1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32
33 using namespace llvm;
34 using namespace PatternMatch;
35
36 //===----------------------------------------------------------------------===//
37 // Constant Class
38 //===----------------------------------------------------------------------===//
39
isNegativeZeroValue() const40 bool Constant::isNegativeZeroValue() const {
41 // Floating point values have an explicit -0.0 value.
42 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
43 return CFP->isZero() && CFP->isNegative();
44
45 // Equivalent for a vector of -0.0's.
46 if (getType()->isVectorTy())
47 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
48 return SplatCFP->isNegativeZeroValue();
49
50 // We've already handled true FP case; any other FP vectors can't represent -0.0.
51 if (getType()->isFPOrFPVectorTy())
52 return false;
53
54 // Otherwise, just use +0.0.
55 return isNullValue();
56 }
57
58 // Return true iff this constant is positive zero (floating point), negative
59 // zero (floating point), or a null value.
isZeroValue() const60 bool Constant::isZeroValue() const {
61 // Floating point values have an explicit -0.0 value.
62 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
63 return CFP->isZero();
64
65 // Check for constant splat vectors of 1 values.
66 if (getType()->isVectorTy())
67 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
68 return SplatCFP->isZero();
69
70 // Otherwise, just use +0.0.
71 return isNullValue();
72 }
73
isNullValue() const74 bool Constant::isNullValue() const {
75 // 0 is null.
76 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
77 return CI->isZero();
78
79 // +0.0 is null.
80 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
81 // ppc_fp128 determine isZero using high order double only
82 // Should check the bitwise value to make sure all bits are zero.
83 return CFP->isExactlyValue(+0.0);
84
85 // constant zero is zero for aggregates, cpnull is null for pointers, none for
86 // tokens.
87 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
88 isa<ConstantTokenNone>(this);
89 }
90
isAllOnesValue() const91 bool Constant::isAllOnesValue() const {
92 // Check for -1 integers
93 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94 return CI->isMinusOne();
95
96 // Check for FP which are bitcasted from -1 integers
97 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
99
100 // Check for constant splat vectors of 1 values.
101 if (getType()->isVectorTy())
102 if (const auto *SplatVal = getSplatValue())
103 return SplatVal->isAllOnesValue();
104
105 return false;
106 }
107
isOneValue() const108 bool Constant::isOneValue() const {
109 // Check for 1 integers
110 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
111 return CI->isOne();
112
113 // Check for FP which are bitcasted from 1 integers
114 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
115 return CFP->getValueAPF().bitcastToAPInt().isOneValue();
116
117 // Check for constant splat vectors of 1 values.
118 if (getType()->isVectorTy())
119 if (const auto *SplatVal = getSplatValue())
120 return SplatVal->isOneValue();
121
122 return false;
123 }
124
isNotOneValue() const125 bool Constant::isNotOneValue() const {
126 // Check for 1 integers
127 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
128 return !CI->isOneValue();
129
130 // Check for FP which are bitcasted from 1 integers
131 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
132 return !CFP->getValueAPF().bitcastToAPInt().isOneValue();
133
134 // Check that vectors don't contain 1
135 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
136 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
137 Constant *Elt = getAggregateElement(I);
138 if (!Elt || !Elt->isNotOneValue())
139 return false;
140 }
141 return true;
142 }
143
144 // Check for splats that don't contain 1
145 if (getType()->isVectorTy())
146 if (const auto *SplatVal = getSplatValue())
147 return SplatVal->isNotOneValue();
148
149 // It *may* contain 1, we can't tell.
150 return false;
151 }
152
isMinSignedValue() const153 bool Constant::isMinSignedValue() const {
154 // Check for INT_MIN integers
155 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
156 return CI->isMinValue(/*isSigned=*/true);
157
158 // Check for FP which are bitcasted from INT_MIN integers
159 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
160 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
161
162 // Check for splats of INT_MIN values.
163 if (getType()->isVectorTy())
164 if (const auto *SplatVal = getSplatValue())
165 return SplatVal->isMinSignedValue();
166
167 return false;
168 }
169
isNotMinSignedValue() const170 bool Constant::isNotMinSignedValue() const {
171 // Check for INT_MIN integers
172 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
173 return !CI->isMinValue(/*isSigned=*/true);
174
175 // Check for FP which are bitcasted from INT_MIN integers
176 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
177 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
178
179 // Check that vectors don't contain INT_MIN
180 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
181 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
182 Constant *Elt = getAggregateElement(I);
183 if (!Elt || !Elt->isNotMinSignedValue())
184 return false;
185 }
186 return true;
187 }
188
189 // Check for splats that aren't INT_MIN
190 if (getType()->isVectorTy())
191 if (const auto *SplatVal = getSplatValue())
192 return SplatVal->isNotMinSignedValue();
193
194 // It *may* contain INT_MIN, we can't tell.
195 return false;
196 }
197
isFiniteNonZeroFP() const198 bool Constant::isFiniteNonZeroFP() const {
199 if (auto *CFP = dyn_cast<ConstantFP>(this))
200 return CFP->getValueAPF().isFiniteNonZero();
201
202 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
203 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
204 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
205 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
206 return false;
207 }
208 return true;
209 }
210
211 if (getType()->isVectorTy())
212 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
213 return SplatCFP->isFiniteNonZeroFP();
214
215 // It *may* contain finite non-zero, we can't tell.
216 return false;
217 }
218
isNormalFP() const219 bool Constant::isNormalFP() const {
220 if (auto *CFP = dyn_cast<ConstantFP>(this))
221 return CFP->getValueAPF().isNormal();
222
223 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
224 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
225 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
226 if (!CFP || !CFP->getValueAPF().isNormal())
227 return false;
228 }
229 return true;
230 }
231
232 if (getType()->isVectorTy())
233 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
234 return SplatCFP->isNormalFP();
235
236 // It *may* contain a normal fp value, we can't tell.
237 return false;
238 }
239
hasExactInverseFP() const240 bool Constant::hasExactInverseFP() const {
241 if (auto *CFP = dyn_cast<ConstantFP>(this))
242 return CFP->getValueAPF().getExactInverse(nullptr);
243
244 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
245 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
246 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
247 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
248 return false;
249 }
250 return true;
251 }
252
253 if (getType()->isVectorTy())
254 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
255 return SplatCFP->hasExactInverseFP();
256
257 // It *may* have an exact inverse fp value, we can't tell.
258 return false;
259 }
260
isNaN() const261 bool Constant::isNaN() const {
262 if (auto *CFP = dyn_cast<ConstantFP>(this))
263 return CFP->isNaN();
264
265 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
266 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
267 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
268 if (!CFP || !CFP->isNaN())
269 return false;
270 }
271 return true;
272 }
273
274 if (getType()->isVectorTy())
275 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
276 return SplatCFP->isNaN();
277
278 // It *may* be NaN, we can't tell.
279 return false;
280 }
281
isElementWiseEqual(Value * Y) const282 bool Constant::isElementWiseEqual(Value *Y) const {
283 // Are they fully identical?
284 if (this == Y)
285 return true;
286
287 // The input value must be a vector constant with the same type.
288 auto *VTy = dyn_cast<VectorType>(getType());
289 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
290 return false;
291
292 // TODO: Compare pointer constants?
293 if (!(VTy->getElementType()->isIntegerTy() ||
294 VTy->getElementType()->isFloatingPointTy()))
295 return false;
296
297 // They may still be identical element-wise (if they have `undef`s).
298 // Bitcast to integer to allow exact bitwise comparison for all types.
299 Type *IntTy = VectorType::getInteger(VTy);
300 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
301 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
302 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
303 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
304 }
305
306 static bool
containsUndefinedElement(const Constant * C,function_ref<bool (const Constant *)> HasFn)307 containsUndefinedElement(const Constant *C,
308 function_ref<bool(const Constant *)> HasFn) {
309 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
310 if (HasFn(C))
311 return true;
312 if (isa<ConstantAggregateZero>(C))
313 return false;
314 if (isa<ScalableVectorType>(C->getType()))
315 return false;
316
317 for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements();
318 i != e; ++i) {
319 if (Constant *Elem = C->getAggregateElement(i))
320 if (HasFn(Elem))
321 return true;
322 }
323 }
324
325 return false;
326 }
327
containsUndefOrPoisonElement() const328 bool Constant::containsUndefOrPoisonElement() const {
329 return containsUndefinedElement(
330 this, [&](const auto *C) { return isa<UndefValue>(C); });
331 }
332
containsPoisonElement() const333 bool Constant::containsPoisonElement() const {
334 return containsUndefinedElement(
335 this, [&](const auto *C) { return isa<PoisonValue>(C); });
336 }
337
containsConstantExpression() const338 bool Constant::containsConstantExpression() const {
339 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
340 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
341 if (isa<ConstantExpr>(getAggregateElement(i)))
342 return true;
343 }
344 return false;
345 }
346
347 /// Constructor to create a '0' constant of arbitrary type.
getNullValue(Type * Ty)348 Constant *Constant::getNullValue(Type *Ty) {
349 switch (Ty->getTypeID()) {
350 case Type::IntegerTyID:
351 return ConstantInt::get(Ty, 0);
352 case Type::HalfTyID:
353 return ConstantFP::get(Ty->getContext(),
354 APFloat::getZero(APFloat::IEEEhalf()));
355 case Type::BFloatTyID:
356 return ConstantFP::get(Ty->getContext(),
357 APFloat::getZero(APFloat::BFloat()));
358 case Type::FloatTyID:
359 return ConstantFP::get(Ty->getContext(),
360 APFloat::getZero(APFloat::IEEEsingle()));
361 case Type::DoubleTyID:
362 return ConstantFP::get(Ty->getContext(),
363 APFloat::getZero(APFloat::IEEEdouble()));
364 case Type::X86_FP80TyID:
365 return ConstantFP::get(Ty->getContext(),
366 APFloat::getZero(APFloat::x87DoubleExtended()));
367 case Type::FP128TyID:
368 return ConstantFP::get(Ty->getContext(),
369 APFloat::getZero(APFloat::IEEEquad()));
370 case Type::PPC_FP128TyID:
371 return ConstantFP::get(Ty->getContext(),
372 APFloat(APFloat::PPCDoubleDouble(),
373 APInt::getNullValue(128)));
374 case Type::PointerTyID:
375 return ConstantPointerNull::get(cast<PointerType>(Ty));
376 case Type::StructTyID:
377 case Type::ArrayTyID:
378 case Type::FixedVectorTyID:
379 case Type::ScalableVectorTyID:
380 return ConstantAggregateZero::get(Ty);
381 case Type::TokenTyID:
382 return ConstantTokenNone::get(Ty->getContext());
383 default:
384 // Function, Label, or Opaque type?
385 llvm_unreachable("Cannot create a null constant of that type!");
386 }
387 }
388
getIntegerValue(Type * Ty,const APInt & V)389 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
390 Type *ScalarTy = Ty->getScalarType();
391
392 // Create the base integer constant.
393 Constant *C = ConstantInt::get(Ty->getContext(), V);
394
395 // Convert an integer to a pointer, if necessary.
396 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
397 C = ConstantExpr::getIntToPtr(C, PTy);
398
399 // Broadcast a scalar to a vector, if necessary.
400 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
401 C = ConstantVector::getSplat(VTy->getElementCount(), C);
402
403 return C;
404 }
405
getAllOnesValue(Type * Ty)406 Constant *Constant::getAllOnesValue(Type *Ty) {
407 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
408 return ConstantInt::get(Ty->getContext(),
409 APInt::getAllOnesValue(ITy->getBitWidth()));
410
411 if (Ty->isFloatingPointTy()) {
412 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(),
413 Ty->getPrimitiveSizeInBits());
414 return ConstantFP::get(Ty->getContext(), FL);
415 }
416
417 VectorType *VTy = cast<VectorType>(Ty);
418 return ConstantVector::getSplat(VTy->getElementCount(),
419 getAllOnesValue(VTy->getElementType()));
420 }
421
getAggregateElement(unsigned Elt) const422 Constant *Constant::getAggregateElement(unsigned Elt) const {
423 assert((getType()->isAggregateType() || getType()->isVectorTy()) &&
424 "Must be an aggregate/vector constant");
425
426 if (const auto *CC = dyn_cast<ConstantAggregate>(this))
427 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
428
429 if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this))
430 return Elt < CAZ->getElementCount().getKnownMinValue()
431 ? CAZ->getElementValue(Elt)
432 : nullptr;
433
434 // FIXME: getNumElements() will fail for non-fixed vector types.
435 if (isa<ScalableVectorType>(getType()))
436 return nullptr;
437
438 if (const auto *PV = dyn_cast<PoisonValue>(this))
439 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr;
440
441 if (const auto *UV = dyn_cast<UndefValue>(this))
442 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
443
444 if (const auto *CDS = dyn_cast<ConstantDataSequential>(this))
445 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
446 : nullptr;
447
448 return nullptr;
449 }
450
getAggregateElement(Constant * Elt) const451 Constant *Constant::getAggregateElement(Constant *Elt) const {
452 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
453 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
454 // Check if the constant fits into an uint64_t.
455 if (CI->getValue().getActiveBits() > 64)
456 return nullptr;
457 return getAggregateElement(CI->getZExtValue());
458 }
459 return nullptr;
460 }
461
destroyConstant()462 void Constant::destroyConstant() {
463 /// First call destroyConstantImpl on the subclass. This gives the subclass
464 /// a chance to remove the constant from any maps/pools it's contained in.
465 switch (getValueID()) {
466 default:
467 llvm_unreachable("Not a constant!");
468 #define HANDLE_CONSTANT(Name) \
469 case Value::Name##Val: \
470 cast<Name>(this)->destroyConstantImpl(); \
471 break;
472 #include "llvm/IR/Value.def"
473 }
474
475 // When a Constant is destroyed, there may be lingering
476 // references to the constant by other constants in the constant pool. These
477 // constants are implicitly dependent on the module that is being deleted,
478 // but they don't know that. Because we only find out when the CPV is
479 // deleted, we must now notify all of our users (that should only be
480 // Constants) that they are, in fact, invalid now and should be deleted.
481 //
482 while (!use_empty()) {
483 Value *V = user_back();
484 #ifndef NDEBUG // Only in -g mode...
485 if (!isa<Constant>(V)) {
486 dbgs() << "While deleting: " << *this
487 << "\n\nUse still stuck around after Def is destroyed: " << *V
488 << "\n\n";
489 }
490 #endif
491 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
492 cast<Constant>(V)->destroyConstant();
493
494 // The constant should remove itself from our use list...
495 assert((use_empty() || user_back() != V) && "Constant not removed!");
496 }
497
498 // Value has no outstanding references it is safe to delete it now...
