1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/mntent.h>
36 #include <sys/cmn_err.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vnops.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/sa.h>
49 #include <sys/sa_impl.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/zfs_quota.h>
56 #include <sys/sunddi.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/spa_boot.h>
60 #include <sys/objlist.h>
61 #include <sys/zpl.h>
62 #include <linux/vfs_compat.h>
63 #include "zfs_comutil.h"
64
65 enum {
66 TOKEN_RO,
67 TOKEN_RW,
68 TOKEN_SETUID,
69 TOKEN_NOSETUID,
70 TOKEN_EXEC,
71 TOKEN_NOEXEC,
72 TOKEN_DEVICES,
73 TOKEN_NODEVICES,
74 TOKEN_DIRXATTR,
75 TOKEN_SAXATTR,
76 TOKEN_XATTR,
77 TOKEN_NOXATTR,
78 TOKEN_ATIME,
79 TOKEN_NOATIME,
80 TOKEN_RELATIME,
81 TOKEN_NORELATIME,
82 TOKEN_NBMAND,
83 TOKEN_NONBMAND,
84 TOKEN_MNTPOINT,
85 TOKEN_LAST,
86 };
87
88 static const match_table_t zpl_tokens = {
89 { TOKEN_RO, MNTOPT_RO },
90 { TOKEN_RW, MNTOPT_RW },
91 { TOKEN_SETUID, MNTOPT_SETUID },
92 { TOKEN_NOSETUID, MNTOPT_NOSETUID },
93 { TOKEN_EXEC, MNTOPT_EXEC },
94 { TOKEN_NOEXEC, MNTOPT_NOEXEC },
95 { TOKEN_DEVICES, MNTOPT_DEVICES },
96 { TOKEN_NODEVICES, MNTOPT_NODEVICES },
97 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
98 { TOKEN_SAXATTR, MNTOPT_SAXATTR },
99 { TOKEN_XATTR, MNTOPT_XATTR },
100 { TOKEN_NOXATTR, MNTOPT_NOXATTR },
101 { TOKEN_ATIME, MNTOPT_ATIME },
102 { TOKEN_NOATIME, MNTOPT_NOATIME },
103 { TOKEN_RELATIME, MNTOPT_RELATIME },
104 { TOKEN_NORELATIME, MNTOPT_NORELATIME },
105 { TOKEN_NBMAND, MNTOPT_NBMAND },
106 { TOKEN_NONBMAND, MNTOPT_NONBMAND },
107 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
108 { TOKEN_LAST, NULL },
109 };
110
111 static void
zfsvfs_vfs_free(vfs_t * vfsp)112 zfsvfs_vfs_free(vfs_t *vfsp)
113 {
114 if (vfsp != NULL) {
115 if (vfsp->vfs_mntpoint != NULL)
116 kmem_strfree(vfsp->vfs_mntpoint);
117
118 kmem_free(vfsp, sizeof (vfs_t));
119 }
120 }
121
122 static int
zfsvfs_parse_option(char * option,int token,substring_t * args,vfs_t * vfsp)123 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
124 {
125 switch (token) {
126 case TOKEN_RO:
127 vfsp->vfs_readonly = B_TRUE;
128 vfsp->vfs_do_readonly = B_TRUE;
129 break;
130 case TOKEN_RW:
131 vfsp->vfs_readonly = B_FALSE;
132 vfsp->vfs_do_readonly = B_TRUE;
133 break;
134 case TOKEN_SETUID:
135 vfsp->vfs_setuid = B_TRUE;
136 vfsp->vfs_do_setuid = B_TRUE;
137 break;
138 case TOKEN_NOSETUID:
139 vfsp->vfs_setuid = B_FALSE;
140 vfsp->vfs_do_setuid = B_TRUE;
141 break;
142 case TOKEN_EXEC:
143 vfsp->vfs_exec = B_TRUE;
144 vfsp->vfs_do_exec = B_TRUE;
145 break;
146 case TOKEN_NOEXEC:
147 vfsp->vfs_exec = B_FALSE;
148 vfsp->vfs_do_exec = B_TRUE;
149 break;
150 case TOKEN_DEVICES:
151 vfsp->vfs_devices = B_TRUE;
152 vfsp->vfs_do_devices = B_TRUE;
153 break;
154 case TOKEN_NODEVICES:
155 vfsp->vfs_devices = B_FALSE;
156 vfsp->vfs_do_devices = B_TRUE;
157 break;
158 case TOKEN_DIRXATTR:
159 vfsp->vfs_xattr = ZFS_XATTR_DIR;
160 vfsp->vfs_do_xattr = B_TRUE;
161 break;
162 case TOKEN_SAXATTR:
163 vfsp->vfs_xattr = ZFS_XATTR_SA;
164 vfsp->vfs_do_xattr = B_TRUE;
165 break;
166 case TOKEN_XATTR:
167 vfsp->vfs_xattr = ZFS_XATTR_DIR;
168 vfsp->vfs_do_xattr = B_TRUE;
169 break;
170 case TOKEN_NOXATTR:
171 vfsp->vfs_xattr = ZFS_XATTR_OFF;
172 vfsp->vfs_do_xattr = B_TRUE;
173 break;
174 case TOKEN_ATIME:
175 vfsp->vfs_atime = B_TRUE;
176 vfsp->vfs_do_atime = B_TRUE;
177 break;
178 case TOKEN_NOATIME:
179 vfsp->vfs_atime = B_FALSE;
180 vfsp->vfs_do_atime = B_TRUE;
181 break;
182 case TOKEN_RELATIME:
183 vfsp->vfs_relatime = B_TRUE;
184 vfsp->vfs_do_relatime = B_TRUE;
185 break;
186 case TOKEN_NORELATIME:
187 vfsp->vfs_relatime = B_FALSE;
188 vfsp->vfs_do_relatime = B_TRUE;
189 break;
190 case TOKEN_NBMAND:
191 vfsp->vfs_nbmand = B_TRUE;
192 vfsp->vfs_do_nbmand = B_TRUE;
193 break;
194 case TOKEN_NONBMAND:
195 vfsp->vfs_nbmand = B_FALSE;
196 vfsp->vfs_do_nbmand = B_TRUE;
197 break;
198 case TOKEN_MNTPOINT:
199 vfsp->vfs_mntpoint = match_strdup(&args[0]);
200 if (vfsp->vfs_mntpoint == NULL)
201 return (SET_ERROR(ENOMEM));
202
203 break;
204 default:
205 break;
206 }
207
208 return (0);
209 }
210
211 /*
212 * Parse the raw mntopts and return a vfs_t describing the options.
213 */
214 static int
zfsvfs_parse_options(char * mntopts,vfs_t ** vfsp)215 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
216 {
217 vfs_t *tmp_vfsp;
218 int error;
219
220 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
221
222 if (mntopts != NULL) {
223 substring_t args[MAX_OPT_ARGS];
224 char *tmp_mntopts, *p, *t;
225 int token;
226
227 tmp_mntopts = t = kmem_strdup(mntopts);
228 if (tmp_mntopts == NULL)
229 return (SET_ERROR(ENOMEM));
230
231 while ((p = strsep(&t, ",")) != NULL) {
232 if (!*p)
233 continue;
234
235 args[0].to = args[0].from = NULL;
236 token = match_token(p, zpl_tokens, args);
237 error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
238 if (error) {
239 kmem_strfree(tmp_mntopts);
240 zfsvfs_vfs_free(tmp_vfsp);
241 return (error);
242 }
243 }
244
245 kmem_strfree(tmp_mntopts);
246 }
247
248 *vfsp = tmp_vfsp;
249
250 return (0);
251 }
252
253 boolean_t
zfs_is_readonly(zfsvfs_t * zfsvfs)254 zfs_is_readonly(zfsvfs_t *zfsvfs)
255 {
256 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
257 }
258
259 /*ARGSUSED*/
260 int
zfs_sync(struct super_block * sb,int wait,cred_t * cr)261 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
262 {
263 zfsvfs_t *zfsvfs = sb->s_fs_info;
264
265 /*
266 * Semantically, the only requirement is that the sync be initiated.
267 * The DMU syncs out txgs frequently, so there's nothing to do.
268 */
269 if (!wait)
270 return (0);
271
272 if (zfsvfs != NULL) {
273 /*
274 * Sync a specific filesystem.
275 */
276 dsl_pool_t *dp;
277
278 ZFS_ENTER(zfsvfs);
279 dp = dmu_objset_pool(zfsvfs->z_os);
280
281 /*
282 * If the system is shutting down, then skip any
283 * filesystems which may exist on a suspended pool.
