabling of a pair
518 		 * of Tx and Rx queues. And the master switch is disabled by
519 		 * default.
520 		 */
521 		if (rxq->rx_deferred_start)
522 			hns3_enable_rxq(rxq, false);
523 		else
524 			hns3_enable_rxq(rxq, true);
525 	}
526 	return 0;
527 
528 start_rxqs_fail:
529 	for (j = 0; j < i; j++) {
530 		rxq = hw->data->rx_queues[j];
531 		hns3_enable_rxq(rxq, false);
532 	}
533 	return -EINVAL;
534 }
535 
536 void
hns3_restore_tqp_enable_state(struct hns3_hw * hw)537 hns3_restore_tqp_enable_state(struct hns3_hw *hw)
538 {
539 	struct hns3_rx_queue *rxq;
540 	struct hns3_tx_queue *txq;
541 	uint16_t i;
542 
543 	for (i = 0; i < hw->data->nb_rx_queues; i++) {
544 		rxq = hw->data->rx_queues[i];
545 		if (rxq != NULL)
546 			hns3_enable_rxq(rxq, rxq->enabled);
547 	}
548 
549 	for (i = 0; i < hw->data->nb_tx_queues; i++) {
550 		txq = hw->data->tx_queues[i];
551 		if (txq != NULL)
552 			hns3_enable_txq(txq, txq->enabled);
553 	}
554 }
555 
556 void
hns3_stop_all_txqs(struct rte_eth_dev * dev)557 hns3_stop_all_txqs(struct rte_eth_dev *dev)
558 {
559 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
560 	struct hns3_tx_queue *txq;
561 	uint16_t i;
562 
563 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
564 		txq = hw->data->tx_queues[i];
565 		if (!txq)
566 			continue;
567 		hns3_enable_txq(txq, false);
568 	}
569 }
570 
571 static int
hns3_tqp_enable(struct hns3_hw * hw,uint16_t queue_id,bool enable)572 hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable)
573 {
574 	struct hns3_cfg_com_tqp_queue_cmd *req;
575 	struct hns3_cmd_desc desc;
576 	int ret;
577 
578 	req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data;
579 
580 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false);
581 	req->tqp_id = rte_cpu_to_le_16(queue_id);
582 	req->stream_id = 0;
583 	hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0);
584 
585 	ret = hns3_cmd_send(hw, &desc, 1);
586 	if (ret)
587 		hns3_err(hw, "TQP enable fail, ret = %d", ret);
588 
589 	return ret;
590 }
591 
592 static int
hns3_send_reset_tqp_cmd(struct hns3_hw * hw,uint16_t queue_id,bool enable)593 hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable)
594 {
595 	struct hns3_reset_tqp_queue_cmd *req;
596 	struct hns3_cmd_desc desc;
597 	int ret;
598 
599 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false);
600 
601 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
602 	req->tqp_id = rte_cpu_to_le_16(queue_id);
603 	hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
604 	ret = hns3_cmd_send(hw, &desc, 1);
605 	if (ret)
606 		hns3_err(hw, "send tqp reset cmd error, queue_id = %u, "
607 			     "ret = %d", queue_id, ret);
608 
609 	return ret;
610 }
611 
612 static int
hns3_get_tqp_reset_status(struct hns3_hw * hw,uint16_t queue_id,uint8_t * reset_status)613 hns3_get_tqp_reset_status(struct hns3_hw *hw, uint16_t queue_id,
614 			  uint8_t *reset_status)
615 {
616 	struct hns3_reset_tqp_queue_cmd *req;
617 	struct hns3_cmd_desc desc;
618 	int ret;
619 
620 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true);
621 
622 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
623 	req->tqp_id = rte_cpu_to_le_16(queue_id);
624 
625 	ret = hns3_cmd_send(hw, &desc, 1);
626 	if (ret) {
627 		hns3_err(hw, "get tqp reset status error, queue_id = %u, "
628 			     "ret = %d.", queue_id, ret);
629 		return ret;
630 	}
631 	*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
632 	return ret;
633 }
634 
635 static int
hns3pf_reset_tqp(struct hns3_hw * hw,uint16_t queue_id)636 hns3pf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
637 {
638 #define HNS3_TQP_RESET_TRY_MS	200
639 	uint16_t wait_time = 0;
640 	uint8_t reset_status;
641 	int ret;
642 
643 	/*
644 	 * In current version VF is not supported when PF is driven by DPDK
645 	 * driver, all task queue pairs are mapped to PF function, so PF's queue
646 	 * id is equals to the global queue id in PF range.
647 	 */
648 	ret = hns3_send_reset_tqp_cmd(hw, queue_id, true);
649 	if (ret) {
650 		hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret);
651 		return ret;
652 	}
653 
654 	do {
655 		/* Wait for tqp hw reset */
656 		rte_delay_ms(HNS3_POLL_RESPONE_MS);
657 		wait_time += HNS3_POLL_RESPONE_MS;
658 		ret = hns3_get_tqp_reset_status(hw, queue_id, &reset_status);
659 		if (ret)
660 			goto tqp_reset_fail;
661 
662 		if (reset_status)
663 			break;
664 	} while (wait_time < HNS3_TQP_RESET_TRY_MS);
665 
666 	if (!reset_status) {
667 		ret = -ETIMEDOUT;
668 		hns3_err(hw, "reset tqp timeout, queue_id = %u, ret = %d",
669 			     queue_id, ret);
670 		goto tqp_reset_fail;
671 	}
672 
673 	ret = hns3_send_reset_tqp_cmd(hw, queue_id, false);
674 	if (ret)
675 		hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret);
676 
677 	return ret;
678 
679 tqp_reset_fail:
680 	hns3_send_reset_tqp_cmd(hw, queue_id, false);
681 	return ret;
682 }
683 
684 static int
hns3vf_reset_tqp(struct hns3_hw * hw,uint16_t queue_id)685 hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
686 {
687 	uint8_t msg_data[2];
688 	int ret;
689 
690 	memcpy(msg_data, &queue_id, sizeof(uint16_t));
691 
692 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
693 				 sizeof(msg_data), true, NULL, 0);
694 	if (ret)
695 		hns3_err(hw, "fail to reset tqp, queue_id = %u, ret = %d.",
696 			 queue_id, ret);
697 	return ret;
698 }
699 
700 static int
hns3_reset_rcb_cmd(struct hns3_hw * hw,uint8_t * reset_status)701 hns3_reset_rcb_cmd(struct hns3_hw *hw, uint8_t *reset_status)
702 {
703 	struct hns3_reset_cmd *req;
704 	struct hns3_cmd_desc desc;
705 	int ret;
706 
707 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
708 	req = (struct hns3_reset_cmd *)desc.data;
709 	hns3_set_bit(req->fun_reset_rcb, HNS3_CFG_RESET_RCB_B, 1);
710 
711 	/*
712 	 * The start qid should be the global qid of the first tqp of the
713 	 * function which should be reset in this port. Since our PF not
714 	 * support take over of VFs, so we only need to reset function 0,
715 	 * and its start qid is always 0.
716 	 */
717 	req->fun_reset_rcb_vqid_start = rte_cpu_to_le_16(0);
718 	req->fun_reset_rcb_vqid_num = rte_cpu_to_le_16(hw->cfg_max_queues);
719 
720 	ret = hns3_cmd_send(hw, &desc, 1);
721 	if (ret) {
722 		hns3_err(hw, "fail to send rcb reset cmd, ret = %d.", ret);
723 		return ret;
724 	}
725 
726 	*reset_status = req->fun_reset_rcb_return_status;
727 	return 0;
728 }
729 
730 static int
hns3pf_reset_all_tqps(struct hns3_hw * hw)731 hns3pf_reset_all_tqps(struct hns3_hw *hw)
732 {
733 #define HNS3_RESET_RCB_NOT_SUPPORT	0U
734 #define HNS3_RESET_ALL_TQP_SUCCESS	1U
735 	uint8_t reset_status;
736 	int ret;
737 	int i;
738 
739 	ret = hns3_reset_rcb_cmd(hw, &reset_status);
740 	if (ret)
741 		return ret;
742 
743 	/*
744 	 * If the firmware version is low, it may not support the rcb reset
745 	 * which means reset all the tqps at a time. In this case, we should
746 	 * reset tqps one by one.
747 	 */
748 	if (reset_status == HNS3_RESET_RCB_NOT_SUPPORT) {
749 		for (i = 0; i < hw->cfg_max_queues; i++) {
750 			ret = hns3pf_reset_tqp(hw, i);
751 			if (ret) {
752 				hns3_err(hw,
753 				  "fail to reset tqp, queue_id = %d, ret = %d.",
754 				  i, ret);
755 				return ret;
756 			}
757 		}
758 	} else if (reset_status != HNS3_RESET_ALL_TQP_SUCCESS) {
759 		hns3_err(hw, "fail to reset all tqps, reset_status = %u.",
760 				reset_status);
761 		return -EIO;
762 	}
763 
764 	return 0;
765 }
766 
767 static int
hns3vf_reset_all_tqps(struct hns3_hw * hw)768 hns3vf_reset_all_tqps(struct hns3_hw *hw)
769 {
770 #define HNS3VF_RESET_ALL_TQP_DONE	1U
771 	uint8_t reset_status;
772 	uint8_t msg_data[2];
773 	int ret;
774 	int i;
775 
776 	memset(msg_data, 0, sizeof(uint16_t));
777 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
778 				sizeof(msg_data), true, &reset_status,
779 				sizeof(reset_status));
780 	if (ret) {
781 		hns3_err(hw, "fail to send rcb reset mbx, ret = %d.", ret);
782 		return ret;
783 	}
784 
785 	if (reset_status == HNS3VF_RESET_ALL_TQP_DONE)
786 		return 0;
787 
788 	/*
789 	 * If the firmware version or kernel PF version is low, it may not
790 	 * support the rcb reset which means reset all the tqps at a time.
791 	 * In this case, we should reset tqps one by one.
792 	 */
793 	for (i = 1; i < hw->cfg_max_queues; i++) {
794 		ret = hns3vf_reset_tqp(hw, i);
795 		if (ret)
796 			return ret;
797 	}
798 
799 	return 0;
800 }
801 
802 int
hns3_reset_all_tqps(struct hns3_adapter * hns)803 hns3_reset_all_tqps(struct hns3_adapter *hns)
804 {
805 	struct hns3_hw *hw = &hns->hw;
806 	int ret, i;
807 
808 	/* Disable all queues before reset all queues */
809 	for (i = 0; i < hw->cfg_max_queues; i++) {
810 		ret = hns3_tqp_enable(hw, i, false);
811 		if (ret) {
812 			hns3_err(hw,
813 			    "fail to disable tqps before tqps reset, ret = %d.",
814 			    ret);
815 			return ret;
816 		}
817 	}
818 
819 	if (hns->is_vf)
820 		return hns3vf_reset_all_tqps(hw);
821 	else
822 		return hns3pf_reset_all_tqps(hw);
823 }
824 
825 static int
hns3_send_reset_queue_cmd(struct hns3_hw * hw,uint16_t queue_id,enum hns3_ring_type queue_type,bool enable)826 hns3_send_reset_queue_cmd(struct hns3_hw *hw, uint16_t queue_id,
827 			  enum hns3_ring_type queue_type, bool enable)
828 {
829 	struct hns3_reset_tqp_queue_cmd *req;
830 	struct hns3_cmd_desc desc;
831 	int queue_direction;
832 	int ret;
833 
834 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, false);
835 
836 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
837 	req->tqp_id = rte_cpu_to_le_16(queue_id);
838 	queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
839 	req->queue_direction = rte_cpu_to_le_16(queue_direction);
840 	hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
841 
842 	ret = hns3_cmd_send(hw, &desc, 1);
843 	if (ret)
844 		hns3_err(hw, "send queue reset cmd error, queue_id = %u, "
845 			 "queue_type = %s, ret = %d.", queue_id,
846 			 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
847 	return ret;
848 }
849 
850 static int
hns3_get_queue_reset_status(struct hns3_hw * hw,uint16_t queue_id,enum hns3_ring_type queue_type,uint8_t * reset_status)851 hns3_get_queue_reset_status(struct hns3_hw *hw, uint16_t queue_id,
852 			    enum hns3_ring_type queue_type,
853 			    uint8_t *reset_status)
854 {
855 	struct hns3_reset_tqp_queue_cmd *req;
856 	struct hns3_cmd_desc desc;
857 	int queue_direction;
858 	int ret;
859 
860 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, true);
861 
862 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
863 	req->tqp_id = rte_cpu_to_le_16(queue_id);
864 	queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
865 	req->queue_direction = rte_cpu_to_le_16(queue_direction);
866 
867 	ret = hns3_cmd_send(hw, &desc, 1);
868 	if (ret) {
869 		hns3_err(hw, "get queue reset status error, queue_id = %u "
870 			 "queue_type = %s, ret = %d.", queue_id,
871 			 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
872 		return ret;
873 	}
874 
875 	*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
876 	return  ret;
877 }
878 
879 static int
hns3_reset_queue(struct hns3_hw * hw,uint16_t queue_id,enum hns3_ring_type queue_type)880 hns3_reset_queue(struct hns3_hw *hw, uint16_t queue_id,
881 		 enum hns3_ring_type queue_type)
882 {
883 #define HNS3_QUEUE_RESET_TRY_MS	200
884 	struct hns3_tx_queue *txq;
885 	struct hns3_rx_queue *rxq;
886 	uint32_t reset_wait_times;
887 	uint32_t max_wait_times;
888 	uint8_t reset_status;
889 	int ret;
890 
891 	if (queue_type == HNS3_RING_TYPE_TX) {
892 		txq = hw->data->tx_queues[queue_id];
893 		hns3_enable_txq(txq, false);
894 	} else {
895 		rxq = hw->data->rx_queues[queue_id];
896 		hns3_enable_rxq(rxq, false);
897 	}
898 
899 	ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, true);
900 	if (ret) {
901 		hns3_err(hw, "send reset queue cmd fail, ret = %d.", ret);
902 		return ret;
903 	}
904 
905 	reset_wait_times = 0;
906 	max_wait_times = HNS3_QUEUE_RESET_TRY_MS / HNS3_POLL_RESPONE_MS;
907 	while (reset_wait_times < max_wait_times) {
908 		/* Wait for queue hw reset */
909 		rte_delay_ms(HNS3_POLL_RESPONE_MS);
910 		ret = hns3_get_queue_reset_status(hw, queue_id,
911 						queue_type, &reset_status);
912 		if (ret)
913 			goto queue_reset_fail;
914 
915 		if (reset_status)
916 			break;
917 		reset_wait_times++;
918 	}
919 
920 	if (!reset_status) {
921 		hns3_err(hw, "reset queue timeout, queue_id = %u, "
922 			     "queue_type = %s", queue_id,
923 			     queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx");
924 		ret = -ETIMEDOUT;
925 		goto queue_reset_fail;
926 	}
927 
928 	ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
929 	if (ret)
930 		hns3_err(hw, "deassert queue reset fail, ret = %d.", ret);
931 
932 	return ret;
933 
934 queue_reset_fail:
935 	hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
936 	return ret;
937 }
938 
939 uint32_t
hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id)940 hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id)
941 {
942 	uint32_t reg_offset;
943 
944 	/* Need an extend offset to config queues > 64 */
945 	if (tqp_intr_id < HNS3_MIN_EXT_TQP_INTR_ID)
946 		reg_offset = HNS3_TQP_INTR_REG_BASE +
947 			     tqp_intr_id * HNS3_TQP_INTR_LOW_ORDER_OFFSET;
948 	else
949 		reg_offset = HNS3_TQP_INTR_EXT_REG_BASE +
950 			     tqp_intr_id / HNS3_MIN_EXT_TQP_INTR_ID *
951 			     HNS3_TQP_INTR_HIGH_ORDER_OFFSET +
952 			     tqp_intr_id % HNS3_MIN_EXT_TQP_INTR_ID *
953 			     HNS3_TQP_INTR_LOW_ORDER_OFFSET;
954 
955 	return reg_offset;
956 }
957 
958 void
hns3_set_queue_intr_gl(struct hns3_hw * hw,uint16_t queue_id,uint8_t gl_idx,uint16_t gl_value)959 hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id,
960 		       uint8_t gl_idx, uint16_t gl_value)
961 {
962 	uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG,
963 			     HNS3_TQP_INTR_GL1_REG,
964 			     HNS3_TQP_INTR_GL2_REG};
965 	uint32_t addr, value;
966 
967 	if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX)
968 		return;
969 
970 	addr = offset[gl_idx] + hns3_get_tqp_intr_reg_offset(queue_id);
971 	if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US)
972 		value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US;
973 	else
974 		value = HNS3_GL_USEC_TO_REG(gl_value);
975 
976 	hns3_write_dev(hw, addr, value);
977 }
978 
979 void
hns3_set_queue_intr_rl(struct hns3_hw * hw,uint16_t queue_id,uint16_t rl_value)980 hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value)
981 {
982 	uint32_t addr, value;
983 
984 	if (rl_value > HNS3_TQP_INTR_RL_MAX)
985 		return;
986 
987 	addr = HNS3_TQP_INTR_RL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
988 	value = HNS3_RL_USEC_TO_REG(rl_value);
989 	if (value > 0)
990 		value |= HNS3_TQP_INTR_RL_ENABLE_MASK;
991 
992 	hns3_write_dev(hw, addr, value);
993 }
994 
995 void
hns3_set_queue_intr_ql(struct hns3_hw * hw,uint16_t queue_id,uint16_t ql_value)996 hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value)
997 {
998 	uint32_t addr;
999 
1000 	/*
1001 	 * int_ql_max == 0 means the hardware does not support QL,
1002 	 * QL regs config is not permitted if QL is not supported,
1003 	 * here just return.
1004 	 */
1005 	if (hw->intr.int_ql_max == HNS3_INTR_QL_NONE)
1006 		return;
1007 
1008 	addr = HNS3_TQP_INTR_TX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1009 	hns3_write_dev(hw, addr, ql_value);
1010 
1011 	addr = HNS3_TQP_INTR_RX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1012 	hns3_write_dev(hw, addr, ql_value);
1013 }
1014 
1015 static void
hns3_queue_intr_enable(struct hns3_hw * hw,uint16_t queue_id,bool en)1016 hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en)
1017 {
1018 	uint32_t addr, value;
1019 
1020 	addr = HNS3_TQP_INTR_CTRL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1021 	value = en ? 1 : 0;
1022 
1023 	hns3_write_dev(hw, addr, value);
1024 }
1025 
1026 /*
1027  * Enable all rx queue interrupt when in interrupt rx mode.
1028  * This api was called before enable queue rx&tx (in normal start or reset
1029  * recover scenes), used to fix hardware rx queue interrupt enable was clear
1030  * when FLR.