499 deleteConstant(this);
500 }
501
deleteConstant(Constant * C)502 void llvm::deleteConstant(Constant *C) {
503 switch (C->getValueID()) {
504 case Constant::ConstantIntVal:
505 delete static_cast<ConstantInt *>(C);
506 break;
507 case Constant::ConstantFPVal:
508 delete static_cast<ConstantFP *>(C);
509 break;
510 case Constant::ConstantAggregateZeroVal:
511 delete static_cast<ConstantAggregateZero *>(C);
512 break;
513 case Constant::ConstantArrayVal:
514 delete static_cast<ConstantArray *>(C);
515 break;
516 case Constant::ConstantStructVal:
517 delete static_cast<ConstantStruct *>(C);
518 break;
519 case Constant::ConstantVectorVal:
520 delete static_cast<ConstantVector *>(C);
521 break;
522 case Constant::ConstantPointerNullVal:
523 delete static_cast<ConstantPointerNull *>(C);
524 break;
525 case Constant::ConstantDataArrayVal:
526 delete static_cast<ConstantDataArray *>(C);
527 break;
528 case Constant::ConstantDataVectorVal:
529 delete static_cast<ConstantDataVector *>(C);
530 break;
531 case Constant::ConstantTokenNoneVal:
532 delete static_cast<ConstantTokenNone *>(C);
533 break;
534 case Constant::BlockAddressVal:
535 delete static_cast<BlockAddress *>(C);
536 break;
537 case Constant::DSOLocalEquivalentVal:
538 delete static_cast<DSOLocalEquivalent *>(C);
539 break;
540 case Constant::UndefValueVal:
541 delete static_cast<UndefValue *>(C);
542 break;
543 case Constant::PoisonValueVal:
544 delete static_cast<PoisonValue *>(C);
545 break;
546 case Constant::ConstantExprVal:
547 if (isa<UnaryConstantExpr>(C))
548 delete static_cast<UnaryConstantExpr *>(C);
549 else if (isa<BinaryConstantExpr>(C))
550 delete static_cast<BinaryConstantExpr *>(C);
551 else if (isa<SelectConstantExpr>(C))
552 delete static_cast<SelectConstantExpr *>(C);
553 else if (isa<ExtractElementConstantExpr>(C))
554 delete static_cast<ExtractElementConstantExpr *>(C);
555 else if (isa<InsertElementConstantExpr>(C))
556 delete static_cast<InsertElementConstantExpr *>(C);
557 else if (isa<ShuffleVectorConstantExpr>(C))
558 delete static_cast<ShuffleVectorConstantExpr *>(C);
559 else if (isa<ExtractValueConstantExpr>(C))
560 delete static_cast<ExtractValueConstantExpr *>(C);
561 else if (isa<InsertValueConstantExpr>(C))
562 delete static_cast<InsertValueConstantExpr *>(C);
563 else if (isa<GetElementPtrConstantExpr>(C))
564 delete static_cast<GetElementPtrConstantExpr *>(C);
565 else if (isa<CompareConstantExpr>(C))
566 delete static_cast<CompareConstantExpr *>(C);
567 else
568 llvm_unreachable("Unexpected constant expr");
569 break;
570 default:
571 llvm_unreachable("Unexpected constant");
572 }
573 }
574
canTrapImpl(const Constant * C,SmallPtrSetImpl<const ConstantExpr * > & NonTrappingOps)575 static bool canTrapImpl(const Constant *C,
576 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
577 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
578 // The only thing that could possibly trap are constant exprs.
579 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
580 if (!CE)
581 return false;
582
583 // ConstantExpr traps if any operands can trap.
584 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
585 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
586 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
587 return true;
588 }
589 }
590
591 // Otherwise, only specific operations can trap.
592 switch (CE->getOpcode()) {
593 default:
594 return false;
595 case Instruction::UDiv:
596 case Instruction::SDiv:
597 case Instruction::URem:
598 case Instruction::SRem:
599 // Div and rem can trap if the RHS is not known to be non-zero.
600 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
601 return true;
602 return false;
603 }
604 }
605
canTrap() const606 bool Constant::canTrap() const {
607 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
608 return canTrapImpl(this, NonTrappingOps);
609 }
610
611 /// Check if C contains a GlobalValue for which Predicate is true.
612 static bool
ConstHasGlobalValuePredicate(const Constant * C,bool (* Predicate)(const GlobalValue *))613 ConstHasGlobalValuePredicate(const Constant *C,
614 bool (*Predicate)(const GlobalValue *)) {
615 SmallPtrSet<const Constant *, 8> Visited;
616 SmallVector<const Constant *, 8> WorkList;
617 WorkList.push_back(C);
618 Visited.insert(C);
619
620 while (!WorkList.empty()) {
621 const Constant *WorkItem = WorkList.pop_back_val();
622 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
623 if (Predicate(GV))
624 return true;
625 for (const Value *Op : WorkItem->operands()) {
626 const Constant *ConstOp = dyn_cast<Constant>(Op);
627 if (!ConstOp)
628 continue;
629 if (Visited.insert(ConstOp).second)
630 WorkList.push_back(ConstOp);
631 }
632 }
633 return false;
634 }
635
isThreadDependent() const636 bool Constant::isThreadDependent() const {
637 auto DLLImportPredicate = [](const GlobalValue *GV) {
638 return GV->isThreadLocal();
639 };
640 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
641 }
642
isDLLImportDependent() const643 bool Constant::isDLLImportDependent() const {
644 auto DLLImportPredicate = [](const GlobalValue *GV) {
645 return GV->hasDLLImportStorageClass();
646 };
647 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
648 }
649
isConstantUsed() const650 bool Constant::isConstantUsed() const {
651 for (const User *U : users()) {
652 const Constant *UC = dyn_cast<Constant>(U);
653 if (!UC || isa<GlobalValue>(UC))
654 return true;
655
656 if (UC->isConstantUsed())
657 return true;
658 }
659 return false;
660 }
661
needsDynamicRelocation() const662 bool Constant::needsDynamicRelocation() const {
663 return getRelocationInfo() == GlobalRelocation;
664 }
665
needsRelocation() const666 bool Constant::needsRelocation() const {
667 return getRelocationInfo() != NoRelocation;
668 }
669
getRelocationInfo() const670 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
671 if (isa<GlobalValue>(this))
672 return GlobalRelocation; // Global reference.
673
674 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
675 return BA->getFunction()->getRelocationInfo();
676
677 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
678 if (CE->getOpcode() == Instruction::Sub) {
679 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
680 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
681 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
682 RHS->getOpcode() == Instruction::PtrToInt) {
683 Constant *LHSOp0 = LHS->getOperand(0);
684 Constant *RHSOp0 = RHS->getOperand(0);
685
686 // While raw uses of blockaddress need to be relocated, differences
687 // between two of them don't when they are for labels in the same
688 // function. This is a common idiom when creating a table for the
689 // indirect goto extension, so we handle it efficiently here.
690 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
691 cast<BlockAddress>(LHSOp0)->getFunction() ==
692 cast<BlockAddress>(RHSOp0)->getFunction())
693 return NoRelocation;
694
695 // Relative pointers do not need to be dynamically relocated.
696 if (auto *RHSGV =
697 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) {
698 auto *LHS = LHSOp0->stripInBoundsConstantOffsets();
699 if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) {
700 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
701 return LocalRelocation;
702 } else if (isa<DSOLocalEquivalent>(LHS)) {
703 if (RHSGV->isDSOLocal())
704 return LocalRelocation;
705 }
706 }
707 }
708 }
709 }
710
711 PossibleRelocationsTy Result = NoRelocation;
712 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
713 Result =
714 std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result);
715
716 return Result;
717 }
718
719 /// If the specified constantexpr is dead, remove it. This involves recursively
720 /// eliminating any dead users of the constantexpr.
removeDeadUsersOfConstant(const Constant * C)721 static bool removeDeadUsersOfConstant(const Constant *C) {
722 if (isa<GlobalValue>(C)) return false; // Cannot remove this
723
724 while (!C->use_empty()) {
725 const Constant *User = dyn_cast<Constant>(C->user_back());
726 if (!User) return false; // Non-constant usage;
727 if (!removeDeadUsersOfConstant(User))
728 return false; // Constant wasn't dead
729 }
730
731 // If C is only used by metadata, it should not be preserved but should have
732 // its uses replaced.
733 if (C->isUsedByMetadata()) {
734 const_cast<Constant *>(C)->replaceAllUsesWith(
735 UndefValue::get(C->getType()));
736 }
737 const_cast<Constant*>(C)->destroyConstant();
738 return true;
739 }
740
741
removeDeadConstantUsers() const742 void Constant::removeDeadConstantUsers() const {
743 Value::const_user_iterator I = user_begin(), E = user_end();
744 Value::const_user_iterator LastNonDeadUser = E;
745 while (I != E) {
746 const Constant *User = dyn_cast<Constant>(*I);
747 if (!User) {
748 LastNonDeadUser = I;
749 ++I;
750 continue;
751 }
752
753 if (!removeDeadUsersOfConstant(User)) {
754 // If the constant wasn't dead, remember that this was the last live use
755 // and move on to the next constant.
756 LastNonDeadUser = I;
757 ++I;
758 continue;
759 }
760
761 // If the constant was dead, then the iterator is invalidated.
762 if (LastNonDeadUser == E)
763 I = user_begin();
764 else
765 I = std::next(LastNonDeadUser);
766 }
767 }
768
replaceUndefsWith(Constant * C,Constant * Replacement)769 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
770 assert(C && Replacement && "Expected non-nullptr constant arguments");
771 Type *Ty = C->getType();
772 if (match(C, m_Undef())) {
773 assert(Ty == Replacement->getType() && "Expected matching types");
774 return Replacement;
775 }
776
777 // Don't know how to deal with this constant.
778 auto *VTy = dyn_cast<FixedVectorType>(Ty);
779 if (!VTy)
780 return C;
781
782 unsigned NumElts = VTy->getNumElements();
783 SmallVector<Constant *, 32> NewC(NumElts);
784 for (unsigned i = 0; i != NumElts; ++i) {
785 Constant *EltC = C->getAggregateElement(i);
786 assert((!EltC || EltC->getType() == Replacement->getType()) &&
787 "Expected matching types");
788 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
789 }
790 return ConstantVector::get(NewC);
791 }
792
mergeUndefsWith(Constant * C,Constant * Other)793 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) {
794 assert(C && Other && "Expected non-nullptr constant arguments");
795 if (match(C, m_Undef()))
796 return C;
797
798 Type *Ty = C->getType();
799 if (match(Other, m_Undef()))
800 return UndefValue::get(Ty);
801
802 auto *VTy = dyn_cast<FixedVectorType>(Ty);
803 if (!VTy)
804 return C;
805
806 Type *EltTy = VTy->getElementType();
807 unsigned NumElts = VTy->getNumElements();
808 assert(isa<FixedVectorType>(Other->getType()) &&
809 cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts &&
810 "Type mismatch");
811
812 bool FoundExtraUndef = false;
813 SmallVector<Constant *, 32> NewC(NumElts);
814 for (unsigned I = 0; I != NumElts; ++I) {
815 NewC[I] = C->getAggregateElement(I);
816 Constant *OtherEltC = Other->getAggregateElement(I);
817 assert(NewC[I] && OtherEltC && "Unknown vector element");
818 if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) {
819 NewC[I] = UndefValue::get(EltTy);
820 FoundExtraUndef = true;
821 }
822 }
823 if (FoundExtraUndef)
824 return ConstantVector::get(NewC);
825 return C;
826 }
827
isManifestConstant() const828 bool Constant::isManifestConstant() const {
829 if (isa<ConstantData>(this))
830 return true;
831 if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) {
832 for (const Value *Op : operand_values())
833 if (!cast<Constant>(Op)->isManifestConstant())
834 return false;
835 return true;
836 }
837 return false;
838 }
839
840 //===----------------------------------------------------------------------===//
841 // ConstantInt
842 //===----------------------------------------------------------------------===//
843
ConstantInt(IntegerType * Ty,const APInt & V)844 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
845 : ConstantData(Ty, ConstantIntVal), Val(V) {
846 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
847 }
848
getTrue(LLVMContext & Context)849 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
850 LLVMContextImpl *pImpl = Context.pImpl;
851 if (!pImpl->TheTrueVal)
852 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
853 return pImpl->TheTrueVal;
854 }
855
getFalse(LLVMContext & Context)856 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
857 LLVMContextImpl *pImpl = Context.pImpl;
858 if (!pImpl->TheFalseVal)
859 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
860 return pImpl->TheFalseVal;
861 }
862
getBool(LLVMContext & Context,bool V)863 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) {
864 return V ? getTrue(Context) : getFalse(Context);
865 }
866
getTrue(Type * Ty)867 Constant *ConstantInt::getTrue(Type *Ty) {
868 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
869 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
870 if (auto *VTy = dyn_cast<VectorType>(Ty))
871 return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
872 return TrueC;
873 }
874
getFalse(Type * Ty)875 Constant *ConstantInt::getFalse(Type *Ty) {
876 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
877 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
878 if (auto *VTy = dyn_cast<VectorType>(Ty))
879 return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
880 return FalseC;
881 }
882
getBool(Type * Ty,bool V)883 Constant *ConstantInt::getBool(Type *Ty, bool V) {
884 return V ? getTrue(Ty) : getFalse(Ty);
885 }
886
887 // Get a ConstantInt from an APInt.
get(LLVMContext & Context,const APInt & V)888 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
889 // get an existing value or the insertion position
890 LLVMContextImpl *pImpl = Context.pImpl;
891 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
892 if (!Slot) {
893 // Get the corresponding integer type for the bit width of the value.
894 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
895 Slot.reset(new ConstantInt(ITy, V));
896 }
897 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
898 return Slot.get();
899 }
900
get(Type * Ty,uint64_t V,bool isSigned)901 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
902 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
903
904 // For vectors, broadcast the value.
905 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
906 return ConstantVector::getSplat(VTy->getElementCount(), C);
907
908 return C;
909 }
910
get(IntegerType * Ty,uint64_t V,bool isSigned)911 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
912 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
913 }
914
getSigned(IntegerType * Ty,int64_t V)915 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
916 return get(Ty, V, true);
917 }
918
getSigned(Type * Ty,int64_t V)919 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
920 return get(Ty, V, true);
921 }
922
get(Type * Ty,const APInt & V)923 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
924 ConstantInt *C = get(Ty->getContext(), V);
925 assert(C->getType() == Ty->getScalarType() &&
926 "ConstantInt type doesn't match the type implied by its value!");
927
928 // For vectors, broadcast the value.