284 */
285 if (spa_suspended(dp->dp_spa)) {
286 ZFS_EXIT(zfsvfs);
287 return (0);
288 }
289
290 if (zfsvfs->z_log != NULL)
291 zil_commit(zfsvfs->z_log, 0);
292
293 ZFS_EXIT(zfsvfs);
294 } else {
295 /*
296 * Sync all ZFS filesystems. This is what happens when you
297 * run sync(1). Unlike other filesystems, ZFS honors the
298 * request by waiting for all pools to commit all dirty data.
299 */
300 spa_sync_allpools();
301 }
302
303 return (0);
304 }
305
306 static void
atime_changed_cb(void * arg,uint64_t newval)307 atime_changed_cb(void *arg, uint64_t newval)
308 {
309 zfsvfs_t *zfsvfs = arg;
310 struct super_block *sb = zfsvfs->z_sb;
311
312 if (sb == NULL)
313 return;
314 /*
315 * Update SB_NOATIME bit in VFS super block. Since atime update is
316 * determined by atime_needs_update(), atime_needs_update() needs to
317 * return false if atime is turned off, and not unconditionally return
318 * false if atime is turned on.
319 */
320 if (newval)
321 sb->s_flags &= ~SB_NOATIME;
322 else
323 sb->s_flags |= SB_NOATIME;
324 }
325
326 static void
relatime_changed_cb(void * arg,uint64_t newval)327 relatime_changed_cb(void *arg, uint64_t newval)
328 {
329 ((zfsvfs_t *)arg)->z_relatime = newval;
330 }
331
332 static void
xattr_changed_cb(void * arg,uint64_t newval)333 xattr_changed_cb(void *arg, uint64_t newval)
334 {
335 zfsvfs_t *zfsvfs = arg;
336
337 if (newval == ZFS_XATTR_OFF) {
338 zfsvfs->z_flags &= ~ZSB_XATTR;
339 } else {
340 zfsvfs->z_flags |= ZSB_XATTR;
341
342 if (newval == ZFS_XATTR_SA)
343 zfsvfs->z_xattr_sa = B_TRUE;
344 else
345 zfsvfs->z_xattr_sa = B_FALSE;
346 }
347 }
348
349 static void
acltype_changed_cb(void * arg,uint64_t newval)350 acltype_changed_cb(void *arg, uint64_t newval)
351 {
352 zfsvfs_t *zfsvfs = arg;
353
354 switch (newval) {
355 case ZFS_ACLTYPE_NFSV4:
356 case ZFS_ACLTYPE_OFF:
357 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
358 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
359 break;
360 case ZFS_ACLTYPE_POSIX:
361 #ifdef CONFIG_FS_POSIX_ACL
362 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
363 zfsvfs->z_sb->s_flags |= SB_POSIXACL;
364 #else
365 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
366 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
367 #endif /* CONFIG_FS_POSIX_ACL */
368 break;
369 default:
370 break;
371 }
372 }
373
374 static void
blksz_changed_cb(void * arg,uint64_t newval)375 blksz_changed_cb(void *arg, uint64_t newval)
376 {
377 zfsvfs_t *zfsvfs = arg;
378 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
379 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
380 ASSERT(ISP2(newval));
381
382 zfsvfs->z_max_blksz = newval;
383 }
384
385 static void
readonly_changed_cb(void * arg,uint64_t newval)386 readonly_changed_cb(void *arg, uint64_t newval)
387 {
388 zfsvfs_t *zfsvfs = arg;
389 struct super_block *sb = zfsvfs->z_sb;
390
391 if (sb == NULL)
392 return;
393
394 if (newval)
395 sb->s_flags |= SB_RDONLY;
396 else
397 sb->s_flags &= ~SB_RDONLY;
398 }
399
400 static void
devices_changed_cb(void * arg,uint64_t newval)401 devices_changed_cb(void *arg, uint64_t newval)
402 {
403 }
404
405 static void
setuid_changed_cb(void * arg,uint64_t newval)406 setuid_changed_cb(void *arg, uint64_t newval)
407 {
408 }
409
410 static void
exec_changed_cb(void * arg,uint64_t newval)411 exec_changed_cb(void *arg, uint64_t newval)
412 {
413 }
414
415 static void
nbmand_changed_cb(void * arg,uint64_t newval)416 nbmand_changed_cb(void *arg, uint64_t newval)
417 {
418 zfsvfs_t *zfsvfs = arg;
419 struct super_block *sb = zfsvfs->z_sb;
420
421 if (sb == NULL)
422 return;
423
424 if (newval == TRUE)
425 sb->s_flags |= SB_MANDLOCK;
426 else
427 sb->s_flags &= ~SB_MANDLOCK;
428 }
429
430 static void
snapdir_changed_cb(void * arg,uint64_t newval)431 snapdir_changed_cb(void *arg, uint64_t newval)
432 {
433 ((zfsvfs_t *)arg)->z_show_ctldir = newval;
434 }
435
436 static void
vscan_changed_cb(void * arg,uint64_t newval)437 vscan_changed_cb(void *arg, uint64_t newval)
438 {
439 ((zfsvfs_t *)arg)->z_vscan = newval;
440 }
441
442 static void
acl_mode_changed_cb(void * arg,uint64_t newval)443 acl_mode_changed_cb(void *arg, uint64_t newval)
444 {
445 zfsvfs_t *zfsvfs = arg;
446
447 zfsvfs->z_acl_mode = newval;
448 }
449
450 static void
acl_inherit_changed_cb(void * arg,uint64_t newval)451 acl_inherit_changed_cb(void *arg, uint64_t newval)
452 {
453 ((zfsvfs_t *)arg)->z_acl_inherit = newval;
454 }
455
456 static int
zfs_register_callbacks(vfs_t * vfsp)457 zfs_register_callbacks(vfs_t *vfsp)
458 {
459 struct dsl_dataset *ds = NULL;
460 objset_t *os = NULL;
461 zfsvfs_t *zfsvfs = NULL;
462 int error = 0;
463
464 ASSERT(vfsp);
465 zfsvfs = vfsp->vfs_data;
466 ASSERT(zfsvfs);
467 os = zfsvfs->z_os;
468
469 /*
470 * The act of registering our callbacks will destroy any mount
471 * options we may have. In order to enable temporary overrides
472 * of mount options, we stash away the current values and
473 * restore them after we register the callbacks.
474 */
475 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
476 vfsp->vfs_do_readonly = B_TRUE;
477 vfsp->vfs_readonly = B_TRUE;
478 }
479
480 /*
481 * Register property callbacks.
482 *
483 * It would probably be fine to just check for i/o error from
484 * the first prop_register(), but I guess I like to go
485 * overboard...
486 */
487 ds = dmu_objset_ds(os);
488 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
489 error = dsl_prop_register(ds,
490 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
491 error = error ? error : dsl_prop_register(ds,
492 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
493 error = error ? error : dsl_prop_register(ds,
494 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
495 error = error ? error : dsl_prop_register(ds,
496 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
497 error = error ? error : dsl_prop_register(ds,
498 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
499 error = error ? error : dsl_prop_register(ds,
500 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
501 error = error ? error : dsl_prop_register(ds,
502 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
503 error = error ? error : dsl_prop_register(ds,
504 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
505 error = error ? error : dsl_prop_register(ds,
506 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
507 error = error ? error : dsl_prop_register(ds,
508 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
509 error = error ? error : dsl_prop_register(ds,
510 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
511 error = error ? error : dsl_prop_register(ds,
512 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
513 zfsvfs);
514 error = error ? error : dsl_prop_register(ds,
515 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
516 error = error ? error : dsl_prop_register(ds,
517 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
518 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
519 if (error)
520 goto unregister;
521
522 /*
523 * Invoke our callbacks to restore temporary mount options.
524 */
525 if (vfsp->vfs_do_readonly)
526 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
527 if (vfsp->vfs_do_setuid)
528 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
529 if (vfsp->vfs_do_exec)
530 exec_changed_cb(zfsvfs, vfsp->vfs_exec);
531 if (vfsp->vfs_do_devices)
532 devices_changed_cb(zfsvfs, vfsp->vfs_devices);
533 if (vfsp->vfs_do_xattr)
534 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
535 if (vfsp->vfs_do_atime)
536 atime_changed_cb(zfsvfs, vfsp->vfs_atime);
537 if (vfsp->vfs_do_relatime)
538 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
539 if (vfsp->vfs_do_nbmand)
540 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
541
542 return (0);
543
544 unregister:
545 dsl_prop_unregister_all(ds, zfsvfs);
546 return (error);
547 }
548
549 /*
550 * Takes a dataset, a property, a value and that value's setpoint as
551 * found in the ZAP. Checks if the property has been changed in the vfs.