1031  */
1032 void
hns3_dev_all_rx_queue_intr_enable(struct hns3_hw * hw,bool en)1033 hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en)
1034 {
1035 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1036 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
1037 	int i;
1038 
1039 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1040 		return;
1041 
1042 	for (i = 0; i < nb_rx_q; i++)
1043 		hns3_queue_intr_enable(hw, i, en);
1044 }
1045 
1046 int
hns3_dev_rx_queue_intr_enable(struct rte_eth_dev * dev,uint16_t queue_id)1047 hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1048 {
1049 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1050 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1051 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1052 
1053 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1054 		return -ENOTSUP;
1055 
1056 	hns3_queue_intr_enable(hw, queue_id, true);
1057 
1058 	return rte_intr_ack(intr_handle);
1059 }
1060 
1061 int
hns3_dev_rx_queue_intr_disable(struct rte_eth_dev * dev,uint16_t queue_id)1062 hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1063 {
1064 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1065 
1066 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1067 		return -ENOTSUP;
1068 
1069 	hns3_queue_intr_enable(hw, queue_id, false);
1070 
1071 	return 0;
1072 }
1073 
1074 static int
hns3_init_rxq(struct hns3_adapter * hns,uint16_t idx)1075 hns3_init_rxq(struct hns3_adapter *hns, uint16_t idx)
1076 {
1077 	struct hns3_hw *hw = &hns->hw;
1078 	struct hns3_rx_queue *rxq;
1079 	int ret;
1080 
1081 	PMD_INIT_FUNC_TRACE();
1082 
1083 	rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx];
1084 	ret = hns3_alloc_rx_queue_mbufs(hw, rxq);
1085 	if (ret) {
1086 		hns3_err(hw, "fail to alloc mbuf for Rx queue %u, ret = %d.",
1087 			 idx, ret);
1088 		return ret;
1089 	}
1090 
1091 	rxq->next_to_use = 0;
1092 	rxq->rx_rearm_start = 0;
1093 	rxq->rx_free_hold = 0;
1094 	rxq->rx_rearm_nb = 0;
1095 	rxq->pkt_first_seg = NULL;
1096 	rxq->pkt_last_seg = NULL;
1097 	hns3_init_rx_queue_hw(rxq);
1098 	hns3_rxq_vec_setup(rxq);
1099 
1100 	return 0;
1101 }
1102 
1103 static void
hns3_init_fake_rxq(struct hns3_adapter * hns,uint16_t idx)1104 hns3_init_fake_rxq(struct hns3_adapter *hns, uint16_t idx)
1105 {
1106 	struct hns3_hw *hw = &hns->hw;
1107 	struct hns3_rx_queue *rxq;
1108 
1109 	rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx];
1110 	rxq->next_to_use = 0;
1111 	rxq->rx_free_hold = 0;
1112 	rxq->rx_rearm_start = 0;
1113 	rxq->rx_rearm_nb = 0;
1114 	hns3_init_rx_queue_hw(rxq);
1115 }
1116 
1117 static void
hns3_init_txq(struct hns3_tx_queue * txq)1118 hns3_init_txq(struct hns3_tx_queue *txq)
1119 {
1120 	struct hns3_desc *desc;
1121 	int i;
1122 
1123 	/* Clear tx bd */
1124 	desc = txq->tx_ring;
1125 	for (i = 0; i < txq->nb_tx_desc; i++) {
1126 		desc->tx.tp_fe_sc_vld_ra_ri = 0;
1127 		desc++;
1128 	}
1129 
1130 	txq->next_to_use = 0;
1131 	txq->next_to_clean = 0;
1132 	txq->tx_bd_ready = txq->nb_tx_desc - 1;
1133 	hns3_init_tx_queue_hw(txq);
1134 }
1135 
1136 static void
hns3_init_tx_ring_tc(struct hns3_adapter * hns)1137 hns3_init_tx_ring_tc(struct hns3_adapter *hns)
1138 {
1139 	struct hns3_hw *hw = &hns->hw;
1140 	struct hns3_tx_queue *txq;
1141 	int i, num;
1142 
1143 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1144 		struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i];
1145 		int j;
1146 
1147 		if (!tc_queue->enable)
1148 			continue;
1149 
1150 		for (j = 0; j < tc_queue->tqp_count; j++) {
1151 			num = tc_queue->tqp_offset + j;
1152 			txq = (struct hns3_tx_queue *)hw->data->tx_queues[num];
1153 			if (txq == NULL)
1154 				continue;
1155 
1156 			hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc);
1157 		}
1158 	}
1159 }
1160 
1161 static int
hns3_init_rx_queues(struct hns3_adapter * hns)1162 hns3_init_rx_queues(struct hns3_adapter *hns)
1163 {
1164 	struct hns3_hw *hw = &hns->hw;
1165 	struct hns3_rx_queue *rxq;
1166 	uint16_t i, j;
1167 	int ret;
1168 
1169 	/* Initialize RSS for queues */
1170 	ret = hns3_config_rss(hns);
1171 	if (ret) {
1172 		hns3_err(hw, "failed to configure rss, ret = %d.", ret);
1173 		return ret;
1174 	}
1175 
1176 	for (i = 0; i < hw->data->nb_rx_queues; i++) {
1177 		rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i];
1178 		if (!rxq) {
1179 			hns3_err(hw, "Rx queue %u not available or setup.", i);
1180 			goto out;
1181 		}
1182 
1183 		if (rxq->rx_deferred_start)
1184 			continue;
1185 
1186 		ret = hns3_init_rxq(hns, i);
1187 		if (ret) {
1188 			hns3_err(hw, "failed to init Rx queue %u, ret = %d.", i,
1189 				 ret);
1190 			goto out;
1191 		}
1192 	}
1193 
1194 	for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++)
1195 		hns3_init_fake_rxq(hns, i);
1196 
1197 	return 0;
1198 
1199 out:
1200 	for (j = 0; j < i; j++) {
1201 		rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j];
1202 		hns3_rx_queue_release_mbufs(rxq);
1203 	}
1204 
1205 	return ret;
1206 }
1207 
1208 static int
hns3_init_tx_queues(struct hns3_adapter * hns)1209 hns3_init_tx_queues(struct hns3_adapter *hns)
1210 {
1211 	struct hns3_hw *hw = &hns->hw;
1212 	struct hns3_tx_queue *txq;
1213 	uint16_t i;
1214 
1215 	for (i = 0; i < hw->data->nb_tx_queues; i++) {
1216 		txq = (struct hns3_tx_queue *)hw->data->tx_queues[i];
1217 		if (!txq) {
1218 			hns3_err(hw, "Tx queue %u not available or setup.", i);
1219 			return -EINVAL;
1220 		}
1221 
1222 		if (txq->tx_deferred_start)
1223 			continue;
1224 		hns3_init_txq(txq);
1225 	}
1226 
1227 	for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) {
1228 		txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i];
1229 		hns3_init_txq(txq);
1230 	}
1231 	hns3_init_tx_ring_tc(hns);
1232 
1233 	return 0;
1234 }
1235 
1236 /*
1237  * Init all queues.
1238  * Note: just init and setup queues, and don't enable tqps.
1239  */
1240 int
hns3_init_queues(struct hns3_adapter * hns,bool reset_queue)1241 hns3_init_queues(struct hns3_adapter *hns, bool reset_queue)
1242 {
1243 	struct hns3_hw *hw = &hns->hw;
1244 	int ret;
1245 
1246 	if (reset_queue) {
1247 		ret = hns3_reset_all_tqps(hns);
1248 		if (ret) {
1249 			hns3_err(hw, "failed to reset all queues, ret = %d.",
1250 				 ret);
1251 			return ret;
1252 		}
1253 	}
1254 
1255 	ret = hns3_init_rx_queues(hns);
1256 	if (ret) {
1257 		hns3_err(hw, "failed to init rx queues, ret = %d.", ret);
1258 		return ret;
1259 	}
1260 
1261 	ret = hns3_init_tx_queues(hns);
1262 	if (ret) {
1263 		hns3_dev_release_mbufs(hns);
1264 		hns3_err(hw, "failed to init tx queues, ret = %d.", ret);
1265 	}
1266 
1267 	return ret;
1268 }
1269 
1270 void
hns3_start_tqps(struct hns3_hw * hw)1271 hns3_start_tqps(struct hns3_hw *hw)
1272 {
1273 	struct hns3_tx_queue *txq;
1274 	struct hns3_rx_queue *rxq;
1275 	uint16_t i;
1276 
1277 	hns3_enable_all_queues(hw, true);
1278 
1279 	for (i = 0; i < hw->data->nb_tx_queues; i++) {
1280 		txq = hw->data->tx_queues[i];
1281 		if (txq->enabled)
1282 			hw->data->tx_queue_state[i] =
1283 				RTE_ETH_QUEUE_STATE_STARTED;
1284 	}
1285 
1286 	for (i = 0; i < hw->data->nb_rx_queues; i++) {
1287 		rxq = hw->data->rx_queues[i];
1288 		if (rxq->enabled)
1289 			hw->data->rx_queue_state[i] =
1290 				RTE_ETH_QUEUE_STATE_STARTED;
1291 	}
1292 }
1293 
1294 void
hns3_stop_tqps(struct hns3_hw * hw)1295 hns3_stop_tqps(struct hns3_hw *hw)
1296 {
1297 	uint16_t i;
1298 
1299 	hns3_enable_all_queues(hw, false);
1300 
1301 	for (i = 0; i < hw->data->nb_tx_queues; i++)
1302 		hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1303 
1304 	for (i = 0; i < hw->data->nb_rx_queues; i++)
1305 		hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1306 }
1307 
1308 /*
1309  * Iterate over all Rx Queue, and call the callback() function for each Rx
1310  * queue.
1311  *
1312  * @param[in] dev
1313  *   The target eth dev.
1314  * @param[in] callback
1315  *   The function to call for each queue.
1316  *   if callback function return nonzero will stop iterate and return it's value
1317  * @param[in] arg
1318  *   The arguments to provide the callback function with.
1319  *
1320  * @return
1321  *   0 on success, otherwise with errno set.
1322  */
1323 int
hns3_rxq_iterate(struct rte_eth_dev * dev,int (* callback)(struct hns3_rx_queue *,void *),void * arg)1324 hns3_rxq_iterate(struct rte_eth_dev *dev,
1325 		 int (*callback)(struct hns3_rx_queue *, void *), void *arg)
1326 {
1327 	uint32_t i;
1328 	int ret;
1329 
1330 	if (dev->data->rx_queues == NULL)
1331 		return -EINVAL;
1332 
1333 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1334 		ret = callback(dev->data->rx_queues[i], arg);
1335 		if (ret != 0)
1336 			return ret;
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 static void*
hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev * dev,struct hns3_queue_info * q_info)1343 hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev,
1344 			    struct hns3_queue_info *q_info)
1345 {
1346 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1347 	const struct rte_memzone *rx_mz;
1348 	struct hns3_rx_queue *rxq;
1349 	unsigned int rx_desc;
1350 
1351 	rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue),
1352 				 RTE_CACHE_LINE_SIZE, q_info->socket_id);
1353 	if (rxq == NULL) {
1354 		hns3_err(hw, "Failed to allocate memory for No.%u rx ring!",
1355 			 q_info->idx);
1356 		return NULL;
1357 	}
1358 
1359 	/* Allocate rx ring hardware descriptors. */
1360 	rxq->queue_id = q_info->idx;
1361 	rxq->nb_rx_desc = q_info->nb_desc;
1362 
1363 	/*
1364 	 * Allocate a litter more memory because rx vector functions
1365 	 * don't check boundaries each time.
1366 	 */
1367 	rx_desc = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
1368 			sizeof(struct hns3_desc);
1369 	rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
1370 					 rx_desc, HNS3_RING_BASE_ALIGN,
1371 					 q_info->socket_id);
1372 	if (rx_mz == NULL) {
1373 		hns3_err(hw, "Failed to reserve DMA memory for No.%u rx ring!",
1374 			 q_info->idx);
1375 		hns3_rx_queue_release(rxq);
1376 		return NULL;
1377 	}
1378 	rxq->mz = rx_mz;
1379 	rxq->rx_ring = (struct hns3_desc *)rx_mz->addr;
1380 	rxq->rx_ring_phys_addr = rx_mz->iova;
1381 
1382 	return rxq;
1383 }
1384 
1385 static int
hns3_fake_rx_queue_setup(struct rte_eth_dev * dev,uint16_t idx,uint16_t nb_desc,unsigned int socket_id)1386 hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
1387 			 uint16_t nb_desc, unsigned int socket_id)
1388 {
1389 	struct hns3_adapter *hns = dev->data->dev_private;
1390 	struct hns3_hw *hw = &hns->hw;
1391 	struct hns3_queue_info q_info;
1392 	struct hns3_rx_queue *rxq;
1393 	uint16_t nb_rx_q;
1394 
1395 	if (hw->fkq_data.rx_queues[idx]) {
1396 		hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
1397 		hw->fkq_data.rx_queues[idx] = NULL;
1398 	}
1399 
1400 	q_info.idx = idx;
1401 	q_info.socket_id = socket_id;
1402 	q_info.nb_desc = nb_desc;
1403 	q_info.type = "hns3 fake RX queue";
1404 	q_info.ring_name = "rx_fake_ring";
1405 	rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
1406 	if (rxq == NULL) {
1407 		hns3_err(hw, "Failed to setup No.%u fake rx ring.", idx);
1408 		return -ENOMEM;
1409 	}
1410 
1411 	/* Don't need alloc sw_ring, because upper applications don't use it */
1412 	rxq->sw_ring = NULL;
1413 
1414 	rxq->hns = hns;
1415 	rxq->rx_deferred_start = false;
1416 	rxq->port_id = dev->data->port_id;
1417 	rxq->configured = true;
1418 	nb_rx_q = dev->data->nb_rx_queues;
1419 	rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1420 				(nb_rx_q + idx) * HNS3_TQP_REG_SIZE);
1421 	rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE;
1422 
1423 	rte_spinlock_lock(&hw->lock);
1424 	hw->fkq_data.rx_queues[idx] = rxq;
1425 	rte_spinlock_unlock(&hw->lock);
1426 
1427 	return 0;
1428 }
1429 
1430 static void*
hns3_alloc_txq_and_dma_zone(struct rte_eth_dev * dev,struct hns3_queue_info * q_info)1431 hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev,
1432 			    struct hns3_queue_info *q_info)
1433 {
1434 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1435 	const struct rte_memzone *tx_mz;
1436 	struct hns3_tx_queue *txq;
1437 	struct hns3_desc *desc;
1438 	unsigned int tx_desc;
1439 	int i;
1440 
1441 	txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue),
1442 				 RTE_CACHE_LINE_SIZE, q_info->socket_id);
1443 	if (txq == NULL) {
1444 		hns3_err(hw, "Failed to allocate memory for No.%u tx ring!",
1445 			 q_info->idx);
1446 		return NULL;
1447 	}
1448 
1449 	/* Allocate tx ring hardware descriptors. */
1450 	txq->queue_id = q_info->idx;
1451 	txq->nb_tx_desc = q_info->nb_desc;
1452 	tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc);
1453 	tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
1454 					 tx_desc, HNS3_RING_BASE_ALIGN,
1455 					 q_info->socket_id);
1456 	if (tx_mz == NULL) {
1457 		hns3_err(hw, "Failed to reserve DMA memory for No.%u tx ring!",
1458 			 q_info->idx);
1459 		hns3_tx_queue_release(txq);
1460 		return NULL;
1461 	}
1462 	txq->mz = tx_mz;
1463 	txq->tx_ring = (struct hns3_desc *)tx_mz->addr;
1464 	txq->tx_ring_phys_addr = tx_mz->iova;
1465 
1466 	/* Clear tx bd */
1467 	desc = txq->tx_ring;
1468 	for (i = 0; i < txq->nb_tx_desc; i++) {
1469 		desc->tx.tp_fe_sc_vld_ra_ri = 0;
1470 		desc++;
1471 	}
1472 
1473 	return txq;
1474 }
1475 
1476 static int
hns3_fake_tx_queue_setup(struct rte_eth_dev * dev,uint16_t idx,uint16_t nb_desc,unsigned int socket_id)1477 hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
1478 			 uint16_t nb_desc, unsigned int socket_id)
1479 {
1480 	struct hns3_adapter *hns = dev->data->dev_private;
1481 	struct hns3_hw *hw = &hns->hw;
1482 	struct hns3_queue_info q_info;
1483 	struct hns3_tx_queue *txq;
1484 	uint16_t nb_tx_q;
1485 
1486 	if (hw->fkq_data.tx_queues[idx] != NULL) {
1487 		hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
1488 		hw->fkq_data.tx_queues[idx] = NULL;
1489 	}
1490 
1491 	q_info.idx = idx;
1492 	q_info.socket_id = socket_id;
1493 	q_info.nb_desc = nb_desc;
1494 	q_info.type = "hns3 fake TX queue";
1495 	q_info.ring_name = "tx_fake_ring";
1496 	txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
1497 	if (txq == NULL) {
1498 		hns3_err(hw, "Failed to setup No.%u fake tx ring.", idx);
1499 		return -ENOMEM;
1500 	}
1501 
1502 	/* Don't need alloc sw_ring, because upper applications don't use it */
1503 	txq->sw_ring = NULL;
1504 	txq->free = NULL;
1505 
1506 	txq->hns = hns;
1507 	txq->tx_deferred_start = false;
1508 	txq->port_id = dev->data->port_id;
1509 	txq->configured = true;
1510 	nb_tx_q = dev->data->nb_tx_queues;
1511 	txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1512 				(nb_tx_q + idx) * HNS3_TQP_REG_SIZE);
1513 
1514 	rte_spinlock_lock(&hw->lock);
1515 	hw->fkq_data.tx_queues[idx] = txq;
1516 	rte_spinlock_unlock(&hw->lock);
1517 
1518 	return 0;
1519 }
1520 
1521 static int
hns3_fake_rx_queue_config(struct hns3_hw * hw,uint16_t nb_queues)1522 hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1523 {
1524 	uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues;
1525 	void **rxq;
1526 	uint16_t i;
1527 
1528 	if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) {
1529 		/* first time configuration */
1530 		uint32_t size;
1531 		size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues;
1532 		hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size,
1533 						     RTE_CACHE_LINE_SIZE);
1534 		if (hw->fkq_data.rx_queues == NULL) {
1535 			hw->fkq_data.nb_fake_rx_queues = 0;
1536 			return -ENOMEM;
1537 		}
1538 	} else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) {
1539 		/* re-configure */
1540 		rxq = hw->fkq_data.rx_queues;
1541 		for (i = nb_queues; i < old_nb_queues; i++)
1542 			hns3_rx_queue_release_lock(rxq[i]);
1543 
1544 		rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues,
1545 				  RTE_CACHE_LINE_SIZE);
1546 		if (rxq == NULL)
1547 			return -ENOMEM;
1548 		if (nb_queues > old_nb_queues) {
1549 			uint16_t new_qs = nb_queues - old_nb_queues;
1550 			memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs);
1551 		}
1552 
1553 		hw->fkq_data.rx_queues = rxq;
1554 	} else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) {
1555 		rxq = hw->fkq_data.rx_queues;
1556 		for (i = nb_queues; i < old_nb_queues; i++)
1557 			hns3_rx_queue_release_lock(rxq[i]);
1558 
1559 		rte_free(hw->fkq_data.rx_queues);
1560 		hw->fkq_data.rx_queues = NULL;
1561 	}
1562 
1563 	hw->fkq_data.nb_fake_rx_queues = nb_queues;
1564 
1565 	return 0;
1566 }
1567 
1568 static int
hns3_fake_tx_queue_config(struct hns3_hw * hw,uint16_t nb_queues)1569 hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1570 {
1571 	uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues;
1572 	void **txq;
1573 	uint16_t i;
1574 
1575 	if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) {
1576 		/* first time configuration */
1577 		uint32_t size;
1578 		size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues;
1579 		hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size,
1580 						     RTE_CACHE_LINE_SIZE);
1581 		if (hw->fkq_data.tx_queues == NULL) {
1582 			hw->fkq_data.nb_fake_tx_queues = 0;
1583 			return -ENOMEM;
1584 		}
1585 	} else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) {
1586 		/* re-configure */
1587 		txq = hw->fkq_data.tx_queues;
1588 		for (i = nb_queues; i < old_nb_queues; i++)
1589 			hns3_tx_queue_release_lock(txq[i]);
1590 		txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues,
1591 				  RTE_CACHE_LINE_SIZE);
1592 		if (txq == NULL)
1593 			return -ENOMEM;
1594 		if (nb_queues > old_nb_queues) {
1595 			uint16_t new_qs = nb_queues - old_nb_queues;
1596 			memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs);
1597 		}
1598 
1599 		hw->fkq_data.tx_queues = txq;
1600 	} else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) {
1601 		txq = hw->fkq_data.tx_queues;
1602 		for (i = nb_queues; i < old_nb_queues; i++)
1603 			hns3_tx_queue_release_lock(txq[i]);
1604 
1605 		rte_free(hw->fkq_data.tx_queues);
1606 		hw->fkq_data.tx_queues = NULL;
1607 	}
1608 	hw->fkq_data.nb_fake_tx_queues = nb_queues;
1609 
1610 	return 0;
1611 }
1612 
1613 int
hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev * dev,uint16_t nb_rx_q,uint16_t nb_tx_q)1614 hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q,
1615 			      uint16_t nb_tx_q)
1616 {
1617 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1618 	uint16_t rx_need_add_nb_q;
1619 	uint16_t tx_need_add_nb_q;
1620 	uint16_t port_id;
1621 	uint16_t q;
1622 	int ret;
1623 
1624 	if (hns3_dev_get_support(hw, INDEP_TXRX))
1625 		return 0;
1626 
1627 	/* Setup new number of fake RX/TX queues and reconfigure device. */
1628 	rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q;
1629 	tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q;
1630 	ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q);
1631 	if (ret) {
1632 		hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1633 		return ret;
1634 	}
1635 
1636 	ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q);
1637 	if (ret) {
1638 		hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1639 		goto cfg_fake_tx_q_fail;
1640 	}
1641 
1642 	/* Allocate and set up fake RX queue per Ethernet port. */
1643 	port_id = hw->data->port_id;
1644 	for (q = 0; q < rx_need_add_nb_q; q++) {
1645 		ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1646 					       rte_eth_dev_socket_id(port_id));
1647 		if (ret)
1648 			goto setup_fake_rx_q_fail;
1649 	}
1650 
1651 	/* Allocate and set up fake TX queue per Ethernet port. */
1652 	for (q = 0; q < tx_need_add_nb_q; q++) {
1653 		ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1654 					       rte_eth_dev_socket_id(port_id));
1655 		if (ret)
1656 			goto setup_fake_tx_q_fail;
1657 	}
1658 
1659 	return 0;
1660 
1661 setup_fake_tx_q_fail:
1662 setup_fake_rx_q_fail:
1663 	(void)hns3_fake_tx_queue_config(hw, 0);
1664 cfg_fake_tx_q_fail:
1665 	(void)hns3_fake_rx_queue_config(hw, 0);
1666 
1667 	return ret;
1668 }
1669 
1670 void
hns3_dev_release_mbufs(struct hns3_adapter * hns)1671 hns3_dev_release_mbufs(struct hns3_adapter *hns)
1672 {
1673 	struct rte_eth_dev_data *dev_data = hns->hw.data;
1674 	struct hns3_rx_queue *rxq;
1675 	struct hns3_tx_queue *txq;
1676 	int i;
1677 
1678 	if (dev_data->rx_queues)
1679 		for (i = 0; i < dev_data->nb_rx_queues; i++) {
1680 			rxq = dev_data->rx_queues[i];
1681 			if (rxq == NULL)
1682 				continue;
1683 			hns3_rx_queue_release_mbufs(rxq);
1684 		}
1685 
1686 	if (dev_data->tx_queues)
1687 		for (i = 0; i < dev_data->nb_tx_queues; i++) {
1688 			txq = dev_data->tx_queues[i];
1689 			if (txq == NULL)
1690 				continue;
1691 			hns3_tx_queue_release_mbufs(txq);
1692 		}
1693 }
1694 
1695 static int
hns3_rx_buf_len_calc(struct rte_mempool * mp,uint16_t * rx_buf_len)1696 hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len)
1697 {
1698 	uint16_t vld_buf_size;
1699 	uint16_t num_hw_specs;
1700 	uint16_t i;
1701 
1702 	/*
1703 	 * hns3 network engine only support to set 4 typical specification, and
1704 	 * different buffer size will affect the max packet_len and the max
1705 	 * number of segmentation when hw gro is turned on in receive side. The
1706 	 * relationship between them is as follows:
1707 	 *      rx_buf_size     |  max_gro_pkt_len  |  max_gro_nb_seg
1708 	 * ---------------------|-------------------|----------------
1709 	 * HNS3_4K_BD_BUF_SIZE  |        60KB       |       15
1710 	 * HNS3_2K_BD_BUF_SIZE  |        62KB       |       31
1711 	 * HNS3_1K_BD_BUF_SIZE  |        63KB       |       63
1712 	 * HNS3_512_BD_BUF_SIZE |      31.5KB       |       63
1713 	 */
1714 	static const uint16_t hw_rx_buf_size[] = {
1715 		HNS3_4K_BD_BUF_SIZE,
1716 		HNS3_2K_BD_BUF_SIZE,
1717 		HNS3_1K_BD_BUF_SIZE,
1718 		HNS3_512_BD_BUF_SIZE
1719 	};
1720 
1721 	vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) -
1722 			RTE_PKTMBUF_HEADROOM);
1723 	if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE)
1724 		return -EINVAL;
1725 
1726 	num_hw_specs = RTE_DIM(hw_rx_buf_size);
1727 	for (i = 0; i < num_hw_specs; i++) {
1728 		if (vld_buf_size >= hw_rx_buf_size[i]) {
1729 			*rx_buf_len = hw_rx_buf_size[i];
1730 			break;
1731 		}
1732 	}
1733 	return 0;
1734 }
1735 
1736 static int
hns3_rxq_conf_runtime_check(struct hns3_hw * hw,uint16_t buf_size,uint16_t nb_desc)1737 hns3_rxq_conf_runtime_check(struct hns3_hw *hw, uint16_t buf_size,
1738 				uint16_t nb_desc)
1739 {
1740 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1741 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
1742 	uint32_t frame_size = dev->data->mtu + HNS3_ETH_OVERHEAD;
1743 	uint16_t min_vec_bds;
1744 
1745 	/*
1746 	 * HNS3 hardware network engine set scattered as default. If the driver
1747 	 * is not work in scattered mode and the pkts greater than buf_size
1748 	 * but smaller than frame size will be distributed to multiple BDs.
