1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements name lookup for C, C++, Objective-C, and
10 // Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/RISCVIntrinsicManager.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "clang/Sema/TypoCorrection.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/TinyPtrVector.h"
42 #include "llvm/ADT/edit_distance.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include <algorithm>
45 #include <iterator>
46 #include <list>
47 #include <set>
48 #include <utility>
49 #include <vector>
50
51 #include "OpenCLBuiltins.inc"
52
53 using namespace clang;
54 using namespace sema;
55
56 namespace {
57 class UnqualUsingEntry {
58 const DeclContext *Nominated;
59 const DeclContext *CommonAncestor;
60
61 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)62 UnqualUsingEntry(const DeclContext *Nominated,
63 const DeclContext *CommonAncestor)
64 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
65 }
66
getCommonAncestor() const67 const DeclContext *getCommonAncestor() const {
68 return CommonAncestor;
69 }
70
getNominatedNamespace() const71 const DeclContext *getNominatedNamespace() const {
72 return Nominated;
73 }
74
75 // Sort by the pointer value of the common ancestor.
76 struct Comparator {
operator ()__anon5c0384df0111::UnqualUsingEntry::Comparator77 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
78 return L.getCommonAncestor() < R.getCommonAncestor();
79 }
80
operator ()__anon5c0384df0111::UnqualUsingEntry::Comparator81 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
82 return E.getCommonAncestor() < DC;
83 }
84
operator ()__anon5c0384df0111::UnqualUsingEntry::Comparator85 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
86 return DC < E.getCommonAncestor();
87 }
88 };
89 };
90
91 /// A collection of using directives, as used by C++ unqualified
92 /// lookup.
93 class UnqualUsingDirectiveSet {
94 Sema &SemaRef;
95
96 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
97
98 ListTy list;
99 llvm::SmallPtrSet<DeclContext*, 8> visited;
100
101 public:
UnqualUsingDirectiveSet(Sema & SemaRef)102 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
103
visitScopeChain(Scope * S,Scope * InnermostFileScope)104 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
105 // C++ [namespace.udir]p1:
106 // During unqualified name lookup, the names appear as if they
107 // were declared in the nearest enclosing namespace which contains
108 // both the using-directive and the nominated namespace.
109 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
110 assert(InnermostFileDC && InnermostFileDC->isFileContext());
111
112 for (; S; S = S->getParent()) {
113 // C++ [namespace.udir]p1:
114 // A using-directive shall not appear in class scope, but may
115 // appear in namespace scope or in block scope.
116 DeclContext *Ctx = S->getEntity();
117 if (Ctx && Ctx->isFileContext()) {
118 visit(Ctx, Ctx);
119 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
120 for (auto *I : S->using_directives())
121 if (SemaRef.isVisible(I))
122 visit(I, InnermostFileDC);
123 }
124 }
125 }
126
127 // Visits a context and collect all of its using directives
128 // recursively. Treats all using directives as if they were
129 // declared in the context.
130 //
131 // A given context is only every visited once, so it is important
132 // that contexts be visited from the inside out in order to get
133 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)134 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
135 if (!visited.insert(DC).second)
136 return;
137
138 addUsingDirectives(DC, EffectiveDC);
139 }
140
141 // Visits a using directive and collects all of its using
142 // directives recursively. Treats all using directives as if they
143 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)144 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
145 DeclContext *NS = UD->getNominatedNamespace();
146 if (!visited.insert(NS).second)
147 return;
148
149 addUsingDirective(UD, EffectiveDC);
150 addUsingDirectives(NS, EffectiveDC);
151 }
152
153 // Adds all the using directives in a context (and those nominated
154 // by its using directives, transitively) as if they appeared in
155 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)156 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
157 SmallVector<DeclContext*, 4> queue;
158 while (true) {
159 for (auto UD : DC->using_directives()) {
160 DeclContext *NS = UD->getNominatedNamespace();
161 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
162 addUsingDirective(UD, EffectiveDC);
163 queue.push_back(NS);
164 }
165 }
166
167 if (queue.empty())
168 return;
169
170 DC = queue.pop_back_val();
171 }
172 }
173
174 // Add a using directive as if it had been declared in the given
175 // context. This helps implement C++ [namespace.udir]p3:
176 // The using-directive is transitive: if a scope contains a
177 // using-directive that nominates a second namespace that itself
178 // contains using-directives, the effect is as if the
179 // using-directives from the second namespace also appeared in
180 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)181 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
182 // Find the common ancestor between the effective context and
183 // the nominated namespace.
184 DeclContext *Common = UD->getNominatedNamespace();
185 while (!Common->Encloses(EffectiveDC))
186 Common = Common->getParent();
187 Common = Common->getPrimaryContext();
188
189 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
190 }
191
done()192 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
193
194 typedef ListTy::const_iterator const_iterator;
195
begin() const196 const_iterator begin() const { return list.begin(); }
end() const197 const_iterator end() const { return list.end(); }
198
199 llvm::iterator_range<const_iterator>
getNamespacesFor(DeclContext * DC) const200 getNamespacesFor(DeclContext *DC) const {
201 return llvm::make_range(std::equal_range(begin(), end(),
202 DC->getPrimaryContext(),
203 UnqualUsingEntry::Comparator()));
204 }
205 };
206 } // end anonymous namespace
207
208 // Retrieve the set of identifier namespaces that correspond to a
209 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)210 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
211 bool CPlusPlus,
212 bool Redeclaration) {
213 unsigned IDNS = 0;
214 switch (NameKind) {
215 case Sema::LookupObjCImplicitSelfParam:
216 case Sema::LookupOrdinaryName:
217 case Sema::LookupRedeclarationWithLinkage:
218 case Sema::LookupLocalFriendName:
219 case Sema::LookupDestructorName:
220 IDNS = Decl::IDNS_Ordinary;
221 if (CPlusPlus) {
222 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223 if (Redeclaration)
224 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225 }
226 if (Redeclaration)
227 IDNS |= Decl::IDNS_LocalExtern;
228 break;
229
230 case Sema::LookupOperatorName:
231 // Operator lookup is its own crazy thing; it is not the same
232 // as (e.g.) looking up an operator name for redeclaration.
233 assert(!Redeclaration && "cannot do redeclaration operator lookup");
234 IDNS = Decl::IDNS_NonMemberOperator;
235 break;
236
237 case Sema::LookupTagName:
238 if (CPlusPlus) {
239 IDNS = Decl::IDNS_Type;
240
241 // When looking for a redeclaration of a tag name, we add:
242 // 1) TagFriend to find undeclared friend decls
243 // 2) Namespace because they can't "overload" with tag decls.
244 // 3) Tag because it includes class templates, which can't
245 // "overload" with tag decls.
246 if (Redeclaration)
247 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
248 } else {
249 IDNS = Decl::IDNS_Tag;
250 }
251 break;
252
253 case Sema::LookupLabel:
254 IDNS = Decl::IDNS_Label;
255 break;
256
257 case Sema::LookupMemberName:
258 IDNS = Decl::IDNS_Member;
259 if (CPlusPlus)
260 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
261 break;
262
263 case Sema::LookupNestedNameSpecifierName:
264 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
265 break;
266
267 case Sema::LookupNamespaceName:
268 IDNS = Decl::IDNS_Namespace;
269 break;
270
271 case Sema::LookupUsingDeclName:
272 assert(Redeclaration && "should only be used for redecl lookup");
273 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
274 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
275 Decl::IDNS_LocalExtern;
276 break;
277
278 case Sema::LookupObjCProtocolName:
279 IDNS = Decl::IDNS_ObjCProtocol;
280 break;
281
282 case Sema::LookupOMPReductionName:
283 IDNS = Decl::IDNS_OMPReduction;
284 break;
285
286 case Sema::LookupOMPMapperName:
287 IDNS = Decl::IDNS_OMPMapper;
288 break;
289
290 case Sema::LookupAnyName:
291 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
292 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
293 | Decl::IDNS_Type;
294 break;
295 }
296 return IDNS;
297 }
298
configure()299 void LookupResult::configure() {
300 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
301 isForRedeclaration());
302
303 // If we're looking for one of the allocation or deallocation
304 // operators, make sure that the implicitly-declared new and delete
305 // operators can be found.
306 switch (NameInfo.getName().getCXXOverloadedOperator()) {
307 case OO_New:
308 case OO_Delete:
309 case OO_Array_New:
310 case OO_Array_Delete:
311 getSema().DeclareGlobalNewDelete();
312 break;
313
314 default:
315 break;
316 }
317
318 // Compiler builtins are always visible, regardless of where they end
319 // up being declared.
320 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
321 if (unsigned BuiltinID = Id->getBuiltinID()) {
322 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
323 AllowHidden = true;
324 }
325 }
326 }
327
checkDebugAssumptions() const328 bool LookupResult::checkDebugAssumptions() const {
329 // This function is never called by NDEBUG builds.
330 assert(ResultKind != NotFound || Decls.size() == 0);
331 assert(ResultKind != Found || Decls.size() == 1);
332 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
333 (Decls.size() == 1 &&
334 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
335 assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
336 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
337 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
338 Ambiguity == AmbiguousBaseSubobjectTypes)));
339 assert((Paths != nullptr) == (ResultKind == Ambiguous &&
340 (Ambiguity == AmbiguousBaseSubobjectTypes ||
341 Ambiguity == AmbiguousBaseSubobjects)));
342 return true;
343 }
344
345 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)346 void LookupResult::deletePaths(CXXBasePaths *Paths) {
347 delete Paths;
348 }
349
350 /// Get a representative context for a declaration such that two declarations
351 /// will have the same context if they were found within the same scope.
getContextForScopeMatching(Decl * D)352 static DeclContext *getContextForScopeMatching(Decl *D) {
353 // For function-local declarations, use that function as the context. This
354 // doesn't account for scopes within the function; the caller must deal with
355 // those.
356 DeclContext *DC = D->getLexicalDeclContext();
357 if (DC->isFunctionOrMethod())
358 return DC;
359
360 // Otherwise, look at the semantic context of the declaration. The
361 // declaration must have been found there.
362 return D->getDeclContext()->getRedeclContext();
363 }
364
365 /// Determine whether \p D is a better lookup result than \p Existing,
366 /// given that they declare the same entity.
isPreferredLookupResult(Sema & S,Sema::LookupNameKind Kind,NamedDecl * D,NamedDecl * Existing)367 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
368 NamedDecl *D, NamedDecl *Existing) {
369 // When looking up redeclarations of a using declaration, prefer a using
370 // shadow declaration over any other declaration of the same entity.
371 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
372 !isa<UsingShadowDecl>(Existing))
373 return true;
374
375 auto *DUnderlying = D->getUnderlyingDecl();
376 auto *EUnderlying = Existing->getUnderlyingDecl();
377
378 // If they have different underlying declarations, prefer a typedef over the
379 // original type (this happens when two type declarations denote the same
380 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
381 // might carry additional semantic information, such as an alignment override.
382 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
383 // declaration over a typedef. Also prefer a tag over a typedef for
384 // destructor name lookup because in some contexts we only accept a
385 // class-name in a destructor declaration.
386 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
387 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
388 bool HaveTag = isa<TagDecl>(EUnderlying);
389 bool WantTag =
390 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
391 return HaveTag != WantTag;
392 }
393
394 // Pick the function with more default arguments.
395 // FIXME: In the presence of ambiguous default arguments, we should keep both,
396 // so we can diagnose the ambiguity if the default argument is needed.
397 // See C++ [over.match.best]p3.
398 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
399 auto *EFD = cast<FunctionDecl>(EUnderlying);
400 unsigned DMin = DFD->getMinRequiredArguments();
401 unsigned EMin = EFD->getMinRequiredArguments();
402 // If D has more default arguments, it is preferred.
403 if (DMin != EMin)
404 return DMin < EMin;
405 // FIXME: When we track visibility for default function arguments, check
406 // that we pick the declaration with more visible default arguments.
407 }
408
409 // Pick the template with more default template arguments.
410 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
411 auto *ETD = cast<TemplateDecl>(EUnderlying);
412 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
413 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
414 // If D has more default arguments, it is preferred. Note that default
415 // arguments (and their visibility) is monotonically increasing across the
416 // redeclaration chain, so this is a quick proxy for "is more recent".
417 if (DMin != EMin)
418 return DMin < EMin;
419 // If D has more *visible* default arguments, it is preferred. Note, an
420 // earlier default argument being visible does not imply that a later
421 // default argument is visible, so we can't just check the first one.
422 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
423 I != N; ++I) {
424 if (!S.hasVisibleDefaultArgument(
425 ETD->getTemplateParameters()->getParam(I)) &&
426 S.hasVisibleDefaultArgument(
427 DTD->getTemplateParameters()->getParam(I)))
428 return true;
429 }
430 }
431
432 // VarDecl can have incomplete array types, prefer the one with more complete
433 // array type.
434 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
435 VarDecl *EVD = cast<VarDecl>(EUnderlying);
436 if (EVD->getType()->isIncompleteType() &&
437 !DVD->getType()->isIncompleteType()) {
438 // Prefer the decl with a more complete type if visible.
439 return S.isVisible(DVD);
440 }
441 return false; // Avoid picking up a newer decl, just because it was newer.
442 }
443
444 // For most kinds of declaration, it doesn't really matter which one we pick.
445 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
446 // If the existing declaration is hidden, prefer the new one. Otherwise,
447 // keep what we've got.
448 return !S.isVisible(Existing);
449 }
450
451 // Pick the newer declaration; it might have a more precise type.
452 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
453 Prev = Prev->getPreviousDecl())
454 if (Prev == EUnderlying)
455 return true;
456 return false;
457 }
458
459 /// Determine whether \p D can hide a tag declaration.
canHideTag(NamedDecl * D)460 static bool canHideTag(NamedDecl *D) {
461 // C++ [basic.scope.declarative]p4:
462 // Given a set of declarations in a single declarative region [...]
463 // exactly one declaration shall declare a class name or enumeration name
464 // that is not a typedef name and the other declarations shall all refer to
465 // the same variable, non-static data member, or enumerator, or all refer
466 // to functions and function templates; in this case the class name or
467 // enumeration name is hidden.
468 // C++ [basic.scope.hiding]p2:
469 // A class name or enumeration name can be hidden by the name of a
470 // variable, data member, function, or enumerator declared in the same
471 // scope.
472 // An UnresolvedUsingValueDecl always instantiates to one of these.
473 D = D->getUnderlyingDecl();
474 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
475 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
476 isa<UnresolvedUsingValueDecl>(D);
477 }
478
479 /// Resolves the result kind of this lookup.
resolveKind()480 void LookupResult::resolveKind() {
481 unsigned N = Decls.size();
482
483 // Fast case: no possible ambiguity.
484 if (N == 0) {
485 assert(ResultKind == NotFound ||
486 ResultKind == NotFoundInCurrentInstantiation);
487 return;
488 }
489
490 // If there's a single decl, we need to examine it to decide what
491 // kind of lookup this is.
492 if (N == 1) {
493 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
494 if (isa<FunctionTemplateDecl>(D))
495 ResultKind = FoundOverloaded;
496 else if (isa<UnresolvedUsingValueDecl>(D))
497 ResultKind = FoundUnresolvedValue;
498 return;
499 }
500
501 // Don't do any extra resolution if we've already resolved as ambiguous.
502 if (ResultKind == Ambiguous) return;
503
504 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
505 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
506
507 bool Ambiguous = false;
508 bool HasTag = false, HasFunction = false;
509 bool HasFunctionTemplate = false, HasUnresolved = false;
510 NamedDecl *HasNonFunction = nullptr;
511
512 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
513
514 unsigned UniqueTagIndex = 0;
515
516 unsigned I = 0;
517 while (I < N) {
518 NamedDecl *D = Decls[I]->getUnderlyingDecl();
519 D = cast<NamedDecl>(D->getCanonicalDecl());
520
521 // Ignore an invalid declaration unless it's the only one left.
522 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
523 Decls[I] = Decls[--N];
524 continue;
525 }
526
527 llvm::Optional<unsigned> ExistingI;
528
529 // Redeclarations of types via typedef can occur both within a scope
530 // and, through using declarations and directives, across scopes. There is
531 // no ambiguity if they all refer to the same type, so unique based on the
532 // canonical type.
533 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
534 QualType T = getSema().Context.getTypeDeclType(TD);
535 auto UniqueResult = UniqueTypes.insert(
536 std::make_pair(getSema().Context.getCanonicalType(T), I));
537 if (!UniqueResult.second) {
538 // The type is not unique.
539 ExistingI = UniqueResult.first->second;
540 }
541 }
542
543 // For non-type declarations, check for a prior lookup result naming this
544 // canonical declaration.
545 if (!ExistingI) {
546 auto UniqueResult = Unique.insert(std::make_pair(D, I));
547 if (!UniqueResult.second) {
548 // We've seen this entity before.
549 ExistingI = UniqueResult.first->second;
550 }
551 }
552
553 if (ExistingI) {
554 // This is not a unique lookup result. Pick one of the results and
555 // discard the other.
556 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
557 Decls[*ExistingI]))
558 Decls[*ExistingI] = Decls[I];
559 Decls[I] = Decls[--N];
560 continue;
561 }
562
563 // Otherwise, do some decl type analysis and then continue.
564
565 if (isa<UnresolvedUsingValueDecl>(D)) {
566 HasUnresolved = true;
567 } else if (isa<TagDecl>(D)) {
568 if (HasTag)
569 Ambiguous = true;
570 UniqueTagIndex = I;
571 HasTag = true;
572 } else if (isa<FunctionTemplateDecl>(D)) {
573 HasFunction = true;
574 HasFunctionTemplate = true;
575 } else if (isa<FunctionDecl>(D)) {
576 HasFunction = true;
577 } else {
578 if (HasNonFunction) {
579 // If we're about to create an ambiguity between two declarations that
580 // are equivalent, but one is an internal linkage declaration from one
581 // module and the other is an internal linkage declaration from another
582 // module, just skip it.
583 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
584 D)) {
585 EquivalentNonFunctions.push_back(D);
586 Decls[I] = Decls[--N];
587 continue;
588 }
589
590 Ambiguous = true;
591 }
592 HasNonFunction = D;
593 }
594 I++;
595 }
596
597 // C++ [basic.scope.hiding]p2:
598 // A class name or enumeration name can be hidden by the name of
599 // an object, function, or enumerator declared in the same
600 // scope. If a class or enumeration name and an object, function,
601 // or enumerator are declared in the same scope (in any order)
602 // with the same name, the class or enumeration name is hidden
603 // wherever the object, function, or enumerator name is visible.
604 // But it's still an error if there are distinct tag types found,
605 // even if they're not visible. (ref?)
606 if (N > 1 && HideTags && HasTag && !Ambiguous &&
607 (HasFunction || HasNonFunction || HasUnresolved)) {
608 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
609 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
610 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
611 getContextForScopeMatching(OtherDecl)) &&
612 canHideTag(OtherDecl))
613 Decls[UniqueTagIndex] = Decls[--N];
614 else
615 Ambiguous = true;
616 }
617
618 // FIXME: This diagnostic should really be delayed until we're done with
619 // the lookup result, in case the ambiguity is resolved by the caller.
620 if (!EquivalentNonFunctions.empty() && !Ambiguous)
621 getSema().diagnoseEquivalentInternalLinkageDeclarations(
622 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
623
624 Decls.truncate(N);
625
626 if (HasNonFunction && (HasFunction || HasUnresolved))
627 Ambiguous = true;
628
629 if (Ambiguous)
630 setAmbiguous(LookupResult::AmbiguousReference);
631 else if (HasUnresolved)
632 ResultKind = LookupResult::FoundUnresolvedValue;
633 else if (N > 1 || HasFunctionTemplate)
634 ResultKind = LookupResult::FoundOverloaded;
635 else
636 ResultKind = LookupResult::Found;
637 }
638
addDeclsFromBasePaths(const CXXBasePaths & P)639 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
640 CXXBasePaths::const_paths_iterator I, E;
641 for (I = P.begin(), E = P.end(); I != E; ++I)
642 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
643 ++DI)
644 addDecl(*DI);
645 }
646
setAmbiguousBaseSubobjects(CXXBasePaths & P)647 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
648 Paths = new CXXBasePaths;
649 Paths->swap(P);
650 addDeclsFromBasePaths(*Paths);
651 resolveKind();
652 setAmbiguous(AmbiguousBaseSubobjects);
653 }
654
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)655 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
656 Paths = new CXXBasePaths;
657 Paths->swap(P);
658 addDeclsFromBasePaths(*Paths);
659 resolveKind();
660 setAmbiguous(AmbiguousBaseSubobjectTypes);
661 }
662
print(raw_ostream & Out)663 void LookupResult::print(raw_ostream &Out) {
664 Out << Decls.size() << " result(s)";
665 if (isAmbiguous()) Out << ", ambiguous";
666 if (Paths) Out << ", base paths present";
667
668 for (iterator I = begin(), E = end(); I != E; ++I) {
669 Out << "\n";
670 (*I)->print(Out, 2);
671 }
672 }
673
dump()674 LLVM_DUMP_METHOD void LookupResult::dump() {
675 llvm::errs() << "lookup results for " << getLookupName().getAsString()
676 << ":\n";
677 for (NamedDecl *D : *this)
678 D->dump();
679 }
680
681 /// Diagnose a missing builtin type.
diagOpenCLBuiltinTypeError(Sema & S,llvm::StringRef TypeClass,llvm::StringRef Name)682 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
683 llvm::StringRef Name) {
684 S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
685 << TypeClass << Name;
686 return S.Context.VoidTy;
687 }
688
689 /// Lookup an OpenCL enum type.
getOpenCLEnumType(Sema & S,llvm::StringRef Name)690 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
691 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
692 Sema::LookupTagName);
693 S.LookupName(Result, S.TUScope);
694 if (Result.empty())
695 return diagOpenCLBuiltinTypeError(S, "enum", Name);
696 EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
697 if (!Decl)
698 return diagOpenCLBuiltinTypeError(S, "enum", Name);
699 return S.Context.getEnumType(Decl);
700 }
701
702 /// Lookup an OpenCL typedef type.
getOpenCLTypedefType(Sema & S,llvm::StringRef Name)703 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
704 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
705 Sema::LookupOrdinaryName);
706 S.LookupName(Result, S.TUScope);
707 if (Result.empty())
708 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
709 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
710 if (!Decl)
711 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
712 return S.Context.getTypedefType(Decl);
713 }
714
715 /// Get the QualType instances of the return type and arguments for an OpenCL
716 /// builtin function signature.
717 /// \param S (in) The Sema instance.
718 /// \param OpenCLBuiltin (in) The signature currently handled.
719 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
720 /// type used as return type or as argument.
721 /// Only meaningful for generic types, otherwise equals 1.
722 /// \param RetTypes (out) List of the possible return types.
723 /// \param ArgTypes (out) List of the possible argument types. For each
724 /// argument, ArgTypes contains QualTypes for the Cartesian product
725 /// of (vector sizes) x (types) .
GetQualTypesForOpenCLBuiltin(Sema & S,const OpenCLBuiltinStruct & OpenCLBuiltin,unsigned & GenTypeMaxCnt,SmallVector<QualType,1> & RetTypes,SmallVector<SmallVector<QualType,1>,5> & ArgTypes)726 static void GetQualTypesForOpenCLBuiltin(
727 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
728 SmallVector<QualType, 1> &RetTypes,
729 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
730 // Get the QualType instances of the return types.
731 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
732 OCL2Qual(S, TypeTable[Sig], RetTypes);
733 GenTypeMaxCnt = RetTypes.size();
734
735 // Get the QualType instances of the arguments.
736 // First type is the return type, skip it.
737 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
738 SmallVector<QualType, 1> Ty;
739 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
740 Ty);
741 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
742 ArgTypes.push_back(std::move(Ty));
743 }
744 }
745
746 /// Create a list of the candidate function overloads for an OpenCL builtin
747 /// function.
748 /// \param Context (in) The ASTContext instance.
749 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
750 /// type used as return type or as argument.
751 /// Only meaningful for generic types, otherwise equals 1.
752 /// \param FunctionList (out) List of FunctionTypes.
753 /// \param RetTypes (in) List of the possible return types.
754 /// \param ArgTypes (in) List of the possible types for the arguments.