552 * If so, val and setpoint will be overwritten with updated content.
553 * Otherwise, they are left unchanged.
554 */
555 int
zfs_get_temporary_prop(dsl_dataset_t * ds,zfs_prop_t zfs_prop,uint64_t * val,char * setpoint)556 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
557 char *setpoint)
558 {
559 int error;
560 zfsvfs_t *zfvp;
561 vfs_t *vfsp;
562 objset_t *os;
563 uint64_t tmp = *val;
564
565 error = dmu_objset_from_ds(ds, &os);
566 if (error != 0)
567 return (error);
568
569 if (dmu_objset_type(os) != DMU_OST_ZFS)
570 return (EINVAL);
571
572 mutex_enter(&os->os_user_ptr_lock);
573 zfvp = dmu_objset_get_user(os);
574 mutex_exit(&os->os_user_ptr_lock);
575 if (zfvp == NULL)
576 return (ESRCH);
577
578 vfsp = zfvp->z_vfs;
579
580 switch (zfs_prop) {
581 case ZFS_PROP_ATIME:
582 if (vfsp->vfs_do_atime)
583 tmp = vfsp->vfs_atime;
584 break;
585 case ZFS_PROP_RELATIME:
586 if (vfsp->vfs_do_relatime)
587 tmp = vfsp->vfs_relatime;
588 break;
589 case ZFS_PROP_DEVICES:
590 if (vfsp->vfs_do_devices)
591 tmp = vfsp->vfs_devices;
592 break;
593 case ZFS_PROP_EXEC:
594 if (vfsp->vfs_do_exec)
595 tmp = vfsp->vfs_exec;
596 break;
597 case ZFS_PROP_SETUID:
598 if (vfsp->vfs_do_setuid)
599 tmp = vfsp->vfs_setuid;
600 break;
601 case ZFS_PROP_READONLY:
602 if (vfsp->vfs_do_readonly)
603 tmp = vfsp->vfs_readonly;
604 break;
605 case ZFS_PROP_XATTR:
606 if (vfsp->vfs_do_xattr)
607 tmp = vfsp->vfs_xattr;
608 break;
609 case ZFS_PROP_NBMAND:
610 if (vfsp->vfs_do_nbmand)
611 tmp = vfsp->vfs_nbmand;
612 break;
613 default:
614 return (ENOENT);
615 }
616
617 if (tmp != *val) {
618 (void) strcpy(setpoint, "temporary");
619 *val = tmp;
620 }
621 return (0);
622 }
623
624 /*
625 * Associate this zfsvfs with the given objset, which must be owned.
626 * This will cache a bunch of on-disk state from the objset in the
627 * zfsvfs.
628 */
629 static int
zfsvfs_init(zfsvfs_t * zfsvfs,objset_t * os)630 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
631 {
632 int error;
633 uint64_t val;
634
635 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
636 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
637 zfsvfs->z_os = os;
638
639 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
640 if (error != 0)
641 return (error);
642 if (zfsvfs->z_version >
643 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
644 (void) printk("Can't mount a version %lld file system "
645 "on a version %lld pool\n. Pool must be upgraded to mount "
646 "this file system.\n", (u_longlong_t)zfsvfs->z_version,
647 (u_longlong_t)spa_version(dmu_objset_spa(os)));
648 return (SET_ERROR(ENOTSUP));
649 }
650 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
651 if (error != 0)
652 return (error);
653 zfsvfs->z_norm = (int)val;
654
655 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
656 if (error != 0)
657 return (error);
658 zfsvfs->z_utf8 = (val != 0);
659
660 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
661 if (error != 0)
662 return (error);
663 zfsvfs->z_case = (uint_t)val;
664
665 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
666 return (error);
667 zfsvfs->z_acl_type = (uint_t)val;
668
669 /*
670 * Fold case on file systems that are always or sometimes case
671 * insensitive.
672 */
673 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
674 zfsvfs->z_case == ZFS_CASE_MIXED)
675 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
676
677 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
678 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
679
680 uint64_t sa_obj = 0;
681 if (zfsvfs->z_use_sa) {
682 /* should either have both of these objects or none */
683 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
684 &sa_obj);
685 if (error != 0)
686 return (error);
687
688 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
689 if ((error == 0) && (val == ZFS_XATTR_SA))
690 zfsvfs->z_xattr_sa = B_TRUE;
691 }
692
693 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
694 &zfsvfs->z_root);
695 if (error != 0)
696 return (error);
697 ASSERT(zfsvfs->z_root != 0);
698
699 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
700 &zfsvfs->z_unlinkedobj);
701 if (error != 0)
702 return (error);
703
704 error = zap_lookup(os, MASTER_NODE_OBJ,
705 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
706 8, 1, &zfsvfs->z_userquota_obj);
707 if (error == ENOENT)
708 zfsvfs->z_userquota_obj = 0;
709 else if (error != 0)
710 return (error);
711
712 error = zap_lookup(os, MASTER_NODE_OBJ,
713 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
714 8, 1, &zfsvfs->z_groupquota_obj);
715 if (error == ENOENT)
716 zfsvfs->z_groupquota_obj = 0;
717 else if (error != 0)
718 return (error);
719
720 error = zap_lookup(os, MASTER_NODE_OBJ,
721 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
722 8, 1, &zfsvfs->z_projectquota_obj);
723 if (error == ENOENT)
724 zfsvfs->z_projectquota_obj = 0;
725 else if (error != 0)
726 return (error);
727
728 error = zap_lookup(os, MASTER_NODE_OBJ,
729 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
730 8, 1, &zfsvfs->z_userobjquota_obj);
731 if (error == ENOENT)
732 zfsvfs->z_userobjquota_obj = 0;
733 else if (error != 0)
734 return (error);
735
736 error = zap_lookup(os, MASTER_NODE_OBJ,
737 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
738 8, 1, &zfsvfs->z_groupobjquota_obj);
739 if (error == ENOENT)
740 zfsvfs->z_groupobjquota_obj = 0;
741 else if (error != 0)
742 return (error);
743
744 error = zap_lookup(os, MASTER_NODE_OBJ,
745 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
746 8, 1, &zfsvfs->z_projectobjquota_obj);
747 if (error == ENOENT)
748 zfsvfs->z_projectobjquota_obj = 0;
749 else if (error != 0)
750 return (error);
751
752 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
753 &zfsvfs->z_fuid_obj);
754 if (error == ENOENT)
755 zfsvfs->z_fuid_obj = 0;
756 else if (error != 0)
757 return (error);
758
759 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
760 &zfsvfs->z_shares_dir);
761 if (error == ENOENT)
762 zfsvfs->z_shares_dir = 0;
763 else if (error != 0)
764 return (error);
765
766 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
767 &zfsvfs->z_attr_table);
768 if (error != 0)
769 return (error);
770
771 if (zfsvfs->z_version >= ZPL_VERSION_SA)
772 sa_register_update_callback(os, zfs_sa_upgrade);
773
774 return (0);
775 }
776
777 int
zfsvfs_create(const char * osname,boolean_t readonly,zfsvfs_t ** zfvp)778 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
779 {
780 objset_t *os;
781 zfsvfs_t *zfsvfs;
782 int error;
783 boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
784
785 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
786
787 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
788 if (error != 0) {
789 kmem_free(zfsvfs, sizeof (zfsvfs_t));
790 return (error);
791 }
792
793 error = zfsvfs_create_impl(zfvp, zfsvfs, os);
794 if (error != 0) {
795 dmu_objset_disown(os, B_TRUE, zfsvfs);
796 }
797 return (error);
798 }
799
800
801 /*
802 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
803 * on a failure. Do not pass in a statically allocated zfsvfs.