1749 	 * Driver cannot handle this situation.
1750 	 */
1751 	if (!hw->data->scattered_rx && frame_size > buf_size) {
1752 		hns3_err(hw, "frame size is not allowed to be set greater "
1753 			     "than rx_buf_len if scattered is off.");
1754 		return -EINVAL;
1755 	}
1756 
1757 	if (pkt_burst == hns3_recv_pkts_vec) {
1758 		min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH +
1759 			      HNS3_DEFAULT_RX_BURST;
1760 		if (nb_desc < min_vec_bds ||
1761 		    nb_desc % HNS3_DEFAULT_RXQ_REARM_THRESH) {
1762 			hns3_err(hw, "if Rx burst mode is vector, "
1763 				 "number of descriptor is required to be "
1764 				 "bigger than min vector bds:%u, and could be "
1765 				 "divided by rxq rearm thresh:%u.",
1766 				 min_vec_bds, HNS3_DEFAULT_RXQ_REARM_THRESH);
1767 			return -EINVAL;
1768 		}
1769 	}
1770 	return 0;
1771 }
1772 
1773 static int
hns3_rx_queue_conf_check(struct hns3_hw * hw,const struct rte_eth_rxconf * conf,struct rte_mempool * mp,uint16_t nb_desc,uint16_t * buf_size)1774 hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf,
1775 			 struct rte_mempool *mp, uint16_t nb_desc,
1776 			 uint16_t *buf_size)
1777 {
1778 	int ret;
1779 
1780 	if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
1781 	    nb_desc % HNS3_ALIGN_RING_DESC) {
1782 		hns3_err(hw, "Number (%u) of rx descriptors is invalid",
1783 			 nb_desc);
1784 		return -EINVAL;
1785 	}
1786 
1787 	if (conf->rx_drop_en == 0)
1788 		hns3_warn(hw, "if no descriptors available, packets are always "
1789 			  "dropped and rx_drop_en (1) is fixed on");
1790 
1791 	if (hns3_rx_buf_len_calc(mp, buf_size)) {
1792 		hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! "
1793 				"minimal data room size (%u).",
1794 				rte_pktmbuf_data_room_size(mp),
1795 				HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM);
1796 		return -EINVAL;
1797 	}
1798 
1799 	if (hw->data->dev_started) {
1800 		ret = hns3_rxq_conf_runtime_check(hw, *buf_size, nb_desc);
1801 		if (ret) {
1802 			hns3_err(hw, "Rx queue runtime setup fail.");
1803 			return ret;
1804 		}
1805 	}
1806 
1807 	return 0;
1808 }
1809 
1810 uint32_t
hns3_get_tqp_reg_offset(uint16_t queue_id)1811 hns3_get_tqp_reg_offset(uint16_t queue_id)
1812 {
1813 	uint32_t reg_offset;
1814 
1815 	/* Need an extend offset to config queue > 1024 */
1816 	if (queue_id < HNS3_MIN_EXTEND_QUEUE_ID)
1817 		reg_offset = HNS3_TQP_REG_OFFSET + queue_id * HNS3_TQP_REG_SIZE;
1818 	else
1819 		reg_offset = HNS3_TQP_REG_OFFSET + HNS3_TQP_EXT_REG_OFFSET +
1820 			     (queue_id - HNS3_MIN_EXTEND_QUEUE_ID) *
1821 			     HNS3_TQP_REG_SIZE;
1822 
1823 	return reg_offset;
1824 }
1825 
1826 int
hns3_rx_queue_setup(struct rte_eth_dev * dev,uint16_t idx,uint16_t nb_desc,unsigned int socket_id,const struct rte_eth_rxconf * conf,struct rte_mempool * mp)1827 hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
1828 		    unsigned int socket_id, const struct rte_eth_rxconf *conf,
1829 		    struct rte_mempool *mp)
1830 {
1831 	struct hns3_adapter *hns = dev->data->dev_private;
1832 	struct hns3_hw *hw = &hns->hw;
1833 	struct hns3_queue_info q_info;
1834 	struct hns3_rx_queue *rxq;
1835 	uint16_t rx_buf_size;
1836 	int rx_entry_len;
1837 	int ret;
1838 
1839 	ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size);
1840 	if (ret)
1841 		return ret;
1842 
1843 	if (dev->data->rx_queues[idx]) {
1844 		hns3_rx_queue_release(dev->data->rx_queues[idx]);
1845 		dev->data->rx_queues[idx] = NULL;
1846 	}
1847 
1848 	q_info.idx = idx;
1849 	q_info.socket_id = socket_id;
1850 	q_info.nb_desc = nb_desc;
1851 	q_info.type = "hns3 RX queue";
1852 	q_info.ring_name = "rx_ring";
1853 
1854 	rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
1855 	if (rxq == NULL) {
1856 		hns3_err(hw,
1857 			 "Failed to alloc mem and reserve DMA mem for rx ring!");
1858 		return -ENOMEM;
1859 	}
1860 
1861 	rxq->hns = hns;
1862 	rxq->ptype_tbl = &hns->ptype_tbl;
1863 	rxq->mb_pool = mp;
1864 	rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ?
1865 		conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH;
1866 
1867 	rxq->rx_deferred_start = conf->rx_deferred_start;
1868 	if (rxq->rx_deferred_start && !hns3_dev_get_support(hw, INDEP_TXRX)) {
1869 		hns3_warn(hw, "deferred start is not supported.");
1870 		rxq->rx_deferred_start = false;
1871 	}
1872 
1873 	rx_entry_len = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
1874 			sizeof(struct hns3_entry);
1875 	rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len,
1876 					  RTE_CACHE_LINE_SIZE, socket_id);
1877 	if (rxq->sw_ring == NULL) {
1878 		hns3_err(hw, "Failed to allocate memory for rx sw ring!");
1879 		hns3_rx_queue_release(rxq);
1880 		return -ENOMEM;
1881 	}
1882 
1883 	rxq->next_to_use = 0;
1884 	rxq->rx_free_hold = 0;
1885 	rxq->rx_rearm_start = 0;
1886 	rxq->rx_rearm_nb = 0;
1887 	rxq->pkt_first_seg = NULL;
1888 	rxq->pkt_last_seg = NULL;
1889 	rxq->port_id = dev->data->port_id;
1890 	/*
1891 	 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
1892 	 * the pvid_sw_discard_en in the queue struct should not be changed,
1893 	 * because PVID-related operations do not need to be processed by PMD.
1894 	 * For hns3 VF device, whether it needs to process PVID depends
1895 	 * on the configuration of PF kernel mode netdevice driver. And the
1896 	 * related PF configuration is delivered through the mailbox and finally
1897 	 * reflected in port_base_vlan_cfg.
1898 	 */
1899 	if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1900 		rxq->pvid_sw_discard_en = hw->port_base_vlan_cfg.state ==
1901 						HNS3_PORT_BASE_VLAN_ENABLE;
1902 	else
1903 		rxq->pvid_sw_discard_en = false;
1904 	rxq->ptype_en = hns3_dev_get_support(hw, RXD_ADV_LAYOUT) ? true : false;
1905 	rxq->configured = true;
1906 	rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1907 				idx * HNS3_TQP_REG_SIZE);
1908 	rxq->io_base = (void *)((char *)hw->io_base +
1909 					hns3_get_tqp_reg_offset(idx));
1910 	rxq->io_head_reg = (volatile void *)((char *)rxq->io_base +
1911 			   HNS3_RING_RX_HEAD_REG);
1912 	rxq->rx_buf_len = rx_buf_size;
1913 	memset(&rxq->basic_stats, 0, sizeof(struct hns3_rx_basic_stats));
1914 	memset(&rxq->err_stats, 0, sizeof(struct hns3_rx_bd_errors_stats));
1915 	memset(&rxq->dfx_stats, 0, sizeof(struct hns3_rx_dfx_stats));
1916 
1917 	/* CRC len set here is used for amending packet length */
1918 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1919 		rxq->crc_len = RTE_ETHER_CRC_LEN;
1920 	else
1921 		rxq->crc_len = 0;
1922 
1923 	rxq->bulk_mbuf_num = 0;
1924 
1925 	rte_spinlock_lock(&hw->lock);
1926 	dev->data->rx_queues[idx] = rxq;
1927 	rte_spinlock_unlock(&hw->lock);
1928 
1929 	return 0;
1930 }
1931 
1932 void
hns3_rx_scattered_reset(struct rte_eth_dev * dev)1933 hns3_rx_scattered_reset(struct rte_eth_dev *dev)
1934 {
1935 	struct hns3_adapter *hns = dev->data->dev_private;
1936 	struct hns3_hw *hw = &hns->hw;
1937 
1938 	hw->rx_buf_len = 0;
1939 	dev->data->scattered_rx = false;
1940 }
1941 
1942 void
hns3_rx_scattered_calc(struct rte_eth_dev * dev)1943 hns3_rx_scattered_calc(struct rte_eth_dev *dev)
1944 {
1945 	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1946 	struct hns3_adapter *hns = dev->data->dev_private;
1947 	struct hns3_hw *hw = &hns->hw;
1948 	struct hns3_rx_queue *rxq;
1949 	uint32_t queue_id;
1950 
1951 	if (dev->data->rx_queues == NULL)
1952 		return;
1953 
1954 	for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
1955 		rxq = dev->data->rx_queues[queue_id];
1956 		if (hw->rx_buf_len == 0)
1957 			hw->rx_buf_len = rxq->rx_buf_len;
1958 		else
1959 			hw->rx_buf_len = RTE_MIN(hw->rx_buf_len,
1960 						 rxq->rx_buf_len);
1961 	}
1962 
1963 	if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER ||
1964 	    dev->data->mtu + HNS3_ETH_OVERHEAD > hw->rx_buf_len)
1965 		dev->data->scattered_rx = true;
1966 }
1967 
1968 const uint32_t *
hns3_dev_supported_ptypes_get(struct rte_eth_dev * dev)1969 hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1970 {
1971 	static const uint32_t ptypes[] = {
1972 		RTE_PTYPE_L2_ETHER,
1973 		RTE_PTYPE_L2_ETHER_LLDP,
1974 		RTE_PTYPE_L2_ETHER_ARP,
1975 		RTE_PTYPE_L3_IPV4,
1976 		RTE_PTYPE_L3_IPV4_EXT,
1977 		RTE_PTYPE_L3_IPV6,
1978 		RTE_PTYPE_L3_IPV6_EXT,
1979 		RTE_PTYPE_L4_IGMP,
1980 		RTE_PTYPE_L4_ICMP,
1981 		RTE_PTYPE_L4_SCTP,
1982 		RTE_PTYPE_L4_TCP,
1983 		RTE_PTYPE_L4_UDP,
1984 		RTE_PTYPE_TUNNEL_GRE,
1985 		RTE_PTYPE_INNER_L2_ETHER,
1986 		RTE_PTYPE_INNER_L3_IPV4,
1987 		RTE_PTYPE_INNER_L3_IPV6,
1988 		RTE_PTYPE_INNER_L3_IPV4_EXT,
1989 		RTE_PTYPE_INNER_L3_IPV6_EXT,
1990 		RTE_PTYPE_INNER_L4_UDP,
1991 		RTE_PTYPE_INNER_L4_TCP,
1992 		RTE_PTYPE_INNER_L4_SCTP,
1993 		RTE_PTYPE_INNER_L4_ICMP,
1994 		RTE_PTYPE_TUNNEL_VXLAN,
1995 		RTE_PTYPE_TUNNEL_NVGRE,
1996 		RTE_PTYPE_UNKNOWN
1997 	};
1998 	static const uint32_t adv_layout_ptypes[] = {
1999 		RTE_PTYPE_L2_ETHER,
2000 		RTE_PTYPE_L2_ETHER_TIMESYNC,
2001 		RTE_PTYPE_L2_ETHER_LLDP,
2002 		RTE_PTYPE_L2_ETHER_ARP,
2003 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2004 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2005 		RTE_PTYPE_L4_FRAG,
2006 		RTE_PTYPE_L4_NONFRAG,
2007 		RTE_PTYPE_L4_UDP,
2008 		RTE_PTYPE_L4_TCP,
2009 		RTE_PTYPE_L4_SCTP,
2010 		RTE_PTYPE_L4_IGMP,
2011 		RTE_PTYPE_L4_ICMP,
2012 		RTE_PTYPE_TUNNEL_GRE,
2013 		RTE_PTYPE_TUNNEL_GRENAT,
2014 		RTE_PTYPE_INNER_L2_ETHER,
2015 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2016 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2017 		RTE_PTYPE_INNER_L4_FRAG,
2018 		RTE_PTYPE_INNER_L4_ICMP,
2019 		RTE_PTYPE_INNER_L4_NONFRAG,
2020 		RTE_PTYPE_INNER_L4_UDP,
2021 		RTE_PTYPE_INNER_L4_TCP,
2022 		RTE_PTYPE_INNER_L4_SCTP,
2023 		RTE_PTYPE_INNER_L4_ICMP,
2024 		RTE_PTYPE_UNKNOWN
2025 	};
2026 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2027 
2028 	if (dev->rx_pkt_burst == hns3_recv_pkts_simple ||
2029 	    dev->rx_pkt_burst == hns3_recv_scattered_pkts ||
2030 	    dev->rx_pkt_burst == hns3_recv_pkts_vec ||
2031 	    dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) {
2032 		if (hns3_dev_get_support(hw, RXD_ADV_LAYOUT))
2033 			return adv_layout_ptypes;
2034 		else
2035 			return ptypes;
2036 	}
2037 
2038 	return NULL;
2039 }
2040 
2041 static void
hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table * tbl)2042 hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
2043 {
2044 	tbl->l3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
2045 	tbl->l3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
2046 	tbl->l3table[2] = RTE_PTYPE_L2_ETHER_ARP;
2047 	tbl->l3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
2048 	tbl->l3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
2049 	tbl->l3table[6] = RTE_PTYPE_L2_ETHER_LLDP;
2050 
2051 	tbl->l4table[0] = RTE_PTYPE_L4_UDP;
2052 	tbl->l4table[1] = RTE_PTYPE_L4_TCP;
2053 	tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE;
2054 	tbl->l4table[3] = RTE_PTYPE_L4_SCTP;
2055 	tbl->l4table[4] = RTE_PTYPE_L4_IGMP;
2056 	tbl->l4table[5] = RTE_PTYPE_L4_ICMP;
2057 }
2058 
2059 static void
hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table * tbl)2060 hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
2061 {
2062 	tbl->inner_l3table[0] = RTE_PTYPE_INNER_L2_ETHER |
2063 				RTE_PTYPE_INNER_L3_IPV4;
2064 	tbl->inner_l3table[1] = RTE_PTYPE_INNER_L2_ETHER |
2065 				RTE_PTYPE_INNER_L3_IPV6;
2066 	/* There is not a ptype for inner ARP/RARP */
2067 	tbl->inner_l3table[2] = RTE_PTYPE_UNKNOWN;
2068 	tbl->inner_l3table[3] = RTE_PTYPE_UNKNOWN;
2069 	tbl->inner_l3table[4] = RTE_PTYPE_INNER_L2_ETHER |
2070 				RTE_PTYPE_INNER_L3_IPV4_EXT;
2071 	tbl->inner_l3table[5] = RTE_PTYPE_INNER_L2_ETHER |
2072 				RTE_PTYPE_INNER_L3_IPV6_EXT;
2073 
2074 	tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP;
2075 	tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP;
2076 	/* There is not a ptype for inner GRE */
2077 	tbl->inner_l4table[2] = RTE_PTYPE_UNKNOWN;
2078 	tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP;
2079 	/* There is not a ptype for inner IGMP */
2080 	tbl->inner_l4table[4] = RTE_PTYPE_UNKNOWN;
2081 	tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP;
2082 
2083 	tbl->ol3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
2084 	tbl->ol3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
2085 	tbl->ol3table[2] = RTE_PTYPE_UNKNOWN;
2086 	tbl->ol3table[3] = RTE_PTYPE_UNKNOWN;
2087 	tbl->ol3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
2088 	tbl->ol3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
2089 
2090 	tbl->ol4table[0] = RTE_PTYPE_UNKNOWN;
2091 	tbl->ol4table[1] = RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN;
2092 	tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE;
2093 }
2094 
2095 static void
hns3_init_adv_layout_ptype(struct hns3_ptype_table * tbl)2096 hns3_init_adv_layout_ptype(struct hns3_ptype_table *tbl)
2097 {
2098 	uint32_t *ptype = tbl->ptype;
2099 
2100 	/* Non-tunnel L2 */
2101 	ptype[1] = RTE_PTYPE_L2_ETHER_ARP;
2102 	ptype[3] = RTE_PTYPE_L2_ETHER_LLDP;
2103 	ptype[8] = RTE_PTYPE_L2_ETHER_TIMESYNC;
2104 
2105 	/* Non-tunnel IPv4 */
2106 	ptype[17] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2107 		    RTE_PTYPE_L4_FRAG;
2108 	ptype[18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2109 		    RTE_PTYPE_L4_NONFRAG;
2110 	ptype[19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2111 		    RTE_PTYPE_L4_UDP;
2112 	ptype[20] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2113 		    RTE_PTYPE_L4_TCP;
2114 	ptype[21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2115 		    RTE_PTYPE_TUNNEL_GRE;
2116 	ptype[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2117 		    RTE_PTYPE_L4_SCTP;
2118 	ptype[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2119 		    RTE_PTYPE_L4_IGMP;
2120 	ptype[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2121 		    RTE_PTYPE_L4_ICMP;
2122 	/* The next ptype is PTP over IPv4 + UDP */
2123 	ptype[25] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2124 		    RTE_PTYPE_L4_UDP;
2125 
2126 	/* IPv4 --> GRE/Teredo/VXLAN */
2127 	ptype[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2128 		    RTE_PTYPE_TUNNEL_GRENAT;
2129 	/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2130 	ptype[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2131 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER;
2132 
2133 	/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2134 	ptype[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2135 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2136 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2137 		    RTE_PTYPE_INNER_L4_FRAG;
2138 	ptype[32] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2139 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2140 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2141 		    RTE_PTYPE_INNER_L4_NONFRAG;
2142 	ptype[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2143 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2144 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2145 		    RTE_PTYPE_INNER_L4_UDP;
2146 	ptype[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2147 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2148 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2149 		    RTE_PTYPE_INNER_L4_TCP;
2150 	ptype[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2151 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2152 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2153 		    RTE_PTYPE_INNER_L4_SCTP;
2154 	/* The next ptype's inner L4 is IGMP */
2155 	ptype[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2156 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2157 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
2158 	ptype[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2159 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2160 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2161 		    RTE_PTYPE_INNER_L4_ICMP;
2162 
2163 	/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2164 	ptype[39] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2165 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2166 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2167 		    RTE_PTYPE_INNER_L4_FRAG;
2168 	ptype[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2169 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2170 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2171 		    RTE_PTYPE_INNER_L4_NONFRAG;
2172 	ptype[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2173 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2174 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2175 		    RTE_PTYPE_INNER_L4_UDP;
2176 	ptype[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2177 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2178 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2179 		    RTE_PTYPE_INNER_L4_TCP;
2180 	ptype[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2181 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2182 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2183 		    RTE_PTYPE_INNER_L4_SCTP;
2184 	/* The next ptype's inner L4 is IGMP */
2185 	ptype[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2186 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2187 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
2188 	ptype[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2189 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2190 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2191 		    RTE_PTYPE_INNER_L4_ICMP;
2192 
2193 	/* Non-tunnel IPv6 */
2194 	ptype[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2195 		     RTE_PTYPE_L4_FRAG;
2196 	ptype[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2197 		     RTE_PTYPE_L4_NONFRAG;
2198 	ptype[113] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2199 		     RTE_PTYPE_L4_UDP;
2200 	ptype[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2201 		     RTE_PTYPE_L4_TCP;
2202 	ptype[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2203 		     RTE_PTYPE_TUNNEL_GRE;
2204 	ptype[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2205 		     RTE_PTYPE_L4_SCTP;
2206 	ptype[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2207 		     RTE_PTYPE_L4_IGMP;
2208 	ptype[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2209 		     RTE_PTYPE_L4_ICMP;
2210 	/* Special for PTP over IPv6 + UDP */
2211 	ptype[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2212 		     RTE_PTYPE_L4_UDP;
2213 
2214 	/* IPv6 --> GRE/Teredo/VXLAN */
2215 	ptype[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2216 		     RTE_PTYPE_TUNNEL_GRENAT;
2217 	/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2218 	ptype[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2219 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER;
2220 
2221 	/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2222 	ptype[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2223 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2224 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2225 		     RTE_PTYPE_INNER_L4_FRAG;
2226 	ptype[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2227 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2228 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2229 		     RTE_PTYPE_INNER_L4_NONFRAG;
2230 	ptype[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2231 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2232 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2233 		     RTE_PTYPE_INNER_L4_UDP;
2234 	ptype[128] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2235 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2236 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2237 		     RTE_PTYPE_INNER_L4_TCP;
2238 	ptype[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2239 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2240 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2241 		     RTE_PTYPE_INNER_L4_SCTP;
2242 	/* The next ptype's inner L4 is IGMP */
2243 	ptype[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2244 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2245 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
2246 	ptype[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2247 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2248 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2249 		     RTE_PTYPE_INNER_L4_ICMP;
2250 
2251 	/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2252 	ptype[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2253 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2254 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2255 		     RTE_PTYPE_INNER_L4_FRAG;
2256 	ptype[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2257 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2258 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2259 		     RTE_PTYPE_INNER_L4_NONFRAG;
2260 	ptype[135] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2261 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2262 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2263 		     RTE_PTYPE_INNER_L4_UDP;
2264 	ptype[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2265 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2266 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2267 		     RTE_PTYPE_INNER_L4_TCP;
2268 	ptype[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2269 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2270 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2271 		     RTE_PTYPE_INNER_L4_SCTP;
2272 	/* The next ptype's inner L4 is IGMP */
2273 	ptype[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2274 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2275 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
2276 	ptype[139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2277 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2278 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2279 		     RTE_PTYPE_INNER_L4_ICMP;
2280 }
2281 
2282 void
hns3_init_rx_ptype_tble(struct rte_eth_dev * dev)2283 hns3_init_rx_ptype_tble(struct rte_eth_dev *dev)
2284 {
2285 	struct hns3_adapter *hns = dev->data->dev_private;
2286 	struct hns3_ptype_table *tbl = &hns->ptype_tbl;
2287 
2288 	memset(tbl, 0, sizeof(*tbl));
2289 
2290 	hns3_init_non_tunnel_ptype_tbl(tbl);
2291 	hns3_init_tunnel_ptype_tbl(tbl);
2292 	hns3_init_adv_layout_ptype(tbl);
2293 }
2294 
2295 static inline void
hns3_rxd_to_vlan_tci(struct hns3_rx_queue * rxq,struct rte_mbuf * mb,uint32_t l234_info,const struct hns3_desc * rxd)2296 hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb,
2297 		     uint32_t l234_info, const struct hns3_desc *rxd)
2298 {
2299 #define HNS3_STRP_STATUS_NUM		0x4
2300 
2301 #define HNS3_NO_STRP_VLAN_VLD		0x0
2302 #define HNS3_INNER_STRP_VLAN_VLD	0x1
2303 #define HNS3_OUTER_STRP_VLAN_VLD	0x2
2304 	uint32_t strip_status;
2305 	uint32_t report_mode;
2306 
2307 	/*
2308 	 * Since HW limitation, the vlan tag will always be inserted into RX
2309 	 * descriptor when strip the tag from packet, driver needs to determine
2310 	 * reporting which tag to mbuf according to the PVID configuration
2311 	 * and vlan striped status.
