xref: /f-stack/freebsd/kern/vfs_subr.c (revision 22ce4aff)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/capsicum.h>
54 #include <sys/condvar.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/dirent.h>
58 #include <sys/event.h>
59 #include <sys/eventhandler.h>
60 #include <sys/extattr.h>
61 #include <sys/file.h>
62 #include <sys/fcntl.h>
63 #include <sys/jail.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/ktr.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smr.h>
80 #include <sys/smp.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <machine/stdarg.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_kern.h>
99 #include <vm/uma.h>
100 
101 #ifdef DDB
102 #include <ddb/ddb.h>
103 #endif
104 
105 static void	delmntque(struct vnode *vp);
106 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
107 		    int slpflag, int slptimeo);
108 static void	syncer_shutdown(void *arg, int howto);
109 static int	vtryrecycle(struct vnode *vp);
110 static void	v_init_counters(struct vnode *);
111 static void	vn_seqc_init(struct vnode *);
112 static void	vn_seqc_write_end_free(struct vnode *vp);
113 static void	vgonel(struct vnode *);
114 static bool	vhold_recycle_free(struct vnode *);
115 static void	vfs_knllock(void *arg);
116 static void	vfs_knlunlock(void *arg);
117 static void	vfs_knl_assert_lock(void *arg, int what);
118 static void	destroy_vpollinfo(struct vpollinfo *vi);
119 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
120 		    daddr_t startlbn, daddr_t endlbn);
121 static void	vnlru_recalc(void);
122 
123 /*
124  * These fences are intended for cases where some synchronization is
125  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
126  * and v_usecount) updates.  Access to v_iflags is generally synchronized
127  * by the interlock, but we have some internal assertions that check vnode
128  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
129  * for now.
130  */
131 #ifdef INVARIANTS
132 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
133 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
134 #else
135 #define	VNODE_REFCOUNT_FENCE_ACQ()
136 #define	VNODE_REFCOUNT_FENCE_REL()
137 #endif
138 
139 /*
140  * Number of vnodes in existence.  Increased whenever getnewvnode()
141  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
142  */
143 static u_long __exclusive_cache_line numvnodes;
144 
145 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence");
147 
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150     "Number of vnodes created by getnewvnode");
151 
152 /*
153  * Conversion tables for conversion from vnode types to inode formats
154  * and back.
155  */
156 enum vtype iftovt_tab[16] = {
157 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
158 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
159 };
160 int vttoif_tab[10] = {
161 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
162 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
163 };
164 
165 /*
166  * List of allocates vnodes in the system.
167  */
168 static TAILQ_HEAD(freelst, vnode) vnode_list;
169 static struct vnode *vnode_list_free_marker;
170 static struct vnode *vnode_list_reclaim_marker;
171 
172 /*
173  * "Free" vnode target.  Free vnodes are rarely completely free, but are
174  * just ones that are cheap to recycle.  Usually they are for files which
175  * have been stat'd but not read; these usually have inode and namecache
176  * data attached to them.  This target is the preferred minimum size of a
177  * sub-cache consisting mostly of such files. The system balances the size
178  * of this sub-cache with its complement to try to prevent either from
179  * thrashing while the other is relatively inactive.  The targets express
180  * a preference for the best balance.
181  *
182  * "Above" this target there are 2 further targets (watermarks) related
183  * to recyling of free vnodes.  In the best-operating case, the cache is
184  * exactly full, the free list has size between vlowat and vhiwat above the
185  * free target, and recycling from it and normal use maintains this state.
186  * Sometimes the free list is below vlowat or even empty, but this state
187  * is even better for immediate use provided the cache is not full.
188  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
189  * ones) to reach one of these states.  The watermarks are currently hard-
190  * coded as 4% and 9% of the available space higher.  These and the default
191  * of 25% for wantfreevnodes are too large if the memory size is large.
192  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
193  * whenever vnlru_proc() becomes active.
194  */
195 static long wantfreevnodes;
196 static long __exclusive_cache_line freevnodes;
197 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
198     &freevnodes, 0, "Number of \"free\" vnodes");
199 static long freevnodes_old;
200 
201 static counter_u64_t recycles_count;
202 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
203     "Number of vnodes recycled to meet vnode cache targets");
204 
205 static counter_u64_t recycles_free_count;
206 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
207     "Number of free vnodes recycled to meet vnode cache targets");
208 
209 static counter_u64_t deferred_inact;
210 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
211     "Number of times inactive processing was deferred");
212 
213 /* To keep more than one thread at a time from running vfs_getnewfsid */
214 static struct mtx mntid_mtx;
215 
216 /*
217  * Lock for any access to the following:
218  *	vnode_list
219  *	numvnodes
220  *	freevnodes
221  */
222 static struct mtx __exclusive_cache_line vnode_list_mtx;
223 
224 /* Publicly exported FS */
225 struct nfs_public nfs_pub;
226 
227 static uma_zone_t buf_trie_zone;
228 static smr_t buf_trie_smr;
229 
230 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
231 static uma_zone_t vnode_zone;
232 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
233 
234 __read_frequently smr_t vfs_smr;
235 
236 /*
237  * The workitem queue.
238  *
239  * It is useful to delay writes of file data and filesystem metadata
240  * for tens of seconds so that quickly created and deleted files need
241  * not waste disk bandwidth being created and removed. To realize this,
242  * we append vnodes to a "workitem" queue. When running with a soft
243  * updates implementation, most pending metadata dependencies should
244  * not wait for more than a few seconds. Thus, mounted on block devices
245  * are delayed only about a half the time that file data is delayed.
246  * Similarly, directory updates are more critical, so are only delayed
247  * about a third the time that file data is delayed. Thus, there are
248  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
249  * one each second (driven off the filesystem syncer process). The
250  * syncer_delayno variable indicates the next queue that is to be processed.
251  * Items that need to be processed soon are placed in this queue:
252  *
253  *	syncer_workitem_pending[syncer_delayno]
254  *
255  * A delay of fifteen seconds is done by placing the request fifteen
256  * entries later in the queue:
257  *
258  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
259  *
260  */
261 static int syncer_delayno;
262 static long syncer_mask;
263 LIST_HEAD(synclist, bufobj);
264 static struct synclist *syncer_workitem_pending;
265 /*
266  * The sync_mtx protects:
267  *	bo->bo_synclist
268  *	sync_vnode_count
269  *	syncer_delayno
270  *	syncer_state
271  *	syncer_workitem_pending
272  *	syncer_worklist_len
273  *	rushjob
274  */
275 static struct mtx sync_mtx;
276 static struct cv sync_wakeup;
277 
278 #define SYNCER_MAXDELAY		32
279 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
280 static int syncdelay = 30;		/* max time to delay syncing data */
281 static int filedelay = 30;		/* time to delay syncing files */
282 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
283     "Time to delay syncing files (in seconds)");
284 static int dirdelay = 29;		/* time to delay syncing directories */
285 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
286     "Time to delay syncing directories (in seconds)");
287 static int metadelay = 28;		/* time to delay syncing metadata */
288 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
289     "Time to delay syncing metadata (in seconds)");
290 static int rushjob;		/* number of slots to run ASAP */
291 static int stat_rush_requests;	/* number of times I/O speeded up */
292 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
293     "Number of times I/O speeded up (rush requests)");
294 
295 #define	VDBATCH_SIZE 8
296 struct vdbatch {
297 	u_int index;
298 	long freevnodes;
299 	struct mtx lock;
300 	struct vnode *tab[VDBATCH_SIZE];
301 };
302 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
303 
304 static void	vdbatch_dequeue(struct vnode *vp);
305 
306 /*
307  * When shutting down the syncer, run it at four times normal speed.
308  */
309 #define SYNCER_SHUTDOWN_SPEEDUP		4
310 static int sync_vnode_count;
311 static int syncer_worklist_len;
312 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
313     syncer_state;
314 
315 /* Target for maximum number of vnodes. */
316 u_long desiredvnodes;
317 static u_long gapvnodes;		/* gap between wanted and desired */
318 static u_long vhiwat;		/* enough extras after expansion */
319 static u_long vlowat;		/* minimal extras before expansion */
320 static u_long vstir;		/* nonzero to stir non-free vnodes */
321 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
322 
323 static u_long vnlru_read_freevnodes(void);
324 
325 /*
326  * Note that no attempt is made to sanitize these parameters.
327  */
328 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)329 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
330 {
331 	u_long val;
332 	int error;
333 
334 	val = desiredvnodes;
335 	error = sysctl_handle_long(oidp, &val, 0, req);
336 	if (error != 0 || req->newptr == NULL)
337 		return (error);
338 
339 	if (val == desiredvnodes)
340 		return (0);
341 	mtx_lock(&vnode_list_mtx);
342 	desiredvnodes = val;
343 	wantfreevnodes = desiredvnodes / 4;
344 	vnlru_recalc();
345 	mtx_unlock(&vnode_list_mtx);
346 	/*
347 	 * XXX There is no protection against multiple threads changing
348 	 * desiredvnodes at the same time. Locking above only helps vnlru and
349 	 * getnewvnode.
350 	 */
351 	vfs_hash_changesize(desiredvnodes);
352 	cache_changesize(desiredvnodes);
353 	return (0);
354 }
355 
356 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
357     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
358     "LU", "Target for maximum number of vnodes");
359 
360 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)361 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
362 {
363 	u_long val;
364 	int error;
365 
366 	val = wantfreevnodes;
367 	error = sysctl_handle_long(oidp, &val, 0, req);
368 	if (error != 0 || req->newptr == NULL)
369 		return (error);
370 
371 	if (val == wantfreevnodes)
372 		return (0);
373 	mtx_lock(&vnode_list_mtx);
374 	wantfreevnodes = val;
375 	vnlru_recalc();
376 	mtx_unlock(&vnode_list_mtx);
377 	return (0);
378 }
379 
380 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
381     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
382     "LU", "Target for minimum number of \"free\" vnodes");
383 
384 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
385     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
386 static int vnlru_nowhere;
387 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
388     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
389 
390 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)391 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
392 {
393 	struct vnode *vp;
394 	struct nameidata nd;
395 	char *buf;
396 	unsigned long ndflags;
397 	int error;
398 
399 	if (req->newptr == NULL)
400 		return (EINVAL);
401 	if (req->newlen >= PATH_MAX)
402 		return (E2BIG);
403 
404 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
405 	error = SYSCTL_IN(req, buf, req->newlen);
406 	if (error != 0)
407 		goto out;
408 
409 	buf[req->newlen] = '\0';
410 
411 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
412 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
413 	if ((error = namei(&nd)) != 0)
414 		goto out;
415 	vp = nd.ni_vp;
416 
417 	if (VN_IS_DOOMED(vp)) {
418 		/*
419 		 * This vnode is being recycled.  Return != 0 to let the caller
420 		 * know that the sysctl had no effect.  Return EAGAIN because a
421 		 * subsequent call will likely succeed (since namei will create
422 		 * a new vnode if necessary)
423 		 */
424 		error = EAGAIN;
425 		goto putvnode;
426 	}
427 
428 	counter_u64_add(recycles_count, 1);
429 	vgone(vp);
430 putvnode:
431 	NDFREE(&nd, 0);
432 out:
433 	free(buf, M_TEMP);
434 	return (error);
435 }
436 
437 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)438 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
439 {
440 	struct thread *td = curthread;
441 	struct vnode *vp;
442 	struct file *fp;
443 	int error;
444 	int fd;
445 
446 	if (req->newptr == NULL)
447 		return (EBADF);
448 
449         error = sysctl_handle_int(oidp, &fd, 0, req);
450         if (error != 0)
451                 return (error);
452 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
453 	if (error != 0)
454 		return (error);
455 	vp = fp->f_vnode;
456 
457 	error = vn_lock(vp, LK_EXCLUSIVE);
458 	if (error != 0)
459 		goto drop;
460 
461 	counter_u64_add(recycles_count, 1);
462 	vgone(vp);
463 	VOP_UNLOCK(vp);
464 drop:
465 	fdrop(fp, td);
466 	return (error);
467 }
468 
469 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
470     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
471     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
472 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
473     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
474     sysctl_ftry_reclaim_vnode, "I",
475     "Try to reclaim a vnode by its file descriptor");
476 
477 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
478 static int vnsz2log;
479 
480 /*
481  * Support for the bufobj clean & dirty pctrie.
482  */
483 static void *
buf_trie_alloc(struct pctrie * ptree)484 buf_trie_alloc(struct pctrie *ptree)
485 {
486 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
487 }
488 
489 static void
buf_trie_free(struct pctrie * ptree,void * node)490 buf_trie_free(struct pctrie *ptree, void *node)
491 {
492 	uma_zfree_smr(buf_trie_zone, node);
493 }
494 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
495     buf_trie_smr);
496 
497 /*
498  * Initialize the vnode management data structures.
499  *
500  * Reevaluate the following cap on the number of vnodes after the physical
501  * memory size exceeds 512GB.  In the limit, as the physical memory size
502  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
503  */
504 #ifndef	MAXVNODES_MAX
505 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
506 #endif
507 
508 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
509 
510 static struct vnode *
vn_alloc_marker(struct mount * mp)511 vn_alloc_marker(struct mount *mp)
512 {
513 	struct vnode *vp;
514 
515 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
516 	vp->v_type = VMARKER;
517 	vp->v_mount = mp;
518 
519 	return (vp);
520 }
521 
522 static void
vn_free_marker(struct vnode * vp)523 vn_free_marker(struct vnode *vp)
524 {
525 
526 	MPASS(vp->v_type == VMARKER);
527 	free(vp, M_VNODE_MARKER);
528 }
529 
530 /*
531  * Initialize a vnode as it first enters the zone.
532  */
533 static int
vnode_init(void * mem,int size,int flags)534 vnode_init(void *mem, int size, int flags)
535 {
536 	struct vnode *vp;
537 
538 	vp = mem;
539 	bzero(vp, size);
540 	/*
541 	 * Setup locks.
542 	 */
543 	vp->v_vnlock = &vp->v_lock;
544 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
545 	/*
546 	 * By default, don't allow shared locks unless filesystems opt-in.
547 	 */
548 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
549 	    LK_NOSHARE | LK_IS_VNODE);
550 	/*
551 	 * Initialize bufobj.
552 	 */
553 	bufobj_init(&vp->v_bufobj, vp);
554 	/*
555 	 * Initialize namecache.
556 	 */
557 	cache_vnode_init(vp);
558 	/*
559 	 * Initialize rangelocks.
560 	 */
561 	rangelock_init(&vp->v_rl);
562 
563 	vp->v_dbatchcpu = NOCPU;
564 
565 	/*
566 	 * Check vhold_recycle_free for an explanation.
567 	 */
568 	vp->v_holdcnt = VHOLD_NO_SMR;
569 	vp->v_type = VNON;
570 	mtx_lock(&vnode_list_mtx);
571 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
572 	mtx_unlock(&vnode_list_mtx);
573 	return (0);
574 }
575 
576 /*
577  * Free a vnode when it is cleared from the zone.
578  */
579 static void
vnode_fini(void * mem,int size)580 vnode_fini(void *mem, int size)
581 {
582 	struct vnode *vp;
583 	struct bufobj *bo;
584 
585 	vp = mem;
586 	vdbatch_dequeue(vp);
587 	mtx_lock(&vnode_list_mtx);
588 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
589 	mtx_unlock(&vnode_list_mtx);
590 	rangelock_destroy(&vp->v_rl);
591 	lockdestroy(vp->v_vnlock);
592 	mtx_destroy(&vp->v_interlock);
593 	bo = &vp->v_bufobj;
594 	rw_destroy(BO_LOCKPTR(bo));
595 }
596 
597 /*
598  * Provide the size of NFS nclnode and NFS fh for calculation of the
599  * vnode memory consumption.  The size is specified directly to
600  * eliminate dependency on NFS-private header.
601  *
602  * Other filesystems may use bigger or smaller (like UFS and ZFS)
603  * private inode data, but the NFS-based estimation is ample enough.
604  * Still, we care about differences in the size between 64- and 32-bit
605  * platforms.
606  *
607  * Namecache structure size is heuristically
608  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
609  */
610 #ifdef _LP64
611 #define	NFS_NCLNODE_SZ	(528 + 64)
612 #define	NC_SZ		148
613 #else
614 #define	NFS_NCLNODE_SZ	(360 + 32)
615 #define	NC_SZ		92
616 #endif
617 
618 static void
vntblinit(void * dummy __unused)619 vntblinit(void *dummy __unused)
620 {
621 	struct vdbatch *vd;
622 	int cpu, physvnodes, virtvnodes;
623 	u_int i;
624 
625 	/*
626 	 * Desiredvnodes is a function of the physical memory size and the
627 	 * kernel's heap size.  Generally speaking, it scales with the
628 	 * physical memory size.  The ratio of desiredvnodes to the physical
629 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
630 	 * Thereafter, the
631 	 * marginal ratio of desiredvnodes to the physical memory size is
632 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
633 	 * size.  The memory required by desiredvnodes vnodes and vm objects
634 	 * must not exceed 1/10th of the kernel's heap size.
635 	 */
636 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
637 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
638 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
639 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
640 	desiredvnodes = min(physvnodes, virtvnodes);
641 	if (desiredvnodes > MAXVNODES_MAX) {
642 		if (bootverbose)
643 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
644 			    desiredvnodes, MAXVNODES_MAX);
645 		desiredvnodes = MAXVNODES_MAX;
646 	}
647 	wantfreevnodes = desiredvnodes / 4;
648 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
649 	TAILQ_INIT(&vnode_list);
650 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
651 	/*
652 	 * The lock is taken to appease WITNESS.
653 	 */
654 	mtx_lock(&vnode_list_mtx);
655 	vnlru_recalc();
656 	mtx_unlock(&vnode_list_mtx);
657 	vnode_list_free_marker = vn_alloc_marker(NULL);
658 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
659 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
660 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
661 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
662 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
663 	uma_zone_set_smr(vnode_zone, vfs_smr);
664 	/*
665 	 * Preallocate enough nodes to support one-per buf so that
666 	 * we can not fail an insert.  reassignbuf() callers can not
667 	 * tolerate the insertion failure.
668 	 */
669 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
670 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
671 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
672 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
673 	uma_prealloc(buf_trie_zone, nbuf);
674 
675 	vnodes_created = counter_u64_alloc(M_WAITOK);
676 	recycles_count = counter_u64_alloc(M_WAITOK);
677 	recycles_free_count = counter_u64_alloc(M_WAITOK);
678 	deferred_inact = counter_u64_alloc(M_WAITOK);
679 
680 	/*
681 	 * Initialize the filesystem syncer.
682 	 */
683 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
684 	    &syncer_mask);
685 	syncer_maxdelay = syncer_mask + 1;
686 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
687 	cv_init(&sync_wakeup, "syncer");
688 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
689 		vnsz2log++;
690 	vnsz2log--;
691 
692 	CPU_FOREACH(cpu) {
693 		vd = DPCPU_ID_PTR((cpu), vd);
694 		bzero(vd, sizeof(*vd));
695 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
696 	}
697 }
698 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
699 
700 /*
701  * Mark a mount point as busy. Used to synchronize access and to delay
702  * unmounting. Eventually, mountlist_mtx is not released on failure.
703  *
704  * vfs_busy() is a custom lock, it can block the caller.
705  * vfs_busy() only sleeps if the unmount is active on the mount point.
706  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
707  * vnode belonging to mp.
708  *
709  * Lookup uses vfs_busy() to traverse mount points.
710  * root fs			var fs
711  * / vnode lock		A	/ vnode lock (/var)		D
712  * /var vnode lock	B	/log vnode lock(/var/log)	E
713  * vfs_busy lock	C	vfs_busy lock			F
714  *
715  * Within each file system, the lock order is C->A->B and F->D->E.
716  *
717  * When traversing across mounts, the system follows that lock order:
718  *
719  *        C->A->B
720  *              |
721  *              +->F->D->E
722  *
723  * The lookup() process for namei("/var") illustrates the process:
724  *  VOP_LOOKUP() obtains B while A is held
725  *  vfs_busy() obtains a shared lock on F while A and B are held
726  *  vput() releases lock on B
727  *  vput() releases lock on A
728  *  VFS_ROOT() obtains lock on D while shared lock on F is held
729  *  vfs_unbusy() releases shared lock on F
730  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
731  *    Attempt to lock A (instead of vp_crossmp) while D is held would
732  *    violate the global order, causing deadlocks.
733  *
734  * dounmount() locks B while F is drained.
735  */
736 int
vfs_busy(struct mount * mp,int flags)737 vfs_busy(struct mount *mp, int flags)
738 {
739 	struct mount_pcpu *mpcpu;
740 
741 	MPASS((flags & ~MBF_MASK) == 0);
742 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
743 
744 	if (vfs_op_thread_enter(mp, mpcpu)) {
745 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
746 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
747 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
748 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
749 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
750 		vfs_op_thread_exit(mp, mpcpu);
751 		if (flags & MBF_MNTLSTLOCK)
752 			mtx_unlock(&mountlist_mtx);
753 		return (0);
754 	}
755 
756 	MNT_ILOCK(mp);
757 	vfs_assert_mount_counters(mp);
758 	MNT_REF(mp);
759 	/*
760 	 * If mount point is currently being unmounted, sleep until the
761 	 * mount point fate is decided.  If thread doing the unmounting fails,
762 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
763 	 * that this mount point has survived the unmount attempt and vfs_busy
764 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
765 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
766 	 * about to be really destroyed.  vfs_busy needs to release its
767 	 * reference on the mount point in this case and return with ENOENT,
768 	 * telling the caller that mount mount it tried to busy is no longer
769 	 * valid.
770 	 */
771 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
772 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
773 			MNT_REL(mp);
774 			MNT_IUNLOCK(mp);
775 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
776 			    __func__);
777 			return (ENOENT);
778 		}
779 		if (flags & MBF_MNTLSTLOCK)
780 			mtx_unlock(&mountlist_mtx);
781 		mp->mnt_kern_flag |= MNTK_MWAIT;
782 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
783 		if (flags & MBF_MNTLSTLOCK)
784 			mtx_lock(&mountlist_mtx);
785 		MNT_ILOCK(mp);
786 	}
787 	if (flags & MBF_MNTLSTLOCK)
788 		mtx_unlock(&mountlist_mtx);
789 	mp->mnt_lockref++;
790 	MNT_IUNLOCK(mp);
791 	return (0);
792 }
793 
794 /*
795  * Free a busy filesystem.
796  */
797 void
vfs_unbusy(struct mount * mp)798 vfs_unbusy(struct mount *mp)
799 {
800 	struct mount_pcpu *mpcpu;
801 	int c;
802 
803 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
804 
805 	if (vfs_op_thread_enter(mp, mpcpu)) {
806 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
807 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
808 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
809 		vfs_op_thread_exit(mp, mpcpu);
810 		return;
811 	}
812 
813 	MNT_ILOCK(mp);
814 	vfs_assert_mount_counters(mp);
815 	MNT_REL(mp);
816 	c = --mp->mnt_lockref;
817 	if (mp->mnt_vfs_ops == 0) {
818 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
819 		MNT_IUNLOCK(mp);
820 		return;
821 	}
822 	if (c < 0)
823 		vfs_dump_mount_counters(mp);
824 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
825 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
826 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
827 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
828 		wakeup(&mp->mnt_lockref);
829 	}
830 	MNT_IUNLOCK(mp);
831 }
832 
833 /*
834  * Lookup a mount point by filesystem identifier.
835  */
836 struct mount *
vfs_getvfs(fsid_t * fsid)837 vfs_getvfs(fsid_t *fsid)
838 {
839 	struct mount *mp;
840 
841 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
842 	mtx_lock(&mountlist_mtx);
843 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
844 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
845 			vfs_ref(mp);
846 			mtx_unlock(&mountlist_mtx);
847 			return (mp);
848 		}
849 	}
850 	mtx_unlock(&mountlist_mtx);
851 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
852 	return ((struct mount *) 0);
853 }
854 
855 /*
856  * Lookup a mount point by filesystem identifier, busying it before
857  * returning.
858  *
859  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
860  * cache for popular filesystem identifiers.  The cache is lockess, using
861  * the fact that struct mount's are never freed.  In worst case we may
862  * get pointer to unmounted or even different filesystem, so we have to
863  * check what we got, and go slow way if so.
864  */
865 struct mount *
vfs_busyfs(fsid_t * fsid)866 vfs_busyfs(fsid_t *fsid)
867 {
868 #define	FSID_CACHE_SIZE	256
869 	typedef struct mount * volatile vmp_t;
870 	static vmp_t cache[FSID_CACHE_SIZE];
871 	struct mount *mp;
872 	int error;
873 	uint32_t hash;
874 
875 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
876 	hash = fsid->val[0] ^ fsid->val[1];
877 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
878 	mp = cache[hash];
879 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
880 		goto slow;
881 	if (vfs_busy(mp, 0) != 0) {
882 		cache[hash] = NULL;
883 		goto slow;
884 	}
885 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
886 		return (mp);
887 	else
888 	    vfs_unbusy(mp);
889 
890 slow:
891 	mtx_lock(&mountlist_mtx);
892 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
893 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
894 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
895 			if (error) {
896 				cache[hash] = NULL;
897 				mtx_unlock(&mountlist_mtx);
898 				return (NULL);
899 			}
900 			cache[hash] = mp;
901 			return (mp);
902 		}
903 	}
904 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
905 	mtx_unlock(&mountlist_mtx);
906 	return ((struct mount *) 0);
907 }
908 
909 /*
910  * Check if a user can access privileged mount options.
911  */
912 int
vfs_suser(struct mount * mp,struct thread * td)913 vfs_suser(struct mount *mp, struct thread *td)
914 {
915 	int error;
916 
917 	if (jailed(td->td_ucred)) {
918 		/*
919 		 * If the jail of the calling thread lacks permission for
920 		 * this type of file system, deny immediately.
921 		 */
922 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
923 			return (EPERM);
924 
925 		/*
926 		 * If the file system was mounted outside the jail of the
927 		 * calling thread, deny immediately.
928 		 */
929 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
930 			return (EPERM);
931 	}
932 
933 	/*
934 	 * If file system supports delegated administration, we don't check
935 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
936 	 * by the file system itself.
937 	 * If this is not the user that did original mount, we check for
938 	 * the PRIV_VFS_MOUNT_OWNER privilege.
939 	 */
940 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
941 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
942 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
943 			return (error);
944 	}
945 	return (0);
946 }
947 
948 /*
949  * Get a new unique fsid.  Try to make its val[0] unique, since this value
950  * will be used to create fake device numbers for stat().  Also try (but
951  * not so hard) make its val[0] unique mod 2^16, since some emulators only
952  * support 16-bit device numbers.  We end up with unique val[0]'s for the
953  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
954  *
955  * Keep in mind that several mounts may be running in parallel.  Starting
956  * the search one past where the previous search terminated is both a
957  * micro-optimization and a defense against returning the same fsid to
958  * different mounts.