804 */
805 int
zfsvfs_create_impl(zfsvfs_t ** zfvp,zfsvfs_t * zfsvfs,objset_t * os)806 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
807 {
808 int error;
809
810 zfsvfs->z_vfs = NULL;
811 zfsvfs->z_sb = NULL;
812 zfsvfs->z_parent = zfsvfs;
813
814 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
815 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
816 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
817 offsetof(znode_t, z_link_node));
818 ZFS_TEARDOWN_INIT(zfsvfs);
819 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
820 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
821
822 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
823 ZFS_OBJ_MTX_MAX);
824 zfsvfs->z_hold_size = size;
825 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
826 KM_SLEEP);
827 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
828 for (int i = 0; i != size; i++) {
829 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
830 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
831 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
832 }
833
834 error = zfsvfs_init(zfsvfs, os);
835 if (error != 0) {
836 *zfvp = NULL;
837 zfsvfs_free(zfsvfs);
838 return (error);
839 }
840
841 zfsvfs->z_drain_task = TASKQID_INVALID;
842 zfsvfs->z_draining = B_FALSE;
843 zfsvfs->z_drain_cancel = B_TRUE;
844
845 *zfvp = zfsvfs;
846 return (0);
847 }
848
849 static int
zfsvfs_setup(zfsvfs_t * zfsvfs,boolean_t mounting)850 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
851 {
852 int error;
853 boolean_t readonly = zfs_is_readonly(zfsvfs);
854
855 error = zfs_register_callbacks(zfsvfs->z_vfs);
856 if (error)
857 return (error);
858
859 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
860
861 /*
862 * If we are not mounting (ie: online recv), then we don't
863 * have to worry about replaying the log as we blocked all
864 * operations out since we closed the ZIL.
865 */
866 if (mounting) {
867 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
868 dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
869
870 /*
871 * During replay we remove the read only flag to
872 * allow replays to succeed.
873 */
874 if (readonly != 0) {
875 readonly_changed_cb(zfsvfs, B_FALSE);
876 } else {
877 zap_stats_t zs;
878 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
879 &zs) == 0) {
880 dataset_kstats_update_nunlinks_kstat(
881 &zfsvfs->z_kstat, zs.zs_num_entries);
882 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
883 "num_entries in unlinked set: %llu",
884 zs.zs_num_entries);
885 }
886 zfs_unlinked_drain(zfsvfs);
887 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
888 dd->dd_activity_cancelled = B_FALSE;
889 }
890
891 /*
892 * Parse and replay the intent log.
893 *
894 * Because of ziltest, this must be done after
895 * zfs_unlinked_drain(). (Further note: ziltest
896 * doesn't use readonly mounts, where
897 * zfs_unlinked_drain() isn't called.) This is because
898 * ziltest causes spa_sync() to think it's committed,
899 * but actually it is not, so the intent log contains
900 * many txg's worth of changes.
901 *
902 * In particular, if object N is in the unlinked set in
903 * the last txg to actually sync, then it could be
904 * actually freed in a later txg and then reallocated
905 * in a yet later txg. This would write a "create
906 * object N" record to the intent log. Normally, this
907 * would be fine because the spa_sync() would have
908 * written out the fact that object N is free, before
909 * we could write the "create object N" intent log
910 * record.
911 *
912 * But when we are in ziltest mode, we advance the "open
913 * txg" without actually spa_sync()-ing the changes to
914 * disk. So we would see that object N is still
915 * allocated and in the unlinked set, and there is an
916 * intent log record saying to allocate it.
917 */
918 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
919 if (zil_replay_disable) {
920 zil_destroy(zfsvfs->z_log, B_FALSE);
921 } else {
922 zfsvfs->z_replay = B_TRUE;
923 zil_replay(zfsvfs->z_os, zfsvfs,
924 zfs_replay_vector);
925 zfsvfs->z_replay = B_FALSE;
926 }
927 }
928
929 /* restore readonly bit */
930 if (readonly != 0)
931 readonly_changed_cb(zfsvfs, B_TRUE);
932 }
933
934 /*
935 * Set the objset user_ptr to track its zfsvfs.
936 */
937 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
938 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
939 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
940
941 return (0);
942 }
943
944 void
zfsvfs_free(zfsvfs_t * zfsvfs)945 zfsvfs_free(zfsvfs_t *zfsvfs)
946 {
947 int i, size = zfsvfs->z_hold_size;
948
949 zfs_fuid_destroy(zfsvfs);
950
951 mutex_destroy(&zfsvfs->z_znodes_lock);
952 mutex_destroy(&zfsvfs->z_lock);
953 list_destroy(&zfsvfs->z_all_znodes);
954 ZFS_TEARDOWN_DESTROY(zfsvfs);
955 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
956 rw_destroy(&zfsvfs->z_fuid_lock);
957 for (i = 0; i != size; i++) {
958 avl_destroy(&zfsvfs->z_hold_trees[i]);
959 mutex_destroy(&zfsvfs->z_hold_locks[i]);
960 }
961 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
962 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
963 zfsvfs_vfs_free(zfsvfs->z_vfs);
964 dataset_kstats_destroy(&zfsvfs->z_kstat);
965 kmem_free(zfsvfs, sizeof (zfsvfs_t));
966 }
967
968 static void
zfs_set_fuid_feature(zfsvfs_t * zfsvfs)969 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
970 {
971 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
972 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
973 }
974
975 static void
zfs_unregister_callbacks(zfsvfs_t * zfsvfs)976 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
977 {
978 objset_t *os = zfsvfs->z_os;
979
980 if (!dmu_objset_is_snapshot(os))
981 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
982 }
983
984 #ifdef HAVE_MLSLABEL
985 /*
986 * Check that the hex label string is appropriate for the dataset being
987 * mounted into the global_zone proper.
988 *
989 * Return an error if the hex label string is not default or
990 * admin_low/admin_high. For admin_low labels, the corresponding
991 * dataset must be readonly.
992 */
993 int
zfs_check_global_label(const char * dsname,const char * hexsl)994 zfs_check_global_label(const char *dsname, const char *hexsl)
995 {
996 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
997 return (0);
998 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
999 return (0);
1000 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1001 /* must be readonly */
1002 uint64_t rdonly;
1003
1004 if (dsl_prop_get_integer(dsname,
1005 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1006 return (SET_ERROR(EACCES));
1007 return (rdonly ? 0 : SET_ERROR(EACCES));
1008 }
1009 return (SET_ERROR(EACCES));
1010 }
1011 #endif /* HAVE_MLSLABEL */
1012
1013 static int
zfs_statfs_project(zfsvfs_t * zfsvfs,znode_t * zp,struct kstatfs * statp,uint32_t bshift)1014 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1015 uint32_t bshift)
1016 {
1017 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1018 uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1019 uint64_t quota;
1020 uint64_t used;
1021 int err;
1022
1023 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1024 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1025 sizeof (buf) - offset, B_FALSE);
1026 if (err)
1027 return (err);
1028
1029 if (zfsvfs->z_projectquota_obj == 0)
1030 goto objs;
1031
1032 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1033 buf + offset, 8, 1, "a);
1034 if (err == ENOENT)
1035 goto objs;
1036 else if (err)
1037 return (err);
1038
1039 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1040 buf + offset, 8, 1, &used);
1041 if (unlikely(err == ENOENT)) {
1042 uint32_t blksize;
1043 u_longlong_t nblocks;
1044
1045 /*
1046 * Quota accounting is async, so it is possible race case.
1047 * There is at least one object with the given project ID.
1048 */
1049 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1050 if (unlikely(zp->z_blksz == 0))
1051 blksize = zfsvfs->z_max_blksz;
1052
1053 used = blksize * nblocks;
1054 } else if (err) {
1055 return (err);
1056 }
1057
1058 statp->f_blocks = quota >> bshift;
1059 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1060 statp->f_bavail = statp->f_bfree;
1061
1062 objs:
1063 if (zfsvfs->z_projectobjquota_obj == 0)
1064 return (0);
1065
1066 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1067 buf + offset, 8, 1, "a);
1068 if (err == ENOENT)
1069 return (0);
1070 else if (err)
1071 return (err);
1072
1073 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1074 buf, 8, 1, &used);
1075 if (unlikely(err == ENOENT)) {
1076 /*
1077 * Quota accounting is async, so it is possible race case.
1078 * There is at least one object with the given project ID.
1079 */
1080 used = 1;
1081 } else if (err) {
1082 return (err);
1083 }
1084
1085 statp->f_files = quota;
1086 statp->f_ffree = (quota > used) ? (quota - used) : 0;
1087
1088 return (0);
1089 }
1090
1091 int
zfs_statvfs(struct inode * ip,struct kstatfs * statp)1092 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1093 {
1094 zfsvfs_t *zfsvfs = ITOZSB(ip);
1095 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1096 int err = 0;
1097
1098 ZFS_ENTER(zfsvfs);
1099
1100 dmu_objset_space(zfsvfs->z_os,
1101 &refdbytes, &availbytes, &usedobjs, &availobjs);
1102
1103 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1104 /*
1105 * The underlying storage pool actually uses multiple block
1106 * size. Under Solaris frsize (fragment size) is reported as
1107 * the smallest block size we support, and bsize (block size)
1108 * as the filesystem's maximum block size. Unfortunately,
1109 * under Linux the fragment size and block size are often used
1110 * interchangeably. Thus we are forced to report both of them
1111 * as the filesystem's maximum block size.