GetOpenCLBuiltinFctOverloads(ASTContext & Context,unsigned GenTypeMaxCnt,std::vector<QualType> & FunctionList,SmallVector<QualType,1> & RetTypes,SmallVector<SmallVector<QualType,1>,5> & ArgTypes)755 static void GetOpenCLBuiltinFctOverloads(
756 ASTContext &Context, unsigned GenTypeMaxCnt,
757 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
758 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
759 FunctionProtoType::ExtProtoInfo PI(
760 Context.getDefaultCallingConvention(false, false, true));
761 PI.Variadic = false;
762
763 // Do not attempt to create any FunctionTypes if there are no return types,
764 // which happens when a type belongs to a disabled extension.
765 if (RetTypes.size() == 0)
766 return;
767
768 // Create FunctionTypes for each (gen)type.
769 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
770 SmallVector<QualType, 5> ArgList;
771
772 for (unsigned A = 0; A < ArgTypes.size(); A++) {
773 // Bail out if there is an argument that has no available types.
774 if (ArgTypes[A].size() == 0)
775 return;
776
777 // Builtins such as "max" have an "sgentype" argument that represents
778 // the corresponding scalar type of a gentype. The number of gentypes
779 // must be a multiple of the number of sgentypes.
780 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
781 "argument type count not compatible with gentype type count");
782 unsigned Idx = IGenType % ArgTypes[A].size();
783 ArgList.push_back(ArgTypes[A][Idx]);
784 }
785
786 FunctionList.push_back(Context.getFunctionType(
787 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
788 }
789 }
790
791 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
792 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
793 /// builtin function. Add all candidate signatures to the LookUpResult.
794 ///
795 /// \param S (in) The Sema instance.
796 /// \param LR (inout) The LookupResult instance.
797 /// \param II (in) The identifier being resolved.
798 /// \param FctIndex (in) Starting index in the BuiltinTable.
799 /// \param Len (in) The signature list has Len elements.
InsertOCLBuiltinDeclarationsFromTable(Sema & S,LookupResult & LR,IdentifierInfo * II,const unsigned FctIndex,const unsigned Len)800 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
801 IdentifierInfo *II,
802 const unsigned FctIndex,
803 const unsigned Len) {
804 // The builtin function declaration uses generic types (gentype).
805 bool HasGenType = false;
806
807 // Maximum number of types contained in a generic type used as return type or
808 // as argument. Only meaningful for generic types, otherwise equals 1.
809 unsigned GenTypeMaxCnt;
810
811 ASTContext &Context = S.Context;
812
813 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
814 const OpenCLBuiltinStruct &OpenCLBuiltin =
815 BuiltinTable[FctIndex + SignatureIndex];
816
817 // Ignore this builtin function if it is not available in the currently
818 // selected language version.
819 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
820 OpenCLBuiltin.Versions))
821 continue;
822
823 // Ignore this builtin function if it carries an extension macro that is
824 // not defined. This indicates that the extension is not supported by the
825 // target, so the builtin function should not be available.
826 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
827 if (!Extensions.empty()) {
828 SmallVector<StringRef, 2> ExtVec;
829 Extensions.split(ExtVec, " ");
830 bool AllExtensionsDefined = true;
831 for (StringRef Ext : ExtVec) {
832 if (!S.getPreprocessor().isMacroDefined(Ext)) {
833 AllExtensionsDefined = false;
834 break;
835 }
836 }
837 if (!AllExtensionsDefined)
838 continue;
839 }
840
841 SmallVector<QualType, 1> RetTypes;
842 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
843
844 // Obtain QualType lists for the function signature.
845 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
846 ArgTypes);
847 if (GenTypeMaxCnt > 1) {
848 HasGenType = true;
849 }
850
851 // Create function overload for each type combination.
852 std::vector<QualType> FunctionList;
853 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
854 ArgTypes);
855
856 SourceLocation Loc = LR.getNameLoc();
857 DeclContext *Parent = Context.getTranslationUnitDecl();
858 FunctionDecl *NewOpenCLBuiltin;
859
860 for (const auto &FTy : FunctionList) {
861 NewOpenCLBuiltin = FunctionDecl::Create(
862 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
863 S.getCurFPFeatures().isFPConstrained(), false,
864 FTy->isFunctionProtoType());
865 NewOpenCLBuiltin->setImplicit();
866
867 // Create Decl objects for each parameter, adding them to the
868 // FunctionDecl.
869 const auto *FP = cast<FunctionProtoType>(FTy);
870 SmallVector<ParmVarDecl *, 4> ParmList;
871 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
872 ParmVarDecl *Parm = ParmVarDecl::Create(
873 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
874 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
875 Parm->setScopeInfo(0, IParm);
876 ParmList.push_back(Parm);
877 }
878 NewOpenCLBuiltin->setParams(ParmList);
879
880 // Add function attributes.
881 if (OpenCLBuiltin.IsPure)
882 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
883 if (OpenCLBuiltin.IsConst)
884 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
885 if (OpenCLBuiltin.IsConv)
886 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
887
888 if (!S.getLangOpts().OpenCLCPlusPlus)
889 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
890
891 LR.addDecl(NewOpenCLBuiltin);
892 }
893 }
894
895 // If we added overloads, need to resolve the lookup result.
896 if (Len > 1 || HasGenType)
897 LR.resolveKind();
898 }
899
900 /// Lookup a builtin function, when name lookup would otherwise
901 /// fail.
LookupBuiltin(LookupResult & R)902 bool Sema::LookupBuiltin(LookupResult &R) {
903 Sema::LookupNameKind NameKind = R.getLookupKind();
904
905 // If we didn't find a use of this identifier, and if the identifier
906 // corresponds to a compiler builtin, create the decl object for the builtin
907 // now, injecting it into translation unit scope, and return it.
908 if (NameKind == Sema::LookupOrdinaryName ||
909 NameKind == Sema::LookupRedeclarationWithLinkage) {
910 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
911 if (II) {
912 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
913 if (II == getASTContext().getMakeIntegerSeqName()) {
914 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
915 return true;
916 } else if (II == getASTContext().getTypePackElementName()) {
917 R.addDecl(getASTContext().getTypePackElementDecl());
918 return true;
919 }
920 }
921
922 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
923 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
924 auto Index = isOpenCLBuiltin(II->getName());
925 if (Index.first) {
926 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
927 Index.second);
928 return true;
929 }
930 }
931
932 if (DeclareRISCVVBuiltins) {
933 if (!RVIntrinsicManager)
934 RVIntrinsicManager = CreateRISCVIntrinsicManager(*this);
935
936 if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
937 return true;
938 }
939
940 // If this is a builtin on this (or all) targets, create the decl.
941 if (unsigned BuiltinID = II->getBuiltinID()) {
942 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
943 // library functions like 'malloc'. Instead, we'll just error.
944 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
945 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
946 return false;
947
948 if (NamedDecl *D =
949 LazilyCreateBuiltin(II, BuiltinID, TUScope,
950 R.isForRedeclaration(), R.getNameLoc())) {
951 R.addDecl(D);
952 return true;
953 }
954 }
955 }
956 }
957
958 return false;
959 }
960
961 /// Looks up the declaration of "struct objc_super" and
962 /// saves it for later use in building builtin declaration of
963 /// objc_msgSendSuper and objc_msgSendSuper_stret.
LookupPredefedObjCSuperType(Sema & Sema,Scope * S)964 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
965 ASTContext &Context = Sema.Context;
966 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
967 Sema::LookupTagName);
968 Sema.LookupName(Result, S);
969 if (Result.getResultKind() == LookupResult::Found)
970 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
971 Context.setObjCSuperType(Context.getTagDeclType(TD));
972 }
973
LookupNecessaryTypesForBuiltin(Scope * S,unsigned ID)974 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
975 if (ID == Builtin::BIobjc_msgSendSuper)
976 LookupPredefedObjCSuperType(*this, S);
977 }
978
979 /// Determine whether we can declare a special member function within
980 /// the class at this point.
CanDeclareSpecialMemberFunction(const CXXRecordDecl * Class)981 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
982 // We need to have a definition for the class.
983 if (!Class->getDefinition() || Class->isDependentContext())
984 return false;
985
986 // We can't be in the middle of defining the class.
987 return !Class->isBeingDefined();
988 }
989
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)990 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
991 if (!CanDeclareSpecialMemberFunction(Class))
992 return;
993
994 // If the default constructor has not yet been declared, do so now.
995 if (Class->needsImplicitDefaultConstructor())
996 DeclareImplicitDefaultConstructor(Class);
997
998 // If the copy constructor has not yet been declared, do so now.
999 if (Class->needsImplicitCopyConstructor())
1000 DeclareImplicitCopyConstructor(Class);
1001
1002 // If the copy assignment operator has not yet been declared, do so now.
1003 if (Class->needsImplicitCopyAssignment())
1004 DeclareImplicitCopyAssignment(Class);
1005
1006 if (getLangOpts().CPlusPlus11) {
1007 // If the move constructor has not yet been declared, do so now.
1008 if (Class->needsImplicitMoveConstructor())
1009 DeclareImplicitMoveConstructor(Class);
1010
1011 // If the move assignment operator has not yet been declared, do so now.
1012 if (Class->needsImplicitMoveAssignment())
1013 DeclareImplicitMoveAssignment(Class);
1014 }
1015
1016 // If the destructor has not yet been declared, do so now.
1017 if (Class->needsImplicitDestructor())
1018 DeclareImplicitDestructor(Class);
1019 }
1020
1021 /// Determine whether this is the name of an implicitly-declared
1022 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)1023 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1024 switch (Name.getNameKind()) {
1025 case DeclarationName::CXXConstructorName:
1026 case DeclarationName::CXXDestructorName:
1027 return true;
1028
1029 case DeclarationName::CXXOperatorName:
1030 return Name.getCXXOverloadedOperator() == OO_Equal;
1031
1032 default:
1033 break;
1034 }
1035
1036 return false;
1037 }
1038
1039 /// If there are any implicit member functions with the given name
1040 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,SourceLocation Loc,const DeclContext * DC)1041 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1042 DeclarationName Name,
1043 SourceLocation Loc,
1044 const DeclContext *DC) {
1045 if (!DC)
1046 return;
1047
1048 switch (Name.getNameKind()) {
1049 case DeclarationName::CXXConstructorName:
1050 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1051 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1052 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1053 if (Record->needsImplicitDefaultConstructor())
1054 S.DeclareImplicitDefaultConstructor(Class);
1055 if (Record->needsImplicitCopyConstructor())
1056 S.DeclareImplicitCopyConstructor(Class);
1057 if (S.getLangOpts().CPlusPlus11 &&
1058 Record->needsImplicitMoveConstructor())
1059 S.DeclareImplicitMoveConstructor(Class);
1060 }
1061 break;
1062
1063 case DeclarationName::CXXDestructorName:
1064 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1065 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1066 CanDeclareSpecialMemberFunction(Record))
1067 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1068 break;
1069
1070 case DeclarationName::CXXOperatorName:
1071 if (Name.getCXXOverloadedOperator() != OO_Equal)
1072 break;
1073
1074 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1075 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1076 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1077 if (Record->needsImplicitCopyAssignment())
1078 S.DeclareImplicitCopyAssignment(Class);
1079 if (S.getLangOpts().CPlusPlus11 &&
1080 Record->needsImplicitMoveAssignment())
1081 S.DeclareImplicitMoveAssignment(Class);
1082 }
1083 }
1084 break;
1085
1086 case DeclarationName::CXXDeductionGuideName:
1087 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1088 break;
1089
1090 default:
1091 break;
1092 }
1093 }
1094
1095 // Adds all qualifying matches for a name within a decl context to the
1096 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)1097 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1098 bool Found = false;
1099
1100 // Lazily declare C++ special member functions.
1101 if (S.getLangOpts().CPlusPlus)
1102 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1103 DC);
1104
1105 // Perform lookup into this declaration context.
1106 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1107 for (NamedDecl *D : DR) {
1108 if ((D = R.getAcceptableDecl(D))) {
1109 R.addDecl(D);
1110 Found = true;
1111 }
1112 }
1113
1114 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1115 return true;
1116
1117 if (R.getLookupName().getNameKind()
1118 != DeclarationName::CXXConversionFunctionName ||
1119 R.getLookupName().getCXXNameType()->isDependentType() ||
1120 !isa<CXXRecordDecl>(DC))
1121 return Found;
1122
1123 // C++ [temp.mem]p6:
1124 // A specialization of a conversion function template is not found by
1125 // name lookup. Instead, any conversion function templates visible in the
1126 // context of the use are considered. [...]
1127 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1128 if (!Record->isCompleteDefinition())
1129 return Found;
1130
1131 // For conversion operators, 'operator auto' should only match
1132 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1133 // as a candidate for template substitution.
1134 auto *ContainedDeducedType =
1135 R.getLookupName().getCXXNameType()->getContainedDeducedType();
1136 if (R.getLookupName().getNameKind() ==
1137 DeclarationName::CXXConversionFunctionName &&
1138 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1139 return Found;
1140
1141 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1142 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1143 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1144 if (!ConvTemplate)
1145 continue;
1146
1147 // When we're performing lookup for the purposes of redeclaration, just
1148 // add the conversion function template. When we deduce template
1149 // arguments for specializations, we'll end up unifying the return
1150 // type of the new declaration with the type of the function template.
1151 if (R.isForRedeclaration()) {
1152 R.addDecl(ConvTemplate);
1153 Found = true;
1154 continue;
1155 }
1156
1157 // C++ [temp.mem]p6:
1158 // [...] For each such operator, if argument deduction succeeds
1159 // (14.9.2.3), the resulting specialization is used as if found by
1160 // name lookup.
1161 //
1162 // When referencing a conversion function for any purpose other than
1163 // a redeclaration (such that we'll be building an expression with the
1164 // result), perform template argument deduction and place the
1165 // specialization into the result set. We do this to avoid forcing all
1166 // callers to perform special deduction for conversion functions.
1167 TemplateDeductionInfo Info(R.getNameLoc());
1168 FunctionDecl *Specialization = nullptr;
1169
1170 const FunctionProtoType *ConvProto
1171 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1172 assert(ConvProto && "Nonsensical conversion function template type");
1173
1174 // Compute the type of the function that we would expect the conversion
1175 // function to have, if it were to match the name given.
1176 // FIXME: Calling convention!
1177 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1178 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1179 EPI.ExceptionSpec = EST_None;
1180 QualType ExpectedType
1181 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1182 None, EPI);
1183
1184 // Perform template argument deduction against the type that we would
1185 // expect the function to have.
1186 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1187 Specialization, Info)
1188 == Sema::TDK_Success) {
1189 R.addDecl(Specialization);
1190 Found = true;
1191 }
1192 }
1193
1194 return Found;
1195 }
1196
1197 // Performs C++ unqualified lookup into the given file context.
1198 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)1199 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1200 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1201
1202 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1203
1204 // Perform direct name lookup into the LookupCtx.
1205 bool Found = LookupDirect(S, R, NS);
1206
1207 // Perform direct name lookup into the namespaces nominated by the
1208 // using directives whose common ancestor is this namespace.
1209 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1210 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1211 Found = true;
1212
1213 R.resolveKind();
1214
1215 return Found;
1216 }
1217
isNamespaceOrTranslationUnitScope(Scope * S)1218 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1219 if (DeclContext *Ctx = S->getEntity())
1220 return Ctx->isFileContext();
1221 return false;
1222 }
1223
1224 /// Find the outer declaration context from this scope. This indicates the
1225 /// context that we should search up to (exclusive) before considering the
1226 /// parent of the specified scope.
findOuterContext(Scope * S)1227 static DeclContext *findOuterContext(Scope *S) {
1228 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1229 if (DeclContext *DC = OuterS->getLookupEntity())
1230 return DC;
1231 return nullptr;
1232 }
1233
1234 namespace {
1235 /// An RAII object to specify that we want to find block scope extern
1236 /// declarations.
1237 struct FindLocalExternScope {
FindLocalExternScope__anon5c0384df0211::FindLocalExternScope1238 FindLocalExternScope(LookupResult &R)
1239 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1240 Decl::IDNS_LocalExtern) {
1241 R.setFindLocalExtern(R.getIdentifierNamespace() &
1242 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1243 }
restore__anon5c0384df0211::FindLocalExternScope1244 void restore() {
1245 R.setFindLocalExtern(OldFindLocalExtern);
1246 }
~FindLocalExternScope__anon5c0384df0211::FindLocalExternScope1247 ~FindLocalExternScope() {
1248 restore();
1249 }
1250 LookupResult &R;
1251 bool OldFindLocalExtern;
1252 };
1253 } // end anonymous namespace
1254
CppLookupName(LookupResult & R,Scope * S)1255 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1256 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1257
1258 DeclarationName Name = R.getLookupName();
1259 Sema::LookupNameKind NameKind = R.getLookupKind();
1260
1261 // If this is the name of an implicitly-declared special member function,
1262 // go through the scope stack to implicitly declare
1263 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1264 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1265 if (DeclContext *DC = PreS->getEntity())
1266 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1267 }
1268
1269 // Implicitly declare member functions with the name we're looking for, if in
1270 // fact we are in a scope where it matters.
1271
1272 Scope *Initial = S;
1273 IdentifierResolver::iterator
1274 I = IdResolver.begin(Name),
1275 IEnd = IdResolver.end();
1276
1277 // First we lookup local scope.
1278 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1279 // ...During unqualified name lookup (3.4.1), the names appear as if
1280 // they were declared in the nearest enclosing namespace which contains
1281 // both the using-directive and the nominated namespace.
1282 // [Note: in this context, "contains" means "contains directly or
1283 // indirectly".
1284 //
1285 // For example:
1286 // namespace A { int i; }
1287 // void foo() {
1288 // int i;
1289 // {
1290 // using namespace A;
1291 // ++i; // finds local 'i', A::i appears at global scope
1292 // }
1293 // }
1294 //
1295 UnqualUsingDirectiveSet UDirs(*this);
1296 bool VisitedUsingDirectives = false;
1297 bool LeftStartingScope = false;
1298
1299 // When performing a scope lookup, we want to find local extern decls.
1300 FindLocalExternScope FindLocals(R);
1301
1302 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1303 bool SearchNamespaceScope = true;
1304 // Check whether the IdResolver has anything in this scope.
1305 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1306 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1307 if (NameKind == LookupRedeclarationWithLinkage &&
1308 !(*I)->isTemplateParameter()) {
1309 // If it's a template parameter, we still find it, so we can diagnose
1310 // the invalid redeclaration.
1311
1312 // Determine whether this (or a previous) declaration is
1313 // out-of-scope.
1314 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1315 LeftStartingScope = true;
1316
1317 // If we found something outside of our starting scope that
1318 // does not have linkage, skip it.
1319 if (LeftStartingScope && !((*I)->hasLinkage())) {
1320 R.setShadowed();
1321 continue;
1322 }
1323 } else {
1324 // We found something in this scope, we should not look at the
1325 // namespace scope
1326 SearchNamespaceScope = false;
1327 }
1328 R.addDecl(ND);
1329 }
1330 }
1331 if (!SearchNamespaceScope) {
1332 R.resolveKind();
1333 if (S->isClassScope())
1334 if (CXXRecordDecl *Record =
1335 dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
1336 R.setNamingClass(Record);
1337 return true;
1338 }
1339
1340 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1341 // C++11 [class.friend]p11:
1342 // If a friend declaration appears in a local class and the name
1343 // specified is an unqualified name, a prior declaration is
1344 // looked up without considering scopes that are outside the
1345 // innermost enclosing non-class scope.
1346 return false;
1347 }
1348
1349 if (DeclContext *Ctx = S->getLookupEntity()) {
1350 DeclContext *OuterCtx = findOuterContext(S);
1351 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1352 // We do not directly look into transparent contexts, since
1353 // those entities will be found in the nearest enclosing
1354 // non-transparent context.
1355 if (Ctx->isTransparentContext())
1356 continue;
1357
1358 // We do not look directly into function or method contexts,
1359 // since all of the local variables and parameters of the
1360 // function/method are present within the Scope.
1361 if (Ctx->isFunctionOrMethod()) {
1362 // If we have an Objective-C instance method, look for ivars
1363 // in the corresponding interface.
1364 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1365 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1366 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1367 ObjCInterfaceDecl *ClassDeclared;
1368 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1369 Name.getAsIdentifierInfo(),
1370 ClassDeclared)) {
1371 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1372 R.addDecl(ND);
1373 R.resolveKind();
1374 return true;
1375 }
1376 }
1377 }
1378 }
1379
1380 continue;
1381 }
1382
1383 // If this is a file context, we need to perform unqualified name
1384 // lookup considering using directives.
1385 if (Ctx->isFileContext()) {
1386 // If we haven't handled using directives yet, do so now.
1387 if (!VisitedUsingDirectives) {
1388 // Add using directives from this context up to the top level.
1389 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1390 if (UCtx->isTransparentContext())
1391 continue;
1392
1393 UDirs.visit(UCtx, UCtx);
1394 }
1395
1396 // Find the innermost file scope, so we can add using directives
1397 // from local scopes.
1398 Scope *InnermostFileScope = S;
1399 while (InnermostFileScope &&
1400 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1401 InnermostFileScope = InnermostFileScope->getParent();
1402 UDirs.visitScopeChain(Initial, InnermostFileScope);
1403
1404 UDirs.done();
1405
1406 VisitedUsingDirectives = true;
1407 }
1408
1409 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1410 R.resolveKind();
1411 return true;
1412 }
1413
1414 continue;
1415 }
1416
1417 // Perform qualified name lookup into this context.
1418 // FIXME: In some cases, we know that every name that could be found by
1419 // this qualified name lookup will also be on the identifier chain. For
1420 // example, inside a class without any base classes, we never need to
1421 // perform qualified lookup because all of the members are on top of the
1422 // identifier chain.
1423 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1424 return true;
1425 }
1426 }
1427 }
1428
1429 // Stop if we ran out of scopes.
1430 // FIXME: This really, really shouldn't be happening.
1431 if (!S) return false;
1432
1433 // If we are looking for members, no need to look into global/namespace scope.
1434 if (NameKind == LookupMemberName)
1435 return false;
1436
1437 // Collect UsingDirectiveDecls in all scopes, and recursively all
1438 // nominated namespaces by those using-directives.
1439 //
1440 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1441 // don't build it for each lookup!
1442 if (!VisitedUsingDirectives) {
1443 UDirs.visitScopeChain(Initial, S);
1444 UDirs.done();
1445 }
1446
1447 // If we're not performing redeclaration lookup, do not look for local
1448 // extern declarations outside of a function scope.
1449 if (!R.isForRedeclaration())
1450 FindLocals.restore();
1451
1452 // Lookup namespace scope, and global scope.
1453 // Unqualified name lookup in C++ requires looking into scopes
1454 // that aren't strictly lexical, and therefore we walk through the
1455 // context as well as walking through the scopes.
1456 for (; S; S = S->getParent()) {
1457 // Check whether the IdResolver has anything in this scope.
1458 bool Found = false;
1459 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1460 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1461 // We found something. Look for anything else in our scope
1462 // with this same name and in an acceptable identifier
1463 // namespace, so that we can construct an overload set if we
1464 // need to.
1465 Found = true;
1466 R.addDecl(ND);
1467 }
1468 }
1469
1470 if (Found && S->isTemplateParamScope()) {
1471 R.resolveKind();
1472 return true;
1473 }
1474
1475 DeclContext *Ctx = S->getLookupEntity();
1476 if (Ctx) {
1477 DeclContext *OuterCtx = findOuterContext(S);
1478 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1479 // We do not directly look into transparent contexts, since
1480 // those entities will be found in the nearest enclosing
1481 // non-transparent context.
1482 if (Ctx->isTransparentContext())
1483 continue;
1484
1485 // If we have a context, and it's not a context stashed in the
1486 // template parameter scope for an out-of-line definition, also
1487 // look into that context.
1488 if (!(Found && S->isTemplateParamScope())) {
1489 assert(Ctx->isFileContext() &&
1490 "We should have been looking only at file context here already.");
1491
1492 // Look into context considering using-directives.
1493 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1494 Found = true;
1495 }
1496
1497 if (Found) {
1498 R.resolveKind();
1499 return true;
1500 }
1501
1502 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1503 return false;
1504 }
1505 }
1506
1507 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1508 return false;
1509 }
1510
1511 return !R.empty();
1512 }
1513
makeMergedDefinitionVisible(NamedDecl * ND)1514 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1515 if (auto *M = getCurrentModule())
1516 Context.mergeDefinitionIntoModule(ND, M);
1517 else
1518 // We're not building a module; just make the definition visible.
