1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "CXXABI.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/ASTTypeTraits.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/AttrIterator.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/Comment.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclBase.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclContextInternals.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/DeclarationName.h"
31 #include "clang/AST/Expr.h"
32 #include "clang/AST/ExprCXX.h"
33 #include "clang/AST/ExternalASTSource.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/MangleNumberingContext.h"
36 #include "clang/AST/NestedNameSpecifier.h"
37 #include "clang/AST/RawCommentList.h"
38 #include "clang/AST/RecordLayout.h"
39 #include "clang/AST/RecursiveASTVisitor.h"
40 #include "clang/AST/Stmt.h"
41 #include "clang/AST/TemplateBase.h"
42 #include "clang/AST/TemplateName.h"
43 #include "clang/AST/Type.h"
44 #include "clang/AST/TypeLoc.h"
45 #include "clang/AST/UnresolvedSet.h"
46 #include "clang/AST/VTableBuilder.h"
47 #include "clang/Basic/AddressSpaces.h"
48 #include "clang/Basic/Builtins.h"
49 #include "clang/Basic/CommentOptions.h"
50 #include "clang/Basic/ExceptionSpecificationType.h"
51 #include "clang/Basic/FixedPoint.h"
52 #include "clang/Basic/IdentifierTable.h"
53 #include "clang/Basic/LLVM.h"
54 #include "clang/Basic/LangOptions.h"
55 #include "clang/Basic/Linkage.h"
56 #include "clang/Basic/ObjCRuntime.h"
57 #include "clang/Basic/SanitizerBlacklist.h"
58 #include "clang/Basic/SourceLocation.h"
59 #include "clang/Basic/SourceManager.h"
60 #include "clang/Basic/Specifiers.h"
61 #include "clang/Basic/TargetCXXABI.h"
62 #include "clang/Basic/TargetInfo.h"
63 #include "clang/Basic/XRayLists.h"
64 #include "llvm/ADT/APInt.h"
65 #include "llvm/ADT/APSInt.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/DenseMap.h"
68 #include "llvm/ADT/DenseSet.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/PointerUnion.h"
73 #include "llvm/ADT/STLExtras.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/StringExtras.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/Triple.h"
79 #include "llvm/Support/Capacity.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <cstddef>
88 #include <cstdint>
89 #include <cstdlib>
90 #include <map>
91 #include <memory>
92 #include <string>
93 #include <tuple>
94 #include <utility>
95 
96 using namespace clang;
97 
98 unsigned ASTContext::NumImplicitDefaultConstructors;
99 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
100 unsigned ASTContext::NumImplicitCopyConstructors;
101 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
102 unsigned ASTContext::NumImplicitMoveConstructors;
103 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
104 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
105 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
106 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
107 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
108 unsigned ASTContext::NumImplicitDestructors;
109 unsigned ASTContext::NumImplicitDestructorsDeclared;
110 
111 enum FloatingRank {
112   Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
113 };
114 
getRawCommentForDeclNoCache(const Decl * D) const115 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
116   if (!CommentsLoaded && ExternalSource) {
117     ExternalSource->ReadComments();
118 
119 #ifndef NDEBUG
120     ArrayRef<RawComment *> RawComments = Comments.getComments();
121     assert(std::is_sorted(RawComments.begin(), RawComments.end(),
122                           BeforeThanCompare<RawComment>(SourceMgr)));
123 #endif
124 
125     CommentsLoaded = true;
126   }
127 
128   assert(D);
129 
130   // User can not attach documentation to implicit declarations.
131   if (D->isImplicit())
132     return nullptr;
133 
134   // User can not attach documentation to implicit instantiations.
135   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
136     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
137       return nullptr;
138   }
139 
140   if (const auto *VD = dyn_cast<VarDecl>(D)) {
141     if (VD->isStaticDataMember() &&
142         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
143       return nullptr;
144   }
145 
146   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
147     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
148       return nullptr;
149   }
150 
151   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
152     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
153     if (TSK == TSK_ImplicitInstantiation ||
154         TSK == TSK_Undeclared)
155       return nullptr;
156   }
157 
158   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
159     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
160       return nullptr;
161   }
162   if (const auto *TD = dyn_cast<TagDecl>(D)) {
163     // When tag declaration (but not definition!) is part of the
164     // decl-specifier-seq of some other declaration, it doesn't get comment
165     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
166       return nullptr;
167   }
168   // TODO: handle comments for function parameters properly.
169   if (isa<ParmVarDecl>(D))
170     return nullptr;
171 
172   // TODO: we could look up template parameter documentation in the template
173   // documentation.
174   if (isa<TemplateTypeParmDecl>(D) ||
175       isa<NonTypeTemplateParmDecl>(D) ||
176       isa<TemplateTemplateParmDecl>(D))
177     return nullptr;
178 
179   ArrayRef<RawComment *> RawComments = Comments.getComments();
180 
181   // If there are no comments anywhere, we won't find anything.
182   if (RawComments.empty())
183     return nullptr;
184 
185   // Find declaration location.
186   // For Objective-C declarations we generally don't expect to have multiple
187   // declarators, thus use declaration starting location as the "declaration
188   // location".
189   // For all other declarations multiple declarators are used quite frequently,
190   // so we use the location of the identifier as the "declaration location".
191   SourceLocation DeclLoc;
192   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
193       isa<ObjCPropertyDecl>(D) ||
194       isa<RedeclarableTemplateDecl>(D) ||
195       isa<ClassTemplateSpecializationDecl>(D))
196     DeclLoc = D->getBeginLoc();
197   else {
198     DeclLoc = D->getLocation();
199     if (DeclLoc.isMacroID()) {
200       if (isa<TypedefDecl>(D)) {
201         // If location of the typedef name is in a macro, it is because being
202         // declared via a macro. Try using declaration's starting location as
203         // the "declaration location".
204         DeclLoc = D->getBeginLoc();
205       } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
206         // If location of the tag decl is inside a macro, but the spelling of
207         // the tag name comes from a macro argument, it looks like a special
208         // macro like NS_ENUM is being used to define the tag decl.  In that
209         // case, adjust the source location to the expansion loc so that we can
210         // attach the comment to the tag decl.
211         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
212             TD->isCompleteDefinition())
213           DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
214       }
215     }
216   }
217 
218   // If the declaration doesn't map directly to a location in a file, we
219   // can't find the comment.
220   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
221     return nullptr;
222 
223   // Find the comment that occurs just after this declaration.
224   ArrayRef<RawComment *>::iterator Comment;
225   {
226     // When searching for comments during parsing, the comment we are looking
227     // for is usually among the last two comments we parsed -- check them
228     // first.
229     RawComment CommentAtDeclLoc(
230         SourceMgr, SourceRange(DeclLoc), LangOpts.CommentOpts, false);
231     BeforeThanCompare<RawComment> Compare(SourceMgr);
232     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
233     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
234     if (!Found && RawComments.size() >= 2) {
235       MaybeBeforeDecl--;
236       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
237     }
238 
239     if (Found) {
240       Comment = MaybeBeforeDecl + 1;
241       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
242                                          &CommentAtDeclLoc, Compare));
243     } else {
244       // Slow path.
245       Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
246                                  &CommentAtDeclLoc, Compare);
247     }
248   }
249 
250   // Decompose the location for the declaration and find the beginning of the
251   // file buffer.
252   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
253 
254   // First check whether we have a trailing comment.
255   if (Comment != RawComments.end() &&
256       ((*Comment)->isDocumentation() || LangOpts.CommentOpts.ParseAllComments)
257       && (*Comment)->isTrailingComment() &&
258       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
259        isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
260     std::pair<FileID, unsigned> CommentBeginDecomp
261       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
262     // Check that Doxygen trailing comment comes after the declaration, starts
263     // on the same line and in the same file as the declaration.
264     if (DeclLocDecomp.first == CommentBeginDecomp.first &&
265         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
266           == SourceMgr.getLineNumber(CommentBeginDecomp.first,
267                                      CommentBeginDecomp.second)) {
268       return *Comment;
269     }
270   }
271 
272   // The comment just after the declaration was not a trailing comment.
273   // Let's look at the previous comment.
274   if (Comment == RawComments.begin())
275     return nullptr;
276   --Comment;
277 
278   // Check that we actually have a non-member Doxygen comment.
279   if (!((*Comment)->isDocumentation() ||
280         LangOpts.CommentOpts.ParseAllComments) ||
281       (*Comment)->isTrailingComment())
282     return nullptr;
283 
284   // Decompose the end of the comment.
285   std::pair<FileID, unsigned> CommentEndDecomp
286     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
287 
288   // If the comment and the declaration aren't in the same file, then they
289   // aren't related.
290   if (DeclLocDecomp.first != CommentEndDecomp.first)
291     return nullptr;
292 
293   // Get the corresponding buffer.
294   bool Invalid = false;
295   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
296                                                &Invalid).data();
297   if (Invalid)
298     return nullptr;
299 
300   // Extract text between the comment and declaration.
301   StringRef Text(Buffer + CommentEndDecomp.second,
302                  DeclLocDecomp.second - CommentEndDecomp.second);
303 
304   // There should be no other declarations or preprocessor directives between
305   // comment and declaration.
306   if (Text.find_first_of(";{}#@") != StringRef::npos)
307     return nullptr;
308 
309   return *Comment;
310 }
311 
312 /// If we have a 'templated' declaration for a template, adjust 'D' to
313 /// refer to the actual template.
314 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl * D)315 static const Decl *adjustDeclToTemplate(const Decl *D) {
316   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
317     // Is this function declaration part of a function template?
318     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
319       return FTD;
320 
321     // Nothing to do if function is not an implicit instantiation.
322     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
323       return D;
324 
325     // Function is an implicit instantiation of a function template?
326     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
327       return FTD;
328 
329     // Function is instantiated from a member definition of a class template?
330     if (const FunctionDecl *MemberDecl =
331             FD->getInstantiatedFromMemberFunction())
332       return MemberDecl;
333 
334     return D;
335   }
336   if (const auto *VD = dyn_cast<VarDecl>(D)) {
337     // Static data member is instantiated from a member definition of a class
338     // template?
339     if (VD->isStaticDataMember())
340       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
341         return MemberDecl;
342 
343     return D;
344   }
345   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
346     // Is this class declaration part of a class template?
347     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
348       return CTD;
349 
350     // Class is an implicit instantiation of a class template or partial
351     // specialization?
352     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
353       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
354         return D;
355       llvm::PointerUnion<ClassTemplateDecl *,
356                          ClassTemplatePartialSpecializationDecl *>
357           PU = CTSD->getSpecializedTemplateOrPartial();
358       return PU.is<ClassTemplateDecl*>() ?
359           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
360           static_cast<const Decl*>(
361               PU.get<ClassTemplatePartialSpecializationDecl *>());
362     }
363 
364     // Class is instantiated from a member definition of a class template?
365     if (const MemberSpecializationInfo *Info =
366                    CRD->getMemberSpecializationInfo())
367       return Info->getInstantiatedFrom();
368 
369     return D;
370   }
371   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
372     // Enum is instantiated from a member definition of a class template?
373     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
374       return MemberDecl;
375 
376     return D;
377   }
378   // FIXME: Adjust alias templates?
379   return D;
380 }
381 
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const382 const RawComment *ASTContext::getRawCommentForAnyRedecl(
383                                                 const Decl *D,
384                                                 const Decl **OriginalDecl) const {
385   D = adjustDeclToTemplate(D);
386 
387   // Check whether we have cached a comment for this declaration already.
388   {
389     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
390         RedeclComments.find(D);
391     if (Pos != RedeclComments.end()) {
392       const RawCommentAndCacheFlags &Raw = Pos->second;
393       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
394         if (OriginalDecl)
395           *OriginalDecl = Raw.getOriginalDecl();
396         return Raw.getRaw();
397       }
398     }
399   }
400 
401   // Search for comments attached to declarations in the redeclaration chain.
402   const RawComment *RC = nullptr;
403   const Decl *OriginalDeclForRC = nullptr;
404   for (auto I : D->redecls()) {
405     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
406         RedeclComments.find(I);
407     if (Pos != RedeclComments.end()) {
408       const RawCommentAndCacheFlags &Raw = Pos->second;
409       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
410         RC = Raw.getRaw();
411         OriginalDeclForRC = Raw.getOriginalDecl();
412         break;
413       }
414     } else {
415       RC = getRawCommentForDeclNoCache(I);
416       OriginalDeclForRC = I;
417       RawCommentAndCacheFlags Raw;
418       if (RC) {
419         // Call order swapped to work around ICE in VS2015 RTM (Release Win32)
420         // https://connect.microsoft.com/VisualStudio/feedback/details/1741530
421         Raw.setKind(RawCommentAndCacheFlags::FromDecl);
422         Raw.setRaw(RC);
423       } else
424         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
425       Raw.setOriginalDecl(I);
426       RedeclComments[I] = Raw;
427       if (RC)
428         break;
429     }
430   }
431 
432   // If we found a comment, it should be a documentation comment.
433   assert(!RC || RC->isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
434 
435   if (OriginalDecl)
436     *OriginalDecl = OriginalDeclForRC;
437 
438   // Update cache for every declaration in the redeclaration chain.
439   RawCommentAndCacheFlags Raw;
440   Raw.setRaw(RC);
441   Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
442   Raw.setOriginalDecl(OriginalDeclForRC);
443 
444   for (auto I : D->redecls()) {
445     RawCommentAndCacheFlags &R = RedeclComments[I];
446     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
447       R = Raw;
448   }
449 
450   return RC;
451 }
452 
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)453 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
454                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
455   const DeclContext *DC = ObjCMethod->getDeclContext();
456   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
457     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
458     if (!ID)
459       return;
460     // Add redeclared method here.
461     for (const auto *Ext : ID->known_extensions()) {
462       if (ObjCMethodDecl *RedeclaredMethod =
463             Ext->getMethod(ObjCMethod->getSelector(),
464                                   ObjCMethod->isInstanceMethod()))
465         Redeclared.push_back(RedeclaredMethod);
466     }
467   }
468 }
469 
cloneFullComment(comments::FullComment * FC,const Decl * D) const470 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
471                                                     const Decl *D) const {
472   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
473   ThisDeclInfo->CommentDecl = D;
474   ThisDeclInfo->IsFilled = false;
475   ThisDeclInfo->fill();
476   ThisDeclInfo->CommentDecl = FC->getDecl();
477   if (!ThisDeclInfo->TemplateParameters)
478     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
479   comments::FullComment *CFC =
480     new (*this) comments::FullComment(FC->getBlocks(),
481                                       ThisDeclInfo);
482   return CFC;
483 }
484 
getLocalCommentForDeclUncached(const Decl * D) const485 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
486   const RawComment *RC = getRawCommentForDeclNoCache(D);
487   return RC ? RC->parse(*this, nullptr, D) : nullptr;
488 }
489 
getCommentForDecl(const Decl * D,const Preprocessor * PP) const490 comments::FullComment *ASTContext::getCommentForDecl(
491                                               const Decl *D,
492                                               const Preprocessor *PP) const {
493   if (D->isInvalidDecl())
494     return nullptr;
495   D = adjustDeclToTemplate(D);
496 
497   const Decl *Canonical = D->getCanonicalDecl();
498   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
499       ParsedComments.find(Canonical);
500 
501   if (Pos != ParsedComments.end()) {
502     if (Canonical != D) {
503       comments::FullComment *FC = Pos->second;
504       comments::FullComment *CFC = cloneFullComment(FC, D);
505       return CFC;
506     }
507     return Pos->second;
508   }
509 
510   const Decl *OriginalDecl;
511 
512   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
513   if (!RC) {
514     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
515       SmallVector<const NamedDecl*, 8> Overridden;
516       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
517       if (OMD && OMD->isPropertyAccessor())
518         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
519           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
520             return cloneFullComment(FC, D);
521       if (OMD)
522         addRedeclaredMethods(OMD, Overridden);
523       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
524       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
525         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
526           return cloneFullComment(FC, D);
527     }
528     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
529       // Attach any tag type's documentation to its typedef if latter
530       // does not have one of its own.
531       QualType QT = TD->getUnderlyingType();
532       if (const auto *TT = QT->getAs<TagType>())
533         if (const Decl *TD = TT->getDecl())
534           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
535             return cloneFullComment(FC, D);
536     }
537     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
538       while (IC->getSuperClass()) {
539         IC = IC->getSuperClass();
540         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
541           return cloneFullComment(FC, D);
542       }
543     }
544     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
545       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
546         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
547           return cloneFullComment(FC, D);
548     }
549     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
550       if (!(RD = RD->getDefinition()))
551         return nullptr;
552       // Check non-virtual bases.
553       for (const auto &I : RD->bases()) {
554         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
555           continue;
556         QualType Ty = I.getType();
557         if (Ty.isNull())
558           continue;
559         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
560           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
561             continue;
562 
563           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
564             return cloneFullComment(FC, D);
565         }
566       }
567       // Check virtual bases.
568       for (const auto &I : RD->vbases()) {
569         if (I.getAccessSpecifier() != AS_public)
570           continue;
571         QualType Ty = I.getType();
572         if (Ty.isNull())
573           continue;
574         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
575           if (!(VirtualBase= VirtualBase->getDefinition()))
576             continue;
577           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
578             return cloneFullComment(FC, D);
579         }
580       }
581     }
582     return nullptr;
583   }
584 
585   // If the RawComment was attached to other redeclaration of this Decl, we
586   // should parse the comment in context of that other Decl.  This is important
587   // because comments can contain references to parameter names which can be
588   // different across redeclarations.
589   if (D != OriginalDecl)
590     return getCommentForDecl(OriginalDecl, PP);
591 
592   comments::FullComment *FC = RC->parse(*this, PP, D);
593   ParsedComments[Canonical] = FC;
594   return FC;
595 }
596 
597 void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)598 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
599                                                TemplateTemplateParmDecl *Parm) {
600   ID.AddInteger(Parm->getDepth());
601   ID.AddInteger(Parm->getPosition());
602   ID.AddBoolean(Parm->isParameterPack());
603 
604   TemplateParameterList *Params = Parm->getTemplateParameters();
605   ID.AddInteger(Params->size());
606   for (TemplateParameterList::const_iterator P = Params->begin(),
607                                           PEnd = Params->end();
608        P != PEnd; ++P) {
609     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
610       ID.AddInteger(0);
611       ID.AddBoolean(TTP->isParameterPack());
612       continue;
613     }
614 
615     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
616       ID.AddInteger(1);
617       ID.AddBoolean(NTTP->isParameterPack());
618       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
619       if (NTTP->isExpandedParameterPack()) {
620         ID.AddBoolean(true);
621         ID.AddInteger(NTTP->getNumExpansionTypes());
622         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
623           QualType T = NTTP->getExpansionType(I);
624           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
625         }
626       } else
627         ID.AddBoolean(false);
628       continue;
629     }
630 
631     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
632     ID.AddInteger(2);
633     Profile(ID, TTP);
634   }
635 }
636 
637 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const638 ASTContext::getCanonicalTemplateTemplateParmDecl(
639                                           TemplateTemplateParmDecl *TTP) const {
640   // Check if we already have a canonical template template parameter.
641   llvm::FoldingSetNodeID ID;
642   CanonicalTemplateTemplateParm::Profile(ID, TTP);
643   void *InsertPos = nullptr;
644   CanonicalTemplateTemplateParm *Canonical
645     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
646   if (Canonical)
647     return Canonical->getParam();
648 
649   // Build a canonical template parameter list.
650   TemplateParameterList *Params = TTP->getTemplateParameters();
651   SmallVector<NamedDecl *, 4> CanonParams;
652   CanonParams.reserve(Params->size());
653   for (TemplateParameterList::const_iterator P = Params->begin(),
654                                           PEnd = Params->end();
655        P != PEnd; ++P) {
656     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
657       CanonParams.push_back(
658                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
659                                                SourceLocation(),
660                                                SourceLocation(),
661                                                TTP->getDepth(),
662                                                TTP->getIndex(), nullptr, false,
663                                                TTP->isParameterPack()));
664     else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
665       QualType T = getCanonicalType(NTTP->getType());
666       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
667       NonTypeTemplateParmDecl *Param;
668       if (NTTP->isExpandedParameterPack()) {
669         SmallVector<QualType, 2> ExpandedTypes;
670         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
671         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
672           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
673           ExpandedTInfos.push_back(
674                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
675         }
676 
677         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
678                                                 SourceLocation(),
679                                                 SourceLocation(),
680                                                 NTTP->getDepth(),
681                                                 NTTP->getPosition(), nullptr,
682                                                 T,
683                                                 TInfo,
684                                                 ExpandedTypes,
685                                                 ExpandedTInfos);
686       } else {
687         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
688                                                 SourceLocation(),
689                                                 SourceLocation(),
690                                                 NTTP->getDepth(),
691                                                 NTTP->getPosition(), nullptr,
692                                                 T,
693                                                 NTTP->isParameterPack(),
694                                                 TInfo);
695       }
696       CanonParams.push_back(Param);
697 
698     } else
699       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
700                                            cast<TemplateTemplateParmDecl>(*P)));
701   }
702 
703   assert(!TTP->getRequiresClause() &&
704          "Unexpected requires-clause on template template-parameter");
705   Expr *const CanonRequiresClause = nullptr;
706 
707   TemplateTemplateParmDecl *CanonTTP
708     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
709                                        SourceLocation(), TTP->getDepth(),
710                                        TTP->getPosition(),
711                                        TTP->isParameterPack(),
712                                        nullptr,
713                          TemplateParameterList::Create(*this, SourceLocation(),
714                                                        SourceLocation(),
715                                                        CanonParams,
716                                                        SourceLocation(),
717                                                        CanonRequiresClause));
718 
719   // Get the new insert position for the node we care about.
720   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
721   assert(!Canonical && "Shouldn't be in the map!");
722   (void)Canonical;
723 
724   // Create the canonical template template parameter entry.
725   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
726   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
727   return CanonTTP;
728 }
729 
createCXXABI(const TargetInfo & T)730 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
731   if (!LangOpts.CPlusPlus) return nullptr;
732 
733   switch (T.getCXXABI().getKind()) {
734   case TargetCXXABI::GenericARM: // Same as Itanium at this level
735   case TargetCXXABI::iOS:
736   case TargetCXXABI::iOS64:
737   case TargetCXXABI::WatchOS:
738   case TargetCXXABI::GenericAArch64:
739   case TargetCXXABI::GenericMIPS:
740   case TargetCXXABI::GenericItanium:
741   case TargetCXXABI::WebAssembly:
742     return CreateItaniumCXXABI(*this);
743   case TargetCXXABI::Microsoft:
744     return CreateMicrosoftCXXABI(*this);
745   }
746   llvm_unreachable("Invalid CXXABI type!");
747 }
748 
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)749 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
750                                            const LangOptions &LOpts) {
751   if (LOpts.FakeAddressSpaceMap) {
752     // The fake address space map must have a distinct entry for each
753     // language-specific address space.
754     static const unsigned FakeAddrSpaceMap[] = {
755       0, // Default
756       1, // opencl_global
757       3, // opencl_local
758       2, // opencl_constant
759       0, // opencl_private
760       4, // opencl_generic
761       5, // cuda_device
762       6, // cuda_constant
763       7  // cuda_shared
764     };
765     return &FakeAddrSpaceMap;
766   } else {
767     return &T.getAddressSpaceMap();
768   }
769 }
770 
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)771 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
772                                           const LangOptions &LangOpts) {
773   switch (LangOpts.getAddressSpaceMapMangling()) {
774   case LangOptions::ASMM_Target:
775     return TI.useAddressSpaceMapMangling();
776   case LangOptions::ASMM_On:
777     return true;
778   case LangOptions::ASMM_Off:
779     return false;
780   }
781   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
782 }
783 
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins)784 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
785                        IdentifierTable &idents, SelectorTable &sels,
786                        Builtin::Context &builtins)
787     : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
788       DependentTemplateSpecializationTypes(this_()),
789       SubstTemplateTemplateParmPacks(this_()), SourceMgr(SM), LangOpts(LOpts),
790       SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
791       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
792                                         LangOpts.XRayNeverInstrumentFiles,
793                                         LangOpts.XRayAttrListFiles, SM)),
794       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
795       BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
796       CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
797       CompCategories(this_()), LastSDM(nullptr, 0) {
798   TUDecl = TranslationUnitDecl::Create(*this);
799   TraversalScope = {TUDecl};
800 }
801 
~ASTContext()802 ASTContext::~ASTContext() {
803   // Release the DenseMaps associated with DeclContext objects.
804   // FIXME: Is this the ideal solution?
805   ReleaseDeclContextMaps();
806 
807   // Call all of the deallocation functions on all of their targets.
808   for (auto &Pair : Deallocations)
809     (Pair.first)(Pair.second);
810 
811   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
812   // because they can contain DenseMaps.
813   for (llvm::DenseMap<const ObjCContainerDecl*,
814        const ASTRecordLayout*>::iterator
815        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
816     // Increment in loop to prevent using deallocated memory.
817     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
818       R->Destroy(*this);
819 
820   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
821        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
822     // Increment in loop to prevent using deallocated memory.
823     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
824       R->Destroy(*this);
825   }
826 
827   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
828                                                     AEnd = DeclAttrs.end();
829        A != AEnd; ++A)
830     A->second->~AttrVec();
831 
832   for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
833        MaterializedTemporaryValues)
834     MTVPair.second->~APValue();
835 
836   for (const auto &Value : ModuleInitializers)
837     Value.second->~PerModuleInitializers();
838 }
839 
840 class ASTContext::ParentMap {
841   /// Contains parents of a node.
842   using ParentVector = llvm::SmallVector<ast_type_traits::DynTypedNode, 2>;
843 
844   /// Maps from a node to its parents. This is used for nodes that have
845   /// pointer identity only, which are more common and we can save space by
846   /// only storing a unique pointer to them.
847   using ParentMapPointers = llvm::DenseMap<
848       const void *,
849       llvm::PointerUnion4<const Decl *, const Stmt *,
850                           ast_type_traits::DynTypedNode *, ParentVector *>>;
851 
852   /// Parent map for nodes without pointer identity. We store a full
853   /// DynTypedNode for all keys.
854   using ParentMapOtherNodes = llvm::DenseMap<
855       ast_type_traits::DynTypedNode,
856       llvm::PointerUnion4<const Decl *, const Stmt *,
857                           ast_type_traits::DynTypedNode *, ParentVector *>>;
858 
859   ParentMapPointers PointerParents;
860   ParentMapOtherNodes OtherParents;
861   class ASTVisitor;
862 
863   static ast_type_traits::DynTypedNode
getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U)864   getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U) {
865     if (const auto *D = U.dyn_cast<const Decl *>())
866       return ast_type_traits::DynTypedNode::create(*D);
867     if (const auto *S = U.dyn_cast<const Stmt *>())
868       return ast_type_traits::DynTypedNode::create(*S);
869     return *U.get<ast_type_traits::DynTypedNode *>();
870   }
871 
872   template <typename NodeTy, typename MapTy>
getDynNodeFromMap(const NodeTy & Node,const MapTy & Map)873   static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
874                                                         const MapTy &Map) {
875     auto I = Map.find(Node);
876     if (I == Map.end()) {
877       return llvm::ArrayRef<ast_type_traits::DynTypedNode>();
878     }
879     if (const auto *V = I->second.template dyn_cast<ParentVector *>()) {
880       return llvm::makeArrayRef(*V);
881     }
882     return getSingleDynTypedNodeFromParentMap(I->second);
883   }
884 
885 public:
886   ParentMap(ASTContext &Ctx);
~ParentMap()887   ~ParentMap() {
888     for (const auto &Entry : PointerParents) {
889       if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
890         delete Entry.second.get<ast_type_traits::DynTypedNode *>();
891       } else if (Entry.second.is<ParentVector *>()) {
892         delete Entry.second.get<ParentVector *>();
893       }
894     }
895     for (const auto &Entry : OtherParents) {
896       if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
897         delete Entry.second.get<ast_type_traits::DynTypedNode *>();
898       } else if (Entry.second.is<ParentVector *>()) {
899         delete Entry.second.get<ParentVector *>();
900       }
901     }
902   }
903 
getParents(const ast_type_traits::DynTypedNode & Node)904   DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node) {
905     if (Node.getNodeKind().hasPointerIdentity())
906       return getDynNodeFromMap(Node.getMemoizationData(), PointerParents);
907     return getDynNodeFromMap(Node, OtherParents);
908   }
909 };
910 
setTraversalScope(const std::vector<Decl * > & TopLevelDecls)911 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
912   TraversalScope = TopLevelDecls;
913   Parents.reset();
914 }
915 
AddDeallocation(void (* Callback)(void *),void * Data)916 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
917   Deallocations.push_back({Callback, Data});
918 }
919 
920 void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)921 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
922   ExternalSource = std::move(Source);
923 }
924 
PrintStats() const925 void ASTContext::PrintStats() const {
926   llvm::errs() << "\n*** AST Context Stats:\n";
927   llvm::errs() << "  " << Types.size() << " types total.\n";
928 
929   unsigned counts[] = {
930 #define TYPE(Name, Parent) 0,
931 #define ABSTRACT_TYPE(Name, Parent)
932 #include "clang/AST/TypeNodes.def"
933     0 // Extra
934   };
935 
936   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
937     Type *T = Types[i];
938     counts[(unsigned)T->getTypeClass()]++;
939   }
940 
941   unsigned Idx = 0;
942   unsigned TotalBytes = 0;
943 #define TYPE(Name, Parent)                                              \
944   if (counts[Idx])                                                      \
945     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
946                  << " types, " << sizeof(Name##Type) << " each "        \
947                  << "(" << counts[Idx] * sizeof(Name##Type)             \
948                  << " bytes)\n";                                        \
949   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
950   ++Idx;
951 #define ABSTRACT_TYPE(Name, Parent)
952 #include "clang/AST/TypeNodes.def"
953 
954   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
955 
956   // Implicit special member functions.
957   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
958                << NumImplicitDefaultConstructors
959                << " implicit default constructors created\n";
960   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
961                << NumImplicitCopyConstructors
962                << " implicit copy constructors created\n";
963   if (getLangOpts().CPlusPlus)
964     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
965                  << NumImplicitMoveConstructors
966                  << " implicit move constructors created\n";
967   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
968                << NumImplicitCopyAssignmentOperators
969                << " implicit copy assignment operators created\n";
970   if (getLangOpts().CPlusPlus)
971     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
972                  << NumImplicitMoveAssignmentOperators
973                  << " implicit move assignment operators created\n";
974   llvm::errs() << NumImplicitDestructorsDeclared << "/"
975                << NumImplicitDestructors
976                << " implicit destructors created\n";
977 
978   if (ExternalSource) {
979     llvm::errs() << "\n";
980     ExternalSource->PrintStats();
981   }
982 
983   BumpAlloc.PrintStats();
984 }
985 
mergeDefinitionIntoModule(NamedDecl * ND,Module * M,bool NotifyListeners)986 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
987                                            bool NotifyListeners) {
988   if (NotifyListeners)
989     if (auto *Listener = getASTMutationListener())
990       Listener->RedefinedHiddenDefinition(ND, M);
991 
992   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
993 }
994 
deduplicateMergedDefinitonsFor(NamedDecl * ND)995 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
996   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
997   if (It == MergedDefModules.end())
998     return;
999 
1000   auto &Merged = It->second;
1001   llvm::DenseSet<Module*> Found;
1002   for (Module *&M : Merged)
1003     if (!Found.insert(M).second)
1004       M = nullptr;
1005   Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1006 }
1007 
resolve(ASTContext & Ctx)1008 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1009   if (LazyInitializers.empty())
1010     return;
1011 
1012   auto *Source = Ctx.getExternalSource();
1013   assert(Source && "lazy initializers but no external source");
1014 
1015   auto LazyInits = std::move(LazyInitializers);
1016   LazyInitializers.clear();
1017 
1018   for (auto ID : LazyInits)
1019     Initializers.push_back(Source->GetExternalDecl(ID));
1020 
1021   assert(LazyInitializers.empty() &&
1022          "GetExternalDecl for lazy module initializer added more inits");
1023 }
1024 
addModuleInitializer(Module * M,Decl * D)1025 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1026   // One special case: if we add a module initializer that imports another
1027   // module, and that module's only initializer is an ImportDecl, simplify.
1028   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1029     auto It = ModuleInitializers.find(ID->getImportedModule());
1030 
1031     // Maybe the ImportDecl does nothing at all. (Common case.)
1032     if (It == ModuleInitializers.end())
1033       return;
1034 
1035     // Maybe the ImportDecl only imports another ImportDecl.
1036     auto &Imported = *It->second;
1037     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1038       Imported.resolve(*this);
1039       auto *OnlyDecl = Imported.Initializers.front();
1040       if (isa<ImportDecl>(OnlyDecl))
1041         D = OnlyDecl;
1042     }
1043   }
1044 
1045   auto *&Inits = ModuleInitializers[M];
1046   if (!Inits)
1047     Inits = new (*this) PerModuleInitializers;
1048   Inits->Initializers.push_back(D);
1049 }
1050 
addLazyModuleInitializers(Module * M,ArrayRef<uint32_t> IDs)1051 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1052   auto *&Inits = ModuleInitializers[M];
1053   if (!Inits)
1054     Inits = new (*this) PerModuleInitializers;
1055   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1056                                  IDs.begin(), IDs.end());
1057 }
1058 
getModuleInitializers(Module * M)1059 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1060   auto It = ModuleInitializers.find(M);
1061   if (It == ModuleInitializers.end())
1062     return None;
1063 
1064   auto *Inits = It->second;
1065   Inits->resolve(*this);
1066   return Inits->Initializers;
1067 }
1068 
getExternCContextDecl() const1069 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1070   if (!ExternCContext)
1071     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1072 
1073   return ExternCContext;
1074 }
1075 
1076 BuiltinTemplateDecl *
buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,const IdentifierInfo * II) const1077 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1078                                      const IdentifierInfo *II) const {
1079   auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1080   BuiltinTemplate->setImplicit();
1081   TUDecl->addDecl(BuiltinTemplate);
1082 
1083   return BuiltinTemplate;
1084 }
1085 
1086 BuiltinTemplateDecl *
getMakeIntegerSeqDecl() const1087 ASTContext::getMakeIntegerSeqDecl() const {
1088   if (!MakeIntegerSeqDecl)
1089     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1090                                                   getMakeIntegerSeqName());
1091   return MakeIntegerSeqDecl;
1092 }
1093 
1094 BuiltinTemplateDecl *
getTypePackElementDecl() const1095 ASTContext::getTypePackElementDecl() const {
1096   if (!TypePackElementDecl)
1097     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1098                                                    getTypePackElementName());
1099   return TypePackElementDecl;
1100 }
1101 
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const1102 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1103                                             RecordDecl::TagKind TK) const {
1104   SourceLocation Loc;
1105   RecordDecl *NewDecl;
1106   if (getLangOpts().CPlusPlus)
1107     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1108                                     Loc, &Idents.get(Name));
1109   else
1110     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1111                                  &Idents.get(Name));
1112   NewDecl->setImplicit();
1113   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1114       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1115   return NewDecl;
1116 }
1117 
buildImplicitTypedef(QualType T,StringRef Name) const1118 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1119                                               StringRef Name) const {
1120   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1121   TypedefDecl *NewDecl = TypedefDecl::Create(
1122       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1123       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1124   NewDecl->setImplicit();
1125   return NewDecl;
1126 }
1127 
getInt128Decl() const1128 TypedefDecl *ASTContext::getInt128Decl() const {
1129   if (!Int128Decl)
1130     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1131   return Int128Decl;
1132 }
1133 
getUInt128Decl() const1134 TypedefDecl *ASTContext::getUInt128Decl() const {
1135   if (!UInt128Decl)
1136     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1137   return UInt128Decl;
1138 }
1139 
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)1140 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1141   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1142   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1143   Types.push_back(Ty);
1144 }
1145 
InitBuiltinTypes(const TargetInfo & Target,const TargetInfo * AuxTarget)1146 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1147                                   const TargetInfo *AuxTarget) {
1148   assert((!this->Target || this->Target == &Target) &&
1149          "Incorrect target reinitialization");
1150   assert(VoidTy.isNull() && "Context reinitialized?");
1151 
1152   this->Target = &Target;
1153   this->AuxTarget = AuxTarget;
1154 
1155   ABI.reset(createCXXABI(Target));
1156   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1157   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1158 
1159   // C99 6.2.5p19.
1160   InitBuiltinType(VoidTy,              BuiltinType::Void);
1161 
1162   // C99 6.2.5p2.
1163   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1164   // C99 6.2.5p3.
1165   if (LangOpts.CharIsSigned)
1166     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1167   else
1168     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1169   // C99 6.2.5p4.
1170   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1171   InitBuiltinType(ShortTy,             BuiltinType::Short);
1172   InitBuiltinType(IntTy,               BuiltinType::Int);
1173   InitBuiltinType(LongTy,              BuiltinType::Long);
1174   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1175 
1176   // C99 6.2.5p6.
1177   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1178   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1179   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1180   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1181   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1182 
1183   // C99 6.2.5p10.
1184   InitBuiltinType(FloatTy,             BuiltinType::Float);
1185   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1186   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1187 
1188   // GNU extension, __float128 for IEEE quadruple precision
1189   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1190 
1191   // C11 extension ISO/IEC TS 18661-3
1192   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1193 
1194   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1195   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1196   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1197   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1198   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1199   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1200   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1201   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1202   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1203   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1204   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1205   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1206   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1207   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1208   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1209   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1210   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1211   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1212   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1213   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1214   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1215   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1216   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1217   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1218   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1219 
1220   // GNU extension, 128-bit integers.
1221   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1222   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1223 
1224   // C++ 3.9.1p5
1225   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1226     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1227   else  // -fshort-wchar makes wchar_t be unsigned.
1228     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1229   if (LangOpts.CPlusPlus && LangOpts.WChar)
1230     WideCharTy = WCharTy;
1231   else {
1232     // C99 (or C++ using -fno-wchar).