1112 */
1113 statp->f_frsize = zfsvfs->z_max_blksz;
1114 statp->f_bsize = zfsvfs->z_max_blksz;
1115 uint32_t bshift = fls(statp->f_bsize) - 1;
1116
1117 /*
1118 * The following report "total" blocks of various kinds in
1119 * the file system, but reported in terms of f_bsize - the
1120 * "preferred" size.
1121 */
1122
1123 /* Round up so we never have a filesystem using 0 blocks. */
1124 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1125 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1126 statp->f_bfree = availbytes >> bshift;
1127 statp->f_bavail = statp->f_bfree; /* no root reservation */
1128
1129 /*
1130 * statvfs() should really be called statufs(), because it assumes
1131 * static metadata. ZFS doesn't preallocate files, so the best
1132 * we can do is report the max that could possibly fit in f_files,
1133 * and that minus the number actually used in f_ffree.
1134 * For f_ffree, report the smaller of the number of objects available
1135 * and the number of blocks (each object will take at least a block).
1136 */
1137 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1138 statp->f_files = statp->f_ffree + usedobjs;
1139 statp->f_fsid.val[0] = (uint32_t)fsid;
1140 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1141 statp->f_type = ZFS_SUPER_MAGIC;
1142 statp->f_namelen = MAXNAMELEN - 1;
1143
1144 /*
1145 * We have all of 40 characters to stuff a string here.
1146 * Is there anything useful we could/should provide?
1147 */
1148 bzero(statp->f_spare, sizeof (statp->f_spare));
1149
1150 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1151 dmu_objset_projectquota_present(zfsvfs->z_os)) {
1152 znode_t *zp = ITOZ(ip);
1153
1154 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1155 zpl_is_valid_projid(zp->z_projid))
1156 err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1157 }
1158
1159 ZFS_EXIT(zfsvfs);
1160 return (err);
1161 }
1162
1163 static int
zfs_root(zfsvfs_t * zfsvfs,struct inode ** ipp)1164 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1165 {
1166 znode_t *rootzp;
1167 int error;
1168
1169 ZFS_ENTER(zfsvfs);
1170
1171 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1172 if (error == 0)
1173 *ipp = ZTOI(rootzp);
1174
1175 ZFS_EXIT(zfsvfs);
1176 return (error);
1177 }
1178
1179 /*
1180 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1181 * To accommodate this we must improvise and manually walk the list of znodes
1182 * attempting to prune dentries in order to be able to drop the inodes.
1183 *
1184 * To avoid scanning the same znodes multiple times they are always rotated
1185 * to the end of the z_all_znodes list. New znodes are inserted at the
1186 * end of the list so we're always scanning the oldest znodes first.
1187 */
1188 static int
zfs_prune_aliases(zfsvfs_t * zfsvfs,unsigned long nr_to_scan)1189 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1190 {
1191 znode_t **zp_array, *zp;
1192 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1193 int objects = 0;
1194 int i = 0, j = 0;
1195
1196 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1197
1198 mutex_enter(&zfsvfs->z_znodes_lock);
1199 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1200
1201 if ((i++ > nr_to_scan) || (j >= max_array))
1202 break;
1203
1204 ASSERT(list_link_active(&zp->z_link_node));
1205 list_remove(&zfsvfs->z_all_znodes, zp);
1206 list_insert_tail(&zfsvfs->z_all_znodes, zp);
1207
1208 /* Skip active znodes and .zfs entries */
1209 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1210 continue;
1211
1212 if (igrab(ZTOI(zp)) == NULL)
1213 continue;
1214
1215 zp_array[j] = zp;
1216 j++;
1217 }
1218 mutex_exit(&zfsvfs->z_znodes_lock);
1219
1220 for (i = 0; i < j; i++) {
1221 zp = zp_array[i];
1222
1223 ASSERT3P(zp, !=, NULL);
1224 d_prune_aliases(ZTOI(zp));
1225
1226 if (atomic_read(&ZTOI(zp)->i_count) == 1)
1227 objects++;
1228
1229 zrele(zp);
1230 }
1231
1232 kmem_free(zp_array, max_array * sizeof (znode_t *));
1233
1234 return (objects);
1235 }
1236
1237 /*
1238 * The ARC has requested that the filesystem drop entries from the dentry
1239 * and inode caches. This can occur when the ARC needs to free meta data
1240 * blocks but can't because they are all pinned by entries in these caches.
1241 */
1242 int
zfs_prune(struct super_block * sb,unsigned long nr_to_scan,int * objects)1243 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1244 {
1245 zfsvfs_t *zfsvfs = sb->s_fs_info;
1246 int error = 0;
1247 struct shrinker *shrinker = &sb->s_shrink;
1248 struct shrink_control sc = {
1249 .nr_to_scan = nr_to_scan,
1250 .gfp_mask = GFP_KERNEL,
1251 };
1252
1253 ZFS_ENTER(zfsvfs);
1254
1255 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1256 defined(SHRINK_CONTROL_HAS_NID) && \
1257 defined(SHRINKER_NUMA_AWARE)
1258 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1259 *objects = 0;
1260 for_each_online_node(sc.nid) {
1261 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1262 }
1263 } else {
1264 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1265 }
1266
1267 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1268 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1269 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
1270 *objects = (*shrinker->shrink)(shrinker, &sc);
1271 #elif defined(HAVE_D_PRUNE_ALIASES)
1272 #define D_PRUNE_ALIASES_IS_DEFAULT
1273 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1274 #else
1275 #error "No available dentry and inode cache pruning mechanism."
1276 #endif
1277
1278 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1279 #undef D_PRUNE_ALIASES_IS_DEFAULT
1280 /*
1281 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1282 * shrinker couldn't free anything, possibly due to the inodes being
1283 * allocated in a different memcg.
1284 */
1285 if (*objects == 0)
1286 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1287 #endif
1288
1289 ZFS_EXIT(zfsvfs);
1290
1291 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1292 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1293 nr_to_scan, *objects, error);
1294
1295 return (error);
1296 }
1297
1298 /*
1299 * Teardown the zfsvfs_t.
1300 *
1301 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1302 * and 'z_teardown_inactive_lock' held.
1303 */
1304 static int
zfsvfs_teardown(zfsvfs_t * zfsvfs,boolean_t unmounting)1305 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1306 {
1307 znode_t *zp;
1308
1309 zfs_unlinked_drain_stop_wait(zfsvfs);
1310
1311 /*
1312 * If someone has not already unmounted this file system,
1313 * drain the zrele_taskq to ensure all active references to the
1314 * zfsvfs_t have been handled only then can it be safely destroyed.
1315 */
1316 if (zfsvfs->z_os) {
1317 /*
1318 * If we're unmounting we have to wait for the list to
1319 * drain completely.
1320 *
1321 * If we're not unmounting there's no guarantee the list
1322 * will drain completely, but iputs run from the taskq
1323 * may add the parents of dir-based xattrs to the taskq
1324 * so we want to wait for these.
1325 *
1326 * We can safely read z_nr_znodes without locking because the
1327 * VFS has already blocked operations which add to the
1328 * z_all_znodes list and thus increment z_nr_znodes.
1329 */
1330 int round = 0;
1331 while (zfsvfs->z_nr_znodes > 0) {
1332 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1333 dmu_objset_pool(zfsvfs->z_os)), 0);
1334 if (++round > 1 && !unmounting)
1335 break;
1336 }
1337 }
1338
1339 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1340
1341 if (!unmounting) {
1342 /*
1343 * We purge the parent filesystem's super block as the
1344 * parent filesystem and all of its snapshots have their
1345 * inode's super block set to the parent's filesystem's
1346 * super block. Note, 'z_parent' is self referential
1347 * for non-snapshots.
1348 */
1349 shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1350 }
1351
1352 /*
1353 * Close the zil. NB: Can't close the zil while zfs_inactive
1354 * threads are blocked as zil_close can call zfs_inactive.
1355 */
1356 if (zfsvfs->z_log) {
1357 zil_close(zfsvfs->z_log);
1358 zfsvfs->z_log = NULL;
1359 }
1360
1361 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1362
1363 /*
1364 * If we are not unmounting (ie: online recv) and someone already
1365 * unmounted this file system while we were doing the switcheroo,
1366 * or a reopen of z_os failed then just bail out now.
1367 */
1368 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1369 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1370 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1371 return (SET_ERROR(EIO));
1372 }
1373
1374 /*
1375 * At this point there are no VFS ops active, and any new VFS ops
1376 * will fail with EIO since we have z_teardown_lock for writer (only
1377 * relevant for forced unmount).