929 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
930 return ConstantVector::getSplat(VTy->getElementCount(), C);
931
932 return C;
933 }
934
get(IntegerType * Ty,StringRef Str,uint8_t radix)935 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
936 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
937 }
938
939 /// Remove the constant from the constant table.
destroyConstantImpl()940 void ConstantInt::destroyConstantImpl() {
941 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
942 }
943
944 //===----------------------------------------------------------------------===//
945 // ConstantFP
946 //===----------------------------------------------------------------------===//
947
get(Type * Ty,double V)948 Constant *ConstantFP::get(Type *Ty, double V) {
949 LLVMContext &Context = Ty->getContext();
950
951 APFloat FV(V);
952 bool ignored;
953 FV.convert(Ty->getScalarType()->getFltSemantics(),
954 APFloat::rmNearestTiesToEven, &ignored);
955 Constant *C = get(Context, FV);
956
957 // For vectors, broadcast the value.
958 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
959 return ConstantVector::getSplat(VTy->getElementCount(), C);
960
961 return C;
962 }
963
get(Type * Ty,const APFloat & V)964 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
965 ConstantFP *C = get(Ty->getContext(), V);
966 assert(C->getType() == Ty->getScalarType() &&
967 "ConstantFP type doesn't match the type implied by its value!");
968
969 // For vectors, broadcast the value.
970 if (auto *VTy = dyn_cast<VectorType>(Ty))
971 return ConstantVector::getSplat(VTy->getElementCount(), C);
972
973 return C;
974 }
975
get(Type * Ty,StringRef Str)976 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
977 LLVMContext &Context = Ty->getContext();
978
979 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
980 Constant *C = get(Context, FV);
981
982 // For vectors, broadcast the value.
983 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
984 return ConstantVector::getSplat(VTy->getElementCount(), C);
985
986 return C;
987 }
988
getNaN(Type * Ty,bool Negative,uint64_t Payload)989 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
990 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
991 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
992 Constant *C = get(Ty->getContext(), NaN);
993
994 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
995 return ConstantVector::getSplat(VTy->getElementCount(), C);
996
997 return C;
998 }
999
getQNaN(Type * Ty,bool Negative,APInt * Payload)1000 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
1001 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1002 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
1003 Constant *C = get(Ty->getContext(), NaN);
1004
1005 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1006 return ConstantVector::getSplat(VTy->getElementCount(), C);
1007
1008 return C;
1009 }
1010
getSNaN(Type * Ty,bool Negative,APInt * Payload)1011 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
1012 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1013 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
1014 Constant *C = get(Ty->getContext(), NaN);
1015
1016 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1017 return ConstantVector::getSplat(VTy->getElementCount(), C);
1018
1019 return C;
1020 }
1021
getNegativeZero(Type * Ty)1022 Constant *ConstantFP::getNegativeZero(Type *Ty) {
1023 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1024 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
1025 Constant *C = get(Ty->getContext(), NegZero);
1026
1027 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1028 return ConstantVector::getSplat(VTy->getElementCount(), C);
1029
1030 return C;
1031 }
1032
1033
getZeroValueForNegation(Type * Ty)1034 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
1035 if (Ty->isFPOrFPVectorTy())
1036 return getNegativeZero(Ty);
1037
1038 return Constant::getNullValue(Ty);
1039 }
1040
1041
1042 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)1043 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
1044 LLVMContextImpl* pImpl = Context.pImpl;
1045
1046 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
1047
1048 if (!Slot) {
1049 Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics());
1050 Slot.reset(new ConstantFP(Ty, V));
1051 }
1052
1053 return Slot.get();
1054 }
1055
getInfinity(Type * Ty,bool Negative)1056 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
1057 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1058 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
1059
1060 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1061 return ConstantVector::getSplat(VTy->getElementCount(), C);
1062
1063 return C;
1064 }
1065
ConstantFP(Type * Ty,const APFloat & V)1066 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
1067 : ConstantData(Ty, ConstantFPVal), Val(V) {
1068 assert(&V.getSemantics() == &Ty->getFltSemantics() &&
1069 "FP type Mismatch");
1070 }
1071
isExactlyValue(const APFloat & V) const1072 bool ConstantFP::isExactlyValue(const APFloat &V) const {
1073 return Val.bitwiseIsEqual(V);
1074 }
1075
1076 /// Remove the constant from the constant table.
destroyConstantImpl()1077 void ConstantFP::destroyConstantImpl() {
1078 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
1079 }
1080
1081 //===----------------------------------------------------------------------===//
1082 // ConstantAggregateZero Implementation
1083 //===----------------------------------------------------------------------===//
1084
getSequentialElement() const1085 Constant *ConstantAggregateZero::getSequentialElement() const {
1086 if (auto *AT = dyn_cast<ArrayType>(getType()))
1087 return Constant::getNullValue(AT->getElementType());
1088 return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1089 }
1090
getStructElement(unsigned Elt) const1091 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1092 return Constant::getNullValue(getType()->getStructElementType(Elt));
1093 }
1094
getElementValue(Constant * C) const1095 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1096 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1097 return getSequentialElement();
1098 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1099 }
1100
getElementValue(unsigned Idx) const1101 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1102 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1103 return getSequentialElement();
1104 return getStructElement(Idx);
1105 }
1106
getElementCount() const1107 ElementCount ConstantAggregateZero::getElementCount() const {
1108 Type *Ty = getType();
1109 if (auto *AT = dyn_cast<ArrayType>(Ty))
1110 return ElementCount::getFixed(AT->getNumElements());
1111 if (auto *VT = dyn_cast<VectorType>(Ty))
1112 return VT->getElementCount();
1113 return ElementCount::getFixed(Ty->getStructNumElements());
1114 }
1115
1116 //===----------------------------------------------------------------------===//
1117 // UndefValue Implementation
1118 //===----------------------------------------------------------------------===//
1119
getSequentialElement() const1120 UndefValue *UndefValue::getSequentialElement() const {
1121 if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1122 return UndefValue::get(ATy->getElementType());
1123 return UndefValue::get(cast<VectorType>(getType())->getElementType());
1124 }
1125
getStructElement(unsigned Elt) const1126 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1127 return UndefValue::get(getType()->getStructElementType(Elt));
1128 }
1129
getElementValue(Constant * C) const1130 UndefValue *UndefValue::getElementValue(Constant *C) const {
1131 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1132 return getSequentialElement();
1133 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1134 }
1135
getElementValue(unsigned Idx) const1136 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1137 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1138 return getSequentialElement();
1139 return getStructElement(Idx);
1140 }
1141
getNumElements() const1142 unsigned UndefValue::getNumElements() const {
1143 Type *Ty = getType();
1144 if (auto *AT = dyn_cast<ArrayType>(Ty))
1145 return AT->getNumElements();
1146 if (auto *VT = dyn_cast<VectorType>(Ty))
1147 return cast<FixedVectorType>(VT)->getNumElements();
1148 return Ty->getStructNumElements();
1149 }
1150
1151 //===----------------------------------------------------------------------===//
1152 // PoisonValue Implementation
1153 //===----------------------------------------------------------------------===//
1154
getSequentialElement() const1155 PoisonValue *PoisonValue::getSequentialElement() const {
1156 if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1157 return PoisonValue::get(ATy->getElementType());
1158 return PoisonValue::get(cast<VectorType>(getType())->getElementType());
1159 }
1160
getStructElement(unsigned Elt) const1161 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const {
1162 return PoisonValue::get(getType()->getStructElementType(Elt));
1163 }
1164
getElementValue(Constant * C) const1165 PoisonValue *PoisonValue::getElementValue(Constant *C) const {
1166 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1167 return getSequentialElement();
1168 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1169 }
1170
getElementValue(unsigned Idx) const1171 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const {
1172 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1173 return getSequentialElement();
1174 return getStructElement(Idx);
1175 }
1176
1177 //===----------------------------------------------------------------------===//
1178 // ConstantXXX Classes
1179 //===----------------------------------------------------------------------===//
1180
1181 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)1182 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1183 for (; Start != End; ++Start)
1184 if (*Start != Elt)
1185 return false;
1186 return true;
1187 }
1188
1189 template <typename SequentialTy, typename ElementTy>
getIntSequenceIfElementsMatch(ArrayRef<Constant * > V)1190 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1191 assert(!V.empty() && "Cannot get empty int sequence.");
1192
1193 SmallVector<ElementTy, 16> Elts;
1194 for (Constant *C : V)
1195 if (auto *CI = dyn_cast<ConstantInt>(C))
1196 Elts.push_back(CI->getZExtValue());
1197 else
1198 return nullptr;
1199 return SequentialTy::get(V[0]->getContext(), Elts);
1200 }
1201
1202 template <typename SequentialTy, typename ElementTy>
getFPSequenceIfElementsMatch(ArrayRef<Constant * > V)1203 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1204 assert(!V.empty() && "Cannot get empty FP sequence.");
1205
1206 SmallVector<ElementTy, 16> Elts;
1207 for (Constant *C : V)
1208 if (auto *CFP = dyn_cast<ConstantFP>(C))
1209 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1210 else
1211 return nullptr;
1212 return SequentialTy::getFP(V[0]->getType(), Elts);
1213 }
1214
1215 template <typename SequenceTy>
getSequenceIfElementsMatch(Constant * C,ArrayRef<Constant * > V)1216 static Constant *getSequenceIfElementsMatch(Constant *C,
1217 ArrayRef<Constant *> V) {
1218 // We speculatively build the elements here even if it turns out that there is
1219 // a constantexpr or something else weird, since it is so uncommon for that to
1220 // happen.
1221 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1222 if (CI->getType()->isIntegerTy(8))
1223 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1224 else if (CI->getType()->isIntegerTy(16))
1225 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1226 else if (CI->getType()->isIntegerTy(32))
1227 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1228 else if (CI->getType()->isIntegerTy(64))
1229 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1230 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1231 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1232 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1233 else if (CFP->getType()->isFloatTy())
1234 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1235 else if (CFP->getType()->isDoubleTy())
1236 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1237 }
1238
1239 return nullptr;
1240 }
1241
ConstantAggregate(Type * T,ValueTy VT,ArrayRef<Constant * > V)1242 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1243 ArrayRef<Constant *> V)
1244 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1245 V.size()) {
1246 llvm::copy(V, op_begin());
1247
1248 // Check that types match, unless this is an opaque struct.
1249 if (auto *ST = dyn_cast<StructType>(T)) {
1250 if (ST->isOpaque())
1251 return;
1252 for (unsigned I = 0, E = V.size(); I != E; ++I)
1253 assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1254 "Initializer for struct element doesn't match!");
1255 }
1256 }
1257
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)1258 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1259 : ConstantAggregate(T, ConstantArrayVal, V) {
1260 assert(V.size() == T->getNumElements() &&
1261 "Invalid initializer for constant array");
1262 }
1263
get(ArrayType * Ty,ArrayRef<Constant * > V)1264 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1265 if (Constant *C = getImpl(Ty, V))
1266 return C;
1267 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1268 }
1269
getImpl(ArrayType * Ty,ArrayRef<Constant * > V)1270 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1271 // Empty arrays are canonicalized to ConstantAggregateZero.
1272 if (V.empty())
1273 return ConstantAggregateZero::get(Ty);
1274
1275 for (unsigned i = 0, e = V.size(); i != e; ++i) {
1276 assert(V[i]->getType() == Ty->getElementType() &&
1277 "Wrong type in array element initializer");
1278 }
1279
1280 // If this is an all-zero array, return a ConstantAggregateZero object. If
1281 // all undef, return an UndefValue, if "all simple", then return a
1282 // ConstantDataArray.
1283 Constant *C = V[0];
1284 if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1285 return PoisonValue::get(Ty);
1286
1287 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1288 return UndefValue::get(Ty);
1289
1290 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1291 return ConstantAggregateZero::get(Ty);
1292
1293 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1294 // the element type is compatible with ConstantDataVector. If so, use it.
1295 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1296 return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1297
1298 // Otherwise, we really do want to create a ConstantArray.
1299 return nullptr;
1300 }
1301
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)1302 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1303 ArrayRef<Constant*> V,
1304 bool Packed) {
1305 unsigned VecSize = V.size();
1306 SmallVector<Type*, 16> EltTypes(VecSize);
1307 for (unsigned i = 0; i != VecSize; ++i)
1308 EltTypes[i] = V[i]->getType();
1309
1310 return StructType::get(Context, EltTypes, Packed);
1311 }
1312
1313
getTypeForElements(ArrayRef<Constant * > V,bool Packed)1314 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1315 bool Packed) {
1316 assert(!V.empty() &&
1317 "ConstantStruct::getTypeForElements cannot be called on empty list");
1318 return getTypeForElements(V[0]->getContext(), V, Packed);
1319 }
1320
ConstantStruct(StructType * T,ArrayRef<Constant * > V)1321 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1322 : ConstantAggregate(T, ConstantStructVal, V) {
1323 assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1324 "Invalid initializer for constant struct");
1325 }
1326
1327 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)1328 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1329 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1330 "Incorrect # elements specified to ConstantStruct::get");
1331
1332 // Create a ConstantAggregateZero value if all elements are zeros.
1333 bool isZero = true;
1334 bool isUndef = false;
1335 bool isPoison = false;
1336
1337 if (!V.empty()) {
1338 isUndef = isa<UndefValue>(V[0]);
1339 isPoison = isa<PoisonValue>(V[0]);
1340 isZero = V[0]->isNullValue();
1341 // PoisonValue inherits UndefValue, so its check is not necessary.
1342 if (isUndef || isZero) {
1343 for (unsigned i = 0, e = V.size(); i != e; ++i) {
1344 if (!V[i]->isNullValue())
1345 isZero = false;
1346 if (!isa<PoisonValue>(V[i]))
1347 isPoison = false;
1348 if (isa<PoisonValue>(V[i]) || !isa<UndefValue>(V[i]))
1349 isUndef = false;
1350 }
1351 }
1352 }
1353 if (isZero)
1354 return ConstantAggregateZero::get(ST);
1355 if (isPoison)
1356 return PoisonValue::get(ST);
1357 if (isUndef)
1358 return UndefValue::get(ST);
1359
1360 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1361 }
1362
ConstantVector(VectorType * T,ArrayRef<Constant * > V)1363 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1364 : ConstantAggregate(T, ConstantVectorVal, V) {
1365 assert(V.size() == cast<FixedVectorType>(T)->getNumElements() &&
1366 "Invalid initializer for constant vector");
1367 }
1368
1369 // ConstantVector accessors.
get(ArrayRef<Constant * > V)1370 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1371 if (Constant *C = getImpl(V))
1372 return C;
1373 auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1374 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1375 }
1376
getImpl(ArrayRef<Constant * > V)1377 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1378 assert(!V.empty() && "Vectors can't be empty");
1379 auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1380
1381 // If this is an all-undef or all-zero vector, return a
1382 // ConstantAggregateZero or UndefValue.