1233     WideCharTy = getFromTargetType(Target.getWCharType());
1234   }
1235 
1236   WIntTy = getFromTargetType(Target.getWIntType());
1237 
1238   // C++20 (proposed)
1239   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1240 
1241   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1242     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1243   else // C99
1244     Char16Ty = getFromTargetType(Target.getChar16Type());
1245 
1246   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1247     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1248   else // C99
1249     Char32Ty = getFromTargetType(Target.getChar32Type());
1250 
1251   // Placeholder type for type-dependent expressions whose type is
1252   // completely unknown. No code should ever check a type against
1253   // DependentTy and users should never see it; however, it is here to
1254   // help diagnose failures to properly check for type-dependent
1255   // expressions.
1256   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1257 
1258   // Placeholder type for functions.
1259   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1260 
1261   // Placeholder type for bound members.
1262   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1263 
1264   // Placeholder type for pseudo-objects.
1265   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1266 
1267   // "any" type; useful for debugger-like clients.
1268   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1269 
1270   // Placeholder type for unbridged ARC casts.
1271   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1272 
1273   // Placeholder type for builtin functions.
1274   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1275 
1276   // Placeholder type for OMP array sections.
1277   if (LangOpts.OpenMP)
1278     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1279 
1280   // C99 6.2.5p11.
1281   FloatComplexTy      = getComplexType(FloatTy);
1282   DoubleComplexTy     = getComplexType(DoubleTy);
1283   LongDoubleComplexTy = getComplexType(LongDoubleTy);
1284   Float128ComplexTy   = getComplexType(Float128Ty);
1285 
1286   // Builtin types for 'id', 'Class', and 'SEL'.
1287   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1288   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1289   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1290 
1291   if (LangOpts.OpenCL) {
1292 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1293     InitBuiltinType(SingletonId, BuiltinType::Id);
1294 #include "clang/Basic/OpenCLImageTypes.def"
1295 
1296     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1297     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1298     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1299     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1300     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1301 
1302 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1303     InitBuiltinType(Id##Ty, BuiltinType::Id);
1304 #include "clang/Basic/OpenCLExtensionTypes.def"
1305   }
1306 
1307   // Builtin type for __objc_yes and __objc_no
1308   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1309                        SignedCharTy : BoolTy);
1310 
1311   ObjCConstantStringType = QualType();
1312 
1313   ObjCSuperType = QualType();
1314 
1315   // void * type
1316   if (LangOpts.OpenCLVersion >= 200) {
1317     auto Q = VoidTy.getQualifiers();
1318     Q.setAddressSpace(LangAS::opencl_generic);
1319     VoidPtrTy = getPointerType(getCanonicalType(
1320         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1321   } else {
1322     VoidPtrTy = getPointerType(VoidTy);
1323   }
1324 
1325   // nullptr type (C++0x 2.14.7)
1326   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1327 
1328   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1329   InitBuiltinType(HalfTy, BuiltinType::Half);
1330 
1331   // Builtin type used to help define __builtin_va_list.
1332   VaListTagDecl = nullptr;
1333 }
1334 
getDiagnostics() const1335 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1336   return SourceMgr.getDiagnostics();
1337 }
1338 
getDeclAttrs(const Decl * D)1339 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1340   AttrVec *&Result = DeclAttrs[D];
1341   if (!Result) {
1342     void *Mem = Allocate(sizeof(AttrVec));
1343     Result = new (Mem) AttrVec;
1344   }
1345 
1346   return *Result;
1347 }
1348 
1349 /// Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1350 void ASTContext::eraseDeclAttrs(const Decl *D) {
1351   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1352   if (Pos != DeclAttrs.end()) {
1353     Pos->second->~AttrVec();
1354     DeclAttrs.erase(Pos);
1355   }
1356 }
1357 
1358 // FIXME: Remove ?
1359 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1360 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1361   assert(Var->isStaticDataMember() && "Not a static data member");
1362   return getTemplateOrSpecializationInfo(Var)
1363       .dyn_cast<MemberSpecializationInfo *>();
1364 }
1365 
1366 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1367 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1368   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1369       TemplateOrInstantiation.find(Var);
1370   if (Pos == TemplateOrInstantiation.end())
1371     return {};
1372 
1373   return Pos->second;
1374 }
1375 
1376 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1377 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1378                                                 TemplateSpecializationKind TSK,
1379                                           SourceLocation PointOfInstantiation) {
1380   assert(Inst->isStaticDataMember() && "Not a static data member");
1381   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1382   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1383                                             Tmpl, TSK, PointOfInstantiation));
1384 }
1385 
1386 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1387 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1388                                             TemplateOrSpecializationInfo TSI) {
1389   assert(!TemplateOrInstantiation[Inst] &&
1390          "Already noted what the variable was instantiated from");
1391   TemplateOrInstantiation[Inst] = TSI;
1392 }
1393 
getClassScopeSpecializationPattern(const FunctionDecl * FD)1394 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1395                                                      const FunctionDecl *FD){
1396   assert(FD && "Specialization is 0");
1397   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1398     = ClassScopeSpecializationPattern.find(FD);
1399   if (Pos == ClassScopeSpecializationPattern.end())
1400     return nullptr;
1401 
1402   return Pos->second;
1403 }
1404 
setClassScopeSpecializationPattern(FunctionDecl * FD,FunctionDecl * Pattern)1405 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1406                                         FunctionDecl *Pattern) {
1407   assert(FD && "Specialization is 0");
1408   assert(Pattern && "Class scope specialization pattern is 0");
1409   ClassScopeSpecializationPattern[FD] = Pattern;
1410 }
1411 
1412 NamedDecl *
getInstantiatedFromUsingDecl(NamedDecl * UUD)1413 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1414   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1415   if (Pos == InstantiatedFromUsingDecl.end())
1416     return nullptr;
1417 
1418   return Pos->second;
1419 }
1420 
1421 void
setInstantiatedFromUsingDecl(NamedDecl * Inst,NamedDecl * Pattern)1422 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1423   assert((isa<UsingDecl>(Pattern) ||
1424           isa<UnresolvedUsingValueDecl>(Pattern) ||
1425           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1426          "pattern decl is not a using decl");
1427   assert((isa<UsingDecl>(Inst) ||
1428           isa<UnresolvedUsingValueDecl>(Inst) ||
1429           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1430          "instantiation did not produce a using decl");
1431   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1432   InstantiatedFromUsingDecl[Inst] = Pattern;
1433 }
1434 
1435 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1436 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1437   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1438     = InstantiatedFromUsingShadowDecl.find(Inst);
1439   if (Pos == InstantiatedFromUsingShadowDecl.end())
1440     return nullptr;
1441 
1442   return Pos->second;
1443 }
1444 
1445 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1446 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1447                                                UsingShadowDecl *Pattern) {
1448   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1449   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1450 }
1451 
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1452 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1453   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1454     = InstantiatedFromUnnamedFieldDecl.find(Field);
1455   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1456     return nullptr;
1457 
1458   return Pos->second;
1459 }
1460 
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1461 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1462                                                      FieldDecl *Tmpl) {
1463   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1464   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1465   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1466          "Already noted what unnamed field was instantiated from");
1467 
1468   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1469 }
1470 
1471 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1472 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1473   return overridden_methods(Method).begin();
1474 }
1475 
1476 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1477 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1478   return overridden_methods(Method).end();
1479 }
1480 
1481 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1482 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1483   auto Range = overridden_methods(Method);
1484   return Range.end() - Range.begin();
1485 }
1486 
1487 ASTContext::overridden_method_range
overridden_methods(const CXXMethodDecl * Method) const1488 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1489   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1490       OverriddenMethods.find(Method->getCanonicalDecl());
1491   if (Pos == OverriddenMethods.end())
1492     return overridden_method_range(nullptr, nullptr);
1493   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1494 }
1495 
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1496 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1497                                      const CXXMethodDecl *Overridden) {
1498   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1499   OverriddenMethods[Method].push_back(Overridden);
1500 }
1501 
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1502 void ASTContext::getOverriddenMethods(
1503                       const NamedDecl *D,
1504                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1505   assert(D);
1506 
1507   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1508     Overridden.append(overridden_methods_begin(CXXMethod),
1509                       overridden_methods_end(CXXMethod));
1510     return;
1511   }
1512 
1513   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1514   if (!Method)
1515     return;
1516 
1517   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1518   Method->getOverriddenMethods(OverDecls);
1519   Overridden.append(OverDecls.begin(), OverDecls.end());
1520 }
1521 
addedLocalImportDecl(ImportDecl * Import)1522 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1523   assert(!Import->NextLocalImport && "Import declaration already in the chain");
1524   assert(!Import->isFromASTFile() && "Non-local import declaration");
1525   if (!FirstLocalImport) {
1526     FirstLocalImport = Import;
1527     LastLocalImport = Import;
1528     return;
1529   }
1530 
1531   LastLocalImport->NextLocalImport = Import;
1532   LastLocalImport = Import;
1533 }
1534 
1535 //===----------------------------------------------------------------------===//
1536 //                         Type Sizing and Analysis
1537 //===----------------------------------------------------------------------===//
1538 
1539 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1540 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1541 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1542   const auto *BT = T->getAs<BuiltinType>();
1543   assert(BT && "Not a floating point type!");
1544   switch (BT->getKind()) {
1545   default: llvm_unreachable("Not a floating point type!");
1546   case BuiltinType::Float16:
1547   case BuiltinType::Half:
1548     return Target->getHalfFormat();
1549   case BuiltinType::Float:      return Target->getFloatFormat();
1550   case BuiltinType::Double:     return Target->getDoubleFormat();
1551   case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1552   case BuiltinType::Float128:   return Target->getFloat128Format();
1553   }
1554 }
1555 
getDeclAlign(const Decl * D,bool ForAlignof) const1556 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1557   unsigned Align = Target->getCharWidth();
1558 
1559   bool UseAlignAttrOnly = false;
1560   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1561     Align = AlignFromAttr;
1562 
1563     // __attribute__((aligned)) can increase or decrease alignment
1564     // *except* on a struct or struct member, where it only increases
1565     // alignment unless 'packed' is also specified.
1566     //
1567     // It is an error for alignas to decrease alignment, so we can
1568     // ignore that possibility;  Sema should diagnose it.
1569     if (isa<FieldDecl>(D)) {
1570       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1571         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1572     } else {
1573       UseAlignAttrOnly = true;
1574     }
1575   }
1576   else if (isa<FieldDecl>(D))
1577       UseAlignAttrOnly =
1578         D->hasAttr<PackedAttr>() ||
1579         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1580 
1581   // If we're using the align attribute only, just ignore everything
1582   // else about the declaration and its type.
1583   if (UseAlignAttrOnly) {
1584     // do nothing
1585   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1586     QualType T = VD->getType();
1587     if (const auto *RT = T->getAs<ReferenceType>()) {
1588       if (ForAlignof)
1589         T = RT->getPointeeType();
1590       else
1591         T = getPointerType(RT->getPointeeType());
1592     }
1593     QualType BaseT = getBaseElementType(T);
1594     if (T->isFunctionType())
1595       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1596     else if (!BaseT->isIncompleteType()) {
1597       // Adjust alignments of declarations with array type by the
1598       // large-array alignment on the target.
1599       if (const ArrayType *arrayType = getAsArrayType(T)) {
1600         unsigned MinWidth = Target->getLargeArrayMinWidth();
1601         if (!ForAlignof && MinWidth) {
1602           if (isa<VariableArrayType>(arrayType))
1603             Align = std::max(Align, Target->getLargeArrayAlign());
1604           else if (isa<ConstantArrayType>(arrayType) &&
1605                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1606             Align = std::max(Align, Target->getLargeArrayAlign());
1607         }
1608       }
1609       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1610       if (BaseT.getQualifiers().hasUnaligned())
1611         Align = Target->getCharWidth();
1612       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1613         if (VD->hasGlobalStorage() && !ForAlignof)
1614           Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1615       }
1616     }
1617 
1618     // Fields can be subject to extra alignment constraints, like if
1619     // the field is packed, the struct is packed, or the struct has a
1620     // a max-field-alignment constraint (#pragma pack).  So calculate
1621     // the actual alignment of the field within the struct, and then
1622     // (as we're expected to) constrain that by the alignment of the type.
1623     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1624       const RecordDecl *Parent = Field->getParent();
1625       // We can only produce a sensible answer if the record is valid.
1626       if (!Parent->isInvalidDecl()) {
1627         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1628 
1629         // Start with the record's overall alignment.
1630         unsigned FieldAlign = toBits(Layout.getAlignment());
1631 
1632         // Use the GCD of that and the offset within the record.
1633         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1634         if (Offset > 0) {
1635           // Alignment is always a power of 2, so the GCD will be a power of 2,
1636           // which means we get to do this crazy thing instead of Euclid's.
1637           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1638           if (LowBitOfOffset < FieldAlign)
1639             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1640         }
1641 
1642         Align = std::min(Align, FieldAlign);
1643       }
1644     }
1645   }
1646 
1647   return toCharUnitsFromBits(Align);
1648 }
1649 
1650 // getTypeInfoDataSizeInChars - Return the size of a type, in
1651 // chars. If the type is a record, its data size is returned.  This is
1652 // the size of the memcpy that's performed when assigning this type
1653 // using a trivial copy/move assignment operator.
1654 std::pair<CharUnits, CharUnits>
getTypeInfoDataSizeInChars(QualType T) const1655 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1656   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1657 
1658   // In C++, objects can sometimes be allocated into the tail padding
1659   // of a base-class subobject.  We decide whether that's possible
1660   // during class layout, so here we can just trust the layout results.
1661   if (getLangOpts().CPlusPlus) {
1662     if (const auto *RT = T->getAs<RecordType>()) {
1663       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1664       sizeAndAlign.first = layout.getDataSize();
1665     }
1666   }
1667 
1668   return sizeAndAlign;
1669 }
1670 
1671 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1672 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1673 std::pair<CharUnits, CharUnits>
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1674 static getConstantArrayInfoInChars(const ASTContext &Context,
1675                                    const ConstantArrayType *CAT) {
1676   std::pair<CharUnits, CharUnits> EltInfo =
1677       Context.getTypeInfoInChars(CAT->getElementType());
1678   uint64_t Size = CAT->getSize().getZExtValue();
1679   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1680               (uint64_t)(-1)/Size) &&
1681          "Overflow in array type char size evaluation");
1682   uint64_t Width = EltInfo.first.getQuantity() * Size;
1683   unsigned Align = EltInfo.second.getQuantity();
1684   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1685       Context.getTargetInfo().getPointerWidth(0) == 64)
1686     Width = llvm::alignTo(Width, Align);
1687   return std::make_pair(CharUnits::fromQuantity(Width),
1688                         CharUnits::fromQuantity(Align));
1689 }
1690 
1691 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const1692 ASTContext::getTypeInfoInChars(const Type *T) const {
1693   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1694     return getConstantArrayInfoInChars(*this, CAT);
1695   TypeInfo Info = getTypeInfo(T);
1696   return std::make_pair(toCharUnitsFromBits(Info.Width),
1697                         toCharUnitsFromBits(Info.Align));
1698 }
1699 
1700 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const1701 ASTContext::getTypeInfoInChars(QualType T) const {
1702   return getTypeInfoInChars(T.getTypePtr());
1703 }
1704 
isAlignmentRequired(const Type * T) const1705 bool ASTContext::isAlignmentRequired(const Type *T) const {
1706   return getTypeInfo(T).AlignIsRequired;
1707 }
1708 
isAlignmentRequired(QualType T) const1709 bool ASTContext::isAlignmentRequired(QualType T) const {
1710   return isAlignmentRequired(T.getTypePtr());
1711 }
1712 
getTypeAlignIfKnown(QualType T) const1713 unsigned ASTContext::getTypeAlignIfKnown(QualType T) const {
1714   // An alignment on a typedef overrides anything else.
1715   if (const auto *TT = T->getAs<TypedefType>())
1716     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1717       return Align;
1718 
1719   // If we have an (array of) complete type, we're done.
1720   T = getBaseElementType(T);
1721   if (!T->isIncompleteType())
1722     return getTypeAlign(T);
1723 
1724   // If we had an array type, its element type might be a typedef
1725   // type with an alignment attribute.
1726   if (const auto *TT = T->getAs<TypedefType>())
1727     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1728       return Align;
1729 
1730   // Otherwise, see if the declaration of the type had an attribute.
1731   if (const auto *TT = T->getAs<TagType>())
1732     return TT->getDecl()->getMaxAlignment();
1733 
1734   return 0;
1735 }
1736 
getTypeInfo(const Type * T) const1737 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1738   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1739   if (I != MemoizedTypeInfo.end())
1740     return I->second;
1741 
1742   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1743   TypeInfo TI = getTypeInfoImpl(T);
1744   MemoizedTypeInfo[T] = TI;
1745   return TI;
1746 }
1747 
1748 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1749 /// method does not work on incomplete types.
1750 ///
1751 /// FIXME: Pointers into different addr spaces could have different sizes and
1752 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1753 /// should take a QualType, &c.
getTypeInfoImpl(const Type * T) const1754 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1755   uint64_t Width = 0;
1756   unsigned Align = 8;
1757   bool AlignIsRequired = false;
1758   unsigned AS = 0;
1759   switch (T->getTypeClass()) {
1760 #define TYPE(Class, Base)
1761 #define ABSTRACT_TYPE(Class, Base)
1762 #define NON_CANONICAL_TYPE(Class, Base)
1763 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1764 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1765   case Type::Class:                                                            \
1766   assert(!T->isDependentType() && "should not see dependent types here");      \
1767   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1768 #include "clang/AST/TypeNodes.def"
1769     llvm_unreachable("Should not see dependent types");
1770 
1771   case Type::FunctionNoProto:
1772   case Type::FunctionProto:
1773     // GCC extension: alignof(function) = 32 bits
1774     Width = 0;
1775     Align = 32;
1776     break;
1777 
1778   case Type::IncompleteArray:
1779   case Type::VariableArray:
1780     Width = 0;
1781     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1782     break;
1783 
1784   case Type::ConstantArray: {
1785     const auto *CAT = cast<ConstantArrayType>(T);
1786 
1787     TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1788     uint64_t Size = CAT->getSize().getZExtValue();
1789     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1790            "Overflow in array type bit size evaluation");
1791     Width = EltInfo.Width * Size;
1792     Align = EltInfo.Align;
1793     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1794         getTargetInfo().getPointerWidth(0) == 64)
1795       Width = llvm::alignTo(Width, Align);
1796     break;
1797   }
1798   case Type::ExtVector:
1799   case Type::Vector: {
1800     const auto *VT = cast<VectorType>(T);
1801     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1802     Width = EltInfo.Width * VT->getNumElements();
1803     Align = Width;
1804     // If the alignment is not a power of 2, round up to the next power of 2.
1805     // This happens for non-power-of-2 length vectors.
1806     if (Align & (Align-1)) {
1807       Align = llvm::NextPowerOf2(Align);
1808       Width = llvm::alignTo(Width, Align);
1809     }
1810     // Adjust the alignment based on the target max.
1811     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1812     if (TargetVectorAlign && TargetVectorAlign < Align)
1813       Align = TargetVectorAlign;
1814     break;
1815   }
1816 
1817   case Type::Builtin:
1818     switch (cast<BuiltinType>(T)->getKind()) {
1819     default: llvm_unreachable("Unknown builtin type!");
1820     case BuiltinType::Void:
1821       // GCC extension: alignof(void) = 8 bits.
1822       Width = 0;
1823       Align = 8;
1824       break;
1825     case BuiltinType::Bool:
1826       Width = Target->getBoolWidth();
1827       Align = Target->getBoolAlign();
1828       break;
1829     case BuiltinType::Char_S:
1830     case BuiltinType::Char_U:
1831     case BuiltinType::UChar:
1832     case BuiltinType::SChar:
1833     case BuiltinType::Char8:
1834       Width = Target->getCharWidth();
1835       Align = Target->getCharAlign();
1836       break;
1837     case BuiltinType::WChar_S:
1838     case BuiltinType::WChar_U:
1839       Width = Target->getWCharWidth();
1840       Align = Target->getWCharAlign();
1841       break;
1842     case BuiltinType::Char16:
1843       Width = Target->getChar16Width();
1844       Align = Target->getChar16Align();
1845       break;
1846     case BuiltinType::Char32:
1847       Width = Target->getChar32Width();
1848       Align = Target->getChar32Align();
1849       break;
1850     case BuiltinType::UShort:
1851     case BuiltinType::Short:
1852       Width = Target->getShortWidth();
1853       Align = Target->getShortAlign();
1854       break;
1855     case BuiltinType::UInt:
1856     case BuiltinType::Int:
1857       Width = Target->getIntWidth();
1858       Align = Target->getIntAlign();
1859       break;
1860     case BuiltinType::ULong:
1861     case BuiltinType::Long:
1862       Width = Target->getLongWidth();
1863       Align = Target->getLongAlign();
1864       break;
1865     case BuiltinType::ULongLong:
1866     case BuiltinType::LongLong:
1867       Width = Target->getLongLongWidth();
1868       Align = Target->getLongLongAlign();
1869       break;
1870     case BuiltinType::Int128:
1871     case BuiltinType::UInt128:
1872       Width = 128;
1873       Align = 128; // int128_t is 128-bit aligned on all targets.
1874       break;
1875     case BuiltinType::ShortAccum:
1876     case BuiltinType::UShortAccum:
1877     case BuiltinType::SatShortAccum:
1878     case BuiltinType::SatUShortAccum:
1879       Width = Target->getShortAccumWidth();
1880       Align = Target->getShortAccumAlign();
1881       break;
1882     case BuiltinType::Accum:
1883     case BuiltinType::UAccum:
1884     case BuiltinType::SatAccum:
1885     case BuiltinType::SatUAccum:
1886       Width = Target->getAccumWidth();
1887       Align = Target->getAccumAlign();
1888       break;
1889     case BuiltinType::LongAccum:
1890     case BuiltinType::ULongAccum:
1891     case BuiltinType::SatLongAccum:
1892     case BuiltinType::SatULongAccum:
1893       Width = Target->getLongAccumWidth();
1894       Align = Target->getLongAccumAlign();
1895       break;
1896     case BuiltinType::ShortFract:
1897     case BuiltinType::UShortFract:
1898     case BuiltinType::SatShortFract:
1899     case BuiltinType::SatUShortFract:
1900       Width = Target->getShortFractWidth();
1901       Align = Target->getShortFractAlign();
1902       break;
1903     case BuiltinType::Fract:
1904     case BuiltinType::UFract:
1905     case BuiltinType::SatFract:
1906     case BuiltinType::SatUFract:
1907       Width = Target->getFractWidth();
1908       Align = Target->getFractAlign();
1909       break;
1910     case BuiltinType::LongFract:
1911     case BuiltinType::ULongFract:
1912     case BuiltinType::SatLongFract:
1913     case BuiltinType::SatULongFract:
1914       Width = Target->getLongFractWidth();
1915       Align = Target->getLongFractAlign();
1916       break;
1917     case BuiltinType::Float16:
1918     case BuiltinType::Half:
1919       Width = Target->getHalfWidth();
1920       Align = Target->getHalfAlign();
1921       break;
1922     case BuiltinType::Float:
1923       Width = Target->getFloatWidth();
1924       Align = Target->getFloatAlign();
1925       break;
1926     case BuiltinType::Double:
1927       Width = Target->getDoubleWidth();
1928       Align = Target->getDoubleAlign();
1929       break;
1930     case BuiltinType::LongDouble:
1931       Width = Target->getLongDoubleWidth();
1932       Align = Target->getLongDoubleAlign();
1933       break;
1934     case BuiltinType::Float128:
1935       Width = Target->getFloat128Width();
1936       Align = Target->getFloat128Align();
1937       break;
1938     case BuiltinType::NullPtr:
1939       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1940       Align = Target->getPointerAlign(0); //   == sizeof(void*)
1941       break;
1942     case BuiltinType::ObjCId:
1943     case BuiltinType::ObjCClass:
1944     case BuiltinType::ObjCSel:
1945       Width = Target->getPointerWidth(0);
1946       Align = Target->getPointerAlign(0);
1947       break;
1948     case BuiltinType::OCLSampler:
1949     case BuiltinType::OCLEvent:
1950     case BuiltinType::OCLClkEvent:
1951     case BuiltinType::OCLQueue:
1952     case BuiltinType::OCLReserveID:
1953 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1954     case BuiltinType::Id:
1955 #include "clang/Basic/OpenCLImageTypes.def"
1956 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1957   case BuiltinType::Id:
1958 #include "clang/Basic/OpenCLExtensionTypes.def"
1959       AS = getTargetAddressSpace(
1960           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
1961       Width = Target->getPointerWidth(AS);
1962       Align = Target->getPointerAlign(AS);
1963       break;
1964     }
1965     break;
1966   case Type::ObjCObjectPointer:
1967     Width = Target->getPointerWidth(0);
1968     Align = Target->getPointerAlign(0);
1969     break;
1970   case Type::BlockPointer:
1971     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
1972     Width = Target->getPointerWidth(AS);
1973     Align = Target->getPointerAlign(AS);
1974     break;
1975   case Type::LValueReference:
1976   case Type::RValueReference:
1977     // alignof and sizeof should never enter this code path here, so we go
1978     // the pointer route.
1979     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
1980     Width = Target->getPointerWidth(AS);
1981     Align = Target->getPointerAlign(AS);
1982     break;
1983   case Type::Pointer:
1984     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1985     Width = Target->getPointerWidth(AS);
1986     Align = Target->getPointerAlign(AS);
1987     break;
1988   case Type::MemberPointer: {
1989     const auto *MPT = cast<MemberPointerType>(T);
1990     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
1991     Width = MPI.Width;
1992     Align = MPI.Align;
1993     break;
1994   }
1995   case Type::Complex: {
1996     // Complex types have the same alignment as their elements, but twice the
1997     // size.
1998     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1999     Width = EltInfo.Width * 2;
2000     Align = EltInfo.Align;
2001     break;
2002   }
2003   case Type::ObjCObject:
2004     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2005   case Type::Adjusted:
2006   case Type::Decayed:
2007     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2008   case Type::ObjCInterface: {
2009     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2010     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2011     Width = toBits(Layout.getSize());
2012     Align = toBits(Layout.getAlignment());
2013     break;
2014   }
2015   case Type::Record:
2016   case Type::Enum: {
2017     const auto *TT = cast<TagType>(T);
2018 
2019     if (TT->getDecl()->isInvalidDecl()) {
2020       Width = 8;
2021       Align = 8;
2022       break;
2023     }
2024 
2025     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2026       const EnumDecl *ED = ET->getDecl();
2027       TypeInfo Info =
2028           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2029       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2030         Info.Align = AttrAlign;
2031         Info.AlignIsRequired = true;
2032       }
2033       return Info;
2034     }
2035 
2036     const auto *RT = cast<RecordType>(TT);
2037     const RecordDecl *RD = RT->getDecl();
2038     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2039     Width = toBits(Layout.getSize());
2040     Align = toBits(Layout.getAlignment());
2041     AlignIsRequired = RD->hasAttr<AlignedAttr>();
2042     break;
2043   }
2044 
2045   case Type::SubstTemplateTypeParm:
2046     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2047                        getReplacementType().getTypePtr());
2048 
2049   case Type::Auto:
2050   case Type::DeducedTemplateSpecialization: {
2051     const auto *A = cast<DeducedType>(T);
2052     assert(!A->getDeducedType().isNull() &&
2053            "cannot request the size of an undeduced or dependent auto type");
2054     return getTypeInfo(A->getDeducedType().getTypePtr());
2055   }
2056 
2057   case Type::Paren:
2058     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2059 
2060   case Type::ObjCTypeParam:
2061     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2062 
2063   case Type::Typedef: {
2064     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2065     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2066     // If the typedef has an aligned attribute on it, it overrides any computed
2067     // alignment we have.  This violates the GCC documentation (which says that
2068     // attribute(aligned) can only round up) but matches its implementation.
2069     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2070       Align = AttrAlign;
2071       AlignIsRequired = true;
2072     } else {
2073       Align = Info.Align;
2074       AlignIsRequired = Info.AlignIsRequired;
2075     }
2076     Width = Info.Width;
2077     break;
2078   }
2079 
2080   case Type::Elaborated:
2081     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2082 
2083   case Type::Attributed:
2084     return getTypeInfo(
2085                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2086 
2087   case Type::Atomic: {
2088     // Start with the base type information.
2089     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2090     Width = Info.Width;
2091     Align = Info.Align;
2092 
2093     if (!Width) {
2094       // An otherwise zero-sized type should still generate an
2095       // atomic operation.
2096       Width = Target->getCharWidth();
2097       assert(Align);
2098     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2099       // If the size of the type doesn't exceed the platform's max
2100       // atomic promotion width, make the size and alignment more
2101       // favorable to atomic operations:
2102 
2103       // Round the size up to a power of 2.
2104       if (!llvm::isPowerOf2_64(Width))
2105         Width = llvm::NextPowerOf2(Width);
2106 
2107       // Set the alignment equal to the size.
2108       Align = static_cast<unsigned>(Width);
2109     }
2110   }
2111   break;
2112 
2113   case Type::Pipe:
2114     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2115     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2116     break;
2117   }
2118 
2119   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2120   return TypeInfo(Width, Align, AlignIsRequired);
2121 }
2122 
getTypeUnadjustedAlign(const Type * T) const2123 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2124   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2125   if (I != MemoizedUnadjustedAlign.end())
2126     return I->second;
2127 
2128   unsigned UnadjustedAlign;
2129   if (const auto *RT = T->getAs<RecordType>()) {
2130     const RecordDecl *RD = RT->getDecl();
2131     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2132     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2133   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2134     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2135     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2136   } else {
2137     UnadjustedAlign = getTypeAlign(T);
2138   }
2139 
2140   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2141   return UnadjustedAlign;
2142 }
2143 
getOpenMPDefaultSimdAlign(QualType T) const2144 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2145   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2146   // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
2147   if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
2148        getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
2149       getTargetInfo().getABI() == "elfv1-qpx" &&
2150       T->isSpecificBuiltinType(BuiltinType::Double))
2151     SimdAlign = 256;
2152   return SimdAlign;
2153 }
2154 
2155 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const2156 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2157   return CharUnits::fromQuantity(BitSize / getCharWidth());
2158 }
2159 
2160 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const2161 int64_t ASTContext::toBits(CharUnits CharSize) const {
2162   return CharSize.getQuantity() * getCharWidth();
2163 }
2164 
2165 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2166 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const2167 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2168   return getTypeInfoInChars(T).first;
2169 }
getTypeSizeInChars(const Type * T) const2170 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2171   return getTypeInfoInChars(T).first;
2172 }
2173 
2174 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2175 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const2176 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2177   return toCharUnitsFromBits(getTypeAlign(T));
2178 }
getTypeAlignInChars(const Type * T) const2179 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2180   return toCharUnitsFromBits(getTypeAlign(T));
2181 }
2182 
2183 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2184 /// type, in characters, before alignment adustments. This method does
2185 /// not work on incomplete types.
getTypeUnadjustedAlignInChars(QualType T) const2186 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2187   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2188 }
getTypeUnadjustedAlignInChars(const Type * T) const2189 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2190   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2191 }
2192 
2193 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2194 /// type for the current target in bits.  This can be different than the ABI
2195 /// alignment in cases where it is beneficial for performance to overalign
2196 /// a data type.
getPreferredTypeAlign(const Type * T) const2197 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2198   TypeInfo TI = getTypeInfo(T);
2199   unsigned ABIAlign = TI.Align;
2200 
2201   T = T->getBaseElementTypeUnsafe();
2202 
2203   // The preferred alignment of member pointers is that of a pointer.
2204   if (T->isMemberPointerType())
2205     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2206 
2207   if (!Target->allowsLargerPreferedTypeAlignment())
2208     return ABIAlign;
2209 
2210   // Double and long long should be naturally aligned if possible.
2211   if (const auto *CT = T->getAs<ComplexType>())
2212     T = CT->getElementType().getTypePtr();
2213   if (const auto *ET = T->getAs<EnumType>())
2214     T = ET->getDecl()->getIntegerType().getTypePtr();
2215   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2216       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2217       T->isSpecificBuiltinType(BuiltinType::ULongLong))
2218     // Don't increase the alignment if an alignment attribute was specified on a
2219     // typedef declaration.
2220     if (!TI.AlignIsRequired)
2221       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2222 
2223   return ABIAlign;
2224 }
2225 
2226 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2227 /// for __attribute__((aligned)) on this target, to be used if no alignment
2228 /// value is specified.
getTargetDefaultAlignForAttributeAligned() const2229 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2230   return getTargetInfo().getDefaultAlignForAttributeAligned();
2231 }
2232 
2233 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2234 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const2235 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2236   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
2237 }
2238 
2239 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2240 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const2241 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2242   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2243 }
2244 
getOffsetOfBaseWithVBPtr(const CXXRecordDecl * RD) const2245 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2246   CharUnits Offset = CharUnits::Zero();
2247   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2248   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2249     Offset += Layout->getBaseClassOffset(Base);
2250     Layout = &getASTRecordLayout(Base);
2251   }
2252   return Offset;
2253 }
2254 
2255 /// DeepCollectObjCIvars -
2256 /// This routine first collects all declared, but not synthesized, ivars in
2257 /// super class and then collects all ivars, including those synthesized for
2258 /// current class. This routine is used for implementation of current class
2259 /// when all ivars, declared and synthesized are known.
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const2260 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2261                                       bool leafClass,
2262                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2263   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2264     DeepCollectObjCIvars(SuperClass, false, Ivars);
2265   if (!leafClass) {
2266     for (const auto *I : OI->ivars())
2267       Ivars.push_back(I);
2268   } else {
2269     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2270     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2271          Iv= Iv->getNextIvar())
2272       Ivars.push_back(Iv);
2273   }
2274 }
2275 
2276 /// CollectInheritedProtocols - Collect all protocols in current class and
2277 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)2278 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2279                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2280   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2281     // We can use protocol_iterator here instead of
2282     // all_referenced_protocol_iterator since we are walking all categories.
2283     for (auto *Proto : OI->all_referenced_protocols()) {
2284       CollectInheritedProtocols(Proto, Protocols);
2285     }
2286 
2287     // Categories of this Interface.
2288     for (const auto *Cat : OI->visible_categories())
2289       CollectInheritedProtocols(Cat, Protocols);
2290 
2291     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2292       while (SD) {
2293         CollectInheritedProtocols(SD, Protocols);
2294         SD = SD->getSuperClass();
2295       }
2296   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2297     for (auto *Proto : OC->protocols()) {
2298       CollectInheritedProtocols(Proto, Protocols);
2299     }
2300   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2301     // Insert the protocol.
2302     if (!Protocols.insert(
2303           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2304       return;
2305 
2306     for (auto *Proto : OP->protocols())
2307       CollectInheritedProtocols(Proto, Protocols);
2308   }
2309 }
2310 
unionHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2311 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2312                                                 const RecordDecl *RD) {
2313   assert(RD->isUnion() && "Must be union type");
2314   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2315 
2316   for (const auto *Field : RD->fields()) {
2317     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2318       return false;
2319     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2320     if (FieldSize != UnionSize)
2321       return false;
2322   }
2323   return !RD->field_empty();
2324 }
2325 
isStructEmpty(QualType Ty)2326 static bool isStructEmpty(QualType Ty) {
2327   const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2328 
2329   if (!RD->field_empty())
2330     return false;
2331 
2332   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2333     return ClassDecl->isEmpty();
2334 
2335   return true;
2336 }
2337 
2338 static llvm::Optional<int64_t>
structHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2339 structHasUniqueObjectRepresentations(const ASTContext &Context,
2340                                      const RecordDecl *RD) {
2341   assert(!RD->isUnion() && "Must be struct/class type");
2342   const auto &Layout = Context.getASTRecordLayout(RD);
2343 
2344   int64_t CurOffsetInBits = 0;
2345   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2346     if (ClassDecl->isDynamicClass())
2347       return llvm::None;
2348 
2349     SmallVector<std::pair<QualType, int64_t>, 4> Bases;
2350     for (const auto Base : ClassDecl->bases()) {
2351       // Empty types can be inherited from, and non-empty types can potentially
2352       // have tail padding, so just make sure there isn't an error.
2353       if (!isStructEmpty(Base.getType())) {
2354         llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
2355             Context, Base.getType()->getAs<RecordType>()->getDecl());
2356         if (!Size)
2357           return llvm::None;
2358         Bases.emplace_back(Base.getType(), Size.getValue());
2359       }
2360     }
2361 
2362     llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2363                           const std::pair<QualType, int64_t> &R) {
2364       return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2365              Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2366     });
2367 
2368     for (const auto Base : Bases) {
2369       int64_t BaseOffset = Context.toBits(
2370           Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2371       int64_t BaseSize = Base.second;
2372       if (BaseOffset != CurOffsetInBits)
2373         return llvm::None;
2374       CurOffsetInBits = BaseOffset + BaseSize;
2375     }
2376   }
2377 
2378   for (const auto *Field : RD->fields()) {
2379     if (!Field->getType()->isReferenceType() &&
2380         !Context.hasUniqueObjectRepresentations(Field->getType()))
2381       return llvm::None;
2382 
2383     int64_t FieldSizeInBits =
2384         Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2385     if (Field->isBitField()) {
2386       int64_t BitfieldSize = Field->getBitWidthValue(Context);
2387 
2388       if (BitfieldSize > FieldSizeInBits)
2389         return llvm::None;
2390       FieldSizeInBits = BitfieldSize;
2391     }
2392 
2393     int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2394 
2395     if (FieldOffsetInBits != CurOffsetInBits)
2396       return llvm::None;
2397 
2398     CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2399   }
2400 
2401   return CurOffsetInBits;
2402 }
2403 
hasUniqueObjectRepresentations(QualType Ty) const2404 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2405   // C++17 [meta.unary.prop]:
2406   //   The predicate condition for a template specialization
2407   //   has_unique_object_representations<T> shall be
2408   //   satisfied if and only if:
2409   //     (9.1) - T is trivially copyable, and
2410   //     (9.2) - any two objects of type T with the same value have the same
2411   //     object representation, where two objects
2412   //   of array or non-union class type are considered to have the same value
2413   //   if their respective sequences of
2414   //   direct subobjects have the same values, and two objects of union type
2415   //   are considered to have the same
2416   //   value if they have the same active member and the corresponding members
2417   //   have the same value.