1378 *
1379 * Release all holds on dbufs. We also grab an extra reference to all
1380 * the remaining inodes so that the kernel does not attempt to free
1381 * any inodes of a suspended fs. This can cause deadlocks since the
1382 * zfs_resume_fs() process may involve starting threads, which might
1383 * attempt to free unreferenced inodes to free up memory for the new
1384 * thread.
1385 */
1386 if (!unmounting) {
1387 mutex_enter(&zfsvfs->z_znodes_lock);
1388 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1389 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1390 if (zp->z_sa_hdl)
1391 zfs_znode_dmu_fini(zp);
1392 if (igrab(ZTOI(zp)) != NULL)
1393 zp->z_suspended = B_TRUE;
1394
1395 }
1396 mutex_exit(&zfsvfs->z_znodes_lock);
1397 }
1398
1399 /*
1400 * If we are unmounting, set the unmounted flag and let new VFS ops
1401 * unblock. zfs_inactive will have the unmounted behavior, and all
1402 * other VFS ops will fail with EIO.
1403 */
1404 if (unmounting) {
1405 zfsvfs->z_unmounted = B_TRUE;
1406 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1407 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1408 }
1409
1410 /*
1411 * z_os will be NULL if there was an error in attempting to reopen
1412 * zfsvfs, so just return as the properties had already been
1413 *
1414 * unregistered and cached data had been evicted before.
1415 */
1416 if (zfsvfs->z_os == NULL)
1417 return (0);
1418
1419 /*
1420 * Unregister properties.
1421 */
1422 zfs_unregister_callbacks(zfsvfs);
1423
1424 /*
1425 * Evict cached data. We must write out any dirty data before
1426 * disowning the dataset.
1427 */
1428 objset_t *os = zfsvfs->z_os;
1429 boolean_t os_dirty = B_FALSE;
1430 for (int t = 0; t < TXG_SIZE; t++) {
1431 if (dmu_objset_is_dirty(os, t)) {
1432 os_dirty = B_TRUE;
1433 break;
1434 }
1435 }
1436 if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1437 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1438 }
1439 dmu_objset_evict_dbufs(zfsvfs->z_os);
1440 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1441 dsl_dir_cancel_waiters(dd);
1442
1443 return (0);
1444 }
1445
1446 #if defined(HAVE_SUPER_SETUP_BDI_NAME)
1447 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1448 #endif
1449
1450 int
zfs_domount(struct super_block * sb,zfs_mnt_t * zm,int silent)1451 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1452 {
1453 const char *osname = zm->mnt_osname;
1454 struct inode *root_inode = NULL;
1455 uint64_t recordsize;
1456 int error = 0;
1457 zfsvfs_t *zfsvfs = NULL;
1458 vfs_t *vfs = NULL;
1459
1460 ASSERT(zm);
1461 ASSERT(osname);
1462
1463 error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1464 if (error)
1465 return (error);
1466
1467 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1468 if (error) {
1469 zfsvfs_vfs_free(vfs);
1470 goto out;
1471 }
1472
1473 if ((error = dsl_prop_get_integer(osname, "recordsize",
1474 &recordsize, NULL))) {
1475 zfsvfs_vfs_free(vfs);
1476 goto out;
1477 }
1478
1479 vfs->vfs_data = zfsvfs;
1480 zfsvfs->z_vfs = vfs;
1481 zfsvfs->z_sb = sb;
1482 sb->s_fs_info = zfsvfs;
1483 sb->s_magic = ZFS_SUPER_MAGIC;
1484 sb->s_maxbytes = MAX_LFS_FILESIZE;
1485 sb->s_time_gran = 1;
1486 sb->s_blocksize = recordsize;
1487 sb->s_blocksize_bits = ilog2(recordsize);
1488
1489 error = -zpl_bdi_setup(sb, "zfs");
1490 if (error)
1491 goto out;
1492
1493 sb->s_bdi->ra_pages = 0;
1494
1495 /* Set callback operations for the file system. */
1496 sb->s_op = &zpl_super_operations;
1497 sb->s_xattr = zpl_xattr_handlers;
1498 sb->s_export_op = &zpl_export_operations;
1499 sb->s_d_op = &zpl_dentry_operations;
1500
1501 /* Set features for file system. */
1502 zfs_set_fuid_feature(zfsvfs);
1503
1504 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1505 uint64_t pval;
1506
1507 atime_changed_cb(zfsvfs, B_FALSE);
1508 readonly_changed_cb(zfsvfs, B_TRUE);
1509 if ((error = dsl_prop_get_integer(osname,
1510 "xattr", &pval, NULL)))
1511 goto out;
1512 xattr_changed_cb(zfsvfs, pval);
1513 if ((error = dsl_prop_get_integer(osname,
1514 "acltype", &pval, NULL)))
1515 goto out;
1516 acltype_changed_cb(zfsvfs, pval);
1517 zfsvfs->z_issnap = B_TRUE;
1518 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1519 zfsvfs->z_snap_defer_time = jiffies;
1520
1521 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1522 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1523 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1524 } else {
1525 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1526 goto out;
1527 }
1528
1529 /* Allocate a root inode for the filesystem. */
1530 error = zfs_root(zfsvfs, &root_inode);
1531 if (error) {
1532 (void) zfs_umount(sb);
1533 goto out;
1534 }
1535
1536 /* Allocate a root dentry for the filesystem */
1537 sb->s_root = d_make_root(root_inode);
1538 if (sb->s_root == NULL) {
1539 (void) zfs_umount(sb);
1540 error = SET_ERROR(ENOMEM);
1541 goto out;
1542 }
1543
1544 if (!zfsvfs->z_issnap)
1545 zfsctl_create(zfsvfs);
1546
1547 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1548 out:
1549 if (error) {
1550 if (zfsvfs != NULL) {
1551 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1552 zfsvfs_free(zfsvfs);
1553 }
1554 /*
1555 * make sure we don't have dangling sb->s_fs_info which
1556 * zfs_preumount will use.
1557 */
1558 sb->s_fs_info = NULL;
1559 }
1560
1561 return (error);
1562 }
1563
1564 /*
1565 * Called when an unmount is requested and certain sanity checks have
1566 * already passed. At this point no dentries or inodes have been reclaimed
1567 * from their respective caches. We drop the extra reference on the .zfs
1568 * control directory to allow everything to be reclaimed. All snapshots
1569 * must already have been unmounted to reach this point.
1570 */
1571 void
zfs_preumount(struct super_block * sb)1572 zfs_preumount(struct super_block *sb)
1573 {
1574 zfsvfs_t *zfsvfs = sb->s_fs_info;
1575
1576 /* zfsvfs is NULL when zfs_domount fails during mount */
1577 if (zfsvfs) {
1578 zfs_unlinked_drain_stop_wait(zfsvfs);
1579 zfsctl_destroy(sb->s_fs_info);
1580 /*
1581 * Wait for zrele_async before entering evict_inodes in
1582 * generic_shutdown_super. The reason we must finish before
1583 * evict_inodes is when lazytime is on, or when zfs_purgedir
1584 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1585 * would race with the i_count check in evict_inodes. This means
1586 * it could destroy the inode while we are still using it.
1587 *
1588 * We wait for two passes. xattr directories in the first pass
1589 * may add xattr entries in zfs_purgedir, so in the second pass
1590 * we wait for them. We don't use taskq_wait here because it is
1591 * a pool wide taskq. Other mounted filesystems can constantly
1592 * do zrele_async and there's no guarantee when taskq will be
1593 * empty.
1594 */
1595 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1596 dmu_objset_pool(zfsvfs->z_os)), 0);
1597 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1598 dmu_objset_pool(zfsvfs->z_os)), 0);
1599 }
1600 }
1601
1602 /*
1603 * Called once all other unmount released tear down has occurred.
1604 * It is our responsibility to release any remaining infrastructure.
1605 */
1606 /*ARGSUSED*/
1607 int
zfs_umount(struct super_block * sb)1608 zfs_umount(struct super_block *sb)
1609 {
1610 zfsvfs_t *zfsvfs = sb->s_fs_info;
1611 objset_t *os;
1612
1613 if (zfsvfs->z_arc_prune != NULL)
1614 arc_remove_prune_callback(zfsvfs->z_arc_prune);
1615 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1616 os = zfsvfs->z_os;
1617 zpl_bdi_destroy(sb);
1618
1619 /*
1620 * z_os will be NULL if there was an error in
1621 * attempting to reopen zfsvfs.