2312 	 */
2313 	static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = {
2314 		{
2315 			HNS3_NO_STRP_VLAN_VLD,
2316 			HNS3_OUTER_STRP_VLAN_VLD,
2317 			HNS3_INNER_STRP_VLAN_VLD,
2318 			HNS3_OUTER_STRP_VLAN_VLD
2319 		},
2320 		{
2321 			HNS3_NO_STRP_VLAN_VLD,
2322 			HNS3_NO_STRP_VLAN_VLD,
2323 			HNS3_NO_STRP_VLAN_VLD,
2324 			HNS3_INNER_STRP_VLAN_VLD
2325 		}
2326 	};
2327 	strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M,
2328 				      HNS3_RXD_STRP_TAGP_S);
2329 	report_mode = report_type[rxq->pvid_sw_discard_en][strip_status];
2330 	switch (report_mode) {
2331 	case HNS3_NO_STRP_VLAN_VLD:
2332 		mb->vlan_tci = 0;
2333 		return;
2334 	case HNS3_INNER_STRP_VLAN_VLD:
2335 		mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
2336 		mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag);
2337 		return;
2338 	case HNS3_OUTER_STRP_VLAN_VLD:
2339 		mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
2340 		mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag);
2341 		return;
2342 	default:
2343 		mb->vlan_tci = 0;
2344 		return;
2345 	}
2346 }
2347 
2348 static inline void
recalculate_data_len(struct rte_mbuf * first_seg,struct rte_mbuf * last_seg,struct rte_mbuf * rxm,struct hns3_rx_queue * rxq,uint16_t data_len)2349 recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg,
2350 		    struct rte_mbuf *rxm, struct hns3_rx_queue *rxq,
2351 		    uint16_t data_len)
2352 {
2353 	uint8_t crc_len = rxq->crc_len;
2354 
2355 	if (data_len <= crc_len) {
2356 		rte_pktmbuf_free_seg(rxm);
2357 		first_seg->nb_segs--;
2358 		last_seg->data_len = (uint16_t)(last_seg->data_len -
2359 			(crc_len - data_len));
2360 		last_seg->next = NULL;
2361 	} else
2362 		rxm->data_len = (uint16_t)(data_len - crc_len);
2363 }
2364 
2365 static inline struct rte_mbuf *
hns3_rx_alloc_buffer(struct hns3_rx_queue * rxq)2366 hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq)
2367 {
2368 	int ret;
2369 
2370 	if (likely(rxq->bulk_mbuf_num > 0))
2371 		return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
2372 
2373 	ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf,
2374 				   HNS3_BULK_ALLOC_MBUF_NUM);
2375 	if (likely(ret == 0)) {
2376 		rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM;
2377 		return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
2378 	} else
2379 		return rte_mbuf_raw_alloc(rxq->mb_pool);
2380 }
2381 
2382 static void
hns3_rx_ptp_timestamp_handle(struct hns3_rx_queue * rxq,struct rte_mbuf * mbuf,uint64_t timestamp)2383 hns3_rx_ptp_timestamp_handle(struct hns3_rx_queue *rxq, struct rte_mbuf *mbuf,
2384 			     uint64_t timestamp)
2385 {
2386 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(rxq->hns);
2387 
2388 	mbuf->ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP |
2389 			  RTE_MBUF_F_RX_IEEE1588_TMST;
2390 	if (hns3_timestamp_rx_dynflag > 0) {
2391 		*RTE_MBUF_DYNFIELD(mbuf, hns3_timestamp_dynfield_offset,
2392 			rte_mbuf_timestamp_t *) = timestamp;
2393 		mbuf->ol_flags |= hns3_timestamp_rx_dynflag;
2394 	}
2395 
2396 	pf->rx_timestamp = timestamp;
2397 }
2398 
2399 uint16_t
hns3_recv_pkts_simple(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)2400 hns3_recv_pkts_simple(void *rx_queue,
2401 		      struct rte_mbuf **rx_pkts,
2402 		      uint16_t nb_pkts)
2403 {
2404 	volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
2405 	volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
2406 	struct hns3_rx_queue *rxq;      /* RX queue */
2407 	struct hns3_entry *sw_ring;
2408 	struct hns3_entry *rxe;
2409 	struct hns3_desc rxd;
2410 	struct rte_mbuf *nmb;           /* pointer of the new mbuf */
2411 	struct rte_mbuf *rxm;
2412 	uint32_t bd_base_info;
2413 	uint32_t l234_info;
2414 	uint32_t ol_info;
2415 	uint64_t dma_addr;
2416 	uint16_t nb_rx_bd;
2417 	uint16_t nb_rx;
2418 	uint16_t rx_id;
2419 	int ret;
2420 
2421 	nb_rx = 0;
2422 	nb_rx_bd = 0;
2423 	rxq = rx_queue;
2424 	rx_ring = rxq->rx_ring;
2425 	sw_ring = rxq->sw_ring;
2426 	rx_id = rxq->next_to_use;
2427 
2428 	while (nb_rx < nb_pkts) {
2429 		rxdp = &rx_ring[rx_id];
2430 		bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
2431 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2432 			break;
2433 
2434 		rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2435 			   (1u << HNS3_RXD_VLD_B)];
2436 
2437 		nmb = hns3_rx_alloc_buffer(rxq);
2438 		if (unlikely(nmb == NULL)) {
2439 			uint16_t port_id;
2440 
2441 			port_id = rxq->port_id;
2442 			rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++;
2443 			break;
2444 		}
2445 
2446 		nb_rx_bd++;
2447 		rxe = &sw_ring[rx_id];
2448 		rx_id++;
2449 		if (unlikely(rx_id == rxq->nb_rx_desc))
2450 			rx_id = 0;
2451 
2452 		rte_prefetch0(sw_ring[rx_id].mbuf);
2453 		if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
2454 			rte_prefetch0(&rx_ring[rx_id]);
2455 			rte_prefetch0(&sw_ring[rx_id]);
2456 		}
2457 
2458 		rxm = rxe->mbuf;
2459 		rxm->ol_flags = 0;
2460 		rxe->mbuf = nmb;
2461 
2462 		if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B)))
2463 			hns3_rx_ptp_timestamp_handle(rxq, rxm,
2464 				rte_le_to_cpu_64(rxdp->timestamp));
2465 
2466 		dma_addr = rte_mbuf_data_iova_default(nmb);
2467 		rxdp->addr = rte_cpu_to_le_64(dma_addr);
2468 		rxdp->rx.bd_base_info = 0;
2469 
2470 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2471 		rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) -
2472 				rxq->crc_len;
2473 		rxm->data_len = rxm->pkt_len;
2474 		rxm->port = rxq->port_id;
2475 		rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
2476 		rxm->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
2477 		if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
2478 			rxm->hash.fdir.hi =
2479 				rte_le_to_cpu_16(rxd.rx.fd_id);
2480 			rxm->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
2481 		}
2482 		rxm->nb_segs = 1;
2483 		rxm->next = NULL;
2484 
2485 		/* Load remained descriptor data and extract necessary fields */
2486 		l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
2487 		ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
2488 		ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info, l234_info);
2489 		if (unlikely(ret))
2490 			goto pkt_err;
2491 
2492 		rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info);
2493 
2494 		if (rxm->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC)
2495 			rxm->ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2496 
2497 		hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd);
2498 
2499 		/* Increment bytes counter  */
2500 		rxq->basic_stats.bytes += rxm->pkt_len;
2501 
2502 		rx_pkts[nb_rx++] = rxm;
2503 		continue;
2504 pkt_err:
2505 		rte_pktmbuf_free(rxm);
2506 	}
2507 
2508 	rxq->next_to_use = rx_id;
2509 	rxq->rx_free_hold += nb_rx_bd;
2510 	if (rxq->rx_free_hold > rxq->rx_free_thresh) {
2511 		hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
2512 		rxq->rx_free_hold = 0;
2513 	}
2514 
2515 	return nb_rx;
2516 }
2517 
2518 uint16_t
hns3_recv_scattered_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)2519 hns3_recv_scattered_pkts(void *rx_queue,
2520 			 struct rte_mbuf **rx_pkts,
2521 			 uint16_t nb_pkts)
2522 {
2523 	volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
2524 	volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
2525 	struct hns3_rx_queue *rxq;      /* RX queue */
2526 	struct hns3_entry *sw_ring;
2527 	struct hns3_entry *rxe;
2528 	struct rte_mbuf *first_seg;
2529 	struct rte_mbuf *last_seg;
2530 	struct hns3_desc rxd;
2531 	struct rte_mbuf *nmb;           /* pointer of the new mbuf */
2532 	struct rte_mbuf *rxm;
2533 	struct rte_eth_dev *dev;
2534 	uint32_t bd_base_info;
2535 	uint64_t timestamp;
2536 	uint32_t l234_info;
2537 	uint32_t gro_size;
2538 	uint32_t ol_info;
2539 	uint64_t dma_addr;
2540 	uint16_t nb_rx_bd;
2541 	uint16_t nb_rx;
2542 	uint16_t rx_id;
2543 	int ret;
2544 
2545 	nb_rx = 0;
2546 	nb_rx_bd = 0;
2547 	rxq = rx_queue;
2548 
2549 	rx_id = rxq->next_to_use;
2550 	rx_ring = rxq->rx_ring;
2551 	sw_ring = rxq->sw_ring;
2552 	first_seg = rxq->pkt_first_seg;
2553 	last_seg = rxq->pkt_last_seg;
2554 
2555 	while (nb_rx < nb_pkts) {
2556 		rxdp = &rx_ring[rx_id];
2557 		bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
2558 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2559 			break;
2560 
2561 		/*
2562 		 * The interactive process between software and hardware of
2563 		 * receiving a new packet in hns3 network engine:
2564 		 * 1. Hardware network engine firstly writes the packet content
2565 		 *    to the memory pointed by the 'addr' field of the Rx Buffer
2566 		 *    Descriptor, secondly fills the result of parsing the
2567 		 *    packet include the valid field into the Rx Buffer
2568 		 *    Descriptor in one write operation.
2569 		 * 2. Driver reads the Rx BD's valid field in the loop to check
2570 		 *    whether it's valid, if valid then assign a new address to
2571 		 *    the addr field, clear the valid field, get the other
2572 		 *    information of the packet by parsing Rx BD's other fields,
2573 		 *    finally write back the number of Rx BDs processed by the
2574 		 *    driver to the HNS3_RING_RX_HEAD_REG register to inform
2575 		 *    hardware.
2576 		 * In the above process, the ordering is very important. We must
2577 		 * make sure that CPU read Rx BD's other fields only after the
2578 		 * Rx BD is valid.
2579 		 *
2580 		 * There are two type of re-ordering: compiler re-ordering and
2581 		 * CPU re-ordering under the ARMv8 architecture.
2582 		 * 1. we use volatile to deal with compiler re-ordering, so you
2583 		 *    can see that rx_ring/rxdp defined with volatile.
2584 		 * 2. we commonly use memory barrier to deal with CPU
2585 		 *    re-ordering, but the cost is high.
2586 		 *
2587 		 * In order to solve the high cost of using memory barrier, we
2588 		 * use the data dependency order under the ARMv8 architecture,
2589 		 * for example:
2590 		 *      instr01: load A
2591 		 *      instr02: load B <- A
2592 		 * the instr02 will always execute after instr01.
2593 		 *
2594 		 * To construct the data dependency ordering, we use the
2595 		 * following assignment:
2596 		 *      rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2597 		 *                 (1u<<HNS3_RXD_VLD_B)]
2598 		 * Using gcc compiler under the ARMv8 architecture, the related
2599 		 * assembly code example as follows:
2600 		 * note: (1u << HNS3_RXD_VLD_B) equal 0x10
2601 		 *      instr01: ldr w26, [x22, #28]  --read bd_base_info
2602 		 *      instr02: and w0, w26, #0x10   --calc bd_base_info & 0x10
2603 		 *      instr03: sub w0, w0, #0x10    --calc (bd_base_info &
2604 		 *                                            0x10) - 0x10
2605 		 *      instr04: add x0, x22, x0, lsl #5 --calc copy source addr
2606 		 *      instr05: ldp x2, x3, [x0]
2607 		 *      instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B
2608 		 *      instr07: ldp x4, x5, [x0, #16]
2609 		 *      instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B
2610 		 * the instr05~08 depend on x0's value, x0 depent on w26's
2611 		 * value, the w26 is the bd_base_info, this form the data
2612 		 * dependency ordering.
2613 		 * note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) -
2614 		 *       (1u<<HNS3_RXD_VLD_B) will always zero, so the
2615 		 *       assignment is correct.
2616 		 *
2617 		 * So we use the data dependency ordering instead of memory
2618 		 * barrier to improve receive performance.
2619 		 */
2620 		rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2621 			   (1u << HNS3_RXD_VLD_B)];
2622 
2623 		nmb = hns3_rx_alloc_buffer(rxq);
2624 		if (unlikely(nmb == NULL)) {
2625 			dev = &rte_eth_devices[rxq->port_id];
2626 			dev->data->rx_mbuf_alloc_failed++;
2627 			break;
2628 		}
2629 
2630 		nb_rx_bd++;
2631 		rxe = &sw_ring[rx_id];
2632 		rx_id++;
2633 		if (unlikely(rx_id == rxq->nb_rx_desc))
2634 			rx_id = 0;
2635 
2636 		rte_prefetch0(sw_ring[rx_id].mbuf);
2637 		if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
2638 			rte_prefetch0(&rx_ring[rx_id]);
2639 			rte_prefetch0(&sw_ring[rx_id]);
2640 		}
2641 
2642 		rxm = rxe->mbuf;
2643 		rxe->mbuf = nmb;
2644 
2645 		if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B)))
2646 			timestamp = rte_le_to_cpu_64(rxdp->timestamp);
2647 
2648 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2649 		rxdp->rx.bd_base_info = 0;
2650 		rxdp->addr = dma_addr;
2651 
2652 		if (first_seg == NULL) {
2653 			first_seg = rxm;
2654 			first_seg->nb_segs = 1;
2655 		} else {
2656 			first_seg->nb_segs++;
2657 			last_seg->next = rxm;
2658 		}
2659 
2660 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2661 		rxm->data_len = rte_le_to_cpu_16(rxd.rx.size);
2662 
2663 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2664 			last_seg = rxm;
2665 			rxm->next = NULL;
2666 			continue;
2667 		}
2668 
2669 		if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B)))
2670 			hns3_rx_ptp_timestamp_handle(rxq, first_seg, timestamp);
2671 
2672 		/*
2673 		 * The last buffer of the received packet. packet len from
2674 		 * buffer description may contains CRC len, packet len should
2675 		 * subtract it, same as data len.
2676 		 */
2677 		first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len);
2678 
2679 		/*
2680 		 * This is the last buffer of the received packet. If the CRC
2681 		 * is not stripped by the hardware:
2682 		 *  - Subtract the CRC length from the total packet length.
2683 		 *  - If the last buffer only contains the whole CRC or a part
2684 		 *  of it, free the mbuf associated to the last buffer. If part
2685 		 *  of the CRC is also contained in the previous mbuf, subtract
2686 		 *  the length of that CRC part from the data length of the
2687 		 *  previous mbuf.