1519 ND->setVisibleDespiteOwningModule();
1520
1521 // If ND is a template declaration, make the template parameters
1522 // visible too. They're not (necessarily) within a mergeable DeclContext.
1523 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1524 for (auto *Param : *TD->getTemplateParameters())
1525 makeMergedDefinitionVisible(Param);
1526 }
1527
1528 /// Find the module in which the given declaration was defined.
getDefiningModule(Sema & S,Decl * Entity)1529 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1530 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1531 // If this function was instantiated from a template, the defining module is
1532 // the module containing the pattern.
1533 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1534 Entity = Pattern;
1535 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1536 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1537 Entity = Pattern;
1538 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1539 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1540 Entity = Pattern;
1541 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1542 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1543 Entity = Pattern;
1544 }
1545
1546 // Walk up to the containing context. That might also have been instantiated
1547 // from a template.
1548 DeclContext *Context = Entity->getLexicalDeclContext();
1549 if (Context->isFileContext())
1550 return S.getOwningModule(Entity);
1551 return getDefiningModule(S, cast<Decl>(Context));
1552 }
1553
getLookupModules()1554 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1555 unsigned N = CodeSynthesisContexts.size();
1556 for (unsigned I = CodeSynthesisContextLookupModules.size();
1557 I != N; ++I) {
1558 Module *M = CodeSynthesisContexts[I].Entity ?
1559 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1560 nullptr;
1561 if (M && !LookupModulesCache.insert(M).second)
1562 M = nullptr;
1563 CodeSynthesisContextLookupModules.push_back(M);
1564 }
1565 return LookupModulesCache;
1566 }
1567
1568 /// Determine if we could use all the declarations in the module.
isUsableModule(const Module * M)1569 bool Sema::isUsableModule(const Module *M) {
1570 assert(M && "We shouldn't check nullness for module here");
1571 // Return quickly if we cached the result.
1572 if (UsableModuleUnitsCache.count(M))
1573 return true;
1574
1575 // If M is the global module fragment of the current translation unit. So it
1576 // should be usable.
1577 // [module.global.frag]p1:
1578 // The global module fragment can be used to provide declarations that are
1579 // attached to the global module and usable within the module unit.
1580 if (M == GlobalModuleFragment ||
1581 // If M is the module we're parsing, it should be usable. This covers the
1582 // private module fragment. The private module fragment is usable only if
1583 // it is within the current module unit. And it must be the current
1584 // parsing module unit if it is within the current module unit according
1585 // to the grammar of the private module fragment. NOTE: This is covered by
1586 // the following condition. The intention of the check is to avoid string
1587 // comparison as much as possible.
1588 M == getCurrentModule() ||
1589 // The module unit which is in the same module with the current module
1590 // unit is usable.
1591 //
1592 // FIXME: Here we judge if they are in the same module by comparing the
1593 // string. Is there any better solution?
1594 M->getPrimaryModuleInterfaceName() ==
1595 llvm::StringRef(getLangOpts().CurrentModule).split(':').first) {
1596 UsableModuleUnitsCache.insert(M);
1597 return true;
1598 }
1599
1600 return false;
1601 }
1602
hasVisibleMergedDefinition(NamedDecl * Def)1603 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1604 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1605 if (isModuleVisible(Merged))
1606 return true;
1607 return false;
1608 }
1609
hasMergedDefinitionInCurrentModule(NamedDecl * Def)1610 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1611 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1612 if (isUsableModule(Merged))
1613 return true;
1614 return false;
1615 }
1616
1617 template <typename ParmDecl>
1618 static bool
hasAcceptableDefaultArgument(Sema & S,const ParmDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Sema::AcceptableKind Kind)1619 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1620 llvm::SmallVectorImpl<Module *> *Modules,
1621 Sema::AcceptableKind Kind) {
1622 if (!D->hasDefaultArgument())
1623 return false;
1624
1625 llvm::SmallDenseSet<const ParmDecl *, 4> Visited;
1626 while (D && !Visited.count(D)) {
1627 Visited.insert(D);
1628
1629 auto &DefaultArg = D->getDefaultArgStorage();
1630 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1631 return true;
1632
1633 if (!DefaultArg.isInherited() && Modules) {
1634 auto *NonConstD = const_cast<ParmDecl*>(D);
1635 Modules->push_back(S.getOwningModule(NonConstD));
1636 }
1637
1638 // If there was a previous default argument, maybe its parameter is
1639 // acceptable.
1640 D = DefaultArg.getInheritedFrom();
1641 }
1642 return false;
1643 }
1644
hasAcceptableDefaultArgument(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Sema::AcceptableKind Kind)1645 bool Sema::hasAcceptableDefaultArgument(
1646 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1647 Sema::AcceptableKind Kind) {
1648 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1649 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1650
1651 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1652 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1653
1654 return ::hasAcceptableDefaultArgument(
1655 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1656 }
1657
hasVisibleDefaultArgument(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1658 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1659 llvm::SmallVectorImpl<Module *> *Modules) {
1660 return hasAcceptableDefaultArgument(D, Modules,
1661 Sema::AcceptableKind::Visible);
1662 }
1663
hasReachableDefaultArgument(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1664 bool Sema::hasReachableDefaultArgument(
1665 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1666 return hasAcceptableDefaultArgument(D, Modules,
1667 Sema::AcceptableKind::Reachable);
1668 }
1669
1670 template <typename Filter>
1671 static bool
hasAcceptableDeclarationImpl(Sema & S,const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Filter F,Sema::AcceptableKind Kind)1672 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1673 llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1674 Sema::AcceptableKind Kind) {
1675 bool HasFilteredRedecls = false;
1676
1677 for (auto *Redecl : D->redecls()) {
1678 auto *R = cast<NamedDecl>(Redecl);
1679 if (!F(R))
1680 continue;
1681
1682 if (S.isAcceptable(R, Kind))
1683 return true;
1684
1685 HasFilteredRedecls = true;
1686
1687 if (Modules)
1688 Modules->push_back(R->getOwningModule());
1689 }
1690
1691 // Only return false if there is at least one redecl that is not filtered out.
1692 if (HasFilteredRedecls)
1693 return false;
1694
1695 return true;
1696 }
1697
1698 static bool
hasAcceptableExplicitSpecialization(Sema & S,const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Sema::AcceptableKind Kind)1699 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1700 llvm::SmallVectorImpl<Module *> *Modules,
1701 Sema::AcceptableKind Kind) {
1702 return hasAcceptableDeclarationImpl(
1703 S, D, Modules,
1704 [](const NamedDecl *D) {
1705 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1706 return RD->getTemplateSpecializationKind() ==
1707 TSK_ExplicitSpecialization;
1708 if (auto *FD = dyn_cast<FunctionDecl>(D))
1709 return FD->getTemplateSpecializationKind() ==
1710 TSK_ExplicitSpecialization;
1711 if (auto *VD = dyn_cast<VarDecl>(D))
1712 return VD->getTemplateSpecializationKind() ==
1713 TSK_ExplicitSpecialization;
1714 llvm_unreachable("unknown explicit specialization kind");
1715 },
1716 Kind);
1717 }
1718
hasVisibleExplicitSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1719 bool Sema::hasVisibleExplicitSpecialization(
1720 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1721 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1722 Sema::AcceptableKind::Visible);
1723 }
1724
hasReachableExplicitSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1725 bool Sema::hasReachableExplicitSpecialization(
1726 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1727 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1728 Sema::AcceptableKind::Reachable);
1729 }
1730
1731 static bool
hasAcceptableMemberSpecialization(Sema & S,const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Sema::AcceptableKind Kind)1732 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1733 llvm::SmallVectorImpl<Module *> *Modules,
1734 Sema::AcceptableKind Kind) {
1735 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1736 "not a member specialization");
1737 return hasAcceptableDeclarationImpl(
1738 S, D, Modules,
1739 [](const NamedDecl *D) {
1740 // If the specialization is declared at namespace scope, then it's a
1741 // member specialization declaration. If it's lexically inside the class
1742 // definition then it was instantiated.
1743 //
1744 // FIXME: This is a hack. There should be a better way to determine
1745 // this.
1746 // FIXME: What about MS-style explicit specializations declared within a
1747 // class definition?
1748 return D->getLexicalDeclContext()->isFileContext();
1749 },
1750 Kind);
1751 }
1752
hasVisibleMemberSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1753 bool Sema::hasVisibleMemberSpecialization(
1754 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1755 return hasAcceptableMemberSpecialization(*this, D, Modules,
1756 Sema::AcceptableKind::Visible);
1757 }
1758
hasReachableMemberSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1759 bool Sema::hasReachableMemberSpecialization(
1760 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1761 return hasAcceptableMemberSpecialization(*this, D, Modules,
1762 Sema::AcceptableKind::Reachable);
1763 }
1764
1765 /// Determine whether a declaration is acceptable to name lookup.
1766 ///
1767 /// This routine determines whether the declaration D is acceptable in the
1768 /// current lookup context, taking into account the current template
1769 /// instantiation stack. During template instantiation, a declaration is
1770 /// acceptable if it is acceptable from a module containing any entity on the
1771 /// template instantiation path (by instantiating a template, you allow it to
1772 /// see the declarations that your module can see, including those later on in
1773 /// your module).
isAcceptableSlow(Sema & SemaRef,NamedDecl * D,Sema::AcceptableKind Kind)1774 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1775 Sema::AcceptableKind Kind) {
1776 assert(!D->isUnconditionallyVisible() &&
1777 "should not call this: not in slow case");
1778
1779 Module *DeclModule = SemaRef.getOwningModule(D);
1780 assert(DeclModule && "hidden decl has no owning module");
1781
1782 // If the owning module is visible, the decl is acceptable.
1783 if (SemaRef.isModuleVisible(DeclModule,
1784 D->isInvisibleOutsideTheOwningModule()))
1785 return true;
1786
1787 // Determine whether a decl context is a file context for the purpose of
1788 // visibility/reachability. This looks through some (export and linkage spec)
1789 // transparent contexts, but not others (enums).
1790 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1791 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1792 isa<ExportDecl>(DC);
1793 };
1794
1795 // If this declaration is not at namespace scope
1796 // then it is acceptable if its lexical parent has a acceptable definition.
1797 DeclContext *DC = D->getLexicalDeclContext();
1798 if (DC && !IsEffectivelyFileContext(DC)) {
1799 // For a parameter, check whether our current template declaration's
1800 // lexical context is acceptable, not whether there's some other acceptable
1801 // definition of it, because parameters aren't "within" the definition.
1802 //
1803 // In C++ we need to check for a acceptable definition due to ODR merging,
1804 // and in C we must not because each declaration of a function gets its own
1805 // set of declarations for tags in prototype scope.
1806 bool AcceptableWithinParent;
1807 if (D->isTemplateParameter()) {
1808 bool SearchDefinitions = true;
1809 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1810 if (const auto *TD = DCD->getDescribedTemplate()) {
1811 TemplateParameterList *TPL = TD->getTemplateParameters();
1812 auto Index = getDepthAndIndex(D).second;
1813 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1814 }
1815 }
1816 if (SearchDefinitions)
1817 AcceptableWithinParent =
1818 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1819 else
1820 AcceptableWithinParent =
1821 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1822 } else if (isa<ParmVarDecl>(D) ||
1823 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1824 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1825 else if (D->isModulePrivate()) {
1826 // A module-private declaration is only acceptable if an enclosing lexical
1827 // parent was merged with another definition in the current module.
1828 AcceptableWithinParent = false;
1829 do {
1830 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1831 AcceptableWithinParent = true;
1832 break;
1833 }
1834 DC = DC->getLexicalParent();
1835 } while (!IsEffectivelyFileContext(DC));
1836 } else {
1837 AcceptableWithinParent =
1838 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1839 }
1840
1841 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1842 Kind == Sema::AcceptableKind::Visible &&
1843 // FIXME: Do something better in this case.
1844 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1845 // Cache the fact that this declaration is implicitly visible because
1846 // its parent has a visible definition.
1847 D->setVisibleDespiteOwningModule();
1848 }
1849 return AcceptableWithinParent;
1850 }
1851
1852 if (Kind == Sema::AcceptableKind::Visible)
1853 return false;
1854
1855 assert(Kind == Sema::AcceptableKind::Reachable &&
1856 "Additional Sema::AcceptableKind?");
1857 return isReachableSlow(SemaRef, D);
1858 }
1859
isModuleVisible(const Module * M,bool ModulePrivate)1860 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1861 // [module.global.frag]p2:
1862 // A global-module-fragment specifies the contents of the global module
1863 // fragment for a module unit. The global module fragment can be used to
1864 // provide declarations that are attached to the global module and usable
1865 // within the module unit.
1866 //
1867 // Global module fragment is special. Global Module fragment is only usable
1868 // within the module unit it got defined [module.global.frag]p2. So here we
1869 // check if the Module is the global module fragment in current translation
1870 // unit.
1871 if (M->isGlobalModule() && M != this->GlobalModuleFragment)
1872 return false;
1873
1874 // The module might be ordinarily visible. For a module-private query, that
1875 // means it is part of the current module.
1876 if (ModulePrivate && isUsableModule(M))
1877 return true;
1878
1879 // For a query which is not module-private, that means it is in our visible
1880 // module set.
1881 if (!ModulePrivate && VisibleModules.isVisible(M))
1882 return true;
1883
1884 // Otherwise, it might be visible by virtue of the query being within a
1885 // template instantiation or similar that is permitted to look inside M.
1886
1887 // Find the extra places where we need to look.
1888 const auto &LookupModules = getLookupModules();
1889 if (LookupModules.empty())
1890 return false;
1891
1892 // If our lookup set contains the module, it's visible.
1893 if (LookupModules.count(M))
1894 return true;
1895
1896 // For a module-private query, that's everywhere we get to look.
1897 if (ModulePrivate)
1898 return false;
1899
1900 // Check whether M is transitively exported to an import of the lookup set.
1901 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1902 return LookupM->isModuleVisible(M);
1903 });
1904 }
1905
1906 // FIXME: Return false directly if we don't have an interface dependency on the
1907 // translation unit containing D.
isReachableSlow(Sema & SemaRef,NamedDecl * D)1908 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1909 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1910
1911 Module *DeclModule = SemaRef.getOwningModule(D);
1912 assert(DeclModule && "hidden decl has no owning module");
1913
1914 // Entities in module map modules are reachable only if they're visible.
1915 if (DeclModule->isModuleMapModule())
1916 return false;
1917
1918 // If D comes from a module and SemaRef doesn't own a module, it implies D
1919 // comes from another TU. In case SemaRef owns a module, we could judge if D
1920 // comes from another TU by comparing the module unit.
1921 //
1922 // FIXME: It would look better if we have direct method to judge whether D is
1923 // in another TU.
1924 if (SemaRef.getCurrentModule() &&
1925 SemaRef.getCurrentModule()->getTopLevelModule() ==
1926 DeclModule->getTopLevelModule())
1927 return true;
1928
1929 // [module.reach]/p3:
1930 // A declaration D is reachable from a point P if:
1931 // ...
1932 // - D is not discarded ([module.global.frag]), appears in a translation unit
1933 // that is reachable from P, and does not appear within a private module
1934 // fragment.
1935 //
1936 // A declaration that's discarded in the GMF should be module-private.
1937 if (D->isModulePrivate())
1938 return false;
1939
1940 // [module.reach]/p1
1941 // A translation unit U is necessarily reachable from a point P if U is a
1942 // module interface unit on which the translation unit containing P has an
1943 // interface dependency, or the translation unit containing P imports U, in
1944 // either case prior to P ([module.import]).
1945 //
1946 // [module.import]/p10
1947 // A translation unit has an interface dependency on a translation unit U if
1948 // it contains a declaration (possibly a module-declaration) that imports U
1949 // or if it has an interface dependency on a translation unit that has an
1950 // interface dependency on U.
1951 //
1952 // So we could conclude the module unit U is necessarily reachable if:
1953 // (1) The module unit U is module interface unit.
1954 // (2) The current unit has an interface dependency on the module unit U.
1955 //
1956 // Here we only check for the first condition. Since we couldn't see
1957 // DeclModule if it isn't (transitively) imported.
1958 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1959 return true;
1960
1961 // [module.reach]/p2
1962 // Additional translation units on
1963 // which the point within the program has an interface dependency may be
1964 // considered reachable, but it is unspecified which are and under what
1965 // circumstances.
1966 //
1967 // The decision here is to treat all additional tranditional units as
1968 // unreachable.
1969 return false;
1970 }
1971
isAcceptableSlow(const NamedDecl * D,Sema::AcceptableKind Kind)1972 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1973 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1974 }
1975
shouldLinkPossiblyHiddenDecl(LookupResult & R,const NamedDecl * New)1976 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1977 // FIXME: If there are both visible and hidden declarations, we need to take
1978 // into account whether redeclaration is possible. Example:
1979 //
1980 // Non-imported module:
1981 // int f(T); // #1
1982 // Some TU:
1983 // static int f(U); // #2, not a redeclaration of #1
1984 // int f(T); // #3, finds both, should link with #1 if T != U, but
1985 // // with #2 if T == U; neither should be ambiguous.
1986 for (auto *D : R) {
1987 if (isVisible(D))
1988 return true;
1989 assert(D->isExternallyDeclarable() &&
1990 "should not have hidden, non-externally-declarable result here");
1991 }
1992
1993 // This function is called once "New" is essentially complete, but before a
1994 // previous declaration is attached. We can't query the linkage of "New" in
1995 // general, because attaching the previous declaration can change the
1996 // linkage of New to match the previous declaration.
1997 //
1998 // However, because we've just determined that there is no *visible* prior
1999 // declaration, we can compute the linkage here. There are two possibilities:
2000 //
2001 // * This is not a redeclaration; it's safe to compute the linkage now.
2002 //
2003 // * This is a redeclaration of a prior declaration that is externally
2004 // redeclarable. In that case, the linkage of the declaration is not
2005 // changed by attaching the prior declaration, because both are externally
2006 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
2007 //
2008 // FIXME: This is subtle and fragile.
2009 return New->isExternallyDeclarable();
2010 }
2011
2012 /// Retrieve the visible declaration corresponding to D, if any.
2013 ///
2014 /// This routine determines whether the declaration D is visible in the current
2015 /// module, with the current imports. If not, it checks whether any
2016 /// redeclaration of D is visible, and if so, returns that declaration.
2017 ///
2018 /// \returns D, or a visible previous declaration of D, whichever is more recent
2019 /// and visible. If no declaration of D is visible, returns null.
findAcceptableDecl(Sema & SemaRef,NamedDecl * D,unsigned IDNS)2020 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2021 unsigned IDNS) {
2022 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2023
2024 for (auto RD : D->redecls()) {
2025 // Don't bother with extra checks if we already know this one isn't visible.
2026 if (RD == D)
2027 continue;
2028
2029 auto ND = cast<NamedDecl>(RD);
2030 // FIXME: This is wrong in the case where the previous declaration is not
2031 // visible in the same scope as D. This needs to be done much more
2032 // carefully.
2033 if (ND->isInIdentifierNamespace(IDNS) &&
2034 LookupResult::isAvailableForLookup(SemaRef, ND))
2035 return ND;
2036 }
2037
2038 return nullptr;
2039 }
2040
hasVisibleDeclarationSlow(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)2041 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2042 llvm::SmallVectorImpl<Module *> *Modules) {
2043 assert(!isVisible(D) && "not in slow case");
2044 return hasAcceptableDeclarationImpl(
2045 *this, D, Modules, [](const NamedDecl *) { return true; },
2046 Sema::AcceptableKind::Visible);
2047 }
2048
hasReachableDeclarationSlow(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)2049 bool Sema::hasReachableDeclarationSlow(
2050 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2051 assert(!isReachable(D) && "not in slow case");
2052 return hasAcceptableDeclarationImpl(
2053 *this, D, Modules, [](const NamedDecl *) { return true; },
2054 Sema::AcceptableKind::Reachable);
2055 }
2056
getAcceptableDeclSlow(NamedDecl * D) const2057 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2058 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2059 // Namespaces are a bit of a special case: we expect there to be a lot of
2060 // redeclarations of some namespaces, all declarations of a namespace are
2061 // essentially interchangeable, all declarations are found by name lookup
2062 // if any is, and namespaces are never looked up during template
2063 // instantiation. So we benefit from caching the check in this case, and
2064 // it is correct to do so.
2065 auto *Key = ND->getCanonicalDecl();
2066 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2067 return Acceptable;
2068 auto *Acceptable = isVisible(getSema(), Key)
2069 ? Key
2070 : findAcceptableDecl(getSema(), Key, IDNS);
2071 if (Acceptable)
2072 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2073 return Acceptable;
2074 }
2075
2076 return findAcceptableDecl(getSema(), D, IDNS);
2077 }
2078
isVisible(Sema & SemaRef,NamedDecl * D)2079 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2080 // If this declaration is already visible, return it directly.
2081 if (D->isUnconditionallyVisible())
2082 return true;
2083
2084 // During template instantiation, we can refer to hidden declarations, if
2085 // they were visible in any module along the path of instantiation.
2086 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2087 }
2088
isReachable(Sema & SemaRef,NamedDecl * D)2089 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2090 if (D->isUnconditionallyVisible())
2091 return true;
2092
2093 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2094 }
2095
isAvailableForLookup(Sema & SemaRef,NamedDecl * ND)2096 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2097 // We should check the visibility at the callsite already.
2098 if (isVisible(SemaRef, ND))
2099 return true;
2100
2101 // Deduction guide lives in namespace scope generally, but it is just a
2102 // hint to the compilers. What we actually lookup for is the generated member
2103 // of the corresponding template. So it is sufficient to check the
2104 // reachability of the template decl.
2105 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2106 return SemaRef.hasReachableDefinition(DeductionGuide);
2107
2108 auto *DC = ND->getDeclContext();
2109 // If ND is not visible and it is at namespace scope, it shouldn't be found
2110 // by name lookup.
2111 if (DC->isFileContext())
2112 return false;
2113
2114 // [module.interface]p7
2115 // Class and enumeration member names can be found by name lookup in any
2116 // context in which a definition of the type is reachable.
2117 //
2118 // FIXME: The current implementation didn't consider about scope. For example,
2119 // ```
2120 // // m.cppm
2121 // export module m;
2122 // enum E1 { e1 };
2123 // // Use.cpp
2124 // import m;
2125 // void test() {
2126 // auto a = E1::e1; // Error as expected.
2127 // auto b = e1; // Should be error. namespace-scope name e1 is not visible
2128 // }
2129 // ```
2130 // For the above example, the current implementation would emit error for `a`
2131 // correctly. However, the implementation wouldn't diagnose about `b` now.
2132 // Since we only check the reachability for the parent only.
2133 // See clang/test/CXX/module/module.interface/p7.cpp for example.
2134 if (auto *TD = dyn_cast<TagDecl>(DC))
2135 return SemaRef.hasReachableDefinition(TD);
2136
2137 return false;
2138 }
2139
2140 /// Perform unqualified name lookup starting from a given
2141 /// scope.
2142 ///
2143 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2144 /// used to find names within the current scope. For example, 'x' in
2145 /// @code
2146 /// int x;
2147 /// int f() {
2148 /// return x; // unqualified name look finds 'x' in the global scope
2149 /// }
2150 /// @endcode
2151 ///
2152 /// Different lookup criteria can find different names. For example, a
2153 /// particular scope can have both a struct and a function of the same
2154 /// name, and each can be found by certain lookup criteria. For more
2155 /// information about lookup criteria, see the documentation for the
2156 /// class LookupCriteria.
2157 ///
2158 /// @param S The scope from which unqualified name lookup will
2159 /// begin. If the lookup criteria permits, name lookup may also search
2160 /// in the parent scopes.
2161 ///
2162 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2163 /// look up and the lookup kind), and is updated with the results of lookup
2164 /// including zero or more declarations and possibly additional information
2165 /// used to diagnose ambiguities.
2166 ///
2167 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation,bool ForceNoCPlusPlus)2168 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2169 bool ForceNoCPlusPlus) {
2170 DeclarationName Name = R.getLookupName();
2171 if (!Name) return false;
2172
2173 LookupNameKind NameKind = R.getLookupKind();
2174
2175 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2176 // Unqualified name lookup in C/Objective-C is purely lexical, so
2177 // search in the declarations attached to the name.