1622 */
1623 if (os != NULL) {
1624 /*
1625 * Unset the objset user_ptr.
1626 */
1627 mutex_enter(&os->os_user_ptr_lock);
1628 dmu_objset_set_user(os, NULL);
1629 mutex_exit(&os->os_user_ptr_lock);
1630
1631 /*
1632 * Finally release the objset
1633 */
1634 dmu_objset_disown(os, B_TRUE, zfsvfs);
1635 }
1636
1637 zfsvfs_free(zfsvfs);
1638 return (0);
1639 }
1640
1641 int
zfs_remount(struct super_block * sb,int * flags,zfs_mnt_t * zm)1642 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1643 {
1644 zfsvfs_t *zfsvfs = sb->s_fs_info;
1645 vfs_t *vfsp;
1646 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1647 int error;
1648
1649 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1650 !(*flags & SB_RDONLY)) {
1651 *flags |= SB_RDONLY;
1652 return (EROFS);
1653 }
1654
1655 error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1656 if (error)
1657 return (error);
1658
1659 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1660 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1661
1662 zfs_unregister_callbacks(zfsvfs);
1663 zfsvfs_vfs_free(zfsvfs->z_vfs);
1664
1665 vfsp->vfs_data = zfsvfs;
1666 zfsvfs->z_vfs = vfsp;
1667 if (!issnap)
1668 (void) zfs_register_callbacks(vfsp);
1669
1670 return (error);
1671 }
1672
1673 int
zfs_vget(struct super_block * sb,struct inode ** ipp,fid_t * fidp)1674 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1675 {
1676 zfsvfs_t *zfsvfs = sb->s_fs_info;
1677 znode_t *zp;
1678 uint64_t object = 0;
1679 uint64_t fid_gen = 0;
1680 uint64_t gen_mask;
1681 uint64_t zp_gen;
1682 int i, err;
1683
1684 *ipp = NULL;
1685
1686 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1687 zfid_short_t *zfid = (zfid_short_t *)fidp;
1688
1689 for (i = 0; i < sizeof (zfid->zf_object); i++)
1690 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1691
1692 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1693 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1694 } else {
1695 return (SET_ERROR(EINVAL));
1696 }
1697
1698 /* LONG_FID_LEN means snapdirs */
1699 if (fidp->fid_len == LONG_FID_LEN) {
1700 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1701 uint64_t objsetid = 0;
1702 uint64_t setgen = 0;
1703
1704 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1705 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1706
1707 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1708 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1709
1710 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1711 dprintf("snapdir fid: objsetid (%llu) != "
1712 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1713 objsetid, ZFSCTL_INO_SNAPDIRS, object);
1714
1715 return (SET_ERROR(EINVAL));
1716 }
1717
1718 if (fid_gen > 1 || setgen != 0) {
1719 dprintf("snapdir fid: fid_gen (%llu) and setgen "
1720 "(%llu)\n", fid_gen, setgen);
1721 return (SET_ERROR(EINVAL));
1722 }
1723
1724 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1725 }
1726
1727 ZFS_ENTER(zfsvfs);
1728 /* A zero fid_gen means we are in the .zfs control directories */
1729 if (fid_gen == 0 &&
1730 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1731 *ipp = zfsvfs->z_ctldir;
1732 ASSERT(*ipp != NULL);
1733 if (object == ZFSCTL_INO_SNAPDIR) {
1734 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1735 0, kcred, NULL, NULL) == 0);
1736 } else {
1737 igrab(*ipp);
1738 }
1739 ZFS_EXIT(zfsvfs);
1740 return (0);
1741 }
1742
1743 gen_mask = -1ULL >> (64 - 8 * i);
1744
1745 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1746 if ((err = zfs_zget(zfsvfs, object, &zp))) {
1747 ZFS_EXIT(zfsvfs);
1748 return (err);
1749 }
1750
1751 /* Don't export xattr stuff */
1752 if (zp->z_pflags & ZFS_XATTR) {
1753 zrele(zp);
1754 ZFS_EXIT(zfsvfs);
1755 return (SET_ERROR(ENOENT));
1756 }
1757
1758 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1759 sizeof (uint64_t));
1760 zp_gen = zp_gen & gen_mask;
1761 if (zp_gen == 0)
1762 zp_gen = 1;
1763 if ((fid_gen == 0) && (zfsvfs->z_root == object))
1764 fid_gen = zp_gen;
1765 if (zp->z_unlinked || zp_gen != fid_gen) {
1766 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1767 fid_gen);
1768 zrele(zp);
1769 ZFS_EXIT(zfsvfs);
1770 return (SET_ERROR(ENOENT));
1771 }
1772
1773 *ipp = ZTOI(zp);
1774 if (*ipp)
1775 zfs_inode_update(ITOZ(*ipp));
1776
1777 ZFS_EXIT(zfsvfs);
1778 return (0);
1779 }
1780
1781 /*
1782 * Block out VFS ops and close zfsvfs_t
1783 *
1784 * Note, if successful, then we return with the 'z_teardown_lock' and
1785 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1786 * dataset and objset intact so that they can be atomically handed off during
1787 * a subsequent rollback or recv operation and the resume thereafter.
1788 */
1789 int
zfs_suspend_fs(zfsvfs_t * zfsvfs)1790 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1791 {
1792 int error;
1793
1794 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1795 return (error);
1796
1797 return (0);
1798 }
1799
1800 /*
1801 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
1802 * is an invariant across any of the operations that can be performed while the
1803 * filesystem was suspended. Whether it succeeded or failed, the preconditions
1804 * are the same: the relevant objset and associated dataset are owned by
1805 * zfsvfs, held, and long held on entry.
1806 */
1807 int
zfs_resume_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)1808 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1809 {
1810 int err, err2;
1811 znode_t *zp;
1812
1813 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1814 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1815
1816 /*
1817 * We already own this, so just update the objset_t, as the one we
1818 * had before may have been evicted.
1819 */
1820 objset_t *os;
1821 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1822 VERIFY(dsl_dataset_long_held(ds));
1823 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1824 dsl_pool_config_enter(dp, FTAG);
1825 VERIFY0(dmu_objset_from_ds(ds, &os));
1826 dsl_pool_config_exit(dp, FTAG);
1827
1828 err = zfsvfs_init(zfsvfs, os);
1829 if (err != 0)
1830 goto bail;
1831
1832 ds->ds_dir->dd_activity_cancelled = B_FALSE;
1833 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1834
1835 zfs_set_fuid_feature(zfsvfs);
1836 zfsvfs->z_rollback_time = jiffies;
1837
1838 /*
1839 * Attempt to re-establish all the active inodes with their
1840 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1841 * and mark it stale. This prevents a collision if a new
1842 * inode/object is created which must use the same inode
1843 * number. The stale inode will be be released when the
1844 * VFS prunes the dentry holding the remaining references
1845 * on the stale inode.
1846 */
1847 mutex_enter(&zfsvfs->z_znodes_lock);
1848 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1849 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1850 err2 = zfs_rezget(zp);
1851 if (err2) {
1852 remove_inode_hash(ZTOI(zp));
1853 zp->z_is_stale = B_TRUE;
1854 }
1855
1856 /* see comment in zfs_suspend_fs() */
1857 if (zp->z_suspended) {
1858 zfs_zrele_async(zp);
1859 zp->z_suspended = B_FALSE;
1860 }
1861 }
1862 mutex_exit(&zfsvfs->z_znodes_lock);
1863
1864 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1865 /*
1866 * zfs_suspend_fs() could have interrupted freeing
1867 * of dnodes. We need to restart this freeing so
1868 * that we don't "leak" the space.
1869 */
1870 zfs_unlinked_drain(zfsvfs);
1871 }
1872
1873 /*
1874 * Most of the time zfs_suspend_fs is used for changing the contents
1875 * of the underlying dataset. ZFS rollback and receive operations
1876 * might create files for which negative dentries are present in
1877 * the cache. Since walking the dcache would require a lot of GPL-only
1878 * code duplication, it's much easier on these rather rare occasions
1879 * just to flush the whole dcache for the given dataset/filesystem.
1880 */
1881 shrink_dcache_sb(zfsvfs->z_sb);
1882
1883 bail:
1884 if (err != 0)
1885 zfsvfs->z_unmounted = B_TRUE;
1886
1887 /* release the VFS ops */
1888 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1889 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1890
1891 if (err != 0) {
1892 /*
1893 * Since we couldn't setup the sa framework, try to force
1894 * unmount this file system.
1895 */
1896 if (zfsvfs->z_os)
1897 (void) zfs_umount(zfsvfs->z_sb);
1898 }
1899 return (err);
1900 }
1901
1902 /*
1903 * Release VOPs and unmount a suspended filesystem.