2688 		 */
2689 		rxm->next = NULL;
2690 		if (unlikely(rxq->crc_len > 0)) {
2691 			first_seg->pkt_len -= rxq->crc_len;
2692 			recalculate_data_len(first_seg, last_seg, rxm, rxq,
2693 				rxm->data_len);
2694 		}
2695 
2696 		first_seg->port = rxq->port_id;
2697 		first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
2698 		first_seg->ol_flags = RTE_MBUF_F_RX_RSS_HASH;
2699 		if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
2700 			first_seg->hash.fdir.hi =
2701 				rte_le_to_cpu_16(rxd.rx.fd_id);
2702 			first_seg->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
2703 		}
2704 
2705 		gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M,
2706 					  HNS3_RXD_GRO_SIZE_S);
2707 		if (gro_size != 0) {
2708 			first_seg->ol_flags |= RTE_MBUF_F_RX_LRO;
2709 			first_seg->tso_segsz = gro_size;
2710 		}
2711 
2712 		l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
2713 		ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
2714 		ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info,
2715 					 l234_info);
2716 		if (unlikely(ret))
2717 			goto pkt_err;
2718 
2719 		first_seg->packet_type = hns3_rx_calc_ptype(rxq,
2720 						l234_info, ol_info);
2721 
2722 		if (first_seg->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC)
2723 			rxm->ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2724 
2725 		hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd);
2726 
2727 		/* Increment bytes counter */
2728 		rxq->basic_stats.bytes += first_seg->pkt_len;
2729 
2730 		rx_pkts[nb_rx++] = first_seg;
2731 		first_seg = NULL;
2732 		continue;
2733 pkt_err:
2734 		rte_pktmbuf_free(first_seg);
2735 		first_seg = NULL;
2736 	}
2737 
2738 	rxq->next_to_use = rx_id;
2739 	rxq->pkt_first_seg = first_seg;
2740 	rxq->pkt_last_seg = last_seg;
2741 
2742 	rxq->rx_free_hold += nb_rx_bd;
2743 	if (rxq->rx_free_hold > rxq->rx_free_thresh) {
2744 		hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
2745 		rxq->rx_free_hold = 0;
2746 	}
2747 
2748 	return nb_rx;
2749 }
2750 
2751 void __rte_weak
hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue * rxq)2752 hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue *rxq)
2753 {
2754 }
2755 
2756 int __rte_weak
hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev * dev)2757 hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
2758 {
2759 	return -ENOTSUP;
2760 }
2761 
2762 uint16_t __rte_weak
hns3_recv_pkts_vec(__rte_unused void * tx_queue,__rte_unused struct rte_mbuf ** rx_pkts,__rte_unused uint16_t nb_pkts)2763 hns3_recv_pkts_vec(__rte_unused void *tx_queue,
2764 		   __rte_unused struct rte_mbuf **rx_pkts,
2765 		   __rte_unused uint16_t nb_pkts)
2766 {
2767 	return 0;
2768 }
2769 
2770 uint16_t __rte_weak
hns3_recv_pkts_vec_sve(__rte_unused void * tx_queue,__rte_unused struct rte_mbuf ** rx_pkts,__rte_unused uint16_t nb_pkts)2771 hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue,
2772 		       __rte_unused struct rte_mbuf **rx_pkts,
2773 		       __rte_unused uint16_t nb_pkts)
2774 {
2775 	return 0;
2776 }
2777 
2778 int
hns3_rx_burst_mode_get(struct rte_eth_dev * dev,__rte_unused uint16_t queue_id,struct rte_eth_burst_mode * mode)2779 hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2780 		       struct rte_eth_burst_mode *mode)
2781 {
2782 	static const struct {
2783 		eth_rx_burst_t pkt_burst;
2784 		const char *info;
2785 	} burst_infos[] = {
2786 		{ hns3_recv_pkts_simple,	"Scalar Simple" },
2787 		{ hns3_recv_scattered_pkts,	"Scalar Scattered" },
2788 		{ hns3_recv_pkts_vec,		"Vector Neon"   },
2789 		{ hns3_recv_pkts_vec_sve,	"Vector Sve"    },
2790 	};
2791 
2792 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
2793 	int ret = -EINVAL;
2794 	unsigned int i;
2795 
2796 	for (i = 0; i < RTE_DIM(burst_infos); i++) {
2797 		if (pkt_burst == burst_infos[i].pkt_burst) {
2798 			snprintf(mode->info, sizeof(mode->info), "%s",
2799 				 burst_infos[i].info);
2800 			ret = 0;
2801 			break;
2802 		}
2803 	}
2804 
2805 	return ret;
2806 }
2807 
2808 static bool
hns3_get_default_vec_support(void)2809 hns3_get_default_vec_support(void)
2810 {
2811 #if defined(RTE_ARCH_ARM64)
2812 	if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_128)
2813 		return false;
2814 	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
2815 		return true;
2816 #endif
2817 	return false;
2818 }
2819 
2820 static bool
hns3_get_sve_support(void)2821 hns3_get_sve_support(void)
2822 {
2823 #if defined(RTE_HAS_SVE_ACLE)
2824 	if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_256)
2825 		return false;
2826 	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SVE))
2827 		return true;
2828 #endif
2829 	return false;
2830 }
2831 
2832 static eth_rx_burst_t
hns3_get_rx_function(struct rte_eth_dev * dev)2833 hns3_get_rx_function(struct rte_eth_dev *dev)
2834 {
2835 	struct hns3_adapter *hns = dev->data->dev_private;
2836 	uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
2837 	bool vec_allowed, sve_allowed, simple_allowed;
2838 	bool vec_support;
2839 
2840 	vec_support = hns3_rx_check_vec_support(dev) == 0;
2841 	vec_allowed = vec_support && hns3_get_default_vec_support();
2842 	sve_allowed = vec_support && hns3_get_sve_support();
2843 	simple_allowed = !dev->data->scattered_rx &&
2844 			 (offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO) == 0;
2845 
2846 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed)
2847 		return hns3_recv_pkts_vec;
2848 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed)
2849 		return hns3_recv_pkts_vec_sve;
2850 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed)
2851 		return hns3_recv_pkts_simple;
2852 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_COMMON)
2853 		return hns3_recv_scattered_pkts;
2854 
2855 	if (vec_allowed)
2856 		return hns3_recv_pkts_vec;
2857 	if (simple_allowed)
2858 		return hns3_recv_pkts_simple;
2859 
2860 	return hns3_recv_scattered_pkts;
2861 }
2862 
2863 static int
hns3_tx_queue_conf_check(struct hns3_hw * hw,const struct rte_eth_txconf * conf,uint16_t nb_desc,uint16_t * tx_rs_thresh,uint16_t * tx_free_thresh,uint16_t idx)2864 hns3_tx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_txconf *conf,
2865 			 uint16_t nb_desc, uint16_t *tx_rs_thresh,
2866 			 uint16_t *tx_free_thresh, uint16_t idx)
2867 {
2868 #define HNS3_TX_RS_FREE_THRESH_GAP	8
2869 	uint16_t rs_thresh, free_thresh, fast_free_thresh;
2870 
2871 	if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
2872 	    nb_desc % HNS3_ALIGN_RING_DESC) {
2873 		hns3_err(hw, "number (%u) of tx descriptors is invalid",
2874 			 nb_desc);
2875 		return -EINVAL;
2876 	}
2877 
2878 	rs_thresh = (conf->tx_rs_thresh > 0) ?
2879 			conf->tx_rs_thresh : HNS3_DEFAULT_TX_RS_THRESH;
2880 	free_thresh = (conf->tx_free_thresh > 0) ?
2881 			conf->tx_free_thresh : HNS3_DEFAULT_TX_FREE_THRESH;
2882 	if (rs_thresh + free_thresh > nb_desc || nb_desc % rs_thresh ||
2883 	    rs_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP ||
2884 	    free_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP) {
2885 		hns3_err(hw, "tx_rs_thresh (%u) tx_free_thresh (%u) nb_desc "
2886 			 "(%u) of tx descriptors for port=%u queue=%u check "
2887 			 "fail!",
2888 			 rs_thresh, free_thresh, nb_desc, hw->data->port_id,
2889 			 idx);
2890 		return -EINVAL;
2891 	}
2892 
2893 	if (conf->tx_free_thresh == 0) {
2894 		/* Fast free Tx memory buffer to improve cache hit rate */
2895 		fast_free_thresh = nb_desc - rs_thresh;
2896 		if (fast_free_thresh >=
2897 		    HNS3_TX_FAST_FREE_AHEAD + HNS3_DEFAULT_TX_FREE_THRESH)
2898 			free_thresh = fast_free_thresh -
2899 					HNS3_TX_FAST_FREE_AHEAD;
2900 	}
2901 
2902 	*tx_rs_thresh = rs_thresh;
2903 	*tx_free_thresh = free_thresh;
2904 	return 0;
2905 }
2906 
2907 static void *
hns3_tx_push_get_queue_tail_reg(struct rte_eth_dev * dev,uint16_t queue_id)2908 hns3_tx_push_get_queue_tail_reg(struct rte_eth_dev *dev, uint16_t queue_id)
2909 {
2910 #define HNS3_TX_PUSH_TQP_REGION_SIZE		0x10000
2911 #define HNS3_TX_PUSH_QUICK_DOORBELL_OFFSET	64
2912 #define HNS3_TX_PUSH_PCI_BAR_INDEX		4
2913 
2914 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
2915 	uint8_t bar_id = HNS3_TX_PUSH_PCI_BAR_INDEX;
2916 
2917 	/*
2918 	 * If device support Tx push then its PCIe bar45 must exist, and DPDK
2919 	 * framework will mmap the bar45 default in PCI probe stage.
2920 	 *
2921 	 * In the bar45, the first half is for RoCE (RDMA over Converged
2922 	 * Ethernet), and the second half is for NIC, every TQP occupy 64KB.
2923 	 *
2924 	 * The quick doorbell located at 64B offset in the TQP region.
2925 	 */
2926 	return (char *)pci_dev->mem_resource[bar_id].addr +
2927 			(pci_dev->mem_resource[bar_id].len >> 1) +
2928 			HNS3_TX_PUSH_TQP_REGION_SIZE * queue_id +
2929 			HNS3_TX_PUSH_QUICK_DOORBELL_OFFSET;
2930 }
2931 
2932 void
hns3_tx_push_init(struct rte_eth_dev * dev)2933 hns3_tx_push_init(struct rte_eth_dev *dev)
2934 {
2935 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2936 	volatile uint32_t *reg;
2937 	uint32_t val;
2938 
2939 	if (!hns3_dev_get_support(hw, TX_PUSH))
2940 		return;
2941 
2942 	reg = (volatile uint32_t *)hns3_tx_push_get_queue_tail_reg(dev, 0);
2943 	/*
2944 	 * Because the size of bar45 is about 8GB size, it may take a long time
2945 	 * to do the page fault in Tx process when work with vfio-pci, so use
2946 	 * one read operation to make kernel setup page table mapping for bar45
2947 	 * in the init stage.
2948 	 * Note: the bar45 is readable but the result is all 1.
2949 	 */
2950 	val = *reg;
2951 	RTE_SET_USED(val);
2952 }
2953 
2954 static void
hns3_tx_push_queue_init(struct rte_eth_dev * dev,uint16_t queue_id,struct hns3_tx_queue * txq)2955 hns3_tx_push_queue_init(struct rte_eth_dev *dev,
2956 			uint16_t queue_id,
2957 			struct hns3_tx_queue *txq)
2958 {
2959 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2960 	if (!hns3_dev_get_support(hw, TX_PUSH)) {
2961 		txq->tx_push_enable = false;
2962 		return;
2963 	}
2964 
2965 	txq->io_tail_reg = (volatile void *)hns3_tx_push_get_queue_tail_reg(dev,
2966 						queue_id);
2967 	txq->tx_push_enable = true;
2968 }
2969 
2970 int
hns3_tx_queue_setup(struct rte_eth_dev * dev,uint16_t idx,uint16_t nb_desc,unsigned int socket_id,const struct rte_eth_txconf * conf)2971 hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
2972 		    unsigned int socket_id, const struct rte_eth_txconf *conf)
2973 {
2974 	struct hns3_adapter *hns = dev->data->dev_private;
2975 	uint16_t tx_rs_thresh, tx_free_thresh;
2976 	struct hns3_hw *hw = &hns->hw;
2977 	struct hns3_queue_info q_info;
2978 	struct hns3_tx_queue *txq;
2979 	int tx_entry_len;
2980 	int ret;
2981 
2982 	ret = hns3_tx_queue_conf_check(hw, conf, nb_desc,
2983 				       &tx_rs_thresh, &tx_free_thresh, idx);
2984 	if (ret)
2985 		return ret;
2986 
2987 	if (dev->data->tx_queues[idx] != NULL) {
2988 		hns3_tx_queue_release(dev->data->tx_queues[idx]);
2989 		dev->data->tx_queues[idx] = NULL;
2990 	}
2991 
2992 	q_info.idx = idx;
2993 	q_info.socket_id = socket_id;
2994 	q_info.nb_desc = nb_desc;
2995 	q_info.type = "hns3 TX queue";
2996 	q_info.ring_name = "tx_ring";
2997 	txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
2998 	if (txq == NULL) {
2999 		hns3_err(hw,
3000 			 "Failed to alloc mem and reserve DMA mem for tx ring!");
3001 		return -ENOMEM;
3002 	}
3003 
3004 	txq->tx_deferred_start = conf->tx_deferred_start;
3005 	if (txq->tx_deferred_start && !hns3_dev_get_support(hw, INDEP_TXRX)) {
3006 		hns3_warn(hw, "deferred start is not supported.");
3007 		txq->tx_deferred_start = false;
3008 	}
3009 
3010 	tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc;
3011 	txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len,
3012 					  RTE_CACHE_LINE_SIZE, socket_id);
3013 	if (txq->sw_ring == NULL) {
3014 		hns3_err(hw, "Failed to allocate memory for tx sw ring!");
3015 		hns3_tx_queue_release(txq);
3016 		return -ENOMEM;
3017 	}
3018 
3019 	txq->hns = hns;
3020 	txq->next_to_use = 0;
3021 	txq->next_to_clean = 0;
3022 	txq->tx_bd_ready = txq->nb_tx_desc - 1;
3023 	txq->tx_free_thresh = tx_free_thresh;
3024 	txq->tx_rs_thresh = tx_rs_thresh;
3025 	txq->free = rte_zmalloc_socket("hns3 TX mbuf free array",
3026 				sizeof(struct rte_mbuf *) * txq->tx_rs_thresh,
3027 				RTE_CACHE_LINE_SIZE, socket_id);
3028 	if (!txq->free) {
3029 		hns3_err(hw, "failed to allocate tx mbuf free array!");
3030 		hns3_tx_queue_release(txq);
3031 		return -ENOMEM;
3032 	}
3033 
3034 	txq->port_id = dev->data->port_id;
3035 	/*
3036 	 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
3037 	 * the pvid_sw_shift_en in the queue struct should not be changed,
3038 	 * because PVID-related operations do not need to be processed by PMD.
3039 	 * For hns3 VF device, whether it needs to process PVID depends
3040 	 * on the configuration of PF kernel mode netdev driver. And the
3041 	 * related PF configuration is delivered through the mailbox and finally
3042 	 * reflected in port_base_vlan_cfg.
3043 	 */
3044 	if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
3045 		txq->pvid_sw_shift_en = hw->port_base_vlan_cfg.state ==
3046 					HNS3_PORT_BASE_VLAN_ENABLE;
3047 	else
3048 		txq->pvid_sw_shift_en = false;
3049 	txq->max_non_tso_bd_num = hw->max_non_tso_bd_num;
3050 	txq->configured = true;
3051 	txq->io_base = (void *)((char *)hw->io_base +
3052 						hns3_get_tqp_reg_offset(idx));
3053 	txq->io_tail_reg = (volatile void *)((char *)txq->io_base +
3054 					     HNS3_RING_TX_TAIL_REG);
3055 	txq->min_tx_pkt_len = hw->min_tx_pkt_len;
3056 	txq->tso_mode = hw->tso_mode;
3057 	txq->udp_cksum_mode = hw->udp_cksum_mode;
3058 	txq->mbuf_fast_free_en = !!(dev->data->dev_conf.txmode.offloads &
3059 				    RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE);
3060 	memset(&txq->basic_stats, 0, sizeof(struct hns3_tx_basic_stats));
3061 	memset(&txq->dfx_stats, 0, sizeof(struct hns3_tx_dfx_stats));
3062 
3063 	/*
3064 	 * Call hns3_tx_push_queue_init after assigned io_tail_reg field because
3065 	 * it may overwrite the io_tail_reg field.
3066 	 */
3067 	hns3_tx_push_queue_init(dev, idx, txq);
3068 
3069 	rte_spinlock_lock(&hw->lock);
3070 	dev->data->tx_queues[idx] = txq;
3071 	rte_spinlock_unlock(&hw->lock);
3072 
3073 	return 0;
3074 }
3075 
3076 static int
hns3_tx_free_useless_buffer(struct hns3_tx_queue * txq)3077 hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq)
3078 {
3079 	uint16_t tx_next_clean = txq->next_to_clean;
3080 	uint16_t tx_next_use = txq->next_to_use;
3081 	struct hns3_entry *tx_entry = &txq->sw_ring[tx_next_clean];
3082 	struct hns3_desc *desc = &txq->tx_ring[tx_next_clean];
3083 	int i;
3084 
3085 	if (tx_next_use >= tx_next_clean &&
3086 	    tx_next_use < tx_next_clean + txq->tx_rs_thresh)
3087 		return -1;
3088 
3089 	/*
3090 	 * All mbufs can be released only when the VLD bits of all
3091 	 * descriptors in a batch are cleared.
3092 	 */
3093 	for (i = 0; i < txq->tx_rs_thresh; i++) {
3094 		if (desc[i].tx.tp_fe_sc_vld_ra_ri &
3095 			rte_le_to_cpu_16(BIT(HNS3_TXD_VLD_B)))
3096 			return -1;
3097 	}
3098 
3099 	for (i = 0; i < txq->tx_rs_thresh; i++) {
3100 		rte_pktmbuf_free_seg(tx_entry[i].mbuf);
3101 		tx_entry[i].mbuf = NULL;
3102 	}
3103 
3104 	/* Update numbers of available descriptor due to buffer freed */
3105 	txq->tx_bd_ready += txq->tx_rs_thresh;
3106 	txq->next_to_clean += txq->tx_rs_thresh;
3107 	if (txq->next_to_clean >= txq->nb_tx_desc)
3108 		txq->next_to_clean = 0;
3109 
3110 	return 0;
3111 }
3112 
3113 static inline int
hns3_tx_free_required_buffer(struct hns3_tx_queue * txq,uint16_t required_bds)3114 hns3_tx_free_required_buffer(struct hns3_tx_queue *txq, uint16_t required_bds)
3115 {
3116 	while (required_bds > txq->tx_bd_ready) {
3117 		if (hns3_tx_free_useless_buffer(txq) != 0)
3118 			return -1;
3119 	}
3120 	return 0;
3121 }
3122 
3123 int
hns3_config_gro(struct hns3_hw * hw,bool en)3124 hns3_config_gro(struct hns3_hw *hw, bool en)
3125 {
3126 	struct hns3_cfg_gro_status_cmd *req;
3127 	struct hns3_cmd_desc desc;
3128 	int ret;
3129 
3130 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
3131 	req = (struct hns3_cfg_gro_status_cmd *)desc.data;
3132 
3133 	req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
3134 
3135 	ret = hns3_cmd_send(hw, &desc, 1);
3136 	if (ret)
3137 		hns3_err(hw, "%s hardware GRO failed, ret = %d",
3138 			 en ? "enable" : "disable", ret);
3139 
3140 	return ret;
3141 }
3142 
3143 int
hns3_restore_gro_conf(struct hns3_hw * hw)3144 hns3_restore_gro_conf(struct hns3_hw *hw)
3145 {
3146 	uint64_t offloads;
3147 	bool gro_en;
3148 	int ret;
3149 
3150 	offloads = hw->data->dev_conf.rxmode.offloads;
3151 	gro_en = offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
3152 	ret = hns3_config_gro(hw, gro_en);
3153 	if (ret)
3154 		hns3_err(hw, "restore hardware GRO to %s failed, ret = %d",
3155 			 gro_en ? "enabled" : "disabled", ret);
3156 
3157 	return ret;
3158 }
3159 
3160 static inline bool
hns3_pkt_is_tso(struct rte_mbuf * m)3161 hns3_pkt_is_tso(struct rte_mbuf *m)
3162 {
3163 	return (m->tso_segsz != 0 && m->ol_flags & RTE_MBUF_F_TX_TCP_SEG);
3164 }
3165 
3166 static void
hns3_set_tso(struct hns3_desc * desc,uint32_t paylen,struct rte_mbuf * rxm)3167 hns3_set_tso(struct hns3_desc *desc, uint32_t paylen, struct rte_mbuf *rxm)
3168 {
3169 	if (!hns3_pkt_is_tso(rxm))
3170 		return;
3171 
3172 	if (paylen <= rxm->tso_segsz)
3173 		return;
3174 
3175 	desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_TSO_B));
3176 	desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz);
3177 }
3178 
3179 static inline void
hns3_fill_per_desc(struct hns3_desc * desc,struct rte_mbuf * rxm)3180 hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm)
3181 {
3182 	desc->addr = rte_mbuf_data_iova(rxm);
3183 	desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm));
3184 	desc->tx.tp_fe_sc_vld_ra_ri |= rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B));
3185 }
3186 
3187 static void
hns3_fill_first_desc(struct hns3_tx_queue * txq,struct hns3_desc * desc,struct rte_mbuf * rxm)3188 hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc,
3189 		     struct rte_mbuf *rxm)
3190 {
3191 	uint64_t ol_flags = rxm->ol_flags;
3192 	uint32_t hdr_len;
3193 	uint32_t paylen;
3194 
3195 	hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len;
3196 	hdr_len += (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
3197 			   rxm->outer_l2_len + rxm->outer_l3_len : 0;
3198 	paylen = rxm->pkt_len - hdr_len;
3199 	desc->tx.paylen_fd_dop_ol4cs |= rte_cpu_to_le_32(paylen);
3200 	hns3_set_tso(desc, paylen, rxm);
3201 
3202 	/*
3203 	 * Currently, hardware doesn't support more than two layers VLAN offload
3204 	 * in Tx direction based on hns3 network engine. So when the number of
3205 	 * VLANs in the packets represented by rxm plus the number of VLAN
3206 	 * offload by hardware such as PVID etc, exceeds two, the packets will
3207 	 * be discarded or the original VLAN of the packets will be overwritten
3208 	 * by hardware. When the PF PVID is enabled by calling the API function
3209 	 * named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3
3210 	 * PF kernel ether driver, the outer VLAN tag will always be the PVID.
3211 	 * To avoid the VLAN of Tx descriptor is overwritten by PVID, it should
3212 	 * be added to the position close to the IP header when PVID is enabled.