1383 Constant *C = V[0];
1384 bool isZero = C->isNullValue();
1385 bool isUndef = isa<UndefValue>(C);
1386 bool isPoison = isa<PoisonValue>(C);
1387
1388 if (isZero || isUndef) {
1389 for (unsigned i = 1, e = V.size(); i != e; ++i)
1390 if (V[i] != C) {
1391 isZero = isUndef = isPoison = false;
1392 break;
1393 }
1394 }
1395
1396 if (isZero)
1397 return ConstantAggregateZero::get(T);
1398 if (isPoison)
1399 return PoisonValue::get(T);
1400 if (isUndef)
1401 return UndefValue::get(T);
1402
1403 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1404 // the element type is compatible with ConstantDataVector. If so, use it.
1405 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1406 return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1407
1408 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1409 // the operand list contains a ConstantExpr or something else strange.
1410 return nullptr;
1411 }
1412
getSplat(ElementCount EC,Constant * V)1413 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1414 if (!EC.isScalable()) {
1415 // If this splat is compatible with ConstantDataVector, use it instead of
1416 // ConstantVector.
1417 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1418 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1419 return ConstantDataVector::getSplat(EC.getKnownMinValue(), V);
1420
1421 SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V);
1422 return get(Elts);
1423 }
1424
1425 Type *VTy = VectorType::get(V->getType(), EC);
1426
1427 if (V->isNullValue())
1428 return ConstantAggregateZero::get(VTy);
1429 else if (isa<UndefValue>(V))
1430 return UndefValue::get(VTy);
1431
1432 Type *I32Ty = Type::getInt32Ty(VTy->getContext());
1433
1434 // Move scalar into vector.
1435 Constant *UndefV = UndefValue::get(VTy);
1436 V = ConstantExpr::getInsertElement(UndefV, V, ConstantInt::get(I32Ty, 0));
1437 // Build shuffle mask to perform the splat.
1438 SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0);
1439 // Splat.
1440 return ConstantExpr::getShuffleVector(V, UndefV, Zeros);
1441 }
1442
get(LLVMContext & Context)1443 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1444 LLVMContextImpl *pImpl = Context.pImpl;
1445 if (!pImpl->TheNoneToken)
1446 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1447 return pImpl->TheNoneToken.get();
1448 }
1449
1450 /// Remove the constant from the constant table.
destroyConstantImpl()1451 void ConstantTokenNone::destroyConstantImpl() {
1452 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1453 }
1454
1455 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1456 // can't be inline because we don't want to #include Instruction.h into
1457 // Constant.h
isCast() const1458 bool ConstantExpr::isCast() const {
1459 return Instruction::isCast(getOpcode());
1460 }
1461
isCompare() const1462 bool ConstantExpr::isCompare() const {
1463 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1464 }
1465
isGEPWithNoNotionalOverIndexing() const1466 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1467 if (getOpcode() != Instruction::GetElementPtr) return false;
1468
1469 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1470 User::const_op_iterator OI = std::next(this->op_begin());
1471
1472 // The remaining indices may be compile-time known integers within the bounds
1473 // of the corresponding notional static array types.
1474 for (; GEPI != E; ++GEPI, ++OI) {
1475 if (isa<UndefValue>(*OI))
1476 continue;
1477 auto *CI = dyn_cast<ConstantInt>(*OI);
1478 if (!CI || (GEPI.isBoundedSequential() &&
1479 (CI->getValue().getActiveBits() > 64 ||
1480 CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1481 return false;
1482 }
1483
1484 // All the indices checked out.
1485 return true;
1486 }
1487
hasIndices() const1488 bool ConstantExpr::hasIndices() const {
1489 return getOpcode() == Instruction::ExtractValue ||
1490 getOpcode() == Instruction::InsertValue;
1491 }
1492
getIndices() const1493 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1494 if (const ExtractValueConstantExpr *EVCE =
1495 dyn_cast<ExtractValueConstantExpr>(this))
1496 return EVCE->Indices;
1497
1498 return cast<InsertValueConstantExpr>(this)->Indices;
1499 }
1500
getPredicate() const1501 unsigned ConstantExpr::getPredicate() const {
1502 return cast<CompareConstantExpr>(this)->predicate;
1503 }
1504
getShuffleMask() const1505 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1506 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1507 }
1508
getShuffleMaskForBitcode() const1509 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1510 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1511 }
1512
1513 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1514 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1515 assert(Op->getType() == getOperand(OpNo)->getType() &&
1516 "Replacing operand with value of different type!");
1517 if (getOperand(OpNo) == Op)
1518 return const_cast<ConstantExpr*>(this);
1519
1520 SmallVector<Constant*, 8> NewOps;
1521 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1522 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1523
1524 return getWithOperands(NewOps);
1525 }
1526
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty,bool OnlyIfReduced,Type * SrcTy) const1527 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1528 bool OnlyIfReduced, Type *SrcTy) const {
1529 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1530
1531 // If no operands changed return self.
1532 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1533 return const_cast<ConstantExpr*>(this);
1534
1535 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1536 switch (getOpcode()) {
1537 case Instruction::Trunc:
1538 case Instruction::ZExt:
1539 case Instruction::SExt:
1540 case Instruction::FPTrunc:
1541 case Instruction::FPExt:
1542 case Instruction::UIToFP:
1543 case Instruction::SIToFP:
1544 case Instruction::FPToUI:
1545 case Instruction::FPToSI:
1546 case Instruction::PtrToInt:
1547 case Instruction::IntToPtr:
1548 case Instruction::BitCast:
1549 case Instruction::AddrSpaceCast:
1550 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1551 case Instruction::Select:
1552 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1553 case Instruction::InsertElement:
1554 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1555 OnlyIfReducedTy);
1556 case Instruction::ExtractElement:
1557 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1558 case Instruction::InsertValue:
1559 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1560 OnlyIfReducedTy);
1561 case Instruction::ExtractValue:
1562 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1563 case Instruction::FNeg:
1564 return ConstantExpr::getFNeg(Ops[0]);
1565 case Instruction::ShuffleVector:
1566 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1567 OnlyIfReducedTy);
1568 case Instruction::GetElementPtr: {
1569 auto *GEPO = cast<GEPOperator>(this);
1570 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1571 return ConstantExpr::getGetElementPtr(
1572 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1573 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1574 }
1575 case Instruction::ICmp:
1576 case Instruction::FCmp:
1577 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1578 OnlyIfReducedTy);
1579 default:
1580 assert(getNumOperands() == 2 && "Must be binary operator?");
1581 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1582 OnlyIfReducedTy);
1583 }
1584 }
1585
1586
1587 //===----------------------------------------------------------------------===//
1588 // isValueValidForType implementations
1589
isValueValidForType(Type * Ty,uint64_t Val)1590 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1591 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1592 if (Ty->isIntegerTy(1))
1593 return Val == 0 || Val == 1;
1594 return isUIntN(NumBits, Val);
1595 }
1596
isValueValidForType(Type * Ty,int64_t Val)1597 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1598 unsigned NumBits = Ty->getIntegerBitWidth();
1599 if (Ty->isIntegerTy(1))
1600 return Val == 0 || Val == 1 || Val == -1;
1601 return isIntN(NumBits, Val);
1602 }
1603
isValueValidForType(Type * Ty,const APFloat & Val)1604 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1605 // convert modifies in place, so make a copy.
1606 APFloat Val2 = APFloat(Val);
1607 bool losesInfo;
1608 switch (Ty->getTypeID()) {
1609 default:
1610 return false; // These can't be represented as floating point!
1611
1612 // FIXME rounding mode needs to be more flexible
1613 case Type::HalfTyID: {
1614 if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1615 return true;
1616 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1617 return !losesInfo;
1618 }
1619 case Type::BFloatTyID: {
1620 if (&Val2.getSemantics() == &APFloat::BFloat())
1621 return true;
1622 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1623 return !losesInfo;
1624 }
1625 case Type::FloatTyID: {
1626 if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1627 return true;
1628 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1629 return !losesInfo;
1630 }
1631 case Type::DoubleTyID: {
1632 if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1633 &Val2.getSemantics() == &APFloat::BFloat() ||
1634 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1635 &Val2.getSemantics() == &APFloat::IEEEdouble())
1636 return true;
1637 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1638 return !losesInfo;
1639 }
1640 case Type::X86_FP80TyID:
1641 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1642 &Val2.getSemantics() == &APFloat::BFloat() ||
1643 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1644 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1645 &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1646 case Type::FP128TyID:
1647 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1648 &Val2.getSemantics() == &APFloat::BFloat() ||
1649 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1650 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1651 &Val2.getSemantics() == &APFloat::IEEEquad();
1652 case Type::PPC_FP128TyID:
1653 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1654 &Val2.getSemantics() == &APFloat::BFloat() ||
1655 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1656 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1657 &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1658 }
1659 }
1660
1661
1662 //===----------------------------------------------------------------------===//
1663 // Factory Function Implementation
1664
get(Type * Ty)1665 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1666 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1667 "Cannot create an aggregate zero of non-aggregate type!");
1668
1669 std::unique_ptr<ConstantAggregateZero> &Entry =
1670 Ty->getContext().pImpl->CAZConstants[Ty];
1671 if (!Entry)
1672 Entry.reset(new ConstantAggregateZero(Ty));
1673
1674 return Entry.get();
1675 }
1676
1677 /// Remove the constant from the constant table.
destroyConstantImpl()1678 void ConstantAggregateZero::destroyConstantImpl() {
1679 getContext().pImpl->CAZConstants.erase(getType());
1680 }
1681
1682 /// Remove the constant from the constant table.
destroyConstantImpl()1683 void ConstantArray::destroyConstantImpl() {
1684 getType()->getContext().pImpl->ArrayConstants.remove(this);
1685 }
1686
1687
1688 //---- ConstantStruct::get() implementation...
1689 //
1690
1691 /// Remove the constant from the constant table.
destroyConstantImpl()1692 void ConstantStruct::destroyConstantImpl() {
1693 getType()->getContext().pImpl->StructConstants.remove(this);
1694 }
1695
1696 /// Remove the constant from the constant table.
destroyConstantImpl()1697 void ConstantVector::destroyConstantImpl() {
1698 getType()->getContext().pImpl->VectorConstants.remove(this);
1699 }
1700
getSplatValue(bool AllowUndefs) const1701 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1702 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1703 if (isa<ConstantAggregateZero>(this))
1704 return getNullValue(cast<VectorType>(getType())->getElementType());
1705 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1706 return CV->getSplatValue();
1707 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1708 return CV->getSplatValue(AllowUndefs);
1709
1710 // Check if this is a constant expression splat of the form returned by
1711 // ConstantVector::getSplat()
1712 const auto *Shuf = dyn_cast<ConstantExpr>(this);
1713 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1714 isa<UndefValue>(Shuf->getOperand(1))) {
1715
1716 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1717 if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1718 isa<UndefValue>(IElt->getOperand(0))) {
1719
1720 ArrayRef<int> Mask = Shuf->getShuffleMask();
1721 Constant *SplatVal = IElt->getOperand(1);
1722 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1723
1724 if (Index && Index->getValue() == 0 &&
1725 llvm::all_of(Mask, [](int I) { return I == 0; }))
1726 return SplatVal;
1727 }
1728 }
1729
1730 return nullptr;
1731 }
1732
getSplatValue(bool AllowUndefs) const1733 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1734 // Check out first element.
1735 Constant *Elt = getOperand(0);
1736 // Then make sure all remaining elements point to the same value.
1737 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1738 Constant *OpC = getOperand(I);
1739 if (OpC == Elt)
1740 continue;
1741
1742 // Strict mode: any mismatch is not a splat.
1743 if (!AllowUndefs)
1744 return nullptr;
1745
1746 // Allow undefs mode: ignore undefined elements.
1747 if (isa<UndefValue>(OpC))
1748 continue;
1749
1750 // If we do not have a defined element yet, use the current operand.
1751 if (isa<UndefValue>(Elt))
1752 Elt = OpC;
1753
1754 if (OpC != Elt)
1755 return nullptr;
1756 }
1757 return Elt;
1758 }
1759
getUniqueInteger() const1760 const APInt &Constant::getUniqueInteger() const {
1761 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1762 return CI->getValue();
1763 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1764 const Constant *C = this->getAggregateElement(0U);
1765 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1766 return cast<ConstantInt>(C)->getValue();
1767 }
1768
1769 //---- ConstantPointerNull::get() implementation.
1770 //
1771
get(PointerType * Ty)1772 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1773 std::unique_ptr<ConstantPointerNull> &Entry =
1774 Ty->getContext().pImpl->CPNConstants[Ty];
1775 if (!Entry)
1776 Entry.reset(new ConstantPointerNull(Ty));
1777
1778 return Entry.get();
1779 }
1780
1781 /// Remove the constant from the constant table.
destroyConstantImpl()1782 void ConstantPointerNull::destroyConstantImpl() {
1783 getContext().pImpl->CPNConstants.erase(getType());
1784 }
1785
get(Type * Ty)1786 UndefValue *UndefValue::get(Type *Ty) {
1787 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1788 if (!Entry)
1789 Entry.reset(new UndefValue(Ty));
1790
1791 return Entry.get();
1792 }
1793
1794 /// Remove the constant from the constant table.
destroyConstantImpl()1795 void UndefValue::destroyConstantImpl() {
1796 // Free the constant and any dangling references to it.
1797 if (getValueID() == UndefValueVal) {
1798 getContext().pImpl->UVConstants.erase(getType());
1799 } else if (getValueID() == PoisonValueVal) {
1800 getContext().pImpl->PVConstants.erase(getType());
1801 }
1802 llvm_unreachable("Not a undef or a poison!");
1803 }
1804
get(Type * Ty)1805 PoisonValue *PoisonValue::get(Type *Ty) {
1806 std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty];
1807 if (!Entry)
1808 Entry.reset(new PoisonValue(Ty));
1809
1810 return Entry.get();
1811 }
1812
1813 /// Remove the constant from the constant table.
destroyConstantImpl()1814 void PoisonValue::destroyConstantImpl() {
1815 // Free the constant and any dangling references to it.