959  */
960 void
vfs_getnewfsid(struct mount * mp)961 vfs_getnewfsid(struct mount *mp)
962 {
963 	static uint16_t mntid_base;
964 	struct mount *nmp;
965 	fsid_t tfsid;
966 	int mtype;
967 
968 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
969 	mtx_lock(&mntid_mtx);
970 	mtype = mp->mnt_vfc->vfc_typenum;
971 	tfsid.val[1] = mtype;
972 	mtype = (mtype & 0xFF) << 24;
973 	for (;;) {
974 		tfsid.val[0] = makedev(255,
975 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
976 		mntid_base++;
977 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
978 			break;
979 		vfs_rel(nmp);
980 	}
981 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
982 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
983 	mtx_unlock(&mntid_mtx);
984 }
985 
986 /*
987  * Knob to control the precision of file timestamps:
988  *
989  *   0 = seconds only; nanoseconds zeroed.
990  *   1 = seconds and nanoseconds, accurate within 1/HZ.
991  *   2 = seconds and nanoseconds, truncated to microseconds.
992  * >=3 = seconds and nanoseconds, maximum precision.
993  */
994 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
995 
996 static int timestamp_precision = TSP_USEC;
997 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
998     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
999     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1000     "3+: sec + ns (max. precision))");
1001 
1002 /*
1003  * Get a current timestamp.
1004  */
1005 void
vfs_timestamp(struct timespec * tsp)1006 vfs_timestamp(struct timespec *tsp)
1007 {
1008 	struct timeval tv;
1009 
1010 	switch (timestamp_precision) {
1011 	case TSP_SEC:
1012 		tsp->tv_sec = time_second;
1013 		tsp->tv_nsec = 0;
1014 		break;
1015 	case TSP_HZ:
1016 		getnanotime(tsp);
1017 		break;
1018 	case TSP_USEC:
1019 		microtime(&tv);
1020 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1021 		break;
1022 	case TSP_NSEC:
1023 	default:
1024 		nanotime(tsp);
1025 		break;
1026 	}
1027 }
1028 
1029 /*
1030  * Set vnode attributes to VNOVAL
1031  */
1032 void
vattr_null(struct vattr * vap)1033 vattr_null(struct vattr *vap)
1034 {
1035 
1036 	vap->va_type = VNON;
1037 	vap->va_size = VNOVAL;
1038 	vap->va_bytes = VNOVAL;
1039 	vap->va_mode = VNOVAL;
1040 	vap->va_nlink = VNOVAL;
1041 	vap->va_uid = VNOVAL;
1042 	vap->va_gid = VNOVAL;
1043 	vap->va_fsid = VNOVAL;
1044 	vap->va_fileid = VNOVAL;
1045 	vap->va_blocksize = VNOVAL;
1046 	vap->va_rdev = VNOVAL;
1047 	vap->va_atime.tv_sec = VNOVAL;
1048 	vap->va_atime.tv_nsec = VNOVAL;
1049 	vap->va_mtime.tv_sec = VNOVAL;
1050 	vap->va_mtime.tv_nsec = VNOVAL;
1051 	vap->va_ctime.tv_sec = VNOVAL;
1052 	vap->va_ctime.tv_nsec = VNOVAL;
1053 	vap->va_birthtime.tv_sec = VNOVAL;
1054 	vap->va_birthtime.tv_nsec = VNOVAL;
1055 	vap->va_flags = VNOVAL;
1056 	vap->va_gen = VNOVAL;
1057 	vap->va_vaflags = 0;
1058 }
1059 
1060 /*
1061  * Try to reduce the total number of vnodes.
1062  *
1063  * This routine (and its user) are buggy in at least the following ways:
1064  * - all parameters were picked years ago when RAM sizes were significantly
1065  *   smaller
1066  * - it can pick vnodes based on pages used by the vm object, but filesystems
1067  *   like ZFS don't use it making the pick broken
1068  * - since ZFS has its own aging policy it gets partially combated by this one
1069  * - a dedicated method should be provided for filesystems to let them decide
1070  *   whether the vnode should be recycled
1071  *
1072  * This routine is called when we have too many vnodes.  It attempts
1073  * to free <count> vnodes and will potentially free vnodes that still
1074  * have VM backing store (VM backing store is typically the cause
1075  * of a vnode blowout so we want to do this).  Therefore, this operation
1076  * is not considered cheap.
1077  *
1078  * A number of conditions may prevent a vnode from being reclaimed.
1079  * the buffer cache may have references on the vnode, a directory
1080  * vnode may still have references due to the namei cache representing
1081  * underlying files, or the vnode may be in active use.   It is not
1082  * desirable to reuse such vnodes.  These conditions may cause the
1083  * number of vnodes to reach some minimum value regardless of what
1084  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1085  *
1086  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1087  * 			 entries if this argument is strue
1088  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1089  *			 pages.
1090  * @param target	 How many vnodes to reclaim.
1091  * @return		 The number of vnodes that were reclaimed.
1092  */
1093 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1094 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1095 {
1096 	struct vnode *vp, *mvp;
1097 	struct mount *mp;
1098 	struct vm_object *object;
1099 	u_long done;
1100 	bool retried;
1101 
1102 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1103 
1104 	retried = false;
1105 	done = 0;
1106 
1107 	mvp = vnode_list_reclaim_marker;
1108 restart:
1109 	vp = mvp;
1110 	while (done < target) {
1111 		vp = TAILQ_NEXT(vp, v_vnodelist);
1112 		if (__predict_false(vp == NULL))
1113 			break;
1114 
1115 		if (__predict_false(vp->v_type == VMARKER))
1116 			continue;
1117 
1118 		/*
1119 		 * If it's been deconstructed already, it's still
1120 		 * referenced, or it exceeds the trigger, skip it.
1121 		 * Also skip free vnodes.  We are trying to make space
1122 		 * to expand the free list, not reduce it.
1123 		 */
1124 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1125 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1126 			goto next_iter;
1127 
1128 		if (vp->v_type == VBAD || vp->v_type == VNON)
1129 			goto next_iter;
1130 
1131 		object = atomic_load_ptr(&vp->v_object);
1132 		if (object == NULL || object->resident_page_count > trigger) {
1133 			goto next_iter;
1134 		}
1135 
1136 		/*
1137 		 * Handle races against vnode allocation. Filesystems lock the
1138 		 * vnode some time after it gets returned from getnewvnode,
1139 		 * despite type and hold count being manipulated earlier.
1140 		 * Resorting to checking v_mount restores guarantees present
1141 		 * before the global list was reworked to contain all vnodes.
1142 		 */
1143 		if (!VI_TRYLOCK(vp))
1144 			goto next_iter;
1145 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1146 			VI_UNLOCK(vp);
1147 			goto next_iter;
1148 		}
1149 		if (vp->v_mount == NULL) {
1150 			VI_UNLOCK(vp);
1151 			goto next_iter;
1152 		}
1153 		vholdl(vp);
1154 		VI_UNLOCK(vp);
1155 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1156 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1157 		mtx_unlock(&vnode_list_mtx);
1158 
1159 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1160 			vdrop(vp);
1161 			goto next_iter_unlocked;
1162 		}
1163 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1164 			vdrop(vp);
1165 			vn_finished_write(mp);
1166 			goto next_iter_unlocked;
1167 		}
1168 
1169 		VI_LOCK(vp);
1170 		if (vp->v_usecount > 0 ||
1171 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1172 		    (vp->v_object != NULL &&
1173 		    vp->v_object->resident_page_count > trigger)) {
1174 			VOP_UNLOCK(vp);
1175 			vdropl(vp);
1176 			vn_finished_write(mp);
1177 			goto next_iter_unlocked;
1178 		}
1179 		counter_u64_add(recycles_count, 1);
1180 		vgonel(vp);
1181 		VOP_UNLOCK(vp);
1182 		vdropl(vp);
1183 		vn_finished_write(mp);
1184 		done++;
1185 next_iter_unlocked:
1186 		if (should_yield())
1187 			kern_yield(PRI_USER);
1188 		mtx_lock(&vnode_list_mtx);
1189 		goto restart;
1190 next_iter:
1191 		MPASS(vp->v_type != VMARKER);
1192 		if (!should_yield())
1193 			continue;
1194 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1195 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1196 		mtx_unlock(&vnode_list_mtx);
1197 		kern_yield(PRI_USER);
1198 		mtx_lock(&vnode_list_mtx);
1199 		goto restart;
1200 	}
1201 	if (done == 0 && !retried) {
1202 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1203 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1204 		retried = true;
1205 		goto restart;
1206 	}
1207 	return (done);
1208 }
1209 
1210 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1211 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1212     0,
1213     "limit on vnode free requests per call to the vnlru_free routine");
1214 
1215 /*
1216  * Attempt to reduce the free list by the requested amount.
1217  */
1218 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp)1219 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1220 {
1221 	struct vnode *vp;
1222 	struct mount *mp;
1223 	int ocount;
1224 
1225 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1226 	if (count > max_vnlru_free)
1227 		count = max_vnlru_free;
1228 	ocount = count;
1229 	vp = mvp;
1230 	for (;;) {
1231 		if (count == 0) {
1232 			break;
1233 		}
1234 		vp = TAILQ_NEXT(vp, v_vnodelist);
1235 		if (__predict_false(vp == NULL)) {
1236 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1237 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1238 			break;
1239 		}
1240 		if (__predict_false(vp->v_type == VMARKER))
1241 			continue;
1242 		if (vp->v_holdcnt > 0)
1243 			continue;
1244 		/*
1245 		 * Don't recycle if our vnode is from different type
1246 		 * of mount point.  Note that mp is type-safe, the
1247 		 * check does not reach unmapped address even if
1248 		 * vnode is reclaimed.
1249 		 */
1250 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1251 		    mp->mnt_op != mnt_op) {
1252 			continue;
1253 		}
1254 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1255 			continue;
1256 		}
1257 		if (!vhold_recycle_free(vp))
1258 			continue;
1259 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1260 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1261 		mtx_unlock(&vnode_list_mtx);
1262 		if (vtryrecycle(vp) == 0)
1263 			count--;
1264 		mtx_lock(&vnode_list_mtx);
1265 		vp = mvp;
1266 	}
1267 	return (ocount - count);
1268 }
1269 
1270 static int
vnlru_free_locked(int count)1271 vnlru_free_locked(int count)
1272 {
1273 
1274 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1275 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1276 }
1277 
1278 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1279 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1280 {
1281 
1282 	MPASS(mnt_op != NULL);
1283 	MPASS(mvp != NULL);
1284 	VNPASS(mvp->v_type == VMARKER, mvp);
1285 	mtx_lock(&vnode_list_mtx);
1286 	vnlru_free_impl(count, mnt_op, mvp);
1287 	mtx_unlock(&vnode_list_mtx);
1288 }
1289 
1290 /*
1291  * Temporary binary compat, don't use. Call vnlru_free_vfsops instead.
1292  */
1293 void
vnlru_free(int count,struct vfsops * mnt_op)1294 vnlru_free(int count, struct vfsops *mnt_op)
1295 {
1296 	struct vnode *mvp;
1297 
1298 	if (count == 0)
1299 		return;
1300 	mtx_lock(&vnode_list_mtx);
1301 	mvp = vnode_list_free_marker;
1302 	if (vnlru_free_impl(count, mnt_op, mvp) == 0) {
1303 		/*
1304 		 * It is possible the marker was moved over eligible vnodes by
1305 		 * callers which filtered by different ops. If so, start from
1306 		 * scratch.
1307 		 */
1308 		if (vnlru_read_freevnodes() > 0) {
1309 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1310 			TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1311 		}
1312 		vnlru_free_impl(count, mnt_op, mvp);
1313 	}
1314 	mtx_unlock(&vnode_list_mtx);
1315 }
1316 
1317 struct vnode *
vnlru_alloc_marker(void)1318 vnlru_alloc_marker(void)
1319 {
1320 	struct vnode *mvp;
1321 
1322 	mvp = vn_alloc_marker(NULL);
1323 	mtx_lock(&vnode_list_mtx);
1324 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1325 	mtx_unlock(&vnode_list_mtx);
1326 	return (mvp);
1327 }
1328 
1329 void
vnlru_free_marker(struct vnode * mvp)1330 vnlru_free_marker(struct vnode *mvp)
1331 {
1332 	mtx_lock(&vnode_list_mtx);
1333 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1334 	mtx_unlock(&vnode_list_mtx);
1335 	vn_free_marker(mvp);
1336 }
1337 
1338 static void
vnlru_recalc(void)1339 vnlru_recalc(void)
1340 {
1341 
1342 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1343 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1344 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1345 	vlowat = vhiwat / 2;
1346 }
1347 
1348 /*
1349  * Attempt to recycle vnodes in a context that is always safe to block.
1350  * Calling vlrurecycle() from the bowels of filesystem code has some
1351  * interesting deadlock problems.
1352  */
1353 static struct proc *vnlruproc;
1354 static int vnlruproc_sig;
1355 
1356 /*
1357  * The main freevnodes counter is only updated when threads requeue their vnode
1358  * batches. CPUs are conditionally walked to compute a more accurate total.
1359  *
1360  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1361  * at any given moment can still exceed slop, but it should not be by significant
1362  * margin in practice.
1363  */
1364 #define VNLRU_FREEVNODES_SLOP 128
1365 
1366 static __inline void
vn_freevnodes_inc(void)1367 vn_freevnodes_inc(void)
1368 {
1369 	struct vdbatch *vd;
1370 
1371 	critical_enter();
1372 	vd = DPCPU_PTR(vd);
1373 	vd->freevnodes++;
1374 	critical_exit();
1375 }
1376 
1377 static __inline void
vn_freevnodes_dec(void)1378 vn_freevnodes_dec(void)
1379 {
1380 	struct vdbatch *vd;
1381 
1382 	critical_enter();
1383 	vd = DPCPU_PTR(vd);
1384 	vd->freevnodes--;
1385 	critical_exit();
1386 }
1387 
1388 static u_long
vnlru_read_freevnodes(void)1389 vnlru_read_freevnodes(void)
1390 {
1391 	struct vdbatch *vd;
1392 	long slop;
1393 	int cpu;
1394 
1395 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1396 	if (freevnodes > freevnodes_old)
1397 		slop = freevnodes - freevnodes_old;
1398 	else
1399 		slop = freevnodes_old - freevnodes;
1400 	if (slop < VNLRU_FREEVNODES_SLOP)
1401 		return (freevnodes >= 0 ? freevnodes : 0);
1402 	freevnodes_old = freevnodes;
1403 	CPU_FOREACH(cpu) {
1404 		vd = DPCPU_ID_PTR((cpu), vd);
1405 		freevnodes_old += vd->freevnodes;
1406 	}
1407 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1408 }
1409 
1410 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1411 vnlru_under(u_long rnumvnodes, u_long limit)
1412 {
1413 	u_long rfreevnodes, space;
1414 
1415 	if (__predict_false(rnumvnodes > desiredvnodes))
1416 		return (true);
1417 
1418 	space = desiredvnodes - rnumvnodes;
1419 	if (space < limit) {
1420 		rfreevnodes = vnlru_read_freevnodes();
1421 		if (rfreevnodes > wantfreevnodes)
1422 			space += rfreevnodes - wantfreevnodes;
1423 	}
1424 	return (space < limit);
1425 }
1426 
1427 static bool
vnlru_under_unlocked(u_long rnumvnodes,u_long limit)1428 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1429 {
1430 	long rfreevnodes, space;
1431 
1432 	if (__predict_false(rnumvnodes > desiredvnodes))
1433 		return (true);
1434 
1435 	space = desiredvnodes - rnumvnodes;
1436 	if (space < limit) {
1437 		rfreevnodes = atomic_load_long(&freevnodes);
1438 		if (rfreevnodes > wantfreevnodes)
1439 			space += rfreevnodes - wantfreevnodes;
1440 	}
1441 	return (space < limit);
1442 }
1443 
1444 static void
vnlru_kick(void)1445 vnlru_kick(void)
1446 {
1447 
1448 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1449 	if (vnlruproc_sig == 0) {
1450 		vnlruproc_sig = 1;
1451 		wakeup(vnlruproc);
1452 	}
1453 }
1454 
1455 static void
vnlru_proc(void)1456 vnlru_proc(void)
1457 {
1458 	u_long rnumvnodes, rfreevnodes, target;
1459 	unsigned long onumvnodes;
1460 	int done, force, trigger, usevnodes;
1461 	bool reclaim_nc_src, want_reread;
1462 
1463 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1464 	    SHUTDOWN_PRI_FIRST);
1465 
1466 	force = 0;
1467 	want_reread = false;
1468 	for (;;) {
1469 		kproc_suspend_check(vnlruproc);
1470 		mtx_lock(&vnode_list_mtx);
1471 		rnumvnodes = atomic_load_long(&numvnodes);
1472 
1473 		if (want_reread) {
1474 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1475 			want_reread = false;
1476 		}
1477 
1478 		/*
1479 		 * If numvnodes is too large (due to desiredvnodes being
1480 		 * adjusted using its sysctl, or emergency growth), first
1481 		 * try to reduce it by discarding from the free list.
1482 		 */
1483 		if (rnumvnodes > desiredvnodes) {
1484 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1485 			rnumvnodes = atomic_load_long(&numvnodes);
1486 		}
1487 		/*
1488 		 * Sleep if the vnode cache is in a good state.  This is
1489 		 * when it is not over-full and has space for about a 4%
1490 		 * or 9% expansion (by growing its size or inexcessively
1491 		 * reducing its free list).  Otherwise, try to reclaim
1492 		 * space for a 10% expansion.
1493 		 */
1494 		if (vstir && force == 0) {
1495 			force = 1;
1496 			vstir = 0;
1497 		}
1498 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1499 			vnlruproc_sig = 0;
1500 			wakeup(&vnlruproc_sig);
1501 			msleep(vnlruproc, &vnode_list_mtx,
1502 			    PVFS|PDROP, "vlruwt", hz);
1503 			continue;
1504 		}
1505 		rfreevnodes = vnlru_read_freevnodes();
1506 
1507 		onumvnodes = rnumvnodes;
1508 		/*
1509 		 * Calculate parameters for recycling.  These are the same
1510 		 * throughout the loop to give some semblance of fairness.
1511 		 * The trigger point is to avoid recycling vnodes with lots
1512 		 * of resident pages.  We aren't trying to free memory; we
1513 		 * are trying to recycle or at least free vnodes.
1514 		 */
1515 		if (rnumvnodes <= desiredvnodes)
1516 			usevnodes = rnumvnodes - rfreevnodes;
1517 		else
1518 			usevnodes = rnumvnodes;
1519 		if (usevnodes <= 0)
1520 			usevnodes = 1;
1521 		/*
1522 		 * The trigger value is is chosen to give a conservatively
1523 		 * large value to ensure that it alone doesn't prevent
1524 		 * making progress.  The value can easily be so large that
1525 		 * it is effectively infinite in some congested and
1526 		 * misconfigured cases, and this is necessary.  Normally
1527 		 * it is about 8 to 100 (pages), which is quite large.
1528 		 */
1529 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1530 		if (force < 2)
1531 			trigger = vsmalltrigger;
1532 		reclaim_nc_src = force >= 3;
1533 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1534 		target = target / 10 + 1;
1535 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1536 		mtx_unlock(&vnode_list_mtx);
1537 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1538 			uma_reclaim(UMA_RECLAIM_DRAIN);
1539 		if (done == 0) {
1540 			if (force == 0 || force == 1) {
1541 				force = 2;
1542 				continue;
1543 			}
1544 			if (force == 2) {
1545 				force = 3;
1546 				continue;
1547 			}
1548 			want_reread = true;
1549 			force = 0;
1550 			vnlru_nowhere++;
1551 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1552 		} else {
1553 			want_reread = true;
1554 			kern_yield(PRI_USER);
1555 		}
1556 	}
1557 }
1558 
1559 static struct kproc_desc vnlru_kp = {
1560 	"vnlru",
1561 	vnlru_proc,
1562 	&vnlruproc
1563 };
1564 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1565     &vnlru_kp);
1566 
1567 /*
1568  * Routines having to do with the management of the vnode table.
1569  */
1570 
1571 /*
1572  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1573  * before we actually vgone().  This function must be called with the vnode
1574  * held to prevent the vnode from being returned to the free list midway
1575  * through vgone().
1576  */
1577 static int
vtryrecycle(struct vnode * vp)1578 vtryrecycle(struct vnode *vp)
1579 {
1580 	struct mount *vnmp;
1581 
1582 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1583 	VNASSERT(vp->v_holdcnt, vp,
1584 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1585 	/*
1586 	 * This vnode may found and locked via some other list, if so we
1587 	 * can't recycle it yet.
1588 	 */
1589 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1590 		CTR2(KTR_VFS,
1591 		    "%s: impossible to recycle, vp %p lock is already held",
1592 		    __func__, vp);
1593 		vdrop(vp);
1594 		return (EWOULDBLOCK);
1595 	}
1596 	/*
1597 	 * Don't recycle if its filesystem is being suspended.
1598 	 */
1599 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1600 		VOP_UNLOCK(vp);
1601 		CTR2(KTR_VFS,
1602 		    "%s: impossible to recycle, cannot start the write for %p",
1603 		    __func__, vp);
1604 		vdrop(vp);
1605 		return (EBUSY);
1606 	}
1607 	/*
1608 	 * If we got this far, we need to acquire the interlock and see if
1609 	 * anyone picked up this vnode from another list.  If not, we will
1610 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1611 	 * will skip over it.
1612 	 */
1613 	VI_LOCK(vp);
1614 	if (vp->v_usecount) {
1615 		VOP_UNLOCK(vp);
1616 		vdropl(vp);
1617 		vn_finished_write(vnmp);
1618 		CTR2(KTR_VFS,
1619 		    "%s: impossible to recycle, %p is already referenced",
1620 		    __func__, vp);
1621 		return (EBUSY);
1622 	}
1623 	if (!VN_IS_DOOMED(vp)) {
1624 		counter_u64_add(recycles_free_count, 1);
1625 		vgonel(vp);
1626 	}
1627 	VOP_UNLOCK(vp);
1628 	vdropl(vp);
1629 	vn_finished_write(vnmp);
1630 	return (0);
1631 }
1632 
1633 /*
1634  * Allocate a new vnode.
1635  *
1636  * The operation never returns an error. Returning an error was disabled
1637  * in r145385 (dated 2005) with the following comment:
1638  *
1639  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1640  *
1641  * Given the age of this commit (almost 15 years at the time of writing this
1642  * comment) restoring the ability to fail requires a significant audit of
1643  * all codepaths.
1644  *
1645  * The routine can try to free a vnode or stall for up to 1 second waiting for
1646  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1647  */
1648 static u_long vn_alloc_cyclecount;
1649 
1650 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp)1651 vn_alloc_hard(struct mount *mp)
1652 {
1653 	u_long rnumvnodes, rfreevnodes;
1654 
1655 	mtx_lock(&vnode_list_mtx);
1656 	rnumvnodes = atomic_load_long(&numvnodes);
1657 	if (rnumvnodes + 1 < desiredvnodes) {
1658 		vn_alloc_cyclecount = 0;
1659 		goto alloc;
1660 	}
1661 	rfreevnodes = vnlru_read_freevnodes();
1662 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1663 		vn_alloc_cyclecount = 0;
1664 		vstir = 1;
1665 	}
1666 	/*
1667 	 * Grow the vnode cache if it will not be above its target max
1668 	 * after growing.  Otherwise, if the free list is nonempty, try
1669 	 * to reclaim 1 item from it before growing the cache (possibly
1670 	 * above its target max if the reclamation failed or is delayed).
1671 	 * Otherwise, wait for some space.  In all cases, schedule
1672 	 * vnlru_proc() if we are getting short of space.  The watermarks
1673 	 * should be chosen so that we never wait or even reclaim from
1674 	 * the free list to below its target minimum.
1675 	 */
1676 	if (vnlru_free_locked(1) > 0)
1677 		goto alloc;
1678 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1679 		/*
1680 		 * Wait for space for a new vnode.
1681 		 */
1682 		vnlru_kick();
1683 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1684 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1685 		    vnlru_read_freevnodes() > 1)
1686 			vnlru_free_locked(1);
1687 	}
1688 alloc:
1689 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1690 	if (vnlru_under(rnumvnodes, vlowat))
1691 		vnlru_kick();
1692 	mtx_unlock(&vnode_list_mtx);
1693 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1694 }
1695 
1696 static struct vnode *
vn_alloc(struct mount * mp)1697 vn_alloc(struct mount *mp)
1698 {
1699 	u_long rnumvnodes;
1700 
1701 	if (__predict_false(vn_alloc_cyclecount != 0))
1702 		return (vn_alloc_hard(mp));
1703 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1704 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1705 		atomic_subtract_long(&numvnodes, 1);
1706 		return (vn_alloc_hard(mp));
1707 	}
1708 
1709 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1710 }
1711 
1712 static void
vn_free(struct vnode * vp)1713 vn_free(struct vnode *vp)
1714 {
1715 
1716 	atomic_subtract_long(&numvnodes, 1);
1717 	uma_zfree_smr(vnode_zone, vp);
1718 }
1719 
1720 /*
1721  * Return the next vnode from the free list.
1722  */
1723 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)1724 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1725     struct vnode **vpp)
1726 {
1727 	struct vnode *vp;
1728 	struct thread *td;
1729 	struct lock_object *lo;
1730 
1731 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1732 
1733 	KASSERT(vops->registered,
1734 	    ("%s: not registered vector op %p\n", __func__, vops));
1735 
1736 	td = curthread;
1737 	if (td->td_vp_reserved != NULL) {
1738 		vp = td->td_vp_reserved;
1739 		td->td_vp_reserved = NULL;
1740 	} else {
1741 		vp = vn_alloc(mp);
1742 	}
1743 	counter_u64_add(vnodes_created, 1);
1744 	/*
1745 	 * Locks are given the generic name "vnode" when created.
1746 	 * Follow the historic practice of using the filesystem
1747 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1748 	 *
1749 	 * Locks live in a witness group keyed on their name. Thus,
1750 	 * when a lock is renamed, it must also move from the witness
1751 	 * group of its old name to the witness group of its new name.
1752 	 *
1753 	 * The change only needs to be made when the vnode moves
1754 	 * from one filesystem type to another. We ensure that each
1755 	 * filesystem use a single static name pointer for its tag so
1756 	 * that we can compare pointers rather than doing a strcmp().
1757 	 */
1758 	lo = &vp->v_vnlock->lock_object;
1759 #ifdef WITNESS
1760 	if (lo->lo_name != tag) {
1761 #endif
1762 		lo->lo_name = tag;
1763 #ifdef WITNESS
1764 		WITNESS_DESTROY(lo);
1765 		WITNESS_INIT(lo, tag);
1766 	}
1767 #endif
1768 	/*
1769 	 * By default, don't allow shared locks unless filesystems opt-in.