2418   //   The set of scalar types for which this condition holds is
2419   //   implementation-defined. [ Note: If a type has padding
2420   //   bits, the condition does not hold; otherwise, the condition holds true
2421   //   for unsigned integral types. -- end note ]
2422   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2423 
2424   // Arrays are unique only if their element type is unique.
2425   if (Ty->isArrayType())
2426     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2427 
2428   // (9.1) - T is trivially copyable...
2429   if (!Ty.isTriviallyCopyableType(*this))
2430     return false;
2431 
2432   // All integrals and enums are unique.
2433   if (Ty->isIntegralOrEnumerationType())
2434     return true;
2435 
2436   // All other pointers are unique.
2437   if (Ty->isPointerType())
2438     return true;
2439 
2440   if (Ty->isMemberPointerType()) {
2441     const auto *MPT = Ty->getAs<MemberPointerType>();
2442     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2443   }
2444 
2445   if (Ty->isRecordType()) {
2446     const RecordDecl *Record = Ty->getAs<RecordType>()->getDecl();
2447 
2448     if (Record->isInvalidDecl())
2449       return false;
2450 
2451     if (Record->isUnion())
2452       return unionHasUniqueObjectRepresentations(*this, Record);
2453 
2454     Optional<int64_t> StructSize =
2455         structHasUniqueObjectRepresentations(*this, Record);
2456 
2457     return StructSize &&
2458            StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2459   }
2460 
2461   // FIXME: More cases to handle here (list by rsmith):
2462   // vectors (careful about, eg, vector of 3 foo)
2463   // _Complex int and friends
2464   // _Atomic T
2465   // Obj-C block pointers
2466   // Obj-C object pointers
2467   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2468   // clk_event_t, queue_t, reserve_id_t)
2469   // There're also Obj-C class types and the Obj-C selector type, but I think it
2470   // makes sense for those to return false here.
2471 
2472   return false;
2473 }
2474 
CountNonClassIvars(const ObjCInterfaceDecl * OI) const2475 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2476   unsigned count = 0;
2477   // Count ivars declared in class extension.
2478   for (const auto *Ext : OI->known_extensions())
2479     count += Ext->ivar_size();
2480 
2481   // Count ivar defined in this class's implementation.  This
2482   // includes synthesized ivars.
2483   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2484     count += ImplDecl->ivar_size();
2485 
2486   return count;
2487 }
2488 
isSentinelNullExpr(const Expr * E)2489 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2490   if (!E)
2491     return false;
2492 
2493   // nullptr_t is always treated as null.
2494   if (E->getType()->isNullPtrType()) return true;
2495 
2496   if (E->getType()->isAnyPointerType() &&
2497       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2498                                                 Expr::NPC_ValueDependentIsNull))
2499     return true;
2500 
2501   // Unfortunately, __null has type 'int'.
2502   if (isa<GNUNullExpr>(E)) return true;
2503 
2504   return false;
2505 }
2506 
2507 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2508 /// exists.
getObjCImplementation(ObjCInterfaceDecl * D)2509 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2510   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2511     I = ObjCImpls.find(D);
2512   if (I != ObjCImpls.end())
2513     return cast<ObjCImplementationDecl>(I->second);
2514   return nullptr;
2515 }
2516 
2517 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2518 /// exists.
getObjCImplementation(ObjCCategoryDecl * D)2519 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2520   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2521     I = ObjCImpls.find(D);
2522   if (I != ObjCImpls.end())
2523     return cast<ObjCCategoryImplDecl>(I->second);
2524   return nullptr;
2525 }
2526 
2527 /// Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)2528 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2529                            ObjCImplementationDecl *ImplD) {
2530   assert(IFaceD && ImplD && "Passed null params");
2531   ObjCImpls[IFaceD] = ImplD;
2532 }
2533 
2534 /// Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)2535 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2536                            ObjCCategoryImplDecl *ImplD) {
2537   assert(CatD && ImplD && "Passed null params");
2538   ObjCImpls[CatD] = ImplD;
2539 }
2540 
2541 const ObjCMethodDecl *
getObjCMethodRedeclaration(const ObjCMethodDecl * MD) const2542 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2543   return ObjCMethodRedecls.lookup(MD);
2544 }
2545 
setObjCMethodRedeclaration(const ObjCMethodDecl * MD,const ObjCMethodDecl * Redecl)2546 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2547                                             const ObjCMethodDecl *Redecl) {
2548   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2549   ObjCMethodRedecls[MD] = Redecl;
2550 }
2551 
getObjContainingInterface(const NamedDecl * ND) const2552 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2553                                               const NamedDecl *ND) const {
2554   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2555     return ID;
2556   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2557     return CD->getClassInterface();
2558   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2559     return IMD->getClassInterface();
2560 
2561   return nullptr;
2562 }
2563 
2564 /// Get the copy initialization expression of VarDecl, or nullptr if
2565 /// none exists.
2566 ASTContext::BlockVarCopyInit
getBlockVarCopyInit(const VarDecl * VD) const2567 ASTContext::getBlockVarCopyInit(const VarDecl*VD) const {
2568   assert(VD && "Passed null params");
2569   assert(VD->hasAttr<BlocksAttr>() &&
2570          "getBlockVarCopyInits - not __block var");
2571   auto I = BlockVarCopyInits.find(VD);
2572   if (I != BlockVarCopyInits.end())
2573     return I->second;
2574   return {nullptr, false};
2575 }
2576 
2577 /// Set the copy inialization expression of a block var decl.
setBlockVarCopyInit(const VarDecl * VD,Expr * CopyExpr,bool CanThrow)2578 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2579                                      bool CanThrow) {
2580   assert(VD && CopyExpr && "Passed null params");
2581   assert(VD->hasAttr<BlocksAttr>() &&
2582          "setBlockVarCopyInits - not __block var");
2583   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2584 }
2585 
CreateTypeSourceInfo(QualType T,unsigned DataSize) const2586 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2587                                                  unsigned DataSize) const {
2588   if (!DataSize)
2589     DataSize = TypeLoc::getFullDataSizeForType(T);
2590   else
2591     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2592            "incorrect data size provided to CreateTypeSourceInfo!");
2593 
2594   auto *TInfo =
2595     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2596   new (TInfo) TypeSourceInfo(T);
2597   return TInfo;
2598 }
2599 
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const2600 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2601                                                      SourceLocation L) const {
2602   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2603   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2604   return DI;
2605 }
2606 
2607 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const2608 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2609   return getObjCLayout(D, nullptr);
2610 }
2611 
2612 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const2613 ASTContext::getASTObjCImplementationLayout(
2614                                         const ObjCImplementationDecl *D) const {
2615   return getObjCLayout(D->getClassInterface(), D);
2616 }
2617 
2618 //===----------------------------------------------------------------------===//
2619 //                   Type creation/memoization methods
2620 //===----------------------------------------------------------------------===//
2621 
2622 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2623 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2624   unsigned fastQuals = quals.getFastQualifiers();
2625   quals.removeFastQualifiers();
2626 
2627   // Check if we've already instantiated this type.
2628   llvm::FoldingSetNodeID ID;
2629   ExtQuals::Profile(ID, baseType, quals);
2630   void *insertPos = nullptr;
2631   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2632     assert(eq->getQualifiers() == quals);
2633     return QualType(eq, fastQuals);
2634   }
2635 
2636   // If the base type is not canonical, make the appropriate canonical type.
2637   QualType canon;
2638   if (!baseType->isCanonicalUnqualified()) {
2639     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2640     canonSplit.Quals.addConsistentQualifiers(quals);
2641     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2642 
2643     // Re-find the insert position.
2644     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2645   }
2646 
2647   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2648   ExtQualNodes.InsertNode(eq, insertPos);
2649   return QualType(eq, fastQuals);
2650 }
2651 
getAddrSpaceQualType(QualType T,LangAS AddressSpace) const2652 QualType ASTContext::getAddrSpaceQualType(QualType T,
2653                                           LangAS AddressSpace) const {
2654   QualType CanT = getCanonicalType(T);
2655   if (CanT.getAddressSpace() == AddressSpace)
2656     return T;
2657 
2658   // If we are composing extended qualifiers together, merge together
2659   // into one ExtQuals node.
2660   QualifierCollector Quals;
2661   const Type *TypeNode = Quals.strip(T);
2662 
2663   // If this type already has an address space specified, it cannot get
2664   // another one.
2665   assert(!Quals.hasAddressSpace() &&
2666          "Type cannot be in multiple addr spaces!");
2667   Quals.addAddressSpace(AddressSpace);
2668 
2669   return getExtQualType(TypeNode, Quals);
2670 }
2671 
removeAddrSpaceQualType(QualType T) const2672 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2673   // If we are composing extended qualifiers together, merge together
2674   // into one ExtQuals node.
2675   QualifierCollector Quals;
2676   const Type *TypeNode = Quals.strip(T);
2677 
2678   // If the qualifier doesn't have an address space just return it.
2679   if (!Quals.hasAddressSpace())
2680     return T;
2681 
2682   Quals.removeAddressSpace();
2683 
2684   // Removal of the address space can mean there are no longer any
2685   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2686   // or required.
2687   if (Quals.hasNonFastQualifiers())
2688     return getExtQualType(TypeNode, Quals);
2689   else
2690     return QualType(TypeNode, Quals.getFastQualifiers());
2691 }
2692 
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2693 QualType ASTContext::getObjCGCQualType(QualType T,
2694                                        Qualifiers::GC GCAttr) const {
2695   QualType CanT = getCanonicalType(T);
2696   if (CanT.getObjCGCAttr() == GCAttr)
2697     return T;
2698 
2699   if (const auto *ptr = T->getAs<PointerType>()) {
2700     QualType Pointee = ptr->getPointeeType();
2701     if (Pointee->isAnyPointerType()) {
2702       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2703       return getPointerType(ResultType);
2704     }
2705   }
2706 
2707   // If we are composing extended qualifiers together, merge together
2708   // into one ExtQuals node.
2709   QualifierCollector Quals;
2710   const Type *TypeNode = Quals.strip(T);
2711 
2712   // If this type already has an ObjCGC specified, it cannot get
2713   // another one.
2714   assert(!Quals.hasObjCGCAttr() &&
2715          "Type cannot have multiple ObjCGCs!");
2716   Quals.addObjCGCAttr(GCAttr);
2717 
2718   return getExtQualType(TypeNode, Quals);
2719 }
2720 
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)2721 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2722                                                    FunctionType::ExtInfo Info) {
2723   if (T->getExtInfo() == Info)
2724     return T;
2725 
2726   QualType Result;
2727   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2728     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2729   } else {
2730     const auto *FPT = cast<FunctionProtoType>(T);
2731     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2732     EPI.ExtInfo = Info;
2733     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2734   }
2735 
2736   return cast<FunctionType>(Result.getTypePtr());
2737 }
2738 
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)2739 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2740                                                  QualType ResultType) {
2741   FD = FD->getMostRecentDecl();
2742   while (true) {
2743     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
2744     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2745     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2746     if (FunctionDecl *Next = FD->getPreviousDecl())
2747       FD = Next;
2748     else
2749       break;
2750   }
2751   if (ASTMutationListener *L = getASTMutationListener())
2752     L->DeducedReturnType(FD, ResultType);
2753 }
2754 
2755 /// Get a function type and produce the equivalent function type with the
2756 /// specified exception specification. Type sugar that can be present on a
2757 /// declaration of a function with an exception specification is permitted
2758 /// and preserved. Other type sugar (for instance, typedefs) is not.
getFunctionTypeWithExceptionSpec(QualType Orig,const FunctionProtoType::ExceptionSpecInfo & ESI)2759 QualType ASTContext::getFunctionTypeWithExceptionSpec(
2760     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
2761   // Might have some parens.
2762   if (const auto *PT = dyn_cast<ParenType>(Orig))
2763     return getParenType(
2764         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
2765 
2766   // Might have a calling-convention attribute.
2767   if (const auto *AT = dyn_cast<AttributedType>(Orig))
2768     return getAttributedType(
2769         AT->getAttrKind(),
2770         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
2771         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
2772 
2773   // Anything else must be a function type. Rebuild it with the new exception
2774   // specification.
2775   const auto *Proto = cast<FunctionProtoType>(Orig);
2776   return getFunctionType(
2777       Proto->getReturnType(), Proto->getParamTypes(),
2778       Proto->getExtProtoInfo().withExceptionSpec(ESI));
2779 }
2780 
hasSameFunctionTypeIgnoringExceptionSpec(QualType T,QualType U)2781 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
2782                                                           QualType U) {
2783   return hasSameType(T, U) ||
2784          (getLangOpts().CPlusPlus17 &&
2785           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
2786                       getFunctionTypeWithExceptionSpec(U, EST_None)));
2787 }
2788 
adjustExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI,bool AsWritten)2789 void ASTContext::adjustExceptionSpec(
2790     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2791     bool AsWritten) {
2792   // Update the type.
2793   QualType Updated =
2794       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
2795   FD->setType(Updated);
2796 
2797   if (!AsWritten)
2798     return;
2799 
2800   // Update the type in the type source information too.
2801   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2802     // If the type and the type-as-written differ, we may need to update
2803     // the type-as-written too.
2804     if (TSInfo->getType() != FD->getType())
2805       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
2806 
2807     // FIXME: When we get proper type location information for exceptions,
2808     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2809     // up the TypeSourceInfo;
2810     assert(TypeLoc::getFullDataSizeForType(Updated) ==
2811                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2812            "TypeLoc size mismatch from updating exception specification");
2813     TSInfo->overrideType(Updated);
2814   }
2815 }
2816 
2817 /// getComplexType - Return the uniqued reference to the type for a complex
2818 /// number with the specified element type.
getComplexType(QualType T) const2819 QualType ASTContext::getComplexType(QualType T) const {
2820   // Unique pointers, to guarantee there is only one pointer of a particular
2821   // structure.
2822   llvm::FoldingSetNodeID ID;
2823   ComplexType::Profile(ID, T);
2824 
2825   void *InsertPos = nullptr;
2826   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2827     return QualType(CT, 0);
2828 
2829   // If the pointee type isn't canonical, this won't be a canonical type either,
2830   // so fill in the canonical type field.
2831   QualType Canonical;
2832   if (!T.isCanonical()) {
2833     Canonical = getComplexType(getCanonicalType(T));
2834 
2835     // Get the new insert position for the node we care about.
2836     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2837     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2838   }
2839   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2840   Types.push_back(New);
2841   ComplexTypes.InsertNode(New, InsertPos);
2842   return QualType(New, 0);
2843 }
2844 
2845 /// getPointerType - Return the uniqued reference to the type for a pointer to
2846 /// the specified type.
getPointerType(QualType T) const2847 QualType ASTContext::getPointerType(QualType T) const {
2848   // Unique pointers, to guarantee there is only one pointer of a particular
2849   // structure.
2850   llvm::FoldingSetNodeID ID;
2851   PointerType::Profile(ID, T);
2852 
2853   void *InsertPos = nullptr;
2854   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2855     return QualType(PT, 0);
2856 
2857   // If the pointee type isn't canonical, this won't be a canonical type either,
2858   // so fill in the canonical type field.
2859   QualType Canonical;
2860   if (!T.isCanonical()) {
2861     Canonical = getPointerType(getCanonicalType(T));
2862 
2863     // Get the new insert position for the node we care about.
2864     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2865     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2866   }
2867   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2868   Types.push_back(New);
2869   PointerTypes.InsertNode(New, InsertPos);
2870   return QualType(New, 0);
2871 }
2872 
getAdjustedType(QualType Orig,QualType New) const2873 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2874   llvm::FoldingSetNodeID ID;
2875   AdjustedType::Profile(ID, Orig, New);
2876   void *InsertPos = nullptr;
2877   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2878   if (AT)
2879     return QualType(AT, 0);
2880 
2881   QualType Canonical = getCanonicalType(New);
2882 
2883   // Get the new insert position for the node we care about.
2884   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2885   assert(!AT && "Shouldn't be in the map!");
2886 
2887   AT = new (*this, TypeAlignment)
2888       AdjustedType(Type::Adjusted, Orig, New, Canonical);
2889   Types.push_back(AT);
2890   AdjustedTypes.InsertNode(AT, InsertPos);
2891   return QualType(AT, 0);
2892 }
2893 
getDecayedType(QualType T) const2894 QualType ASTContext::getDecayedType(QualType T) const {
2895   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2896 
2897   QualType Decayed;
2898 
2899   // C99 6.7.5.3p7:
2900   //   A declaration of a parameter as "array of type" shall be
2901   //   adjusted to "qualified pointer to type", where the type
2902   //   qualifiers (if any) are those specified within the [ and ] of
2903   //   the array type derivation.
2904   if (T->isArrayType())
2905     Decayed = getArrayDecayedType(T);
2906 
2907   // C99 6.7.5.3p8:
2908   //   A declaration of a parameter as "function returning type"
2909   //   shall be adjusted to "pointer to function returning type", as
2910   //   in 6.3.2.1.
2911   if (T->isFunctionType())
2912     Decayed = getPointerType(T);
2913 
2914   llvm::FoldingSetNodeID ID;
2915   AdjustedType::Profile(ID, T, Decayed);
2916   void *InsertPos = nullptr;
2917   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2918   if (AT)
2919     return QualType(AT, 0);
2920 
2921   QualType Canonical = getCanonicalType(Decayed);
2922 
2923   // Get the new insert position for the node we care about.
2924   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2925   assert(!AT && "Shouldn't be in the map!");
2926 
2927   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2928   Types.push_back(AT);
2929   AdjustedTypes.InsertNode(AT, InsertPos);
2930   return QualType(AT, 0);
2931 }
2932 
2933 /// getBlockPointerType - Return the uniqued reference to the type for
2934 /// a pointer to the specified block.
getBlockPointerType(QualType T) const2935 QualType ASTContext::getBlockPointerType(QualType T) const {
2936   assert(T->isFunctionType() && "block of function types only");
2937   // Unique pointers, to guarantee there is only one block of a particular
2938   // structure.
2939   llvm::FoldingSetNodeID ID;
2940   BlockPointerType::Profile(ID, T);
2941 
2942   void *InsertPos = nullptr;
2943   if (BlockPointerType *PT =
2944         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2945     return QualType(PT, 0);
2946 
2947   // If the block pointee type isn't canonical, this won't be a canonical
2948   // type either so fill in the canonical type field.
2949   QualType Canonical;
2950   if (!T.isCanonical()) {
2951     Canonical = getBlockPointerType(getCanonicalType(T));
2952 
2953     // Get the new insert position for the node we care about.
2954     BlockPointerType *NewIP =
2955       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2956     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2957   }
2958   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2959   Types.push_back(New);
2960   BlockPointerTypes.InsertNode(New, InsertPos);
2961   return QualType(New, 0);
2962 }
2963 
2964 /// getLValueReferenceType - Return the uniqued reference to the type for an
2965 /// lvalue reference to the specified type.
2966 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const2967 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2968   assert(getCanonicalType(T) != OverloadTy &&
2969          "Unresolved overloaded function type");
2970 
2971   // Unique pointers, to guarantee there is only one pointer of a particular
2972   // structure.
2973   llvm::FoldingSetNodeID ID;
2974   ReferenceType::Profile(ID, T, SpelledAsLValue);
2975 
2976   void *InsertPos = nullptr;
2977   if (LValueReferenceType *RT =
2978         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2979     return QualType(RT, 0);
2980 
2981   const auto *InnerRef = T->getAs<ReferenceType>();
2982 
2983   // If the referencee type isn't canonical, this won't be a canonical type
2984   // either, so fill in the canonical type field.
2985   QualType Canonical;
2986   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2987     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2988     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2989 
2990     // Get the new insert position for the node we care about.
2991     LValueReferenceType *NewIP =
2992       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2993     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2994   }
2995 
2996   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2997                                                              SpelledAsLValue);
2998   Types.push_back(New);
2999   LValueReferenceTypes.InsertNode(New, InsertPos);
3000 
3001   return QualType(New, 0);
3002 }
3003 
3004 /// getRValueReferenceType - Return the uniqued reference to the type for an
3005 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const3006 QualType ASTContext::getRValueReferenceType(QualType T) const {
3007   // Unique pointers, to guarantee there is only one pointer of a particular
3008   // structure.
3009   llvm::FoldingSetNodeID ID;
3010   ReferenceType::Profile(ID, T, false);
3011 
3012   void *InsertPos = nullptr;
3013   if (RValueReferenceType *RT =
3014         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3015     return QualType(RT, 0);
3016 
3017   const auto *InnerRef = T->getAs<ReferenceType>();
3018 
3019   // If the referencee type isn't canonical, this won't be a canonical type
3020   // either, so fill in the canonical type field.
3021   QualType Canonical;
3022   if (InnerRef || !T.isCanonical()) {
3023     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3024     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3025 
3026     // Get the new insert position for the node we care about.
3027     RValueReferenceType *NewIP =
3028       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3029     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3030   }
3031 
3032   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3033   Types.push_back(New);
3034   RValueReferenceTypes.InsertNode(New, InsertPos);
3035   return QualType(New, 0);
3036 }
3037 
3038 /// getMemberPointerType - Return the uniqued reference to the type for a
3039 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const3040 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3041   // Unique pointers, to guarantee there is only one pointer of a particular
3042   // structure.
3043   llvm::FoldingSetNodeID ID;
3044   MemberPointerType::Profile(ID, T, Cls);
3045 
3046   void *InsertPos = nullptr;
3047   if (MemberPointerType *PT =
3048       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3049     return QualType(PT, 0);
3050 
3051   // If the pointee or class type isn't canonical, this won't be a canonical
3052   // type either, so fill in the canonical type field.
3053   QualType Canonical;
3054   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3055     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3056 
3057     // Get the new insert position for the node we care about.
3058     MemberPointerType *NewIP =
3059       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3060     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3061   }
3062   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3063   Types.push_back(New);
3064   MemberPointerTypes.InsertNode(New, InsertPos);
3065   return QualType(New, 0);
3066 }
3067 
3068 /// getConstantArrayType - Return the unique reference to the type for an
3069 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const3070 QualType ASTContext::getConstantArrayType(QualType EltTy,
3071                                           const llvm::APInt &ArySizeIn,
3072                                           ArrayType::ArraySizeModifier ASM,
3073                                           unsigned IndexTypeQuals) const {
3074   assert((EltTy->isDependentType() ||
3075           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3076          "Constant array of VLAs is illegal!");
3077 
3078   // Convert the array size into a canonical width matching the pointer size for
3079   // the target.
3080   llvm::APInt ArySize(ArySizeIn);
3081   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3082 
3083   llvm::FoldingSetNodeID ID;
3084   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
3085 
3086   void *InsertPos = nullptr;
3087   if (ConstantArrayType *ATP =
3088       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3089     return QualType(ATP, 0);
3090 
3091   // If the element type isn't canonical or has qualifiers, this won't
3092   // be a canonical type either, so fill in the canonical type field.
3093   QualType Canon;
3094   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3095     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3096     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
3097                                  ASM, IndexTypeQuals);
3098     Canon = getQualifiedType(Canon, canonSplit.Quals);
3099 
3100     // Get the new insert position for the node we care about.
3101     ConstantArrayType *NewIP =
3102       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3103     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3104   }
3105 
3106   auto *New = new (*this,TypeAlignment)
3107     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
3108   ConstantArrayTypes.InsertNode(New, InsertPos);
3109   Types.push_back(New);
3110   return QualType(New, 0);
3111 }
3112 
3113 /// getVariableArrayDecayedType - Turns the given type, which may be
3114 /// variably-modified, into the corresponding type with all the known
3115 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const3116 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3117   // Vastly most common case.
3118   if (!type->isVariablyModifiedType()) return type;
3119 
3120   QualType result;
3121 
3122   SplitQualType split = type.getSplitDesugaredType();
3123   const Type *ty = split.Ty;
3124   switch (ty->getTypeClass()) {
3125 #define TYPE(Class, Base)
3126 #define ABSTRACT_TYPE(Class, Base)
3127 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3128 #include "clang/AST/TypeNodes.def"
3129     llvm_unreachable("didn't desugar past all non-canonical types?");
3130 
3131   // These types should never be variably-modified.
3132   case Type::Builtin:
3133   case Type::Complex:
3134   case Type::Vector:
3135   case Type::DependentVector:
3136   case Type::ExtVector:
3137   case Type::DependentSizedExtVector:
3138   case Type::DependentAddressSpace:
3139   case Type::ObjCObject:
3140   case Type::ObjCInterface:
3141   case Type::ObjCObjectPointer:
3142   case Type::Record:
3143   case Type::Enum:
3144   case Type::UnresolvedUsing:
3145   case Type::TypeOfExpr:
3146   case Type::TypeOf:
3147   case Type::Decltype:
3148   case Type::UnaryTransform:
3149   case Type::DependentName:
3150   case Type::InjectedClassName:
3151   case Type::TemplateSpecialization:
3152   case Type::DependentTemplateSpecialization:
3153   case Type::TemplateTypeParm:
3154   case Type::SubstTemplateTypeParmPack:
3155   case Type::Auto:
3156   case Type::DeducedTemplateSpecialization:
3157   case Type::PackExpansion:
3158     llvm_unreachable("type should never be variably-modified");
3159 
3160   // These types can be variably-modified but should never need to
3161   // further decay.
3162   case Type::FunctionNoProto:
3163   case Type::FunctionProto:
3164   case Type::BlockPointer:
3165   case Type::MemberPointer:
3166   case Type::Pipe:
3167     return type;
3168 
3169   // These types can be variably-modified.  All these modifications
3170   // preserve structure except as noted by comments.
3171   // TODO: if we ever care about optimizing VLAs, there are no-op
3172   // optimizations available here.
3173   case Type::Pointer:
3174     result = getPointerType(getVariableArrayDecayedType(
3175                               cast<PointerType>(ty)->getPointeeType()));
3176     break;
3177 
3178   case Type::LValueReference: {
3179     const auto *lv = cast<LValueReferenceType>(ty);
3180     result = getLValueReferenceType(
3181                  getVariableArrayDecayedType(lv->getPointeeType()),
3182                                     lv->isSpelledAsLValue());
3183     break;
3184   }
3185 
3186   case Type::RValueReference: {
3187     const auto *lv = cast<RValueReferenceType>(ty);
3188     result = getRValueReferenceType(
3189                  getVariableArrayDecayedType(lv->getPointeeType()));
3190     break;
3191   }
3192 
3193   case Type::Atomic: {
3194     const auto *at = cast<AtomicType>(ty);
3195     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3196     break;
3197   }
3198 
3199   case Type::ConstantArray: {
3200     const auto *cat = cast<ConstantArrayType>(ty);
3201     result = getConstantArrayType(
3202                  getVariableArrayDecayedType(cat->getElementType()),
3203                                   cat->getSize(),
3204                                   cat->getSizeModifier(),
3205                                   cat->getIndexTypeCVRQualifiers());
3206     break;
3207   }
3208 
3209   case Type::DependentSizedArray: {
3210     const auto *dat = cast<DependentSizedArrayType>(ty);
3211     result = getDependentSizedArrayType(
3212                  getVariableArrayDecayedType(dat->getElementType()),
3213                                         dat->getSizeExpr(),
3214                                         dat->getSizeModifier(),
3215                                         dat->getIndexTypeCVRQualifiers(),
3216                                         dat->getBracketsRange());
3217     break;
3218   }
3219 
3220   // Turn incomplete types into [*] types.
3221   case Type::IncompleteArray: {
3222     const auto *iat = cast<IncompleteArrayType>(ty);
3223     result = getVariableArrayType(
3224                  getVariableArrayDecayedType(iat->getElementType()),
3225                                   /*size*/ nullptr,
3226                                   ArrayType::Normal,
3227                                   iat->getIndexTypeCVRQualifiers(),
3228                                   SourceRange());
3229     break;
3230   }
3231 
3232   // Turn VLA types into [*] types.
3233   case Type::VariableArray: {
3234     const auto *vat = cast<VariableArrayType>(ty);
3235     result = getVariableArrayType(
3236                  getVariableArrayDecayedType(vat->getElementType()),
3237                                   /*size*/ nullptr,
3238                                   ArrayType::Star,
3239                                   vat->getIndexTypeCVRQualifiers(),
3240                                   vat->getBracketsRange());
3241     break;
3242   }
3243   }
3244 
3245   // Apply the top-level qualifiers from the original.
3246   return getQualifiedType(result, split.Quals);
3247 }
3248 
3249 /// getVariableArrayType - Returns a non-unique reference to the type for a
3250 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const3251 QualType ASTContext::getVariableArrayType(QualType EltTy,
3252                                           Expr *NumElts,
3253                                           ArrayType::ArraySizeModifier ASM,
3254                                           unsigned IndexTypeQuals,
3255                                           SourceRange Brackets) const {
3256   // Since we don't unique expressions, it isn't possible to unique VLA's
3257   // that have an expression provided for their size.
3258   QualType Canon;
3259 
3260   // Be sure to pull qualifiers off the element type.
3261   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3262     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3263     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3264                                  IndexTypeQuals, Brackets);
3265     Canon = getQualifiedType(Canon, canonSplit.Quals);
3266   }
3267 
3268   auto *New = new (*this, TypeAlignment)
3269     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3270 
3271   VariableArrayTypes.push_back(New);
3272   Types.push_back(New);
3273   return QualType(New, 0);
3274 }
3275 
3276 /// getDependentSizedArrayType - Returns a non-unique reference to
3277 /// the type for a dependently-sized array of the specified element
3278 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const3279 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3280                                                 Expr *numElements,
3281                                                 ArrayType::ArraySizeModifier ASM,
3282                                                 unsigned elementTypeQuals,
3283                                                 SourceRange brackets) const {
3284   assert((!numElements || numElements->isTypeDependent() ||
3285           numElements->isValueDependent()) &&
3286          "Size must be type- or value-dependent!");
3287 
3288   // Dependently-sized array types that do not have a specified number
3289   // of elements will have their sizes deduced from a dependent
3290   // initializer.  We do no canonicalization here at all, which is okay
3291   // because they can't be used in most locations.
3292   if (!numElements) {
3293     auto *newType
3294       = new (*this, TypeAlignment)
3295           DependentSizedArrayType(*this, elementType, QualType(),
3296                                   numElements, ASM, elementTypeQuals,
3297                                   brackets);
3298     Types.push_back(newType);
3299     return QualType(newType, 0);
3300   }
3301 
3302   // Otherwise, we actually build a new type every time, but we
3303   // also build a canonical type.
3304 
3305   SplitQualType canonElementType = getCanonicalType(elementType).split();
3306 
3307   void *insertPos = nullptr;
3308   llvm::FoldingSetNodeID ID;
3309   DependentSizedArrayType::Profile(ID, *this,
3310                                    QualType(canonElementType.Ty, 0),
3311                                    ASM, elementTypeQuals, numElements);
3312 
3313   // Look for an existing type with these properties.
3314   DependentSizedArrayType *canonTy =
3315     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3316 
3317   // If we don't have one, build one.
3318   if (!canonTy) {
3319     canonTy = new (*this, TypeAlignment)
3320       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3321                               QualType(), numElements, ASM, elementTypeQuals,
3322                               brackets);
3323     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3324     Types.push_back(canonTy);
3325   }
3326 
3327   // Apply qualifiers from the element type to the array.
3328   QualType canon = getQualifiedType(QualType(canonTy,0),
3329                                     canonElementType.Quals);
3330 
3331   // If we didn't need extra canonicalization for the element type or the size
3332   // expression, then just use that as our result.
3333   if (QualType(canonElementType.Ty, 0) == elementType &&
3334       canonTy->getSizeExpr() == numElements)
3335     return canon;
3336 
3337   // Otherwise, we need to build a type which follows the spelling
3338   // of the element type.
3339   auto *sugaredType
3340     = new (*this, TypeAlignment)
3341         DependentSizedArrayType(*this, elementType, canon, numElements,
3342                                 ASM, elementTypeQuals, brackets);
3343   Types.push_back(sugaredType);
3344   return QualType(sugaredType, 0);
3345 }
3346 
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const3347 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3348                                             ArrayType::ArraySizeModifier ASM,
3349                                             unsigned elementTypeQuals) const {
3350   llvm::FoldingSetNodeID ID;
3351   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3352 
3353   void *insertPos = nullptr;
3354   if (IncompleteArrayType *iat =
3355        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3356     return QualType(iat, 0);
3357 
3358   // If the element type isn't canonical, this won't be a canonical type
3359   // either, so fill in the canonical type field.  We also have to pull
3360   // qualifiers off the element type.
3361   QualType canon;
3362 
3363   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3364     SplitQualType canonSplit = getCanonicalType(elementType).split();
3365     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3366                                    ASM, elementTypeQuals);
3367     canon = getQualifiedType(canon, canonSplit.Quals);
3368 
3369     // Get the new insert position for the node we care about.
3370     IncompleteArrayType *existing =
3371       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3372     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3373   }
3374 
3375   auto *newType = new (*this, TypeAlignment)
3376     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3377 
3378   IncompleteArrayTypes.InsertNode(newType, insertPos);
3379   Types.push_back(newType);
3380   return QualType(newType, 0);
3381 }
3382 
3383 /// getVectorType - Return the unique reference to a vector type of
3384 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const3385 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3386                                    VectorType::VectorKind VecKind) const {
3387   assert(vecType->isBuiltinType());
3388 
3389   // Check if we've already instantiated a vector of this type.
3390   llvm::FoldingSetNodeID ID;
3391   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3392 
3393   void *InsertPos = nullptr;
3394   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3395     return QualType(VTP, 0);
3396 
3397   // If the element type isn't canonical, this won't be a canonical type either,
3398   // so fill in the canonical type field.
3399   QualType Canonical;
3400   if (!vecType.isCanonical()) {
3401     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3402 
3403     // Get the new insert position for the node we care about.
3404     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3405     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3406   }
3407   auto *New = new (*this, TypeAlignment)
3408     VectorType(vecType, NumElts, Canonical, VecKind);
3409   VectorTypes.InsertNode(New, InsertPos);
3410   Types.push_back(New);
3411   return QualType(New, 0);
3412 }
3413 
3414 QualType
getDependentVectorType(QualType VecType,Expr * SizeExpr,SourceLocation AttrLoc,VectorType::VectorKind VecKind) const3415 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3416                                    SourceLocation AttrLoc,
3417                                    VectorType::VectorKind VecKind) const {
3418   llvm::FoldingSetNodeID ID;
3419   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3420                                VecKind);
3421   void *InsertPos = nullptr;
3422   DependentVectorType *Canon =
3423       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3424   DependentVectorType *New;
3425 
3426   if (Canon) {
3427     New = new (*this, TypeAlignment) DependentVectorType(
3428         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3429   } else {
3430     QualType CanonVecTy = getCanonicalType(VecType);
3431     if (CanonVecTy == VecType) {
3432       New = new (*this, TypeAlignment) DependentVectorType(
3433           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3434 
3435       DependentVectorType *CanonCheck =
3436           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3437       assert(!CanonCheck &&
3438              "Dependent-sized vector_size canonical type broken");
3439       (void)CanonCheck;
3440       DependentVectorTypes.InsertNode(New, InsertPos);
3441     } else {
3442       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3443                                                       SourceLocation());
3444       New = new (*this, TypeAlignment) DependentVectorType(
3445           *this, VecType, Canon, SizeExpr, AttrLoc, VecKind);
3446     }
3447   }
3448 
3449   Types.push_back(New);
3450   return QualType(New, 0);
3451 }
3452 
3453 /// getExtVectorType - Return the unique reference to an extended vector type of
3454 /// the specified element type and size. VectorType must be a built-in type.
3455 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const3456 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3457   assert(vecType->isBuiltinType() || vecType->isDependentType());
3458 
3459   // Check if we've already instantiated a vector of this type.
3460   llvm::FoldingSetNodeID ID;
3461   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3462                       VectorType::GenericVector);
3463   void *InsertPos = nullptr;
3464   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3465     return QualType(VTP, 0);
3466 
3467   // If the element type isn't canonical, this won't be a canonical type either,
3468   // so fill in the canonical type field.
3469   QualType Canonical;
3470   if (!vecType.isCanonical()) {
3471     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3472 
3473     // Get the new insert position for the node we care about.
3474     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3475     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3476   }
3477   auto *New = new (*this, TypeAlignment)
3478     ExtVectorType(vecType, NumElts, Canonical);
3479   VectorTypes.InsertNode(New, InsertPos);
3480   Types.push_back(New);
3481   return QualType(New, 0);
3482 }
3483 
3484 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const3485 ASTContext::getDependentSizedExtVectorType(QualType vecType,
3486                                            Expr *SizeExpr,
3487                                            SourceLocation AttrLoc) const {
3488   llvm::FoldingSetNodeID ID;
3489   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
3490                                        SizeExpr);
3491 
3492   void *InsertPos = nullptr;
3493   DependentSizedExtVectorType *Canon
3494     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3495   DependentSizedExtVectorType *New;
3496   if (Canon) {
3497     // We already have a canonical version of this array type; use it as
3498     // the canonical type for a newly-built type.