1816 getContext().pImpl->PVConstants.erase(getType());
1817 }
1818
get(BasicBlock * BB)1819 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1820 assert(BB->getParent() && "Block must have a parent");
1821 return get(BB->getParent(), BB);
1822 }
1823
get(Function * F,BasicBlock * BB)1824 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1825 BlockAddress *&BA =
1826 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1827 if (!BA)
1828 BA = new BlockAddress(F, BB);
1829
1830 assert(BA->getFunction() == F && "Basic block moved between functions");
1831 return BA;
1832 }
1833
BlockAddress(Function * F,BasicBlock * BB)1834 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1835 : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()),
1836 Value::BlockAddressVal, &Op<0>(), 2) {
1837 setOperand(0, F);
1838 setOperand(1, BB);
1839 BB->AdjustBlockAddressRefCount(1);
1840 }
1841
lookup(const BasicBlock * BB)1842 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1843 if (!BB->hasAddressTaken())
1844 return nullptr;
1845
1846 const Function *F = BB->getParent();
1847 assert(F && "Block must have a parent");
1848 BlockAddress *BA =
1849 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1850 assert(BA && "Refcount and block address map disagree!");
1851 return BA;
1852 }
1853
1854 /// Remove the constant from the constant table.
destroyConstantImpl()1855 void BlockAddress::destroyConstantImpl() {
1856 getFunction()->getType()->getContext().pImpl
1857 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1858 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1859 }
1860
handleOperandChangeImpl(Value * From,Value * To)1861 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1862 // This could be replacing either the Basic Block or the Function. In either
1863 // case, we have to remove the map entry.
1864 Function *NewF = getFunction();
1865 BasicBlock *NewBB = getBasicBlock();
1866
1867 if (From == NewF)
1868 NewF = cast<Function>(To->stripPointerCasts());
1869 else {
1870 assert(From == NewBB && "From does not match any operand");
1871 NewBB = cast<BasicBlock>(To);
1872 }
1873
1874 // See if the 'new' entry already exists, if not, just update this in place
1875 // and return early.
1876 BlockAddress *&NewBA =
1877 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1878 if (NewBA)
1879 return NewBA;
1880
1881 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1882
1883 // Remove the old entry, this can't cause the map to rehash (just a
1884 // tombstone will get added).
1885 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1886 getBasicBlock()));
1887 NewBA = this;
1888 setOperand(0, NewF);
1889 setOperand(1, NewBB);
1890 getBasicBlock()->AdjustBlockAddressRefCount(1);
1891
1892 // If we just want to keep the existing value, then return null.
1893 // Callers know that this means we shouldn't delete this value.
1894 return nullptr;
1895 }
1896
get(GlobalValue * GV)1897 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) {
1898 DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV];
1899 if (!Equiv)
1900 Equiv = new DSOLocalEquivalent(GV);
1901
1902 assert(Equiv->getGlobalValue() == GV &&
1903 "DSOLocalFunction does not match the expected global value");
1904 return Equiv;
1905 }
1906
DSOLocalEquivalent(GlobalValue * GV)1907 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV)
1908 : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) {
1909 setOperand(0, GV);
1910 }
1911
1912 /// Remove the constant from the constant table.
destroyConstantImpl()1913 void DSOLocalEquivalent::destroyConstantImpl() {
1914 const GlobalValue *GV = getGlobalValue();
1915 GV->getContext().pImpl->DSOLocalEquivalents.erase(GV);
1916 }
1917
handleOperandChangeImpl(Value * From,Value * To)1918 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) {
1919 assert(From == getGlobalValue() && "Changing value does not match operand.");
1920 assert(isa<Constant>(To) && "Can only replace the operands with a constant");
1921
1922 // The replacement is with another global value.
1923 if (const auto *ToObj = dyn_cast<GlobalValue>(To)) {
1924 DSOLocalEquivalent *&NewEquiv =
1925 getContext().pImpl->DSOLocalEquivalents[ToObj];
1926 if (NewEquiv)
1927 return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1928 }
1929
1930 // If the argument is replaced with a null value, just replace this constant
1931 // with a null value.
1932 if (cast<Constant>(To)->isNullValue())
1933 return To;
1934
1935 // The replacement could be a bitcast or an alias to another function. We can
1936 // replace it with a bitcast to the dso_local_equivalent of that function.
1937 auto *Func = cast<Function>(To->stripPointerCastsAndAliases());
1938 DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func];
1939 if (NewEquiv)
1940 return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1941
1942 // Replace this with the new one.
1943 getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue());
1944 NewEquiv = this;
1945 setOperand(0, Func);
1946
1947 if (Func->getType() != getType()) {
1948 // It is ok to mutate the type here because this constant should always
1949 // reflect the type of the function it's holding.
1950 mutateType(Func->getType());
1951 }
1952 return nullptr;
1953 }
1954
1955 //---- ConstantExpr::get() implementations.
1956 //
1957
1958 /// This is a utility function to handle folding of casts and lookup of the
1959 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty,bool OnlyIfReduced=false)1960 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1961 bool OnlyIfReduced = false) {
1962 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1963 // Fold a few common cases
1964 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1965 return FC;
1966
1967 if (OnlyIfReduced)
1968 return nullptr;
1969
1970 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1971
1972 // Look up the constant in the table first to ensure uniqueness.
1973 ConstantExprKeyType Key(opc, C);
1974
1975 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1976 }
1977
getCast(unsigned oc,Constant * C,Type * Ty,bool OnlyIfReduced)1978 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1979 bool OnlyIfReduced) {
1980 Instruction::CastOps opc = Instruction::CastOps(oc);
1981 assert(Instruction::isCast(opc) && "opcode out of range");
1982 assert(C && Ty && "Null arguments to getCast");
1983 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1984
1985 switch (opc) {
1986 default:
1987 llvm_unreachable("Invalid cast opcode");
1988 case Instruction::Trunc:
1989 return getTrunc(C, Ty, OnlyIfReduced);
1990 case Instruction::ZExt:
1991 return getZExt(C, Ty, OnlyIfReduced);
1992 case Instruction::SExt:
1993 return getSExt(C, Ty, OnlyIfReduced);
1994 case Instruction::FPTrunc:
1995 return getFPTrunc(C, Ty, OnlyIfReduced);
1996 case Instruction::FPExt:
1997 return getFPExtend(C, Ty, OnlyIfReduced);
1998 case Instruction::UIToFP:
1999 return getUIToFP(C, Ty, OnlyIfReduced);
2000 case Instruction::SIToFP:
2001 return getSIToFP(C, Ty, OnlyIfReduced);
2002 case Instruction::FPToUI:
2003 return getFPToUI(C, Ty, OnlyIfReduced);
2004 case Instruction::FPToSI:
2005 return getFPToSI(C, Ty, OnlyIfReduced);
2006 case Instruction::PtrToInt:
2007 return getPtrToInt(C, Ty, OnlyIfReduced);
2008 case Instruction::IntToPtr:
2009 return getIntToPtr(C, Ty, OnlyIfReduced);
2010 case Instruction::BitCast:
2011 return getBitCast(C, Ty, OnlyIfReduced);
2012 case Instruction::AddrSpaceCast:
2013 return getAddrSpaceCast(C, Ty, OnlyIfReduced);
2014 }
2015 }
2016
getZExtOrBitCast(Constant * C,Type * Ty)2017 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
2018 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2019 return getBitCast(C, Ty);
2020 return getZExt(C, Ty);
2021 }
2022
getSExtOrBitCast(Constant * C,Type * Ty)2023 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
2024 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2025 return getBitCast(C, Ty);
2026 return getSExt(C, Ty);
2027 }
2028
getTruncOrBitCast(Constant * C,Type * Ty)2029 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
2030 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2031 return getBitCast(C, Ty);
2032 return getTrunc(C, Ty);
2033 }
2034
getPointerCast(Constant * S,Type * Ty)2035 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
2036 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2037 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2038 "Invalid cast");
2039
2040 if (Ty->isIntOrIntVectorTy())
2041 return getPtrToInt(S, Ty);
2042
2043 unsigned SrcAS = S->getType()->getPointerAddressSpace();
2044 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
2045 return getAddrSpaceCast(S, Ty);
2046
2047 return getBitCast(S, Ty);
2048 }
2049
getPointerBitCastOrAddrSpaceCast(Constant * S,Type * Ty)2050 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
2051 Type *Ty) {
2052 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2053 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2054
2055 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2056 return getAddrSpaceCast(S, Ty);
2057
2058 return getBitCast(S, Ty);
2059 }
2060
getIntegerCast(Constant * C,Type * Ty,bool isSigned)2061 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
2062 assert(C->getType()->isIntOrIntVectorTy() &&
2063 Ty->isIntOrIntVectorTy() && "Invalid cast");
2064 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2065 unsigned DstBits = Ty->getScalarSizeInBits();
2066 Instruction::CastOps opcode =
2067 (SrcBits == DstBits ? Instruction::BitCast :
2068 (SrcBits > DstBits ? Instruction::Trunc :
2069 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2070 return getCast(opcode, C, Ty);
2071 }
2072
getFPCast(Constant * C,Type * Ty)2073 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
2074 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2075 "Invalid cast");
2076 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2077 unsigned DstBits = Ty->getScalarSizeInBits();
2078 if (SrcBits == DstBits)
2079 return C; // Avoid a useless cast
2080 Instruction::CastOps opcode =
2081 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
2082 return getCast(opcode, C, Ty);
2083 }
2084
getTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)2085 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2086 #ifndef NDEBUG
2087 bool fromVec = isa<VectorType>(C->getType());
2088 bool toVec = isa<VectorType>(Ty);
2089 #endif
2090 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2091 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
2092 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
2093 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2094 "SrcTy must be larger than DestTy for Trunc!");
2095
2096 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
2097 }
2098
getSExt(Constant * C,Type * Ty,bool OnlyIfReduced)2099 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2100 #ifndef NDEBUG
2101 bool fromVec = isa<VectorType>(C->getType());
2102 bool toVec = isa<VectorType>(Ty);
2103 #endif
2104 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2105 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
2106 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
2107 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2108 "SrcTy must be smaller than DestTy for SExt!");
2109
2110 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
2111 }
2112
getZExt(Constant * C,Type * Ty,bool OnlyIfReduced)2113 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2114 #ifndef NDEBUG
2115 bool fromVec = isa<VectorType>(C->getType());
2116 bool toVec = isa<VectorType>(Ty);
2117 #endif
2118 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2119 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
2120 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
2121 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2122 "SrcTy must be smaller than DestTy for ZExt!");
2123
2124 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
2125 }
2126
getFPTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)2127 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2128 #ifndef NDEBUG
2129 bool fromVec = isa<VectorType>(C->getType());
2130 bool toVec = isa<VectorType>(Ty);
2131 #endif
2132 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2133 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2134 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2135 "This is an illegal floating point truncation!");
2136 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
2137 }
2138
getFPExtend(Constant * C,Type * Ty,bool OnlyIfReduced)2139 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
2140 #ifndef NDEBUG
2141 bool fromVec = isa<VectorType>(C->getType());
2142 bool toVec = isa<VectorType>(Ty);
2143 #endif
2144 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2145 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2146 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2147 "This is an illegal floating point extension!");
2148 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
2149 }
2150
getUIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)2151 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2152 #ifndef NDEBUG
2153 bool fromVec = isa<VectorType>(C->getType());
2154 bool toVec = isa<VectorType>(Ty);
2155 #endif
2156 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2157 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2158 "This is an illegal uint to floating point cast!");
2159 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
2160 }
2161
getSIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)2162 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2163 #ifndef NDEBUG
2164 bool fromVec = isa<VectorType>(C->getType());
2165 bool toVec = isa<VectorType>(Ty);
2166 #endif
2167 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2168 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2169 "This is an illegal sint to floating point cast!");
2170 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
2171 }
2172
getFPToUI(Constant * C,Type * Ty,bool OnlyIfReduced)2173 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2174 #ifndef NDEBUG
2175 bool fromVec = isa<VectorType>(C->getType());
2176 bool toVec = isa<VectorType>(Ty);
2177 #endif
2178 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2179 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2180 "This is an illegal floating point to uint cast!");
2181 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
2182 }
2183
getFPToSI(Constant * C,Type * Ty,bool OnlyIfReduced)2184 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2185 #ifndef NDEBUG
2186 bool fromVec = isa<VectorType>(C->getType());
2187 bool toVec = isa<VectorType>(Ty);
2188 #endif
2189 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2190 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2191 "This is an illegal floating point to sint cast!");
2192 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
2193 }
2194
getPtrToInt(Constant * C,Type * DstTy,bool OnlyIfReduced)2195 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
2196 bool OnlyIfReduced) {
2197 assert(C->getType()->isPtrOrPtrVectorTy() &&
2198 "PtrToInt source must be pointer or pointer vector");
2199 assert(DstTy->isIntOrIntVectorTy() &&
2200 "PtrToInt destination must be integer or integer vector");
2201 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2202 if (isa<VectorType>(C->getType()))
2203 assert(cast<FixedVectorType>(C->getType())->getNumElements() ==
2204 cast<FixedVectorType>(DstTy)->getNumElements() &&
2205 "Invalid cast between a different number of vector elements");
2206 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2207 }
2208
getIntToPtr(Constant * C,Type * DstTy,bool OnlyIfReduced)2209 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2210 bool OnlyIfReduced) {
2211 assert(C->getType()->isIntOrIntVectorTy() &&
2212 "IntToPtr source must be integer or integer vector");
2213 assert(DstTy->isPtrOrPtrVectorTy() &&
2214 "IntToPtr destination must be a pointer or pointer vector");
2215 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2216 if (isa<VectorType>(C->getType()))
2217 assert(cast<VectorType>(C->getType())->getElementCount() ==
2218 cast<VectorType>(DstTy)->getElementCount() &&
2219 "Invalid cast between a different number of vector elements");
2220 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2221 }
2222
getBitCast(Constant * C,Type * DstTy,bool OnlyIfReduced)2223 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2224 bool OnlyIfReduced) {
2225 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
2226 "Invalid constantexpr bitcast!");
2227
2228 // It is common to ask for a bitcast of a value to its own type, handle this
2229 // speedily.
2230 if (C->getType() == DstTy) return C;
2231
2232 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2233 }
2234
getAddrSpaceCast(Constant * C,Type * DstTy,bool OnlyIfReduced)2235 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2236 bool OnlyIfReduced) {
2237 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
2238 "Invalid constantexpr addrspacecast!");
2239
2240 // Canonicalize addrspacecasts between different pointer types by first
2241 // bitcasting the pointer type and then converting the address space.
2242 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
2243 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
2244 if (!SrcScalarTy->hasSameElementTypeAs(DstScalarTy)) {
2245 Type *MidTy = PointerType::getWithSamePointeeType(
2246 DstScalarTy, SrcScalarTy->getAddressSpace());
2247 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
2248 // Handle vectors of pointers.