2178 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2179 // Find the nearest non-transparent declaration scope.
2180 while (!(S->getFlags() & Scope::DeclScope) ||
2181 (S->getEntity() && S->getEntity()->isTransparentContext()))
2182 S = S->getParent();
2183 }
2184
2185 // When performing a scope lookup, we want to find local extern decls.
2186 FindLocalExternScope FindLocals(R);
2187
2188 // Scan up the scope chain looking for a decl that matches this
2189 // identifier that is in the appropriate namespace. This search
2190 // should not take long, as shadowing of names is uncommon, and
2191 // deep shadowing is extremely uncommon.
2192 bool LeftStartingScope = false;
2193
2194 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2195 IEnd = IdResolver.end();
2196 I != IEnd; ++I)
2197 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2198 if (NameKind == LookupRedeclarationWithLinkage) {
2199 // Determine whether this (or a previous) declaration is
2200 // out-of-scope.
2201 if (!LeftStartingScope && !S->isDeclScope(*I))
2202 LeftStartingScope = true;
2203
2204 // If we found something outside of our starting scope that
2205 // does not have linkage, skip it.
2206 if (LeftStartingScope && !((*I)->hasLinkage())) {
2207 R.setShadowed();
2208 continue;
2209 }
2210 }
2211 else if (NameKind == LookupObjCImplicitSelfParam &&
2212 !isa<ImplicitParamDecl>(*I))
2213 continue;
2214
2215 R.addDecl(D);
2216
2217 // Check whether there are any other declarations with the same name
2218 // and in the same scope.
2219 if (I != IEnd) {
2220 // Find the scope in which this declaration was declared (if it
2221 // actually exists in a Scope).
2222 while (S && !S->isDeclScope(D))
2223 S = S->getParent();
2224
2225 // If the scope containing the declaration is the translation unit,
2226 // then we'll need to perform our checks based on the matching
2227 // DeclContexts rather than matching scopes.
2228 if (S && isNamespaceOrTranslationUnitScope(S))
2229 S = nullptr;
2230
2231 // Compute the DeclContext, if we need it.
2232 DeclContext *DC = nullptr;
2233 if (!S)
2234 DC = (*I)->getDeclContext()->getRedeclContext();
2235
2236 IdentifierResolver::iterator LastI = I;
2237 for (++LastI; LastI != IEnd; ++LastI) {
2238 if (S) {
2239 // Match based on scope.
2240 if (!S->isDeclScope(*LastI))
2241 break;
2242 } else {
2243 // Match based on DeclContext.
2244 DeclContext *LastDC
2245 = (*LastI)->getDeclContext()->getRedeclContext();
2246 if (!LastDC->Equals(DC))
2247 break;
2248 }
2249
2250 // If the declaration is in the right namespace and visible, add it.
2251 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2252 R.addDecl(LastD);
2253 }
2254
2255 R.resolveKind();
2256 }
2257
2258 return true;
2259 }
2260 } else {
2261 // Perform C++ unqualified name lookup.
2262 if (CppLookupName(R, S))
2263 return true;
2264 }
2265
2266 // If we didn't find a use of this identifier, and if the identifier
2267 // corresponds to a compiler builtin, create the decl object for the builtin
2268 // now, injecting it into translation unit scope, and return it.
2269 if (AllowBuiltinCreation && LookupBuiltin(R))
2270 return true;
2271
2272 // If we didn't find a use of this identifier, the ExternalSource
2273 // may be able to handle the situation.
2274 // Note: some lookup failures are expected!
2275 // See e.g. R.isForRedeclaration().
2276 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2277 }
2278
2279 /// Perform qualified name lookup in the namespaces nominated by
2280 /// using directives by the given context.
2281 ///
2282 /// C++98 [namespace.qual]p2:
2283 /// Given X::m (where X is a user-declared namespace), or given \::m
2284 /// (where X is the global namespace), let S be the set of all
2285 /// declarations of m in X and in the transitive closure of all
2286 /// namespaces nominated by using-directives in X and its used
2287 /// namespaces, except that using-directives are ignored in any
2288 /// namespace, including X, directly containing one or more
2289 /// declarations of m. No namespace is searched more than once in
2290 /// the lookup of a name. If S is the empty set, the program is
2291 /// ill-formed. Otherwise, if S has exactly one member, or if the
2292 /// context of the reference is a using-declaration
2293 /// (namespace.udecl), S is the required set of declarations of
2294 /// m. Otherwise if the use of m is not one that allows a unique
2295 /// declaration to be chosen from S, the program is ill-formed.
2296 ///
2297 /// C++98 [namespace.qual]p5:
2298 /// During the lookup of a qualified namespace member name, if the
2299 /// lookup finds more than one declaration of the member, and if one
2300 /// declaration introduces a class name or enumeration name and the
2301 /// other declarations either introduce the same object, the same
2302 /// enumerator or a set of functions, the non-type name hides the
2303 /// class or enumeration name if and only if the declarations are
2304 /// from the same namespace; otherwise (the declarations are from
2305 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)2306 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2307 DeclContext *StartDC) {
2308 assert(StartDC->isFileContext() && "start context is not a file context");
2309
2310 // We have not yet looked into these namespaces, much less added
2311 // their "using-children" to the queue.
2312 SmallVector<NamespaceDecl*, 8> Queue;
2313
2314 // We have at least added all these contexts to the queue.
2315 llvm::SmallPtrSet<DeclContext*, 8> Visited;
2316 Visited.insert(StartDC);
2317
2318 // We have already looked into the initial namespace; seed the queue
2319 // with its using-children.
2320 for (auto *I : StartDC->using_directives()) {
2321 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2322 if (S.isVisible(I) && Visited.insert(ND).second)
2323 Queue.push_back(ND);
2324 }
2325
2326 // The easiest way to implement the restriction in [namespace.qual]p5
2327 // is to check whether any of the individual results found a tag
2328 // and, if so, to declare an ambiguity if the final result is not
2329 // a tag.
2330 bool FoundTag = false;
2331 bool FoundNonTag = false;
2332
2333 LookupResult LocalR(LookupResult::Temporary, R);
2334
2335 bool Found = false;
2336 while (!Queue.empty()) {
2337 NamespaceDecl *ND = Queue.pop_back_val();
2338
2339 // We go through some convolutions here to avoid copying results
2340 // between LookupResults.
2341 bool UseLocal = !R.empty();
2342 LookupResult &DirectR = UseLocal ? LocalR : R;
2343 bool FoundDirect = LookupDirect(S, DirectR, ND);
2344
2345 if (FoundDirect) {
2346 // First do any local hiding.
2347 DirectR.resolveKind();
2348
2349 // If the local result is a tag, remember that.
2350 if (DirectR.isSingleTagDecl())
2351 FoundTag = true;
2352 else
2353 FoundNonTag = true;
2354
2355 // Append the local results to the total results if necessary.
2356 if (UseLocal) {
2357 R.addAllDecls(LocalR);
2358 LocalR.clear();
2359 }
2360 }
2361
2362 // If we find names in this namespace, ignore its using directives.
2363 if (FoundDirect) {
2364 Found = true;
2365 continue;
2366 }
2367
2368 for (auto I : ND->using_directives()) {
2369 NamespaceDecl *Nom = I->getNominatedNamespace();
2370 if (S.isVisible(I) && Visited.insert(Nom).second)
2371 Queue.push_back(Nom);
2372 }
2373 }
2374
2375 if (Found) {
2376 if (FoundTag && FoundNonTag)
2377 R.setAmbiguousQualifiedTagHiding();
2378 else
2379 R.resolveKind();
2380 }
2381
2382 return Found;
2383 }
2384
2385 /// Perform qualified name lookup into a given context.
2386 ///
2387 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2388 /// names when the context of those names is explicit specified, e.g.,
2389 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2390 ///
2391 /// Different lookup criteria can find different names. For example, a
2392 /// particular scope can have both a struct and a function of the same
2393 /// name, and each can be found by certain lookup criteria. For more
2394 /// information about lookup criteria, see the documentation for the
2395 /// class LookupCriteria.
2396 ///
2397 /// \param R captures both the lookup criteria and any lookup results found.
2398 ///
2399 /// \param LookupCtx The context in which qualified name lookup will
2400 /// search. If the lookup criteria permits, name lookup may also search
2401 /// in the parent contexts or (for C++ classes) base classes.
2402 ///
2403 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2404 /// occurs as part of unqualified name lookup.
2405 ///
2406 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)2407 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2408 bool InUnqualifiedLookup) {
2409 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2410
2411 if (!R.getLookupName())
2412 return false;
2413
2414 // Make sure that the declaration context is complete.
2415 assert((!isa<TagDecl>(LookupCtx) ||
2416 LookupCtx->isDependentContext() ||
2417 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2418 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2419 "Declaration context must already be complete!");
2420
2421 struct QualifiedLookupInScope {
2422 bool oldVal;
2423 DeclContext *Context;
2424 // Set flag in DeclContext informing debugger that we're looking for qualified name
2425 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2426 oldVal = ctx->setUseQualifiedLookup();
2427 }
2428 ~QualifiedLookupInScope() {
2429 Context->setUseQualifiedLookup(oldVal);
2430 }
2431 } QL(LookupCtx);
2432
2433 if (LookupDirect(*this, R, LookupCtx)) {
2434 R.resolveKind();
2435 if (isa<CXXRecordDecl>(LookupCtx))
2436 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2437 return true;
2438 }
2439
2440 // Don't descend into implied contexts for redeclarations.
2441 // C++98 [namespace.qual]p6:
2442 // In a declaration for a namespace member in which the
2443 // declarator-id is a qualified-id, given that the qualified-id
2444 // for the namespace member has the form
2445 // nested-name-specifier unqualified-id
2446 // the unqualified-id shall name a member of the namespace
2447 // designated by the nested-name-specifier.
2448 // See also [class.mfct]p5 and [class.static.data]p2.
2449 if (R.isForRedeclaration())
2450 return false;
2451
2452 // If this is a namespace, look it up in the implied namespaces.
2453 if (LookupCtx->isFileContext())
2454 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2455
2456 // If this isn't a C++ class, we aren't allowed to look into base
2457 // classes, we're done.
2458 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2459 if (!LookupRec || !LookupRec->getDefinition())
2460 return false;
2461
2462 // We're done for lookups that can never succeed for C++ classes.
2463 if (R.getLookupKind() == LookupOperatorName ||
2464 R.getLookupKind() == LookupNamespaceName ||
2465 R.getLookupKind() == LookupObjCProtocolName ||
2466 R.getLookupKind() == LookupLabel)
2467 return false;
2468
2469 // If we're performing qualified name lookup into a dependent class,
2470 // then we are actually looking into a current instantiation. If we have any
2471 // dependent base classes, then we either have to delay lookup until
2472 // template instantiation time (at which point all bases will be available)
2473 // or we have to fail.
2474 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2475 LookupRec->hasAnyDependentBases()) {
2476 R.setNotFoundInCurrentInstantiation();
2477 return false;
2478 }
2479
2480 // Perform lookup into our base classes.
2481
2482 DeclarationName Name = R.getLookupName();
2483 unsigned IDNS = R.getIdentifierNamespace();
2484
2485 // Look for this member in our base classes.
2486 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2487 CXXBasePath &Path) -> bool {
2488 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2489 // Drop leading non-matching lookup results from the declaration list so
2490 // we don't need to consider them again below.
2491 for (Path.Decls = BaseRecord->lookup(Name).begin();
2492 Path.Decls != Path.Decls.end(); ++Path.Decls) {
2493 if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2494 return true;
2495 }
2496 return false;
2497 };
2498
2499 CXXBasePaths Paths;
2500 Paths.setOrigin(LookupRec);
2501 if (!LookupRec->lookupInBases(BaseCallback, Paths))
2502 return false;
2503
2504 R.setNamingClass(LookupRec);
2505
2506 // C++ [class.member.lookup]p2:
2507 // [...] If the resulting set of declarations are not all from
2508 // sub-objects of the same type, or the set has a nonstatic member
2509 // and includes members from distinct sub-objects, there is an
2510 // ambiguity and the program is ill-formed. Otherwise that set is
2511 // the result of the lookup.
2512 QualType SubobjectType;
2513 int SubobjectNumber = 0;
2514 AccessSpecifier SubobjectAccess = AS_none;
2515
2516 // Check whether the given lookup result contains only static members.
2517 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2518 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2519 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2520 return false;
2521 return true;
2522 };
2523
2524 bool TemplateNameLookup = R.isTemplateNameLookup();
2525
2526 // Determine whether two sets of members contain the same members, as
2527 // required by C++ [class.member.lookup]p6.
2528 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2529 DeclContext::lookup_iterator B) {
2530 using Iterator = DeclContextLookupResult::iterator;
2531 using Result = const void *;
2532
2533 auto Next = [&](Iterator &It, Iterator End) -> Result {
2534 while (It != End) {
2535 NamedDecl *ND = *It++;
2536 if (!ND->isInIdentifierNamespace(IDNS))
2537 continue;
2538
2539 // C++ [temp.local]p3:
2540 // A lookup that finds an injected-class-name (10.2) can result in
2541 // an ambiguity in certain cases (for example, if it is found in
2542 // more than one base class). If all of the injected-class-names
2543 // that are found refer to specializations of the same class
2544 // template, and if the name is used as a template-name, the
2545 // reference refers to the class template itself and not a
2546 // specialization thereof, and is not ambiguous.
2547 if (TemplateNameLookup)
2548 if (auto *TD = getAsTemplateNameDecl(ND))
2549 ND = TD;
2550
2551 // C++ [class.member.lookup]p3:
2552 // type declarations (including injected-class-names) are replaced by
2553 // the types they designate
2554 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2555 QualType T = Context.getTypeDeclType(TD);
2556 return T.getCanonicalType().getAsOpaquePtr();
2557 }
2558
2559 return ND->getUnderlyingDecl()->getCanonicalDecl();
2560 }
2561 return nullptr;
2562 };
2563
2564 // We'll often find the declarations are in the same order. Handle this
2565 // case (and the special case of only one declaration) efficiently.
2566 Iterator AIt = A, BIt = B, AEnd, BEnd;
2567 while (true) {
2568 Result AResult = Next(AIt, AEnd);
2569 Result BResult = Next(BIt, BEnd);
2570 if (!AResult && !BResult)
2571 return true;
2572 if (!AResult || !BResult)
2573 return false;
2574 if (AResult != BResult) {
2575 // Found a mismatch; carefully check both lists, accounting for the
2576 // possibility of declarations appearing more than once.
2577 llvm::SmallDenseMap<Result, bool, 32> AResults;
2578 for (; AResult; AResult = Next(AIt, AEnd))
2579 AResults.insert({AResult, /*FoundInB*/false});
2580 unsigned Found = 0;
2581 for (; BResult; BResult = Next(BIt, BEnd)) {
2582 auto It = AResults.find(BResult);
2583 if (It == AResults.end())
2584 return false;
2585 if (!It->second) {
2586 It->second = true;
2587 ++Found;
2588 }
2589 }
2590 return AResults.size() == Found;
2591 }
2592 }
2593 };
2594
2595 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2596 Path != PathEnd; ++Path) {
2597 const CXXBasePathElement &PathElement = Path->back();
2598
2599 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2600 // across all paths.
2601 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2602
2603 // Determine whether we're looking at a distinct sub-object or not.
2604 if (SubobjectType.isNull()) {
2605 // This is the first subobject we've looked at. Record its type.
2606 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2607 SubobjectNumber = PathElement.SubobjectNumber;
2608 continue;
2609 }
2610
2611 if (SubobjectType !=
2612 Context.getCanonicalType(PathElement.Base->getType())) {
2613 // We found members of the given name in two subobjects of
2614 // different types. If the declaration sets aren't the same, this
2615 // lookup is ambiguous.
2616 //
2617 // FIXME: The language rule says that this applies irrespective of
2618 // whether the sets contain only static members.
2619 if (HasOnlyStaticMembers(Path->Decls) &&
2620 HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2621 continue;
2622
2623 R.setAmbiguousBaseSubobjectTypes(Paths);
2624 return true;
2625 }
2626
2627 // FIXME: This language rule no longer exists. Checking for ambiguous base
2628 // subobjects should be done as part of formation of a class member access
2629 // expression (when converting the object parameter to the member's type).
2630 if (SubobjectNumber != PathElement.SubobjectNumber) {
2631 // We have a different subobject of the same type.
2632
2633 // C++ [class.member.lookup]p5:
2634 // A static member, a nested type or an enumerator defined in
2635 // a base class T can unambiguously be found even if an object
2636 // has more than one base class subobject of type T.
2637 if (HasOnlyStaticMembers(Path->Decls))
2638 continue;
2639
2640 // We have found a nonstatic member name in multiple, distinct
2641 // subobjects. Name lookup is ambiguous.
2642 R.setAmbiguousBaseSubobjects(Paths);
2643 return true;
2644 }
2645 }
2646
2647 // Lookup in a base class succeeded; return these results.
2648
2649 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2650 I != E; ++I) {
2651 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2652 (*I)->getAccess());
2653 if (NamedDecl *ND = R.getAcceptableDecl(*I))
2654 R.addDecl(ND, AS);
2655 }
2656 R.resolveKind();
2657 return true;
2658 }
2659
2660 /// Performs qualified name lookup or special type of lookup for
2661 /// "__super::" scope specifier.
2662 ///
2663 /// This routine is a convenience overload meant to be called from contexts
2664 /// that need to perform a qualified name lookup with an optional C++ scope
2665 /// specifier that might require special kind of lookup.
2666 ///
2667 /// \param R captures both the lookup criteria and any lookup results found.
2668 ///
2669 /// \param LookupCtx The context in which qualified name lookup will
2670 /// search.
2671 ///
2672 /// \param SS An optional C++ scope-specifier.
2673 ///
2674 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,CXXScopeSpec & SS)2675 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2676 CXXScopeSpec &SS) {
2677 auto *NNS = SS.getScopeRep();
2678 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2679 return LookupInSuper(R, NNS->getAsRecordDecl());
2680 else
2681
2682 return LookupQualifiedName(R, LookupCtx);
2683 }
2684
2685 /// Performs name lookup for a name that was parsed in the
2686 /// source code, and may contain a C++ scope specifier.
2687 ///
2688 /// This routine is a convenience routine meant to be called from
2689 /// contexts that receive a name and an optional C++ scope specifier
2690 /// (e.g., "N::M::x"). It will then perform either qualified or
2691 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2692 /// respectively) on the given name and return those results. It will
2693 /// perform a special type of lookup for "__super::" scope specifier.
2694 ///
2695 /// @param S The scope from which unqualified name lookup will
2696 /// begin.
2697 ///
2698 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2699 ///
2700 /// @param EnteringContext Indicates whether we are going to enter the
2701 /// context of the scope-specifier SS (if present).
2702 ///
2703 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)2704 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2705 bool AllowBuiltinCreation, bool EnteringContext) {
2706 if (SS && SS->isInvalid()) {
2707 // When the scope specifier is invalid, don't even look for
2708 // anything.
2709 return false;
2710 }
2711
2712 if (SS && SS->isSet()) {
2713 NestedNameSpecifier *NNS = SS->getScopeRep();
2714 if (NNS->getKind() == NestedNameSpecifier::Super)
2715 return LookupInSuper(R, NNS->getAsRecordDecl());
2716
2717 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2718 // We have resolved the scope specifier to a particular declaration
2719 // contex, and will perform name lookup in that context.
2720 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2721 return false;
2722
2723 R.setContextRange(SS->getRange());
2724 return LookupQualifiedName(R, DC);
2725 }
2726
2727 // We could not resolve the scope specified to a specific declaration
2728 // context, which means that SS refers to an unknown specialization.
2729 // Name lookup can't find anything in this case.
2730 R.setNotFoundInCurrentInstantiation();
2731 R.setContextRange(SS->getRange());
2732 return false;
2733 }
2734
2735 // Perform unqualified name lookup starting in the given scope.
2736 return LookupName(R, S, AllowBuiltinCreation);
2737 }
2738
2739 /// Perform qualified name lookup into all base classes of the given
2740 /// class.
2741 ///
2742 /// \param R captures both the lookup criteria and any lookup results found.
2743 ///
2744 /// \param Class The context in which qualified name lookup will
2745 /// search. Name lookup will search in all base classes merging the results.
2746 ///
2747 /// @returns True if any decls were found (but possibly ambiguous)
LookupInSuper(LookupResult & R,CXXRecordDecl * Class)2748 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2749 // The access-control rules we use here are essentially the rules for
2750 // doing a lookup in Class that just magically skipped the direct
2751 // members of Class itself. That is, the naming class is Class, and the
2752 // access includes the access of the base.
2753 for (const auto &BaseSpec : Class->bases()) {
2754 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2755 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2756 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2757 Result.setBaseObjectType(Context.getRecordType(Class));
2758 LookupQualifiedName(Result, RD);
2759
2760 // Copy the lookup results into the target, merging the base's access into
2761 // the path access.
2762 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2763 R.addDecl(I.getDecl(),
2764 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2765 I.getAccess()));
2766 }
2767
2768 Result.suppressDiagnostics();
2769 }
2770
2771 R.resolveKind();
2772 R.setNamingClass(Class);
2773
2774 return !R.empty();
2775 }
2776
2777 /// Produce a diagnostic describing the ambiguity that resulted
2778 /// from name lookup.
2779 ///
2780 /// \param Result The result of the ambiguous lookup to be diagnosed.
DiagnoseAmbiguousLookup(LookupResult & Result)2781 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2782 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2783
2784 DeclarationName Name = Result.getLookupName();
2785 SourceLocation NameLoc = Result.getNameLoc();
2786 SourceRange LookupRange = Result.getContextRange();
2787
2788 switch (Result.getAmbiguityKind()) {
2789 case LookupResult::AmbiguousBaseSubobjects: {
2790 CXXBasePaths *Paths = Result.getBasePaths();
2791 QualType SubobjectType = Paths->front().back().Base->getType();
2792 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2793 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2794 << LookupRange;
2795
2796 DeclContext::lookup_iterator Found = Paths->front().Decls;
2797 while (isa<CXXMethodDecl>(*Found) &&
2798 cast<CXXMethodDecl>(*Found)->isStatic())
2799 ++Found;
2800
2801 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2802 break;
2803 }
2804
2805 case LookupResult::AmbiguousBaseSubobjectTypes: {
2806 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2807 << Name << LookupRange;
2808
2809 CXXBasePaths *Paths = Result.getBasePaths();
2810 std::set<const NamedDecl *> DeclsPrinted;
2811 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2812 PathEnd = Paths->end();
2813 Path != PathEnd; ++Path) {
2814 const NamedDecl *D = *Path->Decls;
2815 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2816 continue;
2817 if (DeclsPrinted.insert(D).second) {
2818 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2819 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2820 << TD->getUnderlyingType();
2821 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2822 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2823 << Context.getTypeDeclType(TD);
2824 else
2825 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2826 }
2827 }
2828 break;
2829 }
2830
2831 case LookupResult::AmbiguousTagHiding: {
2832 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2833
2834 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2835
2836 for (auto *D : Result)
2837 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2838 TagDecls.insert(TD);
2839 Diag(TD->getLocation(), diag::note_hidden_tag);
2840 }
2841
2842 for (auto *D : Result)
2843 if (!isa<TagDecl>(D))
2844 Diag(D->getLocation(), diag::note_hiding_object);
2845
2846 // For recovery purposes, go ahead and implement the hiding.