3499     New = new (*this, TypeAlignment)
3500       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
3501                                   SizeExpr, AttrLoc);
3502   } else {
3503     QualType CanonVecTy = getCanonicalType(vecType);
3504     if (CanonVecTy == vecType) {
3505       New = new (*this, TypeAlignment)
3506         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
3507                                     AttrLoc);
3508 
3509       DependentSizedExtVectorType *CanonCheck
3510         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3511       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
3512       (void)CanonCheck;
3513       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
3514     } else {
3515       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3516                                                       SourceLocation());
3517       New = new (*this, TypeAlignment)
3518         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
3519     }
3520   }
3521 
3522   Types.push_back(New);
3523   return QualType(New, 0);
3524 }
3525 
getDependentAddressSpaceType(QualType PointeeType,Expr * AddrSpaceExpr,SourceLocation AttrLoc) const3526 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
3527                                                   Expr *AddrSpaceExpr,
3528                                                   SourceLocation AttrLoc) const {
3529   assert(AddrSpaceExpr->isInstantiationDependent());
3530 
3531   QualType canonPointeeType = getCanonicalType(PointeeType);
3532 
3533   void *insertPos = nullptr;
3534   llvm::FoldingSetNodeID ID;
3535   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
3536                                      AddrSpaceExpr);
3537 
3538   DependentAddressSpaceType *canonTy =
3539     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
3540 
3541   if (!canonTy) {
3542     canonTy = new (*this, TypeAlignment)
3543       DependentAddressSpaceType(*this, canonPointeeType,
3544                                 QualType(), AddrSpaceExpr, AttrLoc);
3545     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
3546     Types.push_back(canonTy);
3547   }
3548 
3549   if (canonPointeeType == PointeeType &&
3550       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
3551     return QualType(canonTy, 0);
3552 
3553   auto *sugaredType
3554     = new (*this, TypeAlignment)
3555         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
3556                                   AddrSpaceExpr, AttrLoc);
3557   Types.push_back(sugaredType);
3558   return QualType(sugaredType, 0);
3559 }
3560 
3561 /// Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)3562 static bool isCanonicalResultType(QualType T) {
3563   return T.isCanonical() &&
3564          (T.getObjCLifetime() == Qualifiers::OCL_None ||
3565           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
3566 }
3567 
3568 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
3569 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const3570 ASTContext::getFunctionNoProtoType(QualType ResultTy,
3571                                    const FunctionType::ExtInfo &Info) const {
3572   // Unique functions, to guarantee there is only one function of a particular
3573   // structure.
3574   llvm::FoldingSetNodeID ID;
3575   FunctionNoProtoType::Profile(ID, ResultTy, Info);
3576 
3577   void *InsertPos = nullptr;
3578   if (FunctionNoProtoType *FT =
3579         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3580     return QualType(FT, 0);
3581 
3582   QualType Canonical;
3583   if (!isCanonicalResultType(ResultTy)) {
3584     Canonical =
3585       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
3586 
3587     // Get the new insert position for the node we care about.
3588     FunctionNoProtoType *NewIP =
3589       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3590     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3591   }
3592 
3593   auto *New = new (*this, TypeAlignment)
3594     FunctionNoProtoType(ResultTy, Canonical, Info);
3595   Types.push_back(New);
3596   FunctionNoProtoTypes.InsertNode(New, InsertPos);
3597   return QualType(New, 0);
3598 }
3599 
3600 CanQualType
getCanonicalFunctionResultType(QualType ResultType) const3601 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
3602   CanQualType CanResultType = getCanonicalType(ResultType);
3603 
3604   // Canonical result types do not have ARC lifetime qualifiers.
3605   if (CanResultType.getQualifiers().hasObjCLifetime()) {
3606     Qualifiers Qs = CanResultType.getQualifiers();
3607     Qs.removeObjCLifetime();
3608     return CanQualType::CreateUnsafe(
3609              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3610   }
3611 
3612   return CanResultType;
3613 }
3614 
isCanonicalExceptionSpecification(const FunctionProtoType::ExceptionSpecInfo & ESI,bool NoexceptInType)3615 static bool isCanonicalExceptionSpecification(
3616     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
3617   if (ESI.Type == EST_None)
3618     return true;
3619   if (!NoexceptInType)
3620     return false;
3621 
3622   // C++17 onwards: exception specification is part of the type, as a simple
3623   // boolean "can this function type throw".
3624   if (ESI.Type == EST_BasicNoexcept)
3625     return true;
3626 
3627   // A noexcept(expr) specification is (possibly) canonical if expr is
3628   // value-dependent.
3629   if (ESI.Type == EST_DependentNoexcept)
3630     return true;
3631 
3632   // A dynamic exception specification is canonical if it only contains pack
3633   // expansions (so we can't tell whether it's non-throwing) and all its
3634   // contained types are canonical.
3635   if (ESI.Type == EST_Dynamic) {
3636     bool AnyPackExpansions = false;
3637     for (QualType ET : ESI.Exceptions) {
3638       if (!ET.isCanonical())
3639         return false;
3640       if (ET->getAs<PackExpansionType>())
3641         AnyPackExpansions = true;
3642     }
3643     return AnyPackExpansions;
3644   }
3645 
3646   return false;
3647 }
3648 
getFunctionTypeInternal(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI,bool OnlyWantCanonical) const3649 QualType ASTContext::getFunctionTypeInternal(
3650     QualType ResultTy, ArrayRef<QualType> ArgArray,
3651     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
3652   size_t NumArgs = ArgArray.size();
3653 
3654   // Unique functions, to guarantee there is only one function of a particular
3655   // structure.
3656   llvm::FoldingSetNodeID ID;
3657   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3658                              *this, true);
3659 
3660   QualType Canonical;
3661   bool Unique = false;
3662 
3663   void *InsertPos = nullptr;
3664   if (FunctionProtoType *FPT =
3665         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
3666     QualType Existing = QualType(FPT, 0);
3667 
3668     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
3669     // it so long as our exception specification doesn't contain a dependent
3670     // noexcept expression, or we're just looking for a canonical type.
3671     // Otherwise, we're going to need to create a type
3672     // sugar node to hold the concrete expression.
3673     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
3674         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
3675       return Existing;
3676 
3677     // We need a new type sugar node for this one, to hold the new noexcept
3678     // expression. We do no canonicalization here, but that's OK since we don't
3679     // expect to see the same noexcept expression much more than once.
3680     Canonical = getCanonicalType(Existing);
3681     Unique = true;
3682   }
3683 
3684   bool NoexceptInType = getLangOpts().CPlusPlus17;
3685   bool IsCanonicalExceptionSpec =
3686       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
3687 
3688   // Determine whether the type being created is already canonical or not.
3689   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
3690                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
3691   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3692     if (!ArgArray[i].isCanonicalAsParam())
3693       isCanonical = false;
3694 
3695   if (OnlyWantCanonical)
3696     assert(isCanonical &&
3697            "given non-canonical parameters constructing canonical type");
3698 
3699   // If this type isn't canonical, get the canonical version of it if we don't
3700   // already have it. The exception spec is only partially part of the
3701   // canonical type, and only in C++17 onwards.
3702   if (!isCanonical && Canonical.isNull()) {
3703     SmallVector<QualType, 16> CanonicalArgs;
3704     CanonicalArgs.reserve(NumArgs);
3705     for (unsigned i = 0; i != NumArgs; ++i)
3706       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3707 
3708     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
3709     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3710     CanonicalEPI.HasTrailingReturn = false;
3711 
3712     if (IsCanonicalExceptionSpec) {
3713       // Exception spec is already OK.
3714     } else if (NoexceptInType) {
3715       switch (EPI.ExceptionSpec.Type) {
3716       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
3717         // We don't know yet. It shouldn't matter what we pick here; no-one
3718         // should ever look at this.
3719         LLVM_FALLTHROUGH;
3720       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
3721         CanonicalEPI.ExceptionSpec.Type = EST_None;
3722         break;
3723 
3724         // A dynamic exception specification is almost always "not noexcept",
3725         // with the exception that a pack expansion might expand to no types.
3726       case EST_Dynamic: {
3727         bool AnyPacks = false;
3728         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
3729           if (ET->getAs<PackExpansionType>())
3730             AnyPacks = true;
3731           ExceptionTypeStorage.push_back(getCanonicalType(ET));
3732         }
3733         if (!AnyPacks)
3734           CanonicalEPI.ExceptionSpec.Type = EST_None;
3735         else {
3736           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
3737           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
3738         }
3739         break;
3740       }
3741 
3742       case EST_DynamicNone: case EST_BasicNoexcept: case EST_NoexceptTrue:
3743         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
3744         break;
3745 
3746       case EST_DependentNoexcept:
3747         llvm_unreachable("dependent noexcept is already canonical");
3748       }
3749     } else {
3750       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
3751     }
3752 
3753     // Adjust the canonical function result type.
3754     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
3755     Canonical =
3756         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
3757 
3758     // Get the new insert position for the node we care about.
3759     FunctionProtoType *NewIP =
3760       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3761     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3762   }
3763 
3764   // Compute the needed size to hold this FunctionProtoType and the
3765   // various trailing objects.
3766   auto ESH = FunctionProtoType::getExceptionSpecSize(
3767       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
3768   size_t Size = FunctionProtoType::totalSizeToAlloc<
3769       QualType, FunctionType::FunctionTypeExtraBitfields,
3770       FunctionType::ExceptionType, Expr *, FunctionDecl *,
3771       FunctionProtoType::ExtParameterInfo, Qualifiers>(
3772       NumArgs, FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
3773       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
3774       EPI.ExtParameterInfos ? NumArgs : 0,
3775       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
3776 
3777   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
3778   FunctionProtoType::ExtProtoInfo newEPI = EPI;
3779   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
3780   Types.push_back(FTP);
3781   if (!Unique)
3782     FunctionProtoTypes.InsertNode(FTP, InsertPos);
3783   return QualType(FTP, 0);
3784 }
3785 
getPipeType(QualType T,bool ReadOnly) const3786 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
3787   llvm::FoldingSetNodeID ID;
3788   PipeType::Profile(ID, T, ReadOnly);
3789 
3790   void *InsertPos = nullptr;
3791   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
3792     return QualType(PT, 0);
3793 
3794   // If the pipe element type isn't canonical, this won't be a canonical type
3795   // either, so fill in the canonical type field.
3796   QualType Canonical;
3797   if (!T.isCanonical()) {
3798     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
3799 
3800     // Get the new insert position for the node we care about.
3801     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
3802     assert(!NewIP && "Shouldn't be in the map!");
3803     (void)NewIP;
3804   }
3805   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
3806   Types.push_back(New);
3807   PipeTypes.InsertNode(New, InsertPos);
3808   return QualType(New, 0);
3809 }
3810 
adjustStringLiteralBaseType(QualType Ty) const3811 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
3812   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
3813   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
3814                          : Ty;
3815 }
3816 
getReadPipeType(QualType T) const3817 QualType ASTContext::getReadPipeType(QualType T) const {
3818   return getPipeType(T, true);
3819 }
3820 
getWritePipeType(QualType T) const3821 QualType ASTContext::getWritePipeType(QualType T) const {
3822   return getPipeType(T, false);
3823 }
3824 
3825 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)3826 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
3827   if (!isa<CXXRecordDecl>(D)) return false;
3828   const auto *RD = cast<CXXRecordDecl>(D);
3829   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
3830     return true;
3831   if (RD->getDescribedClassTemplate() &&
3832       !isa<ClassTemplateSpecializationDecl>(RD))
3833     return true;
3834   return false;
3835 }
3836 #endif
3837 
3838 /// getInjectedClassNameType - Return the unique reference to the
3839 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const3840 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
3841                                               QualType TST) const {
3842   assert(NeedsInjectedClassNameType(Decl));
3843   if (Decl->TypeForDecl) {
3844     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3845   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
3846     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
3847     Decl->TypeForDecl = PrevDecl->TypeForDecl;
3848     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3849   } else {
3850     Type *newType =
3851       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
3852     Decl->TypeForDecl = newType;
3853     Types.push_back(newType);
3854   }
3855   return QualType(Decl->TypeForDecl, 0);
3856 }
3857 
3858 /// getTypeDeclType - Return the unique reference to the type for the
3859 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const3860 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3861   assert(Decl && "Passed null for Decl param");
3862   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3863 
3864   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3865     return getTypedefType(Typedef);
3866 
3867   assert(!isa<TemplateTypeParmDecl>(Decl) &&
3868          "Template type parameter types are always available.");
3869 
3870   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
3871     assert(Record->isFirstDecl() && "struct/union has previous declaration");
3872     assert(!NeedsInjectedClassNameType(Record));
3873     return getRecordType(Record);
3874   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
3875     assert(Enum->isFirstDecl() && "enum has previous declaration");
3876     return getEnumType(Enum);
3877   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3878     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3879     Decl->TypeForDecl = newType;
3880     Types.push_back(newType);
3881   } else
3882     llvm_unreachable("TypeDecl without a type?");
3883 
3884   return QualType(Decl->TypeForDecl, 0);
3885 }
3886 
3887 /// getTypedefType - Return the unique reference to the type for the
3888 /// specified typedef name decl.
3889 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const3890 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3891                            QualType Canonical) const {
3892   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3893 
3894   if (Canonical.isNull())
3895     Canonical = getCanonicalType(Decl->getUnderlyingType());
3896   auto *newType = new (*this, TypeAlignment)
3897     TypedefType(Type::Typedef, Decl, Canonical);
3898   Decl->TypeForDecl = newType;
3899   Types.push_back(newType);
3900   return QualType(newType, 0);
3901 }
3902 
getRecordType(const RecordDecl * Decl) const3903 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3904   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3905 
3906   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3907     if (PrevDecl->TypeForDecl)
3908       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3909 
3910   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
3911   Decl->TypeForDecl = newType;
3912   Types.push_back(newType);
3913   return QualType(newType, 0);
3914 }
3915 
getEnumType(const EnumDecl * Decl) const3916 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3917   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3918 
3919   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3920     if (PrevDecl->TypeForDecl)
3921       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3922 
3923   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
3924   Decl->TypeForDecl = newType;
3925   Types.push_back(newType);
3926   return QualType(newType, 0);
3927 }
3928 
getAttributedType(attr::Kind attrKind,QualType modifiedType,QualType equivalentType)3929 QualType ASTContext::getAttributedType(attr::Kind attrKind,
3930                                        QualType modifiedType,
3931                                        QualType equivalentType) {
3932   llvm::FoldingSetNodeID id;
3933   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3934 
3935   void *insertPos = nullptr;
3936   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3937   if (type) return QualType(type, 0);
3938 
3939   QualType canon = getCanonicalType(equivalentType);
3940   type = new (*this, TypeAlignment)
3941            AttributedType(canon, attrKind, modifiedType, equivalentType);
3942 
3943   Types.push_back(type);
3944   AttributedTypes.InsertNode(type, insertPos);
3945 
3946   return QualType(type, 0);
3947 }
3948 
3949 /// Retrieve a substitution-result type.
3950 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const3951 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3952                                          QualType Replacement) const {
3953   assert(Replacement.isCanonical()
3954          && "replacement types must always be canonical");
3955 
3956   llvm::FoldingSetNodeID ID;
3957   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3958   void *InsertPos = nullptr;
3959   SubstTemplateTypeParmType *SubstParm
3960     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3961 
3962   if (!SubstParm) {
3963     SubstParm = new (*this, TypeAlignment)
3964       SubstTemplateTypeParmType(Parm, Replacement);
3965     Types.push_back(SubstParm);
3966     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3967   }
3968 
3969   return QualType(SubstParm, 0);
3970 }
3971 
3972 /// Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)3973 QualType ASTContext::getSubstTemplateTypeParmPackType(
3974                                           const TemplateTypeParmType *Parm,
3975                                               const TemplateArgument &ArgPack) {
3976 #ifndef NDEBUG
3977   for (const auto &P : ArgPack.pack_elements()) {
3978     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3979     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3980   }
3981 #endif
3982 
3983   llvm::FoldingSetNodeID ID;
3984   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3985   void *InsertPos = nullptr;
3986   if (SubstTemplateTypeParmPackType *SubstParm
3987         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3988     return QualType(SubstParm, 0);
3989 
3990   QualType Canon;
3991   if (!Parm->isCanonicalUnqualified()) {
3992     Canon = getCanonicalType(QualType(Parm, 0));
3993     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3994                                              ArgPack);
3995     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3996   }
3997 
3998   auto *SubstParm
3999     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4000                                                                ArgPack);
4001   Types.push_back(SubstParm);
4002   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4003   return QualType(SubstParm, 0);
4004 }
4005 
4006 /// Retrieve the template type parameter type for a template
4007 /// parameter or parameter pack with the given depth, index, and (optionally)
4008 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const4009 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4010                                              bool ParameterPack,
4011                                              TemplateTypeParmDecl *TTPDecl) const {
4012   llvm::FoldingSetNodeID ID;
4013   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4014   void *InsertPos = nullptr;
4015   TemplateTypeParmType *TypeParm
4016     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4017 
4018   if (TypeParm)
4019     return QualType(TypeParm, 0);
4020 
4021   if (TTPDecl) {
4022     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4023     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4024 
4025     TemplateTypeParmType *TypeCheck
4026       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4027     assert(!TypeCheck && "Template type parameter canonical type broken");
4028     (void)TypeCheck;
4029   } else
4030     TypeParm = new (*this, TypeAlignment)
4031       TemplateTypeParmType(Depth, Index, ParameterPack);
4032 
4033   Types.push_back(TypeParm);
4034   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4035 
4036   return QualType(TypeParm, 0);
4037 }
4038 
4039 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const4040 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4041                                               SourceLocation NameLoc,
4042                                         const TemplateArgumentListInfo &Args,
4043                                               QualType Underlying) const {
4044   assert(!Name.getAsDependentTemplateName() &&
4045          "No dependent template names here!");
4046   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4047 
4048   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4049   TemplateSpecializationTypeLoc TL =
4050       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4051   TL.setTemplateKeywordLoc(SourceLocation());
4052   TL.setTemplateNameLoc(NameLoc);
4053   TL.setLAngleLoc(Args.getLAngleLoc());
4054   TL.setRAngleLoc(Args.getRAngleLoc());
4055   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4056     TL.setArgLocInfo(i, Args[i].getLocInfo());
4057   return DI;
4058 }
4059 
4060 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const4061 ASTContext::getTemplateSpecializationType(TemplateName Template,
4062                                           const TemplateArgumentListInfo &Args,
4063                                           QualType Underlying) const {
4064   assert(!Template.getAsDependentTemplateName() &&
4065          "No dependent template names here!");
4066 
4067   SmallVector<TemplateArgument, 4> ArgVec;
4068   ArgVec.reserve(Args.size());
4069   for (const TemplateArgumentLoc &Arg : Args.arguments())
4070     ArgVec.push_back(Arg.getArgument());
4071 
4072   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4073 }
4074 
4075 #ifndef NDEBUG
hasAnyPackExpansions(ArrayRef<TemplateArgument> Args)4076 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4077   for (const TemplateArgument &Arg : Args)
4078     if (Arg.isPackExpansion())
4079       return true;
4080 
4081   return true;
4082 }
4083 #endif
4084 
4085 QualType
getTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args,QualType Underlying) const4086 ASTContext::getTemplateSpecializationType(TemplateName Template,
4087                                           ArrayRef<TemplateArgument> Args,
4088                                           QualType Underlying) const {
4089   assert(!Template.getAsDependentTemplateName() &&
4090          "No dependent template names here!");
4091   // Look through qualified template names.
4092   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4093     Template = TemplateName(QTN->getTemplateDecl());
4094 
4095   bool IsTypeAlias =
4096     Template.getAsTemplateDecl() &&
4097     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4098   QualType CanonType;
4099   if (!Underlying.isNull())
4100     CanonType = getCanonicalType(Underlying);
4101   else {
4102     // We can get here with an alias template when the specialization contains
4103     // a pack expansion that does not match up with a parameter pack.
4104     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4105            "Caller must compute aliased type");
4106     IsTypeAlias = false;
4107     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4108   }
4109 
4110   // Allocate the (non-canonical) template specialization type, but don't
4111   // try to unique it: these types typically have location information that
4112   // we don't unique and don't want to lose.
4113   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4114                        sizeof(TemplateArgument) * Args.size() +
4115                        (IsTypeAlias? sizeof(QualType) : 0),
4116                        TypeAlignment);
4117   auto *Spec
4118     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4119                                          IsTypeAlias ? Underlying : QualType());
4120 
4121   Types.push_back(Spec);
4122   return QualType(Spec, 0);
4123 }
4124 
getCanonicalTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args) const4125 QualType ASTContext::getCanonicalTemplateSpecializationType(
4126     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4127   assert(!Template.getAsDependentTemplateName() &&
4128          "No dependent template names here!");
4129 
4130   // Look through qualified template names.
4131   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4132     Template = TemplateName(QTN->getTemplateDecl());
4133 
4134   // Build the canonical template specialization type.
4135   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4136   SmallVector<TemplateArgument, 4> CanonArgs;
4137   unsigned NumArgs = Args.size();
4138   CanonArgs.reserve(NumArgs);
4139   for (const TemplateArgument &Arg : Args)
4140     CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4141 
4142   // Determine whether this canonical template specialization type already
4143   // exists.
4144   llvm::FoldingSetNodeID ID;
4145   TemplateSpecializationType::Profile(ID, CanonTemplate,
4146                                       CanonArgs, *this);
4147 
4148   void *InsertPos = nullptr;
4149   TemplateSpecializationType *Spec
4150     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4151 
4152   if (!Spec) {
4153     // Allocate a new canonical template specialization type.
4154     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4155                           sizeof(TemplateArgument) * NumArgs),
4156                          TypeAlignment);
4157     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4158                                                 CanonArgs,
4159                                                 QualType(), QualType());
4160     Types.push_back(Spec);
4161     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4162   }
4163 
4164   assert(Spec->isDependentType() &&
4165          "Non-dependent template-id type must have a canonical type");
4166   return QualType(Spec, 0);
4167 }
4168 
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType,TagDecl * OwnedTagDecl) const4169 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4170                                        NestedNameSpecifier *NNS,
4171                                        QualType NamedType,
4172                                        TagDecl *OwnedTagDecl) const {
4173   llvm::FoldingSetNodeID ID;
4174   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4175 
4176   void *InsertPos = nullptr;
4177   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4178   if (T)
4179     return QualType(T, 0);
4180 
4181   QualType Canon = NamedType;
4182   if (!Canon.isCanonical()) {
4183     Canon = getCanonicalType(NamedType);
4184     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4185     assert(!CheckT && "Elaborated canonical type broken");
4186     (void)CheckT;
4187   }
4188 
4189   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4190                        TypeAlignment);
4191   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4192 
4193   Types.push_back(T);
4194   ElaboratedTypes.InsertNode(T, InsertPos);
4195   return QualType(T, 0);
4196 }
4197 
4198 QualType
getParenType(QualType InnerType) const4199 ASTContext::getParenType(QualType InnerType) const {
4200   llvm::FoldingSetNodeID ID;
4201   ParenType::Profile(ID, InnerType);
4202 
4203   void *InsertPos = nullptr;
4204   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4205   if (T)
4206     return QualType(T, 0);
4207 
4208   QualType Canon = InnerType;
4209   if (!Canon.isCanonical()) {
4210     Canon = getCanonicalType(InnerType);
4211     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4212     assert(!CheckT && "Paren canonical type broken");
4213     (void)CheckT;
4214   }
4215 
4216   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4217   Types.push_back(T);
4218   ParenTypes.InsertNode(T, InsertPos);
4219   return QualType(T, 0);
4220 }
4221 
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const4222 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4223                                           NestedNameSpecifier *NNS,
4224                                           const IdentifierInfo *Name,
4225                                           QualType Canon) const {
4226   if (Canon.isNull()) {
4227     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4228     if (CanonNNS != NNS)
4229       Canon = getDependentNameType(Keyword, CanonNNS, Name);
4230   }
4231 
4232   llvm::FoldingSetNodeID ID;
4233   DependentNameType::Profile(ID, Keyword, NNS, Name);
4234 
4235   void *InsertPos = nullptr;
4236   DependentNameType *T
4237     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4238   if (T)
4239     return QualType(T, 0);
4240 
4241   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4242   Types.push_back(T);
4243   DependentNameTypes.InsertNode(T, InsertPos);
4244   return QualType(T, 0);
4245 }
4246 
4247 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const4248 ASTContext::getDependentTemplateSpecializationType(
4249                                  ElaboratedTypeKeyword Keyword,
4250                                  NestedNameSpecifier *NNS,
4251                                  const IdentifierInfo *Name,
4252                                  const TemplateArgumentListInfo &Args) const {
4253   // TODO: avoid this copy
4254   SmallVector<TemplateArgument, 16> ArgCopy;
4255   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4256     ArgCopy.push_back(Args[I].getArgument());
4257   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4258 }
4259 
4260 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,ArrayRef<TemplateArgument> Args) const4261 ASTContext::getDependentTemplateSpecializationType(
4262                                  ElaboratedTypeKeyword Keyword,
4263                                  NestedNameSpecifier *NNS,
4264                                  const IdentifierInfo *Name,
4265                                  ArrayRef<TemplateArgument> Args) const {
4266   assert((!NNS || NNS->isDependent()) &&
4267          "nested-name-specifier must be dependent");
4268 
4269   llvm::FoldingSetNodeID ID;
4270   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4271                                                Name, Args);
4272 
4273   void *InsertPos = nullptr;
4274   DependentTemplateSpecializationType *T
4275     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4276   if (T)
4277     return QualType(T, 0);
4278 
4279   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4280 
4281   ElaboratedTypeKeyword CanonKeyword = Keyword;
4282   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4283 
4284   bool AnyNonCanonArgs = false;
4285   unsigned NumArgs = Args.size();
4286   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4287   for (unsigned I = 0; I != NumArgs; ++I) {
4288     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4289     if (!CanonArgs[I].structurallyEquals(Args[I]))
4290       AnyNonCanonArgs = true;
4291   }
4292 
4293   QualType Canon;
4294   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4295     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4296                                                    Name,
4297                                                    CanonArgs);
4298 
4299     // Find the insert position again.
4300     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4301   }
4302 
4303   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4304                         sizeof(TemplateArgument) * NumArgs),
4305                        TypeAlignment);
4306   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4307                                                     Name, Args, Canon);
4308   Types.push_back(T);
4309   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4310   return QualType(T, 0);
4311 }
4312 
getInjectedTemplateArg(NamedDecl * Param)4313 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
4314   TemplateArgument Arg;
4315   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4316     QualType ArgType = getTypeDeclType(TTP);
4317     if (TTP->isParameterPack())
4318       ArgType = getPackExpansionType(ArgType, None);
4319 
4320     Arg = TemplateArgument(ArgType);
4321   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4322     Expr *E = new (*this) DeclRefExpr(
4323         *this, NTTP, /*enclosing*/ false,
4324         NTTP->getType().getNonLValueExprType(*this),
4325         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4326 
4327     if (NTTP->isParameterPack())
4328       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4329                                         None);
4330     Arg = TemplateArgument(E);
4331   } else {
4332     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4333     if (TTP->isParameterPack())
4334       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
4335     else
4336       Arg = TemplateArgument(TemplateName(TTP));
4337   }
4338 
4339   if (Param->isTemplateParameterPack())
4340     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4341 
4342   return Arg;
4343 }
4344 
4345 void
getInjectedTemplateArgs(const TemplateParameterList * Params,SmallVectorImpl<TemplateArgument> & Args)4346 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
4347                                     SmallVectorImpl<TemplateArgument> &Args) {
4348   Args.reserve(Args.size() + Params->size());
4349 
4350   for (NamedDecl *Param : *Params)
4351     Args.push_back(getInjectedTemplateArg(Param));
4352 }
4353 
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions)4354 QualType ASTContext::getPackExpansionType(QualType Pattern,
4355                                           Optional<unsigned> NumExpansions) {
4356   llvm::FoldingSetNodeID ID;
4357   PackExpansionType::Profile(ID, Pattern, NumExpansions);
4358 
4359   assert(Pattern->containsUnexpandedParameterPack() &&
4360          "Pack expansions must expand one or more parameter packs");
4361   void *InsertPos = nullptr;
4362   PackExpansionType *T
4363     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4364   if (T)
4365     return QualType(T, 0);
4366 
4367   QualType Canon;
4368   if (!Pattern.isCanonical()) {
4369     Canon = getCanonicalType(Pattern);
4370     // The canonical type might not contain an unexpanded parameter pack, if it
4371     // contains an alias template specialization which ignores one of its
4372     // parameters.
4373     if (Canon->containsUnexpandedParameterPack()) {
4374       Canon = getPackExpansionType(Canon, NumExpansions);
4375 
4376       // Find the insert position again, in case we inserted an element into
4377       // PackExpansionTypes and invalidated our insert position.
4378       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4379     }
4380   }
4381 
4382   T = new (*this, TypeAlignment)
4383       PackExpansionType(Pattern, Canon, NumExpansions);
4384   Types.push_back(T);
4385   PackExpansionTypes.InsertNode(T, InsertPos);
4386   return QualType(T, 0);
4387 }
4388 
4389 /// CmpProtocolNames - Comparison predicate for sorting protocols
4390 /// alphabetically.
CmpProtocolNames(ObjCProtocolDecl * const * LHS,ObjCProtocolDecl * const * RHS)4391 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
4392                             ObjCProtocolDecl *const *RHS) {
4393   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
4394 }
4395 
areSortedAndUniqued(ArrayRef<ObjCProtocolDecl * > Protocols)4396 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
4397   if (Protocols.empty()) return true;
4398 
4399   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
4400     return false;
4401 
4402   for (unsigned i = 1; i != Protocols.size(); ++i)
4403     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
4404         Protocols[i]->getCanonicalDecl() != Protocols[i])
4405       return false;
4406   return true;
4407 }
4408 
4409 static void
SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl * > & Protocols)4410 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
4411   // Sort protocols, keyed by name.
4412   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
4413 
4414   // Canonicalize.
4415   for (ObjCProtocolDecl *&P : Protocols)
4416     P = P->getCanonicalDecl();
4417 
4418   // Remove duplicates.
4419   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
4420   Protocols.erase(ProtocolsEnd, Protocols.end());
4421 }
4422 
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const4423 QualType ASTContext::getObjCObjectType(QualType BaseType,
4424                                        ObjCProtocolDecl * const *Protocols,
4425                                        unsigned NumProtocols) const {
4426   return getObjCObjectType(BaseType, {},
4427                            llvm::makeArrayRef(Protocols, NumProtocols),
4428                            /*isKindOf=*/false);
4429 }
4430 
getObjCObjectType(QualType baseType,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf) const4431 QualType ASTContext::getObjCObjectType(
4432            QualType baseType,
4433            ArrayRef<QualType> typeArgs,
4434            ArrayRef<ObjCProtocolDecl *> protocols,
4435            bool isKindOf) const {
4436   // If the base type is an interface and there aren't any protocols or
4437   // type arguments to add, then the interface type will do just fine.
4438   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
4439       isa<ObjCInterfaceType>(baseType))
4440     return baseType;
4441 
4442   // Look in the folding set for an existing type.
4443   llvm::FoldingSetNodeID ID;
4444   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
4445   void *InsertPos = nullptr;
4446   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
4447     return QualType(QT, 0);
4448 
4449   // Determine the type arguments to be used for canonicalization,
4450   // which may be explicitly specified here or written on the base
4451   // type.
4452   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
4453   if (effectiveTypeArgs.empty()) {
4454     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
4455       effectiveTypeArgs = baseObject->getTypeArgs();
4456   }
4457 
4458   // Build the canonical type, which has the canonical base type and a
4459   // sorted-and-uniqued list of protocols and the type arguments
4460   // canonicalized.
4461   QualType canonical;
4462   bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
4463                                           effectiveTypeArgs.end(),
4464                                           [&](QualType type) {
4465                                             return type.isCanonical();
4466                                           });
4467   bool protocolsSorted = areSortedAndUniqued(protocols);
4468   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
4469     // Determine the canonical type arguments.
4470     ArrayRef<QualType> canonTypeArgs;
4471     SmallVector<QualType, 4> canonTypeArgsVec;
4472     if (!typeArgsAreCanonical) {
4473       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
4474       for (auto typeArg : effectiveTypeArgs)
4475         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
4476       canonTypeArgs = canonTypeArgsVec;
4477     } else {
4478       canonTypeArgs = effectiveTypeArgs;
4479     }
4480 
4481     ArrayRef<ObjCProtocolDecl *> canonProtocols;
4482     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
4483     if (!protocolsSorted) {
4484       canonProtocolsVec.append(protocols.begin(), protocols.end());
4485       SortAndUniqueProtocols(canonProtocolsVec);
4486       canonProtocols = canonProtocolsVec;
4487     } else {
4488       canonProtocols = protocols;
4489     }
4490 
4491     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
4492                                   canonProtocols, isKindOf);
4493 
4494     // Regenerate InsertPos.
4495     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
4496   }
4497 
4498   unsigned size = sizeof(ObjCObjectTypeImpl);
4499   size += typeArgs.size() * sizeof(QualType);
4500   size += protocols.size() * sizeof(ObjCProtocolDecl *);
4501   void *mem = Allocate(size, TypeAlignment);
4502   auto *T =
4503     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
4504                                  isKindOf);
4505 
4506   Types.push_back(T);
4507   ObjCObjectTypes.InsertNode(T, InsertPos);
4508   return QualType(T, 0);
4509 }
4510 
4511 /// Apply Objective-C protocol qualifiers to the given type.
4512 /// If this is for the canonical type of a type parameter, we can apply
4513 /// protocol qualifiers on the ObjCObjectPointerType.
4514 QualType
applyObjCProtocolQualifiers(QualType type,ArrayRef<ObjCProtocolDecl * > protocols,bool & hasError,bool allowOnPointerType) const4515 ASTContext::applyObjCProtocolQualifiers(QualType type,
4516                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
4517                   bool allowOnPointerType) const {
4518   hasError = false;
4519 
4520   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
4521     return getObjCTypeParamType(objT->getDecl(), protocols);
4522   }
4523 
4524   // Apply protocol qualifiers to ObjCObjectPointerType.
4525   if (allowOnPointerType) {
4526     if (const auto *objPtr =
4527             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
4528       const ObjCObjectType *objT = objPtr->getObjectType();
4529       // Merge protocol lists and construct ObjCObjectType.
4530       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
4531       protocolsVec.append(objT->qual_begin(),
4532                           objT->qual_end());
4533       protocolsVec.append(protocols.begin(), protocols.end());
4534       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
4535       type = getObjCObjectType(
4536              objT->getBaseType(),
4537              objT->getTypeArgsAsWritten(),
4538              protocols,
4539              objT->isKindOfTypeAsWritten());
4540       return getObjCObjectPointerType(type);
4541     }
4542   }
4543 
4544   // Apply protocol qualifiers to ObjCObjectType.
4545   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
4546     // FIXME: Check for protocols to which the class type is already
4547     // known to conform.
4548 
4549     return getObjCObjectType(objT->getBaseType(),
4550                              objT->getTypeArgsAsWritten(),
4551                              protocols,
4552                              objT->isKindOfTypeAsWritten());
4553   }
4554 
4555   // If the canonical type is ObjCObjectType, ...
4556   if (type->isObjCObjectType()) {
4557     // Silently overwrite any existing protocol qualifiers.
4558     // TODO: determine whether that's the right thing to do.
4559 
4560     // FIXME: Check for protocols to which the class type is already
4561     // known to conform.
4562     return getObjCObjectType(type, {}, protocols, false);
4563   }
4564 
4565   // id<protocol-list>
4566   if (type->isObjCIdType()) {
4567     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4568     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
4569                                  objPtr->isKindOfType());
4570     return getObjCObjectPointerType(type);
4571   }
4572 
4573   // Class<protocol-list>
4574   if (type->isObjCClassType()) {
4575     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4576     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
4577                                  objPtr->isKindOfType());
4578     return getObjCObjectPointerType(type);
4579   }
4580 
4581   hasError = true;
4582   return type;
4583 }
4584 
4585 QualType
getObjCTypeParamType(const ObjCTypeParamDecl * Decl,ArrayRef<ObjCProtocolDecl * > protocols,QualType Canonical) const4586 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
4587                            ArrayRef<ObjCProtocolDecl *> protocols,
4588                            QualType Canonical) const {
4589   // Look in the folding set for an existing type.
4590   llvm::FoldingSetNodeID ID;
4591   ObjCTypeParamType::Profile(ID, Decl, protocols);
4592   void *InsertPos = nullptr;
4593   if (ObjCTypeParamType *TypeParam =
4594       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
4595     return QualType(TypeParam, 0);
4596 
4597   if (Canonical.isNull()) {
4598     // We canonicalize to the underlying type.
4599     Canonical = getCanonicalType(Decl->getUnderlyingType());
4600     if (!protocols.empty()) {
4601       // Apply the protocol qualifers.
4602       bool hasError;
4603       Canonical = getCanonicalType(applyObjCProtocolQualifiers(
4604           Canonical, protocols, hasError, true /*allowOnPointerType*/));
4605       assert(!hasError && "Error when apply protocol qualifier to bound type");
4606     }
4607   }
4608 
4609   unsigned size = sizeof(ObjCTypeParamType);
4610   size += protocols.size() * sizeof(ObjCProtocolDecl *);
4611   void *mem = Allocate(size, TypeAlignment);
4612   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
4613 
4614   Types.push_back(newType);
4615   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
4616   return QualType(newType, 0);
4617 }
4618 
4619 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
4620 /// protocol list adopt all protocols in QT's qualified-id protocol
4621 /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)4622 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
4623                                                 ObjCInterfaceDecl *IC) {
4624   if (!QT->isObjCQualifiedIdType())
4625     return false;
4626 
4627   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
4628     // If both the right and left sides have qualifiers.
4629     for (auto *Proto : OPT->quals()) {
4630       if (!IC->ClassImplementsProtocol(Proto, false))
4631         return false;
4632     }
4633     return true;
4634   }
4635   return false;
4636 }
4637 
4638 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
4639 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
4640 /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)4641 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
4642                                                 ObjCInterfaceDecl *IDecl) {
4643   if (!QT->isObjCQualifiedIdType())
4644     return false;
4645   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
4646   if (!OPT)
4647     return false;
4648   if (!IDecl->hasDefinition())
4649     return false;
4650   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
4651   CollectInheritedProtocols(IDecl, InheritedProtocols);
4652   if (InheritedProtocols.empty())
4653     return false;
4654   // Check that if every protocol in list of id<plist> conforms to a protocol
4655   // of IDecl's, then bridge casting is ok.
4656   bool Conforms = false;
4657   for (auto *Proto : OPT->quals()) {
4658     Conforms = false;
4659     for (auto *PI : InheritedProtocols) {
4660       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
4661         Conforms = true;
4662         break;
4663       }
4664     }
4665     if (!Conforms)
4666       break;
4667   }
4668   if (Conforms)
4669     return true;
4670 
4671   for (auto *PI : InheritedProtocols) {
4672     // If both the right and left sides have qualifiers.