2249 MidTy = FixedVectorType::get(MidTy,
2250 cast<FixedVectorType>(VT)->getNumElements());
2251 }
2252 C = getBitCast(C, MidTy);
2253 }
2254 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2255 }
2256
get(unsigned Opcode,Constant * C,unsigned Flags,Type * OnlyIfReducedTy)2257 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
2258 Type *OnlyIfReducedTy) {
2259 // Check the operands for consistency first.
2260 assert(Instruction::isUnaryOp(Opcode) &&
2261 "Invalid opcode in unary constant expression");
2262
2263 #ifndef NDEBUG
2264 switch (Opcode) {
2265 case Instruction::FNeg:
2266 assert(C->getType()->isFPOrFPVectorTy() &&
2267 "Tried to create a floating-point operation on a "
2268 "non-floating-point type!");
2269 break;
2270 default:
2271 break;
2272 }
2273 #endif
2274
2275 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
2276 return FC;
2277
2278 if (OnlyIfReducedTy == C->getType())
2279 return nullptr;
2280
2281 Constant *ArgVec[] = { C };
2282 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2283
2284 LLVMContextImpl *pImpl = C->getContext().pImpl;
2285 return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
2286 }
2287
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags,Type * OnlyIfReducedTy)2288 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2289 unsigned Flags, Type *OnlyIfReducedTy) {
2290 // Check the operands for consistency first.
2291 assert(Instruction::isBinaryOp(Opcode) &&
2292 "Invalid opcode in binary constant expression");
2293 assert(C1->getType() == C2->getType() &&
2294 "Operand types in binary constant expression should match");
2295
2296 #ifndef NDEBUG
2297 switch (Opcode) {
2298 case Instruction::Add:
2299 case Instruction::Sub:
2300 case Instruction::Mul:
2301 case Instruction::UDiv:
2302 case Instruction::SDiv:
2303 case Instruction::URem:
2304 case Instruction::SRem:
2305 assert(C1->getType()->isIntOrIntVectorTy() &&
2306 "Tried to create an integer operation on a non-integer type!");
2307 break;
2308 case Instruction::FAdd:
2309 case Instruction::FSub:
2310 case Instruction::FMul:
2311 case Instruction::FDiv:
2312 case Instruction::FRem:
2313 assert(C1->getType()->isFPOrFPVectorTy() &&
2314 "Tried to create a floating-point operation on a "
2315 "non-floating-point type!");
2316 break;
2317 case Instruction::And:
2318 case Instruction::Or:
2319 case Instruction::Xor:
2320 assert(C1->getType()->isIntOrIntVectorTy() &&
2321 "Tried to create a logical operation on a non-integral type!");
2322 break;
2323 case Instruction::Shl:
2324 case Instruction::LShr:
2325 case Instruction::AShr:
2326 assert(C1->getType()->isIntOrIntVectorTy() &&
2327 "Tried to create a shift operation on a non-integer type!");
2328 break;
2329 default:
2330 break;
2331 }
2332 #endif
2333
2334 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2335 return FC;
2336
2337 if (OnlyIfReducedTy == C1->getType())
2338 return nullptr;
2339
2340 Constant *ArgVec[] = { C1, C2 };
2341 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2342
2343 LLVMContextImpl *pImpl = C1->getContext().pImpl;
2344 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2345 }
2346
getSizeOf(Type * Ty)2347 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2348 // sizeof is implemented as: (i64) gep (Ty*)null, 1
2349 // Note that a non-inbounds gep is used, as null isn't within any object.
2350 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2351 Constant *GEP = getGetElementPtr(
2352 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2353 return getPtrToInt(GEP,
2354 Type::getInt64Ty(Ty->getContext()));
2355 }
2356
getAlignOf(Type * Ty)2357 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2358 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2359 // Note that a non-inbounds gep is used, as null isn't within any object.
2360 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2361 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
2362 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2363 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2364 Constant *Indices[2] = { Zero, One };
2365 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2366 return getPtrToInt(GEP,
2367 Type::getInt64Ty(Ty->getContext()));
2368 }
2369
getOffsetOf(StructType * STy,unsigned FieldNo)2370 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
2371 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
2372 FieldNo));
2373 }
2374
getOffsetOf(Type * Ty,Constant * FieldNo)2375 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
2376 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
2377 // Note that a non-inbounds gep is used, as null isn't within any object.
2378 Constant *GEPIdx[] = {
2379 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
2380 FieldNo
2381 };
2382 Constant *GEP = getGetElementPtr(
2383 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2384 return getPtrToInt(GEP,
2385 Type::getInt64Ty(Ty->getContext()));
2386 }
2387
getCompare(unsigned short Predicate,Constant * C1,Constant * C2,bool OnlyIfReduced)2388 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2389 Constant *C2, bool OnlyIfReduced) {
2390 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2391
2392 switch (Predicate) {
2393 default: llvm_unreachable("Invalid CmpInst predicate");
2394 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2395 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2396 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2397 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2398 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2399 case CmpInst::FCMP_TRUE:
2400 return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2401
2402 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
2403 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2404 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2405 case CmpInst::ICMP_SLE:
2406 return getICmp(Predicate, C1, C2, OnlyIfReduced);
2407 }
2408 }
2409
getSelect(Constant * C,Constant * V1,Constant * V2,Type * OnlyIfReducedTy)2410 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2411 Type *OnlyIfReducedTy) {
2412 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2413
2414 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2415 return SC; // Fold common cases
2416
2417 if (OnlyIfReducedTy == V1->getType())
2418 return nullptr;
2419
2420 Constant *ArgVec[] = { C, V1, V2 };
2421 ConstantExprKeyType Key(Instruction::Select, ArgVec);
2422
2423 LLVMContextImpl *pImpl = C->getContext().pImpl;
2424 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2425 }
2426
getGetElementPtr(Type * Ty,Constant * C,ArrayRef<Value * > Idxs,bool InBounds,Optional<unsigned> InRangeIndex,Type * OnlyIfReducedTy)2427 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2428 ArrayRef<Value *> Idxs, bool InBounds,
2429 Optional<unsigned> InRangeIndex,
2430 Type *OnlyIfReducedTy) {
2431 PointerType *OrigPtrTy = cast<PointerType>(C->getType()->getScalarType());
2432 assert(Ty && "Must specify element type");
2433 assert(OrigPtrTy->isOpaqueOrPointeeTypeMatches(Ty));
2434
2435 if (Constant *FC =
2436 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2437 return FC; // Fold a few common cases.
2438
2439 // Get the result type of the getelementptr!
2440 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2441 assert(DestTy && "GEP indices invalid!");
2442 unsigned AS = OrigPtrTy->getAddressSpace();
2443 Type *ReqTy = OrigPtrTy->isOpaque()
2444 ? PointerType::get(OrigPtrTy->getContext(), AS)
2445 : DestTy->getPointerTo(AS);
2446
2447 auto EltCount = ElementCount::getFixed(0);
2448 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2449 EltCount = VecTy->getElementCount();
2450 else
2451 for (auto Idx : Idxs)
2452 if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType()))
2453 EltCount = VecTy->getElementCount();
2454
2455 if (EltCount.isNonZero())
2456 ReqTy = VectorType::get(ReqTy, EltCount);
2457
2458 if (OnlyIfReducedTy == ReqTy)
2459 return nullptr;
2460
2461 // Look up the constant in the table first to ensure uniqueness
2462 std::vector<Constant*> ArgVec;
2463 ArgVec.reserve(1 + Idxs.size());
2464 ArgVec.push_back(C);
2465 auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2466 for (; GTI != GTE; ++GTI) {
2467 auto *Idx = cast<Constant>(GTI.getOperand());
2468 assert(
2469 (!isa<VectorType>(Idx->getType()) ||
2470 cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2471 "getelementptr index type missmatch");
2472
2473 if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2474 Idx = Idx->getSplatValue();
2475 } else if (GTI.isSequential() && EltCount.isNonZero() &&
2476 !Idx->getType()->isVectorTy()) {
2477 Idx = ConstantVector::getSplat(EltCount, Idx);
2478 }
2479 ArgVec.push_back(Idx);
2480 }
2481
2482 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2483 if (InRangeIndex && *InRangeIndex < 63)
2484 SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2485 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2486 SubClassOptionalData, None, None, Ty);
2487
2488 LLVMContextImpl *pImpl = C->getContext().pImpl;
2489 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2490 }
2491
getICmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2492 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2493 Constant *RHS, bool OnlyIfReduced) {
2494 assert(LHS->getType() == RHS->getType());
2495 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2496 "Invalid ICmp Predicate");
2497
2498 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2499 return FC; // Fold a few common cases...
2500
2501 if (OnlyIfReduced)
2502 return nullptr;
2503
2504 // Look up the constant in the table first to ensure uniqueness
2505 Constant *ArgVec[] = { LHS, RHS };
2506 // Get the key type with both the opcode and predicate
2507 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2508
2509 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2510 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2511 ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2512
2513 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2514 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2515 }
2516
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2517 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2518 Constant *RHS, bool OnlyIfReduced) {
2519 assert(LHS->getType() == RHS->getType());
2520 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2521 "Invalid FCmp Predicate");
2522
2523 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2524 return FC; // Fold a few common cases...
2525
2526 if (OnlyIfReduced)
2527 return nullptr;
2528
2529 // Look up the constant in the table first to ensure uniqueness
2530 Constant *ArgVec[] = { LHS, RHS };
2531 // Get the key type with both the opcode and predicate
2532 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2533
2534 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2535 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2536 ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2537
2538 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2539 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2540 }
2541
getExtractElement(Constant * Val,Constant * Idx,Type * OnlyIfReducedTy)2542 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2543 Type *OnlyIfReducedTy) {
2544 assert(Val->getType()->isVectorTy() &&
2545 "Tried to create extractelement operation on non-vector type!");
2546 assert(Idx->getType()->isIntegerTy() &&
2547 "Extractelement index must be an integer type!");
2548
2549 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2550 return FC; // Fold a few common cases.
2551
2552 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2553 if (OnlyIfReducedTy == ReqTy)
2554 return nullptr;
2555
2556 // Look up the constant in the table first to ensure uniqueness
2557 Constant *ArgVec[] = { Val, Idx };
2558 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2559
2560 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2561 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2562 }
2563
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx,Type * OnlyIfReducedTy)2564 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2565 Constant *Idx, Type *OnlyIfReducedTy) {
2566 assert(Val->getType()->isVectorTy() &&
2567 "Tried to create insertelement operation on non-vector type!");
2568 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2569 "Insertelement types must match!");
2570 assert(Idx->getType()->isIntegerTy() &&
2571 "Insertelement index must be i32 type!");
2572
2573 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2574 return FC; // Fold a few common cases.
2575
2576 if (OnlyIfReducedTy == Val->getType())
2577 return nullptr;
2578
2579 // Look up the constant in the table first to ensure uniqueness
2580 Constant *ArgVec[] = { Val, Elt, Idx };
2581 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2582
2583 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2584 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2585 }
2586
getShuffleVector(Constant * V1,Constant * V2,ArrayRef<int> Mask,Type * OnlyIfReducedTy)2587 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2588 ArrayRef<int> Mask,
2589 Type *OnlyIfReducedTy) {
2590 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2591 "Invalid shuffle vector constant expr operands!");
2592
2593 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2594 return FC; // Fold a few common cases.
2595
2596 unsigned NElts = Mask.size();
2597 auto V1VTy = cast<VectorType>(V1->getType());
2598 Type *EltTy = V1VTy->getElementType();
2599 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2600 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2601
2602 if (OnlyIfReducedTy == ShufTy)
2603 return nullptr;
2604
2605 // Look up the constant in the table first to ensure uniqueness
2606 Constant *ArgVec[] = {V1, V2};
2607 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask);
2608
2609 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2610 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2611 }
2612
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2613 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2614 ArrayRef<unsigned> Idxs,
2615 Type *OnlyIfReducedTy) {
2616 assert(Agg->getType()->isFirstClassType() &&
2617 "Non-first-class type for constant insertvalue expression");
2618
2619 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2620 Idxs) == Val->getType() &&
2621 "insertvalue indices invalid!");
2622 Type *ReqTy = Val->getType();
2623
2624 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2625 return FC;
2626
2627 if (OnlyIfReducedTy == ReqTy)
2628 return nullptr;
2629
2630 Constant *ArgVec[] = { Agg, Val };
2631 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2632
2633 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2634 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2635 }
2636
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2637 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2638 Type *OnlyIfReducedTy) {
2639 assert(Agg->getType()->isFirstClassType() &&
2640 "Tried to create extractelement operation on non-first-class type!");
2641
2642 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2643 (void)ReqTy;
2644 assert(ReqTy && "extractvalue indices invalid!");
2645
2646 assert(Agg->getType()->isFirstClassType() &&
2647 "Non-first-class type for constant extractvalue expression");
2648 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2649 return FC;
2650
2651 if (OnlyIfReducedTy == ReqTy)
2652 return nullptr;
2653
2654 Constant *ArgVec[] = { Agg };
2655 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2656
2657 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2658 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2659 }
2660
getNeg(Constant * C,bool HasNUW,bool HasNSW)2661 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2662 assert(C->getType()->isIntOrIntVectorTy() &&
2663 "Cannot NEG a nonintegral value!");
2664 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2665 C, HasNUW, HasNSW);
2666 }
2667
getFNeg(Constant * C)2668 Constant *ConstantExpr::getFNeg(Constant *C) {
2669 assert(C->getType()->isFPOrFPVectorTy() &&
2670 "Cannot FNEG a non-floating-point value!");
2671 return get(Instruction::FNeg, C);
2672 }
2673
getNot(Constant * C)2674 Constant *ConstantExpr::getNot(Constant *C) {
2675 assert(C->getType()->isIntOrIntVectorTy() &&
2676 "Cannot NOT a nonintegral value!");
2677 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2678 }
2679
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2680 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2681 bool HasNUW, bool HasNSW) {
2682 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2683 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2684 return get(Instruction::Add, C1, C2, Flags);
2685 }
2686
getFAdd(Constant * C1,Constant * C2)2687 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2688 return get(Instruction::FAdd, C1, C2);
2689 }
2690
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2691 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2692 bool HasNUW, bool HasNSW) {
2693 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2694 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2695 return get(Instruction::Sub, C1, C2, Flags);
2696 }
2697
getFSub(Constant * C1,Constant * C2)2698 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2699 return get(Instruction::FSub, C1, C2);
2700 }
2701
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2702 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2703 bool HasNUW, bool HasNSW) {
2704 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2705 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2706 return get(Instruction::Mul, C1, C2, Flags);
2707 }
2708
getFMul(Constant * C1,Constant * C2)2709 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2710 return get(Instruction::FMul, C1, C2);
2711 }
2712
getUDiv(Constant * C1,Constant * C2,bool isExact)2713 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2714 return get(Instruction::UDiv, C1, C2,
2715 isExact ? PossiblyExactOperator::IsExact : 0);
2716 }
2717
getSDiv(Constant * C1,Constant * C2,bool isExact)2718 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2719 return get(Instruction::SDiv, C1, C2,
2720 isExact ? PossiblyExactOperator::IsExact : 0);
2721 }
2722
getFDiv(Constant * C1,Constant * C2)2723 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2724 return get(Instruction::FDiv, C1, C2);
2725 }
2726
getURem(Constant * C1,Constant * C2)2727 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2728 return get(Instruction::URem, C1, C2);
2729 }
2730
getSRem(Constant * C1,Constant * C2)2731 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2732 return get(Instruction::SRem, C1, C2);
2733 }
2734
getFRem(Constant * C1,Constant * C2)2735 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2736 return get(Instruction::FRem, C1, C2);
2737 }
2738
getAnd(Constant * C1,Constant * C2)2739 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2740 return get(Instruction::And, C1, C2);
2741 }
2742
getOr(Constant * C1,Constant * C2)2743 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2744 return get(Instruction::Or, C1, C2);
2745 }
2746
getXor(Constant * C1,Constant * C2)2747 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2748 return get(Instruction::Xor, C1, C2);
2749 }
2750
getUMin(Constant * C1,Constant * C2)2751 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) {
2752 Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2);
2753 return getSelect(Cmp, C1, C2);
2754 }
2755
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2756 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2757 bool HasNUW, bool HasNSW) {
2758 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2759 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2760 return get(Instruction::Shl, C1, C2, Flags);
2761 }
2762
getLShr(Constant * C1,Constant * C2,bool isExact)2763 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2764 return get(Instruction::LShr, C1, C2,
2765 isExact ? PossiblyExactOperator::IsExact : 0);
2766 }
2767
getAShr(Constant * C1,Constant * C2,bool isExact)2768 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2769 return get(Instruction::AShr, C1, C2,
2770 isExact ? PossiblyExactOperator::IsExact : 0);
2771 }
2772
getExactLogBase2(Constant * C)2773 Constant *ConstantExpr::getExactLogBase2(Constant *C) {
2774 Type *Ty = C->getType();
2775 const APInt *IVal;
2776 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
2777 return ConstantInt::get(Ty, IVal->logBase2());
2778
2779 // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
2780 auto *VecTy = dyn_cast<FixedVectorType>(Ty);
2781 if (!VecTy)
2782 return nullptr;
2783
2784 SmallVector<Constant *, 4> Elts;
2785 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
2786 Constant *Elt = C->getAggregateElement(I);
2787 if (!Elt)
2788 return nullptr;
2789 // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N.