1770 	 */
1771 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1772 	/*
1773 	 * Finalize various vnode identity bits.
1774 	 */
1775 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1776 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1777 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1778 	vp->v_type = VNON;
1779 	vp->v_op = vops;
1780 	vp->v_irflag = 0;
1781 	v_init_counters(vp);
1782 	vn_seqc_init(vp);
1783 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1784 #ifdef DIAGNOSTIC
1785 	if (mp == NULL && vops != &dead_vnodeops)
1786 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1787 #endif
1788 #ifdef MAC
1789 	mac_vnode_init(vp);
1790 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1791 		mac_vnode_associate_singlelabel(mp, vp);
1792 #endif
1793 	if (mp != NULL) {
1794 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1795 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1796 			vp->v_vflag |= VV_NOKNOTE;
1797 	}
1798 
1799 	/*
1800 	 * For the filesystems which do not use vfs_hash_insert(),
1801 	 * still initialize v_hash to have vfs_hash_index() useful.
1802 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1803 	 * its own hashing.
1804 	 */
1805 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1806 
1807 	*vpp = vp;
1808 	return (0);
1809 }
1810 
1811 void
getnewvnode_reserve(void)1812 getnewvnode_reserve(void)
1813 {
1814 	struct thread *td;
1815 
1816 	td = curthread;
1817 	MPASS(td->td_vp_reserved == NULL);
1818 	td->td_vp_reserved = vn_alloc(NULL);
1819 }
1820 
1821 void
getnewvnode_drop_reserve(void)1822 getnewvnode_drop_reserve(void)
1823 {
1824 	struct thread *td;
1825 
1826 	td = curthread;
1827 	if (td->td_vp_reserved != NULL) {
1828 		vn_free(td->td_vp_reserved);
1829 		td->td_vp_reserved = NULL;
1830 	}
1831 }
1832 
1833 static void __noinline
freevnode(struct vnode * vp)1834 freevnode(struct vnode *vp)
1835 {
1836 	struct bufobj *bo;
1837 
1838 	/*
1839 	 * The vnode has been marked for destruction, so free it.
1840 	 *
1841 	 * The vnode will be returned to the zone where it will
1842 	 * normally remain until it is needed for another vnode. We
1843 	 * need to cleanup (or verify that the cleanup has already
1844 	 * been done) any residual data left from its current use
1845 	 * so as not to contaminate the freshly allocated vnode.
1846 	 */
1847 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1848 	/*
1849 	 * Paired with vgone.
1850 	 */
1851 	vn_seqc_write_end_free(vp);
1852 
1853 	bo = &vp->v_bufobj;
1854 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1855 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1856 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1857 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1858 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1859 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1860 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1861 	    ("clean blk trie not empty"));
1862 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1863 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1864 	    ("dirty blk trie not empty"));
1865 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1866 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1867 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1868 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1869 	    ("Dangling rangelock waiters"));
1870 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1871 	    ("Leaked inactivation"));
1872 	VI_UNLOCK(vp);
1873 #ifdef MAC
1874 	mac_vnode_destroy(vp);
1875 #endif
1876 	if (vp->v_pollinfo != NULL) {
1877 		destroy_vpollinfo(vp->v_pollinfo);
1878 		vp->v_pollinfo = NULL;
1879 	}
1880 	vp->v_mountedhere = NULL;
1881 	vp->v_unpcb = NULL;
1882 	vp->v_rdev = NULL;
1883 	vp->v_fifoinfo = NULL;
1884 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
1885 	vp->v_iflag = 0;
1886 	vp->v_vflag = 0;
1887 	bo->bo_flag = 0;
1888 	vn_free(vp);
1889 }
1890 
1891 /*
1892  * Delete from old mount point vnode list, if on one.
1893  */
1894 static void
delmntque(struct vnode * vp)1895 delmntque(struct vnode *vp)
1896 {
1897 	struct mount *mp;
1898 
1899 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1900 
1901 	mp = vp->v_mount;
1902 	if (mp == NULL)
1903 		return;
1904 	MNT_ILOCK(mp);
1905 	VI_LOCK(vp);
1906 	vp->v_mount = NULL;
1907 	VI_UNLOCK(vp);
1908 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1909 		("bad mount point vnode list size"));
1910 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1911 	mp->mnt_nvnodelistsize--;
1912 	MNT_REL(mp);
1913 	MNT_IUNLOCK(mp);
1914 }
1915 
1916 static void
insmntque_stddtr(struct vnode * vp,void * dtr_arg)1917 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1918 {
1919 
1920 	vp->v_data = NULL;
1921 	vp->v_op = &dead_vnodeops;
1922 	vgone(vp);
1923 	vput(vp);
1924 }
1925 
1926 /*
1927  * Insert into list of vnodes for the new mount point, if available.
1928  */
1929 int
insmntque1(struct vnode * vp,struct mount * mp,void (* dtr)(struct vnode *,void *),void * dtr_arg)1930 insmntque1(struct vnode *vp, struct mount *mp,
1931 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1932 {
1933 
1934 	KASSERT(vp->v_mount == NULL,
1935 		("insmntque: vnode already on per mount vnode list"));
1936 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1937 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1938 
1939 	/*
1940 	 * We acquire the vnode interlock early to ensure that the
1941 	 * vnode cannot be recycled by another process releasing a
1942 	 * holdcnt on it before we get it on both the vnode list
1943 	 * and the active vnode list. The mount mutex protects only
1944 	 * manipulation of the vnode list and the vnode freelist
1945 	 * mutex protects only manipulation of the active vnode list.
1946 	 * Hence the need to hold the vnode interlock throughout.
1947 	 */
1948 	MNT_ILOCK(mp);
1949 	VI_LOCK(vp);
1950 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1951 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1952 	    mp->mnt_nvnodelistsize == 0)) &&
1953 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1954 		VI_UNLOCK(vp);
1955 		MNT_IUNLOCK(mp);
1956 		if (dtr != NULL)
1957 			dtr(vp, dtr_arg);
1958 		return (EBUSY);
1959 	}
1960 	vp->v_mount = mp;
1961 	MNT_REF(mp);
1962 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1963 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1964 		("neg mount point vnode list size"));
1965 	mp->mnt_nvnodelistsize++;
1966 	VI_UNLOCK(vp);
1967 	MNT_IUNLOCK(mp);
1968 	return (0);
1969 }
1970 
1971 int
insmntque(struct vnode * vp,struct mount * mp)1972 insmntque(struct vnode *vp, struct mount *mp)
1973 {
1974 
1975 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1976 }
1977 
1978 /*
1979  * Flush out and invalidate all buffers associated with a bufobj
1980  * Called with the underlying object locked.
1981  */
1982 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)1983 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1984 {
1985 	int error;
1986 
1987 	BO_LOCK(bo);
1988 	if (flags & V_SAVE) {
1989 		error = bufobj_wwait(bo, slpflag, slptimeo);
1990 		if (error) {
1991 			BO_UNLOCK(bo);
1992 			return (error);
1993 		}
1994 		if (bo->bo_dirty.bv_cnt > 0) {
1995 			BO_UNLOCK(bo);
1996 			do {
1997 				error = BO_SYNC(bo, MNT_WAIT);
1998 			} while (error == ERELOOKUP);
1999 			if (error != 0)
2000 				return (error);
2001 			/*
2002 			 * XXX We could save a lock/unlock if this was only
2003 			 * enabled under INVARIANTS
2004 			 */
2005 			BO_LOCK(bo);
2006 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
2007 				panic("vinvalbuf: dirty bufs");
2008 		}
2009 	}
2010 	/*
2011 	 * If you alter this loop please notice that interlock is dropped and
2012 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2013 	 * no race conditions occur from this.
2014 	 */
2015 	do {
2016 		error = flushbuflist(&bo->bo_clean,
2017 		    flags, bo, slpflag, slptimeo);
2018 		if (error == 0 && !(flags & V_CLEANONLY))
2019 			error = flushbuflist(&bo->bo_dirty,
2020 			    flags, bo, slpflag, slptimeo);
2021 		if (error != 0 && error != EAGAIN) {
2022 			BO_UNLOCK(bo);
2023 			return (error);
2024 		}
2025 	} while (error != 0);
2026 
2027 	/*
2028 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2029 	 * have write I/O in-progress but if there is a VM object then the
2030 	 * VM object can also have read-I/O in-progress.
2031 	 */
2032 	do {
2033 		bufobj_wwait(bo, 0, 0);
2034 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2035 			BO_UNLOCK(bo);
2036 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2037 			BO_LOCK(bo);
2038 		}
2039 	} while (bo->bo_numoutput > 0);
2040 	BO_UNLOCK(bo);
2041 
2042 	/*
2043 	 * Destroy the copy in the VM cache, too.
2044 	 */
2045 	if (bo->bo_object != NULL &&
2046 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2047 		VM_OBJECT_WLOCK(bo->bo_object);
2048 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2049 		    OBJPR_CLEANONLY : 0);
2050 		VM_OBJECT_WUNLOCK(bo->bo_object);
2051 	}
2052 
2053 #ifdef INVARIANTS
2054 	BO_LOCK(bo);
2055 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2056 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2057 	    bo->bo_clean.bv_cnt > 0))
2058 		panic("vinvalbuf: flush failed");
2059 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2060 	    bo->bo_dirty.bv_cnt > 0)
2061 		panic("vinvalbuf: flush dirty failed");
2062 	BO_UNLOCK(bo);
2063 #endif
2064 	return (0);
2065 }
2066 
2067 /*
2068  * Flush out and invalidate all buffers associated with a vnode.
2069  * Called with the underlying object locked.
2070  */
2071 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2072 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2073 {
2074 
2075 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2076 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2077 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2078 		return (0);
2079 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2080 }
2081 
2082 /*
2083  * Flush out buffers on the specified list.
2084  *
2085  */
2086 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2087 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2088     int slptimeo)
2089 {
2090 	struct buf *bp, *nbp;
2091 	int retval, error;
2092 	daddr_t lblkno;
2093 	b_xflags_t xflags;
2094 
2095 	ASSERT_BO_WLOCKED(bo);
2096 
2097 	retval = 0;
2098 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2099 		/*
2100 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2101 		 * do not skip any buffers. If we are flushing only V_NORMAL
2102 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2103 		 * flushing only V_ALT buffers then skip buffers not marked
2104 		 * as BX_ALTDATA.
2105 		 */
2106 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2107 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2108 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2109 			continue;
2110 		}
2111 		if (nbp != NULL) {
2112 			lblkno = nbp->b_lblkno;
2113 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2114 		}
2115 		retval = EAGAIN;
2116 		error = BUF_TIMELOCK(bp,
2117 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2118 		    "flushbuf", slpflag, slptimeo);
2119 		if (error) {
2120 			BO_LOCK(bo);
2121 			return (error != ENOLCK ? error : EAGAIN);
2122 		}
2123 		KASSERT(bp->b_bufobj == bo,
2124 		    ("bp %p wrong b_bufobj %p should be %p",
2125 		    bp, bp->b_bufobj, bo));
2126 		/*
2127 		 * XXX Since there are no node locks for NFS, I
2128 		 * believe there is a slight chance that a delayed
2129 		 * write will occur while sleeping just above, so
2130 		 * check for it.
2131 		 */
2132 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2133 		    (flags & V_SAVE)) {
2134 			bremfree(bp);
2135 			bp->b_flags |= B_ASYNC;
2136 			bwrite(bp);
2137 			BO_LOCK(bo);
2138 			return (EAGAIN);	/* XXX: why not loop ? */
2139 		}
2140 		bremfree(bp);
2141 		bp->b_flags |= (B_INVAL | B_RELBUF);
2142 		bp->b_flags &= ~B_ASYNC;
2143 		brelse(bp);
2144 		BO_LOCK(bo);
2145 		if (nbp == NULL)
2146 			break;
2147 		nbp = gbincore(bo, lblkno);
2148 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2149 		    != xflags)
2150 			break;			/* nbp invalid */
2151 	}
2152 	return (retval);
2153 }
2154 
2155 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2156 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2157 {
2158 	struct buf *bp;
2159 	int error;
2160 	daddr_t lblkno;
2161 
2162 	ASSERT_BO_LOCKED(bo);
2163 
2164 	for (lblkno = startn;;) {
2165 again:
2166 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2167 		if (bp == NULL || bp->b_lblkno >= endn ||
2168 		    bp->b_lblkno < startn)
2169 			break;
2170 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2171 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2172 		if (error != 0) {
2173 			BO_RLOCK(bo);
2174 			if (error == ENOLCK)
2175 				goto again;
2176 			return (error);
2177 		}
2178 		KASSERT(bp->b_bufobj == bo,
2179 		    ("bp %p wrong b_bufobj %p should be %p",
2180 		    bp, bp->b_bufobj, bo));
2181 		lblkno = bp->b_lblkno + 1;
2182 		if ((bp->b_flags & B_MANAGED) == 0)
2183 			bremfree(bp);
2184 		bp->b_flags |= B_RELBUF;
2185 		/*
2186 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2187 		 * pages backing each buffer in the range are unlikely to be
2188 		 * reused.  Dirty buffers will have the hint applied once
2189 		 * they've been written.
2190 		 */
2191 		if ((bp->b_flags & B_VMIO) != 0)
2192 			bp->b_flags |= B_NOREUSE;
2193 		brelse(bp);
2194 		BO_RLOCK(bo);
2195 	}
2196 	return (0);
2197 }
2198 
2199 /*
2200  * Truncate a file's buffer and pages to a specified length.  This
2201  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2202  * sync activity.
2203  */
2204 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2205 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2206 {
2207 	struct buf *bp, *nbp;
2208 	struct bufobj *bo;
2209 	daddr_t startlbn;
2210 
2211 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2212 	    vp, blksize, (uintmax_t)length);
2213 
2214 	/*
2215 	 * Round up to the *next* lbn.
2216 	 */
2217 	startlbn = howmany(length, blksize);
2218 
2219 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2220 
2221 	bo = &vp->v_bufobj;
2222 restart_unlocked:
2223 	BO_LOCK(bo);
2224 
2225 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2226 		;
2227 
2228 	if (length > 0) {
2229 restartsync:
2230 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2231 			if (bp->b_lblkno > 0)
2232 				continue;
2233 			/*
2234 			 * Since we hold the vnode lock this should only
2235 			 * fail if we're racing with the buf daemon.
2236 			 */
2237 			if (BUF_LOCK(bp,
2238 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2239 			    BO_LOCKPTR(bo)) == ENOLCK)
2240 				goto restart_unlocked;
2241 
2242 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2243 			    ("buf(%p) on dirty queue without DELWRI", bp));
2244 
2245 			bremfree(bp);
2246 			bawrite(bp);
2247 			BO_LOCK(bo);
2248 			goto restartsync;
2249 		}
2250 	}
2251 
2252 	bufobj_wwait(bo, 0, 0);
2253 	BO_UNLOCK(bo);
2254 	vnode_pager_setsize(vp, length);
2255 
2256 	return (0);
2257 }
2258 
2259 /*
2260  * Invalidate the cached pages of a file's buffer within the range of block
2261  * numbers [startlbn, endlbn).
2262  */
2263 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2264 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2265     int blksize)
2266 {
2267 	struct bufobj *bo;
2268 	off_t start, end;
2269 
2270 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2271 
2272 	start = blksize * startlbn;
2273 	end = blksize * endlbn;
2274 
2275 	bo = &vp->v_bufobj;
2276 	BO_LOCK(bo);
2277 	MPASS(blksize == bo->bo_bsize);
2278 
2279 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2280 		;
2281 
2282 	BO_UNLOCK(bo);
2283 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2284 }
2285 
2286 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2287 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2288     daddr_t startlbn, daddr_t endlbn)
2289 {
2290 	struct buf *bp, *nbp;
2291 	bool anyfreed;
2292 
2293 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2294 	ASSERT_BO_LOCKED(bo);
2295 
2296 	do {
2297 		anyfreed = false;
2298 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2299 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2300 				continue;
2301 			if (BUF_LOCK(bp,
2302 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2303 			    BO_LOCKPTR(bo)) == ENOLCK) {
2304 				BO_LOCK(bo);
2305 				return (EAGAIN);
2306 			}
2307 
2308 			bremfree(bp);
2309 			bp->b_flags |= B_INVAL | B_RELBUF;
2310 			bp->b_flags &= ~B_ASYNC;
2311 			brelse(bp);
2312 			anyfreed = true;
2313 
2314 			BO_LOCK(bo);
2315 			if (nbp != NULL &&
2316 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2317 			    nbp->b_vp != vp ||
2318 			    (nbp->b_flags & B_DELWRI) != 0))
2319 				return (EAGAIN);
2320 		}
2321 
2322 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2323 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2324 				continue;
2325 			if (BUF_LOCK(bp,
2326 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2327 			    BO_LOCKPTR(bo)) == ENOLCK) {
2328 				BO_LOCK(bo);
2329 				return (EAGAIN);
2330 			}
2331 			bremfree(bp);
2332 			bp->b_flags |= B_INVAL | B_RELBUF;
2333 			bp->b_flags &= ~B_ASYNC;
2334 			brelse(bp);
2335 			anyfreed = true;
2336 
2337 			BO_LOCK(bo);
2338 			if (nbp != NULL &&
2339 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2340 			    (nbp->b_vp != vp) ||
2341 			    (nbp->b_flags & B_DELWRI) == 0))
2342 				return (EAGAIN);
2343 		}
2344 	} while (anyfreed);
2345 	return (0);
2346 }
2347 
2348 static void
buf_vlist_remove(struct buf * bp)2349 buf_vlist_remove(struct buf *bp)
2350 {
2351 	struct bufv *bv;
2352 	b_xflags_t flags;
2353 
2354 	flags = bp->b_xflags;
2355 
2356 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2357 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2358 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2359 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2360 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2361 
2362 	if ((flags & BX_VNDIRTY) != 0)
2363 		bv = &bp->b_bufobj->bo_dirty;
2364 	else
2365 		bv = &bp->b_bufobj->bo_clean;
2366 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2367 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2368 	bv->bv_cnt--;
2369 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2370 }
2371 
2372 /*
2373  * Add the buffer to the sorted clean or dirty block list.
2374  *
2375  * NOTE: xflags is passed as a constant, optimizing this inline function!
2376  */
2377 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2378 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2379 {
2380 	struct bufv *bv;
2381 	struct buf *n;
2382 	int error;
2383 
2384 	ASSERT_BO_WLOCKED(bo);
2385 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2386 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2387 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2388 	    ("dead bo %p", bo));
2389 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2390 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2391 	bp->b_xflags |= xflags;
2392 	if (xflags & BX_VNDIRTY)
2393 		bv = &bo->bo_dirty;
2394 	else
2395 		bv = &bo->bo_clean;
2396 
2397 	/*
2398 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2399 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2400 	 * than _ge.
2401 	 */
2402 	if (bv->bv_cnt == 0 ||
2403 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2404 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2405 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2406 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2407 	else
2408 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2409 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2410 	if (error)
2411 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2412 	bv->bv_cnt++;
2413 }
2414 
2415 /*
2416  * Look up a buffer using the buffer tries.
2417  */
2418 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2419 gbincore(struct bufobj *bo, daddr_t lblkno)
2420 {
2421 	struct buf *bp;
2422 
2423 	ASSERT_BO_LOCKED(bo);
2424 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2425 	if (bp != NULL)
2426 		return (bp);
2427 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2428 }
2429 
2430 /*
2431  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2432  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2433  * stability of the result.  Like other lockless lookups, the found buf may
2434  * already be invalid by the time this function returns.
2435  */
2436 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2437 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2438 {
2439 	struct buf *bp;
2440 
2441 	ASSERT_BO_UNLOCKED(bo);
2442 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2443 	if (bp != NULL)
2444 		return (bp);
2445 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2446 }
2447 
2448 /*
2449  * Associate a buffer with a vnode.
2450  */
2451 void
bgetvp(struct vnode * vp,struct buf * bp)2452 bgetvp(struct vnode *vp, struct buf *bp)
2453 {
2454 	struct bufobj *bo;
2455 
2456 	bo = &vp->v_bufobj;
2457 	ASSERT_BO_WLOCKED(bo);
2458 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2459 
2460 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2461 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2462 	    ("bgetvp: bp already attached! %p", bp));
2463 
2464 	vhold(vp);
2465 	bp->b_vp = vp;
2466 	bp->b_bufobj = bo;
2467 	/*
2468 	 * Insert onto list for new vnode.
2469 	 */
2470 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2471 }
2472 
2473 /*
2474  * Disassociate a buffer from a vnode.
2475  */
2476 void
brelvp(struct buf * bp)2477 brelvp(struct buf *bp)
2478 {
2479 	struct bufobj *bo;
2480 	struct vnode *vp;
2481 
2482 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2483 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2484 
2485 	/*
2486 	 * Delete from old vnode list, if on one.
2487 	 */
2488 	vp = bp->b_vp;		/* XXX */
2489 	bo = bp->b_bufobj;
2490 	BO_LOCK(bo);
2491 	buf_vlist_remove(bp);
2492 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2493 		bo->bo_flag &= ~BO_ONWORKLST;
2494 		mtx_lock(&sync_mtx);
2495 		LIST_REMOVE(bo, bo_synclist);
2496 		syncer_worklist_len--;
2497 		mtx_unlock(&sync_mtx);
2498 	}
2499 	bp->b_vp = NULL;
2500 	bp->b_bufobj = NULL;
2501 	BO_UNLOCK(bo);
2502 	vdrop(vp);
2503 }
2504 
2505 /*
2506  * Add an item to the syncer work queue.
2507  */
2508 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2509 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2510 {
2511 	int slot;
2512 
2513 	ASSERT_BO_WLOCKED(bo);
2514 
2515 	mtx_lock(&sync_mtx);
2516 	if (bo->bo_flag & BO_ONWORKLST)
2517 		LIST_REMOVE(bo, bo_synclist);
2518 	else {
2519 		bo->bo_flag |= BO_ONWORKLST;
2520 		syncer_worklist_len++;
2521 	}
2522 
2523 	if (delay > syncer_maxdelay - 2)
2524 		delay = syncer_maxdelay - 2;
2525 	slot = (syncer_delayno + delay) & syncer_mask;
2526 
2527 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2528 	mtx_unlock(&sync_mtx);
2529 }
2530 
2531 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2532 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2533 {
2534 	int error, len;
2535 
2536 	mtx_lock(&sync_mtx);
2537 	len = syncer_worklist_len - sync_vnode_count;
2538 	mtx_unlock(&sync_mtx);
2539 	error = SYSCTL_OUT(req, &len, sizeof(len));
2540 	return (error);
2541 }
2542 
2543 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2544     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2545     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2546 
2547 static struct proc *updateproc;
2548 static void sched_sync(void);
2549 static struct kproc_desc up_kp = {
2550 	"syncer",
2551 	sched_sync,
2552 	&updateproc
2553 };
2554 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2555 
2556 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2557 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2558 {
2559 	struct vnode *vp;
2560 	struct mount *mp;
2561 
2562 	*bo = LIST_FIRST(slp);
2563 	if (*bo == NULL)
2564 		return (0);
2565 	vp = bo2vnode(*bo);
2566 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2567 		return (1);
2568 	/*
2569 	 * We use vhold in case the vnode does not
2570 	 * successfully sync.  vhold prevents the vnode from
2571 	 * going away when we unlock the sync_mtx so that
2572 	 * we can acquire the vnode interlock.
2573 	 */
2574 	vholdl(vp);
2575 	mtx_unlock(&sync_mtx);
2576 	VI_UNLOCK(vp);
2577 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2578 		vdrop(vp);
2579 		mtx_lock(&sync_mtx);
2580 		return (*bo == LIST_FIRST(slp));
2581 	}
2582 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2583 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2584 	VOP_UNLOCK(vp);
2585 	vn_finished_write(mp);
2586 	BO_LOCK(*bo);
2587 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2588 		/*
2589 		 * Put us back on the worklist.  The worklist
2590 		 * routine will remove us from our current
2591 		 * position and then add us back in at a later
2592 		 * position.
2593 		 */
2594 		vn_syncer_add_to_worklist(*bo, syncdelay);
2595 	}
2596 	BO_UNLOCK(*bo);
2597 	vdrop(vp);
2598 	mtx_lock(&sync_mtx);
2599 	return (0);
2600 }
2601 
2602 static int first_printf = 1;
2603 
2604 /*
2605  * System filesystem synchronizer daemon.
2606  */
2607 static void
sched_sync(void)2608 sched_sync(void)
2609 {
2610 	struct synclist *next, *slp;
2611 	struct bufobj *bo;
2612 	long starttime;
2613 	struct thread *td = curthread;
2614 	int last_work_seen;
2615 	int net_worklist_len;
2616 	int syncer_final_iter;
2617 	int error;
2618 
2619 	last_work_seen = 0;
2620 	syncer_final_iter = 0;
2621 	syncer_state = SYNCER_RUNNING;
2622 	starttime = time_uptime;
2623 	td->td_pflags |= TDP_NORUNNINGBUF;
2624 
2625 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2626 	    SHUTDOWN_PRI_LAST);
2627 
2628 	mtx_lock(&sync_mtx);
2629 	for (;;) {
2630 		if (syncer_state == SYNCER_FINAL_DELAY &&
2631 		    syncer_final_iter == 0) {
2632 			mtx_unlock(&sync_mtx);
2633 			kproc_suspend_check(td->td_proc);
2634 			mtx_lock(&sync_mtx);
2635 		}
2636 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2637 		if (syncer_state != SYNCER_RUNNING &&
2638 		    starttime != time_uptime) {
2639 			if (first_printf) {
2640 				printf("\nSyncing disks, vnodes remaining... ");
2641 				first_printf = 0;
2642 			}
2643 			printf("%d ", net_worklist_len);
2644 		}
2645 		starttime = time_uptime;
2646 
2647 		/*
2648 		 * Push files whose dirty time has expired.  Be careful
2649 		 * of interrupt race on slp queue.
2650 		 *
2651 		 * Skip over empty worklist slots when shutting down.
2652 		 */
2653 		do {
2654 			slp = &syncer_workitem_pending[syncer_delayno];
2655 			syncer_delayno += 1;
2656 			if (syncer_delayno == syncer_maxdelay)
2657 				syncer_delayno = 0;
2658 			next = &syncer_workitem_pending[syncer_delayno];
2659 			/*
2660 			 * If the worklist has wrapped since the
2661 			 * it was emptied of all but syncer vnodes,
2662 			 * switch to the FINAL_DELAY state and run
2663 			 * for one more second.