4673     bool Adopts = false;
4674     for (auto *Proto : OPT->quals()) {
4675       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
4676       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
4677         break;
4678     }
4679     if (!Adopts)
4680       return false;
4681   }
4682   return true;
4683 }
4684 
4685 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
4686 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const4687 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
4688   llvm::FoldingSetNodeID ID;
4689   ObjCObjectPointerType::Profile(ID, ObjectT);
4690 
4691   void *InsertPos = nullptr;
4692   if (ObjCObjectPointerType *QT =
4693               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
4694     return QualType(QT, 0);
4695 
4696   // Find the canonical object type.
4697   QualType Canonical;
4698   if (!ObjectT.isCanonical()) {
4699     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
4700 
4701     // Regenerate InsertPos.
4702     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
4703   }
4704 
4705   // No match.
4706   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
4707   auto *QType =
4708     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
4709 
4710   Types.push_back(QType);
4711   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
4712   return QualType(QType, 0);
4713 }
4714 
4715 /// getObjCInterfaceType - Return the unique reference to the type for the
4716 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const4717 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
4718                                           ObjCInterfaceDecl *PrevDecl) const {
4719   if (Decl->TypeForDecl)
4720     return QualType(Decl->TypeForDecl, 0);
4721 
4722   if (PrevDecl) {
4723     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
4724     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4725     return QualType(PrevDecl->TypeForDecl, 0);
4726   }
4727 
4728   // Prefer the definition, if there is one.
4729   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
4730     Decl = Def;
4731 
4732   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
4733   auto *T = new (Mem) ObjCInterfaceType(Decl);
4734   Decl->TypeForDecl = T;
4735   Types.push_back(T);
4736   return QualType(T, 0);
4737 }
4738 
4739 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
4740 /// TypeOfExprType AST's (since expression's are never shared). For example,
4741 /// multiple declarations that refer to "typeof(x)" all contain different
4742 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
4743 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const4744 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
4745   TypeOfExprType *toe;
4746   if (tofExpr->isTypeDependent()) {
4747     llvm::FoldingSetNodeID ID;
4748     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
4749 
4750     void *InsertPos = nullptr;
4751     DependentTypeOfExprType *Canon
4752       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
4753     if (Canon) {
4754       // We already have a "canonical" version of an identical, dependent
4755       // typeof(expr) type. Use that as our canonical type.
4756       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
4757                                           QualType((TypeOfExprType*)Canon, 0));
4758     } else {
4759       // Build a new, canonical typeof(expr) type.
4760       Canon
4761         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
4762       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
4763       toe = Canon;
4764     }
4765   } else {
4766     QualType Canonical = getCanonicalType(tofExpr->getType());
4767     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
4768   }
4769   Types.push_back(toe);
4770   return QualType(toe, 0);
4771 }
4772 
4773 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
4774 /// TypeOfType nodes. The only motivation to unique these nodes would be
4775 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
4776 /// an issue. This doesn't affect the type checker, since it operates
4777 /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const4778 QualType ASTContext::getTypeOfType(QualType tofType) const {
4779   QualType Canonical = getCanonicalType(tofType);
4780   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
4781   Types.push_back(tot);
4782   return QualType(tot, 0);
4783 }
4784 
4785 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
4786 /// nodes. This would never be helpful, since each such type has its own
4787 /// expression, and would not give a significant memory saving, since there
4788 /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const4789 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
4790   DecltypeType *dt;
4791 
4792   // C++11 [temp.type]p2:
4793   //   If an expression e involves a template parameter, decltype(e) denotes a
4794   //   unique dependent type. Two such decltype-specifiers refer to the same
4795   //   type only if their expressions are equivalent (14.5.6.1).
4796   if (e->isInstantiationDependent()) {
4797     llvm::FoldingSetNodeID ID;
4798     DependentDecltypeType::Profile(ID, *this, e);
4799 
4800     void *InsertPos = nullptr;
4801     DependentDecltypeType *Canon
4802       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
4803     if (!Canon) {
4804       // Build a new, canonical decltype(expr) type.
4805       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
4806       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
4807     }
4808     dt = new (*this, TypeAlignment)
4809         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
4810   } else {
4811     dt = new (*this, TypeAlignment)
4812         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
4813   }
4814   Types.push_back(dt);
4815   return QualType(dt, 0);
4816 }
4817 
4818 /// getUnaryTransformationType - We don't unique these, since the memory
4819 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const4820 QualType ASTContext::getUnaryTransformType(QualType BaseType,
4821                                            QualType UnderlyingType,
4822                                            UnaryTransformType::UTTKind Kind)
4823     const {
4824   UnaryTransformType *ut = nullptr;
4825 
4826   if (BaseType->isDependentType()) {
4827     // Look in the folding set for an existing type.
4828     llvm::FoldingSetNodeID ID;
4829     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
4830 
4831     void *InsertPos = nullptr;
4832     DependentUnaryTransformType *Canon
4833       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
4834 
4835     if (!Canon) {
4836       // Build a new, canonical __underlying_type(type) type.
4837       Canon = new (*this, TypeAlignment)
4838              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
4839                                          Kind);
4840       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
4841     }
4842     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
4843                                                         QualType(), Kind,
4844                                                         QualType(Canon, 0));
4845   } else {
4846     QualType CanonType = getCanonicalType(UnderlyingType);
4847     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
4848                                                         UnderlyingType, Kind,
4849                                                         CanonType);
4850   }
4851   Types.push_back(ut);
4852   return QualType(ut, 0);
4853 }
4854 
4855 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
4856 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
4857 /// canonical deduced-but-dependent 'auto' type.
getAutoType(QualType DeducedType,AutoTypeKeyword Keyword,bool IsDependent) const4858 QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
4859                                  bool IsDependent) const {
4860   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent)
4861     return getAutoDeductType();
4862 
4863   // Look in the folding set for an existing type.
4864   void *InsertPos = nullptr;
4865   llvm::FoldingSetNodeID ID;
4866   AutoType::Profile(ID, DeducedType, Keyword, IsDependent);
4867   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
4868     return QualType(AT, 0);
4869 
4870   auto *AT = new (*this, TypeAlignment)
4871       AutoType(DeducedType, Keyword, IsDependent);
4872   Types.push_back(AT);
4873   if (InsertPos)
4874     AutoTypes.InsertNode(AT, InsertPos);
4875   return QualType(AT, 0);
4876 }
4877 
4878 /// Return the uniqued reference to the deduced template specialization type
4879 /// which has been deduced to the given type, or to the canonical undeduced
4880 /// such type, or the canonical deduced-but-dependent such type.
getDeducedTemplateSpecializationType(TemplateName Template,QualType DeducedType,bool IsDependent) const4881 QualType ASTContext::getDeducedTemplateSpecializationType(
4882     TemplateName Template, QualType DeducedType, bool IsDependent) const {
4883   // Look in the folding set for an existing type.
4884   void *InsertPos = nullptr;
4885   llvm::FoldingSetNodeID ID;
4886   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
4887                                              IsDependent);
4888   if (DeducedTemplateSpecializationType *DTST =
4889           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
4890     return QualType(DTST, 0);
4891 
4892   auto *DTST = new (*this, TypeAlignment)
4893       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
4894   Types.push_back(DTST);
4895   if (InsertPos)
4896     DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
4897   return QualType(DTST, 0);
4898 }
4899 
4900 /// getAtomicType - Return the uniqued reference to the atomic type for
4901 /// the given value type.
getAtomicType(QualType T) const4902 QualType ASTContext::getAtomicType(QualType T) const {
4903   // Unique pointers, to guarantee there is only one pointer of a particular
4904   // structure.
4905   llvm::FoldingSetNodeID ID;
4906   AtomicType::Profile(ID, T);
4907 
4908   void *InsertPos = nullptr;
4909   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
4910     return QualType(AT, 0);
4911 
4912   // If the atomic value type isn't canonical, this won't be a canonical type
4913   // either, so fill in the canonical type field.
4914   QualType Canonical;
4915   if (!T.isCanonical()) {
4916     Canonical = getAtomicType(getCanonicalType(T));
4917 
4918     // Get the new insert position for the node we care about.
4919     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
4920     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4921   }
4922   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
4923   Types.push_back(New);
4924   AtomicTypes.InsertNode(New, InsertPos);
4925   return QualType(New, 0);
4926 }
4927 
4928 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const4929 QualType ASTContext::getAutoDeductType() const {
4930   if (AutoDeductTy.isNull())
4931     AutoDeductTy = QualType(
4932       new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
4933                                           /*dependent*/false),
4934       0);
4935   return AutoDeductTy;
4936 }
4937 
4938 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const4939 QualType ASTContext::getAutoRRefDeductType() const {
4940   if (AutoRRefDeductTy.isNull())
4941     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
4942   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
4943   return AutoRRefDeductTy;
4944 }
4945 
4946 /// getTagDeclType - Return the unique reference to the type for the
4947 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const4948 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
4949   assert(Decl);
4950   // FIXME: What is the design on getTagDeclType when it requires casting
4951   // away const?  mutable?
4952   return getTypeDeclType(const_cast<TagDecl*>(Decl));
4953 }
4954 
4955 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
4956 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
4957 /// needs to agree with the definition in <stddef.h>.
getSizeType() const4958 CanQualType ASTContext::getSizeType() const {
4959   return getFromTargetType(Target->getSizeType());
4960 }
4961 
4962 /// Return the unique signed counterpart of the integer type
4963 /// corresponding to size_t.
getSignedSizeType() const4964 CanQualType ASTContext::getSignedSizeType() const {
4965   return getFromTargetType(Target->getSignedSizeType());
4966 }
4967 
4968 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const4969 CanQualType ASTContext::getIntMaxType() const {
4970   return getFromTargetType(Target->getIntMaxType());
4971 }
4972 
4973 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const4974 CanQualType ASTContext::getUIntMaxType() const {
4975   return getFromTargetType(Target->getUIntMaxType());
4976 }
4977 
4978 /// getSignedWCharType - Return the type of "signed wchar_t".
4979 /// Used when in C++, as a GCC extension.
getSignedWCharType() const4980 QualType ASTContext::getSignedWCharType() const {
4981   // FIXME: derive from "Target" ?
4982   return WCharTy;
4983 }
4984 
4985 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
4986 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const4987 QualType ASTContext::getUnsignedWCharType() const {
4988   // FIXME: derive from "Target" ?
4989   return UnsignedIntTy;
4990 }
4991 
getIntPtrType() const4992 QualType ASTContext::getIntPtrType() const {
4993   return getFromTargetType(Target->getIntPtrType());
4994 }
4995 
getUIntPtrType() const4996 QualType ASTContext::getUIntPtrType() const {
4997   return getCorrespondingUnsignedType(getIntPtrType());
4998 }
4999 
5000 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5001 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const5002 QualType ASTContext::getPointerDiffType() const {
5003   return getFromTargetType(Target->getPtrDiffType(0));
5004 }
5005 
5006 /// Return the unique unsigned counterpart of "ptrdiff_t"
5007 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5008 /// in the definition of %tu format specifier.
getUnsignedPointerDiffType() const5009 QualType ASTContext::getUnsignedPointerDiffType() const {
5010   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5011 }
5012 
5013 /// Return the unique type for "pid_t" defined in
5014 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const5015 QualType ASTContext::getProcessIDType() const {
5016   return getFromTargetType(Target->getProcessIDType());
5017 }
5018 
5019 //===----------------------------------------------------------------------===//
5020 //                              Type Operators
5021 //===----------------------------------------------------------------------===//
5022 
getCanonicalParamType(QualType T) const5023 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5024   // Push qualifiers into arrays, and then discard any remaining
5025   // qualifiers.
5026   T = getCanonicalType(T);
5027   T = getVariableArrayDecayedType(T);
5028   const Type *Ty = T.getTypePtr();
5029   QualType Result;
5030   if (isa<ArrayType>(Ty)) {
5031     Result = getArrayDecayedType(QualType(Ty,0));
5032   } else if (isa<FunctionType>(Ty)) {
5033     Result = getPointerType(QualType(Ty, 0));
5034   } else {
5035     Result = QualType(Ty, 0);
5036   }
5037 
5038   return CanQualType::CreateUnsafe(Result);
5039 }
5040 
getUnqualifiedArrayType(QualType type,Qualifiers & quals)5041 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5042                                              Qualifiers &quals) {
5043   SplitQualType splitType = type.getSplitUnqualifiedType();
5044 
5045   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5046   // the unqualified desugared type and then drops it on the floor.
5047   // We then have to strip that sugar back off with
5048   // getUnqualifiedDesugaredType(), which is silly.
5049   const auto *AT =
5050       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5051 
5052   // If we don't have an array, just use the results in splitType.
5053   if (!AT) {
5054     quals = splitType.Quals;
5055     return QualType(splitType.Ty, 0);
5056   }
5057 
5058   // Otherwise, recurse on the array's element type.
5059   QualType elementType = AT->getElementType();
5060   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5061 
5062   // If that didn't change the element type, AT has no qualifiers, so we
5063   // can just use the results in splitType.
5064   if (elementType == unqualElementType) {
5065     assert(quals.empty()); // from the recursive call
5066     quals = splitType.Quals;
5067     return QualType(splitType.Ty, 0);
5068   }
5069 
5070   // Otherwise, add in the qualifiers from the outermost type, then
5071   // build the type back up.
5072   quals.addConsistentQualifiers(splitType.Quals);
5073 
5074   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5075     return getConstantArrayType(unqualElementType, CAT->getSize(),
5076                                 CAT->getSizeModifier(), 0);
5077   }
5078 
5079   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5080     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5081   }
5082 
5083   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5084     return getVariableArrayType(unqualElementType,
5085                                 VAT->getSizeExpr(),
5086                                 VAT->getSizeModifier(),
5087                                 VAT->getIndexTypeCVRQualifiers(),
5088                                 VAT->getBracketsRange());
5089   }
5090 
5091   const auto *DSAT = cast<DependentSizedArrayType>(AT);
5092   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5093                                     DSAT->getSizeModifier(), 0,
5094                                     SourceRange());
5095 }
5096 
5097 /// Attempt to unwrap two types that may both be array types with the same bound
5098 /// (or both be array types of unknown bound) for the purpose of comparing the
5099 /// cv-decomposition of two types per C++ [conv.qual].
UnwrapSimilarArrayTypes(QualType & T1,QualType & T2)5100 bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
5101   bool UnwrappedAny = false;
5102   while (true) {
5103     auto *AT1 = getAsArrayType(T1);
5104     if (!AT1) return UnwrappedAny;
5105 
5106     auto *AT2 = getAsArrayType(T2);
5107     if (!AT2) return UnwrappedAny;
5108 
5109     // If we don't have two array types with the same constant bound nor two
5110     // incomplete array types, we've unwrapped everything we can.
5111     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5112       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5113       if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5114         return UnwrappedAny;
5115     } else if (!isa<IncompleteArrayType>(AT1) ||
5116                !isa<IncompleteArrayType>(AT2)) {
5117       return UnwrappedAny;
5118     }
5119 
5120     T1 = AT1->getElementType();
5121     T2 = AT2->getElementType();
5122     UnwrappedAny = true;
5123   }
5124 }
5125 
5126 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5127 ///
5128 /// If T1 and T2 are both pointer types of the same kind, or both array types
5129 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5130 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5131 ///
5132 /// This function will typically be called in a loop that successively
5133 /// "unwraps" pointer and pointer-to-member types to compare them at each
5134 /// level.
5135 ///
5136 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5137 /// pair of types that can't be unwrapped further.
UnwrapSimilarTypes(QualType & T1,QualType & T2)5138 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
5139   UnwrapSimilarArrayTypes(T1, T2);
5140 
5141   const auto *T1PtrType = T1->getAs<PointerType>();
5142   const auto *T2PtrType = T2->getAs<PointerType>();
5143   if (T1PtrType && T2PtrType) {
5144     T1 = T1PtrType->getPointeeType();
5145     T2 = T2PtrType->getPointeeType();
5146     return true;
5147   }
5148 
5149   const auto *T1MPType = T1->getAs<MemberPointerType>();
5150   const auto *T2MPType = T2->getAs<MemberPointerType>();
5151   if (T1MPType && T2MPType &&
5152       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5153                              QualType(T2MPType->getClass(), 0))) {
5154     T1 = T1MPType->getPointeeType();
5155     T2 = T2MPType->getPointeeType();
5156     return true;
5157   }
5158 
5159   if (getLangOpts().ObjC) {
5160     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5161     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5162     if (T1OPType && T2OPType) {
5163       T1 = T1OPType->getPointeeType();
5164       T2 = T2OPType->getPointeeType();
5165       return true;
5166     }
5167   }
5168 
5169   // FIXME: Block pointers, too?
5170 
5171   return false;
5172 }
5173 
hasSimilarType(QualType T1,QualType T2)5174 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5175   while (true) {
5176     Qualifiers Quals;
5177     T1 = getUnqualifiedArrayType(T1, Quals);
5178     T2 = getUnqualifiedArrayType(T2, Quals);
5179     if (hasSameType(T1, T2))
5180       return true;
5181     if (!UnwrapSimilarTypes(T1, T2))
5182       return false;
5183   }
5184 }
5185 
hasCvrSimilarType(QualType T1,QualType T2)5186 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5187   while (true) {
5188     Qualifiers Quals1, Quals2;
5189     T1 = getUnqualifiedArrayType(T1, Quals1);
5190     T2 = getUnqualifiedArrayType(T2, Quals2);
5191 
5192     Quals1.removeCVRQualifiers();
5193     Quals2.removeCVRQualifiers();
5194     if (Quals1 != Quals2)
5195       return false;
5196 
5197     if (hasSameType(T1, T2))
5198       return true;
5199 
5200     if (!UnwrapSimilarTypes(T1, T2))
5201       return false;
5202   }
5203 }
5204 
5205 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const5206 ASTContext::getNameForTemplate(TemplateName Name,
5207                                SourceLocation NameLoc) const {
5208   switch (Name.getKind()) {
5209   case TemplateName::QualifiedTemplate:
5210   case TemplateName::Template:
5211     // DNInfo work in progress: CHECKME: what about DNLoc?
5212     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5213                                NameLoc);
5214 
5215   case TemplateName::OverloadedTemplate: {
5216     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5217     // DNInfo work in progress: CHECKME: what about DNLoc?
5218     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5219   }
5220 
5221   case TemplateName::DependentTemplate: {
5222     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5223     DeclarationName DName;
5224     if (DTN->isIdentifier()) {
5225       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5226       return DeclarationNameInfo(DName, NameLoc);
5227     } else {
5228       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5229       // DNInfo work in progress: FIXME: source locations?
5230       DeclarationNameLoc DNLoc;
5231       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
5232       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
5233       return DeclarationNameInfo(DName, NameLoc, DNLoc);
5234     }
5235   }
5236 
5237   case TemplateName::SubstTemplateTemplateParm: {
5238     SubstTemplateTemplateParmStorage *subst
5239       = Name.getAsSubstTemplateTemplateParm();
5240     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5241                                NameLoc);
5242   }
5243 
5244   case TemplateName::SubstTemplateTemplateParmPack: {
5245     SubstTemplateTemplateParmPackStorage *subst
5246       = Name.getAsSubstTemplateTemplateParmPack();
5247     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
5248                                NameLoc);
5249   }
5250   }
5251 
5252   llvm_unreachable("bad template name kind!");
5253 }
5254 
getCanonicalTemplateName(TemplateName Name) const5255 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
5256   switch (Name.getKind()) {
5257   case TemplateName::QualifiedTemplate:
5258   case TemplateName::Template: {
5259     TemplateDecl *Template = Name.getAsTemplateDecl();
5260     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
5261       Template = getCanonicalTemplateTemplateParmDecl(TTP);
5262 
5263     // The canonical template name is the canonical template declaration.
5264     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5265   }
5266 
5267   case TemplateName::OverloadedTemplate:
5268     llvm_unreachable("cannot canonicalize overloaded template");
5269 
5270   case TemplateName::DependentTemplate: {
5271     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5272     assert(DTN && "Non-dependent template names must refer to template decls.");
5273     return DTN->CanonicalTemplateName;
5274   }
5275 
5276   case TemplateName::SubstTemplateTemplateParm: {
5277     SubstTemplateTemplateParmStorage *subst
5278       = Name.getAsSubstTemplateTemplateParm();
5279     return getCanonicalTemplateName(subst->getReplacement());
5280   }
5281 
5282   case TemplateName::SubstTemplateTemplateParmPack: {
5283     SubstTemplateTemplateParmPackStorage *subst
5284                                   = Name.getAsSubstTemplateTemplateParmPack();
5285     TemplateTemplateParmDecl *canonParameter
5286       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5287     TemplateArgument canonArgPack
5288       = getCanonicalTemplateArgument(subst->getArgumentPack());
5289     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5290   }
5291   }
5292 
5293   llvm_unreachable("bad template name!");
5294 }
5295 
hasSameTemplateName(TemplateName X,TemplateName Y)5296 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
5297   X = getCanonicalTemplateName(X);
5298   Y = getCanonicalTemplateName(Y);
5299   return X.getAsVoidPointer() == Y.getAsVoidPointer();
5300 }
5301 
5302 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const5303 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
5304   switch (Arg.getKind()) {
5305     case TemplateArgument::Null:
5306       return Arg;
5307 
5308     case TemplateArgument::Expression:
5309       return Arg;
5310 
5311     case TemplateArgument::Declaration: {
5312       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5313       return TemplateArgument(D, Arg.getParamTypeForDecl());
5314     }
5315 
5316     case TemplateArgument::NullPtr:
5317       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
5318                               /*isNullPtr*/true);
5319 
5320     case TemplateArgument::Template:
5321       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
5322 
5323     case TemplateArgument::TemplateExpansion:
5324       return TemplateArgument(getCanonicalTemplateName(
5325                                          Arg.getAsTemplateOrTemplatePattern()),
5326                               Arg.getNumTemplateExpansions());
5327 
5328     case TemplateArgument::Integral:
5329       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
5330 
5331     case TemplateArgument::Type:
5332       return TemplateArgument(getCanonicalType(Arg.getAsType()));
5333 
5334     case TemplateArgument::Pack: {
5335       if (Arg.pack_size() == 0)
5336         return Arg;
5337 
5338       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
5339       unsigned Idx = 0;
5340       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
5341                                         AEnd = Arg.pack_end();
5342            A != AEnd; (void)++A, ++Idx)
5343         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
5344 
5345       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
5346     }
5347   }
5348 
5349   // Silence GCC warning
5350   llvm_unreachable("Unhandled template argument kind");
5351 }
5352 
5353 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const5354 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
5355   if (!NNS)
5356     return nullptr;
5357 
5358   switch (NNS->getKind()) {
5359   case NestedNameSpecifier::Identifier:
5360     // Canonicalize the prefix but keep the identifier the same.
5361     return NestedNameSpecifier::Create(*this,
5362                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
5363                                        NNS->getAsIdentifier());
5364 
5365   case NestedNameSpecifier::Namespace:
5366     // A namespace is canonical; build a nested-name-specifier with
5367     // this namespace and no prefix.
5368     return NestedNameSpecifier::Create(*this, nullptr,
5369                                  NNS->getAsNamespace()->getOriginalNamespace());
5370 
5371   case NestedNameSpecifier::NamespaceAlias:
5372     // A namespace is canonical; build a nested-name-specifier with
5373     // this namespace and no prefix.
5374     return NestedNameSpecifier::Create(*this, nullptr,
5375                                     NNS->getAsNamespaceAlias()->getNamespace()
5376                                                       ->getOriginalNamespace());
5377 
5378   case NestedNameSpecifier::TypeSpec:
5379   case NestedNameSpecifier::TypeSpecWithTemplate: {
5380     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
5381 
5382     // If we have some kind of dependent-named type (e.g., "typename T::type"),
5383     // break it apart into its prefix and identifier, then reconsititute those
5384     // as the canonical nested-name-specifier. This is required to canonicalize
5385     // a dependent nested-name-specifier involving typedefs of dependent-name
5386     // types, e.g.,
5387     //   typedef typename T::type T1;
5388     //   typedef typename T1::type T2;
5389     if (const auto *DNT = T->getAs<DependentNameType>())
5390       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
5391                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
5392 
5393     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
5394     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
5395     // first place?
5396     return NestedNameSpecifier::Create(*this, nullptr, false,
5397                                        const_cast<Type *>(T.getTypePtr()));
5398   }
5399 
5400   case NestedNameSpecifier::Global:
5401   case NestedNameSpecifier::Super:
5402     // The global specifier and __super specifer are canonical and unique.
5403     return NNS;
5404   }
5405 
5406   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
5407 }
5408 
getAsArrayType(QualType T) const5409 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
5410   // Handle the non-qualified case efficiently.
5411   if (!T.hasLocalQualifiers()) {
5412     // Handle the common positive case fast.
5413     if (const auto *AT = dyn_cast<ArrayType>(T))
5414       return AT;
5415   }
5416 
5417   // Handle the common negative case fast.
5418   if (!isa<ArrayType>(T.getCanonicalType()))
5419     return nullptr;
5420 
5421   // Apply any qualifiers from the array type to the element type.  This
5422   // implements C99 6.7.3p8: "If the specification of an array type includes
5423   // any type qualifiers, the element type is so qualified, not the array type."
5424 
5425   // If we get here, we either have type qualifiers on the type, or we have
5426   // sugar such as a typedef in the way.  If we have type qualifiers on the type
5427   // we must propagate them down into the element type.
5428 
5429   SplitQualType split = T.getSplitDesugaredType();
5430   Qualifiers qs = split.Quals;
5431 
5432   // If we have a simple case, just return now.
5433   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
5434   if (!ATy || qs.empty())
5435     return ATy;
5436 
5437   // Otherwise, we have an array and we have qualifiers on it.  Push the
5438   // qualifiers into the array element type and return a new array type.
5439   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
5440 
5441   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
5442     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
5443                                                 CAT->getSizeModifier(),
5444                                            CAT->getIndexTypeCVRQualifiers()));
5445   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
5446     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
5447                                                   IAT->getSizeModifier(),
5448                                            IAT->getIndexTypeCVRQualifiers()));
5449 
5450   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
5451     return cast<ArrayType>(
5452                      getDependentSizedArrayType(NewEltTy,
5453                                                 DSAT->getSizeExpr(),
5454                                                 DSAT->getSizeModifier(),
5455                                               DSAT->getIndexTypeCVRQualifiers(),
5456                                                 DSAT->getBracketsRange()));
5457 
5458   const auto *VAT = cast<VariableArrayType>(ATy);
5459   return cast<ArrayType>(getVariableArrayType(NewEltTy,
5460                                               VAT->getSizeExpr(),
5461                                               VAT->getSizeModifier(),
5462                                               VAT->getIndexTypeCVRQualifiers(),
5463                                               VAT->getBracketsRange()));
5464 }
5465 
getAdjustedParameterType(QualType T) const5466 QualType ASTContext::getAdjustedParameterType(QualType T) const {
5467   if (T->isArrayType() || T->isFunctionType())
5468     return getDecayedType(T);
5469   return T;
5470 }
5471 
getSignatureParameterType(QualType T) const5472 QualType ASTContext::getSignatureParameterType(QualType T) const {
5473   T = getVariableArrayDecayedType(T);
5474   T = getAdjustedParameterType(T);
5475   return T.getUnqualifiedType();
5476 }
5477 
getExceptionObjectType(QualType T) const5478 QualType ASTContext::getExceptionObjectType(QualType T) const {
5479   // C++ [except.throw]p3:
5480   //   A throw-expression initializes a temporary object, called the exception
5481   //   object, the type of which is determined by removing any top-level
5482   //   cv-qualifiers from the static type of the operand of throw and adjusting
5483   //   the type from "array of T" or "function returning T" to "pointer to T"
5484   //   or "pointer to function returning T", [...]
5485   T = getVariableArrayDecayedType(T);
5486   if (T->isArrayType() || T->isFunctionType())
5487     T = getDecayedType(T);
5488   return T.getUnqualifiedType();
5489 }
5490 
5491 /// getArrayDecayedType - Return the properly qualified result of decaying the
5492 /// specified array type to a pointer.  This operation is non-trivial when
5493 /// handling typedefs etc.  The canonical type of "T" must be an array type,
5494 /// this returns a pointer to a properly qualified element of the array.
5495 ///
5496 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const5497 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
5498   // Get the element type with 'getAsArrayType' so that we don't lose any
5499   // typedefs in the element type of the array.  This also handles propagation
5500   // of type qualifiers from the array type into the element type if present
5501   // (C99 6.7.3p8).
5502   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
5503   assert(PrettyArrayType && "Not an array type!");
5504 
5505   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
5506 
5507   // int x[restrict 4] ->  int *restrict
5508   QualType Result = getQualifiedType(PtrTy,
5509                                      PrettyArrayType->getIndexTypeQualifiers());
5510 
5511   // int x[_Nullable] -> int * _Nullable
5512   if (auto Nullability = Ty->getNullability(*this)) {
5513     Result = const_cast<ASTContext *>(this)->getAttributedType(
5514         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
5515   }
5516   return Result;
5517 }
5518 
getBaseElementType(const ArrayType * array) const5519 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
5520   return getBaseElementType(array->getElementType());
5521 }
5522 
getBaseElementType(QualType type) const5523 QualType ASTContext::getBaseElementType(QualType type) const {
5524   Qualifiers qs;
5525   while (true) {
5526     SplitQualType split = type.getSplitDesugaredType();
5527     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
5528     if (!array) break;
5529 
5530     type = array->getElementType();
5531     qs.addConsistentQualifiers(split.Quals);
5532   }
5533 
5534   return getQualifiedType(type, qs);
5535 }
5536 
5537 /// getConstantArrayElementCount - Returns number of constant array elements.
5538 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const5539 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
5540   uint64_t ElementCount = 1;
5541   do {
5542     ElementCount *= CA->getSize().getZExtValue();
5543     CA = dyn_cast_or_null<ConstantArrayType>(
5544       CA->getElementType()->getAsArrayTypeUnsafe());
5545   } while (CA);
5546   return ElementCount;
5547 }
5548 
5549 /// getFloatingRank - Return a relative rank for floating point types.
5550 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)5551 static FloatingRank getFloatingRank(QualType T) {
5552   if (const auto *CT = T->getAs<ComplexType>())
5553     return getFloatingRank(CT->getElementType());
5554 
5555   assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
5556   switch (T->getAs<BuiltinType>()->getKind()) {
5557   default: llvm_unreachable("getFloatingRank(): not a floating type");
5558   case BuiltinType::Float16:    return Float16Rank;
5559   case BuiltinType::Half:       return HalfRank;
5560   case BuiltinType::Float:      return FloatRank;
5561   case BuiltinType::Double:     return DoubleRank;
5562   case BuiltinType::LongDouble: return LongDoubleRank;
5563   case BuiltinType::Float128:   return Float128Rank;
5564   }
5565 }
5566 
5567 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
5568 /// point or a complex type (based on typeDomain/typeSize).
5569 /// 'typeDomain' is a real floating point or complex type.
5570 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const5571 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
5572                                                        QualType Domain) const {
5573   FloatingRank EltRank = getFloatingRank(Size);
5574   if (Domain->isComplexType()) {
5575     switch (EltRank) {
5576     case Float16Rank:
5577     case HalfRank: llvm_unreachable("Complex half is not supported");
5578     case FloatRank:      return FloatComplexTy;
5579     case DoubleRank:     return DoubleComplexTy;
5580     case LongDoubleRank: return LongDoubleComplexTy;
5581     case Float128Rank:   return Float128ComplexTy;
5582     }
5583   }
5584 
5585   assert(Domain->isRealFloatingType() && "Unknown domain!");
5586   switch (EltRank) {
5587   case Float16Rank:    return HalfTy;
5588   case HalfRank:       return HalfTy;
5589   case FloatRank:      return FloatTy;
5590   case DoubleRank:     return DoubleTy;
5591   case LongDoubleRank: return LongDoubleTy;
5592   case Float128Rank:   return Float128Ty;
5593   }
5594   llvm_unreachable("getFloatingRank(): illegal value for rank");
5595 }
5596 
5597 /// getFloatingTypeOrder - Compare the rank of the two specified floating
5598 /// point types, ignoring the domain of the type (i.e. 'double' ==
5599 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
5600 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const5601 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
5602   FloatingRank LHSR = getFloatingRank(LHS);
5603   FloatingRank RHSR = getFloatingRank(RHS);
5604 
5605   if (LHSR == RHSR)
5606     return 0;
5607   if (LHSR > RHSR)
5608     return 1;
5609   return -1;
5610 }
5611 
5612 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
5613 /// routine will assert if passed a built-in type that isn't an integer or enum,
5614 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const5615 unsigned ASTContext::getIntegerRank(const Type *T) const {
5616   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
5617 
5618   switch (cast<BuiltinType>(T)->getKind()) {
5619   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
5620   case BuiltinType::Bool:
5621     return 1 + (getIntWidth(BoolTy) << 3);
5622   case BuiltinType::Char_S:
5623   case BuiltinType::Char_U:
5624   case BuiltinType::SChar:
5625   case BuiltinType::UChar:
5626     return 2 + (getIntWidth(CharTy) << 3);
5627   case BuiltinType::Short:
5628   case BuiltinType::UShort:
5629     return 3 + (getIntWidth(ShortTy) << 3);
5630   case BuiltinType::Int:
5631   case BuiltinType::UInt:
5632     return 4 + (getIntWidth(IntTy) << 3);
5633   case BuiltinType::Long:
5634   case BuiltinType::ULong:
5635     return 5 + (getIntWidth(LongTy) << 3);
5636   case BuiltinType::LongLong:
5637   case BuiltinType::ULongLong:
5638     return 6 + (getIntWidth(LongLongTy) << 3);
5639   case BuiltinType::Int128:
5640   case BuiltinType::UInt128:
5641     return 7 + (getIntWidth(Int128Ty) << 3);
5642   }
5643 }
5644 
5645 /// Whether this is a promotable bitfield reference according
5646 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
5647 ///
5648 /// \returns the type this bit-field will promote to, or NULL if no
5649 /// promotion occurs.
isPromotableBitField(Expr * E) const5650 QualType ASTContext::isPromotableBitField(Expr *E) const {
5651   if (E->isTypeDependent() || E->isValueDependent())
5652     return {};
5653 
5654   // C++ [conv.prom]p5:
5655   //    If the bit-field has an enumerated type, it is treated as any other
5656   //    value of that type for promotion purposes.
5657   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
5658     return {};
5659 
5660   // FIXME: We should not do this unless E->refersToBitField() is true. This
5661   // matters in C where getSourceBitField() will find bit-fields for various
5662   // cases where the source expression is not a bit-field designator.
5663 
5664   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
5665   if (!Field)
5666     return {};
5667 
5668   QualType FT = Field->getType();
5669 
5670   uint64_t BitWidth = Field->getBitWidthValue(*this);
5671   uint64_t IntSize = getTypeSize(IntTy);
5672   // C++ [conv.prom]p5:
5673   //   A prvalue for an integral bit-field can be converted to a prvalue of type
5674   //   int if int can represent all the values of the bit-field; otherwise, it
5675   //   can be converted to unsigned int if unsigned int can represent all the
5676   //   values of the bit-field. If the bit-field is larger yet, no integral
5677   //   promotion applies to it.
5678   // C11 6.3.1.1/2:
5679   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
5680   //   If an int can represent all values of the original type (as restricted by
5681   //   the width, for a bit-field), the value is converted to an int; otherwise,
5682   //   it is converted to an unsigned int.
5683   //
5684   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
5685   //        We perform that promotion here to match GCC and C++.
5686   // FIXME: C does not permit promotion of an enum bit-field whose rank is
5687   //        greater than that of 'int'. We perform that promotion to match GCC.
5688   if (BitWidth < IntSize)
5689     return IntTy;
5690 
5691   if (BitWidth == IntSize)
5692     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
5693 
5694   // Bit-fields wider than int are not subject to promotions, and therefore act
5695   // like the base type. GCC has some weird bugs in this area that we
5696   // deliberately do not follow (GCC follows a pre-standard resolution to
5697   // C's DR315 which treats bit-width as being part of the type, and this leaks
5698   // into their semantics in some cases).
5699   return {};
5700 }
5701 
5702 /// getPromotedIntegerType - Returns the type that Promotable will
5703 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
5704 /// integer type.
getPromotedIntegerType(QualType Promotable) const5705 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
5706   assert(!Promotable.isNull());
5707   assert(Promotable->isPromotableIntegerType());
5708   if (const auto *ET = Promotable->getAs<EnumType>())
5709     return ET->getDecl()->getPromotionType();
5710 
5711   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
5712     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
5713     // (3.9.1) can be converted to a prvalue of the first of the following
5714     // types that can represent all the values of its underlying type:
5715     // int, unsigned int, long int, unsigned long int, long long int, or
5716     // unsigned long long int [...]
5717     // FIXME: Is there some better way to compute this?
5718     if (BT->getKind() == BuiltinType::WChar_S ||
5719         BT->getKind() == BuiltinType::WChar_U ||
5720         BT->getKind() == BuiltinType::Char8 ||
5721         BT->getKind() == BuiltinType::Char16 ||
5722         BT->getKind() == BuiltinType::Char32) {
5723       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
5724       uint64_t FromSize = getTypeSize(BT);
5725       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
5726                                   LongLongTy, UnsignedLongLongTy };
5727       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
5728         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
5729         if (FromSize < ToSize ||
5730             (FromSize == ToSize &&
5731              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
5732           return PromoteTypes[Idx];
5733       }
5734       llvm_unreachable("char type should fit into long long");
5735     }
5736   }
5737 
5738   // At this point, we should have a signed or unsigned integer type.
5739   if (Promotable->isSignedIntegerType())
5740     return IntTy;
5741   uint64_t PromotableSize = getIntWidth(Promotable);
5742   uint64_t IntSize = getIntWidth(IntTy);
5743   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
5744   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
5745 }
5746 
5747 /// Recurses in pointer/array types until it finds an objc retainable
5748 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const5749 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
5750   while (!T.isNull()) {
5751     if (T.getObjCLifetime() != Qualifiers::OCL_None)
5752       return T.getObjCLifetime();
5753     if (T->isArrayType())
5754       T = getBaseElementType(T);
5755     else if (const auto *PT = T->getAs<PointerType>())
5756       T = PT->getPointeeType();
5757     else if (const auto *RT = T->getAs<ReferenceType>())
5758       T = RT->getPointeeType();
5759     else
5760       break;
5761   }
5762 
5763   return Qualifiers::OCL_None;
5764 }
5765 
getIntegerTypeForEnum(const EnumType * ET)5766 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
5767   // Incomplete enum types are not treated as integer types.