2790 if (isa<UndefValue>(Elt)) {
2791 Elts.push_back(Constant::getNullValue(Ty->getScalarType()));
2792 continue;
2793 }
2794 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
2795 return nullptr;
2796 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
2797 }
2798
2799 return ConstantVector::get(Elts);
2800 }
2801
getBinOpIdentity(unsigned Opcode,Type * Ty,bool AllowRHSConstant)2802 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2803 bool AllowRHSConstant) {
2804 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2805
2806 // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2807 if (Instruction::isCommutative(Opcode)) {
2808 switch (Opcode) {
2809 case Instruction::Add: // X + 0 = X
2810 case Instruction::Or: // X | 0 = X
2811 case Instruction::Xor: // X ^ 0 = X
2812 return Constant::getNullValue(Ty);
2813 case Instruction::Mul: // X * 1 = X
2814 return ConstantInt::get(Ty, 1);
2815 case Instruction::And: // X & -1 = X
2816 return Constant::getAllOnesValue(Ty);
2817 case Instruction::FAdd: // X + -0.0 = X
2818 // TODO: If the fadd has 'nsz', should we return +0.0?
2819 return ConstantFP::getNegativeZero(Ty);
2820 case Instruction::FMul: // X * 1.0 = X
2821 return ConstantFP::get(Ty, 1.0);
2822 default:
2823 llvm_unreachable("Every commutative binop has an identity constant");
2824 }
2825 }
2826
2827 // Non-commutative opcodes: AllowRHSConstant must be set.
2828 if (!AllowRHSConstant)
2829 return nullptr;
2830
2831 switch (Opcode) {
2832 case Instruction::Sub: // X - 0 = X
2833 case Instruction::Shl: // X << 0 = X
2834 case Instruction::LShr: // X >>u 0 = X
2835 case Instruction::AShr: // X >> 0 = X
2836 case Instruction::FSub: // X - 0.0 = X
2837 return Constant::getNullValue(Ty);
2838 case Instruction::SDiv: // X / 1 = X
2839 case Instruction::UDiv: // X /u 1 = X
2840 return ConstantInt::get(Ty, 1);
2841 case Instruction::FDiv: // X / 1.0 = X
2842 return ConstantFP::get(Ty, 1.0);
2843 default:
2844 return nullptr;
2845 }
2846 }
2847
getBinOpAbsorber(unsigned Opcode,Type * Ty)2848 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2849 switch (Opcode) {
2850 default:
2851 // Doesn't have an absorber.
2852 return nullptr;
2853
2854 case Instruction::Or:
2855 return Constant::getAllOnesValue(Ty);
2856
2857 case Instruction::And:
2858 case Instruction::Mul:
2859 return Constant::getNullValue(Ty);
2860 }
2861 }
2862
2863 /// Remove the constant from the constant table.
destroyConstantImpl()2864 void ConstantExpr::destroyConstantImpl() {
2865 getType()->getContext().pImpl->ExprConstants.remove(this);
2866 }
2867
getOpcodeName() const2868 const char *ConstantExpr::getOpcodeName() const {
2869 return Instruction::getOpcodeName(getOpcode());
2870 }
2871
GetElementPtrConstantExpr(Type * SrcElementTy,Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2872 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2873 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2874 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2875 OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2876 (IdxList.size() + 1),
2877 IdxList.size() + 1),
2878 SrcElementTy(SrcElementTy),
2879 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2880 Op<0>() = C;
2881 Use *OperandList = getOperandList();
2882 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2883 OperandList[i+1] = IdxList[i];
2884 }
2885
getSourceElementType() const2886 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2887 return SrcElementTy;
2888 }
2889
getResultElementType() const2890 Type *GetElementPtrConstantExpr::getResultElementType() const {
2891 return ResElementTy;
2892 }
2893
2894 //===----------------------------------------------------------------------===//
2895 // ConstantData* implementations
2896
getElementType() const2897 Type *ConstantDataSequential::getElementType() const {
2898 if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2899 return ATy->getElementType();
2900 return cast<VectorType>(getType())->getElementType();
2901 }
2902
getRawDataValues() const2903 StringRef ConstantDataSequential::getRawDataValues() const {
2904 return StringRef(DataElements, getNumElements()*getElementByteSize());
2905 }
2906
isElementTypeCompatible(Type * Ty)2907 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2908 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2909 return true;
2910 if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2911 switch (IT->getBitWidth()) {
2912 case 8:
2913 case 16:
2914 case 32:
2915 case 64:
2916 return true;
2917 default: break;
2918 }
2919 }
2920 return false;
2921 }
2922
getNumElements() const2923 unsigned ConstantDataSequential::getNumElements() const {
2924 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2925 return AT->getNumElements();
2926 return cast<FixedVectorType>(getType())->getNumElements();
2927 }
2928
2929
getElementByteSize() const2930 uint64_t ConstantDataSequential::getElementByteSize() const {
2931 return getElementType()->getPrimitiveSizeInBits()/8;
2932 }
2933
2934 /// Return the start of the specified element.
getElementPointer(unsigned Elt) const2935 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2936 assert(Elt < getNumElements() && "Invalid Elt");
2937 return DataElements+Elt*getElementByteSize();
2938 }
2939
2940
2941 /// Return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2942 static bool isAllZeros(StringRef Arr) {
2943 for (char I : Arr)
2944 if (I != 0)
2945 return false;
2946 return true;
2947 }
2948
2949 /// This is the underlying implementation of all of the
2950 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2951 /// the correct element type. We take the bytes in as a StringRef because
2952 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2953 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2954 #ifndef NDEBUG
2955 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2956 assert(isElementTypeCompatible(ATy->getElementType()));
2957 else
2958 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2959 #endif
2960 // If the elements are all zero or there are no elements, return a CAZ, which
2961 // is more dense and canonical.
2962 if (isAllZeros(Elements))
2963 return ConstantAggregateZero::get(Ty);
2964
2965 // Do a lookup to see if we have already formed one of these.
2966 auto &Slot =
2967 *Ty->getContext()
2968 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2969 .first;
2970
2971 // The bucket can point to a linked list of different CDS's that have the same
2972 // body but different types. For example, 0,0,0,1 could be a 4 element array
2973 // of i8, or a 1-element array of i32. They'll both end up in the same
2974 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2975 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
2976 for (; *Entry; Entry = &(*Entry)->Next)
2977 if ((*Entry)->getType() == Ty)
2978 return Entry->get();
2979
2980 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2981 // and return it.
2982 if (isa<ArrayType>(Ty)) {
2983 // Use reset because std::make_unique can't access the constructor.
2984 Entry->reset(new ConstantDataArray(Ty, Slot.first().data()));
2985 return Entry->get();
2986 }
2987
2988 assert(isa<VectorType>(Ty));
2989 // Use reset because std::make_unique can't access the constructor.
2990 Entry->reset(new ConstantDataVector(Ty, Slot.first().data()));
2991 return Entry->get();
2992 }
2993
destroyConstantImpl()2994 void ConstantDataSequential::destroyConstantImpl() {
2995 // Remove the constant from the StringMap.
2996 StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants =
2997 getType()->getContext().pImpl->CDSConstants;
2998
2999 auto Slot = CDSConstants.find(getRawDataValues());
3000
3001 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
3002
3003 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
3004
3005 // Remove the entry from the hash table.
3006 if (!(*Entry)->Next) {
3007 // If there is only one value in the bucket (common case) it must be this
3008 // entry, and removing the entry should remove the bucket completely.
3009 assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential");
3010 getContext().pImpl->CDSConstants.erase(Slot);
3011 return;
3012 }
3013
3014 // Otherwise, there are multiple entries linked off the bucket, unlink the
3015 // node we care about but keep the bucket around.
3016 while (true) {
3017 std::unique_ptr<ConstantDataSequential> &Node = *Entry;
3018 assert(Node && "Didn't find entry in its uniquing hash table!");
3019 // If we found our entry, unlink it from the list and we're done.
3020 if (Node.get() == this) {
3021 Node = std::move(Node->Next);
3022 return;
3023 }
3024
3025 Entry = &Node->Next;
3026 }
3027 }
3028
3029 /// getFP() constructors - Return a constant of array type with a float
3030 /// element type taken from argument `ElementType', and count taken from
3031 /// argument `Elts'. The amount of bits of the contained type must match the
3032 /// number of bits of the type contained in the passed in ArrayRef.
3033 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3034 /// that this can return a ConstantAggregateZero object.
getFP(Type * ElementType,ArrayRef<uint16_t> Elts)3035 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
3036 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3037 "Element type is not a 16-bit float type");
3038 Type *Ty = ArrayType::get(ElementType, Elts.size());
3039 const char *Data = reinterpret_cast<const char *>(Elts.data());
3040 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3041 }
getFP(Type * ElementType,ArrayRef<uint32_t> Elts)3042 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
3043 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3044 Type *Ty = ArrayType::get(ElementType, Elts.size());
3045 const char *Data = reinterpret_cast<const char *>(Elts.data());
3046 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3047 }
getFP(Type * ElementType,ArrayRef<uint64_t> Elts)3048 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
3049 assert(ElementType->isDoubleTy() &&
3050 "Element type is not a 64-bit float type");
3051 Type *Ty = ArrayType::get(ElementType, Elts.size());
3052 const char *Data = reinterpret_cast<const char *>(Elts.data());
3053 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3054 }
3055
getString(LLVMContext & Context,StringRef Str,bool AddNull)3056 Constant *ConstantDataArray::getString(LLVMContext &Context,
3057 StringRef Str, bool AddNull) {
3058 if (!AddNull) {
3059 const uint8_t *Data = Str.bytes_begin();
3060 return get(Context, makeArrayRef(Data, Str.size()));
3061 }
3062
3063 SmallVector<uint8_t, 64> ElementVals;
3064 ElementVals.append(Str.begin(), Str.end());
3065 ElementVals.push_back(0);
3066 return get(Context, ElementVals);
3067 }
3068
3069 /// get() constructors - Return a constant with vector type with an element
3070 /// count and element type matching the ArrayRef passed in. Note that this
3071 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)3072 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
3073 auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
3074 const char *Data = reinterpret_cast<const char *>(Elts.data());
3075 return getImpl(StringRef(Data, Elts.size() * 1), Ty);
3076 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)3077 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
3078 auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
3079 const char *Data = reinterpret_cast<const char *>(Elts.data());
3080 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3081 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)3082 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
3083 auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
3084 const char *Data = reinterpret_cast<const char *>(Elts.data());
3085 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3086 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)3087 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
3088 auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
3089 const char *Data = reinterpret_cast<const char *>(Elts.data());
3090 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3091 }
get(LLVMContext & Context,ArrayRef<float> Elts)3092 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
3093 auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
3094 const char *Data = reinterpret_cast<const char *>(Elts.data());
3095 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3096 }
get(LLVMContext & Context,ArrayRef<double> Elts)3097 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
3098 auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
3099 const char *Data = reinterpret_cast<const char *>(Elts.data());
3100 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3101 }
3102
3103 /// getFP() constructors - Return a constant of vector type with a float
3104 /// element type taken from argument `ElementType', and count taken from
3105 /// argument `Elts'. The amount of bits of the contained type must match the
3106 /// number of bits of the type contained in the passed in ArrayRef.