2664 			 */
2665 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2666 			    net_worklist_len == 0 &&
2667 			    last_work_seen == syncer_delayno) {
2668 				syncer_state = SYNCER_FINAL_DELAY;
2669 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2670 			}
2671 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2672 		    syncer_worklist_len > 0);
2673 
2674 		/*
2675 		 * Keep track of the last time there was anything
2676 		 * on the worklist other than syncer vnodes.
2677 		 * Return to the SHUTTING_DOWN state if any
2678 		 * new work appears.
2679 		 */
2680 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2681 			last_work_seen = syncer_delayno;
2682 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2683 			syncer_state = SYNCER_SHUTTING_DOWN;
2684 		while (!LIST_EMPTY(slp)) {
2685 			error = sync_vnode(slp, &bo, td);
2686 			if (error == 1) {
2687 				LIST_REMOVE(bo, bo_synclist);
2688 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2689 				continue;
2690 			}
2691 
2692 			if (first_printf == 0) {
2693 				/*
2694 				 * Drop the sync mutex, because some watchdog
2695 				 * drivers need to sleep while patting
2696 				 */
2697 				mtx_unlock(&sync_mtx);
2698 				wdog_kern_pat(WD_LASTVAL);
2699 				mtx_lock(&sync_mtx);
2700 			}
2701 		}
2702 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2703 			syncer_final_iter--;
2704 		/*
2705 		 * The variable rushjob allows the kernel to speed up the
2706 		 * processing of the filesystem syncer process. A rushjob
2707 		 * value of N tells the filesystem syncer to process the next
2708 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2709 		 * is used by the soft update code to speed up the filesystem
2710 		 * syncer process when the incore state is getting so far
2711 		 * ahead of the disk that the kernel memory pool is being
2712 		 * threatened with exhaustion.
2713 		 */
2714 		if (rushjob > 0) {
2715 			rushjob -= 1;
2716 			continue;
2717 		}
2718 		/*
2719 		 * Just sleep for a short period of time between
2720 		 * iterations when shutting down to allow some I/O
2721 		 * to happen.
2722 		 *
2723 		 * If it has taken us less than a second to process the
2724 		 * current work, then wait. Otherwise start right over
2725 		 * again. We can still lose time if any single round
2726 		 * takes more than two seconds, but it does not really
2727 		 * matter as we are just trying to generally pace the
2728 		 * filesystem activity.
2729 		 */
2730 		if (syncer_state != SYNCER_RUNNING ||
2731 		    time_uptime == starttime) {
2732 			thread_lock(td);
2733 			sched_prio(td, PPAUSE);
2734 			thread_unlock(td);
2735 		}
2736 		if (syncer_state != SYNCER_RUNNING)
2737 			cv_timedwait(&sync_wakeup, &sync_mtx,
2738 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2739 		else if (time_uptime == starttime)
2740 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2741 	}
2742 }
2743 
2744 /*
2745  * Request the syncer daemon to speed up its work.
2746  * We never push it to speed up more than half of its
2747  * normal turn time, otherwise it could take over the cpu.
2748  */
2749 int
speedup_syncer(void)2750 speedup_syncer(void)
2751 {
2752 	int ret = 0;
2753 
2754 	mtx_lock(&sync_mtx);
2755 	if (rushjob < syncdelay / 2) {
2756 		rushjob += 1;
2757 		stat_rush_requests += 1;
2758 		ret = 1;
2759 	}
2760 	mtx_unlock(&sync_mtx);
2761 	cv_broadcast(&sync_wakeup);
2762 	return (ret);
2763 }
2764 
2765 /*
2766  * Tell the syncer to speed up its work and run though its work
2767  * list several times, then tell it to shut down.
2768  */
2769 static void
syncer_shutdown(void * arg,int howto)2770 syncer_shutdown(void *arg, int howto)
2771 {
2772 
2773 	if (howto & RB_NOSYNC)
2774 		return;
2775 	mtx_lock(&sync_mtx);
2776 	syncer_state = SYNCER_SHUTTING_DOWN;
2777 	rushjob = 0;
2778 	mtx_unlock(&sync_mtx);
2779 	cv_broadcast(&sync_wakeup);
2780 	kproc_shutdown(arg, howto);
2781 }
2782 
2783 void
syncer_suspend(void)2784 syncer_suspend(void)
2785 {
2786 
2787 	syncer_shutdown(updateproc, 0);
2788 }
2789 
2790 void
syncer_resume(void)2791 syncer_resume(void)
2792 {
2793 
2794 	mtx_lock(&sync_mtx);
2795 	first_printf = 1;
2796 	syncer_state = SYNCER_RUNNING;
2797 	mtx_unlock(&sync_mtx);
2798 	cv_broadcast(&sync_wakeup);
2799 	kproc_resume(updateproc);
2800 }
2801 
2802 /*
2803  * Move the buffer between the clean and dirty lists of its vnode.
2804  */
2805 void
reassignbuf(struct buf * bp)2806 reassignbuf(struct buf *bp)
2807 {
2808 	struct vnode *vp;
2809 	struct bufobj *bo;
2810 	int delay;
2811 #ifdef INVARIANTS
2812 	struct bufv *bv;
2813 #endif
2814 
2815 	vp = bp->b_vp;
2816 	bo = bp->b_bufobj;
2817 
2818 	KASSERT((bp->b_flags & B_PAGING) == 0,
2819 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2820 
2821 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2822 	    bp, bp->b_vp, bp->b_flags);
2823 
2824 	BO_LOCK(bo);
2825 	buf_vlist_remove(bp);
2826 
2827 	/*
2828 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2829 	 * of clean buffers.
2830 	 */
2831 	if (bp->b_flags & B_DELWRI) {
2832 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2833 			switch (vp->v_type) {
2834 			case VDIR:
2835 				delay = dirdelay;
2836 				break;
2837 			case VCHR:
2838 				delay = metadelay;
2839 				break;
2840 			default:
2841 				delay = filedelay;
2842 			}
2843 			vn_syncer_add_to_worklist(bo, delay);
2844 		}
2845 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2846 	} else {
2847 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2848 
2849 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2850 			mtx_lock(&sync_mtx);
2851 			LIST_REMOVE(bo, bo_synclist);
2852 			syncer_worklist_len--;
2853 			mtx_unlock(&sync_mtx);
2854 			bo->bo_flag &= ~BO_ONWORKLST;
2855 		}
2856 	}
2857 #ifdef INVARIANTS
2858 	bv = &bo->bo_clean;
2859 	bp = TAILQ_FIRST(&bv->bv_hd);
2860 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2861 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2862 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2863 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2864 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2865 	bv = &bo->bo_dirty;
2866 	bp = TAILQ_FIRST(&bv->bv_hd);
2867 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2868 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2869 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2870 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2871 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2872 #endif
2873 	BO_UNLOCK(bo);
2874 }
2875 
2876 static void
v_init_counters(struct vnode * vp)2877 v_init_counters(struct vnode *vp)
2878 {
2879 
2880 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2881 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2882 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2883 
2884 	refcount_init(&vp->v_holdcnt, 1);
2885 	refcount_init(&vp->v_usecount, 1);
2886 }
2887 
2888 /*
2889  * Grab a particular vnode from the free list, increment its
2890  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2891  * is being destroyed.  Only callers who specify LK_RETRY will
2892  * see doomed vnodes.  If inactive processing was delayed in
2893  * vput try to do it here.
2894  *
2895  * usecount is manipulated using atomics without holding any locks.
2896  *
2897  * holdcnt can be manipulated using atomics without holding any locks,
2898  * except when transitioning 1<->0, in which case the interlock is held.
2899  *
2900  * Consumers which don't guarantee liveness of the vnode can use SMR to
2901  * try to get a reference. Note this operation can fail since the vnode
2902  * may be awaiting getting freed by the time they get to it.
2903  */
2904 enum vgetstate
vget_prep_smr(struct vnode * vp)2905 vget_prep_smr(struct vnode *vp)
2906 {
2907 	enum vgetstate vs;
2908 
2909 	VFS_SMR_ASSERT_ENTERED();
2910 
2911 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2912 		vs = VGET_USECOUNT;
2913 	} else {
2914 		if (vhold_smr(vp))
2915 			vs = VGET_HOLDCNT;
2916 		else
2917 			vs = VGET_NONE;
2918 	}
2919 	return (vs);
2920 }
2921 
2922 enum vgetstate
vget_prep(struct vnode * vp)2923 vget_prep(struct vnode *vp)
2924 {
2925 	enum vgetstate vs;
2926 
2927 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2928 		vs = VGET_USECOUNT;
2929 	} else {
2930 		vhold(vp);
2931 		vs = VGET_HOLDCNT;
2932 	}
2933 	return (vs);
2934 }
2935 
2936 void
vget_abort(struct vnode * vp,enum vgetstate vs)2937 vget_abort(struct vnode *vp, enum vgetstate vs)
2938 {
2939 
2940 	switch (vs) {
2941 	case VGET_USECOUNT:
2942 		vrele(vp);
2943 		break;
2944 	case VGET_HOLDCNT:
2945 		vdrop(vp);
2946 		break;
2947 	default:
2948 		__assert_unreachable();
2949 	}
2950 }
2951 
2952 int
vget(struct vnode * vp,int flags)2953 vget(struct vnode *vp, int flags)
2954 {
2955 	enum vgetstate vs;
2956 
2957 	vs = vget_prep(vp);
2958 	return (vget_finish(vp, flags, vs));
2959 }
2960 
2961 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)2962 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2963 {
2964 	int error;
2965 
2966 	if ((flags & LK_INTERLOCK) != 0)
2967 		ASSERT_VI_LOCKED(vp, __func__);
2968 	else
2969 		ASSERT_VI_UNLOCKED(vp, __func__);
2970 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
2971 	VNPASS(vp->v_holdcnt > 0, vp);
2972 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
2973 
2974 	error = vn_lock(vp, flags);
2975 	if (__predict_false(error != 0)) {
2976 		vget_abort(vp, vs);
2977 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2978 		    vp);
2979 		return (error);
2980 	}
2981 
2982 	vget_finish_ref(vp, vs);
2983 	return (0);
2984 }
2985 
2986 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)2987 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
2988 {
2989 	int old;
2990 
2991 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
2992 	VNPASS(vp->v_holdcnt > 0, vp);
2993 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
2994 
2995 	if (vs == VGET_USECOUNT)
2996 		return;
2997 
2998 	/*
2999 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3000 	 * the vnode around. Otherwise someone else lended their hold count and
3001 	 * we have to drop ours.
3002 	 */
3003 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3004 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3005 	if (old != 0) {
3006 #ifdef INVARIANTS
3007 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3008 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3009 #else
3010 		refcount_release(&vp->v_holdcnt);
3011 #endif
3012 	}
3013 }
3014 
3015 void
vref(struct vnode * vp)3016 vref(struct vnode *vp)
3017 {
3018 	enum vgetstate vs;
3019 
3020 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3021 	vs = vget_prep(vp);
3022 	vget_finish_ref(vp, vs);
3023 }
3024 
3025 void
vrefact(struct vnode * vp)3026 vrefact(struct vnode *vp)
3027 {
3028 
3029 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3030 #ifdef INVARIANTS
3031 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3032 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3033 #else
3034 	refcount_acquire(&vp->v_usecount);
3035 #endif
3036 }
3037 
3038 void
vlazy(struct vnode * vp)3039 vlazy(struct vnode *vp)
3040 {
3041 	struct mount *mp;
3042 
3043 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3044 
3045 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3046 		return;
3047 	/*
3048 	 * We may get here for inactive routines after the vnode got doomed.
3049 	 */
3050 	if (VN_IS_DOOMED(vp))
3051 		return;
3052 	mp = vp->v_mount;
3053 	mtx_lock(&mp->mnt_listmtx);
3054 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3055 		vp->v_mflag |= VMP_LAZYLIST;
3056 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3057 		mp->mnt_lazyvnodelistsize++;
3058 	}
3059 	mtx_unlock(&mp->mnt_listmtx);
3060 }
3061 
3062 /*
3063  * This routine is only meant to be called from vgonel prior to dooming
3064  * the vnode.
3065  */
3066 static void
vunlazy_gone(struct vnode * vp)3067 vunlazy_gone(struct vnode *vp)
3068 {
3069 	struct mount *mp;
3070 
3071 	ASSERT_VOP_ELOCKED(vp, __func__);
3072 	ASSERT_VI_LOCKED(vp, __func__);
3073 	VNPASS(!VN_IS_DOOMED(vp), vp);
3074 
3075 	if (vp->v_mflag & VMP_LAZYLIST) {
3076 		mp = vp->v_mount;
3077 		mtx_lock(&mp->mnt_listmtx);
3078 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3079 		vp->v_mflag &= ~VMP_LAZYLIST;
3080 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3081 		mp->mnt_lazyvnodelistsize--;
3082 		mtx_unlock(&mp->mnt_listmtx);
3083 	}
3084 }
3085 
3086 static void
vdefer_inactive(struct vnode * vp)3087 vdefer_inactive(struct vnode *vp)
3088 {
3089 
3090 	ASSERT_VI_LOCKED(vp, __func__);
3091 	VNASSERT(vp->v_holdcnt > 0, vp,
3092 	    ("%s: vnode without hold count", __func__));
3093 	if (VN_IS_DOOMED(vp)) {
3094 		vdropl(vp);
3095 		return;
3096 	}
3097 	if (vp->v_iflag & VI_DEFINACT) {
3098 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3099 		vdropl(vp);
3100 		return;
3101 	}
3102 	if (vp->v_usecount > 0) {
3103 		vp->v_iflag &= ~VI_OWEINACT;
3104 		vdropl(vp);
3105 		return;
3106 	}
3107 	vlazy(vp);
3108 	vp->v_iflag |= VI_DEFINACT;
3109 	VI_UNLOCK(vp);
3110 	counter_u64_add(deferred_inact, 1);
3111 }
3112 
3113 static void
vdefer_inactive_unlocked(struct vnode * vp)3114 vdefer_inactive_unlocked(struct vnode *vp)
3115 {
3116 
3117 	VI_LOCK(vp);
3118 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3119 		vdropl(vp);
3120 		return;
3121 	}
3122 	vdefer_inactive(vp);
3123 }
3124 
3125 enum vput_op { VRELE, VPUT, VUNREF };
3126 
3127 /*
3128  * Handle ->v_usecount transitioning to 0.
3129  *
3130  * By releasing the last usecount we take ownership of the hold count which
3131  * provides liveness of the vnode, meaning we have to vdrop.
3132  *
3133  * For all vnodes we may need to perform inactive processing. It requires an
3134  * exclusive lock on the vnode, while it is legal to call here with only a
3135  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3136  * inactive processing gets deferred to the syncer.
3137  *
3138  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3139  * on the lock being held all the way until VOP_INACTIVE. This in particular
3140  * happens with UFS which adds half-constructed vnodes to the hash, where they
3141  * can be found by other code.
3142  */
3143 static void
vput_final(struct vnode * vp,enum vput_op func)3144 vput_final(struct vnode *vp, enum vput_op func)
3145 {
3146 	int error;
3147 	bool want_unlock;
3148 
3149 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3150 	VNPASS(vp->v_holdcnt > 0, vp);
3151 
3152 	VI_LOCK(vp);
3153 
3154 	/*
3155 	 * By the time we got here someone else might have transitioned
3156 	 * the count back to > 0.
3157 	 */
3158 	if (vp->v_usecount > 0)
3159 		goto out;
3160 
3161 	/*
3162 	 * If the vnode is doomed vgone already performed inactive processing
3163 	 * (if needed).
3164 	 */
3165 	if (VN_IS_DOOMED(vp))
3166 		goto out;
3167 
3168 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3169 		goto out;
3170 
3171 	if (vp->v_iflag & VI_DOINGINACT)
3172 		goto out;
3173 
3174 	/*
3175 	 * Locking operations here will drop the interlock and possibly the
3176 	 * vnode lock, opening a window where the vnode can get doomed all the
3177 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3178 	 * perform inactive.
3179 	 */
3180 	vp->v_iflag |= VI_OWEINACT;
3181 	want_unlock = false;
3182 	error = 0;
3183 	switch (func) {
3184 	case VRELE:
3185 		switch (VOP_ISLOCKED(vp)) {
3186 		case LK_EXCLUSIVE:
3187 			break;
3188 		case LK_EXCLOTHER:
3189 		case 0:
3190 			want_unlock = true;
3191 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3192 			VI_LOCK(vp);
3193 			break;
3194 		default:
3195 			/*
3196 			 * The lock has at least one sharer, but we have no way
3197 			 * to conclude whether this is us. Play it safe and
3198 			 * defer processing.
3199 			 */
3200 			error = EAGAIN;
3201 			break;
3202 		}
3203 		break;
3204 	case VPUT:
3205 		want_unlock = true;
3206 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3207 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3208 			    LK_NOWAIT);
3209 			VI_LOCK(vp);
3210 		}
3211 		break;
3212 	case VUNREF:
3213 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3214 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3215 			VI_LOCK(vp);
3216 		}
3217 		break;
3218 	}
3219 	if (error == 0) {
3220 		if (func == VUNREF) {
3221 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3222 			    ("recursive vunref"));
3223 			vp->v_vflag |= VV_UNREF;
3224 		}
3225 		for (;;) {
3226 			error = vinactive(vp);
3227 			if (want_unlock)
3228 				VOP_UNLOCK(vp);
3229 			if (error != ERELOOKUP || !want_unlock)
3230 				break;
3231 			VOP_LOCK(vp, LK_EXCLUSIVE);
3232 		}
3233 		if (func == VUNREF)
3234 			vp->v_vflag &= ~VV_UNREF;
3235 		vdropl(vp);
3236 	} else {
3237 		vdefer_inactive(vp);
3238 	}
3239 	return;
3240 out:
3241 	if (func == VPUT)
3242 		VOP_UNLOCK(vp);
3243 	vdropl(vp);
3244 }
3245 
3246 /*
3247  * Decrement ->v_usecount for a vnode.
3248  *
3249  * Releasing the last use count requires additional processing, see vput_final
3250  * above for details.
3251  *
3252  * Comment above each variant denotes lock state on entry and exit.
3253  */
3254 
3255 /*
3256  * in: any
3257  * out: same as passed in
3258  */
3259 void
vrele(struct vnode * vp)3260 vrele(struct vnode *vp)
3261 {
3262 
3263 	ASSERT_VI_UNLOCKED(vp, __func__);
3264 	if (!refcount_release(&vp->v_usecount))
3265 		return;
3266 	vput_final(vp, VRELE);
3267 }
3268 
3269 /*
3270  * in: locked
3271  * out: unlocked
3272  */
3273 void
vput(struct vnode * vp)3274 vput(struct vnode *vp)
3275 {
3276 
3277 	ASSERT_VOP_LOCKED(vp, __func__);
3278 	ASSERT_VI_UNLOCKED(vp, __func__);
3279 	if (!refcount_release(&vp->v_usecount)) {
3280 		VOP_UNLOCK(vp);
3281 		return;
3282 	}
3283 	vput_final(vp, VPUT);
3284 }
3285 
3286 /*
3287  * in: locked
3288  * out: locked
3289  */
3290 void
vunref(struct vnode * vp)3291 vunref(struct vnode *vp)
3292 {
3293 
3294 	ASSERT_VOP_LOCKED(vp, __func__);
3295 	ASSERT_VI_UNLOCKED(vp, __func__);
3296 	if (!refcount_release(&vp->v_usecount))
3297 		return;
3298 	vput_final(vp, VUNREF);
3299 }
3300 
3301 void
vhold(struct vnode * vp)3302 vhold(struct vnode *vp)
3303 {
3304 	int old;
3305 
3306 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3307 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3308 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3309 	    ("%s: wrong hold count %d", __func__, old));
3310 	if (old == 0)
3311 		vn_freevnodes_dec();
3312 }
3313 
3314 void
vholdnz(struct vnode * vp)3315 vholdnz(struct vnode *vp)
3316 {
3317 
3318 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3319 #ifdef INVARIANTS
3320 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3321 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3322 	    ("%s: wrong hold count %d", __func__, old));
3323 #else
3324 	atomic_add_int(&vp->v_holdcnt, 1);
3325 #endif
3326 }
3327 
3328 /*
3329  * Grab a hold count unless the vnode is freed.
3330  *
3331  * Only use this routine if vfs smr is the only protection you have against
3332  * freeing the vnode.
3333  *
3334  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3335  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3336  * the thread which managed to set the flag.
3337  *
3338  * It may be tempting to replace the loop with:
3339  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3340  * if (count & VHOLD_NO_SMR) {
3341  *     backpedal and error out;
3342  * }
3343  *
3344  * However, while this is more performant, it hinders debugging by eliminating
3345  * the previously mentioned invariant.
3346  */
3347 bool
vhold_smr(struct vnode * vp)3348 vhold_smr(struct vnode *vp)
3349 {
3350 	int count;
3351 
3352 	VFS_SMR_ASSERT_ENTERED();
3353 
3354 	count = atomic_load_int(&vp->v_holdcnt);
3355 	for (;;) {
3356 		if (count & VHOLD_NO_SMR) {
3357 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3358 			    ("non-zero hold count with flags %d\n", count));
3359 			return (false);
3360 		}
3361 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3362 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3363 			if (count == 0)
3364 				vn_freevnodes_dec();
3365 			return (true);
3366 		}
3367 	}
3368 }
3369 
3370 /*
3371  * Hold a free vnode for recycling.
3372  *
3373  * Note: vnode_init references this comment.
3374  *
3375  * Attempts to recycle only need the global vnode list lock and have no use for
3376  * SMR.
3377  *
3378  * However, vnodes get inserted into the global list before they get fully
3379  * initialized and stay there until UMA decides to free the memory. This in
3380  * particular means the target can be found before it becomes usable and after
3381  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3382  * VHOLD_NO_SMR.
3383  *
3384  * Note: the vnode may gain more references after we transition the count 0->1.
3385  */
3386 static bool
vhold_recycle_free(struct vnode * vp)3387 vhold_recycle_free(struct vnode *vp)
3388 {
3389 	int count;
3390 
3391 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3392 
3393 	count = atomic_load_int(&vp->v_holdcnt);
3394 	for (;;) {
3395 		if (count & VHOLD_NO_SMR) {
3396 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3397 			    ("non-zero hold count with flags %d\n", count));
3398 			return (false);
3399 		}
3400 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3401 		if (count > 0) {
3402 			return (false);
3403 		}
3404 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3405 			vn_freevnodes_dec();
3406 			return (true);
3407 		}
3408 	}
3409 }
3410 
3411 static void __noinline
vdbatch_process(struct vdbatch * vd)3412 vdbatch_process(struct vdbatch *vd)
3413 {
3414 	struct vnode *vp;
3415 	int i;
3416 
3417 	mtx_assert(&vd->lock, MA_OWNED);
3418 	MPASS(curthread->td_pinned > 0);
3419 	MPASS(vd->index == VDBATCH_SIZE);
3420 
3421 	mtx_lock(&vnode_list_mtx);
3422 	critical_enter();
3423 	freevnodes += vd->freevnodes;
3424 	for (i = 0; i < VDBATCH_SIZE; i++) {
3425 		vp = vd->tab[i];
3426 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3427 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3428 		MPASS(vp->v_dbatchcpu != NOCPU);
3429 		vp->v_dbatchcpu = NOCPU;
3430 	}
3431 	mtx_unlock(&vnode_list_mtx);
3432 	vd->freevnodes = 0;
3433 	bzero(vd->tab, sizeof(vd->tab));
3434 	vd->index = 0;
3435 	critical_exit();
3436 }
3437 
3438 static void
vdbatch_enqueue(struct vnode * vp)3439 vdbatch_enqueue(struct vnode *vp)
3440 {
3441 	struct vdbatch *vd;
3442 
3443 	ASSERT_VI_LOCKED(vp, __func__);
3444 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3445 	    ("%s: deferring requeue of a doomed vnode", __func__));
3446 
3447 	if (vp->v_dbatchcpu != NOCPU) {
3448 		VI_UNLOCK(vp);
3449 		return;
3450 	}
3451 
3452 	sched_pin();
3453 	vd = DPCPU_PTR(vd);
3454 	mtx_lock(&vd->lock);
3455 	MPASS(vd->index < VDBATCH_SIZE);
3456 	MPASS(vd->tab[vd->index] == NULL);
3457 	/*
3458 	 * A hack: we depend on being pinned so that we know what to put in
3459 	 * ->v_dbatchcpu.
3460 	 */
3461 	vp->v_dbatchcpu = curcpu;
3462 	vd->tab[vd->index] = vp;
3463 	vd->index++;
3464 	VI_UNLOCK(vp);
3465 	if (vd->index == VDBATCH_SIZE)
3466 		vdbatch_process(vd);
3467 	mtx_unlock(&vd->lock);
3468 	sched_unpin();
3469 }
3470 
3471 /*
3472  * This routine must only be called for vnodes which are about to be
3473  * deallocated. Supporting dequeue for arbitrary vndoes would require
3474  * validating that the locked batch matches.
3475  */
3476 static void
vdbatch_dequeue(struct vnode * vp)3477 vdbatch_dequeue(struct vnode *vp)
3478 {
3479 	struct vdbatch *vd;
3480 	int i;
3481 	short cpu;
3482 
3483 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3484 	    ("%s: called for a used vnode\n", __func__));
3485 
3486 	cpu = vp->v_dbatchcpu;
3487 	if (cpu == NOCPU)
3488 		return;
3489 
3490 	vd = DPCPU_ID_PTR(cpu, vd);
3491 	mtx_lock(&vd->lock);
3492 	for (i = 0; i < vd->index; i++) {
3493 		if (vd->tab[i] != vp)
3494 			continue;
3495 		vp->v_dbatchcpu = NOCPU;
3496 		vd->index--;
3497 		vd->tab[i] = vd->tab[vd->index];
3498 		vd->tab[vd->index] = NULL;
3499 		break;
3500 	}
3501 	mtx_unlock(&vd->lock);
3502 	/*
3503 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3504 	 */
3505 	MPASS(vp->v_dbatchcpu == NOCPU);
3506 }
3507 
3508 /*
3509  * Drop the hold count of the vnode.  If this is the last reference to
3510  * the vnode we place it on the free list unless it has been vgone'd
3511  * (marked VIRF_DOOMED) in which case we will free it.
3512  *
3513  * Because the vnode vm object keeps a hold reference on the vnode if
3514  * there is at least one resident non-cached page, the vnode cannot
3515  * leave the active list without the page cleanup done.
3516  */
3517 static void
vdrop_deactivate(struct vnode * vp)3518 vdrop_deactivate(struct vnode *vp)
3519 {
3520 	struct mount *mp;
3521 
3522 	ASSERT_VI_LOCKED(vp, __func__);
3523 	/*
3524 	 * Mark a vnode as free: remove it from its active list
3525 	 * and put it up for recycling on the freelist.