2847 LookupResult::Filter F = Result.makeFilter();
2848 while (F.hasNext()) {
2849 if (TagDecls.count(F.next()))
2850 F.erase();
2851 }
2852 F.done();
2853 break;
2854 }
2855
2856 case LookupResult::AmbiguousReference: {
2857 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2858
2859 for (auto *D : Result)
2860 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2861 break;
2862 }
2863 }
2864 }
2865
2866 namespace {
2867 struct AssociatedLookup {
AssociatedLookup__anon5c0384df0d11::AssociatedLookup2868 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2869 Sema::AssociatedNamespaceSet &Namespaces,
2870 Sema::AssociatedClassSet &Classes)
2871 : S(S), Namespaces(Namespaces), Classes(Classes),
2872 InstantiationLoc(InstantiationLoc) {
2873 }
2874
addClassTransitive__anon5c0384df0d11::AssociatedLookup2875 bool addClassTransitive(CXXRecordDecl *RD) {
2876 Classes.insert(RD);
2877 return ClassesTransitive.insert(RD);
2878 }
2879
2880 Sema &S;
2881 Sema::AssociatedNamespaceSet &Namespaces;
2882 Sema::AssociatedClassSet &Classes;
2883 SourceLocation InstantiationLoc;
2884
2885 private:
2886 Sema::AssociatedClassSet ClassesTransitive;
2887 };
2888 } // end anonymous namespace
2889
2890 static void
2891 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2892
2893 // Given the declaration context \param Ctx of a class, class template or
2894 // enumeration, add the associated namespaces to \param Namespaces as described
2895 // in [basic.lookup.argdep]p2.
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)2896 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2897 DeclContext *Ctx) {
2898 // The exact wording has been changed in C++14 as a result of
2899 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2900 // to all language versions since it is possible to return a local type
2901 // from a lambda in C++11.
2902 //
2903 // C++14 [basic.lookup.argdep]p2:
2904 // If T is a class type [...]. Its associated namespaces are the innermost
2905 // enclosing namespaces of its associated classes. [...]
2906 //
2907 // If T is an enumeration type, its associated namespace is the innermost
2908 // enclosing namespace of its declaration. [...]
2909
2910 // We additionally skip inline namespaces. The innermost non-inline namespace
2911 // contains all names of all its nested inline namespaces anyway, so we can
2912 // replace the entire inline namespace tree with its root.
2913 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2914 Ctx = Ctx->getParent();
2915
2916 Namespaces.insert(Ctx->getPrimaryContext());
2917 }
2918
2919 // Add the associated classes and namespaces for argument-dependent
2920 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2921 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)2922 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2923 const TemplateArgument &Arg) {
2924 // C++ [basic.lookup.argdep]p2, last bullet:
2925 // -- [...] ;
2926 switch (Arg.getKind()) {
2927 case TemplateArgument::Null:
2928 break;
2929
2930 case TemplateArgument::Type:
2931 // [...] the namespaces and classes associated with the types of the
2932 // template arguments provided for template type parameters (excluding
2933 // template template parameters)
2934 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2935 break;
2936
2937 case TemplateArgument::Template:
2938 case TemplateArgument::TemplateExpansion: {
2939 // [...] the namespaces in which any template template arguments are
2940 // defined; and the classes in which any member templates used as
2941 // template template arguments are defined.
2942 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2943 if (ClassTemplateDecl *ClassTemplate
2944 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2945 DeclContext *Ctx = ClassTemplate->getDeclContext();
2946 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2947 Result.Classes.insert(EnclosingClass);
2948 // Add the associated namespace for this class.
2949 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2950 }
2951 break;
2952 }
2953
2954 case TemplateArgument::Declaration:
2955 case TemplateArgument::Integral:
2956 case TemplateArgument::Expression:
2957 case TemplateArgument::NullPtr:
2958 // [Note: non-type template arguments do not contribute to the set of
2959 // associated namespaces. ]
2960 break;
2961
2962 case TemplateArgument::Pack:
2963 for (const auto &P : Arg.pack_elements())
2964 addAssociatedClassesAndNamespaces(Result, P);
2965 break;
2966 }
2967 }
2968
2969 // Add the associated classes and namespaces for argument-dependent lookup
2970 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2971 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)2972 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2973 CXXRecordDecl *Class) {
2974
2975 // Just silently ignore anything whose name is __va_list_tag.
2976 if (Class->getDeclName() == Result.S.VAListTagName)
2977 return;
2978
2979 // C++ [basic.lookup.argdep]p2:
2980 // [...]
2981 // -- If T is a class type (including unions), its associated
2982 // classes are: the class itself; the class of which it is a
2983 // member, if any; and its direct and indirect base classes.
2984 // Its associated namespaces are the innermost enclosing
2985 // namespaces of its associated classes.
2986
2987 // Add the class of which it is a member, if any.
2988 DeclContext *Ctx = Class->getDeclContext();
2989 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2990 Result.Classes.insert(EnclosingClass);
2991
2992 // Add the associated namespace for this class.
2993 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2994
2995 // -- If T is a template-id, its associated namespaces and classes are
2996 // the namespace in which the template is defined; for member
2997 // templates, the member template's class; the namespaces and classes
2998 // associated with the types of the template arguments provided for
2999 // template type parameters (excluding template template parameters); the
3000 // namespaces in which any template template arguments are defined; and
3001 // the classes in which any member templates used as template template
3002 // arguments are defined. [Note: non-type template arguments do not
3003 // contribute to the set of associated namespaces. ]
3004 if (ClassTemplateSpecializationDecl *Spec
3005 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3006 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3007 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3008 Result.Classes.insert(EnclosingClass);
3009 // Add the associated namespace for this class.
3010 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3011
3012 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3013 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3014 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3015 }
3016
3017 // Add the class itself. If we've already transitively visited this class,
3018 // we don't need to visit base classes.
3019 if (!Result.addClassTransitive(Class))
3020 return;
3021
3022 // Only recurse into base classes for complete types.
3023 if (!Result.S.isCompleteType(Result.InstantiationLoc,
3024 Result.S.Context.getRecordType(Class)))
3025 return;
3026
3027 // Add direct and indirect base classes along with their associated
3028 // namespaces.
3029 SmallVector<CXXRecordDecl *, 32> Bases;
3030 Bases.push_back(Class);
3031 while (!Bases.empty()) {
3032 // Pop this class off the stack.
3033 Class = Bases.pop_back_val();
3034
3035 // Visit the base classes.
3036 for (const auto &Base : Class->bases()) {
3037 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3038 // In dependent contexts, we do ADL twice, and the first time around,
3039 // the base type might be a dependent TemplateSpecializationType, or a
3040 // TemplateTypeParmType. If that happens, simply ignore it.
3041 // FIXME: If we want to support export, we probably need to add the
3042 // namespace of the template in a TemplateSpecializationType, or even
3043 // the classes and namespaces of known non-dependent arguments.
3044 if (!BaseType)
3045 continue;
3046 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3047 if (Result.addClassTransitive(BaseDecl)) {
3048 // Find the associated namespace for this base class.
3049 DeclContext *BaseCtx = BaseDecl->getDeclContext();
3050 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3051
3052 // Make sure we visit the bases of this base class.
3053 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3054 Bases.push_back(BaseDecl);
3055 }
3056 }
3057 }
3058 }
3059
3060 // Add the associated classes and namespaces for
3061 // argument-dependent lookup with an argument of type T
3062 // (C++ [basic.lookup.koenig]p2).
3063 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)3064 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3065 // C++ [basic.lookup.koenig]p2:
3066 //
3067 // For each argument type T in the function call, there is a set
3068 // of zero or more associated namespaces and a set of zero or more
3069 // associated classes to be considered. The sets of namespaces and
3070 // classes is determined entirely by the types of the function
3071 // arguments (and the namespace of any template template
3072 // argument). Typedef names and using-declarations used to specify
3073 // the types do not contribute to this set. The sets of namespaces
3074 // and classes are determined in the following way:
3075
3076 SmallVector<const Type *, 16> Queue;
3077 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3078
3079 while (true) {
3080 switch (T->getTypeClass()) {
3081
3082 #define TYPE(Class, Base)
3083 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3084 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3085 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3086 #define ABSTRACT_TYPE(Class, Base)
3087 #include "clang/AST/TypeNodes.inc"
3088 // T is canonical. We can also ignore dependent types because
3089 // we don't need to do ADL at the definition point, but if we
3090 // wanted to implement template export (or if we find some other
3091 // use for associated classes and namespaces...) this would be
3092 // wrong.
3093 break;
3094
3095 // -- If T is a pointer to U or an array of U, its associated
3096 // namespaces and classes are those associated with U.
3097 case Type::Pointer:
3098 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3099 continue;
3100 case Type::ConstantArray:
3101 case Type::IncompleteArray:
3102 case Type::VariableArray:
3103 T = cast<ArrayType>(T)->getElementType().getTypePtr();
3104 continue;
3105
3106 // -- If T is a fundamental type, its associated sets of
3107 // namespaces and classes are both empty.
3108 case Type::Builtin:
3109 break;
3110
3111 // -- If T is a class type (including unions), its associated
3112 // classes are: the class itself; the class of which it is
3113 // a member, if any; and its direct and indirect base classes.
3114 // Its associated namespaces are the innermost enclosing
3115 // namespaces of its associated classes.
3116 case Type::Record: {
3117 CXXRecordDecl *Class =
3118 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3119 addAssociatedClassesAndNamespaces(Result, Class);
3120 break;
3121 }
3122
3123 // -- If T is an enumeration type, its associated namespace
3124 // is the innermost enclosing namespace of its declaration.
3125 // If it is a class member, its associated class is the
3126 // member’s class; else it has no associated class.
3127 case Type::Enum: {
3128 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3129
3130 DeclContext *Ctx = Enum->getDeclContext();
3131 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3132 Result.Classes.insert(EnclosingClass);
3133
3134 // Add the associated namespace for this enumeration.
3135 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3136
3137 break;
3138 }
3139
3140 // -- If T is a function type, its associated namespaces and
3141 // classes are those associated with the function parameter
3142 // types and those associated with the return type.
3143 case Type::FunctionProto: {
3144 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3145 for (const auto &Arg : Proto->param_types())
3146 Queue.push_back(Arg.getTypePtr());
3147 // fallthrough
3148 LLVM_FALLTHROUGH;
3149 }
3150 case Type::FunctionNoProto: {
3151 const FunctionType *FnType = cast<FunctionType>(T);
3152 T = FnType->getReturnType().getTypePtr();
3153 continue;
3154 }
3155
3156 // -- If T is a pointer to a member function of a class X, its
3157 // associated namespaces and classes are those associated
3158 // with the function parameter types and return type,
3159 // together with those associated with X.
3160 //
3161 // -- If T is a pointer to a data member of class X, its
3162 // associated namespaces and classes are those associated
3163 // with the member type together with those associated with
3164 // X.
3165 case Type::MemberPointer: {
3166 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3167
3168 // Queue up the class type into which this points.
3169 Queue.push_back(MemberPtr->getClass());
3170
3171 // And directly continue with the pointee type.
3172 T = MemberPtr->getPointeeType().getTypePtr();
3173 continue;
3174 }
3175
3176 // As an extension, treat this like a normal pointer.
3177 case Type::BlockPointer:
3178 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3179 continue;
3180
3181 // References aren't covered by the standard, but that's such an
3182 // obvious defect that we cover them anyway.
3183 case Type::LValueReference:
3184 case Type::RValueReference:
3185 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3186 continue;
3187
3188 // These are fundamental types.
3189 case Type::Vector:
3190 case Type::ExtVector:
3191 case Type::ConstantMatrix:
3192 case Type::Complex:
3193 case Type::BitInt:
3194 break;
3195
3196 // Non-deduced auto types only get here for error cases.
3197 case Type::Auto:
3198 case Type::DeducedTemplateSpecialization:
3199 break;
3200
3201 // If T is an Objective-C object or interface type, or a pointer to an
3202 // object or interface type, the associated namespace is the global
3203 // namespace.
3204 case Type::ObjCObject:
3205 case Type::ObjCInterface:
3206 case Type::ObjCObjectPointer:
3207 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3208 break;
3209
3210 // Atomic types are just wrappers; use the associations of the
3211 // contained type.
3212 case Type::Atomic:
3213 T = cast<AtomicType>(T)->getValueType().getTypePtr();
3214 continue;
3215 case Type::Pipe:
3216 T = cast<PipeType>(T)->getElementType().getTypePtr();
3217 continue;
3218 }
3219
3220 if (Queue.empty())
3221 break;
3222 T = Queue.pop_back_val();
3223 }
3224 }
3225
3226 /// Find the associated classes and namespaces for
3227 /// argument-dependent lookup for a call with the given set of
3228 /// arguments.
3229 ///
3230 /// This routine computes the sets of associated classes and associated
3231 /// namespaces searched by argument-dependent lookup
3232 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)3233 void Sema::FindAssociatedClassesAndNamespaces(
3234 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3235 AssociatedNamespaceSet &AssociatedNamespaces,
3236 AssociatedClassSet &AssociatedClasses) {
3237 AssociatedNamespaces.clear();
3238 AssociatedClasses.clear();
3239
3240 AssociatedLookup Result(*this, InstantiationLoc,
3241 AssociatedNamespaces, AssociatedClasses);
3242
3243 // C++ [basic.lookup.koenig]p2:
3244 // For each argument type T in the function call, there is a set
3245 // of zero or more associated namespaces and a set of zero or more
3246 // associated classes to be considered. The sets of namespaces and
3247 // classes is determined entirely by the types of the function
3248 // arguments (and the namespace of any template template
3249 // argument).
3250 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3251 Expr *Arg = Args[ArgIdx];
3252
3253 if (Arg->getType() != Context.OverloadTy) {
3254 addAssociatedClassesAndNamespaces(Result, Arg->getType());
3255 continue;
3256 }
3257
3258 // [...] In addition, if the argument is the name or address of a
3259 // set of overloaded functions and/or function templates, its
3260 // associated classes and namespaces are the union of those
3261 // associated with each of the members of the set: the namespace
3262 // in which the function or function template is defined and the
3263 // classes and namespaces associated with its (non-dependent)
3264 // parameter types and return type.
3265 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3266
3267 for (const NamedDecl *D : OE->decls()) {
3268 // Look through any using declarations to find the underlying function.
3269 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3270
3271 // Add the classes and namespaces associated with the parameter
3272 // types and return type of this function.
3273 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3274 }
3275 }
3276 }
3277
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)3278 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3279 SourceLocation Loc,
3280 LookupNameKind NameKind,
3281 RedeclarationKind Redecl) {
3282 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3283 LookupName(R, S);
3284 return R.getAsSingle<NamedDecl>();
3285 }
3286
3287 /// Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)3288 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3289 SourceLocation IdLoc,
3290 RedeclarationKind Redecl) {
3291 Decl *D = LookupSingleName(TUScope, II, IdLoc,
3292 LookupObjCProtocolName, Redecl);
3293 return cast_or_null<ObjCProtocolDecl>(D);
3294 }
3295
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,UnresolvedSetImpl & Functions)3296 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3297 UnresolvedSetImpl &Functions) {
3298 // C++ [over.match.oper]p3:
3299 // -- The set of non-member candidates is the result of the
3300 // unqualified lookup of operator@ in the context of the
3301 // expression according to the usual rules for name lookup in
3302 // unqualified function calls (3.4.2) except that all member
3303 // functions are ignored.
3304 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3305 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3306 LookupName(Operators, S);
3307
3308 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3309 Functions.append(Operators.begin(), Operators.end());
3310 }
3311
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)3312 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3313 CXXSpecialMember SM,
3314 bool ConstArg,
3315 bool VolatileArg,
3316 bool RValueThis,
3317 bool ConstThis,
3318 bool VolatileThis) {
3319 assert(CanDeclareSpecialMemberFunction(RD) &&
3320 "doing special member lookup into record that isn't fully complete");
3321 RD = RD->getDefinition();
3322 if (RValueThis || ConstThis || VolatileThis)
3323 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3324 "constructors and destructors always have unqualified lvalue this");
3325 if (ConstArg || VolatileArg)
3326 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3327 "parameter-less special members can't have qualified arguments");
3328
3329 // FIXME: Get the caller to pass in a location for the lookup.
3330 SourceLocation LookupLoc = RD->getLocation();
3331
3332 llvm::FoldingSetNodeID ID;
3333 ID.AddPointer(RD);
3334 ID.AddInteger(SM);
3335 ID.AddInteger(ConstArg);
3336 ID.AddInteger(VolatileArg);
3337 ID.AddInteger(RValueThis);
3338 ID.AddInteger(ConstThis);
3339 ID.AddInteger(VolatileThis);
3340
3341 void *InsertPoint;
3342 SpecialMemberOverloadResultEntry *Result =
3343 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3344
3345 // This was already cached
3346 if (Result)
3347 return *Result;
3348
3349 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3350 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3351 SpecialMemberCache.InsertNode(Result, InsertPoint);
3352
3353 if (SM == CXXDestructor) {
3354 if (RD->needsImplicitDestructor()) {
3355 runWithSufficientStackSpace(RD->getLocation(), [&] {
3356 DeclareImplicitDestructor(RD);
3357 });
3358 }
3359 CXXDestructorDecl *DD = RD->getDestructor();
3360 Result->setMethod(DD);
3361 Result->setKind(DD && !DD->isDeleted()
3362 ? SpecialMemberOverloadResult::Success
3363 : SpecialMemberOverloadResult::NoMemberOrDeleted);
3364 return *Result;
3365 }
3366
3367 // Prepare for overload resolution. Here we construct a synthetic argument
3368 // if necessary and make sure that implicit functions are declared.
3369 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3370 DeclarationName Name;
3371 Expr *Arg = nullptr;
3372 unsigned NumArgs;
3373
3374 QualType ArgType = CanTy;
3375 ExprValueKind VK = VK_LValue;
3376
3377 if (SM == CXXDefaultConstructor) {
3378 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3379 NumArgs = 0;
3380 if (RD->needsImplicitDefaultConstructor()) {
3381 runWithSufficientStackSpace(RD->getLocation(), [&] {
3382 DeclareImplicitDefaultConstructor(RD);
3383 });
3384 }
3385 } else {
3386 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3387 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3388 if (RD->needsImplicitCopyConstructor()) {
3389 runWithSufficientStackSpace(RD->getLocation(), [&] {
3390 DeclareImplicitCopyConstructor(RD);
3391 });
3392 }
3393 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3394 runWithSufficientStackSpace(RD->getLocation(), [&] {
3395 DeclareImplicitMoveConstructor(RD);
3396 });
3397 }
3398 } else {
3399 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3400 if (RD->needsImplicitCopyAssignment()) {
3401 runWithSufficientStackSpace(RD->getLocation(), [&] {
3402 DeclareImplicitCopyAssignment(RD);
3403 });
3404 }
3405 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3406 runWithSufficientStackSpace(RD->getLocation(), [&] {
3407 DeclareImplicitMoveAssignment(RD);
3408 });
3409 }
3410 }
3411
3412 if (ConstArg)
3413 ArgType.addConst();
3414 if (VolatileArg)
3415 ArgType.addVolatile();
3416
3417 // This isn't /really/ specified by the standard, but it's implied
3418 // we should be working from a PRValue in the case of move to ensure
3419 // that we prefer to bind to rvalue references, and an LValue in the
3420 // case of copy to ensure we don't bind to rvalue references.
3421 // Possibly an XValue is actually correct in the case of move, but
3422 // there is no semantic difference for class types in this restricted
3423 // case.
3424 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3425 VK = VK_LValue;
3426 else
3427 VK = VK_PRValue;
3428 }
3429
3430 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3431
3432 if (SM != CXXDefaultConstructor) {
3433 NumArgs = 1;
3434 Arg = &FakeArg;
3435 }
3436
3437 // Create the object argument
3438 QualType ThisTy = CanTy;
3439 if (ConstThis)
3440 ThisTy.addConst();
3441 if (VolatileThis)
3442 ThisTy.addVolatile();
3443 Expr::Classification Classification =
3444 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3445 .Classify(Context);
3446
3447 // Now we perform lookup on the name we computed earlier and do overload
3448 // resolution. Lookup is only performed directly into the class since there
3449 // will always be a (possibly implicit) declaration to shadow any others.
3450 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3451 DeclContext::lookup_result R = RD->lookup(Name);
3452
3453 if (R.empty()) {
3454 // We might have no default constructor because we have a lambda's closure
3455 // type, rather than because there's some other declared constructor.
3456 // Every class has a copy/move constructor, copy/move assignment, and
3457 // destructor.
3458 assert(SM == CXXDefaultConstructor &&
3459 "lookup for a constructor or assignment operator was empty");
3460 Result->setMethod(nullptr);
3461 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3462 return *Result;
3463 }
3464
3465 // Copy the candidates as our processing of them may load new declarations
3466 // from an external source and invalidate lookup_result.
3467 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3468
3469 for (NamedDecl *CandDecl : Candidates) {
3470 if (CandDecl->isInvalidDecl())
3471 continue;
3472
3473 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3474 auto CtorInfo = getConstructorInfo(Cand);
3475 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3476 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3477 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3478 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3479 else if (CtorInfo)
3480 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3481 llvm::makeArrayRef(&Arg, NumArgs), OCS,
3482 /*SuppressUserConversions*/ true);
3483 else
3484 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3485 /*SuppressUserConversions*/ true);
3486 } else if (FunctionTemplateDecl *Tmpl =
3487 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3488 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3489 AddMethodTemplateCandidate(
3490 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3491 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3492 else if (CtorInfo)
3493 AddTemplateOverloadCandidate(
3494 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3495 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3496 else
3497 AddTemplateOverloadCandidate(
3498 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3499 } else {
3500 assert(isa<UsingDecl>(Cand.getDecl()) &&
3501 "illegal Kind of operator = Decl");
3502 }
3503 }
3504
3505 OverloadCandidateSet::iterator Best;
3506 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3507 case OR_Success:
3508 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3509 Result->setKind(SpecialMemberOverloadResult::Success);
3510 break;
3511
3512 case OR_Deleted:
3513 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3514 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3515 break;
3516
3517 case OR_Ambiguous:
3518 Result->setMethod(nullptr);
3519 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3520 break;
3521
3522 case OR_No_Viable_Function:
3523 Result->setMethod(nullptr);
3524 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3525 break;
3526 }
3527
3528 return *Result;
3529 }
3530
3531 /// Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)3532 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3533 SpecialMemberOverloadResult Result =
3534 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3535 false, false);
3536
3537 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3538 }
3539
3540 /// Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)3541 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3542 unsigned Quals) {
3543 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3544 "non-const, non-volatile qualifiers for copy ctor arg");
3545 SpecialMemberOverloadResult Result =
3546 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3547 Quals & Qualifiers::Volatile, false, false, false);
3548
3549 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3550 }
3551
3552 /// Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)3553 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3554 unsigned Quals) {
3555 SpecialMemberOverloadResult Result =
3556 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3557 Quals & Qualifiers::Volatile, false, false, false);
3558
3559 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3560 }
3561
3562 /// Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)3563 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3564 // If the implicit constructors have not yet been declared, do so now.
3565 if (CanDeclareSpecialMemberFunction(Class)) {
3566 runWithSufficientStackSpace(Class->getLocation(), [&] {
3567 if (Class->needsImplicitDefaultConstructor())
3568 DeclareImplicitDefaultConstructor(Class);
3569 if (Class->needsImplicitCopyConstructor())
3570 DeclareImplicitCopyConstructor(Class);
3571 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3572 DeclareImplicitMoveConstructor(Class);
3573 });
3574 }
3575
3576 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3577 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3578 return Class->lookup(Name);
3579 }
3580
3581 /// Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)3582 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3583 unsigned Quals, bool RValueThis,
3584 unsigned ThisQuals) {
3585 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3586 "non-const, non-volatile qualifiers for copy assignment arg");
3587 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3588 "non-const, non-volatile qualifiers for copy assignment this");
3589 SpecialMemberOverloadResult Result =
3590 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3591 Quals & Qualifiers::Volatile, RValueThis,
3592 ThisQuals & Qualifiers::Const,
3593 ThisQuals & Qualifiers::Volatile);
3594
3595 return Result.getMethod();
3596 }
3597
3598 /// Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)3599 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3600 unsigned Quals,
3601 bool RValueThis,
3602 unsigned ThisQuals) {
3603 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3604 "non-const, non-volatile qualifiers for copy assignment this");
3605 SpecialMemberOverloadResult Result =
3606 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3607 Quals & Qualifiers::Volatile, RValueThis,
3608 ThisQuals & Qualifiers::Const,
3609 ThisQuals & Qualifiers::Volatile);
3610
3611 return Result.getMethod();
3612 }
3613
3614 /// Look for the destructor of the given class.
3615 ///
3616 /// During semantic analysis, this routine should be used in lieu of
3617 /// CXXRecordDecl::getDestructor().
3618 ///
3619 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)3620 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3621 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3622 false, false, false,
3623 false, false).getMethod());
3624 }
3625
3626 /// LookupLiteralOperator - Determine which literal operator should be used for
3627 /// a user-defined literal, per C++11 [lex.ext].