3107 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3108 /// that this can return a ConstantAggregateZero object.
getFP(Type * ElementType,ArrayRef<uint16_t> Elts)3109 Constant *ConstantDataVector::getFP(Type *ElementType,
3110 ArrayRef<uint16_t> Elts) {
3111 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3112 "Element type is not a 16-bit float type");
3113 auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3114 const char *Data = reinterpret_cast<const char *>(Elts.data());
3115 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3116 }
getFP(Type * ElementType,ArrayRef<uint32_t> Elts)3117 Constant *ConstantDataVector::getFP(Type *ElementType,
3118 ArrayRef<uint32_t> Elts) {
3119 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3120 auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3121 const char *Data = reinterpret_cast<const char *>(Elts.data());
3122 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3123 }
getFP(Type * ElementType,ArrayRef<uint64_t> Elts)3124 Constant *ConstantDataVector::getFP(Type *ElementType,
3125 ArrayRef<uint64_t> Elts) {
3126 assert(ElementType->isDoubleTy() &&
3127 "Element type is not a 64-bit float type");
3128 auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3129 const char *Data = reinterpret_cast<const char *>(Elts.data());
3130 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3131 }
3132
getSplat(unsigned NumElts,Constant * V)3133 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
3134 assert(isElementTypeCompatible(V->getType()) &&
3135 "Element type not compatible with ConstantData");
3136 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3137 if (CI->getType()->isIntegerTy(8)) {
3138 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
3139 return get(V->getContext(), Elts);
3140 }
3141 if (CI->getType()->isIntegerTy(16)) {
3142 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
3143 return get(V->getContext(), Elts);
3144 }
3145 if (CI->getType()->isIntegerTy(32)) {
3146 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
3147 return get(V->getContext(), Elts);
3148 }
3149 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
3150 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
3151 return get(V->getContext(), Elts);
3152 }
3153
3154 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3155 if (CFP->getType()->isHalfTy()) {
3156 SmallVector<uint16_t, 16> Elts(
3157 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3158 return getFP(V->getType(), Elts);
3159 }
3160 if (CFP->getType()->isBFloatTy()) {
3161 SmallVector<uint16_t, 16> Elts(
3162 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3163 return getFP(V->getType(), Elts);
3164 }
3165 if (CFP->getType()->isFloatTy()) {
3166 SmallVector<uint32_t, 16> Elts(
3167 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3168 return getFP(V->getType(), Elts);
3169 }
3170 if (CFP->getType()->isDoubleTy()) {
3171 SmallVector<uint64_t, 16> Elts(
3172 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3173 return getFP(V->getType(), Elts);
3174 }
3175 }
3176 return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V);
3177 }
3178
3179
getElementAsInteger(unsigned Elt) const3180 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
3181 assert(isa<IntegerType>(getElementType()) &&
3182 "Accessor can only be used when element is an integer");
3183 const char *EltPtr = getElementPointer(Elt);
3184
3185 // The data is stored in host byte order, make sure to cast back to the right
3186 // type to load with the right endianness.
3187 switch (getElementType()->getIntegerBitWidth()) {
3188 default: llvm_unreachable("Invalid bitwidth for CDS");
3189 case 8:
3190 return *reinterpret_cast<const uint8_t *>(EltPtr);
3191 case 16:
3192 return *reinterpret_cast<const uint16_t *>(EltPtr);
3193 case 32:
3194 return *reinterpret_cast<const uint32_t *>(EltPtr);
3195 case 64:
3196 return *reinterpret_cast<const uint64_t *>(EltPtr);
3197 }
3198 }
3199
getElementAsAPInt(unsigned Elt) const3200 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
3201 assert(isa<IntegerType>(getElementType()) &&
3202 "Accessor can only be used when element is an integer");
3203 const char *EltPtr = getElementPointer(Elt);
3204
3205 // The data is stored in host byte order, make sure to cast back to the right
3206 // type to load with the right endianness.
3207 switch (getElementType()->getIntegerBitWidth()) {
3208 default: llvm_unreachable("Invalid bitwidth for CDS");
3209 case 8: {
3210 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
3211 return APInt(8, EltVal);
3212 }
3213 case 16: {
3214 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3215 return APInt(16, EltVal);
3216 }
3217 case 32: {
3218 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3219 return APInt(32, EltVal);
3220 }
3221 case 64: {
3222 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3223 return APInt(64, EltVal);
3224 }
3225 }
3226 }
3227
getElementAsAPFloat(unsigned Elt) const3228 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
3229 const char *EltPtr = getElementPointer(Elt);
3230
3231 switch (getElementType()->getTypeID()) {
3232 default:
3233 llvm_unreachable("Accessor can only be used when element is float/double!");
3234 case Type::HalfTyID: {
3235 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3236 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
3237 }
3238 case Type::BFloatTyID: {
3239 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3240 return APFloat(APFloat::BFloat(), APInt(16, EltVal));
3241 }
3242 case Type::FloatTyID: {
3243 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3244 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
3245 }
3246 case Type::DoubleTyID: {
3247 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3248 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
3249 }
3250 }
3251 }
3252
getElementAsFloat(unsigned Elt) const3253 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
3254 assert(getElementType()->isFloatTy() &&
3255 "Accessor can only be used when element is a 'float'");
3256 return *reinterpret_cast<const float *>(getElementPointer(Elt));
3257 }
3258
getElementAsDouble(unsigned Elt) const3259 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
3260 assert(getElementType()->isDoubleTy() &&
3261 "Accessor can only be used when element is a 'float'");
3262 return *reinterpret_cast<const double *>(getElementPointer(Elt));
3263 }
3264
getElementAsConstant(unsigned Elt) const3265 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3266 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3267 getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3268 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3269
3270 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3271 }
3272
isString(unsigned CharSize) const3273 bool ConstantDataSequential::isString(unsigned CharSize) const {
3274 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3275 }
3276
isCString() const3277 bool ConstantDataSequential::isCString() const {
3278 if (!isString())
3279 return false;
3280
3281 StringRef Str = getAsString();
3282
3283 // The last value must be nul.
3284 if (Str.back() != 0) return false;
3285
3286 // Other elements must be non-nul.
3287 return Str.drop_back().find(0) == StringRef::npos;
3288 }
3289
isSplatData() const3290 bool ConstantDataVector::isSplatData() const {
3291 const char *Base = getRawDataValues().data();
3292
3293 // Compare elements 1+ to the 0'th element.
3294 unsigned EltSize = getElementByteSize();
3295 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3296 if (memcmp(Base, Base+i*EltSize, EltSize))
3297 return false;
3298
3299 return true;
3300 }
3301
isSplat() const3302 bool ConstantDataVector::isSplat() const {
3303 if (!IsSplatSet) {
3304 IsSplatSet = true;
3305 IsSplat = isSplatData();
3306 }
3307 return IsSplat;
3308 }
3309
getSplatValue() const3310 Constant *ConstantDataVector::getSplatValue() const {
3311 // If they're all the same, return the 0th one as a representative.
3312 return isSplat() ? getElementAsConstant(0) : nullptr;
3313 }
3314
3315 //===----------------------------------------------------------------------===//
3316 // handleOperandChange implementations
3317
3318 /// Update this constant array to change uses of
3319 /// 'From' to be uses of 'To'. This must update the uniquing data structures
3320 /// etc.
3321 ///
3322 /// Note that we intentionally replace all uses of From with To here. Consider
3323 /// a large array that uses 'From' 1000 times. By handling this case all here,
3324 /// ConstantArray::handleOperandChange is only invoked once, and that
3325 /// single invocation handles all 1000 uses. Handling them one at a time would
3326 /// work, but would be really slow because it would have to unique each updated
3327 /// array instance.
3328 ///
handleOperandChange(Value * From,Value * To)3329 void Constant::handleOperandChange(Value *From, Value *To) {
3330 Value *Replacement = nullptr;
3331 switch (getValueID()) {
3332 default:
3333 llvm_unreachable("Not a constant!");
3334 #define HANDLE_CONSTANT(Name) \
3335 case Value::Name##Val: \
3336 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
3337 break;
3338 #include "llvm/IR/Value.def"
3339 }
3340
3341 // If handleOperandChangeImpl returned nullptr, then it handled
3342 // replacing itself and we don't want to delete or replace anything else here.
3343 if (!Replacement)
3344 return;
3345
3346 // I do need to replace this with an existing value.
3347 assert(Replacement != this && "I didn't contain From!");
3348
3349 // Everyone using this now uses the replacement.
3350 replaceAllUsesWith(Replacement);
3351
3352 // Delete the old constant!
3353 destroyConstant();
3354 }
3355
handleOperandChangeImpl(Value * From,Value * To)3356 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3357 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3358 Constant *ToC = cast<Constant>(To);
3359
3360 SmallVector<Constant*, 8> Values;
3361 Values.reserve(getNumOperands()); // Build replacement array.
3362
3363 // Fill values with the modified operands of the constant array. Also,
3364 // compute whether this turns into an all-zeros array.
3365 unsigned NumUpdated = 0;
3366
3367 // Keep track of whether all the values in the array are "ToC".
3368 bool AllSame = true;
3369 Use *OperandList = getOperandList();
3370 unsigned OperandNo = 0;
3371 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3372 Constant *Val = cast<Constant>(O->get());
3373 if (Val == From) {
3374 OperandNo = (O - OperandList);
3375 Val = ToC;
3376 ++NumUpdated;
3377 }
3378 Values.push_back(Val);
3379 AllSame &= Val == ToC;
3380 }
3381
3382 if (AllSame && ToC->isNullValue())
3383 return ConstantAggregateZero::get(getType());
3384
3385 if (AllSame && isa<UndefValue>(ToC))
3386 return UndefValue::get(getType());
3387
3388 // Check for any other type of constant-folding.
3389 if (Constant *C = getImpl(getType(), Values))
3390 return C;
3391
3392 // Update to the new value.
3393 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3394 Values, this, From, ToC, NumUpdated, OperandNo);
3395 }
3396
handleOperandChangeImpl(Value * From,Value * To)3397 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3398 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3399 Constant *ToC = cast<Constant>(To);
3400
3401 Use *OperandList = getOperandList();
3402
3403 SmallVector<Constant*, 8> Values;
3404 Values.reserve(getNumOperands()); // Build replacement struct.
3405
3406 // Fill values with the modified operands of the constant struct. Also,
3407 // compute whether this turns into an all-zeros struct.
3408 unsigned NumUpdated = 0;
3409 bool AllSame = true;
3410 unsigned OperandNo = 0;
3411 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3412 Constant *Val = cast<Constant>(O->get());
3413 if (Val == From) {
3414 OperandNo = (O - OperandList);
3415 Val = ToC;
3416 ++NumUpdated;
3417 }
3418 Values.push_back(Val);
3419 AllSame &= Val == ToC;
3420 }
3421
3422 if (AllSame && ToC->isNullValue())
3423 return ConstantAggregateZero::get(getType());
3424
3425 if (AllSame && isa<UndefValue>(ToC))
3426 return UndefValue::get(getType());
3427
3428 // Update to the new value.
3429 return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3430 Values, this, From, ToC, NumUpdated, OperandNo);
3431 }
3432
handleOperandChangeImpl(Value * From,Value * To)3433 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3434 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3435 Constant *ToC = cast<Constant>(To);
3436
3437 SmallVector<Constant*, 8> Values;
3438 Values.reserve(getNumOperands()); // Build replacement array...
3439 unsigned NumUpdated = 0;
3440 unsigned OperandNo = 0;
3441 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3442 Constant *Val = getOperand(i);
3443 if (Val == From) {
3444 OperandNo = i;
3445 ++NumUpdated;
3446 Val = ToC;
3447 }
3448 Values.push_back(Val);
3449 }
3450
3451 if (Constant *C = getImpl(Values))
3452 return C;
3453
3454 // Update to the new value.
3455 return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3456 Values, this, From, ToC, NumUpdated, OperandNo);
3457 }
3458
handleOperandChangeImpl(Value * From,Value * ToV)3459 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3460 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3461 Constant *To = cast<Constant>(ToV);
3462
3463 SmallVector<Constant*, 8> NewOps;
3464 unsigned NumUpdated = 0;
3465 unsigned OperandNo = 0;
3466 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3467 Constant *Op = getOperand(i);
3468 if (Op == From) {
3469 OperandNo = i;
3470 ++NumUpdated;
3471 Op = To;
3472 }
3473 NewOps.push_back(Op);
3474 }
3475 assert(NumUpdated && "I didn't contain From!");
3476
3477 if (Constant *C = getWithOperands(NewOps, getType(), true))
3478 return C;
3479
3480 // Update to the new value.
3481 return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3482 NewOps, this, From, To, NumUpdated, OperandNo);
3483 }
3484
getAsInstruction() const3485 Instruction *ConstantExpr::getAsInstruction() const {
3486 SmallVector<Value *, 4> ValueOperands(operands());
3487 ArrayRef<Value*> Ops(ValueOperands);
3488
3489 switch (getOpcode()) {
3490 case Instruction::Trunc:
3491 case Instruction::ZExt:
3492 case Instruction::SExt:
3493 case Instruction::FPTrunc:
3494 case Instruction::FPExt:
3495 case Instruction::UIToFP:
3496 case Instruction::SIToFP:
3497 case Instruction::FPToUI:
3498 case Instruction::FPToSI:
3499 case Instruction::PtrToInt:
3500 case Instruction::IntToPtr:
3501 case Instruction::BitCast:
3502 case Instruction::AddrSpaceCast:
3503 return CastInst::Create((Instruction::CastOps)getOpcode(),
3504 Ops[0], getType());
3505 case Instruction::Select:
3506 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3507 case Instruction::InsertElement:
3508 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3509 case Instruction::ExtractElement:
3510 return ExtractElementInst::Create(Ops[0], Ops[1]);
3511 case Instruction::InsertValue:
3512 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3513 case Instruction::ExtractValue:
3514 return ExtractValueInst::Create(Ops[0], getIndices());
3515 case Instruction::ShuffleVector:
3516 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask());
3517
3518 case Instruction::GetElementPtr: {
3519 const auto *GO = cast<GEPOperator>(this);
3520 if (GO->isInBounds())
3521 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3522 Ops[0], Ops.slice(1));
3523 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3524 Ops.slice(1));
3525 }
3526 case Instruction::ICmp:
3527 case Instruction::FCmp:
3528 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3529 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3530 case Instruction::FNeg:
3531 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
3532 default:
3533 assert(getNumOperands() == 2 && "Must be binary operator?");
3534 BinaryOperator *BO =
3535 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3536 Ops[0], Ops[1]);
3537 if (isa<OverflowingBinaryOperator>(BO)) {
3538 BO->setHasNoUnsignedWrap(SubclassOptionalData &
3539 OverflowingBinaryOperator::NoUnsignedWrap);
3540 BO->setHasNoSignedWrap(SubclassOptionalData &
3541 OverflowingBinaryOperator::NoSignedWrap);
3542 }
3543 if (isa<PossiblyExactOperator>(BO))
3544 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3545 return BO;
3546 }
3547 }
3548