3526 	 */
3527 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3528 	    ("vdrop: returning doomed vnode"));
3529 	VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
3530 	    ("vnode with VI_OWEINACT set"));
3531 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp,
3532 	    ("vnode with VI_DEFINACT set"));
3533 	if (vp->v_mflag & VMP_LAZYLIST) {
3534 		mp = vp->v_mount;
3535 		mtx_lock(&mp->mnt_listmtx);
3536 		VNASSERT(vp->v_mflag & VMP_LAZYLIST, vp, ("lost VMP_LAZYLIST"));
3537 		/*
3538 		 * Don't remove the vnode from the lazy list if another thread
3539 		 * has increased the hold count. It may have re-enqueued the
3540 		 * vnode to the lazy list and is now responsible for its
3541 		 * removal.
3542 		 */
3543 		if (vp->v_holdcnt == 0) {
3544 			vp->v_mflag &= ~VMP_LAZYLIST;
3545 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3546 			mp->mnt_lazyvnodelistsize--;
3547 		}
3548 		mtx_unlock(&mp->mnt_listmtx);
3549 	}
3550 	vdbatch_enqueue(vp);
3551 }
3552 
3553 static void __noinline
vdropl_final(struct vnode * vp)3554 vdropl_final(struct vnode *vp)
3555 {
3556 
3557 	ASSERT_VI_LOCKED(vp, __func__);
3558 	VNPASS(VN_IS_DOOMED(vp), vp);
3559 	/*
3560 	 * Set the VHOLD_NO_SMR flag.
3561 	 *
3562 	 * We may be racing against vhold_smr. If they win we can just pretend
3563 	 * we never got this far, they will vdrop later.
3564 	 */
3565 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3566 		vn_freevnodes_inc();
3567 		VI_UNLOCK(vp);
3568 		/*
3569 		 * We lost the aforementioned race. Any subsequent access is
3570 		 * invalid as they might have managed to vdropl on their own.
3571 		 */
3572 		return;
3573 	}
3574 	/*
3575 	 * Don't bump freevnodes as this one is going away.
3576 	 */
3577 	freevnode(vp);
3578 }
3579 
3580 void
vdrop(struct vnode * vp)3581 vdrop(struct vnode *vp)
3582 {
3583 
3584 	ASSERT_VI_UNLOCKED(vp, __func__);
3585 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3586 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3587 		return;
3588 	VI_LOCK(vp);
3589 	vdropl(vp);
3590 }
3591 
3592 void
vdropl(struct vnode * vp)3593 vdropl(struct vnode *vp)
3594 {
3595 
3596 	ASSERT_VI_LOCKED(vp, __func__);
3597 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3598 	if (!refcount_release(&vp->v_holdcnt)) {
3599 		VI_UNLOCK(vp);
3600 		return;
3601 	}
3602 	if (!VN_IS_DOOMED(vp)) {
3603 		vn_freevnodes_inc();
3604 		vdrop_deactivate(vp);
3605 		/*
3606 		 * Also unlocks the interlock. We can't assert on it as we
3607 		 * released our hold and by now the vnode might have been
3608 		 * freed.
3609 		 */
3610 		return;
3611 	}
3612 	vdropl_final(vp);
3613 }
3614 
3615 /*
3616  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3617  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3618  */
3619 static int
vinactivef(struct vnode * vp)3620 vinactivef(struct vnode *vp)
3621 {
3622 	struct vm_object *obj;
3623 	int error;
3624 
3625 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3626 	ASSERT_VI_LOCKED(vp, "vinactive");
3627 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3628 	    ("vinactive: recursed on VI_DOINGINACT"));
3629 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3630 	vp->v_iflag |= VI_DOINGINACT;
3631 	vp->v_iflag &= ~VI_OWEINACT;
3632 	VI_UNLOCK(vp);
3633 	/*
3634 	 * Before moving off the active list, we must be sure that any
3635 	 * modified pages are converted into the vnode's dirty
3636 	 * buffers, since these will no longer be checked once the
3637 	 * vnode is on the inactive list.
3638 	 *
3639 	 * The write-out of the dirty pages is asynchronous.  At the
3640 	 * point that VOP_INACTIVE() is called, there could still be
3641 	 * pending I/O and dirty pages in the object.
3642 	 */
3643 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3644 	    vm_object_mightbedirty(obj)) {
3645 		VM_OBJECT_WLOCK(obj);
3646 		vm_object_page_clean(obj, 0, 0, 0);
3647 		VM_OBJECT_WUNLOCK(obj);
3648 	}
3649 	error = VOP_INACTIVE(vp);
3650 	VI_LOCK(vp);
3651 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3652 	    ("vinactive: lost VI_DOINGINACT"));
3653 	vp->v_iflag &= ~VI_DOINGINACT;
3654 	return (error);
3655 }
3656 
3657 int
vinactive(struct vnode * vp)3658 vinactive(struct vnode *vp)
3659 {
3660 
3661 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3662 	ASSERT_VI_LOCKED(vp, "vinactive");
3663 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3664 
3665 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3666 		return (0);
3667 	if (vp->v_iflag & VI_DOINGINACT)
3668 		return (0);
3669 	if (vp->v_usecount > 0) {
3670 		vp->v_iflag &= ~VI_OWEINACT;
3671 		return (0);
3672 	}
3673 	return (vinactivef(vp));
3674 }
3675 
3676 /*
3677  * Remove any vnodes in the vnode table belonging to mount point mp.
3678  *
3679  * If FORCECLOSE is not specified, there should not be any active ones,
3680  * return error if any are found (nb: this is a user error, not a
3681  * system error). If FORCECLOSE is specified, detach any active vnodes
3682  * that are found.
3683  *
3684  * If WRITECLOSE is set, only flush out regular file vnodes open for
3685  * writing.
3686  *
3687  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3688  *
3689  * `rootrefs' specifies the base reference count for the root vnode
3690  * of this filesystem. The root vnode is considered busy if its
3691  * v_usecount exceeds this value. On a successful return, vflush(, td)
3692  * will call vrele() on the root vnode exactly rootrefs times.
3693  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3694  * be zero.
3695  */
3696 #ifdef DIAGNOSTIC
3697 static int busyprt = 0;		/* print out busy vnodes */
3698 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3699 #endif
3700 
3701 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)3702 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3703 {
3704 	struct vnode *vp, *mvp, *rootvp = NULL;
3705 	struct vattr vattr;
3706 	int busy = 0, error;
3707 
3708 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3709 	    rootrefs, flags);
3710 	if (rootrefs > 0) {
3711 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3712 		    ("vflush: bad args"));
3713 		/*
3714 		 * Get the filesystem root vnode. We can vput() it
3715 		 * immediately, since with rootrefs > 0, it won't go away.
3716 		 */
3717 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3718 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3719 			    __func__, error);
3720 			return (error);
3721 		}
3722 		vput(rootvp);
3723 	}
3724 loop:
3725 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3726 		vholdl(vp);
3727 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3728 		if (error) {
3729 			vdrop(vp);
3730 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3731 			goto loop;
3732 		}
3733 		/*
3734 		 * Skip over a vnodes marked VV_SYSTEM.
3735 		 */
3736 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3737 			VOP_UNLOCK(vp);
3738 			vdrop(vp);
3739 			continue;
3740 		}
3741 		/*
3742 		 * If WRITECLOSE is set, flush out unlinked but still open
3743 		 * files (even if open only for reading) and regular file
3744 		 * vnodes open for writing.
3745 		 */
3746 		if (flags & WRITECLOSE) {
3747 			if (vp->v_object != NULL) {
3748 				VM_OBJECT_WLOCK(vp->v_object);
3749 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3750 				VM_OBJECT_WUNLOCK(vp->v_object);
3751 			}
3752 			do {
3753 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3754 			} while (error == ERELOOKUP);
3755 			if (error != 0) {
3756 				VOP_UNLOCK(vp);
3757 				vdrop(vp);
3758 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3759 				return (error);
3760 			}
3761 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3762 			VI_LOCK(vp);
3763 
3764 			if ((vp->v_type == VNON ||
3765 			    (error == 0 && vattr.va_nlink > 0)) &&
3766 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3767 				VOP_UNLOCK(vp);
3768 				vdropl(vp);
3769 				continue;
3770 			}
3771 		} else
3772 			VI_LOCK(vp);
3773 		/*
3774 		 * With v_usecount == 0, all we need to do is clear out the
3775 		 * vnode data structures and we are done.
3776 		 *
3777 		 * If FORCECLOSE is set, forcibly close the vnode.
3778 		 */
3779 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3780 			vgonel(vp);
3781 		} else {
3782 			busy++;
3783 #ifdef DIAGNOSTIC
3784 			if (busyprt)
3785 				vn_printf(vp, "vflush: busy vnode ");
3786 #endif
3787 		}
3788 		VOP_UNLOCK(vp);
3789 		vdropl(vp);
3790 	}
3791 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3792 		/*
3793 		 * If just the root vnode is busy, and if its refcount
3794 		 * is equal to `rootrefs', then go ahead and kill it.
3795 		 */
3796 		VI_LOCK(rootvp);
3797 		KASSERT(busy > 0, ("vflush: not busy"));
3798 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3799 		    ("vflush: usecount %d < rootrefs %d",
3800 		     rootvp->v_usecount, rootrefs));
3801 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3802 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3803 			vgone(rootvp);
3804 			VOP_UNLOCK(rootvp);
3805 			busy = 0;
3806 		} else
3807 			VI_UNLOCK(rootvp);
3808 	}
3809 	if (busy) {
3810 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3811 		    busy);
3812 		return (EBUSY);
3813 	}
3814 	for (; rootrefs > 0; rootrefs--)
3815 		vrele(rootvp);
3816 	return (0);
3817 }
3818 
3819 /*
3820  * Recycle an unused vnode to the front of the free list.
3821  */
3822 int
vrecycle(struct vnode * vp)3823 vrecycle(struct vnode *vp)
3824 {
3825 	int recycled;
3826 
3827 	VI_LOCK(vp);
3828 	recycled = vrecyclel(vp);
3829 	VI_UNLOCK(vp);
3830 	return (recycled);
3831 }
3832 
3833 /*
3834  * vrecycle, with the vp interlock held.
3835  */
3836 int
vrecyclel(struct vnode * vp)3837 vrecyclel(struct vnode *vp)
3838 {
3839 	int recycled;
3840 
3841 	ASSERT_VOP_ELOCKED(vp, __func__);
3842 	ASSERT_VI_LOCKED(vp, __func__);
3843 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3844 	recycled = 0;
3845 	if (vp->v_usecount == 0) {
3846 		recycled = 1;
3847 		vgonel(vp);
3848 	}
3849 	return (recycled);
3850 }
3851 
3852 /*
3853  * Eliminate all activity associated with a vnode
3854  * in preparation for reuse.
3855  */
3856 void
vgone(struct vnode * vp)3857 vgone(struct vnode *vp)
3858 {
3859 	VI_LOCK(vp);
3860 	vgonel(vp);
3861 	VI_UNLOCK(vp);
3862 }
3863 
3864 static void
notify_lowervp_vfs_dummy(struct mount * mp __unused,struct vnode * lowervp __unused)3865 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3866     struct vnode *lowervp __unused)
3867 {
3868 }
3869 
3870 /*
3871  * Notify upper mounts about reclaimed or unlinked vnode.
3872  */
3873 void
vfs_notify_upper(struct vnode * vp,int event)3874 vfs_notify_upper(struct vnode *vp, int event)
3875 {
3876 	static struct vfsops vgonel_vfsops = {
3877 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3878 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3879 	};
3880 	struct mount *mp, *ump, *mmp;
3881 
3882 	mp = vp->v_mount;
3883 	if (mp == NULL)
3884 		return;
3885 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3886 		return;
3887 
3888 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3889 	mmp->mnt_op = &vgonel_vfsops;
3890 	mmp->mnt_kern_flag |= MNTK_MARKER;
3891 	MNT_ILOCK(mp);
3892 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3893 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3894 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3895 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3896 			continue;
3897 		}
3898 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3899 		MNT_IUNLOCK(mp);
3900 		switch (event) {
3901 		case VFS_NOTIFY_UPPER_RECLAIM:
3902 			VFS_RECLAIM_LOWERVP(ump, vp);
3903 			break;
3904 		case VFS_NOTIFY_UPPER_UNLINK:
3905 			VFS_UNLINK_LOWERVP(ump, vp);
3906 			break;
3907 		default:
3908 			KASSERT(0, ("invalid event %d", event));
3909 			break;
3910 		}
3911 		MNT_ILOCK(mp);
3912 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3913 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3914 	}
3915 	free(mmp, M_TEMP);
3916 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3917 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3918 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3919 		wakeup(&mp->mnt_uppers);
3920 	}
3921 	MNT_IUNLOCK(mp);
3922 }
3923 
3924 /*
3925  * vgone, with the vp interlock held.
3926  */
3927 static void
vgonel(struct vnode * vp)3928 vgonel(struct vnode *vp)
3929 {
3930 	struct thread *td;
3931 	struct mount *mp;
3932 	vm_object_t object;
3933 	bool active, doinginact, oweinact;
3934 
3935 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3936 	ASSERT_VI_LOCKED(vp, "vgonel");
3937 	VNASSERT(vp->v_holdcnt, vp,
3938 	    ("vgonel: vp %p has no reference.", vp));
3939 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3940 	td = curthread;
3941 
3942 	/*
3943 	 * Don't vgonel if we're already doomed.
3944 	 */
3945 	if (VN_IS_DOOMED(vp))
3946 		return;
3947 	/*
3948 	 * Paired with freevnode.
3949 	 */
3950 	vn_seqc_write_begin_locked(vp);
3951 	vunlazy_gone(vp);
3952 	vn_irflag_set_locked(vp, VIRF_DOOMED);
3953 
3954 	/*
3955 	 * Check to see if the vnode is in use.  If so, we have to
3956 	 * call VOP_CLOSE() and VOP_INACTIVE().
3957 	 *
3958 	 * It could be that VOP_INACTIVE() requested reclamation, in
3959 	 * which case we should avoid recursion, so check
3960 	 * VI_DOINGINACT.  This is not precise but good enough.
3961 	 */
3962 	active = vp->v_usecount > 0;
3963 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3964 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
3965 
3966 	/*
3967 	 * If we need to do inactive VI_OWEINACT will be set.
3968 	 */
3969 	if (vp->v_iflag & VI_DEFINACT) {
3970 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3971 		vp->v_iflag &= ~VI_DEFINACT;
3972 		vdropl(vp);
3973 	} else {
3974 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
3975 		VI_UNLOCK(vp);
3976 	}
3977 	cache_purge_vgone(vp);
3978 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3979 
3980 	/*
3981 	 * If purging an active vnode, it must be closed and
3982 	 * deactivated before being reclaimed.
3983 	 */
3984 	if (active)
3985 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3986 	if (!doinginact) {
3987 		do {
3988 			if (oweinact || active) {
3989 				VI_LOCK(vp);
3990 				vinactivef(vp);
3991 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3992 				VI_UNLOCK(vp);
3993 			}
3994 		} while (oweinact);
3995 	}
3996 	if (vp->v_type == VSOCK)
3997 		vfs_unp_reclaim(vp);
3998 
3999 	/*
4000 	 * Clean out any buffers associated with the vnode.
4001 	 * If the flush fails, just toss the buffers.
4002 	 */
4003 	mp = NULL;
4004 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4005 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4006 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4007 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4008 			;
4009 	}
4010 
4011 	BO_LOCK(&vp->v_bufobj);
4012 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4013 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4014 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4015 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4016 	    ("vp %p bufobj not invalidated", vp));
4017 
4018 	/*
4019 	 * For VMIO bufobj, BO_DEAD is set later, or in
4020 	 * vm_object_terminate() after the object's page queue is
4021 	 * flushed.
4022 	 */
4023 	object = vp->v_bufobj.bo_object;
4024 	if (object == NULL)
4025 		vp->v_bufobj.bo_flag |= BO_DEAD;
4026 	BO_UNLOCK(&vp->v_bufobj);
4027 
4028 	/*
4029 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4030 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4031 	 * should not touch the object borrowed from the lower vnode
4032 	 * (the handle check).
4033 	 */
4034 	if (object != NULL && object->type == OBJT_VNODE &&
4035 	    object->handle == vp)
4036 		vnode_destroy_vobject(vp);
4037 
4038 	/*
4039 	 * Reclaim the vnode.
4040 	 */
4041 	if (VOP_RECLAIM(vp))
4042 		panic("vgone: cannot reclaim");
4043 	if (mp != NULL)
4044 		vn_finished_secondary_write(mp);
4045 	VNASSERT(vp->v_object == NULL, vp,
4046 	    ("vop_reclaim left v_object vp=%p", vp));
4047 	/*
4048 	 * Clear the advisory locks and wake up waiting threads.
4049 	 */
4050 	(void)VOP_ADVLOCKPURGE(vp);
4051 	vp->v_lockf = NULL;
4052 	/*
4053 	 * Delete from old mount point vnode list.
4054 	 */
4055 	delmntque(vp);
4056 	/*
4057 	 * Done with purge, reset to the standard lock and invalidate
4058 	 * the vnode.
4059 	 */
4060 	VI_LOCK(vp);
4061 	vp->v_vnlock = &vp->v_lock;
4062 	vp->v_op = &dead_vnodeops;
4063 	vp->v_type = VBAD;
4064 }
4065 
4066 /*
4067  * Print out a description of a vnode.
4068  */
4069 static const char * const typename[] =
4070 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4071  "VMARKER"};
4072 
4073 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4074     "new hold count flag not added to vn_printf");
4075 
4076 void
vn_printf(struct vnode * vp,const char * fmt,...)4077 vn_printf(struct vnode *vp, const char *fmt, ...)
4078 {
4079 	va_list ap;
4080 	char buf[256], buf2[16];
4081 	u_long flags;
4082 	u_int holdcnt;
4083 	short irflag;
4084 
4085 	va_start(ap, fmt);
4086 	vprintf(fmt, ap);
4087 	va_end(ap);
4088 	printf("%p: ", (void *)vp);
4089 	printf("type %s\n", typename[vp->v_type]);
4090 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4091 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4092 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4093 	    vp->v_seqc_users);
4094 	switch (vp->v_type) {
4095 	case VDIR:
4096 		printf(" mountedhere %p\n", vp->v_mountedhere);
4097 		break;
4098 	case VCHR:
4099 		printf(" rdev %p\n", vp->v_rdev);
4100 		break;
4101 	case VSOCK:
4102 		printf(" socket %p\n", vp->v_unpcb);
4103 		break;
4104 	case VFIFO:
4105 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4106 		break;
4107 	default:
4108 		printf("\n");
4109 		break;
4110 	}
4111 	buf[0] = '\0';
4112 	buf[1] = '\0';
4113 	if (holdcnt & VHOLD_NO_SMR)
4114 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4115 	printf("    hold count flags (%s)\n", buf + 1);
4116 
4117 	buf[0] = '\0';
4118 	buf[1] = '\0';
4119 	irflag = vn_irflag_read(vp);
4120 	if (irflag & VIRF_DOOMED)
4121 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4122 	if (irflag & VIRF_PGREAD)
4123 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4124 	if (irflag & VIRF_MOUNTPOINT)
4125 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4126 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT);
4127 	if (flags != 0) {
4128 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4129 		strlcat(buf, buf2, sizeof(buf));
4130 	}
4131 	if (vp->v_vflag & VV_ROOT)
4132 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4133 	if (vp->v_vflag & VV_ISTTY)
4134 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4135 	if (vp->v_vflag & VV_NOSYNC)
4136 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4137 	if (vp->v_vflag & VV_ETERNALDEV)
4138 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4139 	if (vp->v_vflag & VV_CACHEDLABEL)
4140 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4141 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4142 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4143 	if (vp->v_vflag & VV_COPYONWRITE)
4144 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4145 	if (vp->v_vflag & VV_SYSTEM)
4146 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4147 	if (vp->v_vflag & VV_PROCDEP)
4148 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4149 	if (vp->v_vflag & VV_NOKNOTE)
4150 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
4151 	if (vp->v_vflag & VV_DELETED)
4152 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4153 	if (vp->v_vflag & VV_MD)
4154 		strlcat(buf, "|VV_MD", sizeof(buf));
4155 	if (vp->v_vflag & VV_FORCEINSMQ)
4156 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4157 	if (vp->v_vflag & VV_READLINK)
4158 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4159 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4160 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4161 	    VV_PROCDEP | VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ |
4162 	    VV_READLINK);
4163 	if (flags != 0) {
4164 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4165 		strlcat(buf, buf2, sizeof(buf));
4166 	}
4167 	if (vp->v_iflag & VI_TEXT_REF)
4168 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
4169 	if (vp->v_iflag & VI_MOUNT)
4170 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4171 	if (vp->v_iflag & VI_DOINGINACT)
4172 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4173 	if (vp->v_iflag & VI_OWEINACT)
4174 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4175 	if (vp->v_iflag & VI_DEFINACT)
4176 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4177 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT |
4178 	    VI_OWEINACT | VI_DEFINACT);
4179 	if (flags != 0) {
4180 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4181 		strlcat(buf, buf2, sizeof(buf));
4182 	}
4183 	if (vp->v_mflag & VMP_LAZYLIST)
4184 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4185 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4186 	if (flags != 0) {
4187 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4188 		strlcat(buf, buf2, sizeof(buf));
4189 	}
4190 	printf("    flags (%s)", buf + 1);
4191 	if (mtx_owned(VI_MTX(vp)))
4192 		printf(" VI_LOCKed");
4193 	printf("\n");
4194 	if (vp->v_object != NULL)
4195 		printf("    v_object %p ref %d pages %d "
4196 		    "cleanbuf %d dirtybuf %d\n",
4197 		    vp->v_object, vp->v_object->ref_count,
4198 		    vp->v_object->resident_page_count,
4199 		    vp->v_bufobj.bo_clean.bv_cnt,
4200 		    vp->v_bufobj.bo_dirty.bv_cnt);
4201 	printf("    ");
4202 	lockmgr_printinfo(vp->v_vnlock);
4203 	if (vp->v_data != NULL)
4204 		VOP_PRINT(vp);
4205 }
4206 
4207 #ifdef DDB
4208 /*
4209  * List all of the locked vnodes in the system.
4210  * Called when debugging the kernel.
4211  */
DB_SHOW_COMMAND(lockedvnods,lockedvnodes)4212 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
4213 {
4214 	struct mount *mp;
4215 	struct vnode *vp;
4216 
4217 	/*
4218 	 * Note: because this is DDB, we can't obey the locking semantics
4219 	 * for these structures, which means we could catch an inconsistent
4220 	 * state and dereference a nasty pointer.  Not much to be done
4221 	 * about that.
4222 	 */
4223 	db_printf("Locked vnodes\n");
4224 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4225 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4226 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4227 				vn_printf(vp, "vnode ");
4228 		}
4229 	}
4230 }
4231 
4232 /*
4233  * Show details about the given vnode.
4234  */
DB_SHOW_COMMAND(vnode,db_show_vnode)4235 DB_SHOW_COMMAND(vnode, db_show_vnode)
4236 {
4237 	struct vnode *vp;
4238 
4239 	if (!have_addr)
4240 		return;
4241 	vp = (struct vnode *)addr;
4242 	vn_printf(vp, "vnode ");
4243 }
4244 
4245 /*
4246  * Show details about the given mount point.
4247  */
DB_SHOW_COMMAND(mount,db_show_mount)4248 DB_SHOW_COMMAND(mount, db_show_mount)
4249 {
4250 	struct mount *mp;
4251 	struct vfsopt *opt;
4252 	struct statfs *sp;
4253 	struct vnode *vp;
4254 	char buf[512];
4255 	uint64_t mflags;
4256 	u_int flags;
4257 
4258 	if (!have_addr) {
4259 		/* No address given, print short info about all mount points. */
4260 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4261 			db_printf("%p %s on %s (%s)\n", mp,
4262 			    mp->mnt_stat.f_mntfromname,
4263 			    mp->mnt_stat.f_mntonname,
4264 			    mp->mnt_stat.f_fstypename);
4265 			if (db_pager_quit)
4266 				break;
4267 		}
4268 		db_printf("\nMore info: show mount <addr>\n");
4269 		return;
4270 	}
4271 
4272 	mp = (struct mount *)addr;
4273 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4274 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4275 
4276 	buf[0] = '\0';
4277 	mflags = mp->mnt_flag;
4278 #define	MNT_FLAG(flag)	do {						\
4279 	if (mflags & (flag)) {						\
4280 		if (buf[0] != '\0')					\
4281 			strlcat(buf, ", ", sizeof(buf));		\
4282 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4283 		mflags &= ~(flag);					\
4284 	}								\
4285 } while (0)
4286 	MNT_FLAG(MNT_RDONLY);
4287 	MNT_FLAG(MNT_SYNCHRONOUS);
4288 	MNT_FLAG(MNT_NOEXEC);
4289 	MNT_FLAG(MNT_NOSUID);
4290 	MNT_FLAG(MNT_NFS4ACLS);
4291 	MNT_FLAG(MNT_UNION);
4292 	MNT_FLAG(MNT_ASYNC);
4293 	MNT_FLAG(MNT_SUIDDIR);
4294 	MNT_FLAG(MNT_SOFTDEP);
4295 	MNT_FLAG(MNT_NOSYMFOLLOW);
4296 	MNT_FLAG(MNT_GJOURNAL);
4297 	MNT_FLAG(MNT_MULTILABEL);
4298 	MNT_FLAG(MNT_ACLS);
4299 	MNT_FLAG(MNT_NOATIME);
4300 	MNT_FLAG(MNT_NOCLUSTERR);
4301 	MNT_FLAG(MNT_NOCLUSTERW);
4302 	MNT_FLAG(MNT_SUJ);
4303 	MNT_FLAG(MNT_EXRDONLY);
4304 	MNT_FLAG(MNT_EXPORTED);
4305 	MNT_FLAG(MNT_DEFEXPORTED);
4306 	MNT_FLAG(MNT_EXPORTANON);
4307 	MNT_FLAG(MNT_EXKERB);
4308 	MNT_FLAG(MNT_EXPUBLIC);
4309 	MNT_FLAG(MNT_LOCAL);
4310 	MNT_FLAG(MNT_QUOTA);
4311 	MNT_FLAG(MNT_ROOTFS);
4312 	MNT_FLAG(MNT_USER);
4313 	MNT_FLAG(MNT_IGNORE);
4314 	MNT_FLAG(MNT_UPDATE);
4315 	MNT_FLAG(MNT_DELEXPORT);
4316 	MNT_FLAG(MNT_RELOAD);
4317 	MNT_FLAG(MNT_FORCE);
4318 	MNT_FLAG(MNT_SNAPSHOT);
4319 	MNT_FLAG(MNT_BYFSID);
4320 #undef MNT_FLAG
4321 	if (mflags != 0) {
4322 		if (buf[0] != '\0')
4323 			strlcat(buf, ", ", sizeof(buf));
4324 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4325 		    "0x%016jx", mflags);
4326 	}
4327 	db_printf("    mnt_flag = %s\n", buf);
4328 
4329 	buf[0] = '\0';
4330 	flags = mp->mnt_kern_flag;
4331 #define	MNT_KERN_FLAG(flag)	do {					\
4332 	if (flags & (flag)) {						\
4333 		if (buf[0] != '\0')					\
4334 			strlcat(buf, ", ", sizeof(buf));		\
4335 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4336 		flags &= ~(flag);					\
4337 	}								\
4338 } while (0)
4339 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4340 	MNT_KERN_FLAG(MNTK_ASYNC);
4341 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4342 	MNT_KERN_FLAG(MNTK_DRAINING);
4343 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4344 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4345 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4346 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4347 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
4348 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
4349 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4350 	MNT_KERN_FLAG(MNTK_MARKER);
4351 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4352 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4353 	MNT_KERN_FLAG(MNTK_NOASYNC);
4354 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4355 	MNT_KERN_FLAG(MNTK_MWAIT);
4356 	MNT_KERN_FLAG(MNTK_SUSPEND);
4357 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4358 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4359 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4360 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4361 #undef MNT_KERN_FLAG
4362 	if (flags != 0) {
4363 		if (buf[0] != '\0')
4364 			strlcat(buf, ", ", sizeof(buf));
4365 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4366 		    "0x%08x", flags);
4367 	}
4368 	db_printf("    mnt_kern_flag = %s\n", buf);
4369 
4370 	db_printf("    mnt_opt = ");
4371 	opt = TAILQ_FIRST(mp->mnt_opt);
4372 	if (opt != NULL) {
4373 		db_printf("%s", opt->name);
4374 		opt = TAILQ_NEXT(opt, link);
4375 		while (opt != NULL) {
4376 			db_printf(", %s", opt->name);
4377 			opt = TAILQ_NEXT(opt, link);
4378 		}
4379 	}
4380 	db_printf("\n");
4381 
4382 	sp = &mp->mnt_stat;
4383 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4384 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4385 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4386 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4387 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4388 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4389 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4390 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4391 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4392 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4393 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4394 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4395 
4396 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4397 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4398 	if (jailed(mp->mnt_cred))
4399 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4400 	db_printf(" }\n");
4401 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4402 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4403 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4404 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4405 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4406 	    mp->mnt_lazyvnodelistsize);
4407 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4408 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4409 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
4410 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4411 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4412 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4413 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4414 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4415 	db_printf("    mnt_secondary_accwrites = %d\n",
4416 	    mp->mnt_secondary_accwrites);
4417 	db_printf("    mnt_gjprovider = %s\n",
4418 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4419 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4420 
4421 	db_printf("\n\nList of active vnodes\n");
4422 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4423 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4424 			vn_printf(vp, "vnode ");
4425 			if (db_pager_quit)
4426 				break;
4427 		}
4428 	}
4429 	db_printf("\n\nList of inactive vnodes\n");
4430 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4431 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4432 			vn_printf(vp, "vnode ");
4433 			if (db_pager_quit)
4434 				break;
4435 		}
4436 	}
4437 }
4438 #endif	/* DDB */
4439 
4440 /*
4441  * Fill in a struct xvfsconf based on a struct vfsconf.