3213 	 */
3214 	if (!txq->pvid_sw_shift_en &&
3215 	    ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
3216 		desc->tx.ol_type_vlan_len_msec |=
3217 				rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B));
3218 		if (ol_flags & RTE_MBUF_F_TX_QINQ)
3219 			desc->tx.outer_vlan_tag =
3220 					rte_cpu_to_le_16(rxm->vlan_tci_outer);
3221 		else
3222 			desc->tx.outer_vlan_tag =
3223 					rte_cpu_to_le_16(rxm->vlan_tci);
3224 	}
3225 
3226 	if (ol_flags & RTE_MBUF_F_TX_QINQ ||
3227 	    ((ol_flags & RTE_MBUF_F_TX_VLAN) && txq->pvid_sw_shift_en)) {
3228 		desc->tx.type_cs_vlan_tso_len |=
3229 					rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B));
3230 		desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci);
3231 	}
3232 
3233 	if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
3234 		desc->tx.tp_fe_sc_vld_ra_ri |=
3235 				rte_cpu_to_le_16(BIT(HNS3_TXD_TSYN_B));
3236 }
3237 
3238 static inline int
hns3_tx_alloc_mbufs(struct rte_mempool * mb_pool,uint16_t nb_new_buf,struct rte_mbuf ** alloc_mbuf)3239 hns3_tx_alloc_mbufs(struct rte_mempool *mb_pool, uint16_t nb_new_buf,
3240 			struct rte_mbuf **alloc_mbuf)
3241 {
3242 #define MAX_NON_TSO_BD_PER_PKT 18
3243 	struct rte_mbuf *pkt_segs[MAX_NON_TSO_BD_PER_PKT];
3244 	uint16_t i;
3245 
3246 	/* Allocate enough mbufs */
3247 	if (rte_mempool_get_bulk(mb_pool, (void **)pkt_segs, nb_new_buf))
3248 		return -ENOMEM;
3249 
3250 	for (i = 0; i < nb_new_buf - 1; i++)
3251 		pkt_segs[i]->next = pkt_segs[i + 1];
3252 
3253 	pkt_segs[nb_new_buf - 1]->next = NULL;
3254 	pkt_segs[0]->nb_segs = nb_new_buf;
3255 	*alloc_mbuf = pkt_segs[0];
3256 
3257 	return 0;
3258 }
3259 
3260 static inline void
hns3_pktmbuf_copy_hdr(struct rte_mbuf * new_pkt,struct rte_mbuf * old_pkt)3261 hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt)
3262 {
3263 	new_pkt->ol_flags = old_pkt->ol_flags;
3264 	new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt);
3265 	new_pkt->outer_l2_len = old_pkt->outer_l2_len;
3266 	new_pkt->outer_l3_len = old_pkt->outer_l3_len;
3267 	new_pkt->l2_len = old_pkt->l2_len;
3268 	new_pkt->l3_len = old_pkt->l3_len;
3269 	new_pkt->l4_len = old_pkt->l4_len;
3270 	new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer;
3271 	new_pkt->vlan_tci = old_pkt->vlan_tci;
3272 }
3273 
3274 static int
hns3_reassemble_tx_pkts(struct rte_mbuf * tx_pkt,struct rte_mbuf ** new_pkt,uint8_t max_non_tso_bd_num)3275 hns3_reassemble_tx_pkts(struct rte_mbuf *tx_pkt, struct rte_mbuf **new_pkt,
3276 				  uint8_t max_non_tso_bd_num)
3277 {
3278 	struct rte_mempool *mb_pool;
3279 	struct rte_mbuf *new_mbuf;
3280 	struct rte_mbuf *temp_new;
3281 	struct rte_mbuf *temp;
3282 	uint16_t last_buf_len;
3283 	uint16_t nb_new_buf;
3284 	uint16_t buf_size;
3285 	uint16_t buf_len;
3286 	uint16_t len_s;
3287 	uint16_t len_d;
3288 	uint16_t len;
3289 	int ret;
3290 	char *s;
3291 	char *d;
3292 
3293 	mb_pool = tx_pkt->pool;
3294 	buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM;
3295 	nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1;
3296 	if (nb_new_buf > max_non_tso_bd_num)
3297 		return -EINVAL;
3298 
3299 	last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size;
3300 	if (last_buf_len == 0)
3301 		last_buf_len = buf_size;
3302 
3303 	/* Allocate enough mbufs */
3304 	ret = hns3_tx_alloc_mbufs(mb_pool, nb_new_buf, &new_mbuf);
3305 	if (ret)
3306 		return ret;
3307 
3308 	/* Copy the original packet content to the new mbufs */
3309 	temp = tx_pkt;
3310 	s = rte_pktmbuf_mtod(temp, char *);
3311 	len_s = rte_pktmbuf_data_len(temp);
3312 	temp_new = new_mbuf;
3313 	while (temp != NULL && temp_new != NULL) {
3314 		d = rte_pktmbuf_mtod(temp_new, char *);
3315 		buf_len = temp_new->next == NULL ? last_buf_len : buf_size;
3316 		len_d = buf_len;
3317 
3318 		while (len_d) {
3319 			len = RTE_MIN(len_s, len_d);
3320 			memcpy(d, s, len);
3321 			s = s + len;
3322 			d = d + len;
3323 			len_d = len_d - len;
3324 			len_s = len_s - len;
3325 
3326 			if (len_s == 0) {
3327 				temp = temp->next;
3328 				if (temp == NULL)
3329 					break;
3330 				s = rte_pktmbuf_mtod(temp, char *);
3331 				len_s = rte_pktmbuf_data_len(temp);
3332 			}
3333 		}
3334 
3335 		temp_new->data_len = buf_len;
3336 		temp_new = temp_new->next;
3337 	}
3338 	hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt);
3339 
3340 	/* free original mbufs */
3341 	rte_pktmbuf_free(tx_pkt);
3342 
3343 	*new_pkt = new_mbuf;
3344 
3345 	return 0;
3346 }
3347 
3348 static void
hns3_parse_outer_params(struct rte_mbuf * m,uint32_t * ol_type_vlan_len_msec)3349 hns3_parse_outer_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec)
3350 {
3351 	uint32_t tmp = *ol_type_vlan_len_msec;
3352 	uint64_t ol_flags = m->ol_flags;
3353 
3354 	/* (outer) IP header type */
3355 	if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) {
3356 		if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
3357 			tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
3358 					HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM);
3359 		else
3360 			tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
3361 				HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM);
3362 	} else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6) {
3363 		tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
3364 					HNS3_OL3T_IPV6);
3365 	}
3366 	/* OL3 header size, defined in 4 bytes */
3367 	tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
3368 				m->outer_l3_len >> HNS3_L3_LEN_UNIT);
3369 	*ol_type_vlan_len_msec = tmp;
3370 }
3371 
3372 static int
hns3_parse_inner_params(struct rte_mbuf * m,uint32_t * ol_type_vlan_len_msec,uint32_t * type_cs_vlan_tso_len)3373 hns3_parse_inner_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec,
3374 			uint32_t *type_cs_vlan_tso_len)
3375 {
3376 #define HNS3_NVGRE_HLEN 8
3377 	uint32_t tmp_outer = *ol_type_vlan_len_msec;
3378 	uint32_t tmp_inner = *type_cs_vlan_tso_len;
3379 	uint64_t ol_flags = m->ol_flags;
3380 	uint16_t inner_l2_len;
3381 
3382 	switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
3383 	case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE:
3384 	case RTE_MBUF_F_TX_TUNNEL_GENEVE:
3385 	case RTE_MBUF_F_TX_TUNNEL_VXLAN:
3386 		/* MAC in UDP tunnelling packet, include VxLAN and GENEVE */
3387 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
3388 				HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP);
3389 		/*
3390 		 * The inner l2 length of mbuf is the sum of outer l4 length,
3391 		 * tunneling header length and inner l2 length for a tunnel
3392 		 * packet. But in hns3 tx descriptor, the tunneling header
3393 		 * length is contained in the field of outer L4 length.
3394 		 * Therefore, driver need to calculate the outer L4 length and
3395 		 * inner L2 length.
3396 		 */
3397 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
3398 						HNS3_TXD_L4LEN_S,
3399 						(uint8_t)RTE_ETHER_VXLAN_HLEN >>
3400 						HNS3_L4_LEN_UNIT);
3401 
3402 		inner_l2_len = m->l2_len - RTE_ETHER_VXLAN_HLEN;
3403 		break;
3404 	case RTE_MBUF_F_TX_TUNNEL_GRE:
3405 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
3406 					HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE);
3407 		/*
3408 		 * For NVGRE tunnel packet, the outer L4 is empty. So only
3409 		 * fill the NVGRE header length to the outer L4 field.
3410 		 */
3411 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
3412 				HNS3_TXD_L4LEN_S,
3413 				(uint8_t)HNS3_NVGRE_HLEN >> HNS3_L4_LEN_UNIT);
3414 
3415 		inner_l2_len = m->l2_len - HNS3_NVGRE_HLEN;
3416 		break;
3417 	default:
3418 		/* For non UDP / GRE tunneling, drop the tunnel packet */
3419 		return -EINVAL;
3420 	}
3421 
3422 	tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
3423 					inner_l2_len >> HNS3_L2_LEN_UNIT);
3424 	/* OL2 header size, defined in 2 bytes */
3425 	tmp_outer |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
3426 					m->outer_l2_len >> HNS3_L2_LEN_UNIT);
3427 
3428 	*type_cs_vlan_tso_len = tmp_inner;
3429 	*ol_type_vlan_len_msec = tmp_outer;
3430 
3431 	return 0;
3432 }
3433 
3434 static int
hns3_parse_tunneling_params(struct hns3_tx_queue * txq,struct rte_mbuf * m,uint16_t tx_desc_id)3435 hns3_parse_tunneling_params(struct hns3_tx_queue *txq, struct rte_mbuf *m,
3436 			    uint16_t tx_desc_id)
3437 {
3438 	struct hns3_desc *tx_ring = txq->tx_ring;
3439 	struct hns3_desc *desc = &tx_ring[tx_desc_id];
3440 	uint64_t ol_flags = m->ol_flags;
3441 	uint32_t tmp_outer = 0;
3442 	uint32_t tmp_inner = 0;
3443 	uint32_t tmp_ol4cs;
3444 	int ret;
3445 
3446 	/*
3447 	 * The tunnel header is contained in the inner L2 header field of the
3448 	 * mbuf, but for hns3 descriptor, it is contained in the outer L4. So,
3449 	 * there is a need that switching between them. To avoid multiple
3450 	 * calculations, the length of the L2 header include the outer and
3451 	 * inner, will be filled during the parsing of tunnel packets.
3452 	 */
3453 	if (!(ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)) {
3454 		/*
3455 		 * For non tunnel type the tunnel type id is 0, so no need to
3456 		 * assign a value to it. Only the inner(normal) L2 header length
3457 		 * is assigned.
3458 		 */
3459 		tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M,
3460 			       HNS3_TXD_L2LEN_S, m->l2_len >> HNS3_L2_LEN_UNIT);
3461 	} else {
3462 		/*
3463 		 * If outer csum is not offload, the outer length may be filled
3464 		 * with 0. And the length of the outer header is added to the
3465 		 * inner l2_len. It would lead a cksum error. So driver has to
3466 		 * calculate the header length.
3467 		 */
3468 		if (unlikely(!(ol_flags &
3469 			(RTE_MBUF_F_TX_OUTER_IP_CKSUM | RTE_MBUF_F_TX_OUTER_UDP_CKSUM)) &&
3470 					m->outer_l2_len == 0)) {
3471 			struct rte_net_hdr_lens hdr_len;
3472 			(void)rte_net_get_ptype(m, &hdr_len,
3473 					RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
3474 			m->outer_l3_len = hdr_len.l3_len;
3475 			m->outer_l2_len = hdr_len.l2_len;
3476 			m->l2_len = m->l2_len - hdr_len.l2_len - hdr_len.l3_len;
3477 		}
3478 		hns3_parse_outer_params(m, &tmp_outer);
3479 		ret = hns3_parse_inner_params(m, &tmp_outer, &tmp_inner);
3480 		if (ret)
3481 			return -EINVAL;
3482 	}
3483 
3484 	desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(tmp_outer);
3485 	desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp_inner);
3486 	tmp_ol4cs = ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM ?
3487 			BIT(HNS3_TXD_OL4CS_B) : 0;
3488 	desc->tx.paylen_fd_dop_ol4cs = rte_cpu_to_le_32(tmp_ol4cs);
3489 
3490 	return 0;
3491 }
3492 
3493 static void
hns3_parse_l3_cksum_params(struct rte_mbuf * m,uint32_t * type_cs_vlan_tso_len)3494 hns3_parse_l3_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
3495 {
3496 	uint64_t ol_flags = m->ol_flags;
3497 	uint32_t l3_type;
3498 	uint32_t tmp;
3499 
3500 	tmp = *type_cs_vlan_tso_len;
3501 	if (ol_flags & RTE_MBUF_F_TX_IPV4)
3502 		l3_type = HNS3_L3T_IPV4;
3503 	else if (ol_flags & RTE_MBUF_F_TX_IPV6)
3504 		l3_type = HNS3_L3T_IPV6;
3505 	else
3506 		l3_type = HNS3_L3T_NONE;
3507 
3508 	/* inner(/normal) L3 header size, defined in 4 bytes */
3509 	tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
3510 					m->l3_len >> HNS3_L3_LEN_UNIT);
3511 
3512 	tmp |= hns3_gen_field_val(HNS3_TXD_L3T_M, HNS3_TXD_L3T_S, l3_type);
3513 
3514 	/* Enable L3 checksum offloads */
3515 	if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM)
3516 		tmp |= BIT(HNS3_TXD_L3CS_B);
3517 	*type_cs_vlan_tso_len = tmp;
3518 }
3519 
3520 static void
hns3_parse_l4_cksum_params(struct rte_mbuf * m,uint32_t * type_cs_vlan_tso_len)3521 hns3_parse_l4_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
3522 {
3523 	uint64_t ol_flags = m->ol_flags;
3524 	uint32_t tmp;
3525 	/* Enable L4 checksum offloads */
3526 	switch (ol_flags & (RTE_MBUF_F_TX_L4_MASK | RTE_MBUF_F_TX_TCP_SEG)) {
3527 	case RTE_MBUF_F_TX_TCP_CKSUM | RTE_MBUF_F_TX_TCP_SEG:
3528 	case RTE_MBUF_F_TX_TCP_CKSUM:
3529 	case RTE_MBUF_F_TX_TCP_SEG:
3530 		tmp = *type_cs_vlan_tso_len;
3531 		tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3532 					HNS3_L4T_TCP);
3533 		break;
3534 	case RTE_MBUF_F_TX_UDP_CKSUM:
3535 		tmp = *type_cs_vlan_tso_len;
3536 		tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3537 					HNS3_L4T_UDP);
3538 		break;
3539 	case RTE_MBUF_F_TX_SCTP_CKSUM:
3540 		tmp = *type_cs_vlan_tso_len;
3541 		tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3542 					HNS3_L4T_SCTP);
3543 		break;
3544 	default:
3545 		return;
3546 	}
3547 	tmp |= BIT(HNS3_TXD_L4CS_B);
3548 	tmp |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
3549 					m->l4_len >> HNS3_L4_LEN_UNIT);
3550 	*type_cs_vlan_tso_len = tmp;
3551 }
3552 
3553 static void
hns3_txd_enable_checksum(struct hns3_tx_queue * txq,struct rte_mbuf * m,uint16_t tx_desc_id)3554 hns3_txd_enable_checksum(struct hns3_tx_queue *txq, struct rte_mbuf *m,
3555 			 uint16_t tx_desc_id)
3556 {
3557 	struct hns3_desc *tx_ring = txq->tx_ring;
3558 	struct hns3_desc *desc = &tx_ring[tx_desc_id];
3559 	uint32_t value = 0;
3560 
3561 	hns3_parse_l3_cksum_params(m, &value);
3562 	hns3_parse_l4_cksum_params(m, &value);
3563 
3564 	desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value);
3565 }
3566 
3567 static bool
hns3_pkt_need_linearized(struct rte_mbuf * tx_pkts,uint32_t bd_num,uint32_t max_non_tso_bd_num)3568 hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num,
3569 				 uint32_t max_non_tso_bd_num)
3570 {
3571 	struct rte_mbuf *m_first = tx_pkts;
3572 	struct rte_mbuf *m_last = tx_pkts;
3573 	uint32_t tot_len = 0;
3574 	uint32_t hdr_len;
3575 	uint32_t i;
3576 
3577 	/*
3578 	 * Hardware requires that the sum of the data length of every 8
3579 	 * consecutive buffers is greater than MSS in hns3 network engine.
3580 	 * We simplify it by ensuring pkt_headlen + the first 8 consecutive
3581 	 * frags greater than gso header len + mss, and the remaining 7
3582 	 * consecutive frags greater than MSS except the last 7 frags.
3583 	 */
3584 	if (bd_num <= max_non_tso_bd_num)
3585 		return false;
3586 
3587 	for (i = 0; m_last && i < max_non_tso_bd_num - 1;
3588 	     i++, m_last = m_last->next)
3589 		tot_len += m_last->data_len;
3590 
3591 	if (!m_last)
3592 		return true;
3593 
3594 	/* ensure the first 8 frags is greater than mss + header */
3595 	hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len;
3596 	hdr_len += (tx_pkts->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
3597 		   tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0;
3598 	if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len)
3599 		return true;
3600 
3601 	/*
3602 	 * ensure the sum of the data length of every 7 consecutive buffer
3603 	 * is greater than mss except the last one.
3604 	 */
3605 	for (i = 0; m_last && i < bd_num - max_non_tso_bd_num; i++) {
3606 		tot_len -= m_first->data_len;
3607 		tot_len += m_last->data_len;
3608 
3609 		if (tot_len < tx_pkts->tso_segsz)
3610 			return true;
3611 
3612 		m_first = m_first->next;
3613 		m_last = m_last->next;
3614 	}
3615 
3616 	return false;
3617 }
3618 
3619 static bool
hns3_outer_ipv4_cksum_prepared(struct rte_mbuf * m,uint64_t ol_flags,uint32_t * l4_proto)3620 hns3_outer_ipv4_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags,
3621 				uint32_t *l4_proto)
3622 {
3623 	struct rte_ipv4_hdr *ipv4_hdr;
3624 	ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
3625 					   m->outer_l2_len);
3626 	if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
3627 		ipv4_hdr->hdr_checksum = 0;
3628 	if (ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM) {
3629 		struct rte_udp_hdr *udp_hdr;
3630 		/*
3631 		 * If OUTER_UDP_CKSUM is support, HW can calculate the pseudo
3632 		 * header for TSO packets
3633 		 */
3634 		if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
3635 			return true;
3636 		udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3637 				m->outer_l2_len + m->outer_l3_len);
3638 		udp_hdr->dgram_cksum = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
3639 
3640 		return true;
3641 	}
3642 	*l4_proto = ipv4_hdr->next_proto_id;
3643 	return false;
3644 }
3645 
3646 static bool
hns3_outer_ipv6_cksum_prepared(struct rte_mbuf * m,uint64_t ol_flags,uint32_t * l4_proto)3647 hns3_outer_ipv6_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags,
3648 				uint32_t *l4_proto)
3649 {
3650 	struct rte_ipv6_hdr *ipv6_hdr;
3651 	ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
3652 					   m->outer_l2_len);
3653 	if (ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM) {
3654 		struct rte_udp_hdr *udp_hdr;
3655 		/*
3656 		 * If OUTER_UDP_CKSUM is support, HW can calculate the pseudo
3657 		 * header for TSO packets
3658 		 */
3659 		if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
3660 			return true;
3661 		udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3662 				m->outer_l2_len + m->outer_l3_len);
3663 		udp_hdr->dgram_cksum = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
3664 
3665 		return true;
3666 	}
3667 	*l4_proto = ipv6_hdr->proto;
3668 	return false;
3669 }
3670 
3671 static void
hns3_outer_header_cksum_prepare(struct rte_mbuf * m)3672 hns3_outer_header_cksum_prepare(struct rte_mbuf *m)
3673 {
3674 	uint64_t ol_flags = m->ol_flags;
3675 	uint32_t paylen, hdr_len, l4_proto;
3676 	struct rte_udp_hdr *udp_hdr;
3677 
3678 	if (!(ol_flags & (RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IPV6)))
3679 		return;
3680 
3681 	if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) {
3682 		if (hns3_outer_ipv4_cksum_prepared(m, ol_flags, &l4_proto))
3683 			return;
3684 	} else {
3685 		if (hns3_outer_ipv6_cksum_prepared(m, ol_flags, &l4_proto))
3686 			return;
3687 	}
3688 
3689 	/* driver should ensure the outer udp cksum is 0 for TUNNEL TSO */
3690 	if (l4_proto == IPPROTO_UDP && (ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
3691 		hdr_len = m->l2_len + m->l3_len + m->l4_len;
3692 		hdr_len += m->outer_l2_len + m->outer_l3_len;
3693 		paylen = m->pkt_len - hdr_len;
3694 		if (paylen <= m->tso_segsz)
3695 			return;
3696 		udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3697 						  m->outer_l2_len +
3698 						  m->outer_l3_len);
3699 		udp_hdr->dgram_cksum = 0;
3700 	}
3701 }
3702 
3703 static int
hns3_check_tso_pkt_valid(struct rte_mbuf * m)3704 hns3_check_tso_pkt_valid(struct rte_mbuf *m)
3705 {
3706 	uint32_t tmp_data_len_sum = 0;
3707 	uint16_t nb_buf = m->nb_segs;
3708 	uint32_t paylen, hdr_len;
3709 	struct rte_mbuf *m_seg;
3710 	int i;
3711 
3712 	if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT)
3713 		return -EINVAL;
3714 
3715 	hdr_len = m->l2_len + m->l3_len + m->l4_len;
3716 	hdr_len += (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
3717 			m->outer_l2_len + m->outer_l3_len : 0;
3718 	if (hdr_len > HNS3_MAX_TSO_HDR_SIZE)
3719 		return -EINVAL;
3720 
3721 	paylen = m->pkt_len - hdr_len;
3722 	if (paylen > HNS3_MAX_BD_PAYLEN)
3723 		return -EINVAL;
3724 
3725 	/*
3726 	 * The TSO header (include outer and inner L2, L3 and L4 header)
3727 	 * should be provided by three descriptors in maximum in hns3 network
3728 	 * engine.