3628 ///
3629 /// Normal overload resolution is not used to select which literal operator to
3630 /// call for a user-defined literal. Look up the provided literal operator name,
3631 /// and filter the results to the appropriate set for the given argument types.
3632 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRaw,bool AllowTemplate,bool AllowStringTemplatePack,bool DiagnoseMissing,StringLiteral * StringLit)3633 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3634 ArrayRef<QualType> ArgTys, bool AllowRaw,
3635 bool AllowTemplate, bool AllowStringTemplatePack,
3636 bool DiagnoseMissing, StringLiteral *StringLit) {
3637 LookupName(R, S);
3638 assert(R.getResultKind() != LookupResult::Ambiguous &&
3639 "literal operator lookup can't be ambiguous");
3640
3641 // Filter the lookup results appropriately.
3642 LookupResult::Filter F = R.makeFilter();
3643
3644 bool AllowCooked = true;
3645 bool FoundRaw = false;
3646 bool FoundTemplate = false;
3647 bool FoundStringTemplatePack = false;
3648 bool FoundCooked = false;
3649
3650 while (F.hasNext()) {
3651 Decl *D = F.next();
3652 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3653 D = USD->getTargetDecl();
3654
3655 // If the declaration we found is invalid, skip it.
3656 if (D->isInvalidDecl()) {
3657 F.erase();
3658 continue;
3659 }
3660
3661 bool IsRaw = false;
3662 bool IsTemplate = false;
3663 bool IsStringTemplatePack = false;
3664 bool IsCooked = false;
3665
3666 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3667 if (FD->getNumParams() == 1 &&
3668 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3669 IsRaw = true;
3670 else if (FD->getNumParams() == ArgTys.size()) {
3671 IsCooked = true;
3672 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3673 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3674 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3675 IsCooked = false;
3676 break;
3677 }
3678 }
3679 }
3680 }
3681 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3682 TemplateParameterList *Params = FD->getTemplateParameters();
3683 if (Params->size() == 1) {
3684 IsTemplate = true;
3685 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3686 // Implied but not stated: user-defined integer and floating literals
3687 // only ever use numeric literal operator templates, not templates
3688 // taking a parameter of class type.
3689 F.erase();
3690 continue;
3691 }
3692
3693 // A string literal template is only considered if the string literal
3694 // is a well-formed template argument for the template parameter.
3695 if (StringLit) {
3696 SFINAETrap Trap(*this);
3697 SmallVector<TemplateArgument, 1> Checked;
3698 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3699 if (CheckTemplateArgument(Params->getParam(0), Arg, FD,
3700 R.getNameLoc(), R.getNameLoc(), 0,
3701 Checked) ||
3702 Trap.hasErrorOccurred())
3703 IsTemplate = false;
3704 }
3705 } else {
3706 IsStringTemplatePack = true;
3707 }
3708 }
3709
3710 if (AllowTemplate && StringLit && IsTemplate) {
3711 FoundTemplate = true;
3712 AllowRaw = false;
3713 AllowCooked = false;
3714 AllowStringTemplatePack = false;
3715 if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3716 F.restart();
3717 FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3718 }
3719 } else if (AllowCooked && IsCooked) {
3720 FoundCooked = true;
3721 AllowRaw = false;
3722 AllowTemplate = StringLit;
3723 AllowStringTemplatePack = false;
3724 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3725 // Go through again and remove the raw and template decls we've
3726 // already found.
3727 F.restart();
3728 FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3729 }
3730 } else if (AllowRaw && IsRaw) {
3731 FoundRaw = true;
3732 } else if (AllowTemplate && IsTemplate) {
3733 FoundTemplate = true;
3734 } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3735 FoundStringTemplatePack = true;
3736 } else {
3737 F.erase();
3738 }
3739 }
3740
3741 F.done();
3742
3743 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3744 // form for string literal operator templates.
3745 if (StringLit && FoundTemplate)
3746 return LOLR_Template;
3747
3748 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3749 // parameter type, that is used in preference to a raw literal operator
3750 // or literal operator template.
3751 if (FoundCooked)
3752 return LOLR_Cooked;
3753
3754 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3755 // operator template, but not both.
3756 if (FoundRaw && FoundTemplate) {
3757 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3758 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3759 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3760 return LOLR_Error;
3761 }
3762
3763 if (FoundRaw)
3764 return LOLR_Raw;
3765
3766 if (FoundTemplate)
3767 return LOLR_Template;
3768
3769 if (FoundStringTemplatePack)
3770 return LOLR_StringTemplatePack;
3771
3772 // Didn't find anything we could use.
3773 if (DiagnoseMissing) {
3774 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3775 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3776 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3777 << (AllowTemplate || AllowStringTemplatePack);
3778 return LOLR_Error;
3779 }
3780
3781 return LOLR_ErrorNoDiagnostic;
3782 }
3783
insert(NamedDecl * New)3784 void ADLResult::insert(NamedDecl *New) {
3785 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3786
3787 // If we haven't yet seen a decl for this key, or the last decl
3788 // was exactly this one, we're done.
3789 if (Old == nullptr || Old == New) {
3790 Old = New;
3791 return;
3792 }
3793
3794 // Otherwise, decide which is a more recent redeclaration.
3795 FunctionDecl *OldFD = Old->getAsFunction();
3796 FunctionDecl *NewFD = New->getAsFunction();
3797
3798 FunctionDecl *Cursor = NewFD;
3799 while (true) {
3800 Cursor = Cursor->getPreviousDecl();
3801
3802 // If we got to the end without finding OldFD, OldFD is the newer
3803 // declaration; leave things as they are.
3804 if (!Cursor) return;
3805
3806 // If we do find OldFD, then NewFD is newer.
3807 if (Cursor == OldFD) break;
3808
3809 // Otherwise, keep looking.
3810 }
3811
3812 Old = New;
3813 }
3814
ArgumentDependentLookup(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,ADLResult & Result)3815 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3816 ArrayRef<Expr *> Args, ADLResult &Result) {
3817 // Find all of the associated namespaces and classes based on the
3818 // arguments we have.
3819 AssociatedNamespaceSet AssociatedNamespaces;
3820 AssociatedClassSet AssociatedClasses;
3821 FindAssociatedClassesAndNamespaces(Loc, Args,
3822 AssociatedNamespaces,
3823 AssociatedClasses);
3824
3825 // C++ [basic.lookup.argdep]p3:
3826 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3827 // and let Y be the lookup set produced by argument dependent
3828 // lookup (defined as follows). If X contains [...] then Y is
3829 // empty. Otherwise Y is the set of declarations found in the
3830 // namespaces associated with the argument types as described
3831 // below. The set of declarations found by the lookup of the name
3832 // is the union of X and Y.
3833 //
3834 // Here, we compute Y and add its members to the overloaded
3835 // candidate set.
3836 for (auto *NS : AssociatedNamespaces) {
3837 // When considering an associated namespace, the lookup is the
3838 // same as the lookup performed when the associated namespace is
3839 // used as a qualifier (3.4.3.2) except that:
3840 //
3841 // -- Any using-directives in the associated namespace are
3842 // ignored.
3843 //
3844 // -- Any namespace-scope friend functions declared in
3845 // associated classes are visible within their respective
3846 // namespaces even if they are not visible during an ordinary
3847 // lookup (11.4).
3848 //
3849 // C++20 [basic.lookup.argdep] p4.3
3850 // -- are exported, are attached to a named module M, do not appear
3851 // in the translation unit containing the point of the lookup, and
3852 // have the same innermost enclosing non-inline namespace scope as
3853 // a declaration of an associated entity attached to M.
3854 DeclContext::lookup_result R = NS->lookup(Name);
3855 for (auto *D : R) {
3856 auto *Underlying = D;
3857 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3858 Underlying = USD->getTargetDecl();
3859
3860 if (!isa<FunctionDecl>(Underlying) &&
3861 !isa<FunctionTemplateDecl>(Underlying))
3862 continue;
3863
3864 // The declaration is visible to argument-dependent lookup if either
3865 // it's ordinarily visible or declared as a friend in an associated
3866 // class.
3867 bool Visible = false;
3868 for (D = D->getMostRecentDecl(); D;
3869 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3870 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3871 if (isVisible(D)) {
3872 Visible = true;
3873 break;
3874 } else if (getLangOpts().CPlusPlusModules &&
3875 D->isInExportDeclContext()) {
3876 // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3877 Module *FM = D->getOwningModule();
3878 // exports are only valid in module purview and outside of any
3879 // PMF (although a PMF should not even be present in a module
3880 // with an import).
3881 assert(FM && FM->isModulePurview() && !FM->isPrivateModule() &&
3882 "bad export context");
3883 // .. are attached to a named module M, do not appear in the
3884 // translation unit containing the point of the lookup..
3885 if (!isModuleUnitOfCurrentTU(FM) &&
3886 llvm::any_of(AssociatedClasses, [&](auto *E) {
3887 // ... and have the same innermost enclosing non-inline
3888 // namespace scope as a declaration of an associated entity
3889 // attached to M
3890 if (!E->hasOwningModule() ||
3891 E->getOwningModule()->getTopLevelModuleName() !=
3892 FM->getTopLevelModuleName())
3893 return false;
3894 // TODO: maybe this could be cached when generating the
3895 // associated namespaces / entities.
3896 DeclContext *Ctx = E->getDeclContext();
3897 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3898 Ctx = Ctx->getParent();
3899 return Ctx == NS;
3900 })) {
3901 Visible = true;
3902 break;
3903 }
3904 }
3905 } else if (D->getFriendObjectKind()) {
3906 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3907 // [basic.lookup.argdep]p4:
3908 // Argument-dependent lookup finds all declarations of functions and
3909 // function templates that
3910 // - ...
3911 // - are declared as a friend ([class.friend]) of any class with a
3912 // reachable definition in the set of associated entities,
3913 //
3914 // FIXME: If there's a merged definition of D that is reachable, then
3915 // the friend declaration should be considered.
3916 if (AssociatedClasses.count(RD) && isReachable(D)) {
3917 Visible = true;
3918 break;
3919 }
3920 }
3921 }
3922
3923 // FIXME: Preserve D as the FoundDecl.
3924 if (Visible)
3925 Result.insert(Underlying);
3926 }
3927 }
3928 }
3929
3930 //----------------------------------------------------------------------------
3931 // Search for all visible declarations.
3932 //----------------------------------------------------------------------------
~VisibleDeclConsumer()3933 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3934
includeHiddenDecls() const3935 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3936
3937 namespace {
3938
3939 class ShadowContextRAII;
3940
3941 class VisibleDeclsRecord {
3942 public:
3943 /// An entry in the shadow map, which is optimized to store a
3944 /// single declaration (the common case) but can also store a list
3945 /// of declarations.
3946 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3947
3948 private:
3949 /// A mapping from declaration names to the declarations that have
3950 /// this name within a particular scope.
3951 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3952
3953 /// A list of shadow maps, which is used to model name hiding.
3954 std::list<ShadowMap> ShadowMaps;
3955
3956 /// The declaration contexts we have already visited.
3957 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3958
3959 friend class ShadowContextRAII;
3960
3961 public:
3962 /// Determine whether we have already visited this context
3963 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)3964 bool visitedContext(DeclContext *Ctx) {
3965 return !VisitedContexts.insert(Ctx).second;
3966 }
3967
alreadyVisitedContext(DeclContext * Ctx)3968 bool alreadyVisitedContext(DeclContext *Ctx) {
3969 return VisitedContexts.count(Ctx);
3970 }
3971
3972 /// Determine whether the given declaration is hidden in the
3973 /// current scope.
3974 ///
3975 /// \returns the declaration that hides the given declaration, or
3976 /// NULL if no such declaration exists.
3977 NamedDecl *checkHidden(NamedDecl *ND);
3978
3979 /// Add a declaration to the current shadow map.
add(NamedDecl * ND)3980 void add(NamedDecl *ND) {
3981 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3982 }
3983 };
3984
3985 /// RAII object that records when we've entered a shadow context.
3986 class ShadowContextRAII {
3987 VisibleDeclsRecord &Visible;
3988
3989 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3990
3991 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)3992 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3993 Visible.ShadowMaps.emplace_back();
3994 }
3995
~ShadowContextRAII()3996 ~ShadowContextRAII() {
3997 Visible.ShadowMaps.pop_back();
3998 }
3999 };
4000
4001 } // end anonymous namespace
4002
checkHidden(NamedDecl * ND)4003 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4004 unsigned IDNS = ND->getIdentifierNamespace();
4005 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4006 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4007 SM != SMEnd; ++SM) {
4008 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4009 if (Pos == SM->end())
4010 continue;
4011
4012 for (auto *D : Pos->second) {
4013 // A tag declaration does not hide a non-tag declaration.
4014 if (D->hasTagIdentifierNamespace() &&
4015 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4016 Decl::IDNS_ObjCProtocol)))
4017 continue;
4018
4019 // Protocols are in distinct namespaces from everything else.
4020 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4021 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4022 D->getIdentifierNamespace() != IDNS)
4023 continue;
4024
4025 // Functions and function templates in the same scope overload
4026 // rather than hide. FIXME: Look for hiding based on function
4027 // signatures!
4028 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4029 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4030 SM == ShadowMaps.rbegin())
4031 continue;
4032
4033 // A shadow declaration that's created by a resolved using declaration
4034 // is not hidden by the same using declaration.
4035 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4036 cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4037 continue;
4038
4039 // We've found a declaration that hides this one.
4040 return D;
4041 }
4042 }
4043
4044 return nullptr;
4045 }
4046
4047 namespace {
4048 class LookupVisibleHelper {
4049 public:
LookupVisibleHelper(VisibleDeclConsumer & Consumer,bool IncludeDependentBases,bool LoadExternal)4050 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4051 bool LoadExternal)
4052 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4053 LoadExternal(LoadExternal) {}
4054
lookupVisibleDecls(Sema & SemaRef,Scope * S,Sema::LookupNameKind Kind,bool IncludeGlobalScope)4055 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4056 bool IncludeGlobalScope) {
4057 // Determine the set of using directives available during
4058 // unqualified name lookup.
4059 Scope *Initial = S;
4060 UnqualUsingDirectiveSet UDirs(SemaRef);
4061 if (SemaRef.getLangOpts().CPlusPlus) {
4062 // Find the first namespace or translation-unit scope.
4063 while (S && !isNamespaceOrTranslationUnitScope(S))
4064 S = S->getParent();
4065
4066 UDirs.visitScopeChain(Initial, S);
4067 }
4068 UDirs.done();
4069
4070 // Look for visible declarations.
4071 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4072 Result.setAllowHidden(Consumer.includeHiddenDecls());
4073 if (!IncludeGlobalScope)
4074 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4075 ShadowContextRAII Shadow(Visited);
4076 lookupInScope(Initial, Result, UDirs);
4077 }
4078
lookupVisibleDecls(Sema & SemaRef,DeclContext * Ctx,Sema::LookupNameKind Kind,bool IncludeGlobalScope)4079 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4080 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4081 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4082 Result.setAllowHidden(Consumer.includeHiddenDecls());
4083 if (!IncludeGlobalScope)
4084 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4085
4086 ShadowContextRAII Shadow(Visited);
4087 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4088 /*InBaseClass=*/false);
4089 }
4090
4091 private:
lookupInDeclContext(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass)4092 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4093 bool QualifiedNameLookup, bool InBaseClass) {
4094 if (!Ctx)
4095 return;
4096
4097 // Make sure we don't visit the same context twice.
4098 if (Visited.visitedContext(Ctx->getPrimaryContext()))
4099 return;
4100
4101 Consumer.EnteredContext(Ctx);
4102
4103 // Outside C++, lookup results for the TU live on identifiers.
4104 if (isa<TranslationUnitDecl>(Ctx) &&
4105 !Result.getSema().getLangOpts().CPlusPlus) {
4106 auto &S = Result.getSema();
4107 auto &Idents = S.Context.Idents;
4108
4109 // Ensure all external identifiers are in the identifier table.
4110 if (LoadExternal)
4111 if (IdentifierInfoLookup *External =
4112 Idents.getExternalIdentifierLookup()) {
4113 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4114 for (StringRef Name = Iter->Next(); !Name.empty();
4115 Name = Iter->Next())
4116 Idents.get(Name);
4117 }
4118
4119 // Walk all lookup results in the TU for each identifier.
4120 for (const auto &Ident : Idents) {
4121 for (auto I = S.IdResolver.begin(Ident.getValue()),
4122 E = S.IdResolver.end();
4123 I != E; ++I) {
4124 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4125 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4126 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4127 Visited.add(ND);
4128 }
4129 }
4130 }
4131 }
4132
4133 return;
4134 }
4135
4136 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4137 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4138
4139 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4140 // We sometimes skip loading namespace-level results (they tend to be huge).
4141 bool Load = LoadExternal ||
4142 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4143 // Enumerate all of the results in this context.
4144 for (DeclContextLookupResult R :
4145 Load ? Ctx->lookups()
4146 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
4147 for (auto *D : R) {
4148 if (auto *ND = Result.getAcceptableDecl(D)) {
4149 // Rather than visit immediately, we put ND into a vector and visit
4150 // all decls, in order, outside of this loop. The reason is that
4151 // Consumer.FoundDecl() may invalidate the iterators used in the two
4152 // loops above.
4153 DeclsToVisit.push_back(ND);
4154 }
4155 }
4156 }
4157
4158 for (auto *ND : DeclsToVisit) {
4159 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4160 Visited.add(ND);
4161 }
4162 DeclsToVisit.clear();
4163
4164 // Traverse using directives for qualified name lookup.
4165 if (QualifiedNameLookup) {
4166 ShadowContextRAII Shadow(Visited);
4167 for (auto I : Ctx->using_directives()) {
4168 if (!Result.getSema().isVisible(I))
4169 continue;
4170 lookupInDeclContext(I->getNominatedNamespace(), Result,
4171 QualifiedNameLookup, InBaseClass);
4172 }
4173 }
4174
4175 // Traverse the contexts of inherited C++ classes.
4176 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4177 if (!Record->hasDefinition())
4178 return;
4179
4180 for (const auto &B : Record->bases()) {
4181 QualType BaseType = B.getType();
4182
4183 RecordDecl *RD;
4184 if (BaseType->isDependentType()) {
4185 if (!IncludeDependentBases) {
4186 // Don't look into dependent bases, because name lookup can't look
4187 // there anyway.
4188 continue;
4189 }
4190 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4191 if (!TST)
4192 continue;
4193 TemplateName TN = TST->getTemplateName();
4194 const auto *TD =
4195 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4196 if (!TD)
4197 continue;
4198 RD = TD->getTemplatedDecl();
4199 } else {
4200 const auto *Record = BaseType->getAs<RecordType>();
4201 if (!Record)
4202 continue;
4203 RD = Record->getDecl();
4204 }
4205
4206 // FIXME: It would be nice to be able to determine whether referencing
4207 // a particular member would be ambiguous. For example, given
4208 //
4209 // struct A { int member; };
4210 // struct B { int member; };
4211 // struct C : A, B { };
4212 //
4213 // void f(C *c) { c->### }
4214 //
4215 // accessing 'member' would result in an ambiguity. However, we
4216 // could be smart enough to qualify the member with the base
4217 // class, e.g.,
4218 //
4219 // c->B::member
4220 //
4221 // or
4222 //
4223 // c->A::member
4224
4225 // Find results in this base class (and its bases).
4226 ShadowContextRAII Shadow(Visited);
4227 lookupInDeclContext(RD, Result, QualifiedNameLookup,
4228 /*InBaseClass=*/true);
4229 }
4230 }
4231
4232 // Traverse the contexts of Objective-C classes.
4233 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4234 // Traverse categories.
4235 for (auto *Cat : IFace->visible_categories()) {
4236 ShadowContextRAII Shadow(Visited);
4237 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4238 /*InBaseClass=*/false);
4239 }
4240
4241 // Traverse protocols.
4242 for (auto *I : IFace->all_referenced_protocols()) {
4243 ShadowContextRAII Shadow(Visited);
4244 lookupInDeclContext(I, Result, QualifiedNameLookup,
4245 /*InBaseClass=*/false);
4246 }
4247
4248 // Traverse the superclass.
4249 if (IFace->getSuperClass()) {
4250 ShadowContextRAII Shadow(Visited);
4251 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4252 /*InBaseClass=*/true);
4253 }
4254
4255 // If there is an implementation, traverse it. We do this to find
4256 // synthesized ivars.
4257 if (IFace->getImplementation()) {
4258 ShadowContextRAII Shadow(Visited);
4259 lookupInDeclContext(IFace->getImplementation(), Result,
4260 QualifiedNameLookup, InBaseClass);
4261 }
4262 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4263 for (auto *I : Protocol->protocols()) {
4264 ShadowContextRAII Shadow(Visited);
4265 lookupInDeclContext(I, Result, QualifiedNameLookup,
4266 /*InBaseClass=*/false);
4267 }
4268 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4269 for (auto *I : Category->protocols()) {
4270 ShadowContextRAII Shadow(Visited);
4271 lookupInDeclContext(I, Result, QualifiedNameLookup,
4272 /*InBaseClass=*/false);
4273 }
4274
4275 // If there is an implementation, traverse it.
4276 if (Category->getImplementation()) {
4277 ShadowContextRAII Shadow(Visited);
4278 lookupInDeclContext(Category->getImplementation(), Result,
4279 QualifiedNameLookup, /*InBaseClass=*/true);
4280 }
4281 }
4282 }
4283
lookupInScope(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs)4284 void lookupInScope(Scope *S, LookupResult &Result,
4285 UnqualUsingDirectiveSet &UDirs) {
4286 // No clients run in this mode and it's not supported. Please add tests and
4287 // remove the assertion if you start relying on it.
4288 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4289
4290 if (!S)
4291 return;
4292
4293 if (!S->getEntity() ||
4294 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4295 (S->getEntity())->isFunctionOrMethod()) {
4296 FindLocalExternScope FindLocals(Result);
4297 // Walk through the declarations in this Scope. The consumer might add new
4298 // decls to the scope as part of deserialization, so make a copy first.
4299 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4300 for (Decl *D : ScopeDecls) {
4301 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4302 if ((ND = Result.getAcceptableDecl(ND))) {
4303 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4304 Visited.add(ND);
4305 }
4306 }
4307 }
4308
4309 DeclContext *Entity = S->getLookupEntity();
4310 if (Entity) {
4311 // Look into this scope's declaration context, along with any of its
4312 // parent lookup contexts (e.g., enclosing classes), up to the point
4313 // where we hit the context stored in the next outer scope.
4314 DeclContext *OuterCtx = findOuterContext(S);
4315
4316 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4317 Ctx = Ctx->getLookupParent()) {
4318 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4319 if (Method->isInstanceMethod()) {
4320 // For instance methods, look for ivars in the method's interface.
4321 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4322 Result.getNameLoc(),
4323 Sema::LookupMemberName);
4324 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4325 lookupInDeclContext(IFace, IvarResult,
4326 /*QualifiedNameLookup=*/false,
4327 /*InBaseClass=*/false);
4328 }
4329 }
4330
4331 // We've already performed all of the name lookup that we need
4332 // to for Objective-C methods; the next context will be the
4333 // outer scope.
4334 break;
4335 }
4336
4337 if (Ctx->isFunctionOrMethod())
4338 continue;
4339
4340 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4341 /*InBaseClass=*/false);
4342 }
4343 } else if (!S->getParent()) {
4344 // Look into the translation unit scope. We walk through the translation
4345 // unit's declaration context, because the Scope itself won't have all of
4346 // the declarations if we loaded a precompiled header.
4347 // FIXME: We would like the translation unit's Scope object to point to
4348 // the translation unit, so we don't need this special "if" branch.
4349 // However, doing so would force the normal C++ name-lookup code to look
4350 // into the translation unit decl when the IdentifierInfo chains would
4351 // suffice. Once we fix that problem (which is part of a more general
4352 // "don't look in DeclContexts unless we have to" optimization), we can
4353 // eliminate this.
4354 Entity = Result.getSema().Context.getTranslationUnitDecl();
4355 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4356 /*InBaseClass=*/false);
4357 }
4358
4359 if (Entity) {
4360 // Lookup visible declarations in any namespaces found by using
4361 // directives.