1904 */
1905 int
zfs_end_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)1906 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1907 {
1908 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1909 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1910
1911 /*
1912 * We already own this, so just hold and rele it to update the
1913 * objset_t, as the one we had before may have been evicted.
1914 */
1915 objset_t *os;
1916 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1917 VERIFY(dsl_dataset_long_held(ds));
1918 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1919 dsl_pool_config_enter(dp, FTAG);
1920 VERIFY0(dmu_objset_from_ds(ds, &os));
1921 dsl_pool_config_exit(dp, FTAG);
1922 zfsvfs->z_os = os;
1923
1924 /* release the VOPs */
1925 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1926 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1927
1928 /*
1929 * Try to force unmount this file system.
1930 */
1931 (void) zfs_umount(zfsvfs->z_sb);
1932 zfsvfs->z_unmounted = B_TRUE;
1933 return (0);
1934 }
1935
1936 /*
1937 * Automounted snapshots rely on periodic revalidation
1938 * to defer snapshots from being automatically unmounted.
1939 */
1940
1941 inline void
zfs_exit_fs(zfsvfs_t * zfsvfs)1942 zfs_exit_fs(zfsvfs_t *zfsvfs)
1943 {
1944 if (!zfsvfs->z_issnap)
1945 return;
1946
1947 if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1948 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1949 zfsvfs->z_snap_defer_time = jiffies;
1950 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1951 dmu_objset_id(zfsvfs->z_os),
1952 zfs_expire_snapshot);
1953 }
1954 }
1955
1956 int
zfs_set_version(zfsvfs_t * zfsvfs,uint64_t newvers)1957 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1958 {
1959 int error;
1960 objset_t *os = zfsvfs->z_os;
1961 dmu_tx_t *tx;
1962
1963 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1964 return (SET_ERROR(EINVAL));
1965
1966 if (newvers < zfsvfs->z_version)
1967 return (SET_ERROR(EINVAL));
1968
1969 if (zfs_spa_version_map(newvers) >
1970 spa_version(dmu_objset_spa(zfsvfs->z_os)))
1971 return (SET_ERROR(ENOTSUP));
1972
1973 tx = dmu_tx_create(os);
1974 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1975 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1976 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1977 ZFS_SA_ATTRS);
1978 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1979 }
1980 error = dmu_tx_assign(tx, TXG_WAIT);
1981 if (error) {
1982 dmu_tx_abort(tx);
1983 return (error);
1984 }
1985
1986 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1987 8, 1, &newvers, tx);
1988
1989 if (error) {
1990 dmu_tx_commit(tx);
1991 return (error);
1992 }
1993
1994 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1995 uint64_t sa_obj;
1996
1997 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
1998 SPA_VERSION_SA);
1999 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2000 DMU_OT_NONE, 0, tx);
2001
2002 error = zap_add(os, MASTER_NODE_OBJ,
2003 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2004 ASSERT0(error);
2005
2006 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2007 sa_register_update_callback(os, zfs_sa_upgrade);
2008 }
2009
2010 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2011 "from %llu to %llu", zfsvfs->z_version, newvers);
2012
2013 dmu_tx_commit(tx);
2014
2015 zfsvfs->z_version = newvers;
2016 os->os_version = newvers;
2017
2018 zfs_set_fuid_feature(zfsvfs);
2019
2020 return (0);
2021 }
2022
2023 /*
2024 * Read a property stored within the master node.
2025 */
2026 int
zfs_get_zplprop(objset_t * os,zfs_prop_t prop,uint64_t * value)2027 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2028 {
2029 uint64_t *cached_copy = NULL;
2030
2031 /*
2032 * Figure out where in the objset_t the cached copy would live, if it
2033 * is available for the requested property.
2034 */
2035 if (os != NULL) {
2036 switch (prop) {
2037 case ZFS_PROP_VERSION:
2038 cached_copy = &os->os_version;
2039 break;
2040 case ZFS_PROP_NORMALIZE:
2041 cached_copy = &os->os_normalization;
2042 break;
2043 case ZFS_PROP_UTF8ONLY:
2044 cached_copy = &os->os_utf8only;
2045 break;
2046 case ZFS_PROP_CASE:
2047 cached_copy = &os->os_casesensitivity;
2048 break;
2049 default:
2050 break;
2051 }
2052 }
2053 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2054 *value = *cached_copy;
2055 return (0);
2056 }
2057
2058 /*
2059 * If the property wasn't cached, look up the file system's value for
2060 * the property. For the version property, we look up a slightly
2061 * different string.
2062 */
2063 const char *pname;
2064 int error = ENOENT;
2065 if (prop == ZFS_PROP_VERSION)
2066 pname = ZPL_VERSION_STR;
2067 else
2068 pname = zfs_prop_to_name(prop);
2069
2070 if (os != NULL) {
2071 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2072 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2073 }
2074
2075 if (error == ENOENT) {
2076 /* No value set, use the default value */
2077 switch (prop) {
2078 case ZFS_PROP_VERSION:
2079 *value = ZPL_VERSION;
2080 break;
2081 case ZFS_PROP_NORMALIZE:
2082 case ZFS_PROP_UTF8ONLY:
2083 *value = 0;
2084 break;
2085 case ZFS_PROP_CASE:
2086 *value = ZFS_CASE_SENSITIVE;
2087 break;
2088 case ZFS_PROP_ACLTYPE:
2089 *value = ZFS_ACLTYPE_OFF;
2090 break;
2091 default:
2092 return (error);
2093 }
2094 error = 0;
2095 }
2096
2097 /*
2098 * If one of the methods for getting the property value above worked,
2099 * copy it into the objset_t's cache.
2100 */
2101 if (error == 0 && cached_copy != NULL) {
2102 *cached_copy = *value;
2103 }
2104
2105 return (error);
2106 }
2107
2108 /*
2109 * Return true if the corresponding vfs's unmounted flag is set.
2110 * Otherwise return false.
2111 * If this function returns true we know VFS unmount has been initiated.
2112 */
2113 boolean_t
zfs_get_vfs_flag_unmounted(objset_t * os)2114 zfs_get_vfs_flag_unmounted(objset_t *os)
2115 {
2116 zfsvfs_t *zfvp;
2117 boolean_t unmounted = B_FALSE;
2118
2119 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2120
2121 mutex_enter(&os->os_user_ptr_lock);
2122 zfvp = dmu_objset_get_user(os);
2123 if (zfvp != NULL && zfvp->z_unmounted)
2124 unmounted = B_TRUE;
2125 mutex_exit(&os->os_user_ptr_lock);
2126
2127 return (unmounted);
2128 }
2129
2130 /*ARGSUSED*/
2131 void
zfsvfs_update_fromname(const char * oldname,const char * newname)2132 zfsvfs_update_fromname(const char *oldname, const char *newname)
2133 {
2134 /*
2135 * We don't need to do anything here, the devname is always current by
2136 * virtue of zfsvfs->z_sb->s_op->show_devname.
2137 */
2138 }
2139
2140 void
zfs_init(void)2141 zfs_init(void)
2142 {
2143 zfsctl_init();
2144 zfs_znode_init();
2145 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2146 register_filesystem(&zpl_fs_type);
2147 }
2148
2149 void
zfs_fini(void)2150 zfs_fini(void)
2151 {
2152 /*
2153 * we don't use outstanding because zpl_posix_acl_free might add more.
2154 */
2155 taskq_wait(system_delay_taskq);
2156 taskq_wait(system_taskq);
2157 unregister_filesystem(&zpl_fs_type);
2158 zfs_znode_fini();
2159 zfsctl_fini();
2160 }
2161
2162 #if defined(_KERNEL)
2163 EXPORT_SYMBOL(zfs_suspend_fs);
2164 EXPORT_SYMBOL(zfs_resume_fs);
2165 EXPORT_SYMBOL(zfs_set_version);
2166 EXPORT_SYMBOL(zfsvfs_create);
2167 EXPORT_SYMBOL(zfsvfs_free);
2168 EXPORT_SYMBOL(zfs_is_readonly);
2169 EXPORT_SYMBOL(zfs_domount);
2170 EXPORT_SYMBOL(zfs_preumount);
2171 EXPORT_SYMBOL(zfs_umount);
2172 EXPORT_SYMBOL(zfs_remount);
2173 EXPORT_SYMBOL(zfs_statvfs);
2174 EXPORT_SYMBOL(zfs_vget);
2175 EXPORT_SYMBOL(zfs_prune);
2176 #endif
2177