4442  */
4443 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4444 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4445 {
4446 	struct xvfsconf xvfsp;
4447 
4448 	bzero(&xvfsp, sizeof(xvfsp));
4449 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4450 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4451 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4452 	xvfsp.vfc_flags = vfsp->vfc_flags;
4453 	/*
4454 	 * These are unused in userland, we keep them
4455 	 * to not break binary compatibility.
4456 	 */
4457 	xvfsp.vfc_vfsops = NULL;
4458 	xvfsp.vfc_next = NULL;
4459 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4460 }
4461 
4462 #ifdef COMPAT_FREEBSD32
4463 struct xvfsconf32 {
4464 	uint32_t	vfc_vfsops;
4465 	char		vfc_name[MFSNAMELEN];
4466 	int32_t		vfc_typenum;
4467 	int32_t		vfc_refcount;
4468 	int32_t		vfc_flags;
4469 	uint32_t	vfc_next;
4470 };
4471 
4472 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4473 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4474 {
4475 	struct xvfsconf32 xvfsp;
4476 
4477 	bzero(&xvfsp, sizeof(xvfsp));
4478 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4479 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4480 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4481 	xvfsp.vfc_flags = vfsp->vfc_flags;
4482 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4483 }
4484 #endif
4485 
4486 /*
4487  * Top level filesystem related information gathering.
4488  */
4489 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4490 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4491 {
4492 	struct vfsconf *vfsp;
4493 	int error;
4494 
4495 	error = 0;
4496 	vfsconf_slock();
4497 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4498 #ifdef COMPAT_FREEBSD32
4499 		if (req->flags & SCTL_MASK32)
4500 			error = vfsconf2x32(req, vfsp);
4501 		else
4502 #endif
4503 			error = vfsconf2x(req, vfsp);
4504 		if (error)
4505 			break;
4506 	}
4507 	vfsconf_sunlock();
4508 	return (error);
4509 }
4510 
4511 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4512     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4513     "S,xvfsconf", "List of all configured filesystems");
4514 
4515 #ifndef BURN_BRIDGES
4516 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4517 
4518 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4519 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4520 {
4521 	int *name = (int *)arg1 - 1;	/* XXX */
4522 	u_int namelen = arg2 + 1;	/* XXX */
4523 	struct vfsconf *vfsp;
4524 
4525 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4526 	    "please rebuild world\n");
4527 
4528 #if 1 || defined(COMPAT_PRELITE2)
4529 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4530 	if (namelen == 1)
4531 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4532 #endif
4533 
4534 	switch (name[1]) {
4535 	case VFS_MAXTYPENUM:
4536 		if (namelen != 2)
4537 			return (ENOTDIR);
4538 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4539 	case VFS_CONF:
4540 		if (namelen != 3)
4541 			return (ENOTDIR);	/* overloaded */
4542 		vfsconf_slock();
4543 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4544 			if (vfsp->vfc_typenum == name[2])
4545 				break;
4546 		}
4547 		vfsconf_sunlock();
4548 		if (vfsp == NULL)
4549 			return (EOPNOTSUPP);
4550 #ifdef COMPAT_FREEBSD32
4551 		if (req->flags & SCTL_MASK32)
4552 			return (vfsconf2x32(req, vfsp));
4553 		else
4554 #endif
4555 			return (vfsconf2x(req, vfsp));
4556 	}
4557 	return (EOPNOTSUPP);
4558 }
4559 
4560 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4561     CTLFLAG_MPSAFE, vfs_sysctl,
4562     "Generic filesystem");
4563 
4564 #if 1 || defined(COMPAT_PRELITE2)
4565 
4566 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)4567 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4568 {
4569 	int error;
4570 	struct vfsconf *vfsp;
4571 	struct ovfsconf ovfs;
4572 
4573 	vfsconf_slock();
4574 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4575 		bzero(&ovfs, sizeof(ovfs));
4576 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4577 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4578 		ovfs.vfc_index = vfsp->vfc_typenum;
4579 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4580 		ovfs.vfc_flags = vfsp->vfc_flags;
4581 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4582 		if (error != 0) {
4583 			vfsconf_sunlock();
4584 			return (error);
4585 		}
4586 	}
4587 	vfsconf_sunlock();
4588 	return (0);
4589 }
4590 
4591 #endif /* 1 || COMPAT_PRELITE2 */
4592 #endif /* !BURN_BRIDGES */
4593 
4594 #define KINFO_VNODESLOP		10
4595 #ifdef notyet
4596 /*
4597  * Dump vnode list (via sysctl).
4598  */
4599 /* ARGSUSED */
4600 static int
sysctl_vnode(SYSCTL_HANDLER_ARGS)4601 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4602 {
4603 	struct xvnode *xvn;
4604 	struct mount *mp;
4605 	struct vnode *vp;
4606 	int error, len, n;
4607 
4608 	/*
4609 	 * Stale numvnodes access is not fatal here.
4610 	 */
4611 	req->lock = 0;
4612 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4613 	if (!req->oldptr)
4614 		/* Make an estimate */
4615 		return (SYSCTL_OUT(req, 0, len));
4616 
4617 	error = sysctl_wire_old_buffer(req, 0);
4618 	if (error != 0)
4619 		return (error);
4620 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4621 	n = 0;
4622 	mtx_lock(&mountlist_mtx);
4623 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4624 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4625 			continue;
4626 		MNT_ILOCK(mp);
4627 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4628 			if (n == len)
4629 				break;
4630 			vref(vp);
4631 			xvn[n].xv_size = sizeof *xvn;
4632 			xvn[n].xv_vnode = vp;
4633 			xvn[n].xv_id = 0;	/* XXX compat */
4634 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4635 			XV_COPY(usecount);
4636 			XV_COPY(writecount);
4637 			XV_COPY(holdcnt);
4638 			XV_COPY(mount);
4639 			XV_COPY(numoutput);
4640 			XV_COPY(type);
4641 #undef XV_COPY
4642 			xvn[n].xv_flag = vp->v_vflag;
4643 
4644 			switch (vp->v_type) {
4645 			case VREG:
4646 			case VDIR:
4647 			case VLNK:
4648 				break;
4649 			case VBLK:
4650 			case VCHR:
4651 				if (vp->v_rdev == NULL) {
4652 					vrele(vp);
4653 					continue;
4654 				}
4655 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4656 				break;
4657 			case VSOCK:
4658 				xvn[n].xv_socket = vp->v_socket;
4659 				break;
4660 			case VFIFO:
4661 				xvn[n].xv_fifo = vp->v_fifoinfo;
4662 				break;
4663 			case VNON:
4664 			case VBAD:
4665 			default:
4666 				/* shouldn't happen? */
4667 				vrele(vp);
4668 				continue;
4669 			}
4670 			vrele(vp);
4671 			++n;
4672 		}
4673 		MNT_IUNLOCK(mp);
4674 		mtx_lock(&mountlist_mtx);
4675 		vfs_unbusy(mp);
4676 		if (n == len)
4677 			break;
4678 	}
4679 	mtx_unlock(&mountlist_mtx);
4680 
4681 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4682 	free(xvn, M_TEMP);
4683 	return (error);
4684 }
4685 
4686 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4687     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4688     "");
4689 #endif
4690 
4691 static void
unmount_or_warn(struct mount * mp)4692 unmount_or_warn(struct mount *mp)
4693 {
4694 	int error;
4695 
4696 	error = dounmount(mp, MNT_FORCE, curthread);
4697 	if (error != 0) {
4698 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4699 		if (error == EBUSY)
4700 			printf("BUSY)\n");
4701 		else
4702 			printf("%d)\n", error);
4703 	}
4704 }
4705 
4706 /*
4707  * Unmount all filesystems. The list is traversed in reverse order
4708  * of mounting to avoid dependencies.
4709  */
4710 void
vfs_unmountall(void)4711 vfs_unmountall(void)
4712 {
4713 	struct mount *mp, *tmp;
4714 
4715 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4716 
4717 	/*
4718 	 * Since this only runs when rebooting, it is not interlocked.
4719 	 */
4720 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4721 		vfs_ref(mp);
4722 
4723 		/*
4724 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4725 		 * unmount of the latter.
4726 		 */
4727 		if (mp == rootdevmp)
4728 			continue;
4729 
4730 		unmount_or_warn(mp);
4731 	}
4732 
4733 	if (rootdevmp != NULL)
4734 		unmount_or_warn(rootdevmp);
4735 }
4736 
4737 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)4738 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4739 {
4740 
4741 	ASSERT_VI_LOCKED(vp, __func__);
4742 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4743 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4744 		vdropl(vp);
4745 		return;
4746 	}
4747 	if (vn_lock(vp, lkflags) == 0) {
4748 		VI_LOCK(vp);
4749 		vinactive(vp);
4750 		VOP_UNLOCK(vp);
4751 		vdropl(vp);
4752 		return;
4753 	}
4754 	vdefer_inactive_unlocked(vp);
4755 }
4756 
4757 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)4758 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4759 {
4760 
4761 	return (vp->v_iflag & VI_DEFINACT);
4762 }
4763 
4764 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)4765 vfs_periodic_inactive(struct mount *mp, int flags)
4766 {
4767 	struct vnode *vp, *mvp;
4768 	int lkflags;
4769 
4770 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4771 	if (flags != MNT_WAIT)
4772 		lkflags |= LK_NOWAIT;
4773 
4774 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4775 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4776 			VI_UNLOCK(vp);
4777 			continue;
4778 		}
4779 		vp->v_iflag &= ~VI_DEFINACT;
4780 		vfs_deferred_inactive(vp, lkflags);
4781 	}
4782 }
4783 
4784 static inline bool
vfs_want_msync(struct vnode * vp)4785 vfs_want_msync(struct vnode *vp)
4786 {
4787 	struct vm_object *obj;
4788 
4789 	/*
4790 	 * This test may be performed without any locks held.
4791 	 * We rely on vm_object's type stability.
4792 	 */
4793 	if (vp->v_vflag & VV_NOSYNC)
4794 		return (false);
4795 	obj = vp->v_object;
4796 	return (obj != NULL && vm_object_mightbedirty(obj));
4797 }
4798 
4799 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)4800 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4801 {
4802 
4803 	if (vp->v_vflag & VV_NOSYNC)
4804 		return (false);
4805 	if (vp->v_iflag & VI_DEFINACT)
4806 		return (true);
4807 	return (vfs_want_msync(vp));
4808 }
4809 
4810 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)4811 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4812 {
4813 	struct vnode *vp, *mvp;
4814 	struct vm_object *obj;
4815 	int lkflags, objflags;
4816 	bool seen_defer;
4817 
4818 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4819 	if (flags != MNT_WAIT) {
4820 		lkflags |= LK_NOWAIT;
4821 		objflags = OBJPC_NOSYNC;
4822 	} else {
4823 		objflags = OBJPC_SYNC;
4824 	}
4825 
4826 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4827 		seen_defer = false;
4828 		if (vp->v_iflag & VI_DEFINACT) {
4829 			vp->v_iflag &= ~VI_DEFINACT;
4830 			seen_defer = true;
4831 		}
4832 		if (!vfs_want_msync(vp)) {
4833 			if (seen_defer)
4834 				vfs_deferred_inactive(vp, lkflags);
4835 			else
4836 				VI_UNLOCK(vp);
4837 			continue;
4838 		}
4839 		if (vget(vp, lkflags) == 0) {
4840 			obj = vp->v_object;
4841 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4842 				VM_OBJECT_WLOCK(obj);
4843 				vm_object_page_clean(obj, 0, 0, objflags);
4844 				VM_OBJECT_WUNLOCK(obj);
4845 			}
4846 			vput(vp);
4847 			if (seen_defer)
4848 				vdrop(vp);
4849 		} else {
4850 			if (seen_defer)
4851 				vdefer_inactive_unlocked(vp);
4852 		}
4853 	}
4854 }
4855 
4856 void
vfs_periodic(struct mount * mp,int flags)4857 vfs_periodic(struct mount *mp, int flags)
4858 {
4859 
4860 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4861 
4862 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4863 		vfs_periodic_inactive(mp, flags);
4864 	else
4865 		vfs_periodic_msync_inactive(mp, flags);
4866 }
4867 
4868 static void
destroy_vpollinfo_free(struct vpollinfo * vi)4869 destroy_vpollinfo_free(struct vpollinfo *vi)
4870 {
4871 
4872 	knlist_destroy(&vi->vpi_selinfo.si_note);
4873 	mtx_destroy(&vi->vpi_lock);
4874 	free(vi, M_VNODEPOLL);
4875 }
4876 
4877 static void
destroy_vpollinfo(struct vpollinfo * vi)4878 destroy_vpollinfo(struct vpollinfo *vi)
4879 {
4880 
4881 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4882 	seldrain(&vi->vpi_selinfo);
4883 	destroy_vpollinfo_free(vi);
4884 }
4885 
4886 /*
4887  * Initialize per-vnode helper structure to hold poll-related state.
4888  */
4889 void
v_addpollinfo(struct vnode * vp)4890 v_addpollinfo(struct vnode *vp)
4891 {
4892 	struct vpollinfo *vi;
4893 
4894 	if (vp->v_pollinfo != NULL)
4895 		return;
4896 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4897 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4898 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4899 	    vfs_knlunlock, vfs_knl_assert_lock);
4900 	VI_LOCK(vp);
4901 	if (vp->v_pollinfo != NULL) {
4902 		VI_UNLOCK(vp);
4903 		destroy_vpollinfo_free(vi);
4904 		return;
4905 	}
4906 	vp->v_pollinfo = vi;
4907 	VI_UNLOCK(vp);
4908 }
4909 
4910 /*
4911  * Record a process's interest in events which might happen to
4912  * a vnode.  Because poll uses the historic select-style interface
4913  * internally, this routine serves as both the ``check for any
4914  * pending events'' and the ``record my interest in future events''
4915  * functions.  (These are done together, while the lock is held,
4916  * to avoid race conditions.)
4917  */
4918 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)4919 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4920 {
4921 
4922 	v_addpollinfo(vp);
4923 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4924 	if (vp->v_pollinfo->vpi_revents & events) {
4925 		/*
4926 		 * This leaves events we are not interested
4927 		 * in available for the other process which
4928 		 * which presumably had requested them
4929 		 * (otherwise they would never have been
4930 		 * recorded).
4931 		 */
4932 		events &= vp->v_pollinfo->vpi_revents;
4933 		vp->v_pollinfo->vpi_revents &= ~events;
4934 
4935 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4936 		return (events);
4937 	}
4938 	vp->v_pollinfo->vpi_events |= events;
4939 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4940 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4941 	return (0);
4942 }
4943 
4944 /*
4945  * Routine to create and manage a filesystem syncer vnode.
4946  */
4947 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4948 static int	sync_fsync(struct  vop_fsync_args *);
4949 static int	sync_inactive(struct  vop_inactive_args *);
4950 static int	sync_reclaim(struct  vop_reclaim_args *);
4951 
4952 static struct vop_vector sync_vnodeops = {
4953 	.vop_bypass =	VOP_EOPNOTSUPP,
4954 	.vop_close =	sync_close,		/* close */
4955 	.vop_fsync =	sync_fsync,		/* fsync */
4956 	.vop_inactive =	sync_inactive,	/* inactive */
4957 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4958 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4959 	.vop_lock1 =	vop_stdlock,	/* lock */
4960 	.vop_unlock =	vop_stdunlock,	/* unlock */
4961 	.vop_islocked =	vop_stdislocked,	/* islocked */
4962 };
4963 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4964 
4965 /*
4966  * Create a new filesystem syncer vnode for the specified mount point.
4967  */
4968 void
vfs_allocate_syncvnode(struct mount * mp)4969 vfs_allocate_syncvnode(struct mount *mp)
4970 {
4971 	struct vnode *vp;
4972 	struct bufobj *bo;
4973 	static long start, incr, next;
4974 	int error;
4975 
4976 	/* Allocate a new vnode */
4977 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4978 	if (error != 0)
4979 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4980 	vp->v_type = VNON;
4981 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4982 	vp->v_vflag |= VV_FORCEINSMQ;
4983 	error = insmntque(vp, mp);
4984 	if (error != 0)
4985 		panic("vfs_allocate_syncvnode: insmntque() failed");
4986 	vp->v_vflag &= ~VV_FORCEINSMQ;
4987 	VOP_UNLOCK(vp);
4988 	/*
4989 	 * Place the vnode onto the syncer worklist. We attempt to
4990 	 * scatter them about on the list so that they will go off
4991 	 * at evenly distributed times even if all the filesystems
4992 	 * are mounted at once.
4993 	 */
4994 	next += incr;
4995 	if (next == 0 || next > syncer_maxdelay) {
4996 		start /= 2;
4997 		incr /= 2;
4998 		if (start == 0) {
4999 			start = syncer_maxdelay / 2;
5000 			incr = syncer_maxdelay;
5001 		}
5002 		next = start;
5003 	}
5004 	bo = &vp->v_bufobj;
5005 	BO_LOCK(bo);
5006 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5007 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5008 	mtx_lock(&sync_mtx);
5009 	sync_vnode_count++;
5010 	if (mp->mnt_syncer == NULL) {
5011 		mp->mnt_syncer = vp;
5012 		vp = NULL;
5013 	}
5014 	mtx_unlock(&sync_mtx);
5015 	BO_UNLOCK(bo);
5016 	if (vp != NULL) {
5017 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5018 		vgone(vp);
5019 		vput(vp);
5020 	}
5021 }
5022 
5023 void
vfs_deallocate_syncvnode(struct mount * mp)5024 vfs_deallocate_syncvnode(struct mount *mp)
5025 {
5026 	struct vnode *vp;
5027 
5028 	mtx_lock(&sync_mtx);
5029 	vp = mp->mnt_syncer;
5030 	if (vp != NULL)
5031 		mp->mnt_syncer = NULL;
5032 	mtx_unlock(&sync_mtx);
5033 	if (vp != NULL)
5034 		vrele(vp);
5035 }
5036 
5037 /*
5038  * Do a lazy sync of the filesystem.
5039  */
5040 static int
sync_fsync(struct vop_fsync_args * ap)5041 sync_fsync(struct vop_fsync_args *ap)
5042 {
5043 	struct vnode *syncvp = ap->a_vp;
5044 	struct mount *mp = syncvp->v_mount;
5045 	int error, save;
5046 	struct bufobj *bo;
5047 
5048 	/*
5049 	 * We only need to do something if this is a lazy evaluation.
5050 	 */
5051 	if (ap->a_waitfor != MNT_LAZY)
5052 		return (0);
5053 
5054 	/*
5055 	 * Move ourselves to the back of the sync list.
5056 	 */
5057 	bo = &syncvp->v_bufobj;
5058 	BO_LOCK(bo);
5059 	vn_syncer_add_to_worklist(bo, syncdelay);
5060 	BO_UNLOCK(bo);
5061 
5062 	/*
5063 	 * Walk the list of vnodes pushing all that are dirty and
5064 	 * not already on the sync list.
5065 	 */
5066 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5067 		return (0);
5068 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
5069 		vfs_unbusy(mp);
5070 		return (0);
5071 	}
5072 	save = curthread_pflags_set(TDP_SYNCIO);
5073 	/*
5074 	 * The filesystem at hand may be idle with free vnodes stored in the
5075 	 * batch.  Return them instead of letting them stay there indefinitely.
5076 	 */
5077 	vfs_periodic(mp, MNT_NOWAIT);
5078 	error = VFS_SYNC(mp, MNT_LAZY);
5079 	curthread_pflags_restore(save);
5080 	vn_finished_write(mp);
5081 	vfs_unbusy(mp);
5082 	return (error);
5083 }
5084 
5085 /*
5086  * The syncer vnode is no referenced.
5087  */
5088 static int
sync_inactive(struct vop_inactive_args * ap)5089 sync_inactive(struct vop_inactive_args *ap)
5090 {
5091 
5092 	vgone(ap->a_vp);
5093 	return (0);
5094 }
5095 
5096 /*
5097  * The syncer vnode is no longer needed and is being decommissioned.
5098  *
5099  * Modifications to the worklist must be protected by sync_mtx.
5100  */
5101 static int
sync_reclaim(struct vop_reclaim_args * ap)5102 sync_reclaim(struct vop_reclaim_args *ap)
5103 {
5104 	struct vnode *vp = ap->a_vp;
5105 	struct bufobj *bo;
5106 
5107 	bo = &vp->v_bufobj;
5108 	BO_LOCK(bo);
5109 	mtx_lock(&sync_mtx);
5110 	if (vp->v_mount->mnt_syncer == vp)
5111 		vp->v_mount->mnt_syncer = NULL;
5112 	if (bo->bo_flag & BO_ONWORKLST) {
5113 		LIST_REMOVE(bo, bo_synclist);
5114 		syncer_worklist_len--;
5115 		sync_vnode_count--;
5116 		bo->bo_flag &= ~BO_ONWORKLST;
5117 	}
5118 	mtx_unlock(&sync_mtx);
5119 	BO_UNLOCK(bo);
5120 
5121 	return (0);
5122 }
5123 
5124 int
vn_need_pageq_flush(struct vnode * vp)5125 vn_need_pageq_flush(struct vnode *vp)
5126 {
5127 	struct vm_object *obj;
5128 	int need;
5129 
5130 	MPASS(mtx_owned(VI_MTX(vp)));
5131 	need = 0;
5132 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5133 	    vm_object_mightbedirty(obj))
5134 		need = 1;
5135 	return (need);
5136 }
5137 
5138 /*
5139  * Check if vnode represents a disk device
5140  */
5141 bool
vn_isdisk_error(struct vnode * vp,int * errp)5142 vn_isdisk_error(struct vnode *vp, int *errp)
5143 {
5144 	int error;
5145 
5146 	if (vp->v_type != VCHR) {
5147 		error = ENOTBLK;
5148 		goto out;
5149 	}
5150 	error = 0;
5151 	dev_lock();
5152 	if (vp->v_rdev == NULL)
5153 		error = ENXIO;
5154 	else if (vp->v_rdev->si_devsw == NULL)
5155 		error = ENXIO;
5156 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5157 		error = ENOTBLK;
5158 	dev_unlock();
5159 out:
5160 	*errp = error;
5161 	return (error == 0);
5162 }
5163 
5164 bool
vn_isdisk(struct vnode * vp)5165 vn_isdisk(struct vnode *vp)
5166 {
5167 	int error;
5168 
5169 	return (vn_isdisk_error(vp, &error));
5170 }
5171 
5172 /*
5173  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5174  * the comment above cache_fplookup for details.
5175  */
5176 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5177 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5178 {
5179 	int error;
5180 
5181 	VFS_SMR_ASSERT_ENTERED();
5182 
5183 	/* Check the owner. */
5184 	if (cred->cr_uid == file_uid) {
5185 		if (file_mode & S_IXUSR)
5186 			return (0);
5187 		goto out_error;
5188 	}
5189 
5190 	/* Otherwise, check the groups (first match) */
5191 	if (groupmember(file_gid, cred)) {
5192 		if (file_mode & S_IXGRP)
5193 			return (0);
5194 		goto out_error;
5195 	}
5196 
5197 	/* Otherwise, check everyone else. */
5198 	if (file_mode & S_IXOTH)
5199 		return (0);
5200 out_error:
5201 	/*
5202 	 * Permission check failed, but it is possible denial will get overwritten
5203 	 * (e.g., when root is traversing through a 700 directory owned by someone
5204 	 * else).