5768   // FIXME: In C++, enum types are never integer types.
5769   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
5770     return ET->getDecl()->getIntegerType().getTypePtr();
5771   return nullptr;
5772 }
5773 
5774 /// getIntegerTypeOrder - Returns the highest ranked integer type:
5775 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
5776 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const5777 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
5778   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
5779   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
5780 
5781   // Unwrap enums to their underlying type.
5782   if (const auto *ET = dyn_cast<EnumType>(LHSC))
5783     LHSC = getIntegerTypeForEnum(ET);
5784   if (const auto *ET = dyn_cast<EnumType>(RHSC))
5785     RHSC = getIntegerTypeForEnum(ET);
5786 
5787   if (LHSC == RHSC) return 0;
5788 
5789   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
5790   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
5791 
5792   unsigned LHSRank = getIntegerRank(LHSC);
5793   unsigned RHSRank = getIntegerRank(RHSC);
5794 
5795   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
5796     if (LHSRank == RHSRank) return 0;
5797     return LHSRank > RHSRank ? 1 : -1;
5798   }
5799 
5800   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
5801   if (LHSUnsigned) {
5802     // If the unsigned [LHS] type is larger, return it.
5803     if (LHSRank >= RHSRank)
5804       return 1;
5805 
5806     // If the signed type can represent all values of the unsigned type, it
5807     // wins.  Because we are dealing with 2's complement and types that are
5808     // powers of two larger than each other, this is always safe.
5809     return -1;
5810   }
5811 
5812   // If the unsigned [RHS] type is larger, return it.
5813   if (RHSRank >= LHSRank)
5814     return -1;
5815 
5816   // If the signed type can represent all values of the unsigned type, it
5817   // wins.  Because we are dealing with 2's complement and types that are
5818   // powers of two larger than each other, this is always safe.
5819   return 1;
5820 }
5821 
getCFConstantStringDecl() const5822 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
5823   if (CFConstantStringTypeDecl)
5824     return CFConstantStringTypeDecl;
5825 
5826   assert(!CFConstantStringTagDecl &&
5827          "tag and typedef should be initialized together");
5828   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
5829   CFConstantStringTagDecl->startDefinition();
5830 
5831   struct {
5832     QualType Type;
5833     const char *Name;
5834   } Fields[5];
5835   unsigned Count = 0;
5836 
5837   /// Objective-C ABI
5838   ///
5839   ///    typedef struct __NSConstantString_tag {
5840   ///      const int *isa;
5841   ///      int flags;
5842   ///      const char *str;
5843   ///      long length;
5844   ///    } __NSConstantString;
5845   ///
5846   /// Swift ABI (4.1, 4.2)
5847   ///
5848   ///    typedef struct __NSConstantString_tag {
5849   ///      uintptr_t _cfisa;
5850   ///      uintptr_t _swift_rc;
5851   ///      _Atomic(uint64_t) _cfinfoa;
5852   ///      const char *_ptr;
5853   ///      uint32_t _length;
5854   ///    } __NSConstantString;
5855   ///
5856   /// Swift ABI (5.0)
5857   ///
5858   ///    typedef struct __NSConstantString_tag {
5859   ///      uintptr_t _cfisa;
5860   ///      uintptr_t _swift_rc;
5861   ///      _Atomic(uint64_t) _cfinfoa;
5862   ///      const char *_ptr;
5863   ///      uintptr_t _length;
5864   ///    } __NSConstantString;
5865 
5866   const auto CFRuntime = getLangOpts().CFRuntime;
5867   if (static_cast<unsigned>(CFRuntime) <
5868       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
5869     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
5870     Fields[Count++] = { IntTy, "flags" };
5871     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
5872     Fields[Count++] = { LongTy, "length" };
5873   } else {
5874     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
5875     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
5876     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
5877     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
5878     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5879         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5880       Fields[Count++] = { IntTy, "_ptr" };
5881     else
5882       Fields[Count++] = { getUIntPtrType(), "_ptr" };
5883   }
5884 
5885   // Create fields
5886   for (unsigned i = 0; i < Count; ++i) {
5887     FieldDecl *Field =
5888         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
5889                           SourceLocation(), &Idents.get(Fields[i].Name),
5890                           Fields[i].Type, /*TInfo=*/nullptr,
5891                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
5892     Field->setAccess(AS_public);
5893     CFConstantStringTagDecl->addDecl(Field);
5894   }
5895 
5896   CFConstantStringTagDecl->completeDefinition();
5897   // This type is designed to be compatible with NSConstantString, but cannot
5898   // use the same name, since NSConstantString is an interface.
5899   auto tagType = getTagDeclType(CFConstantStringTagDecl);
5900   CFConstantStringTypeDecl =
5901       buildImplicitTypedef(tagType, "__NSConstantString");
5902 
5903   return CFConstantStringTypeDecl;
5904 }
5905 
getCFConstantStringTagDecl() const5906 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
5907   if (!CFConstantStringTagDecl)
5908     getCFConstantStringDecl(); // Build the tag and the typedef.
5909   return CFConstantStringTagDecl;
5910 }
5911 
5912 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const5913 QualType ASTContext::getCFConstantStringType() const {
5914   return getTypedefType(getCFConstantStringDecl());
5915 }
5916 
getObjCSuperType() const5917 QualType ASTContext::getObjCSuperType() const {
5918   if (ObjCSuperType.isNull()) {
5919     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
5920     TUDecl->addDecl(ObjCSuperTypeDecl);
5921     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
5922   }
5923   return ObjCSuperType;
5924 }
5925 
setCFConstantStringType(QualType T)5926 void ASTContext::setCFConstantStringType(QualType T) {
5927   const auto *TD = T->getAs<TypedefType>();
5928   assert(TD && "Invalid CFConstantStringType");
5929   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
5930   const auto *TagType =
5931       CFConstantStringTypeDecl->getUnderlyingType()->getAs<RecordType>();
5932   assert(TagType && "Invalid CFConstantStringType");
5933   CFConstantStringTagDecl = TagType->getDecl();
5934 }
5935 
getBlockDescriptorType() const5936 QualType ASTContext::getBlockDescriptorType() const {
5937   if (BlockDescriptorType)
5938     return getTagDeclType(BlockDescriptorType);
5939 
5940   RecordDecl *RD;
5941   // FIXME: Needs the FlagAppleBlock bit.
5942   RD = buildImplicitRecord("__block_descriptor");
5943   RD->startDefinition();
5944 
5945   QualType FieldTypes[] = {
5946     UnsignedLongTy,
5947     UnsignedLongTy,
5948   };
5949 
5950   static const char *const FieldNames[] = {
5951     "reserved",
5952     "Size"
5953   };
5954 
5955   for (size_t i = 0; i < 2; ++i) {
5956     FieldDecl *Field = FieldDecl::Create(
5957         *this, RD, SourceLocation(), SourceLocation(),
5958         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
5959         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
5960     Field->setAccess(AS_public);
5961     RD->addDecl(Field);
5962   }
5963 
5964   RD->completeDefinition();
5965 
5966   BlockDescriptorType = RD;
5967 
5968   return getTagDeclType(BlockDescriptorType);
5969 }
5970 
getBlockDescriptorExtendedType() const5971 QualType ASTContext::getBlockDescriptorExtendedType() const {
5972   if (BlockDescriptorExtendedType)
5973     return getTagDeclType(BlockDescriptorExtendedType);
5974 
5975   RecordDecl *RD;
5976   // FIXME: Needs the FlagAppleBlock bit.
5977   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
5978   RD->startDefinition();
5979 
5980   QualType FieldTypes[] = {
5981     UnsignedLongTy,
5982     UnsignedLongTy,
5983     getPointerType(VoidPtrTy),
5984     getPointerType(VoidPtrTy)
5985   };
5986 
5987   static const char *const FieldNames[] = {
5988     "reserved",
5989     "Size",
5990     "CopyFuncPtr",
5991     "DestroyFuncPtr"
5992   };
5993 
5994   for (size_t i = 0; i < 4; ++i) {
5995     FieldDecl *Field = FieldDecl::Create(
5996         *this, RD, SourceLocation(), SourceLocation(),
5997         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
5998         /*BitWidth=*/nullptr,
5999         /*Mutable=*/false, ICIS_NoInit);
6000     Field->setAccess(AS_public);
6001     RD->addDecl(Field);
6002   }
6003 
6004   RD->completeDefinition();
6005 
6006   BlockDescriptorExtendedType = RD;
6007   return getTagDeclType(BlockDescriptorExtendedType);
6008 }
6009 
getOpenCLTypeKind(const Type * T) const6010 TargetInfo::OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6011   const auto *BT = dyn_cast<BuiltinType>(T);
6012 
6013   if (!BT) {
6014     if (isa<PipeType>(T))
6015       return TargetInfo::OCLTK_Pipe;
6016 
6017     return TargetInfo::OCLTK_Default;
6018   }
6019 
6020   switch (BT->getKind()) {
6021 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
6022   case BuiltinType::Id:                                                        \
6023     return TargetInfo::OCLTK_Image;
6024 #include "clang/Basic/OpenCLImageTypes.def"
6025 
6026   case BuiltinType::OCLClkEvent:
6027     return TargetInfo::OCLTK_ClkEvent;
6028 
6029   case BuiltinType::OCLEvent:
6030     return TargetInfo::OCLTK_Event;
6031 
6032   case BuiltinType::OCLQueue:
6033     return TargetInfo::OCLTK_Queue;
6034 
6035   case BuiltinType::OCLReserveID:
6036     return TargetInfo::OCLTK_ReserveID;
6037 
6038   case BuiltinType::OCLSampler:
6039     return TargetInfo::OCLTK_Sampler;
6040 
6041   default:
6042     return TargetInfo::OCLTK_Default;
6043   }
6044 }
6045 
getOpenCLTypeAddrSpace(const Type * T) const6046 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6047   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6048 }
6049 
6050 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6051 /// requires copy/dispose. Note that this must match the logic
6052 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)6053 bool ASTContext::BlockRequiresCopying(QualType Ty,
6054                                       const VarDecl *D) {
6055   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6056     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6057     if (!copyExpr && record->hasTrivialDestructor()) return false;
6058 
6059     return true;
6060   }
6061 
6062   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6063   // move or destroy.
6064   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6065     return true;
6066 
6067   if (!Ty->isObjCRetainableType()) return false;
6068 
6069   Qualifiers qs = Ty.getQualifiers();
6070 
6071   // If we have lifetime, that dominates.
6072   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6073     switch (lifetime) {
6074       case Qualifiers::OCL_None: llvm_unreachable("impossible");
6075 
6076       // These are just bits as far as the runtime is concerned.
6077       case Qualifiers::OCL_ExplicitNone:
6078       case Qualifiers::OCL_Autoreleasing:
6079         return false;
6080 
6081       // These cases should have been taken care of when checking the type's
6082       // non-triviality.
6083       case Qualifiers::OCL_Weak:
6084       case Qualifiers::OCL_Strong:
6085         llvm_unreachable("impossible");
6086     }
6087     llvm_unreachable("fell out of lifetime switch!");
6088   }
6089   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6090           Ty->isObjCObjectPointerType());
6091 }
6092 
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const6093 bool ASTContext::getByrefLifetime(QualType Ty,
6094                               Qualifiers::ObjCLifetime &LifeTime,
6095                               bool &HasByrefExtendedLayout) const {
6096   if (!getLangOpts().ObjC ||
6097       getLangOpts().getGC() != LangOptions::NonGC)
6098     return false;
6099 
6100   HasByrefExtendedLayout = false;
6101   if (Ty->isRecordType()) {
6102     HasByrefExtendedLayout = true;
6103     LifeTime = Qualifiers::OCL_None;
6104   } else if ((LifeTime = Ty.getObjCLifetime())) {
6105     // Honor the ARC qualifiers.
6106   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6107     // The MRR rule.
6108     LifeTime = Qualifiers::OCL_ExplicitNone;
6109   } else {
6110     LifeTime = Qualifiers::OCL_None;
6111   }
6112   return true;
6113 }
6114 
getObjCInstanceTypeDecl()6115 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6116   if (!ObjCInstanceTypeDecl)
6117     ObjCInstanceTypeDecl =
6118         buildImplicitTypedef(getObjCIdType(), "instancetype");
6119   return ObjCInstanceTypeDecl;
6120 }
6121 
6122 // This returns true if a type has been typedefed to BOOL:
6123 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)6124 static bool isTypeTypedefedAsBOOL(QualType T) {
6125   if (const auto *TT = dyn_cast<TypedefType>(T))
6126     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6127       return II->isStr("BOOL");
6128 
6129   return false;
6130 }
6131 
6132 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
6133 /// purpose.
getObjCEncodingTypeSize(QualType type) const6134 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6135   if (!type->isIncompleteArrayType() && type->isIncompleteType())
6136     return CharUnits::Zero();
6137 
6138   CharUnits sz = getTypeSizeInChars(type);
6139 
6140   // Make all integer and enum types at least as large as an int
6141   if (sz.isPositive() && type->isIntegralOrEnumerationType())
6142     sz = std::max(sz, getTypeSizeInChars(IntTy));
6143   // Treat arrays as pointers, since that's how they're passed in.
6144   else if (type->isArrayType())
6145     sz = getTypeSizeInChars(VoidPtrTy);
6146   return sz;
6147 }
6148 
isMSStaticDataMemberInlineDefinition(const VarDecl * VD) const6149 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6150   return getTargetInfo().getCXXABI().isMicrosoft() &&
6151          VD->isStaticDataMember() &&
6152          VD->getType()->isIntegralOrEnumerationType() &&
6153          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6154 }
6155 
6156 ASTContext::InlineVariableDefinitionKind
getInlineVariableDefinitionKind(const VarDecl * VD) const6157 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6158   if (!VD->isInline())
6159     return InlineVariableDefinitionKind::None;
6160 
6161   // In almost all cases, it's a weak definition.
6162   auto *First = VD->getFirstDecl();
6163   if (First->isInlineSpecified() || !First->isStaticDataMember())
6164     return InlineVariableDefinitionKind::Weak;
6165 
6166   // If there's a file-context declaration in this translation unit, it's a
6167   // non-discardable definition.
6168   for (auto *D : VD->redecls())
6169     if (D->getLexicalDeclContext()->isFileContext() &&
6170         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6171       return InlineVariableDefinitionKind::Strong;
6172 
6173   // If we've not seen one yet, we don't know.
6174   return InlineVariableDefinitionKind::WeakUnknown;
6175 }
6176 
charUnitsToString(const CharUnits & CU)6177 static std::string charUnitsToString(const CharUnits &CU) {
6178   return llvm::itostr(CU.getQuantity());
6179 }
6180 
6181 /// getObjCEncodingForBlock - Return the encoded type for this block
6182 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const6183 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6184   std::string S;
6185 
6186   const BlockDecl *Decl = Expr->getBlockDecl();
6187   QualType BlockTy =
6188       Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
6189   // Encode result type.
6190   if (getLangOpts().EncodeExtendedBlockSig)
6191     getObjCEncodingForMethodParameter(
6192         Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
6193         true /*Extended*/);
6194   else
6195     getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
6196   // Compute size of all parameters.
6197   // Start with computing size of a pointer in number of bytes.
6198   // FIXME: There might(should) be a better way of doing this computation!
6199   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6200   CharUnits ParmOffset = PtrSize;
6201   for (auto PI : Decl->parameters()) {
6202     QualType PType = PI->getType();
6203     CharUnits sz = getObjCEncodingTypeSize(PType);
6204     if (sz.isZero())
6205       continue;
6206     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
6207     ParmOffset += sz;
6208   }
6209   // Size of the argument frame
6210   S += charUnitsToString(ParmOffset);
6211   // Block pointer and offset.
6212   S += "@?0";
6213 
6214   // Argument types.
6215   ParmOffset = PtrSize;
6216   for (auto PVDecl : Decl->parameters()) {
6217     QualType PType = PVDecl->getOriginalType();
6218     if (const auto *AT =
6219             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6220       // Use array's original type only if it has known number of
6221       // elements.
6222       if (!isa<ConstantArrayType>(AT))
6223         PType = PVDecl->getType();
6224     } else if (PType->isFunctionType())
6225       PType = PVDecl->getType();
6226     if (getLangOpts().EncodeExtendedBlockSig)
6227       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
6228                                       S, true /*Extended*/);
6229     else
6230       getObjCEncodingForType(PType, S);
6231     S += charUnitsToString(ParmOffset);
6232     ParmOffset += getObjCEncodingTypeSize(PType);
6233   }
6234 
6235   return S;
6236 }
6237 
6238 std::string
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl) const6239 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
6240   std::string S;
6241   // Encode result type.
6242   getObjCEncodingForType(Decl->getReturnType(), S);
6243   CharUnits ParmOffset;
6244   // Compute size of all parameters.
6245   for (auto PI : Decl->parameters()) {
6246     QualType PType = PI->getType();
6247     CharUnits sz = getObjCEncodingTypeSize(PType);
6248     if (sz.isZero())
6249       continue;
6250 
6251     assert(sz.isPositive() &&
6252            "getObjCEncodingForFunctionDecl - Incomplete param type");
6253     ParmOffset += sz;
6254   }
6255   S += charUnitsToString(ParmOffset);
6256   ParmOffset = CharUnits::Zero();
6257 
6258   // Argument types.
6259   for (auto PVDecl : Decl->parameters()) {
6260     QualType PType = PVDecl->getOriginalType();
6261     if (const auto *AT =
6262             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6263       // Use array's original type only if it has known number of
6264       // elements.
6265       if (!isa<ConstantArrayType>(AT))
6266         PType = PVDecl->getType();
6267     } else if (PType->isFunctionType())
6268       PType = PVDecl->getType();
6269     getObjCEncodingForType(PType, S);
6270     S += charUnitsToString(ParmOffset);
6271     ParmOffset += getObjCEncodingTypeSize(PType);
6272   }
6273 
6274   return S;
6275 }
6276 
6277 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
6278 /// method parameter or return type. If Extended, include class names and
6279 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const6280 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
6281                                                    QualType T, std::string& S,
6282                                                    bool Extended) const {
6283   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
6284   getObjCEncodingForTypeQualifier(QT, S);
6285   // Encode parameter type.
6286   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
6287                              true     /*OutermostType*/,
6288                              false    /*EncodingProperty*/,
6289                              false    /*StructField*/,
6290                              Extended /*EncodeBlockParameters*/,
6291                              Extended /*EncodeClassNames*/);
6292 }
6293 
6294 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
6295 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,bool Extended) const6296 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
6297                                                      bool Extended) const {
6298   // FIXME: This is not very efficient.
6299   // Encode return type.
6300   std::string S;
6301   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
6302                                     Decl->getReturnType(), S, Extended);
6303   // Compute size of all parameters.
6304   // Start with computing size of a pointer in number of bytes.
6305   // FIXME: There might(should) be a better way of doing this computation!
6306   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6307   // The first two arguments (self and _cmd) are pointers; account for
6308   // their size.
6309   CharUnits ParmOffset = 2 * PtrSize;
6310   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6311        E = Decl->sel_param_end(); PI != E; ++PI) {
6312     QualType PType = (*PI)->getType();
6313     CharUnits sz = getObjCEncodingTypeSize(PType);
6314     if (sz.isZero())
6315       continue;
6316 
6317     assert(sz.isPositive() &&
6318            "getObjCEncodingForMethodDecl - Incomplete param type");
6319     ParmOffset += sz;
6320   }
6321   S += charUnitsToString(ParmOffset);
6322   S += "@0:";
6323   S += charUnitsToString(PtrSize);
6324 
6325   // Argument types.
6326   ParmOffset = 2 * PtrSize;
6327   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6328        E = Decl->sel_param_end(); PI != E; ++PI) {
6329     const ParmVarDecl *PVDecl = *PI;
6330     QualType PType = PVDecl->getOriginalType();
6331     if (const auto *AT =
6332             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6333       // Use array's original type only if it has known number of
6334       // elements.
6335       if (!isa<ConstantArrayType>(AT))
6336         PType = PVDecl->getType();
6337     } else if (PType->isFunctionType())
6338       PType = PVDecl->getType();
6339     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
6340                                       PType, S, Extended);
6341     S += charUnitsToString(ParmOffset);
6342     ParmOffset += getObjCEncodingTypeSize(PType);
6343   }
6344 
6345   return S;
6346 }
6347 
6348 ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const6349 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
6350                                       const ObjCPropertyDecl *PD,
6351                                       const Decl *Container) const {
6352   if (!Container)
6353     return nullptr;
6354   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
6355     for (auto *PID : CID->property_impls())
6356       if (PID->getPropertyDecl() == PD)
6357         return PID;
6358   } else {
6359     const auto *OID = cast<ObjCImplementationDecl>(Container);
6360     for (auto *PID : OID->property_impls())
6361       if (PID->getPropertyDecl() == PD)
6362         return PID;
6363   }
6364   return nullptr;
6365 }
6366 
6367 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
6368 /// property declaration. If non-NULL, Container must be either an
6369 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
6370 /// NULL when getting encodings for protocol properties.
6371 /// Property attributes are stored as a comma-delimited C string. The simple
6372 /// attributes readonly and bycopy are encoded as single characters. The
6373 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
6374 /// encoded as single characters, followed by an identifier. Property types
6375 /// are also encoded as a parametrized attribute. The characters used to encode
6376 /// these attributes are defined by the following enumeration:
6377 /// @code
6378 /// enum PropertyAttributes {
6379 /// kPropertyReadOnly = 'R',   // property is read-only.
6380 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
6381 /// kPropertyByref = '&',  // property is a reference to the value last assigned
6382 /// kPropertyDynamic = 'D',    // property is dynamic
6383 /// kPropertyGetter = 'G',     // followed by getter selector name
6384 /// kPropertySetter = 'S',     // followed by setter selector name
6385 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
6386 /// kPropertyType = 'T'              // followed by old-style type encoding.
6387 /// kPropertyWeak = 'W'              // 'weak' property
6388 /// kPropertyStrong = 'P'            // property GC'able
6389 /// kPropertyNonAtomic = 'N'         // property non-atomic
6390 /// };
6391 /// @endcode
6392 std::string
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const6393 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
6394                                            const Decl *Container) const {
6395   // Collect information from the property implementation decl(s).
6396   bool Dynamic = false;
6397   ObjCPropertyImplDecl *SynthesizePID = nullptr;
6398 
6399   if (ObjCPropertyImplDecl *PropertyImpDecl =
6400       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
6401     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
6402       Dynamic = true;
6403     else
6404       SynthesizePID = PropertyImpDecl;
6405   }
6406 
6407   // FIXME: This is not very efficient.
6408   std::string S = "T";
6409 
6410   // Encode result type.
6411   // GCC has some special rules regarding encoding of properties which
6412   // closely resembles encoding of ivars.
6413   getObjCEncodingForPropertyType(PD->getType(), S);
6414 
6415   if (PD->isReadOnly()) {
6416     S += ",R";
6417     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
6418       S += ",C";
6419     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
6420       S += ",&";
6421     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
6422       S += ",W";
6423   } else {
6424     switch (PD->getSetterKind()) {
6425     case ObjCPropertyDecl::Assign: break;
6426     case ObjCPropertyDecl::Copy:   S += ",C"; break;
6427     case ObjCPropertyDecl::Retain: S += ",&"; break;
6428     case ObjCPropertyDecl::Weak:   S += ",W"; break;
6429     }
6430   }
6431 
6432   // It really isn't clear at all what this means, since properties
6433   // are "dynamic by default".
6434   if (Dynamic)
6435     S += ",D";
6436 
6437   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
6438     S += ",N";
6439 
6440   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
6441     S += ",G";
6442     S += PD->getGetterName().getAsString();
6443   }
6444 
6445   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
6446     S += ",S";
6447     S += PD->getSetterName().getAsString();
6448   }
6449 
6450   if (SynthesizePID) {
6451     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
6452     S += ",V";
6453     S += OID->getNameAsString();
6454   }
6455 
6456   // FIXME: OBJCGC: weak & strong
6457   return S;
6458 }
6459 
6460 /// getLegacyIntegralTypeEncoding -
6461 /// Another legacy compatibility encoding: 32-bit longs are encoded as
6462 /// 'l' or 'L' , but not always.  For typedefs, we need to use
6463 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const6464 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
6465   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
6466     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
6467       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
6468         PointeeTy = UnsignedIntTy;
6469       else
6470         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
6471           PointeeTy = IntTy;
6472     }
6473   }
6474 }
6475 
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field,QualType * NotEncodedT) const6476 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
6477                                         const FieldDecl *Field,
6478                                         QualType *NotEncodedT) const {
6479   // We follow the behavior of gcc, expanding structures which are
6480   // directly pointed to, and expanding embedded structures. Note that
6481   // these rules are sufficient to prevent recursive encoding of the
6482   // same type.
6483   getObjCEncodingForTypeImpl(T, S, true, true, Field,
6484                              true /* outermost type */, false, false,
6485                              false, false, false, NotEncodedT);
6486 }
6487 
getObjCEncodingForPropertyType(QualType T,std::string & S) const6488 void ASTContext::getObjCEncodingForPropertyType(QualType T,
6489                                                 std::string& S) const {
6490   // Encode result type.
6491   // GCC has some special rules regarding encoding of properties which
6492   // closely resembles encoding of ivars.
6493   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
6494                              true /* outermost type */,
6495                              true /* encoding property */);
6496 }
6497 
getObjCEncodingForPrimitiveKind(const ASTContext * C,BuiltinType::Kind kind)6498 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
6499                                             BuiltinType::Kind kind) {
6500     switch (kind) {
6501     case BuiltinType::Void:       return 'v';
6502     case BuiltinType::Bool:       return 'B';
6503     case BuiltinType::Char8:
6504     case BuiltinType::Char_U:
6505     case BuiltinType::UChar:      return 'C';
6506     case BuiltinType::Char16:
6507     case BuiltinType::UShort:     return 'S';
6508     case BuiltinType::Char32:
6509     case BuiltinType::UInt:       return 'I';
6510     case BuiltinType::ULong:
6511         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
6512     case BuiltinType::UInt128:    return 'T';
6513     case BuiltinType::ULongLong:  return 'Q';
6514     case BuiltinType::Char_S:
6515     case BuiltinType::SChar:      return 'c';
6516     case BuiltinType::Short:      return 's';
6517     case BuiltinType::WChar_S:
6518     case BuiltinType::WChar_U:
6519     case BuiltinType::Int:        return 'i';
6520     case BuiltinType::Long:
6521       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
6522     case BuiltinType::LongLong:   return 'q';
6523     case BuiltinType::Int128:     return 't';
6524     case BuiltinType::Float:      return 'f';
6525     case BuiltinType::Double:     return 'd';
6526     case BuiltinType::LongDouble: return 'D';
6527     case BuiltinType::NullPtr:    return '*'; // like char*
6528 
6529     case BuiltinType::Float16:
6530     case BuiltinType::Float128:
6531     case BuiltinType::Half:
6532     case BuiltinType::ShortAccum:
6533     case BuiltinType::Accum:
6534     case BuiltinType::LongAccum:
6535     case BuiltinType::UShortAccum:
6536     case BuiltinType::UAccum:
6537     case BuiltinType::ULongAccum:
6538     case BuiltinType::ShortFract:
6539     case BuiltinType::Fract:
6540     case BuiltinType::LongFract:
6541     case BuiltinType::UShortFract:
6542     case BuiltinType::UFract:
6543     case BuiltinType::ULongFract:
6544     case BuiltinType::SatShortAccum:
6545     case BuiltinType::SatAccum:
6546     case BuiltinType::SatLongAccum:
6547     case BuiltinType::SatUShortAccum:
6548     case BuiltinType::SatUAccum:
6549     case BuiltinType::SatULongAccum:
6550     case BuiltinType::SatShortFract:
6551     case BuiltinType::SatFract:
6552     case BuiltinType::SatLongFract:
6553     case BuiltinType::SatUShortFract:
6554     case BuiltinType::SatUFract:
6555     case BuiltinType::SatULongFract:
6556       // FIXME: potentially need @encodes for these!
6557       return ' ';
6558 
6559     case BuiltinType::ObjCId:
6560     case BuiltinType::ObjCClass:
6561     case BuiltinType::ObjCSel:
6562       llvm_unreachable("@encoding ObjC primitive type");
6563 
6564     // OpenCL and placeholder types don't need @encodings.
6565 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6566     case BuiltinType::Id:
6567 #include "clang/Basic/OpenCLImageTypes.def"
6568 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6569     case BuiltinType::Id:
6570 #include "clang/Basic/OpenCLExtensionTypes.def"
6571     case BuiltinType::OCLEvent:
6572     case BuiltinType::OCLClkEvent:
6573     case BuiltinType::OCLQueue:
6574     case BuiltinType::OCLReserveID:
6575     case BuiltinType::OCLSampler:
6576     case BuiltinType::Dependent:
6577 #define BUILTIN_TYPE(KIND, ID)
6578 #define PLACEHOLDER_TYPE(KIND, ID) \
6579     case BuiltinType::KIND:
6580 #include "clang/AST/BuiltinTypes.def"
6581       llvm_unreachable("invalid builtin type for @encode");
6582     }
6583     llvm_unreachable("invalid BuiltinType::Kind value");
6584 }
6585 
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)6586 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
6587   EnumDecl *Enum = ET->getDecl();
6588 
6589   // The encoding of an non-fixed enum type is always 'i', regardless of size.
6590   if (!Enum->isFixed())
6591     return 'i';
6592 
6593   // The encoding of a fixed enum type matches its fixed underlying type.
6594   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
6595   return getObjCEncodingForPrimitiveKind(C, BT->getKind());
6596 }
6597 
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)6598 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
6599                            QualType T, const FieldDecl *FD) {
6600   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
6601   S += 'b';
6602   // The NeXT runtime encodes bit fields as b followed by the number of bits.
6603   // The GNU runtime requires more information; bitfields are encoded as b,
6604   // then the offset (in bits) of the first element, then the type of the
6605   // bitfield, then the size in bits.  For example, in this structure:
6606   //
6607   // struct
6608   // {
6609   //    int integer;
6610   //    int flags:2;
6611   // };
6612   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
6613   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
6614   // information is not especially sensible, but we're stuck with it for
6615   // compatibility with GCC, although providing it breaks anything that
6616   // actually uses runtime introspection and wants to work on both runtimes...
6617   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
6618     uint64_t Offset;
6619 
6620     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
6621       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
6622                                          IVD);
6623     } else {
6624       const RecordDecl *RD = FD->getParent();
6625       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
6626       Offset = RL.getFieldOffset(FD->getFieldIndex());
6627     }
6628 
6629     S += llvm::utostr(Offset);
6630 
6631     if (const auto *ET = T->getAs<EnumType>())
6632       S += ObjCEncodingForEnumType(Ctx, ET);
6633     else {
6634       const auto *BT = T->castAs<BuiltinType>();
6635       S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
6636     }
6637   }
6638   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
6639 }
6640 
6641 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField,bool EncodeBlockParameters,bool EncodeClassNames,bool EncodePointerToObjCTypedef,QualType * NotEncodedT) const6642 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
6643                                             bool ExpandPointedToStructures,
6644                                             bool ExpandStructures,
6645                                             const FieldDecl *FD,
6646                                             bool OutermostType,
6647                                             bool EncodingProperty,
6648                                             bool StructField,
6649                                             bool EncodeBlockParameters,
6650                                             bool EncodeClassNames,
6651                                             bool EncodePointerToObjCTypedef,
6652                                             QualType *NotEncodedT) const {
6653   CanQualType CT = getCanonicalType(T);
6654   switch (CT->getTypeClass()) {
6655   case Type::Builtin:
6656   case Type::Enum:
6657     if (FD && FD->isBitField())
6658       return EncodeBitField(this, S, T, FD);
6659     if (const auto *BT = dyn_cast<BuiltinType>(CT))
6660       S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
6661     else
6662       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
6663     return;
6664 
6665   case Type::Complex: {
6666     const auto *CT = T->castAs<ComplexType>();
6667     S += 'j';
6668     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
6669     return;
6670   }
6671 
6672   case Type::Atomic: {
6673     const auto *AT = T->castAs<AtomicType>();
6674     S += 'A';
6675     getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
6676     return;
6677   }
6678 
6679   // encoding for pointer or reference types.
6680   case Type::Pointer:
6681   case Type::LValueReference:
6682   case Type::RValueReference: {
6683     QualType PointeeTy;
6684     if (isa<PointerType>(CT)) {
6685       const auto *PT = T->castAs<PointerType>();
6686       if (PT->isObjCSelType()) {
6687         S += ':';
6688         return;
6689       }
6690       PointeeTy = PT->getPointeeType();
6691     } else {
6692       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
6693     }
6694 
6695     bool isReadOnly = false;
6696     // For historical/compatibility reasons, the read-only qualifier of the
6697     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
6698     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
6699     // Also, do not emit the 'r' for anything but the outermost type!
6700     if (isa<TypedefType>(T.getTypePtr())) {
6701       if (OutermostType && T.isConstQualified()) {
6702         isReadOnly = true;
6703         S += 'r';
6704       }
6705     } else if (OutermostType) {
6706       QualType P = PointeeTy;
6707       while (P->getAs<PointerType>())
6708         P = P->getAs<PointerType>()->getPointeeType();
6709       if (P.isConstQualified()) {
6710         isReadOnly = true;
6711         S += 'r';
6712       }
6713     }
6714     if (isReadOnly) {
6715       // Another legacy compatibility encoding. Some ObjC qualifier and type
6716       // combinations need to be rearranged.
6717       // Rewrite "in const" from "nr" to "rn"
6718       if (StringRef(S).endswith("nr"))
6719         S.replace(S.end()-2, S.end(), "rn");
6720     }
6721 
6722     if (PointeeTy->isCharType()) {
6723       // char pointer types should be encoded as '*' unless it is a
6724       // type that has been typedef'd to 'BOOL'.
6725       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
6726         S += '*';
6727         return;
6728       }
6729     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
6730       // GCC binary compat: Need to convert "struct objc_class *" to "#".
6731       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
6732         S += '#';
6733         return;
6734       }
6735       // GCC binary compat: Need to convert "struct objc_object *" to "@".
6736       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
6737         S += '@';
6738         return;
6739       }
6740       // fall through...
6741     }
6742     S += '^';
6743     getLegacyIntegralTypeEncoding(PointeeTy);
6744 
6745     getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
6746                                nullptr, false, false, false, false, false, false,
6747                                NotEncodedT);
6748     return;
6749   }
6750 
6751   case Type::ConstantArray:
6752   case Type::IncompleteArray:
6753   case Type::VariableArray: {
6754     const auto *AT = cast<ArrayType>(CT);
6755 
6756     if (isa<IncompleteArrayType>(AT) && !StructField) {
6757       // Incomplete arrays are encoded as a pointer to the array element.
6758       S += '^';
6759 
6760       getObjCEncodingForTypeImpl(AT->getElementType(), S,
6761                                  false, ExpandStructures, FD);
6762     } else {
6763       S += '[';
6764 
6765       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
6766         S += llvm::utostr(CAT->getSize().getZExtValue());
6767       else {
6768         //Variable length arrays are encoded as a regular array with 0 elements.
6769         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
6770                "Unknown array type!");
6771         S += '0';
6772       }
6773 
6774       getObjCEncodingForTypeImpl(AT->getElementType(), S,
6775                                  false, ExpandStructures, FD,
6776                                  false, false, false, false, false, false,
6777                                  NotEncodedT);
6778       S += ']';
6779     }
6780     return;
6781   }
6782 
6783   case Type::FunctionNoProto:
6784   case Type::FunctionProto:
6785     S += '?';
6786     return;
6787 
6788   case Type::Record: {
6789     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
6790     S += RDecl->isUnion() ? '(' : '{';
6791     // Anonymous structures print as '?'
6792     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
6793       S += II->getName();
6794       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
6795         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
6796         llvm::raw_string_ostream OS(S);
6797         printTemplateArgumentList(OS, TemplateArgs.asArray(),
6798                                   getPrintingPolicy());
6799       }
6800     } else {
6801       S += '?';
6802     }
6803     if (ExpandStructures) {
6804       S += '=';
6805       if (!RDecl->isUnion()) {
6806         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
6807       } else {
6808         for (const auto *Field : RDecl->fields()) {
6809           if (FD) {
6810             S += '"';
6811             S += Field->getNameAsString();
6812             S += '"';
6813           }
6814 
6815           // Special case bit-fields.
6816           if (Field->isBitField()) {
6817             getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
6818                                        Field);
6819           } else {
6820             QualType qt = Field->getType();
6821             getLegacyIntegralTypeEncoding(qt);
6822             getObjCEncodingForTypeImpl(qt, S, false, true,
6823                                        FD, /*OutermostType*/false,
6824                                        /*EncodingProperty*/false,
6825                                        /*StructField*/true,
6826                                        false, false, false, NotEncodedT);
6827           }
6828         }
6829       }
6830     }
6831     S += RDecl->isUnion() ? ')' : '}';
6832     return;
6833   }
6834 
6835   case Type::BlockPointer: {
6836     const auto *BT = T->castAs<BlockPointerType>();
6837     S += "@?"; // Unlike a pointer-to-function, which is "^?".
6838     if (EncodeBlockParameters) {
6839       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
6840 
6841       S += '<';
6842       // Block return type
6843       getObjCEncodingForTypeImpl(
6844           FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
6845           FD, false /* OutermostType */, EncodingProperty,
6846           false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
6847                                  NotEncodedT);
6848       // Block self
6849       S += "@?";
6850       // Block parameters
6851       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
6852         for (const auto &I : FPT->param_types())
6853           getObjCEncodingForTypeImpl(
6854               I, S, ExpandPointedToStructures, ExpandStructures, FD,
6855               false /* OutermostType */, EncodingProperty,
6856               false /* StructField */, EncodeBlockParameters, EncodeClassNames,
6857                                      false, NotEncodedT);
6858       }
6859       S += '>';
6860     }
6861     return;
6862   }
6863 
6864   case Type::ObjCObject: {
6865     // hack to match legacy encoding of *id and *Class
6866     QualType Ty = getObjCObjectPointerType(CT);
6867     if (Ty->isObjCIdType()) {
6868       S += "{objc_object=}";
6869       return;
6870     }
6871     else if (Ty->isObjCClassType()) {
6872       S += "{objc_class=}";
6873       return;
6874     }
6875     // TODO: Double check to make sure this intentionally falls through.