4362 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4363 lookupInDeclContext(
4364 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4365 /*QualifiedNameLookup=*/false,
4366 /*InBaseClass=*/false);
4367 }
4368
4369 // Lookup names in the parent scope.
4370 ShadowContextRAII Shadow(Visited);
4371 lookupInScope(S->getParent(), Result, UDirs);
4372 }
4373
4374 private:
4375 VisibleDeclsRecord Visited;
4376 VisibleDeclConsumer &Consumer;
4377 bool IncludeDependentBases;
4378 bool LoadExternal;
4379 };
4380 } // namespace
4381
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope,bool LoadExternal)4382 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4383 VisibleDeclConsumer &Consumer,
4384 bool IncludeGlobalScope, bool LoadExternal) {
4385 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4386 LoadExternal);
4387 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4388 }
4389
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope,bool IncludeDependentBases,bool LoadExternal)4390 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4391 VisibleDeclConsumer &Consumer,
4392 bool IncludeGlobalScope,
4393 bool IncludeDependentBases, bool LoadExternal) {
4394 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4395 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4396 }
4397
4398 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4399 /// If GnuLabelLoc is a valid source location, then this is a definition
4400 /// of an __label__ label name, otherwise it is a normal label definition
4401 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)4402 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4403 SourceLocation GnuLabelLoc) {
4404 // Do a lookup to see if we have a label with this name already.
4405 NamedDecl *Res = nullptr;
4406
4407 if (GnuLabelLoc.isValid()) {
4408 // Local label definitions always shadow existing labels.
4409 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4410 Scope *S = CurScope;
4411 PushOnScopeChains(Res, S, true);
4412 return cast<LabelDecl>(Res);
4413 }
4414
4415 // Not a GNU local label.
4416 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4417 // If we found a label, check to see if it is in the same context as us.
4418 // When in a Block, we don't want to reuse a label in an enclosing function.
4419 if (Res && Res->getDeclContext() != CurContext)
4420 Res = nullptr;
4421 if (!Res) {
4422 // If not forward referenced or defined already, create the backing decl.
4423 Res = LabelDecl::Create(Context, CurContext, Loc, II);
4424 Scope *S = CurScope->getFnParent();
4425 assert(S && "Not in a function?");
4426 PushOnScopeChains(Res, S, true);
4427 }
4428 return cast<LabelDecl>(Res);
4429 }
4430
4431 //===----------------------------------------------------------------------===//
4432 // Typo correction
4433 //===----------------------------------------------------------------------===//
4434
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)4435 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4436 TypoCorrection &Candidate) {
4437 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4438 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4439 }
4440
4441 static void LookupPotentialTypoResult(Sema &SemaRef,
4442 LookupResult &Res,
4443 IdentifierInfo *Name,
4444 Scope *S, CXXScopeSpec *SS,
4445 DeclContext *MemberContext,
4446 bool EnteringContext,
4447 bool isObjCIvarLookup,
4448 bool FindHidden);
4449
4450 /// Check whether the declarations found for a typo correction are
4451 /// visible. Set the correction's RequiresImport flag to true if none of the
4452 /// declarations are visible, false otherwise.
checkCorrectionVisibility(Sema & SemaRef,TypoCorrection & TC)4453 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4454 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4455
4456 for (/**/; DI != DE; ++DI)
4457 if (!LookupResult::isVisible(SemaRef, *DI))
4458 break;
4459 // No filtering needed if all decls are visible.
4460 if (DI == DE) {
4461 TC.setRequiresImport(false);
4462 return;
4463 }
4464
4465 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4466 bool AnyVisibleDecls = !NewDecls.empty();
4467
4468 for (/**/; DI != DE; ++DI) {
4469 if (LookupResult::isVisible(SemaRef, *DI)) {
4470 if (!AnyVisibleDecls) {
4471 // Found a visible decl, discard all hidden ones.
4472 AnyVisibleDecls = true;
4473 NewDecls.clear();
4474 }
4475 NewDecls.push_back(*DI);
4476 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4477 NewDecls.push_back(*DI);
4478 }
4479
4480 if (NewDecls.empty())
4481 TC = TypoCorrection();
4482 else {
4483 TC.setCorrectionDecls(NewDecls);
4484 TC.setRequiresImport(!AnyVisibleDecls);
4485 }
4486 }
4487
4488 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4489 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4490 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)4491 static void getNestedNameSpecifierIdentifiers(
4492 NestedNameSpecifier *NNS,
4493 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4494 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4495 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4496 else
4497 Identifiers.clear();
4498
4499 const IdentifierInfo *II = nullptr;
4500
4501 switch (NNS->getKind()) {
4502 case NestedNameSpecifier::Identifier:
4503 II = NNS->getAsIdentifier();
4504 break;
4505
4506 case NestedNameSpecifier::Namespace:
4507 if (NNS->getAsNamespace()->isAnonymousNamespace())
4508 return;
4509 II = NNS->getAsNamespace()->getIdentifier();
4510 break;
4511
4512 case NestedNameSpecifier::NamespaceAlias:
4513 II = NNS->getAsNamespaceAlias()->getIdentifier();
4514 break;
4515
4516 case NestedNameSpecifier::TypeSpecWithTemplate:
4517 case NestedNameSpecifier::TypeSpec:
4518 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4519 break;
4520
4521 case NestedNameSpecifier::Global:
4522 case NestedNameSpecifier::Super:
4523 return;
4524 }
4525
4526 if (II)
4527 Identifiers.push_back(II);
4528 }
4529
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)4530 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4531 DeclContext *Ctx, bool InBaseClass) {
4532 // Don't consider hidden names for typo correction.
4533 if (Hiding)
4534 return;
4535
4536 // Only consider entities with identifiers for names, ignoring
4537 // special names (constructors, overloaded operators, selectors,
4538 // etc.).
4539 IdentifierInfo *Name = ND->getIdentifier();
4540 if (!Name)
4541 return;
4542
4543 // Only consider visible declarations and declarations from modules with
4544 // names that exactly match.
4545 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4546 return;
4547
4548 FoundName(Name->getName());
4549 }
4550
FoundName(StringRef Name)4551 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4552 // Compute the edit distance between the typo and the name of this
4553 // entity, and add the identifier to the list of results.
4554 addName(Name, nullptr);
4555 }
4556
addKeywordResult(StringRef Keyword)4557 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4558 // Compute the edit distance between the typo and this keyword,
4559 // and add the keyword to the list of results.
4560 addName(Keyword, nullptr, nullptr, true);
4561 }
4562
addName(StringRef Name,NamedDecl * ND,NestedNameSpecifier * NNS,bool isKeyword)4563 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4564 NestedNameSpecifier *NNS, bool isKeyword) {
4565 // Use a simple length-based heuristic to determine the minimum possible
4566 // edit distance. If the minimum isn't good enough, bail out early.
4567 StringRef TypoStr = Typo->getName();
4568 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4569 if (MinED && TypoStr.size() / MinED < 3)
4570 return;
4571
4572 // Compute an upper bound on the allowable edit distance, so that the
4573 // edit-distance algorithm can short-circuit.
4574 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4575 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4576 if (ED > UpperBound) return;
4577
4578 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4579 if (isKeyword) TC.makeKeyword();
4580 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4581 addCorrection(TC);
4582 }
4583
4584 static const unsigned MaxTypoDistanceResultSets = 5;
4585
addCorrection(TypoCorrection Correction)4586 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4587 StringRef TypoStr = Typo->getName();
4588 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4589
4590 // For very short typos, ignore potential corrections that have a different
4591 // base identifier from the typo or which have a normalized edit distance
4592 // longer than the typo itself.
4593 if (TypoStr.size() < 3 &&
4594 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4595 return;
4596
4597 // If the correction is resolved but is not viable, ignore it.
4598 if (Correction.isResolved()) {
4599 checkCorrectionVisibility(SemaRef, Correction);
4600 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4601 return;
4602 }
4603
4604 TypoResultList &CList =
4605 CorrectionResults[Correction.getEditDistance(false)][Name];
4606
4607 if (!CList.empty() && !CList.back().isResolved())
4608 CList.pop_back();
4609 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4610 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4611 return TypoCorr.getCorrectionDecl() == NewND;
4612 });
4613 if (RI != CList.end()) {
4614 // The Correction refers to a decl already in the list. No insertion is
4615 // necessary and all further cases will return.
4616
4617 auto IsDeprecated = [](Decl *D) {
4618 while (D) {
4619 if (D->isDeprecated())
4620 return true;
4621 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4622 }
4623 return false;
4624 };
4625
4626 // Prefer non deprecated Corrections over deprecated and only then
4627 // sort using an alphabetical order.
4628 std::pair<bool, std::string> NewKey = {
4629 IsDeprecated(Correction.getFoundDecl()),
4630 Correction.getAsString(SemaRef.getLangOpts())};
4631
4632 std::pair<bool, std::string> PrevKey = {
4633 IsDeprecated(RI->getFoundDecl()),
4634 RI->getAsString(SemaRef.getLangOpts())};
4635
4636 if (NewKey < PrevKey)
4637 *RI = Correction;
4638 return;
4639 }
4640 }
4641 if (CList.empty() || Correction.isResolved())
4642 CList.push_back(Correction);
4643
4644 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4645 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4646 }
4647
addNamespaces(const llvm::MapVector<NamespaceDecl *,bool> & KnownNamespaces)4648 void TypoCorrectionConsumer::addNamespaces(
4649 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4650 SearchNamespaces = true;
4651
4652 for (auto KNPair : KnownNamespaces)
4653 Namespaces.addNameSpecifier(KNPair.first);
4654
4655 bool SSIsTemplate = false;
4656 if (NestedNameSpecifier *NNS =
4657 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4658 if (const Type *T = NNS->getAsType())
4659 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4660 }
4661 // Do not transform this into an iterator-based loop. The loop body can
4662 // trigger the creation of further types (through lazy deserialization) and
4663 // invalid iterators into this list.
4664 auto &Types = SemaRef.getASTContext().getTypes();
4665 for (unsigned I = 0; I != Types.size(); ++I) {
4666 const auto *TI = Types[I];
4667 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4668 CD = CD->getCanonicalDecl();
4669 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4670 !CD->isUnion() && CD->getIdentifier() &&
4671 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4672 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4673 Namespaces.addNameSpecifier(CD);
4674 }
4675 }
4676 }
4677
getNextCorrection()4678 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4679 if (++CurrentTCIndex < ValidatedCorrections.size())
4680 return ValidatedCorrections[CurrentTCIndex];
4681
4682 CurrentTCIndex = ValidatedCorrections.size();
4683 while (!CorrectionResults.empty()) {
4684 auto DI = CorrectionResults.begin();
4685 if (DI->second.empty()) {
4686 CorrectionResults.erase(DI);
4687 continue;
4688 }
4689
4690 auto RI = DI->second.begin();
4691 if (RI->second.empty()) {
4692 DI->second.erase(RI);
4693 performQualifiedLookups();
4694 continue;
4695 }
4696
4697 TypoCorrection TC = RI->second.pop_back_val();
4698 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4699 ValidatedCorrections.push_back(TC);
4700 return ValidatedCorrections[CurrentTCIndex];
4701 }
4702 }
4703 return ValidatedCorrections[0]; // The empty correction.
4704 }
4705
resolveCorrection(TypoCorrection & Candidate)4706 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4707 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4708 DeclContext *TempMemberContext = MemberContext;
4709 CXXScopeSpec *TempSS = SS.get();
4710 retry_lookup:
4711 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4712 EnteringContext,
4713 CorrectionValidator->IsObjCIvarLookup,
4714 Name == Typo && !Candidate.WillReplaceSpecifier());
4715 switch (Result.getResultKind()) {
4716 case LookupResult::NotFound:
4717 case LookupResult::NotFoundInCurrentInstantiation:
4718 case LookupResult::FoundUnresolvedValue:
4719 if (TempSS) {
4720 // Immediately retry the lookup without the given CXXScopeSpec
4721 TempSS = nullptr;
4722 Candidate.WillReplaceSpecifier(true);
4723 goto retry_lookup;
4724 }
4725 if (TempMemberContext) {
4726 if (SS && !TempSS)
4727 TempSS = SS.get();
4728 TempMemberContext = nullptr;
4729 goto retry_lookup;
4730 }
4731 if (SearchNamespaces)
4732 QualifiedResults.push_back(Candidate);
4733 break;
4734
4735 case LookupResult::Ambiguous:
4736 // We don't deal with ambiguities.
4737 break;
4738
4739 case LookupResult::Found:
4740 case LookupResult::FoundOverloaded:
4741 // Store all of the Decls for overloaded symbols
4742 for (auto *TRD : Result)
4743 Candidate.addCorrectionDecl(TRD);
4744 checkCorrectionVisibility(SemaRef, Candidate);
4745 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4746 if (SearchNamespaces)
4747 QualifiedResults.push_back(Candidate);
4748 break;
4749 }
4750 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4751 return true;
4752 }
4753 return false;
4754 }
4755
performQualifiedLookups()4756 void TypoCorrectionConsumer::performQualifiedLookups() {
4757 unsigned TypoLen = Typo->getName().size();
4758 for (const TypoCorrection &QR : QualifiedResults) {
4759 for (const auto &NSI : Namespaces) {
4760 DeclContext *Ctx = NSI.DeclCtx;
4761 const Type *NSType = NSI.NameSpecifier->getAsType();
4762
4763 // If the current NestedNameSpecifier refers to a class and the
4764 // current correction candidate is the name of that class, then skip
4765 // it as it is unlikely a qualified version of the class' constructor
4766 // is an appropriate correction.
4767 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4768 nullptr) {
4769 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4770 continue;
4771 }
4772
4773 TypoCorrection TC(QR);
4774 TC.ClearCorrectionDecls();
4775 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4776 TC.setQualifierDistance(NSI.EditDistance);
4777 TC.setCallbackDistance(0); // Reset the callback distance
4778
4779 // If the current correction candidate and namespace combination are
4780 // too far away from the original typo based on the normalized edit
4781 // distance, then skip performing a qualified name lookup.
4782 unsigned TmpED = TC.getEditDistance(true);
4783 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4784 TypoLen / TmpED < 3)
4785 continue;
4786
4787 Result.clear();
4788 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4789 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4790 continue;
4791
4792 // Any corrections added below will be validated in subsequent
4793 // iterations of the main while() loop over the Consumer's contents.
4794 switch (Result.getResultKind()) {
4795 case LookupResult::Found:
4796 case LookupResult::FoundOverloaded: {
4797 if (SS && SS->isValid()) {
4798 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4799 std::string OldQualified;
4800 llvm::raw_string_ostream OldOStream(OldQualified);
4801 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4802 OldOStream << Typo->getName();
4803 // If correction candidate would be an identical written qualified
4804 // identifier, then the existing CXXScopeSpec probably included a
4805 // typedef that didn't get accounted for properly.
4806 if (OldOStream.str() == NewQualified)
4807 break;
4808 }
4809 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4810 TRD != TRDEnd; ++TRD) {
4811 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4812 NSType ? NSType->getAsCXXRecordDecl()
4813 : nullptr,
4814 TRD.getPair()) == Sema::AR_accessible)
4815 TC.addCorrectionDecl(*TRD);
4816 }
4817 if (TC.isResolved()) {
4818 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4819 addCorrection(TC);
4820 }
4821 break;
4822 }
4823 case LookupResult::NotFound:
4824 case LookupResult::NotFoundInCurrentInstantiation:
4825 case LookupResult::Ambiguous:
4826 case LookupResult::FoundUnresolvedValue:
4827 break;
4828 }
4829 }
4830 }
4831 QualifiedResults.clear();
4832 }
4833
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)4834 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4835 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4836 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4837 if (NestedNameSpecifier *NNS =
4838 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4839 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4840 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4841
4842 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4843 }
4844 // Build the list of identifiers that would be used for an absolute
4845 // (from the global context) NestedNameSpecifier referring to the current
4846 // context.
4847 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4848 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4849 CurContextIdentifiers.push_back(ND->getIdentifier());
4850 }
4851
4852 // Add the global context as a NestedNameSpecifier
4853 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4854 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4855 DistanceMap[1].push_back(SI);
4856 }
4857
buildContextChain(DeclContext * Start)4858 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4859 DeclContext *Start) -> DeclContextList {
4860 assert(Start && "Building a context chain from a null context");
4861 DeclContextList Chain;
4862 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4863 DC = DC->getLookupParent()) {
4864 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4865 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4866 !(ND && ND->isAnonymousNamespace()))
4867 Chain.push_back(DC->getPrimaryContext());
4868 }
4869 return Chain;
4870 }
4871
4872 unsigned
buildNestedNameSpecifier(DeclContextList & DeclChain,NestedNameSpecifier * & NNS)4873 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4874 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4875 unsigned NumSpecifiers = 0;
4876 for (DeclContext *C : llvm::reverse(DeclChain)) {
4877 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4878 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4879 ++NumSpecifiers;
4880 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4881 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4882 RD->getTypeForDecl());
4883 ++NumSpecifiers;
4884 }
4885 }
4886 return NumSpecifiers;
4887 }
4888
addNameSpecifier(DeclContext * Ctx)4889 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4890 DeclContext *Ctx) {
4891 NestedNameSpecifier *NNS = nullptr;
4892 unsigned NumSpecifiers = 0;
4893 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4894 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4895
4896 // Eliminate common elements from the two DeclContext chains.
4897 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4898 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4899 break;
4900 NamespaceDeclChain.pop_back();
4901 }
4902
4903 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4904 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4905
4906 // Add an explicit leading '::' specifier if needed.
4907 if (NamespaceDeclChain.empty()) {
4908 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4909 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4910 NumSpecifiers =
4911 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4912 } else if (NamedDecl *ND =
4913 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4914 IdentifierInfo *Name = ND->getIdentifier();
4915 bool SameNameSpecifier = false;
4916 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4917 std::string NewNameSpecifier;
4918 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4919 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4920 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4921 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4922 SpecifierOStream.flush();
4923 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4924 }
4925 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4926 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4927 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4928 NumSpecifiers =
4929 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4930 }
4931 }
4932
4933 // If the built NestedNameSpecifier would be replacing an existing
4934 // NestedNameSpecifier, use the number of component identifiers that
4935 // would need to be changed as the edit distance instead of the number
4936 // of components in the built NestedNameSpecifier.
4937 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4938 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4939 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4940 NumSpecifiers = llvm::ComputeEditDistance(
4941 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4942 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4943 }
4944
4945 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4946 DistanceMap[NumSpecifiers].push_back(SI);
4947 }
4948
4949 /// Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup,bool FindHidden)4950 static void LookupPotentialTypoResult(Sema &SemaRef,
4951 LookupResult &Res,
4952 IdentifierInfo *Name,
4953 Scope *S, CXXScopeSpec *SS,
4954 DeclContext *MemberContext,
4955 bool EnteringContext,
4956 bool isObjCIvarLookup,
4957 bool FindHidden) {
4958 Res.suppressDiagnostics();
4959 Res.clear();
4960 Res.setLookupName(Name);
4961 Res.setAllowHidden(FindHidden);
4962 if (MemberContext) {
4963 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4964 if (isObjCIvarLookup) {
4965 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4966 Res.addDecl(Ivar);
4967 Res.resolveKind();
4968 return;
4969 }
4970 }
4971
4972 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4973 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4974 Res.addDecl(Prop);
4975 Res.resolveKind();
4976 return;
4977 }
4978 }
4979
4980 SemaRef.LookupQualifiedName(Res, MemberContext);
4981 return;
4982 }
4983
4984 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4985 EnteringContext);
4986
4987 // Fake ivar lookup; this should really be part of
4988 // LookupParsedName.
4989 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4990 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4991 (Res.empty() ||
4992 (Res.isSingleResult() &&
4993 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4994 if (ObjCIvarDecl *IV
4995 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4996 Res.addDecl(IV);
4997 Res.resolveKind();
4998 }
4999 }
5000 }
5001 }
5002
5003 /// Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)5004 static void AddKeywordsToConsumer(Sema &SemaRef,
5005 TypoCorrectionConsumer &Consumer,
5006 Scope *S, CorrectionCandidateCallback &CCC,
5007 bool AfterNestedNameSpecifier) {
5008 if (AfterNestedNameSpecifier) {
5009 // For 'X::', we know exactly which keywords can appear next.
5010 Consumer.addKeywordResult("template");
5011 if (CCC.WantExpressionKeywords)
5012 Consumer.addKeywordResult("operator");
5013 return;
5014 }
5015
5016 if (CCC.WantObjCSuper)
5017 Consumer.addKeywordResult("super");
5018
5019 if (CCC.WantTypeSpecifiers) {
5020 // Add type-specifier keywords to the set of results.
5021 static const char *const CTypeSpecs[] = {
5022 "char", "const", "double", "enum", "float", "int", "long", "short",
5023 "signed", "struct", "union", "unsigned", "void", "volatile",
5024 "_Complex", "_Imaginary",
5025 // storage-specifiers as well
5026 "extern", "inline", "static", "typedef"
5027 };
5028
5029 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
5030 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
5031 Consumer.addKeywordResult(CTypeSpecs[I]);
5032
5033 if (SemaRef.getLangOpts().C99)
5034 Consumer.addKeywordResult("restrict");
5035 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5036 Consumer.addKeywordResult("bool");
5037 else if (SemaRef.getLangOpts().C99)
5038 Consumer.addKeywordResult("_Bool");
5039
5040 if (SemaRef.getLangOpts().CPlusPlus) {
5041 Consumer.addKeywordResult("class");
5042 Consumer.addKeywordResult("typename");
5043 Consumer.addKeywordResult("wchar_t");
5044
5045 if (SemaRef.getLangOpts().CPlusPlus11) {
5046 Consumer.addKeywordResult("char16_t");
5047 Consumer.addKeywordResult("char32_t");
5048 Consumer.addKeywordResult("constexpr");
5049 Consumer.addKeywordResult("decltype");
5050 Consumer.addKeywordResult("thread_local");
5051 }
5052 }
5053
5054 if (SemaRef.getLangOpts().GNUKeywords)
5055 Consumer.addKeywordResult("typeof");
5056 } else if (CCC.WantFunctionLikeCasts) {
5057 static const char *const CastableTypeSpecs[] = {
5058 "char", "double", "float", "int", "long", "short",
5059 "signed", "unsigned", "void"
5060 };
5061 for (auto *kw : CastableTypeSpecs)
5062 Consumer.addKeywordResult(kw);
5063 }
5064
5065 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5066 Consumer.addKeywordResult("const_cast");
5067 Consumer.addKeywordResult("dynamic_cast");
5068 Consumer.addKeywordResult("reinterpret_cast");
5069 Consumer.addKeywordResult("static_cast");
5070 }
5071
5072 if (CCC.WantExpressionKeywords) {
5073 Consumer.addKeywordResult("sizeof");
5074 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5075 Consumer.addKeywordResult("false");
5076 Consumer.addKeywordResult("true");
5077 }
5078
5079 if (SemaRef.getLangOpts().CPlusPlus) {
5080 static const char *const CXXExprs[] = {
5081 "delete", "new", "operator", "throw", "typeid"
5082 };
5083 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
5084 for (unsigned I = 0; I != NumCXXExprs; ++I)
5085 Consumer.addKeywordResult(CXXExprs[I]);
5086
5087 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5088 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5089 Consumer.addKeywordResult("this");
5090
5091 if (SemaRef.getLangOpts().CPlusPlus11) {
5092 Consumer.addKeywordResult("alignof");
5093 Consumer.addKeywordResult("nullptr");
5094 }
5095 }
5096
5097 if (SemaRef.getLangOpts().C11) {
5098 // FIXME: We should not suggest _Alignof if the alignof macro
5099 // is present.
5100 Consumer.addKeywordResult("_Alignof");
5101 }
5102 }
5103
5104 if (CCC.WantRemainingKeywords) {
5105 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5106 // Statements.