5205 	 *
5206 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5207 	 * modules overriding this result. It's quite unclear what semantics
5208 	 * are allowed for them to operate, thus for safety we don't call them
5209 	 * from within the SMR section. This also means if any such modules
5210 	 * are present, we have to let the regular lookup decide.
5211 	 */
5212 	error = priv_check_cred_vfs_lookup_nomac(cred);
5213 	switch (error) {
5214 	case 0:
5215 		return (0);
5216 	case EAGAIN:
5217 		/*
5218 		 * MAC modules present.
5219 		 */
5220 		return (EAGAIN);
5221 	case EPERM:
5222 		return (EACCES);
5223 	default:
5224 		return (error);
5225 	}
5226 }
5227 
5228 /*
5229  * Common filesystem object access control check routine.  Accepts a
5230  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5231  * Returns 0 on success, or an errno on failure.
5232  */
5233 int
vaccess(enum vtype type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5234 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5235     accmode_t accmode, struct ucred *cred)
5236 {
5237 	accmode_t dac_granted;
5238 	accmode_t priv_granted;
5239 
5240 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5241 	    ("invalid bit in accmode"));
5242 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5243 	    ("VAPPEND without VWRITE"));
5244 
5245 	/*
5246 	 * Look for a normal, non-privileged way to access the file/directory
5247 	 * as requested.  If it exists, go with that.
5248 	 */
5249 
5250 	dac_granted = 0;
5251 
5252 	/* Check the owner. */
5253 	if (cred->cr_uid == file_uid) {
5254 		dac_granted |= VADMIN;
5255 		if (file_mode & S_IXUSR)
5256 			dac_granted |= VEXEC;
5257 		if (file_mode & S_IRUSR)
5258 			dac_granted |= VREAD;
5259 		if (file_mode & S_IWUSR)
5260 			dac_granted |= (VWRITE | VAPPEND);
5261 
5262 		if ((accmode & dac_granted) == accmode)
5263 			return (0);
5264 
5265 		goto privcheck;
5266 	}
5267 
5268 	/* Otherwise, check the groups (first match) */
5269 	if (groupmember(file_gid, cred)) {
5270 		if (file_mode & S_IXGRP)
5271 			dac_granted |= VEXEC;
5272 		if (file_mode & S_IRGRP)
5273 			dac_granted |= VREAD;
5274 		if (file_mode & S_IWGRP)
5275 			dac_granted |= (VWRITE | VAPPEND);
5276 
5277 		if ((accmode & dac_granted) == accmode)
5278 			return (0);
5279 
5280 		goto privcheck;
5281 	}
5282 
5283 	/* Otherwise, check everyone else. */
5284 	if (file_mode & S_IXOTH)
5285 		dac_granted |= VEXEC;
5286 	if (file_mode & S_IROTH)
5287 		dac_granted |= VREAD;
5288 	if (file_mode & S_IWOTH)
5289 		dac_granted |= (VWRITE | VAPPEND);
5290 	if ((accmode & dac_granted) == accmode)
5291 		return (0);
5292 
5293 privcheck:
5294 	/*
5295 	 * Build a privilege mask to determine if the set of privileges
5296 	 * satisfies the requirements when combined with the granted mask
5297 	 * from above.  For each privilege, if the privilege is required,
5298 	 * bitwise or the request type onto the priv_granted mask.
5299 	 */
5300 	priv_granted = 0;
5301 
5302 	if (type == VDIR) {
5303 		/*
5304 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5305 		 * requests, instead of PRIV_VFS_EXEC.
5306 		 */
5307 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5308 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5309 			priv_granted |= VEXEC;
5310 	} else {
5311 		/*
5312 		 * Ensure that at least one execute bit is on. Otherwise,
5313 		 * a privileged user will always succeed, and we don't want
5314 		 * this to happen unless the file really is executable.
5315 		 */
5316 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5317 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5318 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5319 			priv_granted |= VEXEC;
5320 	}
5321 
5322 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5323 	    !priv_check_cred(cred, PRIV_VFS_READ))
5324 		priv_granted |= VREAD;
5325 
5326 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5327 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5328 		priv_granted |= (VWRITE | VAPPEND);
5329 
5330 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5331 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5332 		priv_granted |= VADMIN;
5333 
5334 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5335 		return (0);
5336 	}
5337 
5338 	return ((accmode & VADMIN) ? EPERM : EACCES);
5339 }
5340 
5341 /*
5342  * Credential check based on process requesting service, and per-attribute
5343  * permissions.
5344  */
5345 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5346 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5347     struct thread *td, accmode_t accmode)
5348 {
5349 
5350 	/*
5351 	 * Kernel-invoked always succeeds.
5352 	 */
5353 	if (cred == NOCRED)
5354 		return (0);
5355 
5356 	/*
5357 	 * Do not allow privileged processes in jail to directly manipulate
5358 	 * system attributes.
5359 	 */
5360 	switch (attrnamespace) {
5361 	case EXTATTR_NAMESPACE_SYSTEM:
5362 		/* Potentially should be: return (EPERM); */
5363 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5364 	case EXTATTR_NAMESPACE_USER:
5365 		return (VOP_ACCESS(vp, accmode, cred, td));
5366 	default:
5367 		return (EPERM);
5368 	}
5369 }
5370 
5371 #ifdef DEBUG_VFS_LOCKS
5372 /*
5373  * This only exists to suppress warnings from unlocked specfs accesses.  It is
5374  * no longer ok to have an unlocked VFS.
5375  */
5376 #define	IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL ||		\
5377 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
5378 
5379 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5380 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5381     "Drop into debugger on lock violation");
5382 
5383 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5384 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5385     0, "Check for interlock across VOPs");
5386 
5387 int vfs_badlock_print = 1;	/* Print lock violations. */
5388 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5389     0, "Print lock violations");
5390 
5391 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5392 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5393     0, "Print vnode details on lock violations");
5394 
5395 #ifdef KDB
5396 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5397 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5398     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5399 #endif
5400 
5401 static void
vfs_badlock(const char * msg,const char * str,struct vnode * vp)5402 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5403 {
5404 
5405 #ifdef KDB
5406 	if (vfs_badlock_backtrace)
5407 		kdb_backtrace();
5408 #endif
5409 	if (vfs_badlock_vnode)
5410 		vn_printf(vp, "vnode ");
5411 	if (vfs_badlock_print)
5412 		printf("%s: %p %s\n", str, (void *)vp, msg);
5413 	if (vfs_badlock_ddb)
5414 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5415 }
5416 
5417 void
assert_vi_locked(struct vnode * vp,const char * str)5418 assert_vi_locked(struct vnode *vp, const char *str)
5419 {
5420 
5421 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5422 		vfs_badlock("interlock is not locked but should be", str, vp);
5423 }
5424 
5425 void
assert_vi_unlocked(struct vnode * vp,const char * str)5426 assert_vi_unlocked(struct vnode *vp, const char *str)
5427 {
5428 
5429 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5430 		vfs_badlock("interlock is locked but should not be", str, vp);
5431 }
5432 
5433 void
assert_vop_locked(struct vnode * vp,const char * str)5434 assert_vop_locked(struct vnode *vp, const char *str)
5435 {
5436 	int locked;
5437 
5438 	if (!IGNORE_LOCK(vp)) {
5439 		locked = VOP_ISLOCKED(vp);
5440 		if (locked == 0 || locked == LK_EXCLOTHER)
5441 			vfs_badlock("is not locked but should be", str, vp);
5442 	}
5443 }
5444 
5445 void
assert_vop_unlocked(struct vnode * vp,const char * str)5446 assert_vop_unlocked(struct vnode *vp, const char *str)
5447 {
5448 
5449 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5450 		vfs_badlock("is locked but should not be", str, vp);
5451 }
5452 
5453 void
assert_vop_elocked(struct vnode * vp,const char * str)5454 assert_vop_elocked(struct vnode *vp, const char *str)
5455 {
5456 
5457 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5458 		vfs_badlock("is not exclusive locked but should be", str, vp);
5459 }
5460 #endif /* DEBUG_VFS_LOCKS */
5461 
5462 void
vop_rename_fail(struct vop_rename_args * ap)5463 vop_rename_fail(struct vop_rename_args *ap)
5464 {
5465 
5466 	if (ap->a_tvp != NULL)
5467 		vput(ap->a_tvp);
5468 	if (ap->a_tdvp == ap->a_tvp)
5469 		vrele(ap->a_tdvp);
5470 	else
5471 		vput(ap->a_tdvp);
5472 	vrele(ap->a_fdvp);
5473 	vrele(ap->a_fvp);
5474 }
5475 
5476 void
vop_rename_pre(void * ap)5477 vop_rename_pre(void *ap)
5478 {
5479 	struct vop_rename_args *a = ap;
5480 
5481 #ifdef DEBUG_VFS_LOCKS
5482 	if (a->a_tvp)
5483 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5484 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5485 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5486 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5487 
5488 	/* Check the source (from). */
5489 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5490 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5491 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5492 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5493 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5494 
5495 	/* Check the target. */
5496 	if (a->a_tvp)
5497 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5498 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5499 #endif
5500 	/*
5501 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5502 	 * in vop_rename_post but that's not going to work out since some
5503 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5504 	 *
5505 	 * For now filesystems are expected to do the relevant calls after they
5506 	 * decide what vnodes to operate on.
5507 	 */
5508 	if (a->a_tdvp != a->a_fdvp)
5509 		vhold(a->a_fdvp);
5510 	if (a->a_tvp != a->a_fvp)
5511 		vhold(a->a_fvp);
5512 	vhold(a->a_tdvp);
5513 	if (a->a_tvp)
5514 		vhold(a->a_tvp);
5515 }
5516 
5517 #ifdef DEBUG_VFS_LOCKS
5518 void
vop_fplookup_vexec_debugpre(void * ap __unused)5519 vop_fplookup_vexec_debugpre(void *ap __unused)
5520 {
5521 
5522 	VFS_SMR_ASSERT_ENTERED();
5523 }
5524 
5525 void
vop_fplookup_vexec_debugpost(void * ap __unused,int rc __unused)5526 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5527 {
5528 
5529 	VFS_SMR_ASSERT_ENTERED();
5530 }
5531 
5532 void
vop_fplookup_symlink_debugpre(void * ap __unused)5533 vop_fplookup_symlink_debugpre(void *ap __unused)
5534 {
5535 
5536 	VFS_SMR_ASSERT_ENTERED();
5537 }
5538 
5539 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5540 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5541 {
5542 
5543 	VFS_SMR_ASSERT_ENTERED();
5544 }
5545 void
vop_strategy_debugpre(void * ap)5546 vop_strategy_debugpre(void *ap)
5547 {
5548 	struct vop_strategy_args *a;
5549 	struct buf *bp;
5550 
5551 	a = ap;
5552 	bp = a->a_bp;
5553 
5554 	/*
5555 	 * Cluster ops lock their component buffers but not the IO container.
5556 	 */
5557 	if ((bp->b_flags & B_CLUSTER) != 0)
5558 		return;
5559 
5560 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5561 		if (vfs_badlock_print)
5562 			printf(
5563 			    "VOP_STRATEGY: bp is not locked but should be\n");
5564 		if (vfs_badlock_ddb)
5565 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5566 	}
5567 }
5568 
5569 void
vop_lock_debugpre(void * ap)5570 vop_lock_debugpre(void *ap)
5571 {
5572 	struct vop_lock1_args *a = ap;
5573 
5574 	if ((a->a_flags & LK_INTERLOCK) == 0)
5575 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5576 	else
5577 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5578 }
5579 
5580 void
vop_lock_debugpost(void * ap,int rc)5581 vop_lock_debugpost(void *ap, int rc)
5582 {
5583 	struct vop_lock1_args *a = ap;
5584 
5585 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5586 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5587 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5588 }
5589 
5590 void
vop_unlock_debugpre(void * ap)5591 vop_unlock_debugpre(void *ap)
5592 {
5593 	struct vop_unlock_args *a = ap;
5594 
5595 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5596 }
5597 
5598 void
vop_need_inactive_debugpre(void * ap)5599 vop_need_inactive_debugpre(void *ap)
5600 {
5601 	struct vop_need_inactive_args *a = ap;
5602 
5603 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5604 }
5605 
5606 void
vop_need_inactive_debugpost(void * ap,int rc)5607 vop_need_inactive_debugpost(void *ap, int rc)
5608 {
5609 	struct vop_need_inactive_args *a = ap;
5610 
5611 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5612 }
5613 #endif
5614 
5615 void
vop_create_pre(void * ap)5616 vop_create_pre(void *ap)
5617 {
5618 	struct vop_create_args *a;
5619 	struct vnode *dvp;
5620 
5621 	a = ap;
5622 	dvp = a->a_dvp;
5623 	vn_seqc_write_begin(dvp);
5624 }
5625 
5626 void
vop_create_post(void * ap,int rc)5627 vop_create_post(void *ap, int rc)
5628 {
5629 	struct vop_create_args *a;
5630 	struct vnode *dvp;
5631 
5632 	a = ap;
5633 	dvp = a->a_dvp;
5634 	vn_seqc_write_end(dvp);
5635 	if (!rc)
5636 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5637 }
5638 
5639 void
vop_whiteout_pre(void * ap)5640 vop_whiteout_pre(void *ap)
5641 {
5642 	struct vop_whiteout_args *a;
5643 	struct vnode *dvp;
5644 
5645 	a = ap;
5646 	dvp = a->a_dvp;
5647 	vn_seqc_write_begin(dvp);
5648 }
5649 
5650 void
vop_whiteout_post(void * ap,int rc)5651 vop_whiteout_post(void *ap, int rc)
5652 {
5653 	struct vop_whiteout_args *a;
5654 	struct vnode *dvp;
5655 
5656 	a = ap;
5657 	dvp = a->a_dvp;
5658 	vn_seqc_write_end(dvp);
5659 }
5660 
5661 void
vop_deleteextattr_pre(void * ap)5662 vop_deleteextattr_pre(void *ap)
5663 {
5664 	struct vop_deleteextattr_args *a;
5665 	struct vnode *vp;
5666 
5667 	a = ap;
5668 	vp = a->a_vp;
5669 	vn_seqc_write_begin(vp);
5670 }
5671 
5672 void
vop_deleteextattr_post(void * ap,int rc)5673 vop_deleteextattr_post(void *ap, int rc)
5674 {
5675 	struct vop_deleteextattr_args *a;
5676 	struct vnode *vp;
5677 
5678 	a = ap;
5679 	vp = a->a_vp;
5680 	vn_seqc_write_end(vp);
5681 	if (!rc)
5682 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5683 }
5684 
5685 void
vop_link_pre(void * ap)5686 vop_link_pre(void *ap)
5687 {
5688 	struct vop_link_args *a;
5689 	struct vnode *vp, *tdvp;
5690 
5691 	a = ap;
5692 	vp = a->a_vp;
5693 	tdvp = a->a_tdvp;
5694 	vn_seqc_write_begin(vp);
5695 	vn_seqc_write_begin(tdvp);
5696 }
5697 
5698 void
vop_link_post(void * ap,int rc)5699 vop_link_post(void *ap, int rc)
5700 {
5701 	struct vop_link_args *a;
5702 	struct vnode *vp, *tdvp;
5703 
5704 	a = ap;
5705 	vp = a->a_vp;
5706 	tdvp = a->a_tdvp;
5707 	vn_seqc_write_end(vp);
5708 	vn_seqc_write_end(tdvp);
5709 	if (!rc) {
5710 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5711 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5712 	}
5713 }
5714 
5715 void
vop_mkdir_pre(void * ap)5716 vop_mkdir_pre(void *ap)
5717 {
5718 	struct vop_mkdir_args *a;
5719 	struct vnode *dvp;
5720 
5721 	a = ap;
5722 	dvp = a->a_dvp;
5723 	vn_seqc_write_begin(dvp);
5724 }
5725 
5726 void
vop_mkdir_post(void * ap,int rc)5727 vop_mkdir_post(void *ap, int rc)
5728 {
5729 	struct vop_mkdir_args *a;
5730 	struct vnode *dvp;
5731 
5732 	a = ap;
5733 	dvp = a->a_dvp;
5734 	vn_seqc_write_end(dvp);
5735 	if (!rc)
5736 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5737 }
5738 
5739 #ifdef DEBUG_VFS_LOCKS
5740 void
vop_mkdir_debugpost(void * ap,int rc)5741 vop_mkdir_debugpost(void *ap, int rc)
5742 {
5743 	struct vop_mkdir_args *a;
5744 
5745 	a = ap;
5746 	if (!rc)
5747 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5748 }
5749 #endif
5750 
5751 void
vop_mknod_pre(void * ap)5752 vop_mknod_pre(void *ap)
5753 {
5754 	struct vop_mknod_args *a;
5755 	struct vnode *dvp;
5756 
5757 	a = ap;
5758 	dvp = a->a_dvp;
5759 	vn_seqc_write_begin(dvp);
5760 }
5761 
5762 void
vop_mknod_post(void * ap,int rc)5763 vop_mknod_post(void *ap, int rc)
5764 {
5765 	struct vop_mknod_args *a;
5766 	struct vnode *dvp;
5767 
5768 	a = ap;
5769 	dvp = a->a_dvp;
5770 	vn_seqc_write_end(dvp);
5771 	if (!rc)
5772 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5773 }
5774 
5775 void
vop_reclaim_post(void * ap,int rc)5776 vop_reclaim_post(void *ap, int rc)
5777 {
5778 	struct vop_reclaim_args *a;
5779 	struct vnode *vp;
5780 
5781 	a = ap;
5782 	vp = a->a_vp;
5783 	ASSERT_VOP_IN_SEQC(vp);
5784 	if (!rc)
5785 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5786 }
5787 
5788 void
vop_remove_pre(void * ap)5789 vop_remove_pre(void *ap)
5790 {
5791 	struct vop_remove_args *a;
5792 	struct vnode *dvp, *vp;
5793 
5794 	a = ap;
5795 	dvp = a->a_dvp;
5796 	vp = a->a_vp;
5797 	vn_seqc_write_begin(dvp);
5798 	vn_seqc_write_begin(vp);
5799 }
5800 
5801 void
vop_remove_post(void * ap,int rc)5802 vop_remove_post(void *ap, int rc)
5803 {
5804 	struct vop_remove_args *a;
5805 	struct vnode *dvp, *vp;
5806 
5807 	a = ap;
5808 	dvp = a->a_dvp;
5809 	vp = a->a_vp;
5810 	vn_seqc_write_end(dvp);
5811 	vn_seqc_write_end(vp);
5812 	if (!rc) {
5813 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5814 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5815 	}
5816 }
5817 
5818 void
vop_rename_post(void * ap,int rc)5819 vop_rename_post(void *ap, int rc)
5820 {
5821 	struct vop_rename_args *a = ap;
5822 	long hint;
5823 
5824 	if (!rc) {
5825 		hint = NOTE_WRITE;
5826 		if (a->a_fdvp == a->a_tdvp) {
5827 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5828 				hint |= NOTE_LINK;
5829 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5830 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5831 		} else {
5832 			hint |= NOTE_EXTEND;
5833 			if (a->a_fvp->v_type == VDIR)
5834 				hint |= NOTE_LINK;
5835 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5836 
5837 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5838 			    a->a_tvp->v_type == VDIR)
5839 				hint &= ~NOTE_LINK;
5840 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5841 		}
5842 
5843 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5844 		if (a->a_tvp)
5845 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5846 	}
5847 	if (a->a_tdvp != a->a_fdvp)
5848 		vdrop(a->a_fdvp);
5849 	if (a->a_tvp != a->a_fvp)
5850 		vdrop(a->a_fvp);
5851 	vdrop(a->a_tdvp);
5852 	if (a->a_tvp)
5853 		vdrop(a->a_tvp);
5854 }
5855 
5856 void
vop_rmdir_pre(void * ap)5857 vop_rmdir_pre(void *ap)
5858 {
5859 	struct vop_rmdir_args *a;
5860 	struct vnode *dvp, *vp;
5861 
5862 	a = ap;
5863 	dvp = a->a_dvp;
5864 	vp = a->a_vp;
5865 	vn_seqc_write_begin(dvp);
5866 	vn_seqc_write_begin(vp);
5867 }
5868 
5869 void
vop_rmdir_post(void * ap,int rc)5870 vop_rmdir_post(void *ap, int rc)
5871 {
5872 	struct vop_rmdir_args *a;
5873 	struct vnode *dvp, *vp;
5874 
5875 	a = ap;
5876 	dvp = a->a_dvp;
5877 	vp = a->a_vp;
5878 	vn_seqc_write_end(dvp);
5879 	vn_seqc_write_end(vp);
5880 	if (!rc) {
5881 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5882 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5883 	}
5884 }
5885 
5886 void
vop_setattr_pre(void * ap)5887 vop_setattr_pre(void *ap)
5888 {
5889 	struct vop_setattr_args *a;
5890 	struct vnode *vp;
5891 
5892 	a = ap;
5893 	vp = a->a_vp;
5894 	vn_seqc_write_begin(vp);
5895 }
5896 
5897 void
vop_setattr_post(void * ap,int rc)5898 vop_setattr_post(void *ap, int rc)
5899 {
5900 	struct vop_setattr_args *a;
5901 	struct vnode *vp;
5902 
5903 	a = ap;
5904 	vp = a->a_vp;
5905 	vn_seqc_write_end(vp);
5906 	if (!rc)
5907 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5908 }
5909 
5910 void
vop_setacl_pre(void * ap)5911 vop_setacl_pre(void *ap)
5912 {
5913 	struct vop_setacl_args *a;
5914 	struct vnode *vp;
5915 
5916 	a = ap;
5917 	vp = a->a_vp;
5918 	vn_seqc_write_begin(vp);
5919 }
5920 
5921 void
vop_setacl_post(void * ap,int rc __unused)5922 vop_setacl_post(void *ap, int rc __unused)
5923 {
5924 	struct vop_setacl_args *a;
5925 	struct vnode *vp;
5926 
5927 	a = ap;
5928 	vp = a->a_vp;
5929 	vn_seqc_write_end(vp);
5930 }
5931 
5932 void
vop_setextattr_pre(void * ap)5933 vop_setextattr_pre(void *ap)
5934 {
5935 	struct vop_setextattr_args *a;
5936 	struct vnode *vp;
5937 
5938 	a = ap;
5939 	vp = a->a_vp;
5940 	vn_seqc_write_begin(vp);
5941 }
5942 
5943 void
vop_setextattr_post(void * ap,int rc)5944 vop_setextattr_post(void *ap, int rc)
5945 {
5946 	struct vop_setextattr_args *a;
5947 	struct vnode *vp;
5948 
5949 	a = ap;
5950 	vp = a->a_vp;
5951 	vn_seqc_write_end(vp);
5952 	if (!rc)
5953 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5954 }
5955 
5956 void
vop_symlink_pre(void * ap)5957 vop_symlink_pre(void *ap)
5958 {
5959 	struct vop_symlink_args *a;
5960 	struct vnode *dvp;
5961 
5962 	a = ap;
5963 	dvp = a->a_dvp;
5964 	vn_seqc_write_begin(dvp);
5965 }
5966 
5967 void
vop_symlink_post(void * ap,int rc)5968 vop_symlink_post(void *ap, int rc)
5969 {
5970 	struct vop_symlink_args *a;
5971 	struct vnode *dvp;
5972 
5973 	a = ap;
5974 	dvp = a->a_dvp;
5975 	vn_seqc_write_end(dvp);
5976 	if (!rc)
5977 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5978 }
5979 
5980 void
vop_open_post(void * ap,int rc)5981 vop_open_post(void *ap, int rc)
5982 {
5983 	struct vop_open_args *a = ap;
5984 
5985 	if (!rc)
5986 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
5987 }
5988 
5989 void
vop_close_post(void * ap,int rc)5990 vop_close_post(void *ap, int rc)
5991 {
5992 	struct vop_close_args *a = ap;
5993 
5994 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
5995 	    !VN_IS_DOOMED(a->a_vp))) {
5996 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
5997 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
5998 	}
5999 }
6000 
6001 void
vop_read_post(void * ap,int rc)6002 vop_read_post(void *ap, int rc)
6003 {
6004 	struct vop_read_args *a = ap;
6005 
6006 	if (!rc)
6007 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6008 }
6009 
6010 void
vop_read_pgcache_post(void * ap,int rc)6011 vop_read_pgcache_post(void *ap, int rc)
6012 {
6013 	struct vop_read_pgcache_args *a = ap;
6014 
6015 	if (!rc)
6016 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6017 }
6018 
6019 void
vop_readdir_post(void * ap,int rc)6020 vop_readdir_post(void *ap, int rc)
6021 {
6022 	struct vop_readdir_args *a = ap;
6023 
6024 	if (!rc)
6025 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6026 }
6027 
6028 static struct knlist fs_knlist;
6029 
6030 static void
vfs_event_init(void * arg)6031 vfs_event_init(void *arg)
6032 {
6033 	knlist_init_mtx(&fs_knlist, NULL);
6034 }
6035 /* XXX - correct order? */
6036 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6037 
6038 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6039 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6040 {
6041 
6042 	KNOTE_UNLOCKED(&fs_knlist, event);
6043 }
6044 
6045 static int	filt_fsattach(struct knote *kn);
6046 static void	filt_fsdetach(struct knote *kn);
6047 static int	filt_fsevent(struct knote *kn, long hint);
6048 
6049 struct filterops fs_filtops = {
6050 	.f_isfd = 0,
6051 	.f_attach = filt_fsattach,
6052 	.f_detach = filt_fsdetach,
6053 	.f_event = filt_fsevent
6054 };
6055 
6056 static int
filt_fsattach(struct knote * kn)6057 filt_fsattach(struct knote *kn)
6058 {
6059 
6060 	kn->kn_flags |= EV_CLEAR;
6061 	knlist_add(&fs_knlist, kn, 0);
6062 	return (0);
6063 }
6064 
6065 static void
filt_fsdetach(struct knote * kn)6066 filt_fsdetach(struct knote *kn)
6067 {
6068 
6069 	knlist_remove(&fs_knlist, kn, 0);
6070 }
6071 
6072 static int
filt_fsevent(struct knote * kn,long hint)6073 filt_fsevent(struct knote *kn, long hint)
6074 {
6075 
6076 	kn->kn_fflags |= hint;
6077 	return (kn->kn_fflags != 0);
6078 }
6079 
6080 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6081 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6082 {
6083 	struct vfsidctl vc;
6084 	int error;
6085 	struct mount *mp;
6086 
6087 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6088 	if (error)
6089 		return (error);
6090 	if (vc.vc_vers != VFS_CTL_VERS1)
6091 		return (EINVAL);
6092 	mp = vfs_getvfs(&vc.vc_fsid);
6093 	if (mp == NULL)
6094 		return (ENOENT);
6095 	/* ensure that a specific sysctl goes to the right filesystem. */
6096 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6097 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6098 		vfs_rel(mp);
6099 		return (EINVAL);
6100 	}
6101 	VCTLTOREQ(&vc, req);
6102 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6103 	vfs_rel(mp);
6104 	return (error);
6105 }
6106 
6107 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6108     NULL, 0, sysctl_vfs_ctl, "",
6109     "Sysctl by fsid");
6110 
6111 /*
6112  * Function to initialize a va_filerev field sensibly.