6876     LLVM_FALLTHROUGH;
6877   }
6878 
6879   case Type::ObjCInterface: {
6880     // Ignore protocol qualifiers when mangling at this level.
6881     // @encode(class_name)
6882     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
6883     S += '{';
6884     S += OI->getObjCRuntimeNameAsString();
6885     if (ExpandStructures) {
6886       S += '=';
6887       SmallVector<const ObjCIvarDecl*, 32> Ivars;
6888       DeepCollectObjCIvars(OI, true, Ivars);
6889       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
6890         const FieldDecl *Field = Ivars[i];
6891         if (Field->isBitField())
6892           getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
6893         else
6894           getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
6895                                      false, false, false, false, false,
6896                                      EncodePointerToObjCTypedef,
6897                                      NotEncodedT);
6898       }
6899     }
6900     S += '}';
6901     return;
6902   }
6903 
6904   case Type::ObjCObjectPointer: {
6905     const auto *OPT = T->castAs<ObjCObjectPointerType>();
6906     if (OPT->isObjCIdType()) {
6907       S += '@';
6908       return;
6909     }
6910 
6911     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
6912       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
6913       // Since this is a binary compatibility issue, need to consult with runtime
6914       // folks. Fortunately, this is a *very* obscure construct.
6915       S += '#';
6916       return;
6917     }
6918 
6919     if (OPT->isObjCQualifiedIdType()) {
6920       getObjCEncodingForTypeImpl(getObjCIdType(), S,
6921                                  ExpandPointedToStructures,
6922                                  ExpandStructures, FD);
6923       if (FD || EncodingProperty || EncodeClassNames) {
6924         // Note that we do extended encoding of protocol qualifer list
6925         // Only when doing ivar or property encoding.
6926         S += '"';
6927         for (const auto *I : OPT->quals()) {
6928           S += '<';
6929           S += I->getObjCRuntimeNameAsString();
6930           S += '>';
6931         }
6932         S += '"';
6933       }
6934       return;
6935     }
6936 
6937     QualType PointeeTy = OPT->getPointeeType();
6938     if (!EncodingProperty &&
6939         isa<TypedefType>(PointeeTy.getTypePtr()) &&
6940         !EncodePointerToObjCTypedef) {
6941       // Another historical/compatibility reason.
6942       // We encode the underlying type which comes out as
6943       // {...};
6944       S += '^';
6945       if (FD && OPT->getInterfaceDecl()) {
6946         // Prevent recursive encoding of fields in some rare cases.
6947         ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
6948         SmallVector<const ObjCIvarDecl*, 32> Ivars;
6949         DeepCollectObjCIvars(OI, true, Ivars);
6950         for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
6951           if (Ivars[i] == FD) {
6952             S += '{';
6953             S += OI->getObjCRuntimeNameAsString();
6954             S += '}';
6955             return;
6956           }
6957         }
6958       }
6959       getObjCEncodingForTypeImpl(PointeeTy, S,
6960                                  false, ExpandPointedToStructures,
6961                                  nullptr,
6962                                  false, false, false, false, false,
6963                                  /*EncodePointerToObjCTypedef*/true);
6964       return;
6965     }
6966 
6967     S += '@';
6968     if (OPT->getInterfaceDecl() &&
6969         (FD || EncodingProperty || EncodeClassNames)) {
6970       S += '"';
6971       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
6972       for (const auto *I : OPT->quals()) {
6973         S += '<';
6974         S += I->getObjCRuntimeNameAsString();
6975         S += '>';
6976       }
6977       S += '"';
6978     }
6979     return;
6980   }
6981 
6982   // gcc just blithely ignores member pointers.
6983   // FIXME: we shoul do better than that.  'M' is available.
6984   case Type::MemberPointer:
6985   // This matches gcc's encoding, even though technically it is insufficient.
6986   //FIXME. We should do a better job than gcc.
6987   case Type::Vector:
6988   case Type::ExtVector:
6989   // Until we have a coherent encoding of these three types, issue warning.
6990     if (NotEncodedT)
6991       *NotEncodedT = T;
6992     return;
6993 
6994   // We could see an undeduced auto type here during error recovery.
6995   // Just ignore it.
6996   case Type::Auto:
6997   case Type::DeducedTemplateSpecialization:
6998     return;
6999 
7000   case Type::Pipe:
7001 #define ABSTRACT_TYPE(KIND, BASE)
7002 #define TYPE(KIND, BASE)
7003 #define DEPENDENT_TYPE(KIND, BASE) \
7004   case Type::KIND:
7005 #define NON_CANONICAL_TYPE(KIND, BASE) \
7006   case Type::KIND:
7007 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7008   case Type::KIND:
7009 #include "clang/AST/TypeNodes.def"
7010     llvm_unreachable("@encode for dependent type!");
7011   }
7012   llvm_unreachable("bad type kind!");
7013 }
7014 
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases,QualType * NotEncodedT) const7015 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7016                                                  std::string &S,
7017                                                  const FieldDecl *FD,
7018                                                  bool includeVBases,
7019                                                  QualType *NotEncodedT) const {
7020   assert(RDecl && "Expected non-null RecordDecl");
7021   assert(!RDecl->isUnion() && "Should not be called for unions");
7022   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7023     return;
7024 
7025   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7026   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7027   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7028 
7029   if (CXXRec) {
7030     for (const auto &BI : CXXRec->bases()) {
7031       if (!BI.isVirtual()) {
7032         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7033         if (base->isEmpty())
7034           continue;
7035         uint64_t offs = toBits(layout.getBaseClassOffset(base));
7036         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7037                                   std::make_pair(offs, base));
7038       }
7039     }
7040   }
7041 
7042   unsigned i = 0;
7043   for (auto *Field : RDecl->fields()) {
7044     uint64_t offs = layout.getFieldOffset(i);
7045     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7046                               std::make_pair(offs, Field));
7047     ++i;
7048   }
7049 
7050   if (CXXRec && includeVBases) {
7051     for (const auto &BI : CXXRec->vbases()) {
7052       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7053       if (base->isEmpty())
7054         continue;
7055       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7056       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7057           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7058         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7059                                   std::make_pair(offs, base));
7060     }
7061   }
7062 
7063   CharUnits size;
7064   if (CXXRec) {
7065     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7066   } else {
7067     size = layout.getSize();
7068   }
7069 
7070 #ifndef NDEBUG
7071   uint64_t CurOffs = 0;
7072 #endif
7073   std::multimap<uint64_t, NamedDecl *>::iterator
7074     CurLayObj = FieldOrBaseOffsets.begin();
7075 
7076   if (CXXRec && CXXRec->isDynamicClass() &&
7077       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7078     if (FD) {
7079       S += "\"_vptr$";
7080       std::string recname = CXXRec->getNameAsString();
7081       if (recname.empty()) recname = "?";
7082       S += recname;
7083       S += '"';
7084     }
7085     S += "^^?";
7086 #ifndef NDEBUG
7087     CurOffs += getTypeSize(VoidPtrTy);
7088 #endif
7089   }
7090 
7091   if (!RDecl->hasFlexibleArrayMember()) {
7092     // Mark the end of the structure.
7093     uint64_t offs = toBits(size);
7094     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7095                               std::make_pair(offs, nullptr));
7096   }
7097 
7098   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7099 #ifndef NDEBUG
7100     assert(CurOffs <= CurLayObj->first);
7101     if (CurOffs < CurLayObj->first) {
7102       uint64_t padding = CurLayObj->first - CurOffs;
7103       // FIXME: There doesn't seem to be a way to indicate in the encoding that
7104       // packing/alignment of members is different that normal, in which case
7105       // the encoding will be out-of-sync with the real layout.
7106       // If the runtime switches to just consider the size of types without
7107       // taking into account alignment, we could make padding explicit in the
7108       // encoding (e.g. using arrays of chars). The encoding strings would be
7109       // longer then though.
7110       CurOffs += padding;
7111     }
7112 #endif
7113 
7114     NamedDecl *dcl = CurLayObj->second;
7115     if (!dcl)
7116       break; // reached end of structure.
7117 
7118     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7119       // We expand the bases without their virtual bases since those are going
7120       // in the initial structure. Note that this differs from gcc which
7121       // expands virtual bases each time one is encountered in the hierarchy,
7122       // making the encoding type bigger than it really is.
7123       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7124                                       NotEncodedT);
7125       assert(!base->isEmpty());
7126 #ifndef NDEBUG
7127       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7128 #endif
7129     } else {
7130       const auto *field = cast<FieldDecl>(dcl);
7131       if (FD) {
7132         S += '"';
7133         S += field->getNameAsString();
7134         S += '"';
7135       }
7136 
7137       if (field->isBitField()) {
7138         EncodeBitField(this, S, field->getType(), field);
7139 #ifndef NDEBUG
7140         CurOffs += field->getBitWidthValue(*this);
7141 #endif
7142       } else {
7143         QualType qt = field->getType();
7144         getLegacyIntegralTypeEncoding(qt);
7145         getObjCEncodingForTypeImpl(qt, S, false, true, FD,
7146                                    /*OutermostType*/false,
7147                                    /*EncodingProperty*/false,
7148                                    /*StructField*/true,
7149                                    false, false, false, NotEncodedT);
7150 #ifndef NDEBUG
7151         CurOffs += getTypeSize(field->getType());
7152 #endif
7153       }
7154     }
7155   }
7156 }
7157 
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const7158 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
7159                                                  std::string& S) const {
7160   if (QT & Decl::OBJC_TQ_In)
7161     S += 'n';
7162   if (QT & Decl::OBJC_TQ_Inout)
7163     S += 'N';
7164   if (QT & Decl::OBJC_TQ_Out)
7165     S += 'o';
7166   if (QT & Decl::OBJC_TQ_Bycopy)
7167     S += 'O';
7168   if (QT & Decl::OBJC_TQ_Byref)
7169     S += 'R';
7170   if (QT & Decl::OBJC_TQ_Oneway)
7171     S += 'V';
7172 }
7173 
getObjCIdDecl() const7174 TypedefDecl *ASTContext::getObjCIdDecl() const {
7175   if (!ObjCIdDecl) {
7176     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
7177     T = getObjCObjectPointerType(T);
7178     ObjCIdDecl = buildImplicitTypedef(T, "id");
7179   }
7180   return ObjCIdDecl;
7181 }
7182 
getObjCSelDecl() const7183 TypedefDecl *ASTContext::getObjCSelDecl() const {
7184   if (!ObjCSelDecl) {
7185     QualType T = getPointerType(ObjCBuiltinSelTy);
7186     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
7187   }
7188   return ObjCSelDecl;
7189 }
7190 
getObjCClassDecl() const7191 TypedefDecl *ASTContext::getObjCClassDecl() const {
7192   if (!ObjCClassDecl) {
7193     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
7194     T = getObjCObjectPointerType(T);
7195     ObjCClassDecl = buildImplicitTypedef(T, "Class");
7196   }
7197   return ObjCClassDecl;
7198 }
7199 
getObjCProtocolDecl() const7200 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
7201   if (!ObjCProtocolClassDecl) {
7202     ObjCProtocolClassDecl
7203       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
7204                                   SourceLocation(),
7205                                   &Idents.get("Protocol"),
7206                                   /*typeParamList=*/nullptr,
7207                                   /*PrevDecl=*/nullptr,
7208                                   SourceLocation(), true);
7209   }
7210 
7211   return ObjCProtocolClassDecl;
7212 }
7213 
7214 //===----------------------------------------------------------------------===//
7215 // __builtin_va_list Construction Functions
7216 //===----------------------------------------------------------------------===//
7217 
CreateCharPtrNamedVaListDecl(const ASTContext * Context,StringRef Name)7218 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
7219                                                  StringRef Name) {
7220   // typedef char* __builtin[_ms]_va_list;
7221   QualType T = Context->getPointerType(Context->CharTy);
7222   return Context->buildImplicitTypedef(T, Name);
7223 }
7224 
CreateMSVaListDecl(const ASTContext * Context)7225 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
7226   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
7227 }
7228 
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)7229 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
7230   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
7231 }
7232 
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)7233 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
7234   // typedef void* __builtin_va_list;
7235   QualType T = Context->getPointerType(Context->VoidTy);
7236   return Context->buildImplicitTypedef(T, "__builtin_va_list");
7237 }
7238 
7239 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)7240 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
7241   // struct __va_list
7242   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
7243   if (Context->getLangOpts().CPlusPlus) {
7244     // namespace std { struct __va_list {
7245     NamespaceDecl *NS;
7246     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7247                                Context->getTranslationUnitDecl(),
7248                                /*Inline*/ false, SourceLocation(),
7249                                SourceLocation(), &Context->Idents.get("std"),
7250                                /*PrevDecl*/ nullptr);
7251     NS->setImplicit();
7252     VaListTagDecl->setDeclContext(NS);
7253   }
7254 
7255   VaListTagDecl->startDefinition();
7256 
7257   const size_t NumFields = 5;
7258   QualType FieldTypes[NumFields];
7259   const char *FieldNames[NumFields];
7260 
7261   // void *__stack;
7262   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
7263   FieldNames[0] = "__stack";
7264 
7265   // void *__gr_top;
7266   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
7267   FieldNames[1] = "__gr_top";
7268 
7269   // void *__vr_top;
7270   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7271   FieldNames[2] = "__vr_top";
7272 
7273   // int __gr_offs;
7274   FieldTypes[3] = Context->IntTy;
7275   FieldNames[3] = "__gr_offs";
7276 
7277   // int __vr_offs;
7278   FieldTypes[4] = Context->IntTy;
7279   FieldNames[4] = "__vr_offs";
7280 
7281   // Create fields
7282   for (unsigned i = 0; i < NumFields; ++i) {
7283     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7284                                          VaListTagDecl,
7285                                          SourceLocation(),
7286                                          SourceLocation(),
7287                                          &Context->Idents.get(FieldNames[i]),
7288                                          FieldTypes[i], /*TInfo=*/nullptr,
7289                                          /*BitWidth=*/nullptr,
7290                                          /*Mutable=*/false,
7291                                          ICIS_NoInit);
7292     Field->setAccess(AS_public);
7293     VaListTagDecl->addDecl(Field);
7294   }
7295   VaListTagDecl->completeDefinition();
7296   Context->VaListTagDecl = VaListTagDecl;
7297   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7298 
7299   // } __builtin_va_list;
7300   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
7301 }
7302 
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)7303 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
7304   // typedef struct __va_list_tag {
7305   RecordDecl *VaListTagDecl;
7306 
7307   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7308   VaListTagDecl->startDefinition();
7309 
7310   const size_t NumFields = 5;
7311   QualType FieldTypes[NumFields];
7312   const char *FieldNames[NumFields];
7313 
7314   //   unsigned char gpr;
7315   FieldTypes[0] = Context->UnsignedCharTy;
7316   FieldNames[0] = "gpr";
7317 
7318   //   unsigned char fpr;
7319   FieldTypes[1] = Context->UnsignedCharTy;
7320   FieldNames[1] = "fpr";
7321 
7322   //   unsigned short reserved;
7323   FieldTypes[2] = Context->UnsignedShortTy;
7324   FieldNames[2] = "reserved";
7325 
7326   //   void* overflow_arg_area;
7327   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7328   FieldNames[3] = "overflow_arg_area";
7329 
7330   //   void* reg_save_area;
7331   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
7332   FieldNames[4] = "reg_save_area";
7333 
7334   // Create fields
7335   for (unsigned i = 0; i < NumFields; ++i) {
7336     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
7337                                          SourceLocation(),
7338                                          SourceLocation(),
7339                                          &Context->Idents.get(FieldNames[i]),
7340                                          FieldTypes[i], /*TInfo=*/nullptr,
7341                                          /*BitWidth=*/nullptr,
7342                                          /*Mutable=*/false,
7343                                          ICIS_NoInit);
7344     Field->setAccess(AS_public);
7345     VaListTagDecl->addDecl(Field);
7346   }
7347   VaListTagDecl->completeDefinition();
7348   Context->VaListTagDecl = VaListTagDecl;
7349   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7350 
7351   // } __va_list_tag;
7352   TypedefDecl *VaListTagTypedefDecl =
7353       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
7354 
7355   QualType VaListTagTypedefType =
7356     Context->getTypedefType(VaListTagTypedefDecl);
7357 
7358   // typedef __va_list_tag __builtin_va_list[1];
7359   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7360   QualType VaListTagArrayType
7361     = Context->getConstantArrayType(VaListTagTypedefType,
7362                                     Size, ArrayType::Normal, 0);
7363   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7364 }
7365 
7366 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)7367 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
7368   // struct __va_list_tag {
7369   RecordDecl *VaListTagDecl;
7370   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7371   VaListTagDecl->startDefinition();
7372 
7373   const size_t NumFields = 4;
7374   QualType FieldTypes[NumFields];
7375   const char *FieldNames[NumFields];
7376 
7377   //   unsigned gp_offset;
7378   FieldTypes[0] = Context->UnsignedIntTy;
7379   FieldNames[0] = "gp_offset";
7380 
7381   //   unsigned fp_offset;
7382   FieldTypes[1] = Context->UnsignedIntTy;
7383   FieldNames[1] = "fp_offset";
7384 
7385   //   void* overflow_arg_area;
7386   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7387   FieldNames[2] = "overflow_arg_area";
7388 
7389   //   void* reg_save_area;
7390   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7391   FieldNames[3] = "reg_save_area";
7392 
7393   // Create fields
7394   for (unsigned i = 0; i < NumFields; ++i) {
7395     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7396                                          VaListTagDecl,
7397                                          SourceLocation(),
7398                                          SourceLocation(),
7399                                          &Context->Idents.get(FieldNames[i]),
7400                                          FieldTypes[i], /*TInfo=*/nullptr,
7401                                          /*BitWidth=*/nullptr,
7402                                          /*Mutable=*/false,
7403                                          ICIS_NoInit);
7404     Field->setAccess(AS_public);
7405     VaListTagDecl->addDecl(Field);
7406   }
7407   VaListTagDecl->completeDefinition();
7408   Context->VaListTagDecl = VaListTagDecl;
7409   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7410 
7411   // };
7412 
7413   // typedef struct __va_list_tag __builtin_va_list[1];
7414   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7415   QualType VaListTagArrayType =
7416       Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
7417   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7418 }
7419 
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)7420 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
7421   // typedef int __builtin_va_list[4];
7422   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
7423   QualType IntArrayType =
7424       Context->getConstantArrayType(Context->IntTy, Size, ArrayType::Normal, 0);
7425   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
7426 }
7427 
7428 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)7429 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
7430   // struct __va_list
7431   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
7432   if (Context->getLangOpts().CPlusPlus) {
7433     // namespace std { struct __va_list {
7434     NamespaceDecl *NS;
7435     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7436                                Context->getTranslationUnitDecl(),
7437                                /*Inline*/false, SourceLocation(),
7438                                SourceLocation(), &Context->Idents.get("std"),
7439                                /*PrevDecl*/ nullptr);
7440     NS->setImplicit();
7441     VaListDecl->setDeclContext(NS);
7442   }
7443 
7444   VaListDecl->startDefinition();
7445 
7446   // void * __ap;
7447   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7448                                        VaListDecl,
7449                                        SourceLocation(),
7450                                        SourceLocation(),
7451                                        &Context->Idents.get("__ap"),
7452                                        Context->getPointerType(Context->VoidTy),
7453                                        /*TInfo=*/nullptr,
7454                                        /*BitWidth=*/nullptr,
7455                                        /*Mutable=*/false,
7456                                        ICIS_NoInit);
7457   Field->setAccess(AS_public);
7458   VaListDecl->addDecl(Field);
7459 
7460   // };
7461   VaListDecl->completeDefinition();
7462   Context->VaListTagDecl = VaListDecl;
7463 
7464   // typedef struct __va_list __builtin_va_list;
7465   QualType T = Context->getRecordType(VaListDecl);
7466   return Context->buildImplicitTypedef(T, "__builtin_va_list");
7467 }
7468 
7469 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)7470 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
7471   // struct __va_list_tag {
7472   RecordDecl *VaListTagDecl;
7473   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7474   VaListTagDecl->startDefinition();
7475 
7476   const size_t NumFields = 4;
7477   QualType FieldTypes[NumFields];
7478   const char *FieldNames[NumFields];
7479 
7480   //   long __gpr;
7481   FieldTypes[0] = Context->LongTy;
7482   FieldNames[0] = "__gpr";
7483 
7484   //   long __fpr;
7485   FieldTypes[1] = Context->LongTy;
7486   FieldNames[1] = "__fpr";
7487 
7488   //   void *__overflow_arg_area;
7489   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7490   FieldNames[2] = "__overflow_arg_area";
7491 
7492   //   void *__reg_save_area;
7493   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7494   FieldNames[3] = "__reg_save_area";
7495 
7496   // Create fields
7497   for (unsigned i = 0; i < NumFields; ++i) {
7498     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7499                                          VaListTagDecl,
7500                                          SourceLocation(),
7501                                          SourceLocation(),
7502                                          &Context->Idents.get(FieldNames[i]),
7503                                          FieldTypes[i], /*TInfo=*/nullptr,
7504                                          /*BitWidth=*/nullptr,
7505                                          /*Mutable=*/false,
7506                                          ICIS_NoInit);
7507     Field->setAccess(AS_public);
7508     VaListTagDecl->addDecl(Field);
7509   }
7510   VaListTagDecl->completeDefinition();
7511   Context->VaListTagDecl = VaListTagDecl;
7512   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7513 
7514   // };
7515 
7516   // typedef __va_list_tag __builtin_va_list[1];
7517   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7518   QualType VaListTagArrayType =
7519       Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
7520 
7521   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7522 }
7523 
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)7524 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
7525                                      TargetInfo::BuiltinVaListKind Kind) {
7526   switch (Kind) {
7527   case TargetInfo::CharPtrBuiltinVaList:
7528     return CreateCharPtrBuiltinVaListDecl(Context);
7529   case TargetInfo::VoidPtrBuiltinVaList:
7530     return CreateVoidPtrBuiltinVaListDecl(Context);
7531   case TargetInfo::AArch64ABIBuiltinVaList:
7532     return CreateAArch64ABIBuiltinVaListDecl(Context);
7533   case TargetInfo::PowerABIBuiltinVaList:
7534     return CreatePowerABIBuiltinVaListDecl(Context);
7535   case TargetInfo::X86_64ABIBuiltinVaList:
7536     return CreateX86_64ABIBuiltinVaListDecl(Context);
7537   case TargetInfo::PNaClABIBuiltinVaList:
7538     return CreatePNaClABIBuiltinVaListDecl(Context);
7539   case TargetInfo::AAPCSABIBuiltinVaList:
7540     return CreateAAPCSABIBuiltinVaListDecl(Context);
7541   case TargetInfo::SystemZBuiltinVaList:
7542     return CreateSystemZBuiltinVaListDecl(Context);
7543   }
7544 
7545   llvm_unreachable("Unhandled __builtin_va_list type kind");
7546 }
7547 
getBuiltinVaListDecl() const7548 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
7549   if (!BuiltinVaListDecl) {
7550     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
7551     assert(BuiltinVaListDecl->isImplicit());
7552   }
7553 
7554   return BuiltinVaListDecl;
7555 }
7556 
getVaListTagDecl() const7557 Decl *ASTContext::getVaListTagDecl() const {
7558   // Force the creation of VaListTagDecl by building the __builtin_va_list
7559   // declaration.
7560   if (!VaListTagDecl)
7561     (void)getBuiltinVaListDecl();
7562 
7563   return VaListTagDecl;
7564 }
7565 
getBuiltinMSVaListDecl() const7566 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
7567   if (!BuiltinMSVaListDecl)
7568     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
7569 
7570   return BuiltinMSVaListDecl;
7571 }
7572 
canBuiltinBeRedeclared(const FunctionDecl * FD) const7573 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
7574   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
7575 }
7576 
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)7577 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
7578   assert(ObjCConstantStringType.isNull() &&
7579          "'NSConstantString' type already set!");
7580 
7581   ObjCConstantStringType = getObjCInterfaceType(Decl);
7582 }
7583 
7584 /// Retrieve the template name that corresponds to a non-empty
7585 /// lookup.
7586 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const7587 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
7588                                       UnresolvedSetIterator End) const {
7589   unsigned size = End - Begin;
7590   assert(size > 1 && "set is not overloaded!");
7591 
7592   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
7593                           size * sizeof(FunctionTemplateDecl*));
7594   auto *OT = new (memory) OverloadedTemplateStorage(size);
7595 
7596   NamedDecl **Storage = OT->getStorage();
7597   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
7598     NamedDecl *D = *I;
7599     assert(isa<FunctionTemplateDecl>(D) ||
7600            isa<UnresolvedUsingValueDecl>(D) ||
7601            (isa<UsingShadowDecl>(D) &&
7602             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
7603     *Storage++ = D;
7604   }
7605 
7606   return TemplateName(OT);
7607 }
7608 
7609 /// Retrieve the template name that represents a qualified
7610 /// template name such as \c std::vector.
7611 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const7612 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
7613                                      bool TemplateKeyword,
7614                                      TemplateDecl *Template) const {
7615   assert(NNS && "Missing nested-name-specifier in qualified template name");
7616 
7617   // FIXME: Canonicalization?
7618   llvm::FoldingSetNodeID ID;
7619   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
7620 
7621   void *InsertPos = nullptr;
7622   QualifiedTemplateName *QTN =
7623     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7624   if (!QTN) {
7625     QTN = new (*this, alignof(QualifiedTemplateName))
7626         QualifiedTemplateName(NNS, TemplateKeyword, Template);
7627     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
7628   }
7629 
7630   return TemplateName(QTN);
7631 }
7632 
7633 /// Retrieve the template name that represents a dependent
7634 /// template name such as \c MetaFun::template apply.
7635 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const7636 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7637                                      const IdentifierInfo *Name) const {
7638   assert((!NNS || NNS->isDependent()) &&
7639          "Nested name specifier must be dependent");
7640 
7641   llvm::FoldingSetNodeID ID;
7642   DependentTemplateName::Profile(ID, NNS, Name);
7643 
7644   void *InsertPos = nullptr;
7645   DependentTemplateName *QTN =
7646     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7647 
7648   if (QTN)
7649     return TemplateName(QTN);
7650 
7651   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7652   if (CanonNNS == NNS) {
7653     QTN = new (*this, alignof(DependentTemplateName))
7654         DependentTemplateName(NNS, Name);
7655   } else {
7656     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
7657     QTN = new (*this, alignof(DependentTemplateName))
7658         DependentTemplateName(NNS, Name, Canon);
7659     DependentTemplateName *CheckQTN =
7660       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7661     assert(!CheckQTN && "Dependent type name canonicalization broken");
7662     (void)CheckQTN;
7663   }
7664 
7665   DependentTemplateNames.InsertNode(QTN, InsertPos);
7666   return TemplateName(QTN);
7667 }
7668 
7669 /// Retrieve the template name that represents a dependent
7670 /// template name such as \c MetaFun::template operator+.
7671 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const7672 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7673                                      OverloadedOperatorKind Operator) const {
7674   assert((!NNS || NNS->isDependent()) &&
7675          "Nested name specifier must be dependent");
7676 
7677   llvm::FoldingSetNodeID ID;
7678   DependentTemplateName::Profile(ID, NNS, Operator);
7679 
7680   void *InsertPos = nullptr;
7681   DependentTemplateName *QTN
7682     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7683 
7684   if (QTN)
7685     return TemplateName(QTN);
7686 
7687   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7688   if (CanonNNS == NNS) {
7689     QTN = new (*this, alignof(DependentTemplateName))
7690         DependentTemplateName(NNS, Operator);
7691   } else {
7692     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
7693     QTN = new (*this, alignof(DependentTemplateName))
7694         DependentTemplateName(NNS, Operator, Canon);
7695 
7696     DependentTemplateName *CheckQTN
7697       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7698     assert(!CheckQTN && "Dependent template name canonicalization broken");
7699     (void)CheckQTN;
7700   }
7701 
7702   DependentTemplateNames.InsertNode(QTN, InsertPos);
7703   return TemplateName(QTN);
7704 }
7705 
7706 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const7707 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
7708                                          TemplateName replacement) const {
7709   llvm::FoldingSetNodeID ID;
7710   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
7711 
7712   void *insertPos = nullptr;
7713   SubstTemplateTemplateParmStorage *subst
7714     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
7715 
7716   if (!subst) {
7717     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
7718     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
7719   }
7720 
7721   return TemplateName(subst);
7722 }
7723 
7724 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const7725 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
7726                                        const TemplateArgument &ArgPack) const {
7727   auto &Self = const_cast<ASTContext &>(*this);
7728   llvm::FoldingSetNodeID ID;
7729   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
7730 
7731   void *InsertPos = nullptr;
7732   SubstTemplateTemplateParmPackStorage *Subst
7733     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
7734 
7735   if (!Subst) {
7736     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
7737                                                            ArgPack.pack_size(),
7738                                                          ArgPack.pack_begin());
7739     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
7740   }
7741 
7742   return TemplateName(Subst);
7743 }
7744 
7745 /// getFromTargetType - Given one of the integer types provided by
7746 /// TargetInfo, produce the corresponding type. The unsigned @p Type
7747 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const7748 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
7749   switch (Type) {
7750   case TargetInfo::NoInt: return {};
7751   case TargetInfo::SignedChar: return SignedCharTy;
7752   case TargetInfo::UnsignedChar: return UnsignedCharTy;
7753   case TargetInfo::SignedShort: return ShortTy;
7754   case TargetInfo::UnsignedShort: return UnsignedShortTy;
7755   case TargetInfo::SignedInt: return IntTy;
7756   case TargetInfo::UnsignedInt: return UnsignedIntTy;
7757   case TargetInfo::SignedLong: return LongTy;
7758   case TargetInfo::UnsignedLong: return UnsignedLongTy;
7759   case TargetInfo::SignedLongLong: return LongLongTy;
7760   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
7761   }
7762 
7763   llvm_unreachable("Unhandled TargetInfo::IntType value");
7764 }
7765 
7766 //===----------------------------------------------------------------------===//
7767 //                        Type Predicates.
7768 //===----------------------------------------------------------------------===//
7769 
7770 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
7771 /// garbage collection attribute.
7772 ///
getObjCGCAttrKind(QualType Ty) const7773 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
7774   if (getLangOpts().getGC() == LangOptions::NonGC)
7775     return Qualifiers::GCNone;
7776 
7777   assert(getLangOpts().ObjC);
7778   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
7779 
7780   // Default behaviour under objective-C's gc is for ObjC pointers
7781   // (or pointers to them) be treated as though they were declared
7782   // as __strong.
7783   if (GCAttrs == Qualifiers::GCNone) {
7784     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
7785       return Qualifiers::Strong;
7786     else if (Ty->isPointerType())
7787       return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
7788   } else {
7789     // It's not valid to set GC attributes on anything that isn't a
7790     // pointer.
7791 #ifndef NDEBUG
7792     QualType CT = Ty->getCanonicalTypeInternal();
7793     while (const auto *AT = dyn_cast<ArrayType>(CT))
7794       CT = AT->getElementType();
7795     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
7796 #endif
7797   }
7798   return GCAttrs;
7799 }
7800 
7801 //===----------------------------------------------------------------------===//
7802 //                        Type Compatibility Testing
7803 //===----------------------------------------------------------------------===//
7804 
7805 /// areCompatVectorTypes - Return true if the two specified vector types are
7806 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)7807 static bool areCompatVectorTypes(const VectorType *LHS,
7808                                  const VectorType *RHS) {
7809   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
7810   return LHS->getElementType() == RHS->getElementType() &&
7811          LHS->getNumElements() == RHS->getNumElements();
7812 }
7813 
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)7814 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
7815                                           QualType SecondVec) {
7816   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
7817   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
7818 
7819   if (hasSameUnqualifiedType(FirstVec, SecondVec))
7820     return true;
7821 
7822   // Treat Neon vector types and most AltiVec vector types as if they are the
7823   // equivalent GCC vector types.
7824   const auto *First = FirstVec->getAs<VectorType>();
7825   const auto *Second = SecondVec->getAs<VectorType>();
7826   if (First->getNumElements() == Second->getNumElements() &&
7827       hasSameType(First->getElementType(), Second->getElementType()) &&
7828       First->getVectorKind() != VectorType::AltiVecPixel &&
7829       First->getVectorKind() != VectorType::AltiVecBool &&
7830       Second->getVectorKind() != VectorType::AltiVecPixel &&
7831       Second->getVectorKind() != VectorType::AltiVecBool)
7832     return true;
7833 
7834   return false;
7835 }
7836 
7837 //===----------------------------------------------------------------------===//
7838 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
7839 //===----------------------------------------------------------------------===//
7840 
7841 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
7842 /// inheritance hierarchy of 'rProto'.
7843 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const7844 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
7845                                            ObjCProtocolDecl *rProto) const {
7846   if (declaresSameEntity(lProto, rProto))
7847     return true;
7848   for (auto *PI : rProto->protocols())
7849     if (ProtocolCompatibleWithProtocol(lProto, PI))
7850       return true;
7851   return false;
7852 }
7853 
7854 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
7855 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)7856 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
7857                                                       QualType rhs) {
7858   const auto *lhsQID = lhs->getAs<ObjCObjectPointerType>();
7859   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
7860   assert((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
7861 
7862   for (auto *lhsProto : lhsQID->quals()) {
7863     bool match = false;
7864     for (auto *rhsProto : rhsOPT->quals()) {
7865       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
7866         match = true;
7867         break;
7868       }
7869     }
7870     if (!match)
7871       return false;
7872   }
7873   return true;
7874 }
7875 
7876 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
7877 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)7878 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
7879                                                    bool compare) {
7880   // Allow id<P..> and an 'id' or void* type in all cases.
7881   if (lhs->isVoidPointerType() ||
7882       lhs->isObjCIdType() || lhs->isObjCClassType())
7883     return true;
7884   else if (rhs->isVoidPointerType() ||
7885            rhs->isObjCIdType() || rhs->isObjCClassType())
7886     return true;
7887 
7888   if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
7889     const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
7890 
7891     if (!rhsOPT) return false;
7892 
7893     if (rhsOPT->qual_empty()) {
7894       // If the RHS is a unqualified interface pointer "NSString*",
7895       // make sure we check the class hierarchy.
7896       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
7897         for (auto *I : lhsQID->quals()) {
7898           // when comparing an id<P> on lhs with a static type on rhs,
7899           // see if static class implements all of id's protocols, directly or
7900           // through its super class and categories.
7901           if (!rhsID->ClassImplementsProtocol(I, true))
7902             return false;
7903         }
7904       }
7905       // If there are no qualifiers and no interface, we have an 'id'.
7906       return true;
7907     }
7908     // Both the right and left sides have qualifiers.
7909     for (auto *lhsProto : lhsQID->quals()) {
7910       bool match = false;
7911 
7912       // when comparing an id<P> on lhs with a static type on rhs,
7913       // see if static class implements all of id's protocols, directly or
7914       // through its super class and categories.
7915       for (auto *rhsProto : rhsOPT->quals()) {
7916         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
7917             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
7918           match = true;
7919           break;
7920         }
7921       }
7922       // If the RHS is a qualified interface pointer "NSString<P>*",
7923       // make sure we check the class hierarchy.
7924       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
7925         for (auto *I : lhsQID->quals()) {
7926           // when comparing an id<P> on lhs with a static type on rhs,
7927           // see if static class implements all of id's protocols, directly or
7928           // through its super class and categories.
7929           if (rhsID->ClassImplementsProtocol(I, true)) {
7930             match = true;
7931             break;
7932           }
7933         }
7934       }
7935       if (!match)
7936         return false;
7937     }
7938 
7939     return true;
7940   }
7941 
7942   const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
7943   assert(rhsQID && "One of the LHS/RHS should be id<x>");
7944 
7945   if (const ObjCObjectPointerType *lhsOPT =
7946         lhs->getAsObjCInterfacePointerType()) {
7947     // If both the right and left sides have qualifiers.
7948     for (auto *lhsProto : lhsOPT->quals()) {
7949       bool match = false;
7950 
7951       // when comparing an id<P> on rhs with a static type on lhs,
7952       // see if static class implements all of id's protocols, directly or
7953       // through its super class and categories.
7954       // First, lhs protocols in the qualifier list must be found, direct
7955       // or indirect in rhs's qualifier list or it is a mismatch.
7956       for (auto *rhsProto : rhsQID->quals()) {
7957         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
7958             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
7959           match = true;
7960           break;
7961         }
7962       }
7963       if (!match)
7964         return false;
7965     }
7966 
7967     // Static class's protocols, or its super class or category protocols
7968     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
7969     if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
7970       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
7971       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
7972       // This is rather dubious but matches gcc's behavior. If lhs has
7973       // no type qualifier and its class has no static protocol(s)
7974       // assume that it is mismatch.
7975       if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
7976         return false;
7977       for (auto *lhsProto : LHSInheritedProtocols) {
7978         bool match = false;
7979         for (auto *rhsProto : rhsQID->quals()) {
7980           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
7981               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
7982             match = true;
7983             break;
7984           }
7985         }
7986         if (!match)
7987           return false;
7988       }
7989     }
7990     return true;
7991   }
7992   return false;
7993 }
7994 
7995 /// canAssignObjCInterfaces - Return true if the two interface types are
7996 /// compatible for assignment from RHS to LHS.  This handles validation of any
7997 /// protocol qualifiers on the LHS or RHS.
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)7998 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
7999                                          const ObjCObjectPointerType *RHSOPT) {
8000   const ObjCObjectType* LHS = LHSOPT->getObjectType();
8001   const ObjCObjectType* RHS = RHSOPT->getObjectType();
8002 
8003   // If either type represents the built-in 'id' or 'Class' types, return true.