3729 	 */
3730 	m_seg = m;
3731 	for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf;
3732 	     i++, m_seg = m_seg->next) {
3733 		tmp_data_len_sum += m_seg->data_len;
3734 	}
3735 
3736 	if (hdr_len > tmp_data_len_sum)
3737 		return -EINVAL;
3738 
3739 	return 0;
3740 }
3741 
3742 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
3743 static inline int
hns3_vld_vlan_chk(struct hns3_tx_queue * txq,struct rte_mbuf * m)3744 hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m)
3745 {
3746 	struct rte_ether_hdr *eh;
3747 	struct rte_vlan_hdr *vh;
3748 
3749 	if (!txq->pvid_sw_shift_en)
3750 		return 0;
3751 
3752 	/*
3753 	 * Due to hardware limitations, we only support two-layer VLAN hardware
3754 	 * offload in Tx direction based on hns3 network engine, so when PVID is
3755 	 * enabled, QinQ insert is no longer supported.
3756 	 * And when PVID is enabled, in the following two cases:
3757 	 *  i) packets with more than two VLAN tags.
3758 	 *  ii) packets with one VLAN tag while the hardware VLAN insert is
3759 	 *      enabled.
3760 	 * The packets will be regarded as abnormal packets and discarded by
3761 	 * hardware in Tx direction. For debugging purposes, a validation check
3762 	 * for these types of packets is added to the '.tx_pkt_prepare' ops
3763 	 * implementation function named hns3_prep_pkts to inform users that
3764 	 * these packets will be discarded.
3765 	 */
3766 	if (m->ol_flags & RTE_MBUF_F_TX_QINQ)
3767 		return -EINVAL;
3768 
3769 	eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
3770 	if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) {
3771 		if (m->ol_flags & RTE_MBUF_F_TX_VLAN)
3772 			return -EINVAL;
3773 
3774 		/* Ensure the incoming packet is not a QinQ packet */
3775 		vh = (struct rte_vlan_hdr *)(eh + 1);
3776 		if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))
3777 			return -EINVAL;
3778 	}
3779 
3780 	return 0;
3781 }
3782 #endif
3783 
3784 static uint16_t
hns3_udp_cksum_help(struct rte_mbuf * m)3785 hns3_udp_cksum_help(struct rte_mbuf *m)
3786 {
3787 	uint64_t ol_flags = m->ol_flags;
3788 	uint16_t cksum = 0;
3789 	uint32_t l4_len;
3790 
3791 	if (ol_flags & RTE_MBUF_F_TX_IPV4) {
3792 		struct rte_ipv4_hdr *ipv4_hdr = rte_pktmbuf_mtod_offset(m,
3793 				struct rte_ipv4_hdr *, m->l2_len);
3794 		l4_len = rte_be_to_cpu_16(ipv4_hdr->total_length) - m->l3_len;
3795 	} else {
3796 		struct rte_ipv6_hdr *ipv6_hdr = rte_pktmbuf_mtod_offset(m,
3797 				struct rte_ipv6_hdr *, m->l2_len);
3798 		l4_len = rte_be_to_cpu_16(ipv6_hdr->payload_len);
3799 	}
3800 
3801 	rte_raw_cksum_mbuf(m, m->l2_len + m->l3_len, l4_len, &cksum);
3802 
3803 	cksum = ~cksum;
3804 	/*
3805 	 * RFC 768:If the computed checksum is zero for UDP, it is transmitted
3806 	 * as all ones
3807 	 */
3808 	if (cksum == 0)
3809 		cksum = 0xffff;
3810 
3811 	return (uint16_t)cksum;
3812 }
3813 
3814 static bool
hns3_validate_tunnel_cksum(struct hns3_tx_queue * tx_queue,struct rte_mbuf * m)3815 hns3_validate_tunnel_cksum(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
3816 {
3817 	uint64_t ol_flags = m->ol_flags;
3818 	struct rte_udp_hdr *udp_hdr;
3819 	uint16_t dst_port;
3820 
3821 	if (tx_queue->udp_cksum_mode == HNS3_SPECIAL_PORT_HW_CKSUM_MODE ||
3822 	    ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK ||
3823 	    (ol_flags & RTE_MBUF_F_TX_L4_MASK) != RTE_MBUF_F_TX_UDP_CKSUM)
3824 		return true;
3825 	/*
3826 	 * A UDP packet with the same dst_port as VXLAN\VXLAN_GPE\GENEVE will
3827 	 * be recognized as a tunnel packet in HW. In this case, if UDP CKSUM
3828 	 * offload is set and the tunnel mask has not been set, the CKSUM will
3829 	 * be wrong since the header length is wrong and driver should complete
3830 	 * the CKSUM to avoid CKSUM error.
3831 	 */
3832 	udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3833 						m->l2_len + m->l3_len);
3834 	dst_port = rte_be_to_cpu_16(udp_hdr->dst_port);
3835 	switch (dst_port) {
3836 	case RTE_VXLAN_DEFAULT_PORT:
3837 	case RTE_VXLAN_GPE_DEFAULT_PORT:
3838 	case RTE_GENEVE_DEFAULT_PORT:
3839 		udp_hdr->dgram_cksum = hns3_udp_cksum_help(m);
3840 		m->ol_flags = ol_flags & ~RTE_MBUF_F_TX_L4_MASK;
3841 		return false;
3842 	default:
3843 		return true;
3844 	}
3845 }
3846 
3847 static int
hns3_prep_pkt_proc(struct hns3_tx_queue * tx_queue,struct rte_mbuf * m)3848 hns3_prep_pkt_proc(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
3849 {
3850 	int ret;
3851 
3852 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
3853 	ret = rte_validate_tx_offload(m);
3854 	if (ret != 0) {
3855 		rte_errno = -ret;
3856 		return ret;
3857 	}
3858 
3859 	ret = hns3_vld_vlan_chk(tx_queue, m);
3860 	if (ret != 0) {
3861 		rte_errno = EINVAL;
3862 		return ret;
3863 	}
3864 #endif
3865 	if (hns3_pkt_is_tso(m)) {
3866 		if (hns3_pkt_need_linearized(m, m->nb_segs,
3867 					     tx_queue->max_non_tso_bd_num) ||
3868 		    hns3_check_tso_pkt_valid(m)) {
3869 			rte_errno = EINVAL;
3870 			return -EINVAL;
3871 		}
3872 
3873 		if (tx_queue->tso_mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) {
3874 			/*
3875 			 * (tso mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) means
3876 			 * hardware support recalculate the TCP pseudo header
3877 			 * checksum of packets that need TSO, so network driver
3878 			 * software not need to recalculate it.
3879 			 */
3880 			hns3_outer_header_cksum_prepare(m);
3881 			return 0;
3882 		}
3883 	}
3884 
3885 	ret = rte_net_intel_cksum_prepare(m);
3886 	if (ret != 0) {
3887 		rte_errno = -ret;
3888 		return ret;
3889 	}
3890 
3891 	if (!hns3_validate_tunnel_cksum(tx_queue, m))
3892 		return 0;
3893 
3894 	hns3_outer_header_cksum_prepare(m);
3895 
3896 	return 0;
3897 }
3898 
3899 uint16_t
hns3_prep_pkts(__rte_unused void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)3900 hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3901 	       uint16_t nb_pkts)
3902 {
3903 	struct rte_mbuf *m;
3904 	uint16_t i;
3905 
3906 	for (i = 0; i < nb_pkts; i++) {
3907 		m = tx_pkts[i];
3908 		if (hns3_prep_pkt_proc(tx_queue, m))
3909 			return i;
3910 	}
3911 
3912 	return i;
3913 }
3914 
3915 static int
hns3_parse_cksum(struct hns3_tx_queue * txq,uint16_t tx_desc_id,struct rte_mbuf * m)3916 hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
3917 		 struct rte_mbuf *m)
3918 {
3919 	struct hns3_desc *tx_ring = txq->tx_ring;
3920 	struct hns3_desc *desc = &tx_ring[tx_desc_id];
3921 
3922 	/* Enable checksum offloading */
3923 	if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK) {
3924 		/* Fill in tunneling parameters if necessary */
3925 		if (hns3_parse_tunneling_params(txq, m, tx_desc_id)) {
3926 			txq->dfx_stats.unsupported_tunnel_pkt_cnt++;
3927 				return -EINVAL;
3928 		}
3929 
3930 		hns3_txd_enable_checksum(txq, m, tx_desc_id);
3931 	} else {
3932 		/* clear the control bit */
3933 		desc->tx.type_cs_vlan_tso_len  = 0;
3934 		desc->tx.ol_type_vlan_len_msec = 0;
3935 	}
3936 
3937 	return 0;
3938 }
3939 
3940 static int
hns3_check_non_tso_pkt(uint16_t nb_buf,struct rte_mbuf ** m_seg,struct rte_mbuf * tx_pkt,struct hns3_tx_queue * txq)3941 hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg,
3942 		      struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq)
3943 {
3944 	uint8_t max_non_tso_bd_num;
3945 	struct rte_mbuf *new_pkt;
3946 	int ret;
3947 
3948 	if (hns3_pkt_is_tso(*m_seg))
3949 		return 0;
3950 
3951 	/*
3952 	 * If packet length is greater than HNS3_MAX_FRAME_LEN
3953 	 * driver support, the packet will be ignored.
3954 	 */
3955 	if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) {
3956 		txq->dfx_stats.over_length_pkt_cnt++;
3957 		return -EINVAL;
3958 	}
3959 
3960 	max_non_tso_bd_num = txq->max_non_tso_bd_num;
3961 	if (unlikely(nb_buf > max_non_tso_bd_num)) {
3962 		txq->dfx_stats.exceed_limit_bd_pkt_cnt++;
3963 		ret = hns3_reassemble_tx_pkts(tx_pkt, &new_pkt,
3964 					      max_non_tso_bd_num);
3965 		if (ret) {
3966 			txq->dfx_stats.exceed_limit_bd_reassem_fail++;
3967 			return ret;
3968 		}
3969 		*m_seg = new_pkt;
3970 	}
3971 
3972 	return 0;
3973 }
3974 
3975 static inline void
hns3_tx_free_buffer_simple(struct hns3_tx_queue * txq)3976 hns3_tx_free_buffer_simple(struct hns3_tx_queue *txq)
3977 {
3978 	struct hns3_entry *tx_entry;
3979 	struct hns3_desc *desc;
3980 	uint16_t tx_next_clean;
3981 	int i;
3982 
3983 	while (1) {
3984 		if (HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) < txq->tx_rs_thresh)
3985 			break;
3986 
3987 		/*
3988 		 * All mbufs can be released only when the VLD bits of all
3989 		 * descriptors in a batch are cleared.
3990 		 */
3991 		tx_next_clean = (txq->next_to_clean + txq->tx_rs_thresh - 1) %
3992 				txq->nb_tx_desc;
3993 		desc = &txq->tx_ring[tx_next_clean];
3994 		for (i = 0; i < txq->tx_rs_thresh; i++) {
3995 			if (rte_le_to_cpu_16(desc->tx.tp_fe_sc_vld_ra_ri) &
3996 					BIT(HNS3_TXD_VLD_B))
3997 				return;
3998 			desc--;
3999 		}
4000 
4001 		tx_entry = &txq->sw_ring[txq->next_to_clean];
4002 
4003 		if (txq->mbuf_fast_free_en) {
4004 			rte_mempool_put_bulk(tx_entry->mbuf->pool,
4005 					(void **)tx_entry, txq->tx_rs_thresh);
4006 			for (i = 0; i < txq->tx_rs_thresh; i++)
4007 				tx_entry[i].mbuf = NULL;
4008 			goto update_field;
4009 		}
4010 
4011 		for (i = 0; i < txq->tx_rs_thresh; i++)
4012 			rte_prefetch0((tx_entry + i)->mbuf);
4013 		for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) {
4014 			rte_mempool_put(tx_entry->mbuf->pool, tx_entry->mbuf);
4015 			tx_entry->mbuf = NULL;
4016 		}
4017 
4018 update_field:
4019 		txq->next_to_clean = (tx_next_clean + 1) % txq->nb_tx_desc;
4020 		txq->tx_bd_ready += txq->tx_rs_thresh;
4021 	}
4022 }
4023 
4024 static inline void
hns3_tx_backup_1mbuf(struct hns3_entry * tx_entry,struct rte_mbuf ** pkts)4025 hns3_tx_backup_1mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
4026 {
4027 	tx_entry->mbuf = pkts[0];
4028 }
4029 
4030 static inline void
hns3_tx_backup_4mbuf(struct hns3_entry * tx_entry,struct rte_mbuf ** pkts)4031 hns3_tx_backup_4mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
4032 {
4033 	hns3_tx_backup_1mbuf(&tx_entry[0], &pkts[0]);
4034 	hns3_tx_backup_1mbuf(&tx_entry[1], &pkts[1]);
4035 	hns3_tx_backup_1mbuf(&tx_entry[2], &pkts[2]);
4036 	hns3_tx_backup_1mbuf(&tx_entry[3], &pkts[3]);
4037 }
4038 
4039 static inline void
hns3_tx_setup_4bd(struct hns3_desc * txdp,struct rte_mbuf ** pkts)4040 hns3_tx_setup_4bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
4041 {
4042 #define PER_LOOP_NUM	4
4043 	uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
4044 	uint64_t dma_addr;
4045 	uint32_t i;
4046 
4047 	for (i = 0; i < PER_LOOP_NUM; i++, txdp++, pkts++) {
4048 		dma_addr = rte_mbuf_data_iova(*pkts);
4049 		txdp->addr = rte_cpu_to_le_64(dma_addr);
4050 		txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
4051 		txdp->tx.paylen_fd_dop_ol4cs = 0;
4052 		txdp->tx.type_cs_vlan_tso_len = 0;
4053 		txdp->tx.ol_type_vlan_len_msec = 0;
4054 		if (unlikely((*pkts)->ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST))
4055 			bd_flag |= BIT(HNS3_TXD_TSYN_B);
4056 		txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
4057 	}
4058 }
4059 
4060 static inline void
hns3_tx_setup_1bd(struct hns3_desc * txdp,struct rte_mbuf ** pkts)4061 hns3_tx_setup_1bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
4062 {
4063 	uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
4064 	uint64_t dma_addr;
4065 
4066 	dma_addr = rte_mbuf_data_iova(*pkts);
4067 	txdp->addr = rte_cpu_to_le_64(dma_addr);
4068 	txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
4069 	txdp->tx.paylen_fd_dop_ol4cs = 0;
4070 	txdp->tx.type_cs_vlan_tso_len = 0;
4071 	txdp->tx.ol_type_vlan_len_msec = 0;
4072 	if (unlikely((*pkts)->ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST))
4073 		bd_flag |= BIT(HNS3_TXD_TSYN_B);
4074 	txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
4075 }
4076 
4077 static inline void
hns3_tx_fill_hw_ring(struct hns3_tx_queue * txq,struct rte_mbuf ** pkts,uint16_t nb_pkts)4078 hns3_tx_fill_hw_ring(struct hns3_tx_queue *txq,
4079 		     struct rte_mbuf **pkts,
4080 		     uint16_t nb_pkts)
4081 {
4082 #define PER_LOOP_NUM	4
4083 #define PER_LOOP_MASK	(PER_LOOP_NUM - 1)
4084 	struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use];
4085 	struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use];
4086 	const uint32_t mainpart = (nb_pkts & ((uint32_t)~PER_LOOP_MASK));
4087 	const uint32_t leftover = (nb_pkts & ((uint32_t)PER_LOOP_MASK));
4088 	uint32_t i;
4089 
4090 	for (i = 0; i < mainpart; i += PER_LOOP_NUM) {
4091 		hns3_tx_backup_4mbuf(tx_entry + i, pkts + i);
4092 		hns3_tx_setup_4bd(txdp + i, pkts + i);
4093 
4094 		/* Increment bytes counter */
4095 		uint32_t j;
4096 		for (j = 0; j < PER_LOOP_NUM; j++)
4097 			txq->basic_stats.bytes += pkts[i + j]->pkt_len;
4098 	}
4099 	if (unlikely(leftover > 0)) {
4100 		for (i = 0; i < leftover; i++) {
4101 			hns3_tx_backup_1mbuf(tx_entry + mainpart + i,
4102 					     pkts + mainpart + i);
4103 			hns3_tx_setup_1bd(txdp + mainpart + i,
4104 					  pkts + mainpart + i);
4105 
4106 			/* Increment bytes counter */
4107 			txq->basic_stats.bytes += pkts[mainpart + i]->pkt_len;
4108 		}
4109 	}
4110 }
4111 
4112 uint16_t
hns3_xmit_pkts_simple(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)4113 hns3_xmit_pkts_simple(void *tx_queue,
4114 		      struct rte_mbuf **tx_pkts,
4115 		      uint16_t nb_pkts)
4116 {
4117 	struct hns3_tx_queue *txq = tx_queue;
4118 	uint16_t nb_tx = 0;
4119 
4120 	hns3_tx_free_buffer_simple(txq);
4121 
4122 	nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts);
4123 	if (unlikely(nb_pkts == 0)) {
4124 		if (txq->tx_bd_ready == 0)
4125 			txq->dfx_stats.queue_full_cnt++;
4126 		return 0;
4127 	}
4128 
4129 	txq->tx_bd_ready -= nb_pkts;
4130 	if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) {
4131 		nb_tx = txq->nb_tx_desc - txq->next_to_use;
4132 		hns3_tx_fill_hw_ring(txq, tx_pkts, nb_tx);
4133 		txq->next_to_use = 0;
4134 	}
4135 
4136 	hns3_tx_fill_hw_ring(txq, tx_pkts + nb_tx, nb_pkts - nb_tx);
4137 	txq->next_to_use += nb_pkts - nb_tx;
4138 
4139 	hns3_write_txq_tail_reg(txq, nb_pkts);
4140 
4141 	return nb_pkts;
4142 }
4143 
4144 uint16_t
hns3_xmit_pkts(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)4145 hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
4146 {
4147 	struct hns3_tx_queue *txq = tx_queue;
4148 	struct hns3_entry *tx_bak_pkt;
4149 	struct hns3_desc *tx_ring;
4150 	struct rte_mbuf *tx_pkt;
4151 	struct rte_mbuf *m_seg;
4152 	struct hns3_desc *desc;
4153 	uint32_t nb_hold = 0;
4154 	uint16_t tx_next_use;
4155 	uint16_t tx_pkt_num;
4156 	uint16_t tx_bd_max;
4157 	uint16_t nb_buf;
4158 	uint16_t nb_tx;
4159 	uint16_t i;
4160 
4161 	if (txq->tx_bd_ready < txq->tx_free_thresh)
4162 		(void)hns3_tx_free_useless_buffer(txq);
4163 
4164 	tx_next_use   = txq->next_to_use;
4165 	tx_bd_max     = txq->nb_tx_desc;
4166 	tx_pkt_num = nb_pkts;
4167 	tx_ring = txq->tx_ring;
4168 
4169 	/* send packets */
4170 	tx_bak_pkt = &txq->sw_ring[tx_next_use];
4171 	for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) {
4172 		tx_pkt = *tx_pkts++;
4173 
4174 		nb_buf = tx_pkt->nb_segs;
4175 
4176 		if (nb_buf > txq->tx_bd_ready) {
4177 			/* Try to release the required MBUF, but avoid releasing
4178 			 * all MBUFs, otherwise, the MBUFs will be released for
4179 			 * a long time and may cause jitter.
4180 			 */
4181 			if (hns3_tx_free_required_buffer(txq, nb_buf) != 0) {
4182 				txq->dfx_stats.queue_full_cnt++;
4183 				goto end_of_tx;
4184 			}
4185 		}
4186 
4187 		/*
4188 		 * If packet length is less than minimum packet length supported
4189 		 * by hardware in Tx direction, driver need to pad it to avoid
4190 		 * error.
4191 		 */
4192 		if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) <
4193 						txq->min_tx_pkt_len)) {
4194 			uint16_t add_len;
4195 			char *appended;
4196 
4197 			add_len = txq->min_tx_pkt_len -
4198 					 rte_pktmbuf_pkt_len(tx_pkt);
4199 			appended = rte_pktmbuf_append(tx_pkt, add_len);
4200 			if (appended == NULL) {
4201 				txq->dfx_stats.pkt_padding_fail_cnt++;
4202 				break;
4203 			}
4204 
4205 			memset(appended, 0, add_len);
4206 		}
4207 
4208 		m_seg = tx_pkt;
4209 
4210 		if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq))
4211 			goto end_of_tx;
4212 
4213 		if (hns3_parse_cksum(txq, tx_next_use, m_seg))
4214 			goto end_of_tx;
4215 
4216 		i = 0;
4217 		desc = &tx_ring[tx_next_use];
4218 
4219 		/*
4220 		 * If the packet is divided into multiple Tx Buffer Descriptors,
4221 		 * only need to fill vlan, paylen and tso into the first Tx
4222 		 * Buffer Descriptor.
4223 		 */
4224 		hns3_fill_first_desc(txq, desc, m_seg);
4225 
4226 		do {
4227 			desc = &tx_ring[tx_next_use];
4228 			/*
4229 			 * Fill valid bits, DMA address and data length for each
4230 			 * Tx Buffer Descriptor.