6113  * XXX: Wouldn't a random number make a lot more sense ??
6114  */
6115 u_quad_t
init_va_filerev(void)6116 init_va_filerev(void)
6117 {
6118 	struct bintime bt;
6119 
6120 	getbinuptime(&bt);
6121 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6122 }
6123 
6124 static int	filt_vfsread(struct knote *kn, long hint);
6125 static int	filt_vfswrite(struct knote *kn, long hint);
6126 static int	filt_vfsvnode(struct knote *kn, long hint);
6127 static void	filt_vfsdetach(struct knote *kn);
6128 static struct filterops vfsread_filtops = {
6129 	.f_isfd = 1,
6130 	.f_detach = filt_vfsdetach,
6131 	.f_event = filt_vfsread
6132 };
6133 static struct filterops vfswrite_filtops = {
6134 	.f_isfd = 1,
6135 	.f_detach = filt_vfsdetach,
6136 	.f_event = filt_vfswrite
6137 };
6138 static struct filterops vfsvnode_filtops = {
6139 	.f_isfd = 1,
6140 	.f_detach = filt_vfsdetach,
6141 	.f_event = filt_vfsvnode
6142 };
6143 
6144 static void
vfs_knllock(void * arg)6145 vfs_knllock(void *arg)
6146 {
6147 	struct vnode *vp = arg;
6148 
6149 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6150 }
6151 
6152 static void
vfs_knlunlock(void * arg)6153 vfs_knlunlock(void *arg)
6154 {
6155 	struct vnode *vp = arg;
6156 
6157 	VOP_UNLOCK(vp);
6158 }
6159 
6160 static void
vfs_knl_assert_lock(void * arg,int what)6161 vfs_knl_assert_lock(void *arg, int what)
6162 {
6163 #ifdef DEBUG_VFS_LOCKS
6164 	struct vnode *vp = arg;
6165 
6166 	if (what == LA_LOCKED)
6167 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6168 	else
6169 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6170 #endif
6171 }
6172 
6173 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6174 vfs_kqfilter(struct vop_kqfilter_args *ap)
6175 {
6176 	struct vnode *vp = ap->a_vp;
6177 	struct knote *kn = ap->a_kn;
6178 	struct knlist *knl;
6179 
6180 	switch (kn->kn_filter) {
6181 	case EVFILT_READ:
6182 		kn->kn_fop = &vfsread_filtops;
6183 		break;
6184 	case EVFILT_WRITE:
6185 		kn->kn_fop = &vfswrite_filtops;
6186 		break;
6187 	case EVFILT_VNODE:
6188 		kn->kn_fop = &vfsvnode_filtops;
6189 		break;
6190 	default:
6191 		return (EINVAL);
6192 	}
6193 
6194 	kn->kn_hook = (caddr_t)vp;
6195 
6196 	v_addpollinfo(vp);
6197 	if (vp->v_pollinfo == NULL)
6198 		return (ENOMEM);
6199 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6200 	vhold(vp);
6201 	knlist_add(knl, kn, 0);
6202 
6203 	return (0);
6204 }
6205 
6206 /*
6207  * Detach knote from vnode
6208  */
6209 static void
filt_vfsdetach(struct knote * kn)6210 filt_vfsdetach(struct knote *kn)
6211 {
6212 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6213 
6214 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6215 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6216 	vdrop(vp);
6217 }
6218 
6219 /*ARGSUSED*/
6220 static int
filt_vfsread(struct knote * kn,long hint)6221 filt_vfsread(struct knote *kn, long hint)
6222 {
6223 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6224 	struct vattr va;
6225 	int res;
6226 
6227 	/*
6228 	 * filesystem is gone, so set the EOF flag and schedule
6229 	 * the knote for deletion.
6230 	 */
6231 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6232 		VI_LOCK(vp);
6233 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6234 		VI_UNLOCK(vp);
6235 		return (1);
6236 	}
6237 
6238 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6239 		return (0);
6240 
6241 	VI_LOCK(vp);
6242 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6243 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6244 	VI_UNLOCK(vp);
6245 	return (res);
6246 }
6247 
6248 /*ARGSUSED*/
6249 static int
filt_vfswrite(struct knote * kn,long hint)6250 filt_vfswrite(struct knote *kn, long hint)
6251 {
6252 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6253 
6254 	VI_LOCK(vp);
6255 
6256 	/*
6257 	 * filesystem is gone, so set the EOF flag and schedule
6258 	 * the knote for deletion.
6259 	 */
6260 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6261 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6262 
6263 	kn->kn_data = 0;
6264 	VI_UNLOCK(vp);
6265 	return (1);
6266 }
6267 
6268 static int
filt_vfsvnode(struct knote * kn,long hint)6269 filt_vfsvnode(struct knote *kn, long hint)
6270 {
6271 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6272 	int res;
6273 
6274 	VI_LOCK(vp);
6275 	if (kn->kn_sfflags & hint)
6276 		kn->kn_fflags |= hint;
6277 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6278 		kn->kn_flags |= EV_EOF;
6279 		VI_UNLOCK(vp);
6280 		return (1);
6281 	}
6282 	res = (kn->kn_fflags != 0);
6283 	VI_UNLOCK(vp);
6284 	return (res);
6285 }
6286 
6287 /*
6288  * Returns whether the directory is empty or not.
6289  * If it is empty, the return value is 0; otherwise
6290  * the return value is an error value (which may
6291  * be ENOTEMPTY).
6292  */
6293 int
vfs_emptydir(struct vnode * vp)6294 vfs_emptydir(struct vnode *vp)
6295 {
6296 	struct uio uio;
6297 	struct iovec iov;
6298 	struct dirent *dirent, *dp, *endp;
6299 	int error, eof;
6300 
6301 	error = 0;
6302 	eof = 0;
6303 
6304 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6305 
6306 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6307 	iov.iov_base = dirent;
6308 	iov.iov_len = sizeof(struct dirent);
6309 
6310 	uio.uio_iov = &iov;
6311 	uio.uio_iovcnt = 1;
6312 	uio.uio_offset = 0;
6313 	uio.uio_resid = sizeof(struct dirent);
6314 	uio.uio_segflg = UIO_SYSSPACE;
6315 	uio.uio_rw = UIO_READ;
6316 	uio.uio_td = curthread;
6317 
6318 	while (eof == 0 && error == 0) {
6319 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6320 		    NULL, NULL);
6321 		if (error != 0)
6322 			break;
6323 		endp = (void *)((uint8_t *)dirent +
6324 		    sizeof(struct dirent) - uio.uio_resid);
6325 		for (dp = dirent; dp < endp;
6326 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6327 			if (dp->d_type == DT_WHT)
6328 				continue;
6329 			if (dp->d_namlen == 0)
6330 				continue;
6331 			if (dp->d_type != DT_DIR &&
6332 			    dp->d_type != DT_UNKNOWN) {
6333 				error = ENOTEMPTY;
6334 				break;
6335 			}
6336 			if (dp->d_namlen > 2) {
6337 				error = ENOTEMPTY;
6338 				break;
6339 			}
6340 			if (dp->d_namlen == 1 &&
6341 			    dp->d_name[0] != '.') {
6342 				error = ENOTEMPTY;
6343 				break;
6344 			}
6345 			if (dp->d_namlen == 2 &&
6346 			    dp->d_name[1] != '.') {
6347 				error = ENOTEMPTY;
6348 				break;
6349 			}
6350 			uio.uio_resid = sizeof(struct dirent);
6351 		}
6352 	}
6353 	free(dirent, M_TEMP);
6354 	return (error);
6355 }
6356 
6357 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6358 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6359 {
6360 	int error;
6361 
6362 	if (dp->d_reclen > ap->a_uio->uio_resid)
6363 		return (ENAMETOOLONG);
6364 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6365 	if (error) {
6366 		if (ap->a_ncookies != NULL) {
6367 			if (ap->a_cookies != NULL)
6368 				free(ap->a_cookies, M_TEMP);
6369 			ap->a_cookies = NULL;
6370 			*ap->a_ncookies = 0;
6371 		}
6372 		return (error);
6373 	}
6374 	if (ap->a_ncookies == NULL)
6375 		return (0);
6376 
6377 	KASSERT(ap->a_cookies,
6378 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6379 
6380 	*ap->a_cookies = realloc(*ap->a_cookies,
6381 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
6382 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6383 	*ap->a_ncookies += 1;
6384 	return (0);
6385 }
6386 
6387 /*
6388  * The purpose of this routine is to remove granularity from accmode_t,
6389  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6390  * VADMIN and VAPPEND.
6391  *
6392  * If it returns 0, the caller is supposed to continue with the usual
6393  * access checks using 'accmode' as modified by this routine.  If it
6394  * returns nonzero value, the caller is supposed to return that value
6395  * as errno.
6396  *
6397  * Note that after this routine runs, accmode may be zero.
6398  */
6399 int
vfs_unixify_accmode(accmode_t * accmode)6400 vfs_unixify_accmode(accmode_t *accmode)
6401 {
6402 	/*
6403 	 * There is no way to specify explicit "deny" rule using
6404 	 * file mode or POSIX.1e ACLs.
6405 	 */
6406 	if (*accmode & VEXPLICIT_DENY) {
6407 		*accmode = 0;
6408 		return (0);
6409 	}
6410 
6411 	/*
6412 	 * None of these can be translated into usual access bits.
6413 	 * Also, the common case for NFSv4 ACLs is to not contain
6414 	 * either of these bits. Caller should check for VWRITE
6415 	 * on the containing directory instead.
6416 	 */
6417 	if (*accmode & (VDELETE_CHILD | VDELETE))
6418 		return (EPERM);
6419 
6420 	if (*accmode & VADMIN_PERMS) {
6421 		*accmode &= ~VADMIN_PERMS;
6422 		*accmode |= VADMIN;
6423 	}
6424 
6425 	/*
6426 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6427 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6428 	 */
6429 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6430 
6431 	return (0);
6432 }
6433 
6434 /*
6435  * Clear out a doomed vnode (if any) and replace it with a new one as long
6436  * as the fs is not being unmounted. Return the root vnode to the caller.
6437  */
6438 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6439 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6440 {
6441 	struct vnode *vp;
6442 	int error;
6443 
6444 restart:
6445 	if (mp->mnt_rootvnode != NULL) {
6446 		MNT_ILOCK(mp);
6447 		vp = mp->mnt_rootvnode;
6448 		if (vp != NULL) {
6449 			if (!VN_IS_DOOMED(vp)) {
6450 				vrefact(vp);
6451 				MNT_IUNLOCK(mp);
6452 				error = vn_lock(vp, flags);
6453 				if (error == 0) {
6454 					*vpp = vp;
6455 					return (0);
6456 				}
6457 				vrele(vp);
6458 				goto restart;
6459 			}
6460 			/*
6461 			 * Clear the old one.
6462 			 */
6463 			mp->mnt_rootvnode = NULL;
6464 		}
6465 		MNT_IUNLOCK(mp);
6466 		if (vp != NULL) {
6467 			vfs_op_barrier_wait(mp);
6468 			vrele(vp);
6469 		}
6470 	}
6471 	error = VFS_CACHEDROOT(mp, flags, vpp);
6472 	if (error != 0)
6473 		return (error);
6474 	if (mp->mnt_vfs_ops == 0) {
6475 		MNT_ILOCK(mp);
6476 		if (mp->mnt_vfs_ops != 0) {
6477 			MNT_IUNLOCK(mp);
6478 			return (0);
6479 		}
6480 		if (mp->mnt_rootvnode == NULL) {
6481 			vrefact(*vpp);
6482 			mp->mnt_rootvnode = *vpp;
6483 		} else {
6484 			if (mp->mnt_rootvnode != *vpp) {
6485 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6486 					panic("%s: mismatch between vnode returned "
6487 					    " by VFS_CACHEDROOT and the one cached "
6488 					    " (%p != %p)",
6489 					    __func__, *vpp, mp->mnt_rootvnode);
6490 				}
6491 			}
6492 		}
6493 		MNT_IUNLOCK(mp);
6494 	}
6495 	return (0);
6496 }
6497 
6498 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6499 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6500 {
6501 	struct mount_pcpu *mpcpu;
6502 	struct vnode *vp;
6503 	int error;
6504 
6505 	if (!vfs_op_thread_enter(mp, mpcpu))
6506 		return (vfs_cache_root_fallback(mp, flags, vpp));
6507 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6508 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6509 		vfs_op_thread_exit(mp, mpcpu);
6510 		return (vfs_cache_root_fallback(mp, flags, vpp));
6511 	}
6512 	vrefact(vp);
6513 	vfs_op_thread_exit(mp, mpcpu);
6514 	error = vn_lock(vp, flags);
6515 	if (error != 0) {
6516 		vrele(vp);
6517 		return (vfs_cache_root_fallback(mp, flags, vpp));
6518 	}
6519 	*vpp = vp;
6520 	return (0);
6521 }
6522 
6523 struct vnode *
vfs_cache_root_clear(struct mount * mp)6524 vfs_cache_root_clear(struct mount *mp)
6525 {
6526 	struct vnode *vp;
6527 
6528 	/*
6529 	 * ops > 0 guarantees there is nobody who can see this vnode
6530 	 */
6531 	MPASS(mp->mnt_vfs_ops > 0);
6532 	vp = mp->mnt_rootvnode;
6533 	if (vp != NULL)
6534 		vn_seqc_write_begin(vp);
6535 	mp->mnt_rootvnode = NULL;
6536 	return (vp);
6537 }
6538 
6539 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)6540 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6541 {
6542 
6543 	MPASS(mp->mnt_vfs_ops > 0);
6544 	vrefact(vp);
6545 	mp->mnt_rootvnode = vp;
6546 }
6547 
6548 /*
6549  * These are helper functions for filesystems to traverse all
6550  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6551  *
6552  * This interface replaces MNT_VNODE_FOREACH.
6553  */
6554 
6555 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)6556 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6557 {
6558 	struct vnode *vp;
6559 
6560 	if (should_yield())
6561 		kern_yield(PRI_USER);
6562 	MNT_ILOCK(mp);
6563 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6564 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6565 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6566 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6567 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6568 			continue;
6569 		VI_LOCK(vp);
6570 		if (VN_IS_DOOMED(vp)) {
6571 			VI_UNLOCK(vp);
6572 			continue;
6573 		}
6574 		break;
6575 	}
6576 	if (vp == NULL) {
6577 		__mnt_vnode_markerfree_all(mvp, mp);
6578 		/* MNT_IUNLOCK(mp); -- done in above function */
6579 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6580 		return (NULL);
6581 	}
6582 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6583 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6584 	MNT_IUNLOCK(mp);
6585 	return (vp);
6586 }
6587 
6588 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)6589 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6590 {
6591 	struct vnode *vp;
6592 
6593 	*mvp = vn_alloc_marker(mp);
6594 	MNT_ILOCK(mp);
6595 	MNT_REF(mp);
6596 
6597 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6598 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6599 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6600 			continue;
6601 		VI_LOCK(vp);
6602 		if (VN_IS_DOOMED(vp)) {
6603 			VI_UNLOCK(vp);
6604 			continue;
6605 		}
6606 		break;
6607 	}
6608 	if (vp == NULL) {
6609 		MNT_REL(mp);
6610 		MNT_IUNLOCK(mp);
6611 		vn_free_marker(*mvp);
6612 		*mvp = NULL;
6613 		return (NULL);
6614 	}
6615 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6616 	MNT_IUNLOCK(mp);
6617 	return (vp);
6618 }
6619 
6620 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)6621 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6622 {
6623 
6624 	if (*mvp == NULL) {
6625 		MNT_IUNLOCK(mp);
6626 		return;
6627 	}
6628 
6629 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6630 
6631 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6632 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6633 	MNT_REL(mp);
6634 	MNT_IUNLOCK(mp);
6635 	vn_free_marker(*mvp);
6636 	*mvp = NULL;
6637 }
6638 
6639 /*
6640  * These are helper functions for filesystems to traverse their
6641  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6642  */
6643 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)6644 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6645 {
6646 
6647 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6648 
6649 	MNT_ILOCK(mp);
6650 	MNT_REL(mp);
6651 	MNT_IUNLOCK(mp);
6652 	vn_free_marker(*mvp);
6653 	*mvp = NULL;
6654 }
6655 
6656 /*
6657  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6658  * conventional lock order during mnt_vnode_next_lazy iteration.
6659  *
6660  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6661  * The list lock is dropped and reacquired.  On success, both locks are held.
6662  * On failure, the mount vnode list lock is held but the vnode interlock is
6663  * not, and the procedure may have yielded.
6664  */
6665 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)6666 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6667     struct vnode *vp)
6668 {
6669 
6670 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6671 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6672 	    ("%s: bad marker", __func__));
6673 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6674 	    ("%s: inappropriate vnode", __func__));
6675 	ASSERT_VI_UNLOCKED(vp, __func__);
6676 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6677 
6678 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6679 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6680 
6681 	/*
6682 	 * Note we may be racing against vdrop which transitioned the hold
6683 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6684 	 * if we are the only user after we get the interlock we will just
6685 	 * vdrop.
6686 	 */
6687 	vhold(vp);
6688 	mtx_unlock(&mp->mnt_listmtx);
6689 	VI_LOCK(vp);
6690 	if (VN_IS_DOOMED(vp)) {
6691 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6692 		goto out_lost;
6693 	}
6694 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6695 	/*
6696 	 * There is nothing to do if we are the last user.
6697 	 */
6698 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6699 		goto out_lost;
6700 	mtx_lock(&mp->mnt_listmtx);
6701 	return (true);
6702 out_lost:
6703 	vdropl(vp);
6704 	maybe_yield();
6705 	mtx_lock(&mp->mnt_listmtx);
6706 	return (false);
6707 }
6708 
6709 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)6710 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6711     void *cbarg)
6712 {
6713 	struct vnode *vp;
6714 
6715 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6716 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6717 restart:
6718 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6719 	while (vp != NULL) {
6720 		if (vp->v_type == VMARKER) {
6721 			vp = TAILQ_NEXT(vp, v_lazylist);
6722 			continue;
6723 		}
6724 		/*
6725 		 * See if we want to process the vnode. Note we may encounter a
6726 		 * long string of vnodes we don't care about and hog the list
6727 		 * as a result. Check for it and requeue the marker.
6728 		 */
6729 		VNPASS(!VN_IS_DOOMED(vp), vp);
6730 		if (!cb(vp, cbarg)) {
6731 			if (!should_yield()) {
6732 				vp = TAILQ_NEXT(vp, v_lazylist);
6733 				continue;
6734 			}
6735 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6736 			    v_lazylist);
6737 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6738 			    v_lazylist);
6739 			mtx_unlock(&mp->mnt_listmtx);
6740 			kern_yield(PRI_USER);
6741 			mtx_lock(&mp->mnt_listmtx);
6742 			goto restart;
6743 		}
6744 		/*
6745 		 * Try-lock because this is the wrong lock order.
6746 		 */
6747 		if (!VI_TRYLOCK(vp) &&
6748 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6749 			goto restart;
6750 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6751 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6752 		    ("alien vnode on the lazy list %p %p", vp, mp));
6753 		VNPASS(vp->v_mount == mp, vp);
6754 		VNPASS(!VN_IS_DOOMED(vp), vp);
6755 		break;
6756 	}
6757 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6758 
6759 	/* Check if we are done */
6760 	if (vp == NULL) {
6761 		mtx_unlock(&mp->mnt_listmtx);
6762 		mnt_vnode_markerfree_lazy(mvp, mp);
6763 		return (NULL);
6764 	}
6765 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6766 	mtx_unlock(&mp->mnt_listmtx);
6767 	ASSERT_VI_LOCKED(vp, "lazy iter");
6768 	return (vp);
6769 }
6770 
6771 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)6772 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6773     void *cbarg)
6774 {
6775 
6776 	if (should_yield())
6777 		kern_yield(PRI_USER);
6778 	mtx_lock(&mp->mnt_listmtx);
6779 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6780 }
6781 
6782 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)6783 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6784     void *cbarg)
6785 {
6786 	struct vnode *vp;
6787 
6788 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6789 		return (NULL);
6790 
6791 	*mvp = vn_alloc_marker(mp);
6792 	MNT_ILOCK(mp);
6793 	MNT_REF(mp);
6794 	MNT_IUNLOCK(mp);
6795 
6796 	mtx_lock(&mp->mnt_listmtx);
6797 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6798 	if (vp == NULL) {
6799 		mtx_unlock(&mp->mnt_listmtx);
6800 		mnt_vnode_markerfree_lazy(mvp, mp);
6801 		return (NULL);
6802 	}
6803 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6804 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6805 }
6806 
6807 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)6808 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6809 {
6810 
6811 	if (*mvp == NULL)
6812 		return;
6813 
6814 	mtx_lock(&mp->mnt_listmtx);
6815 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6816 	mtx_unlock(&mp->mnt_listmtx);
6817 	mnt_vnode_markerfree_lazy(mvp, mp);
6818 }
6819 
6820 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)6821 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6822 {
6823 
6824 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6825 		cnp->cn_flags &= ~NOEXECCHECK;
6826 		return (0);
6827 	}
6828 
6829 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread));
6830 }
6831 
6832 /*
6833  * Do not use this variant unless you have means other than the hold count
6834  * to prevent the vnode from getting freed.
6835  */
6836 void
vn_seqc_write_begin_unheld_locked(struct vnode * vp)6837 vn_seqc_write_begin_unheld_locked(struct vnode *vp)
6838 {
6839 
6840 	ASSERT_VI_LOCKED(vp, __func__);
6841 	VNPASS(vp->v_seqc_users >= 0, vp);
6842 	vp->v_seqc_users++;
6843 	if (vp->v_seqc_users == 1)
6844 		seqc_sleepable_write_begin(&vp->v_seqc);
6845 }
6846 
6847 void
vn_seqc_write_begin_locked(struct vnode * vp)6848 vn_seqc_write_begin_locked(struct vnode *vp)
6849 {
6850 
6851 	ASSERT_VI_LOCKED(vp, __func__);
6852 	VNPASS(vp->v_holdcnt > 0, vp);
6853 	vn_seqc_write_begin_unheld_locked(vp);
6854 }
6855 
6856 void
vn_seqc_write_begin(struct vnode * vp)6857 vn_seqc_write_begin(struct vnode *vp)
6858 {
6859 
6860 	VI_LOCK(vp);
6861 	vn_seqc_write_begin_locked(vp);
6862 	VI_UNLOCK(vp);
6863 }
6864 
6865 void
vn_seqc_write_begin_unheld(struct vnode * vp)6866 vn_seqc_write_begin_unheld(struct vnode *vp)
6867 {
6868 
6869 	VI_LOCK(vp);
6870 	vn_seqc_write_begin_unheld_locked(vp);
6871 	VI_UNLOCK(vp);
6872 }
6873 
6874 void
vn_seqc_write_end_locked(struct vnode * vp)6875 vn_seqc_write_end_locked(struct vnode *vp)
6876 {
6877 
6878 	ASSERT_VI_LOCKED(vp, __func__);
6879 	VNPASS(vp->v_seqc_users > 0, vp);
6880 	vp->v_seqc_users--;
6881 	if (vp->v_seqc_users == 0)
6882 		seqc_sleepable_write_end(&vp->v_seqc);
6883 }
6884 
6885 void
vn_seqc_write_end(struct vnode * vp)6886 vn_seqc_write_end(struct vnode *vp)
6887 {
6888 
6889 	VI_LOCK(vp);
6890 	vn_seqc_write_end_locked(vp);
6891 	VI_UNLOCK(vp);
6892 }
6893 
6894 /*
6895  * Special case handling for allocating and freeing vnodes.
6896  *
6897  * The counter remains unchanged on free so that a doomed vnode will
6898  * keep testing as in modify as long as it is accessible with SMR.
6899  */
6900 static void
vn_seqc_init(struct vnode * vp)6901 vn_seqc_init(struct vnode *vp)
6902 {
6903 
6904 	vp->v_seqc = 0;
6905 	vp->v_seqc_users = 0;
6906 }
6907 
6908 static void
vn_seqc_write_end_free(struct vnode * vp)6909 vn_seqc_write_end_free(struct vnode *vp)
6910 {
6911 
6912 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
6913 	VNPASS(vp->v_seqc_users == 1, vp);
6914 }
6915 
6916 void
vn_irflag_set_locked(struct vnode * vp,short toset)6917 vn_irflag_set_locked(struct vnode *vp, short toset)
6918 {
6919 	short flags;
6920 
6921 	ASSERT_VI_LOCKED(vp, __func__);
6922 	flags = vn_irflag_read(vp);
6923 	VNASSERT((flags & toset) == 0, vp,
6924 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
6925 	    __func__, flags, toset));
6926 	atomic_store_short(&vp->v_irflag, flags | toset);
6927 }
6928 
6929 void
vn_irflag_set(struct vnode * vp,short toset)6930 vn_irflag_set(struct vnode *vp, short toset)
6931 {
6932 
6933 	VI_LOCK(vp);
6934 	vn_irflag_set_locked(vp, toset);
6935 	VI_UNLOCK(vp);
6936 }
6937 
6938 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)6939 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
6940 {
6941 	short flags;
6942 
6943 	ASSERT_VI_LOCKED(vp, __func__);
6944 	flags = vn_irflag_read(vp);
6945 	atomic_store_short(&vp->v_irflag, flags | toset);
6946 }
6947 
6948 void
vn_irflag_set_cond(struct vnode * vp,short toset)6949 vn_irflag_set_cond(struct vnode *vp, short toset)
6950 {
6951 
6952 	VI_LOCK(vp);
6953 	vn_irflag_set_cond_locked(vp, toset);
6954 	VI_UNLOCK(vp);
6955 }
6956 
6957 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)6958 vn_irflag_unset_locked(struct vnode *vp, short tounset)
6959 {
6960 	short flags;
6961 
6962 	ASSERT_VI_LOCKED(vp, __func__);
6963 	flags = vn_irflag_read(vp);
6964 	VNASSERT((flags & tounset) == tounset, vp,
6965 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
6966 	    __func__, flags, tounset));
6967 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
6968 }
6969 
6970 void
vn_irflag_unset(struct vnode * vp,short tounset)6971 vn_irflag_unset(struct vnode *vp, short tounset)
6972 {
6973 
6974 	VI_LOCK(vp);
6975 	vn_irflag_unset_locked(vp, tounset);
6976 	VI_UNLOCK(vp);
6977 }
6978