5107 static const char *const CStmts[] = {
5108 "do", "else", "for", "goto", "if", "return", "switch", "while" };
5109 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
5110 for (unsigned I = 0; I != NumCStmts; ++I)
5111 Consumer.addKeywordResult(CStmts[I]);
5112
5113 if (SemaRef.getLangOpts().CPlusPlus) {
5114 Consumer.addKeywordResult("catch");
5115 Consumer.addKeywordResult("try");
5116 }
5117
5118 if (S && S->getBreakParent())
5119 Consumer.addKeywordResult("break");
5120
5121 if (S && S->getContinueParent())
5122 Consumer.addKeywordResult("continue");
5123
5124 if (SemaRef.getCurFunction() &&
5125 !SemaRef.getCurFunction()->SwitchStack.empty()) {
5126 Consumer.addKeywordResult("case");
5127 Consumer.addKeywordResult("default");
5128 }
5129 } else {
5130 if (SemaRef.getLangOpts().CPlusPlus) {
5131 Consumer.addKeywordResult("namespace");
5132 Consumer.addKeywordResult("template");
5133 }
5134
5135 if (S && S->isClassScope()) {
5136 Consumer.addKeywordResult("explicit");
5137 Consumer.addKeywordResult("friend");
5138 Consumer.addKeywordResult("mutable");
5139 Consumer.addKeywordResult("private");
5140 Consumer.addKeywordResult("protected");
5141 Consumer.addKeywordResult("public");
5142 Consumer.addKeywordResult("virtual");
5143 }
5144 }
5145
5146 if (SemaRef.getLangOpts().CPlusPlus) {
5147 Consumer.addKeywordResult("using");
5148
5149 if (SemaRef.getLangOpts().CPlusPlus11)
5150 Consumer.addKeywordResult("static_assert");
5151 }
5152 }
5153 }
5154
makeTypoCorrectionConsumer(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool ErrorRecovery)5155 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5156 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5157 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5158 DeclContext *MemberContext, bool EnteringContext,
5159 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5160
5161 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5162 DisableTypoCorrection)
5163 return nullptr;
5164
5165 // In Microsoft mode, don't perform typo correction in a template member
5166 // function dependent context because it interferes with the "lookup into
5167 // dependent bases of class templates" feature.
5168 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5169 isa<CXXMethodDecl>(CurContext))
5170 return nullptr;
5171
5172 // We only attempt to correct typos for identifiers.
5173 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5174 if (!Typo)
5175 return nullptr;
5176
5177 // If the scope specifier itself was invalid, don't try to correct
5178 // typos.
5179 if (SS && SS->isInvalid())
5180 return nullptr;
5181
5182 // Never try to correct typos during any kind of code synthesis.
5183 if (!CodeSynthesisContexts.empty())
5184 return nullptr;
5185
5186 // Don't try to correct 'super'.
5187 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5188 return nullptr;
5189
5190 // Abort if typo correction already failed for this specific typo.
5191 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5192 if (locs != TypoCorrectionFailures.end() &&
5193 locs->second.count(TypoName.getLoc()))
5194 return nullptr;
5195
5196 // Don't try to correct the identifier "vector" when in AltiVec mode.
5197 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5198 // remove this workaround.
5199 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5200 return nullptr;
5201
5202 // Provide a stop gap for files that are just seriously broken. Trying
5203 // to correct all typos can turn into a HUGE performance penalty, causing
5204 // some files to take minutes to get rejected by the parser.
5205 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5206 if (Limit && TyposCorrected >= Limit)
5207 return nullptr;
5208 ++TyposCorrected;
5209
5210 // If we're handling a missing symbol error, using modules, and the
5211 // special search all modules option is used, look for a missing import.
5212 if (ErrorRecovery && getLangOpts().Modules &&
5213 getLangOpts().ModulesSearchAll) {
5214 // The following has the side effect of loading the missing module.
5215 getModuleLoader().lookupMissingImports(Typo->getName(),
5216 TypoName.getBeginLoc());
5217 }
5218
5219 // Extend the lifetime of the callback. We delayed this until here
5220 // to avoid allocations in the hot path (which is where no typo correction
5221 // occurs). Note that CorrectionCandidateCallback is polymorphic and
5222 // initially stack-allocated.
5223 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5224 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5225 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5226 EnteringContext);
5227
5228 // Perform name lookup to find visible, similarly-named entities.
5229 bool IsUnqualifiedLookup = false;
5230 DeclContext *QualifiedDC = MemberContext;
5231 if (MemberContext) {
5232 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5233
5234 // Look in qualified interfaces.
5235 if (OPT) {
5236 for (auto *I : OPT->quals())
5237 LookupVisibleDecls(I, LookupKind, *Consumer);
5238 }
5239 } else if (SS && SS->isSet()) {
5240 QualifiedDC = computeDeclContext(*SS, EnteringContext);
5241 if (!QualifiedDC)
5242 return nullptr;
5243
5244 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5245 } else {
5246 IsUnqualifiedLookup = true;
5247 }
5248
5249 // Determine whether we are going to search in the various namespaces for
5250 // corrections.
5251 bool SearchNamespaces
5252 = getLangOpts().CPlusPlus &&
5253 (IsUnqualifiedLookup || (SS && SS->isSet()));
5254
5255 if (IsUnqualifiedLookup || SearchNamespaces) {
5256 // For unqualified lookup, look through all of the names that we have
5257 // seen in this translation unit.
5258 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5259 for (const auto &I : Context.Idents)
5260 Consumer->FoundName(I.getKey());
5261
5262 // Walk through identifiers in external identifier sources.
5263 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5264 if (IdentifierInfoLookup *External
5265 = Context.Idents.getExternalIdentifierLookup()) {
5266 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5267 do {
5268 StringRef Name = Iter->Next();
5269 if (Name.empty())
5270 break;
5271
5272 Consumer->FoundName(Name);
5273 } while (true);
5274 }
5275 }
5276
5277 AddKeywordsToConsumer(*this, *Consumer, S,
5278 *Consumer->getCorrectionValidator(),
5279 SS && SS->isNotEmpty());
5280
5281 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5282 // to search those namespaces.
5283 if (SearchNamespaces) {
5284 // Load any externally-known namespaces.
5285 if (ExternalSource && !LoadedExternalKnownNamespaces) {
5286 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5287 LoadedExternalKnownNamespaces = true;
5288 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5289 for (auto *N : ExternalKnownNamespaces)
5290 KnownNamespaces[N] = true;
5291 }
5292
5293 Consumer->addNamespaces(KnownNamespaces);
5294 }
5295
5296 return Consumer;
5297 }
5298
5299 /// Try to "correct" a typo in the source code by finding
5300 /// visible declarations whose names are similar to the name that was
5301 /// present in the source code.
5302 ///
5303 /// \param TypoName the \c DeclarationNameInfo structure that contains
5304 /// the name that was present in the source code along with its location.
5305 ///
5306 /// \param LookupKind the name-lookup criteria used to search for the name.
5307 ///
5308 /// \param S the scope in which name lookup occurs.
5309 ///
5310 /// \param SS the nested-name-specifier that precedes the name we're
5311 /// looking for, if present.
5312 ///
5313 /// \param CCC A CorrectionCandidateCallback object that provides further
5314 /// validation of typo correction candidates. It also provides flags for
5315 /// determining the set of keywords permitted.
5316 ///
5317 /// \param MemberContext if non-NULL, the context in which to look for
5318 /// a member access expression.
5319 ///
5320 /// \param EnteringContext whether we're entering the context described by
5321 /// the nested-name-specifier SS.
5322 ///
5323 /// \param OPT when non-NULL, the search for visible declarations will
5324 /// also walk the protocols in the qualified interfaces of \p OPT.
5325 ///
5326 /// \returns a \c TypoCorrection containing the corrected name if the typo
5327 /// along with information such as the \c NamedDecl where the corrected name
5328 /// was declared, and any additional \c NestedNameSpecifier needed to access
5329 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool RecordFailure)5330 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5331 Sema::LookupNameKind LookupKind,
5332 Scope *S, CXXScopeSpec *SS,
5333 CorrectionCandidateCallback &CCC,
5334 CorrectTypoKind Mode,
5335 DeclContext *MemberContext,
5336 bool EnteringContext,
5337 const ObjCObjectPointerType *OPT,
5338 bool RecordFailure) {
5339 // Always let the ExternalSource have the first chance at correction, even
5340 // if we would otherwise have given up.
5341 if (ExternalSource) {
5342 if (TypoCorrection Correction =
5343 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5344 MemberContext, EnteringContext, OPT))
5345 return Correction;
5346 }
5347
5348 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5349 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5350 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5351 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5352 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5353
5354 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5355 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5356 MemberContext, EnteringContext,
5357 OPT, Mode == CTK_ErrorRecovery);
5358
5359 if (!Consumer)
5360 return TypoCorrection();
5361
5362 // If we haven't found anything, we're done.
5363 if (Consumer->empty())
5364 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5365
5366 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5367 // is not more that about a third of the length of the typo's identifier.
5368 unsigned ED = Consumer->getBestEditDistance(true);
5369 unsigned TypoLen = Typo->getName().size();
5370 if (ED > 0 && TypoLen / ED < 3)
5371 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5372
5373 TypoCorrection BestTC = Consumer->getNextCorrection();
5374 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5375 if (!BestTC)
5376 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5377
5378 ED = BestTC.getEditDistance();
5379
5380 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5381 // If this was an unqualified lookup and we believe the callback
5382 // object wouldn't have filtered out possible corrections, note
5383 // that no correction was found.
5384 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5385 }
5386
5387 // If only a single name remains, return that result.
5388 if (!SecondBestTC ||
5389 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5390 const TypoCorrection &Result = BestTC;
5391
5392 // Don't correct to a keyword that's the same as the typo; the keyword
5393 // wasn't actually in scope.
5394 if (ED == 0 && Result.isKeyword())
5395 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5396
5397 TypoCorrection TC = Result;
5398 TC.setCorrectionRange(SS, TypoName);
5399 checkCorrectionVisibility(*this, TC);
5400 return TC;
5401 } else if (SecondBestTC && ObjCMessageReceiver) {
5402 // Prefer 'super' when we're completing in a message-receiver
5403 // context.
5404
5405 if (BestTC.getCorrection().getAsString() != "super") {
5406 if (SecondBestTC.getCorrection().getAsString() == "super")
5407 BestTC = SecondBestTC;
5408 else if ((*Consumer)["super"].front().isKeyword())
5409 BestTC = (*Consumer)["super"].front();
5410 }
5411 // Don't correct to a keyword that's the same as the typo; the keyword
5412 // wasn't actually in scope.
5413 if (BestTC.getEditDistance() == 0 ||
5414 BestTC.getCorrection().getAsString() != "super")
5415 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5416
5417 BestTC.setCorrectionRange(SS, TypoName);
5418 return BestTC;
5419 }
5420
5421 // Record the failure's location if needed and return an empty correction. If
5422 // this was an unqualified lookup and we believe the callback object did not
5423 // filter out possible corrections, also cache the failure for the typo.
5424 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5425 }
5426
5427 /// Try to "correct" a typo in the source code by finding
5428 /// visible declarations whose names are similar to the name that was
5429 /// present in the source code.
5430 ///
5431 /// \param TypoName the \c DeclarationNameInfo structure that contains
5432 /// the name that was present in the source code along with its location.
5433 ///
5434 /// \param LookupKind the name-lookup criteria used to search for the name.
5435 ///
5436 /// \param S the scope in which name lookup occurs.
5437 ///
5438 /// \param SS the nested-name-specifier that precedes the name we're
5439 /// looking for, if present.
5440 ///
5441 /// \param CCC A CorrectionCandidateCallback object that provides further
5442 /// validation of typo correction candidates. It also provides flags for
5443 /// determining the set of keywords permitted.
5444 ///
5445 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5446 /// diagnostics when the actual typo correction is attempted.
5447 ///
5448 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5449 /// Expr from a typo correction candidate.
5450 ///
5451 /// \param MemberContext if non-NULL, the context in which to look for
5452 /// a member access expression.
5453 ///
5454 /// \param EnteringContext whether we're entering the context described by
5455 /// the nested-name-specifier SS.
5456 ///
5457 /// \param OPT when non-NULL, the search for visible declarations will
5458 /// also walk the protocols in the qualified interfaces of \p OPT.
5459 ///
5460 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5461 /// Expr representing the result of performing typo correction, or nullptr if
5462 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5463 /// be emitted and it is the responsibility of the caller to emit any that are
5464 /// needed.
CorrectTypoDelayed(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)5465 TypoExpr *Sema::CorrectTypoDelayed(
5466 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5467 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5468 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5469 DeclContext *MemberContext, bool EnteringContext,
5470 const ObjCObjectPointerType *OPT) {
5471 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5472 MemberContext, EnteringContext,
5473 OPT, Mode == CTK_ErrorRecovery);
5474
5475 // Give the external sema source a chance to correct the typo.
5476 TypoCorrection ExternalTypo;
5477 if (ExternalSource && Consumer) {
5478 ExternalTypo = ExternalSource->CorrectTypo(
5479 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5480 MemberContext, EnteringContext, OPT);
5481 if (ExternalTypo)
5482 Consumer->addCorrection(ExternalTypo);
5483 }
5484
5485 if (!Consumer || Consumer->empty())
5486 return nullptr;
5487
5488 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5489 // is not more that about a third of the length of the typo's identifier.
5490 unsigned ED = Consumer->getBestEditDistance(true);
5491 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5492 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5493 return nullptr;
5494 ExprEvalContexts.back().NumTypos++;
5495 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5496 TypoName.getLoc());
5497 }
5498
addCorrectionDecl(NamedDecl * CDecl)5499 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5500 if (!CDecl) return;
5501
5502 if (isKeyword())
5503 CorrectionDecls.clear();
5504
5505 CorrectionDecls.push_back(CDecl);
5506
5507 if (!CorrectionName)
5508 CorrectionName = CDecl->getDeclName();
5509 }
5510
getAsString(const LangOptions & LO) const5511 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5512 if (CorrectionNameSpec) {
5513 std::string tmpBuffer;
5514 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5515 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5516 PrefixOStream << CorrectionName;
5517 return PrefixOStream.str();
5518 }
5519
5520 return CorrectionName.getAsString();
5521 }
5522
ValidateCandidate(const TypoCorrection & candidate)5523 bool CorrectionCandidateCallback::ValidateCandidate(
5524 const TypoCorrection &candidate) {
5525 if (!candidate.isResolved())
5526 return true;
5527
5528 if (candidate.isKeyword())
5529 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5530 WantRemainingKeywords || WantObjCSuper;
5531
5532 bool HasNonType = false;
5533 bool HasStaticMethod = false;
5534 bool HasNonStaticMethod = false;
5535 for (Decl *D : candidate) {
5536 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5537 D = FTD->getTemplatedDecl();
5538 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5539 if (Method->isStatic())
5540 HasStaticMethod = true;
5541 else
5542 HasNonStaticMethod = true;
5543 }
5544 if (!isa<TypeDecl>(D))
5545 HasNonType = true;
5546 }
5547
5548 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5549 !candidate.getCorrectionSpecifier())
5550 return false;
5551
5552 return WantTypeSpecifiers || HasNonType;
5553 }
5554
FunctionCallFilterCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs,MemberExpr * ME)5555 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5556 bool HasExplicitTemplateArgs,
5557 MemberExpr *ME)
5558 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5559 CurContext(SemaRef.CurContext), MemberFn(ME) {
5560 WantTypeSpecifiers = false;
5561 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5562 !HasExplicitTemplateArgs && NumArgs == 1;
5563 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5564 WantRemainingKeywords = false;
5565 }
5566
ValidateCandidate(const TypoCorrection & candidate)5567 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5568 if (!candidate.getCorrectionDecl())
5569 return candidate.isKeyword();
5570
5571 for (auto *C : candidate) {
5572 FunctionDecl *FD = nullptr;
5573 NamedDecl *ND = C->getUnderlyingDecl();
5574 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5575 FD = FTD->getTemplatedDecl();
5576 if (!HasExplicitTemplateArgs && !FD) {
5577 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5578 // If the Decl is neither a function nor a template function,
5579 // determine if it is a pointer or reference to a function. If so,
5580 // check against the number of arguments expected for the pointee.
5581 QualType ValType = cast<ValueDecl>(ND)->getType();
5582 if (ValType.isNull())
5583 continue;
5584 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5585 ValType = ValType->getPointeeType();
5586 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5587 if (FPT->getNumParams() == NumArgs)
5588 return true;
5589 }
5590 }
5591
5592 // A typo for a function-style cast can look like a function call in C++.
5593 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5594 : isa<TypeDecl>(ND)) &&
5595 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5596 // Only a class or class template can take two or more arguments.
5597 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5598
5599 // Skip the current candidate if it is not a FunctionDecl or does not accept
5600 // the current number of arguments.
5601 if (!FD || !(FD->getNumParams() >= NumArgs &&
5602 FD->getMinRequiredArguments() <= NumArgs))
5603 continue;
5604
5605 // If the current candidate is a non-static C++ method, skip the candidate
5606 // unless the method being corrected--or the current DeclContext, if the
5607 // function being corrected is not a method--is a method in the same class
5608 // or a descendent class of the candidate's parent class.
5609 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5610 if (MemberFn || !MD->isStatic()) {
5611 CXXMethodDecl *CurMD =
5612 MemberFn
5613 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5614 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5615 CXXRecordDecl *CurRD =
5616 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5617 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5618 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5619 continue;
5620 }
5621 }
5622 return true;
5623 }
5624 return false;
5625 }
5626
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,bool ErrorRecovery)5627 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5628 const PartialDiagnostic &TypoDiag,
5629 bool ErrorRecovery) {
5630 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5631 ErrorRecovery);
5632 }
5633
5634 /// Find which declaration we should import to provide the definition of
5635 /// the given declaration.
getDefinitionToImport(NamedDecl * D)5636 static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5637 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5638 return VD->getDefinition();
5639 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5640 return FD->getDefinition();
5641 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5642 return TD->getDefinition();
5643 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5644 return ID->getDefinition();
5645 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5646 return PD->getDefinition();
5647 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5648 if (NamedDecl *TTD = TD->getTemplatedDecl())
5649 return getDefinitionToImport(TTD);
5650 return nullptr;
5651 }
5652
diagnoseMissingImport(SourceLocation Loc,NamedDecl * Decl,MissingImportKind MIK,bool Recover)5653 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5654 MissingImportKind MIK, bool Recover) {
5655 // Suggest importing a module providing the definition of this entity, if
5656 // possible.
5657 NamedDecl *Def = getDefinitionToImport(Decl);
5658 if (!Def)
5659 Def = Decl;
5660
5661 Module *Owner = getOwningModule(Def);
5662 assert(Owner && "definition of hidden declaration is not in a module");
5663
5664 llvm::SmallVector<Module*, 8> OwningModules;
5665 OwningModules.push_back(Owner);
5666 auto Merged = Context.getModulesWithMergedDefinition(Def);
5667 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5668
5669 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5670 Recover);
5671 }
5672
5673 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5674 /// suggesting the addition of a #include of the specified file.
getHeaderNameForHeader(Preprocessor & PP,const FileEntry * E,llvm::StringRef IncludingFile)5675 static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5676 llvm::StringRef IncludingFile) {
5677 bool IsSystem = false;
5678 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5679 E, IncludingFile, &IsSystem);
5680 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5681 }
5682
diagnoseMissingImport(SourceLocation UseLoc,NamedDecl * Decl,SourceLocation DeclLoc,ArrayRef<Module * > Modules,MissingImportKind MIK,bool Recover)5683 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5684 SourceLocation DeclLoc,
5685 ArrayRef<Module *> Modules,
5686 MissingImportKind MIK, bool Recover) {
5687 assert(!Modules.empty());
5688
5689 auto NotePrevious = [&] {
5690 // FIXME: Suppress the note backtrace even under
5691 // -fdiagnostics-show-note-include-stack. We don't care how this
5692 // declaration was previously reached.
5693 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5694 };
5695
5696 // Weed out duplicates from module list.
5697 llvm::SmallVector<Module*, 8> UniqueModules;
5698 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5699 for (auto *M : Modules) {
5700 if (M->Kind == Module::GlobalModuleFragment)
5701 continue;
5702 if (UniqueModuleSet.insert(M).second)
5703 UniqueModules.push_back(M);
5704 }
5705
5706 // Try to find a suitable header-name to #include.
5707 std::string HeaderName;
5708 if (const FileEntry *Header =
5709 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5710 if (const FileEntry *FE =
5711 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5712 HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5713 }
5714
5715 // If we have a #include we should suggest, or if all definition locations
5716 // were in global module fragments, don't suggest an import.
5717 if (!HeaderName.empty() || UniqueModules.empty()) {
5718 // FIXME: Find a smart place to suggest inserting a #include, and add
5719 // a FixItHint there.
5720 Diag(UseLoc, diag::err_module_unimported_use_header)
5721 << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5722 // Produce a note showing where the entity was declared.
5723 NotePrevious();
5724 if (Recover)
5725 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5726 return;
5727 }
5728
5729 Modules = UniqueModules;
5730
5731 if (Modules.size() > 1) {
5732 std::string ModuleList;
5733 unsigned N = 0;
5734 for (Module *M : Modules) {
5735 ModuleList += "\n ";
5736 if (++N == 5 && N != Modules.size()) {
5737 ModuleList += "[...]";
5738 break;
5739 }
5740 ModuleList += M->getFullModuleName();
5741 }
5742
5743 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5744 << (int)MIK << Decl << ModuleList;
5745 } else {
5746 // FIXME: Add a FixItHint that imports the corresponding module.
5747 Diag(UseLoc, diag::err_module_unimported_use)
5748 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5749 }
5750
5751 NotePrevious();
5752
5753 // Try to recover by implicitly importing this module.
5754 if (Recover)
5755 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5756 }
5757
5758 /// Diagnose a successfully-corrected typo. Separated from the correction
5759 /// itself to allow external validation of the result, etc.
5760 ///
5761 /// \param Correction The result of performing typo correction.
5762 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5763 /// string added to it (and usually also a fixit).
5764 /// \param PrevNote A note to use when indicating the location of the entity to
5765 /// which we are correcting. Will have the correction string added to it.
5766 /// \param ErrorRecovery If \c true (the default), the caller is going to
5767 /// recover from the typo as if the corrected string had been typed.
5768 /// In this case, \c PDiag must be an error, and we will attach a fixit
5769 /// to it.
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,const PartialDiagnostic & PrevNote,bool ErrorRecovery)5770 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5771 const PartialDiagnostic &TypoDiag,
5772 const PartialDiagnostic &PrevNote,
5773 bool ErrorRecovery) {
5774 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5775 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5776 FixItHint FixTypo = FixItHint::CreateReplacement(
5777 Correction.getCorrectionRange(), CorrectedStr);
5778
5779 // Maybe we're just missing a module import.
5780 if (Correction.requiresImport()) {
5781 NamedDecl *Decl = Correction.getFoundDecl();
5782 assert(Decl && "import required but no declaration to import");
5783
5784 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5785 MissingImportKind::Declaration, ErrorRecovery);
5786 return;
5787 }
5788
5789 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5790 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5791
5792 NamedDecl *ChosenDecl =
5793 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5794 if (PrevNote.getDiagID() && ChosenDecl)
5795 Diag(ChosenDecl->getLocation(), PrevNote)
5796 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5797
5798 // Add any extra diagnostics.
5799 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5800 Diag(Correction.getCorrectionRange().getBegin(), PD);
5801 }
5802
createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC,SourceLocation TypoLoc)5803 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5804 TypoDiagnosticGenerator TDG,
5805 TypoRecoveryCallback TRC,
5806 SourceLocation TypoLoc) {
5807 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5808 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5809 auto &State = DelayedTypos[TE];
5810 State.Consumer = std::move(TCC);
5811 State.DiagHandler = std::move(TDG);
5812 State.RecoveryHandler = std::move(TRC);
5813 if (TE)
5814 TypoExprs.push_back(TE);
5815 return TE;
5816 }
5817
getTypoExprState(TypoExpr * TE) const5818 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5819 auto Entry = DelayedTypos.find(TE);
5820 assert(Entry != DelayedTypos.end() &&
5821 "Failed to get the state for a TypoExpr!");
5822 return Entry->second;
5823 }
5824
clearDelayedTypo(TypoExpr * TE)5825 void Sema::clearDelayedTypo(TypoExpr *TE) {
5826 DelayedTypos.erase(TE);
5827 }
5828
ActOnPragmaDump(Scope * S,SourceLocation IILoc,IdentifierInfo * II)5829 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5830 DeclarationNameInfo Name(II, IILoc);
5831 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5832 R.suppressDiagnostics();
5833 R.setHideTags(false);
5834 LookupName(R, S);
5835 R.dump();
5836 }
5837