4231 			 */
4232 			hns3_fill_per_desc(desc, m_seg);
4233 			tx_bak_pkt->mbuf = m_seg;
4234 			m_seg = m_seg->next;
4235 			tx_next_use++;
4236 			tx_bak_pkt++;
4237 			if (tx_next_use >= tx_bd_max) {
4238 				tx_next_use = 0;
4239 				tx_bak_pkt = txq->sw_ring;
4240 			}
4241 
4242 			i++;
4243 		} while (m_seg != NULL);
4244 
4245 		/* Add end flag for the last Tx Buffer Descriptor */
4246 		desc->tx.tp_fe_sc_vld_ra_ri |=
4247 				 rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B));
4248 
4249 		/* Increment bytes counter */
4250 		txq->basic_stats.bytes += tx_pkt->pkt_len;
4251 		nb_hold += i;
4252 		txq->next_to_use = tx_next_use;
4253 		txq->tx_bd_ready -= i;
4254 	}
4255 
4256 end_of_tx:
4257 
4258 	if (likely(nb_tx))
4259 		hns3_write_txq_tail_reg(txq, nb_hold);
4260 
4261 	return nb_tx;
4262 }
4263 
4264 int __rte_weak
hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev * dev)4265 hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
4266 {
4267 	return -ENOTSUP;
4268 }
4269 
4270 uint16_t __rte_weak
hns3_xmit_pkts_vec(__rte_unused void * tx_queue,__rte_unused struct rte_mbuf ** tx_pkts,__rte_unused uint16_t nb_pkts)4271 hns3_xmit_pkts_vec(__rte_unused void *tx_queue,
4272 		   __rte_unused struct rte_mbuf **tx_pkts,
4273 		   __rte_unused uint16_t nb_pkts)
4274 {
4275 	return 0;
4276 }
4277 
4278 uint16_t __rte_weak
hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue,struct rte_mbuf __rte_unused ** tx_pkts,uint16_t __rte_unused nb_pkts)4279 hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue,
4280 		       struct rte_mbuf __rte_unused **tx_pkts,
4281 		       uint16_t __rte_unused nb_pkts)
4282 {
4283 	return 0;
4284 }
4285 
4286 int
hns3_tx_burst_mode_get(struct rte_eth_dev * dev,__rte_unused uint16_t queue_id,struct rte_eth_burst_mode * mode)4287 hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
4288 		       struct rte_eth_burst_mode *mode)
4289 {
4290 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
4291 	const char *info = NULL;
4292 
4293 	if (pkt_burst == hns3_xmit_pkts_simple)
4294 		info = "Scalar Simple";
4295 	else if (pkt_burst == hns3_xmit_pkts)
4296 		info = "Scalar";
4297 	else if (pkt_burst == hns3_xmit_pkts_vec)
4298 		info = "Vector Neon";
4299 	else if (pkt_burst == hns3_xmit_pkts_vec_sve)
4300 		info = "Vector Sve";
4301 
4302 	if (info == NULL)
4303 		return -EINVAL;
4304 
4305 	snprintf(mode->info, sizeof(mode->info), "%s", info);
4306 
4307 	return 0;
4308 }
4309 
4310 static bool
hns3_tx_check_simple_support(struct rte_eth_dev * dev)4311 hns3_tx_check_simple_support(struct rte_eth_dev *dev)
4312 {
4313 	uint64_t offloads = dev->data->dev_conf.txmode.offloads;
4314 
4315 	return (offloads == (offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE));
4316 }
4317 
4318 static bool
hns3_get_tx_prep_needed(struct rte_eth_dev * dev)4319 hns3_get_tx_prep_needed(struct rte_eth_dev *dev)
4320 {
4321 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
4322 	RTE_SET_USED(dev);
4323 	/* always perform tx_prepare when debug */
4324 	return true;
4325 #else
4326 #define HNS3_DEV_TX_CSKUM_TSO_OFFLOAD_MASK (\
4327 		RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | \
4328 		RTE_ETH_TX_OFFLOAD_TCP_CKSUM | \
4329 		RTE_ETH_TX_OFFLOAD_UDP_CKSUM | \
4330 		RTE_ETH_TX_OFFLOAD_SCTP_CKSUM | \
4331 		RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
4332 		RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM | \
4333 		RTE_ETH_TX_OFFLOAD_TCP_TSO | \
4334 		RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO | \
4335 		RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO | \
4336 		RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO)
4337 
4338 	uint64_t tx_offload = dev->data->dev_conf.txmode.offloads;
4339 	if (tx_offload & HNS3_DEV_TX_CSKUM_TSO_OFFLOAD_MASK)
4340 		return true;
4341 
4342 	return false;
4343 #endif
4344 }
4345 
4346 eth_tx_burst_t
hns3_get_tx_function(struct rte_eth_dev * dev,eth_tx_prep_t * prep)4347 hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep)
4348 {
4349 	struct hns3_adapter *hns = dev->data->dev_private;
4350 	bool vec_allowed, sve_allowed, simple_allowed;
4351 	bool vec_support, tx_prepare_needed;
4352 
4353 	vec_support = hns3_tx_check_vec_support(dev) == 0;
4354 	vec_allowed = vec_support && hns3_get_default_vec_support();
4355 	sve_allowed = vec_support && hns3_get_sve_support();
4356 	simple_allowed = hns3_tx_check_simple_support(dev);
4357 	tx_prepare_needed = hns3_get_tx_prep_needed(dev);
4358 
4359 	*prep = NULL;
4360 
4361 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed)
4362 		return hns3_xmit_pkts_vec;
4363 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed)
4364 		return hns3_xmit_pkts_vec_sve;
4365 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed)
4366 		return hns3_xmit_pkts_simple;
4367 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_COMMON) {
4368 		if (tx_prepare_needed)
4369 			*prep = hns3_prep_pkts;
4370 		return hns3_xmit_pkts;
4371 	}
4372 
4373 	if (vec_allowed)
4374 		return hns3_xmit_pkts_vec;
4375 	if (simple_allowed)
4376 		return hns3_xmit_pkts_simple;
4377 
4378 	if (tx_prepare_needed)
4379 		*prep = hns3_prep_pkts;
4380 	return hns3_xmit_pkts;
4381 }
4382 
4383 static void
hns3_trace_rxtx_function(struct rte_eth_dev * dev)4384 hns3_trace_rxtx_function(struct rte_eth_dev *dev)
4385 {
4386 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4387 	struct rte_eth_burst_mode rx_mode;
4388 	struct rte_eth_burst_mode tx_mode;
4389 
4390 	memset(&rx_mode, 0, sizeof(rx_mode));
4391 	memset(&tx_mode, 0, sizeof(tx_mode));
4392 	(void)hns3_rx_burst_mode_get(dev, 0, &rx_mode);
4393 	(void)hns3_tx_burst_mode_get(dev, 0, &tx_mode);
4394 
4395 	hns3_dbg(hw, "using rx_pkt_burst: %s, tx_pkt_burst: %s.",
4396 		 rx_mode.info, tx_mode.info);
4397 }
4398 
4399 static void
hns3_eth_dev_fp_ops_config(const struct rte_eth_dev * dev)4400 hns3_eth_dev_fp_ops_config(const struct rte_eth_dev *dev)
4401 {
4402 	struct rte_eth_fp_ops *fpo = rte_eth_fp_ops;
4403 	uint16_t port_id = dev->data->port_id;
4404 
4405 	fpo[port_id].rx_pkt_burst = dev->rx_pkt_burst;
4406 	fpo[port_id].tx_pkt_burst = dev->tx_pkt_burst;
4407 	fpo[port_id].tx_pkt_prepare = dev->tx_pkt_prepare;
4408 	fpo[port_id].rx_descriptor_status = dev->rx_descriptor_status;
4409 	fpo[port_id].tx_descriptor_status = dev->tx_descriptor_status;
4410 }
4411 
4412 void
hns3_set_rxtx_function(struct rte_eth_dev * eth_dev)4413 hns3_set_rxtx_function(struct rte_eth_dev *eth_dev)
4414 {
4415 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
4416 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4417 	eth_tx_prep_t prep = NULL;
4418 
4419 	if (hns->hw.adapter_state == HNS3_NIC_STARTED &&
4420 	    __atomic_load_n(&hns->hw.reset.resetting, __ATOMIC_RELAXED) == 0) {
4421 		eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev);
4422 		eth_dev->rx_descriptor_status = hns3_dev_rx_descriptor_status;
4423 		eth_dev->tx_pkt_burst = hw->set_link_down ?
4424 					rte_eth_pkt_burst_dummy :
4425 					hns3_get_tx_function(eth_dev, &prep);
4426 		eth_dev->tx_pkt_prepare = prep;
4427 		eth_dev->tx_descriptor_status = hns3_dev_tx_descriptor_status;
4428 		hns3_trace_rxtx_function(eth_dev);
4429 	} else {
4430 		eth_dev->rx_pkt_burst = rte_eth_pkt_burst_dummy;
4431 		eth_dev->tx_pkt_burst = rte_eth_pkt_burst_dummy;
4432 		eth_dev->tx_pkt_prepare = NULL;
4433 	}
4434 
4435 	hns3_eth_dev_fp_ops_config(eth_dev);
4436 }
4437 
4438 void
hns3_rxq_info_get(struct rte_eth_dev * dev,uint16_t queue_id,struct rte_eth_rxq_info * qinfo)4439 hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
4440 		  struct rte_eth_rxq_info *qinfo)
4441 {
4442 	struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id];
4443 
4444 	qinfo->mp = rxq->mb_pool;
4445 	qinfo->nb_desc = rxq->nb_rx_desc;
4446 	qinfo->scattered_rx = dev->data->scattered_rx;
4447 	/* Report the HW Rx buffer length to user */
4448 	qinfo->rx_buf_size = rxq->rx_buf_len;
4449 
4450 	/*
4451 	 * If there are no available Rx buffer descriptors, incoming packets
4452 	 * are always dropped by hardware based on hns3 network engine.
4453 	 */
4454 	qinfo->conf.rx_drop_en = 1;
4455 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
4456 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
4457 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
4458 }
4459 
4460 void
hns3_txq_info_get(struct rte_eth_dev * dev,uint16_t queue_id,struct rte_eth_txq_info * qinfo)4461 hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
4462 		  struct rte_eth_txq_info *qinfo)
4463 {
4464 	struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id];
4465 
4466 	qinfo->nb_desc = txq->nb_tx_desc;
4467 	qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
4468 	qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
4469 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
4470 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
4471 }
4472 
4473 int
hns3_dev_rx_queue_start(struct rte_eth_dev * dev,uint16_t rx_queue_id)4474 hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4475 {
4476 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4477 	struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
4478 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4479 	int ret;
4480 
4481 	if (!hns3_dev_get_support(hw, INDEP_TXRX))
4482 		return -ENOTSUP;
4483 
4484 	rte_spinlock_lock(&hw->lock);
4485 	ret = hns3_reset_queue(hw, rx_queue_id, HNS3_RING_TYPE_RX);
4486 	if (ret) {
4487 		hns3_err(hw, "fail to reset Rx queue %u, ret = %d.",
4488 			 rx_queue_id, ret);
4489 		rte_spinlock_unlock(&hw->lock);
4490 		return ret;
4491 	}
4492 
4493 	ret = hns3_init_rxq(hns, rx_queue_id);
4494 	if (ret) {
4495 		hns3_err(hw, "fail to init Rx queue %u, ret = %d.",
4496 			 rx_queue_id, ret);
4497 		rte_spinlock_unlock(&hw->lock);
4498 		return ret;
4499 	}
4500 
4501 	hns3_enable_rxq(rxq, true);
4502 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
4503 	rte_spinlock_unlock(&hw->lock);
4504 
4505 	return ret;
4506 }
4507 
4508 static void
hns3_reset_sw_rxq(struct hns3_rx_queue * rxq)4509 hns3_reset_sw_rxq(struct hns3_rx_queue *rxq)
4510 {
4511 	rxq->next_to_use = 0;
4512 	rxq->rx_rearm_start = 0;
4513 	rxq->rx_free_hold = 0;
4514 	rxq->rx_rearm_nb = 0;
4515 	rxq->pkt_first_seg = NULL;
4516 	rxq->pkt_last_seg = NULL;
4517 	memset(&rxq->rx_ring[0], 0, rxq->nb_rx_desc * sizeof(struct hns3_desc));
4518 	hns3_rxq_vec_setup(rxq);
4519 }
4520 
4521 int
hns3_dev_rx_queue_stop(struct rte_eth_dev * dev,uint16_t rx_queue_id)4522 hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4523 {
4524 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4525 	struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
4526 
4527 	if (!hns3_dev_get_support(hw, INDEP_TXRX))
4528 		return -ENOTSUP;
4529 
4530 	rte_spinlock_lock(&hw->lock);
4531 	hns3_enable_rxq(rxq, false);
4532 
4533 	hns3_rx_queue_release_mbufs(rxq);
4534 
4535 	hns3_reset_sw_rxq(rxq);
4536 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
4537 	rte_spinlock_unlock(&hw->lock);
4538 
4539 	return 0;
4540 }
4541 
4542 int
hns3_dev_tx_queue_start(struct rte_eth_dev * dev,uint16_t tx_queue_id)4543 hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
4544 {
4545 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4546 	struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
4547 	int ret;
4548 
4549 	if (!hns3_dev_get_support(hw, INDEP_TXRX))
4550 		return -ENOTSUP;
4551 
4552 	rte_spinlock_lock(&hw->lock);
4553 	ret = hns3_reset_queue(hw, tx_queue_id, HNS3_RING_TYPE_TX);
4554 	if (ret) {
4555 		hns3_err(hw, "fail to reset Tx queue %u, ret = %d.",
4556 			 tx_queue_id, ret);
4557 		rte_spinlock_unlock(&hw->lock);
4558 		return ret;
4559 	}
4560 
4561 	hns3_init_txq(txq);
4562 	hns3_enable_txq(txq, true);
4563 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
4564 	rte_spinlock_unlock(&hw->lock);
4565 
4566 	return ret;
4567 }
4568 
4569 int
hns3_dev_tx_queue_stop(struct rte_eth_dev * dev,uint16_t tx_queue_id)4570 hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
4571 {
4572 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4573 	struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
4574 
4575 	if (!hns3_dev_get_support(hw, INDEP_TXRX))
4576 		return -ENOTSUP;
4577 
4578 	rte_spinlock_lock(&hw->lock);
4579 	hns3_enable_txq(txq, false);
4580 	hns3_tx_queue_release_mbufs(txq);
4581 	/*
4582 	 * All the mbufs in sw_ring are released and all the pointers in sw_ring
4583 	 * are set to NULL. If this queue is still called by upper layer,
4584 	 * residual SW status of this txq may cause these pointers in sw_ring
4585 	 * which have been set to NULL to be released again. To avoid it,
4586 	 * reinit the txq.
4587 	 */
4588 	hns3_init_txq(txq);
4589 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
4590 	rte_spinlock_unlock(&hw->lock);
4591 
4592 	return 0;
4593 }
4594 
4595 static int
hns3_tx_done_cleanup_full(struct hns3_tx_queue * txq,uint32_t free_cnt)4596 hns3_tx_done_cleanup_full(struct hns3_tx_queue *txq, uint32_t free_cnt)
4597 {
4598 	uint16_t round_cnt;
4599 	uint32_t idx;
4600 
4601 	if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
4602 		free_cnt = txq->nb_tx_desc;
4603 
4604 	if (txq->tx_rs_thresh == 0)
4605 		return 0;
4606 
4607 	round_cnt = rounddown(free_cnt, txq->tx_rs_thresh);
4608 	for (idx = 0; idx < round_cnt; idx += txq->tx_rs_thresh) {
4609 		if (hns3_tx_free_useless_buffer(txq) != 0)
4610 			break;
4611 	}
4612 
4613 	return idx;
4614 }
4615 
4616 int
hns3_tx_done_cleanup(void * txq,uint32_t free_cnt)4617 hns3_tx_done_cleanup(void *txq, uint32_t free_cnt)
4618 {
4619 	struct hns3_tx_queue *q = (struct hns3_tx_queue *)txq;
4620 	struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
4621 
4622 	if (dev->tx_pkt_burst == hns3_xmit_pkts)
4623 		return hns3_tx_done_cleanup_full(q, free_cnt);
4624 	else if (dev->tx_pkt_burst == rte_eth_pkt_burst_dummy)
4625 		return 0;
4626 	else
4627 		return -ENOTSUP;
4628 }
4629 
4630 int
hns3_dev_rx_descriptor_status(void * rx_queue,uint16_t offset)4631 hns3_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
4632 {
4633 	volatile struct hns3_desc *rxdp;
4634 	struct hns3_rx_queue *rxq;
4635 	struct rte_eth_dev *dev;
4636 	uint32_t bd_base_info;
4637 	uint16_t desc_id;
4638 
4639 	rxq = (struct hns3_rx_queue *)rx_queue;
4640 	if (offset >= rxq->nb_rx_desc)
4641 		return -EINVAL;
4642 
4643 	desc_id = (rxq->next_to_use + offset) % rxq->nb_rx_desc;
4644 	rxdp = &rxq->rx_ring[desc_id];
4645 	bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
4646 	dev = &rte_eth_devices[rxq->port_id];
4647 	if (dev->rx_pkt_burst == hns3_recv_pkts_simple ||
4648 	    dev->rx_pkt_burst == hns3_recv_scattered_pkts) {
4649 		if (offset >= rxq->nb_rx_desc - rxq->rx_free_hold)
4650 			return RTE_ETH_RX_DESC_UNAVAIL;
4651 	} else if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
4652 		   dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) {
4653 		if (offset >= rxq->nb_rx_desc - rxq->rx_rearm_nb)
4654 			return RTE_ETH_RX_DESC_UNAVAIL;
4655 	} else {
4656 		return RTE_ETH_RX_DESC_UNAVAIL;
4657 	}
4658 
4659 	if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4660 		return RTE_ETH_RX_DESC_AVAIL;
4661 	else
4662 		return RTE_ETH_RX_DESC_DONE;
4663 }
4664 
4665 int
hns3_dev_tx_descriptor_status(void * tx_queue,uint16_t offset)4666 hns3_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
4667 {
4668 	volatile struct hns3_desc *txdp;
4669 	struct hns3_tx_queue *txq;
4670 	struct rte_eth_dev *dev;
4671 	uint16_t desc_id;
4672 
4673 	txq = (struct hns3_tx_queue *)tx_queue;
4674 	if (offset >= txq->nb_tx_desc)
4675 		return -EINVAL;
4676 
4677 	dev = &rte_eth_devices[txq->port_id];
4678 	if (dev->tx_pkt_burst != hns3_xmit_pkts_simple &&
4679 	    dev->tx_pkt_burst != hns3_xmit_pkts &&
4680 	    dev->tx_pkt_burst != hns3_xmit_pkts_vec_sve &&
4681 	    dev->tx_pkt_burst != hns3_xmit_pkts_vec)
4682 		return RTE_ETH_TX_DESC_UNAVAIL;
4683 
4684 	desc_id = (txq->next_to_use + offset) % txq->nb_tx_desc;
4685 	txdp = &txq->tx_ring[desc_id];
4686 	if (txdp->tx.tp_fe_sc_vld_ra_ri & rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))
4687 		return RTE_ETH_TX_DESC_FULL;
4688 	else
4689 		return RTE_ETH_TX_DESC_DONE;
4690 }
4691 
4692 uint32_t
hns3_rx_queue_count(void * rx_queue)4693 hns3_rx_queue_count(void *rx_queue)
4694 {
4695 	/*
4696 	 * Number of BDs that have been processed by the driver
4697 	 * but have not been notified to the hardware.
4698 	 */
4699 	uint32_t driver_hold_bd_num;
4700 	struct hns3_rx_queue *rxq;
4701 	const struct rte_eth_dev *dev;
4702 	uint32_t fbd_num;
4703 
4704 	rxq = rx_queue;
4705 	dev = &rte_eth_devices[rxq->port_id];
4706 
4707 	fbd_num = hns3_read_dev(rxq, HNS3_RING_RX_FBDNUM_REG);
4708 	if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
4709 	    dev->rx_pkt_burst == hns3_recv_pkts_vec_sve)
4710 		driver_hold_bd_num = rxq->rx_rearm_nb;
4711 	else
4712 		driver_hold_bd_num = rxq->rx_free_hold;
4713 
4714 	if (fbd_num <= driver_hold_bd_num)
4715 		return 0;
4716 	else
4717 		return fbd_num - driver_hold_bd_num;
4718 }
4719 
4720 void
hns3_enable_rxd_adv_layout(struct hns3_hw * hw)4721 hns3_enable_rxd_adv_layout(struct hns3_hw *hw)
4722 {
4723 	/*
4724 	 * If the hardware support rxd advanced layout, then driver enable it
4725 	 * default.
4726 	 */
4727 	if (hns3_dev_get_support(hw, RXD_ADV_LAYOUT))
4728 		hns3_write_dev(hw, HNS3_RXD_ADV_LAYOUT_EN_REG, 1);
4729 }
4730 
4731 void
hns3_stop_tx_datapath(struct rte_eth_dev * dev)4732 hns3_stop_tx_datapath(struct rte_eth_dev *dev)
4733 {
4734 	dev->tx_pkt_burst = rte_eth_pkt_burst_dummy;
4735 	dev->tx_pkt_prepare = NULL;
4736 	hns3_eth_dev_fp_ops_config(dev);
4737 
4738 	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
4739 		return;
4740 
4741 	rte_wmb();
4742 	/* Disable tx datapath on secondary process. */
4743 	hns3_mp_req_stop_tx(dev);
4744 	/* Prevent crashes when queues are still in use. */
4745 	rte_delay_ms(dev->data->nb_tx_queues);
4746 }
4747 
4748 void
hns3_start_tx_datapath(struct rte_eth_dev * dev)4749 hns3_start_tx_datapath(struct rte_eth_dev *dev)
4750 {
4751 	eth_tx_prep_t prep = NULL;
4752 
4753 	dev->tx_pkt_burst = hns3_get_tx_function(dev, &prep);
4754 	dev->tx_pkt_prepare = prep;
4755 	hns3_eth_dev_fp_ops_config(dev);
4756 
4757 	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
4758 		return;
4759 
4760 	hns3_mp_req_start_tx(dev);
4761 }
4762