8004   if (LHS->isObjCUnqualifiedIdOrClass() ||
8005       RHS->isObjCUnqualifiedIdOrClass())
8006     return true;
8007 
8008   // Function object that propagates a successful result or handles
8009   // __kindof types.
8010   auto finish = [&](bool succeeded) -> bool {
8011     if (succeeded)
8012       return true;
8013 
8014     if (!RHS->isKindOfType())
8015       return false;
8016 
8017     // Strip off __kindof and protocol qualifiers, then check whether
8018     // we can assign the other way.
8019     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8020                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
8021   };
8022 
8023   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
8024     return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
8025                                                     QualType(RHSOPT,0),
8026                                                     false));
8027   }
8028 
8029   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
8030     return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
8031                                                        QualType(RHSOPT,0)));
8032   }
8033 
8034   // If we have 2 user-defined types, fall into that path.
8035   if (LHS->getInterface() && RHS->getInterface()) {
8036     return finish(canAssignObjCInterfaces(LHS, RHS));
8037   }
8038 
8039   return false;
8040 }
8041 
8042 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
8043 /// for providing type-safety for objective-c pointers used to pass/return
8044 /// arguments in block literals. When passed as arguments, passing 'A*' where
8045 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
8046 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)8047 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
8048                                          const ObjCObjectPointerType *LHSOPT,
8049                                          const ObjCObjectPointerType *RHSOPT,
8050                                          bool BlockReturnType) {
8051 
8052   // Function object that propagates a successful result or handles
8053   // __kindof types.
8054   auto finish = [&](bool succeeded) -> bool {
8055     if (succeeded)
8056       return true;
8057 
8058     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
8059     if (!Expected->isKindOfType())
8060       return false;
8061 
8062     // Strip off __kindof and protocol qualifiers, then check whether
8063     // we can assign the other way.
8064     return canAssignObjCInterfacesInBlockPointer(
8065              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8066              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
8067              BlockReturnType);
8068   };
8069 
8070   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
8071     return true;
8072 
8073   if (LHSOPT->isObjCBuiltinType()) {
8074     return finish(RHSOPT->isObjCBuiltinType() ||
8075                   RHSOPT->isObjCQualifiedIdType());
8076   }
8077 
8078   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
8079     return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
8080                                                     QualType(RHSOPT,0),
8081                                                     false));
8082 
8083   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
8084   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
8085   if (LHS && RHS)  { // We have 2 user-defined types.
8086     if (LHS != RHS) {
8087       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
8088         return finish(BlockReturnType);
8089       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
8090         return finish(!BlockReturnType);
8091     }
8092     else
8093       return true;
8094   }
8095   return false;
8096 }
8097 
8098 /// Comparison routine for Objective-C protocols to be used with
8099 /// llvm::array_pod_sort.
compareObjCProtocolsByName(ObjCProtocolDecl * const * lhs,ObjCProtocolDecl * const * rhs)8100 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
8101                                       ObjCProtocolDecl * const *rhs) {
8102   return (*lhs)->getName().compare((*rhs)->getName());
8103 }
8104 
8105 /// getIntersectionOfProtocols - This routine finds the intersection of set
8106 /// of protocols inherited from two distinct objective-c pointer objects with
8107 /// the given common base.
8108 /// It is used to build composite qualifier list of the composite type of
8109 /// the conditional expression involving two objective-c pointer objects.
8110 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCInterfaceDecl * CommonBase,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionSet)8111 void getIntersectionOfProtocols(ASTContext &Context,
8112                                 const ObjCInterfaceDecl *CommonBase,
8113                                 const ObjCObjectPointerType *LHSOPT,
8114                                 const ObjCObjectPointerType *RHSOPT,
8115       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
8116 
8117   const ObjCObjectType* LHS = LHSOPT->getObjectType();
8118   const ObjCObjectType* RHS = RHSOPT->getObjectType();
8119   assert(LHS->getInterface() && "LHS must have an interface base");
8120   assert(RHS->getInterface() && "RHS must have an interface base");
8121 
8122   // Add all of the protocols for the LHS.
8123   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
8124 
8125   // Start with the protocol qualifiers.
8126   for (auto proto : LHS->quals()) {
8127     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
8128   }
8129 
8130   // Also add the protocols associated with the LHS interface.
8131   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
8132 
8133   // Add all of the protocols for the RHS.
8134   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
8135 
8136   // Start with the protocol qualifiers.
8137   for (auto proto : RHS->quals()) {
8138     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
8139   }
8140 
8141   // Also add the protocols associated with the RHS interface.
8142   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
8143 
8144   // Compute the intersection of the collected protocol sets.
8145   for (auto proto : LHSProtocolSet) {
8146     if (RHSProtocolSet.count(proto))
8147       IntersectionSet.push_back(proto);
8148   }
8149 
8150   // Compute the set of protocols that is implied by either the common type or
8151   // the protocols within the intersection.
8152   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
8153   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
8154 
8155   // Remove any implied protocols from the list of inherited protocols.
8156   if (!ImpliedProtocols.empty()) {
8157     IntersectionSet.erase(
8158       std::remove_if(IntersectionSet.begin(),
8159                      IntersectionSet.end(),
8160                      [&](ObjCProtocolDecl *proto) -> bool {
8161                        return ImpliedProtocols.count(proto) > 0;
8162                      }),
8163       IntersectionSet.end());
8164   }
8165 
8166   // Sort the remaining protocols by name.
8167   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
8168                        compareObjCProtocolsByName);
8169 }
8170 
8171 /// Determine whether the first type is a subtype of the second.
canAssignObjCObjectTypes(ASTContext & ctx,QualType lhs,QualType rhs)8172 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
8173                                      QualType rhs) {
8174   // Common case: two object pointers.
8175   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
8176   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
8177   if (lhsOPT && rhsOPT)
8178     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
8179 
8180   // Two block pointers.
8181   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
8182   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
8183   if (lhsBlock && rhsBlock)
8184     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
8185 
8186   // If either is an unqualified 'id' and the other is a block, it's
8187   // acceptable.
8188   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
8189       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
8190     return true;
8191 
8192   return false;
8193 }
8194 
8195 // Check that the given Objective-C type argument lists are equivalent.
sameObjCTypeArgs(ASTContext & ctx,const ObjCInterfaceDecl * iface,ArrayRef<QualType> lhsArgs,ArrayRef<QualType> rhsArgs,bool stripKindOf)8196 static bool sameObjCTypeArgs(ASTContext &ctx,
8197                              const ObjCInterfaceDecl *iface,
8198                              ArrayRef<QualType> lhsArgs,
8199                              ArrayRef<QualType> rhsArgs,
8200                              bool stripKindOf) {
8201   if (lhsArgs.size() != rhsArgs.size())
8202     return false;
8203 
8204   ObjCTypeParamList *typeParams = iface->getTypeParamList();
8205   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
8206     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
8207       continue;
8208 
8209     switch (typeParams->begin()[i]->getVariance()) {
8210     case ObjCTypeParamVariance::Invariant:
8211       if (!stripKindOf ||
8212           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
8213                            rhsArgs[i].stripObjCKindOfType(ctx))) {
8214         return false;
8215       }
8216       break;
8217 
8218     case ObjCTypeParamVariance::Covariant:
8219       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
8220         return false;
8221       break;
8222 
8223     case ObjCTypeParamVariance::Contravariant:
8224       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
8225         return false;
8226       break;
8227     }
8228   }
8229 
8230   return true;
8231 }
8232 
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)8233 QualType ASTContext::areCommonBaseCompatible(
8234            const ObjCObjectPointerType *Lptr,
8235            const ObjCObjectPointerType *Rptr) {
8236   const ObjCObjectType *LHS = Lptr->getObjectType();
8237   const ObjCObjectType *RHS = Rptr->getObjectType();
8238   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
8239   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
8240 
8241   if (!LDecl || !RDecl)
8242     return {};
8243 
8244   // When either LHS or RHS is a kindof type, we should return a kindof type.
8245   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
8246   // kindof(A).
8247   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
8248 
8249   // Follow the left-hand side up the class hierarchy until we either hit a
8250   // root or find the RHS. Record the ancestors in case we don't find it.
8251   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
8252     LHSAncestors;
8253   while (true) {
8254     // Record this ancestor. We'll need this if the common type isn't in the
8255     // path from the LHS to the root.
8256     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
8257 
8258     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
8259       // Get the type arguments.
8260       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
8261       bool anyChanges = false;
8262       if (LHS->isSpecialized() && RHS->isSpecialized()) {
8263         // Both have type arguments, compare them.
8264         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8265                               LHS->getTypeArgs(), RHS->getTypeArgs(),
8266                               /*stripKindOf=*/true))
8267           return {};
8268       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8269         // If only one has type arguments, the result will not have type
8270         // arguments.
8271         LHSTypeArgs = {};
8272         anyChanges = true;
8273       }
8274 
8275       // Compute the intersection of protocols.
8276       SmallVector<ObjCProtocolDecl *, 8> Protocols;
8277       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
8278                                  Protocols);
8279       if (!Protocols.empty())
8280         anyChanges = true;
8281 
8282       // If anything in the LHS will have changed, build a new result type.
8283       // If we need to return a kindof type but LHS is not a kindof type, we
8284       // build a new result type.
8285       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
8286         QualType Result = getObjCInterfaceType(LHS->getInterface());
8287         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
8288                                    anyKindOf || LHS->isKindOfType());
8289         return getObjCObjectPointerType(Result);
8290       }
8291 
8292       return getObjCObjectPointerType(QualType(LHS, 0));
8293     }
8294 
8295     // Find the superclass.
8296     QualType LHSSuperType = LHS->getSuperClassType();
8297     if (LHSSuperType.isNull())
8298       break;
8299 
8300     LHS = LHSSuperType->castAs<ObjCObjectType>();
8301   }
8302 
8303   // We didn't find anything by following the LHS to its root; now check
8304   // the RHS against the cached set of ancestors.
8305   while (true) {
8306     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
8307     if (KnownLHS != LHSAncestors.end()) {
8308       LHS = KnownLHS->second;
8309 
8310       // Get the type arguments.
8311       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
8312       bool anyChanges = false;
8313       if (LHS->isSpecialized() && RHS->isSpecialized()) {
8314         // Both have type arguments, compare them.
8315         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8316                               LHS->getTypeArgs(), RHS->getTypeArgs(),
8317                               /*stripKindOf=*/true))
8318           return {};
8319       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8320         // If only one has type arguments, the result will not have type
8321         // arguments.
8322         RHSTypeArgs = {};
8323         anyChanges = true;
8324       }
8325 
8326       // Compute the intersection of protocols.
8327       SmallVector<ObjCProtocolDecl *, 8> Protocols;
8328       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
8329                                  Protocols);
8330       if (!Protocols.empty())
8331         anyChanges = true;
8332 
8333       // If we need to return a kindof type but RHS is not a kindof type, we
8334       // build a new result type.
8335       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
8336         QualType Result = getObjCInterfaceType(RHS->getInterface());
8337         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
8338                                    anyKindOf || RHS->isKindOfType());
8339         return getObjCObjectPointerType(Result);
8340       }
8341 
8342       return getObjCObjectPointerType(QualType(RHS, 0));
8343     }
8344 
8345     // Find the superclass of the RHS.
8346     QualType RHSSuperType = RHS->getSuperClassType();
8347     if (RHSSuperType.isNull())
8348       break;
8349 
8350     RHS = RHSSuperType->castAs<ObjCObjectType>();
8351   }
8352 
8353   return {};
8354 }
8355 
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)8356 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
8357                                          const ObjCObjectType *RHS) {
8358   assert(LHS->getInterface() && "LHS is not an interface type");
8359   assert(RHS->getInterface() && "RHS is not an interface type");
8360 
8361   // Verify that the base decls are compatible: the RHS must be a subclass of
8362   // the LHS.
8363   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
8364   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
8365   if (!IsSuperClass)
8366     return false;
8367 
8368   // If the LHS has protocol qualifiers, determine whether all of them are
8369   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
8370   // LHS).
8371   if (LHS->getNumProtocols() > 0) {
8372     // OK if conversion of LHS to SuperClass results in narrowing of types
8373     // ; i.e., SuperClass may implement at least one of the protocols
8374     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
8375     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
8376     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
8377     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
8378     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
8379     // qualifiers.
8380     for (auto *RHSPI : RHS->quals())
8381       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
8382     // If there is no protocols associated with RHS, it is not a match.
8383     if (SuperClassInheritedProtocols.empty())
8384       return false;
8385 
8386     for (const auto *LHSProto : LHS->quals()) {
8387       bool SuperImplementsProtocol = false;
8388       for (auto *SuperClassProto : SuperClassInheritedProtocols)
8389         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
8390           SuperImplementsProtocol = true;
8391           break;
8392         }
8393       if (!SuperImplementsProtocol)
8394         return false;
8395     }
8396   }
8397 
8398   // If the LHS is specialized, we may need to check type arguments.
8399   if (LHS->isSpecialized()) {
8400     // Follow the superclass chain until we've matched the LHS class in the
8401     // hierarchy. This substitutes type arguments through.
8402     const ObjCObjectType *RHSSuper = RHS;
8403     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
8404       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
8405 
8406     // If the RHS is specializd, compare type arguments.
8407     if (RHSSuper->isSpecialized() &&
8408         !sameObjCTypeArgs(*this, LHS->getInterface(),
8409                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
8410                           /*stripKindOf=*/true)) {
8411       return false;
8412     }
8413   }
8414 
8415   return true;
8416 }
8417 
areComparableObjCPointerTypes(QualType LHS,QualType RHS)8418 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
8419   // get the "pointed to" types
8420   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
8421   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
8422 
8423   if (!LHSOPT || !RHSOPT)
8424     return false;
8425 
8426   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
8427          canAssignObjCInterfaces(RHSOPT, LHSOPT);
8428 }
8429 
canBindObjCObjectType(QualType To,QualType From)8430 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
8431   return canAssignObjCInterfaces(
8432                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
8433                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
8434 }
8435 
8436 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
8437 /// both shall have the identically qualified version of a compatible type.
8438 /// C99 6.2.7p1: Two types have compatible types if their types are the
8439 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)8440 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
8441                                     bool CompareUnqualified) {
8442   if (getLangOpts().CPlusPlus)
8443     return hasSameType(LHS, RHS);
8444 
8445   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
8446 }
8447 
propertyTypesAreCompatible(QualType LHS,QualType RHS)8448 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
8449   return typesAreCompatible(LHS, RHS);
8450 }
8451 
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)8452 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
8453   return !mergeTypes(LHS, RHS, true).isNull();
8454 }
8455 
8456 /// mergeTransparentUnionType - if T is a transparent union type and a member
8457 /// of T is compatible with SubType, return the merged type, else return
8458 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)8459 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
8460                                                bool OfBlockPointer,
8461                                                bool Unqualified) {
8462   if (const RecordType *UT = T->getAsUnionType()) {
8463     RecordDecl *UD = UT->getDecl();
8464     if (UD->hasAttr<TransparentUnionAttr>()) {
8465       for (const auto *I : UD->fields()) {
8466         QualType ET = I->getType().getUnqualifiedType();
8467         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
8468         if (!MT.isNull())
8469           return MT;
8470       }
8471     }
8472   }
8473 
8474   return {};
8475 }
8476 
8477 /// mergeFunctionParameterTypes - merge two types which appear as function
8478 /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)8479 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
8480                                                  bool OfBlockPointer,
8481                                                  bool Unqualified) {
8482   // GNU extension: two types are compatible if they appear as a function
8483   // argument, one of the types is a transparent union type and the other
8484   // type is compatible with a union member
8485   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
8486                                               Unqualified);
8487   if (!lmerge.isNull())
8488     return lmerge;
8489 
8490   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
8491                                               Unqualified);
8492   if (!rmerge.isNull())
8493     return rmerge;
8494 
8495   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
8496 }
8497 
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)8498 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
8499                                         bool OfBlockPointer,
8500                                         bool Unqualified) {
8501   const auto *lbase = lhs->getAs<FunctionType>();
8502   const auto *rbase = rhs->getAs<FunctionType>();
8503   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
8504   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
8505   bool allLTypes = true;
8506   bool allRTypes = true;
8507 
8508   // Check return type
8509   QualType retType;
8510   if (OfBlockPointer) {
8511     QualType RHS = rbase->getReturnType();
8512     QualType LHS = lbase->getReturnType();
8513     bool UnqualifiedResult = Unqualified;
8514     if (!UnqualifiedResult)
8515       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
8516     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
8517   }
8518   else
8519     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
8520                          Unqualified);
8521   if (retType.isNull())
8522     return {};
8523 
8524   if (Unqualified)
8525     retType = retType.getUnqualifiedType();
8526 
8527   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
8528   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
8529   if (Unqualified) {
8530     LRetType = LRetType.getUnqualifiedType();
8531     RRetType = RRetType.getUnqualifiedType();
8532   }
8533 
8534   if (getCanonicalType(retType) != LRetType)
8535     allLTypes = false;
8536   if (getCanonicalType(retType) != RRetType)
8537     allRTypes = false;
8538 
8539   // FIXME: double check this
8540   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
8541   //                           rbase->getRegParmAttr() != 0 &&
8542   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
8543   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
8544   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
8545 
8546   // Compatible functions must have compatible calling conventions
8547   if (lbaseInfo.getCC() != rbaseInfo.getCC())
8548     return {};
8549 
8550   // Regparm is part of the calling convention.
8551   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
8552     return {};
8553   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
8554     return {};
8555 
8556   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
8557     return {};
8558   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
8559     return {};
8560   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
8561     return {};
8562 
8563   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
8564   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
8565 
8566   if (lbaseInfo.getNoReturn() != NoReturn)
8567     allLTypes = false;
8568   if (rbaseInfo.getNoReturn() != NoReturn)
8569     allRTypes = false;
8570 
8571   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
8572 
8573   if (lproto && rproto) { // two C99 style function prototypes
8574     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
8575            "C++ shouldn't be here");
8576     // Compatible functions must have the same number of parameters
8577     if (lproto->getNumParams() != rproto->getNumParams())
8578       return {};
8579 
8580     // Variadic and non-variadic functions aren't compatible
8581     if (lproto->isVariadic() != rproto->isVariadic())
8582       return {};
8583 
8584     if (lproto->getTypeQuals() != rproto->getTypeQuals())
8585       return {};
8586 
8587     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
8588     bool canUseLeft, canUseRight;
8589     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
8590                                newParamInfos))
8591       return {};
8592 
8593     if (!canUseLeft)
8594       allLTypes = false;
8595     if (!canUseRight)
8596       allRTypes = false;
8597 
8598     // Check parameter type compatibility
8599     SmallVector<QualType, 10> types;
8600     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
8601       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
8602       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
8603       QualType paramType = mergeFunctionParameterTypes(
8604           lParamType, rParamType, OfBlockPointer, Unqualified);
8605       if (paramType.isNull())
8606         return {};
8607 
8608       if (Unqualified)
8609         paramType = paramType.getUnqualifiedType();
8610 
8611       types.push_back(paramType);
8612       if (Unqualified) {
8613         lParamType = lParamType.getUnqualifiedType();
8614         rParamType = rParamType.getUnqualifiedType();
8615       }
8616 
8617       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
8618         allLTypes = false;
8619       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
8620         allRTypes = false;
8621     }
8622 
8623     if (allLTypes) return lhs;
8624     if (allRTypes) return rhs;
8625 
8626     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
8627     EPI.ExtInfo = einfo;
8628     EPI.ExtParameterInfos =
8629         newParamInfos.empty() ? nullptr : newParamInfos.data();
8630     return getFunctionType(retType, types, EPI);
8631   }
8632 
8633   if (lproto) allRTypes = false;
8634   if (rproto) allLTypes = false;
8635 
8636   const FunctionProtoType *proto = lproto ? lproto : rproto;
8637   if (proto) {
8638     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
8639     if (proto->isVariadic())
8640       return {};
8641     // Check that the types are compatible with the types that
8642     // would result from default argument promotions (C99 6.7.5.3p15).
8643     // The only types actually affected are promotable integer
8644     // types and floats, which would be passed as a different
8645     // type depending on whether the prototype is visible.
8646     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
8647       QualType paramTy = proto->getParamType(i);
8648 
8649       // Look at the converted type of enum types, since that is the type used
8650       // to pass enum values.
8651       if (const auto *Enum = paramTy->getAs<EnumType>()) {
8652         paramTy = Enum->getDecl()->getIntegerType();
8653         if (paramTy.isNull())
8654           return {};
8655       }
8656 
8657       if (paramTy->isPromotableIntegerType() ||
8658           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
8659         return {};
8660     }
8661 
8662     if (allLTypes) return lhs;
8663     if (allRTypes) return rhs;
8664 
8665     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
8666     EPI.ExtInfo = einfo;
8667     return getFunctionType(retType, proto->getParamTypes(), EPI);
8668   }
8669 
8670   if (allLTypes) return lhs;
8671   if (allRTypes) return rhs;
8672   return getFunctionNoProtoType(retType, einfo);
8673 }
8674 
8675 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)8676 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
8677                                      QualType other, bool isBlockReturnType) {
8678   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
8679   // a signed integer type, or an unsigned integer type.
8680   // Compatibility is based on the underlying type, not the promotion
8681   // type.
8682   QualType underlyingType = ET->getDecl()->getIntegerType();
8683   if (underlyingType.isNull())
8684     return {};
8685   if (Context.hasSameType(underlyingType, other))
8686     return other;
8687 
8688   // In block return types, we're more permissive and accept any
8689   // integral type of the same size.
8690   if (isBlockReturnType && other->isIntegerType() &&
8691       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
8692     return other;
8693 
8694   return {};
8695 }
8696 
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)8697 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
8698                                 bool OfBlockPointer,
8699                                 bool Unqualified, bool BlockReturnType) {
8700   // C++ [expr]: If an expression initially has the type "reference to T", the
8701   // type is adjusted to "T" prior to any further analysis, the expression
8702   // designates the object or function denoted by the reference, and the
8703   // expression is an lvalue unless the reference is an rvalue reference and
8704   // the expression is a function call (possibly inside parentheses).
8705   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
8706   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
8707 
8708   if (Unqualified) {
8709     LHS = LHS.getUnqualifiedType();
8710     RHS = RHS.getUnqualifiedType();
8711   }
8712 
8713   QualType LHSCan = getCanonicalType(LHS),
8714            RHSCan = getCanonicalType(RHS);
8715 
8716   // If two types are identical, they are compatible.
8717   if (LHSCan == RHSCan)
8718     return LHS;
8719 
8720   // If the qualifiers are different, the types aren't compatible... mostly.
8721   Qualifiers LQuals = LHSCan.getLocalQualifiers();
8722   Qualifiers RQuals = RHSCan.getLocalQualifiers();
8723   if (LQuals != RQuals) {
8724     // If any of these qualifiers are different, we have a type
8725     // mismatch.
8726     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
8727         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
8728         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
8729         LQuals.hasUnaligned() != RQuals.hasUnaligned())
8730       return {};
8731 
8732     // Exactly one GC qualifier difference is allowed: __strong is
8733     // okay if the other type has no GC qualifier but is an Objective
8734     // C object pointer (i.e. implicitly strong by default).  We fix
8735     // this by pretending that the unqualified type was actually
8736     // qualified __strong.
8737     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
8738     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
8739     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
8740 
8741     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
8742       return {};
8743 
8744     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
8745       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
8746     }
8747     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
8748       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
8749     }
8750     return {};
8751   }
8752 
8753   // Okay, qualifiers are equal.
8754 
8755   Type::TypeClass LHSClass = LHSCan->getTypeClass();
8756   Type::TypeClass RHSClass = RHSCan->getTypeClass();
8757 
8758   // We want to consider the two function types to be the same for these
8759   // comparisons, just force one to the other.
8760   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
8761   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
8762 
8763   // Same as above for arrays
8764   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
8765     LHSClass = Type::ConstantArray;
8766   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
8767     RHSClass = Type::ConstantArray;
8768 
8769   // ObjCInterfaces are just specialized ObjCObjects.
8770   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
8771   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
8772 
8773   // Canonicalize ExtVector -> Vector.
8774   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
8775   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
8776 
8777   // If the canonical type classes don't match.
8778   if (LHSClass != RHSClass) {
8779     // Note that we only have special rules for turning block enum
8780     // returns into block int returns, not vice-versa.
8781     if (const auto *ETy = LHS->getAs<EnumType>()) {
8782       return mergeEnumWithInteger(*this, ETy, RHS, false);
8783     }
8784     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
8785       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
8786     }
8787     // allow block pointer type to match an 'id' type.
8788     if (OfBlockPointer && !BlockReturnType) {
8789        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
8790          return LHS;
8791       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
8792         return RHS;
8793     }
8794 
8795     return {};
8796   }
8797 
8798   // The canonical type classes match.
8799   switch (LHSClass) {
8800 #define TYPE(Class, Base)
8801 #define ABSTRACT_TYPE(Class, Base)
8802 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
8803 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
8804 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
8805 #include "clang/AST/TypeNodes.def"
8806     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
8807 
8808   case Type::Auto:
8809   case Type::DeducedTemplateSpecialization:
8810   case Type::LValueReference:
8811   case Type::RValueReference:
8812   case Type::MemberPointer:
8813     llvm_unreachable("C++ should never be in mergeTypes");
8814 
8815   case Type::ObjCInterface:
8816   case Type::IncompleteArray:
8817   case Type::VariableArray:
8818   case Type::FunctionProto:
8819   case Type::ExtVector:
8820     llvm_unreachable("Types are eliminated above");
8821 
8822   case Type::Pointer:
8823   {
8824     // Merge two pointer types, while trying to preserve typedef info
8825     QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
8826     QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
8827     if (Unqualified) {
8828       LHSPointee = LHSPointee.getUnqualifiedType();
8829       RHSPointee = RHSPointee.getUnqualifiedType();
8830     }
8831     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
8832                                      Unqualified);
8833     if (ResultType.isNull())
8834       return {};
8835     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
8836       return LHS;
8837     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
8838       return RHS;
8839     return getPointerType(ResultType);
8840   }
8841   case Type::BlockPointer:
8842   {
8843     // Merge two block pointer types, while trying to preserve typedef info
8844     QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
8845     QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
8846     if (Unqualified) {
8847       LHSPointee = LHSPointee.getUnqualifiedType();
8848       RHSPointee = RHSPointee.getUnqualifiedType();
8849     }
8850     if (getLangOpts().OpenCL) {
8851       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
8852       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
8853       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
8854       // 6.12.5) thus the following check is asymmetric.
8855       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
8856         return {};
8857       LHSPteeQual.removeAddressSpace();
8858       RHSPteeQual.removeAddressSpace();
8859       LHSPointee =
8860           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
8861       RHSPointee =
8862           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
8863     }
8864     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
8865                                      Unqualified);
8866     if (ResultType.isNull())
8867       return {};
8868     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
8869       return LHS;
8870     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
8871       return RHS;
8872     return getBlockPointerType(ResultType);
8873   }
8874   case Type::Atomic:
8875   {
8876     // Merge two pointer types, while trying to preserve typedef info
8877     QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
8878     QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
8879     if (Unqualified) {
8880       LHSValue = LHSValue.getUnqualifiedType();
8881       RHSValue = RHSValue.getUnqualifiedType();
8882     }
8883     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
8884                                      Unqualified);
8885     if (ResultType.isNull())
8886       return {};
8887     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
8888       return LHS;
8889     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
8890       return RHS;
8891     return getAtomicType(ResultType);
8892   }
8893   case Type::ConstantArray:
8894   {
8895     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
8896     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
8897     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
8898       return {};
8899 
8900     QualType LHSElem = getAsArrayType(LHS)->getElementType();
8901     QualType RHSElem = getAsArrayType(RHS)->getElementType();
8902     if (Unqualified) {
8903       LHSElem = LHSElem.getUnqualifiedType();
8904       RHSElem = RHSElem.getUnqualifiedType();
8905     }
8906 
8907     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
8908     if (ResultType.isNull())
8909       return {};
8910 
8911     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
8912     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
8913 
8914     // If either side is a variable array, and both are complete, check whether
8915     // the current dimension is definite.
8916     if (LVAT || RVAT) {
8917       auto SizeFetch = [this](const VariableArrayType* VAT,
8918           const ConstantArrayType* CAT)
8919           -> std::pair<bool,llvm::APInt> {
8920         if (VAT) {
8921           llvm::APSInt TheInt;
8922           Expr *E = VAT->getSizeExpr();
8923           if (E && E->isIntegerConstantExpr(TheInt, *this))
8924             return std::make_pair(true, TheInt);
8925           else
8926             return std::make_pair(false, TheInt);
8927         } else if (CAT) {
8928             return std::make_pair(true, CAT->getSize());
8929         } else {
8930             return std::make_pair(false, llvm::APInt());
8931         }
8932       };
8933 
8934       bool HaveLSize, HaveRSize;
8935       llvm::APInt LSize, RSize;
8936       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
8937       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
8938       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
8939         return {}; // Definite, but unequal, array dimension
8940     }
8941 
8942     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
8943       return LHS;
8944     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
8945       return RHS;
8946     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
8947                                           ArrayType::ArraySizeModifier(), 0);
8948     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
8949                                           ArrayType::ArraySizeModifier(), 0);
8950     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
8951       return LHS;
8952     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
8953       return RHS;
8954     if (LVAT) {
8955       // FIXME: This isn't correct! But tricky to implement because
8956       // the array's size has to be the size of LHS, but the type
8957       // has to be different.
8958       return LHS;
8959     }
8960     if (RVAT) {
8961       // FIXME: This isn't correct! But tricky to implement because
8962       // the array's size has to be the size of RHS, but the type
8963       // has to be different.
8964       return RHS;
8965     }
8966     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
8967     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
8968     return getIncompleteArrayType(ResultType,
8969                                   ArrayType::ArraySizeModifier(), 0);
8970   }
8971   case Type::FunctionNoProto:
8972     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
8973   case Type::Record:
8974   case Type::Enum:
8975     return {};
8976   case Type::Builtin:
8977     // Only exactly equal builtin types are compatible, which is tested above.
8978     return {};
8979   case Type::Complex:
8980     // Distinct complex types are incompatible.
8981     return {};
8982   case Type::Vector:
8983     // FIXME: The merged type should be an ExtVector!
8984     if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
8985                              RHSCan->getAs<VectorType>()))
8986       return LHS;
8987     return {};
8988   case Type::ObjCObject: {
8989     // Check if the types are assignment compatible.
8990     // FIXME: This should be type compatibility, e.g. whether
8991     // "LHS x; RHS x;" at global scope is legal.
8992     const auto *LHSIface = LHS->getAs<ObjCObjectType>();
8993     const auto *RHSIface = RHS->getAs<ObjCObjectType>();
8994     if (canAssignObjCInterfaces(LHSIface, RHSIface))
8995       return LHS;
8996 
8997     return {};
8998   }
8999   case Type::ObjCObjectPointer:
9000     if (OfBlockPointer) {
9001       if (canAssignObjCInterfacesInBlockPointer(
9002                                           LHS->getAs<ObjCObjectPointerType>(),
9003                                           RHS->getAs<ObjCObjectPointerType>(),
9004                                           BlockReturnType))
9005         return LHS;
9006       return {};
9007     }
9008     if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
9009                                 RHS->getAs<ObjCObjectPointerType>()))
9010       return LHS;
9011 
9012     return {};
9013   case Type::Pipe:
9014     assert(LHS != RHS &&
9015            "Equivalent pipe types should have already been handled!");
9016     return {};
9017   }
9018 
9019   llvm_unreachable("Invalid Type::Class!");
9020 }
9021 
mergeExtParameterInfo(const FunctionProtoType * FirstFnType,const FunctionProtoType * SecondFnType,bool & CanUseFirst,bool & CanUseSecond,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & NewParamInfos)9022 bool ASTContext::mergeExtParameterInfo(
9023     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
9024     bool &CanUseFirst, bool &CanUseSecond,
9025     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
9026   assert(NewParamInfos.empty() && "param info list not empty");
9027   CanUseFirst = CanUseSecond = true;
9028   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
9029   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
9030 
9031   // Fast path: if the first type doesn't have ext parameter infos,
9032   // we match if and only if the second type also doesn't have them.
9033   if (!FirstHasInfo && !SecondHasInfo)
9034     return true;
9035 
9036   bool NeedParamInfo = false;
9037   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
9038                           : SecondFnType->getExtParameterInfos().size();
9039 
9040   for (size_t I = 0; I < E; ++I) {
9041     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
9042     if (FirstHasInfo)
9043       FirstParam = FirstFnType->getExtParameterInfo(I);
9044     if (SecondHasInfo)
9045       SecondParam = SecondFnType->getExtParameterInfo(I);
9046 
9047     // Cannot merge unless everything except the noescape flag matches.
9048     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
9049       return false;
9050 
9051     bool FirstNoEscape = FirstParam.isNoEscape();
9052     bool SecondNoEscape = SecondParam.isNoEscape();
9053     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
9054     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
9055     if (NewParamInfos.back().getOpaqueValue())
9056       NeedParamInfo = true;
9057     if (FirstNoEscape != IsNoEscape)
9058       CanUseFirst = false;
9059     if (SecondNoEscape != IsNoEscape)
9060       CanUseSecond = false;
9061   }
9062 
9063   if (!NeedParamInfo)
9064     NewParamInfos.clear();
9065 
9066   return true;
9067 }
9068 
ResetObjCLayout(const ObjCContainerDecl * CD)9069 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
9070   ObjCLayouts[CD] = nullptr;
9071 }
9072 
9073 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
9074 /// 'RHS' attributes and returns the merged version; including for function
9075 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)9076 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
9077   QualType LHSCan = getCanonicalType(LHS),
9078   RHSCan = getCanonicalType(RHS);
9079   // If two types are identical, they are compatible.
9080   if (LHSCan == RHSCan)
9081     return LHS;
9082   if (RHSCan->isFunctionType()) {
9083     if (!LHSCan->isFunctionType())
9084       return {};
9085     QualType OldReturnType =
9086         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
9087     QualType NewReturnType =
9088         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
9089     QualType ResReturnType =
9090       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
9091     if (ResReturnType.isNull())
9092       return {};
9093     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
9094       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
9095       // In either case, use OldReturnType to build the new function type.
9096       const auto *F = LHS->getAs<FunctionType>();
9097       if (const auto *FPT = cast<FunctionProtoType>(F)) {
9098         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9099         EPI.ExtInfo = getFunctionExtInfo(LHS);
9100         QualType ResultType =
9101             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
9102         return ResultType;
9103       }
9104     }
9105     return {};
9106   }
9107 
9108   // If the qualifiers are different, the types can still be merged.
9109   Qualifiers LQuals = LHSCan.getLocalQualifiers();
9110   Qualifiers RQuals = RHSCan.getLocalQualifiers();
9111   if (LQuals != RQuals) {
9112     // If any of these qualifiers are different, we have a type mismatch.
9113     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9114         LQuals.getAddressSpace() != RQuals.getAddressSpace())
9115       return {};
9116 
9117     // Exactly one GC qualifier difference is allowed: __strong is
9118     // okay if the other type has no GC qualifier but is an Objective
9119     // C object pointer (i.e. implicitly strong by default).  We fix
9120     // this by pretending that the unqualified type was actually
9121     // qualified __strong.
9122     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9123     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9124     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9125 
9126     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9127       return {};
9128 
9129     if (GC_L == Qualifiers::Strong)
9130       return LHS;
9131     if (GC_R == Qualifiers::Strong)
9132       return RHS;
9133     return {};
9134   }
9135 
9136   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
9137     QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
9138     QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
9139     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
9140     if (ResQT == LHSBaseQT)
9141       return LHS;
9142     if (ResQT == RHSBaseQT)
9143       return RHS;
9144   }
9145   return {};
9146 }
9147 
9148 //===----------------------------------------------------------------------===//
9149 //                         Integer Predicates
9150 //===----------------------------------------------------------------------===//
9151 
getIntWidth(QualType T) const9152 unsigned ASTContext::getIntWidth(QualType T) const {
9153   if (const auto *ET = T->getAs<EnumType>())
9154     T = ET->getDecl()->getIntegerType();
9155   if (T->isBooleanType())
9156     return 1;
9157   // For builtin types, just use the standard type sizing method
9158   return (unsigned)getTypeSize(T);
9159 }
9160 
getCorrespondingUnsignedType(QualType T) const9161 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
9162   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
9163          "Unexpected type");
9164 
9165   // Turn <4 x signed int> -> <4 x unsigned int>
9166   if (const auto *VTy = T->getAs<VectorType>())
9167     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
9168                          VTy->getNumElements(), VTy->getVectorKind());
9169 
9170   // For enums, we return the unsigned version of the base type.
9171   if (const auto *ETy = T->getAs<EnumType>())
9172     T = ETy->getDecl()->getIntegerType();
9173 
9174   const auto *BTy = T->getAs<BuiltinType>();
9175   assert(BTy && "Unexpected signed integer or fixed point type");
9176   switch (BTy->getKind()) {
9177   case BuiltinType::Char_S:
9178   case BuiltinType::SChar:
9179     return UnsignedCharTy;
9180   case BuiltinType::Short:
9181     return UnsignedShortTy;
9182   case BuiltinType::Int:
9183     return UnsignedIntTy;
9184   case BuiltinType::Long:
9185     return UnsignedLongTy;
9186   case BuiltinType::LongLong:
9187     return UnsignedLongLongTy;
9188   case BuiltinType::Int128:
9189     return UnsignedInt128Ty;
9190 
9191   case BuiltinType::ShortAccum:
9192     return UnsignedShortAccumTy;
9193   case BuiltinType::Accum:
9194     return UnsignedAccumTy;
9195   case BuiltinType::LongAccum:
9196     return UnsignedLongAccumTy;
9197   case BuiltinType::SatShortAccum:
9198     return SatUnsignedShortAccumTy;
9199   case BuiltinType::SatAccum:
9200     return SatUnsignedAccumTy;
9201   case BuiltinType::SatLongAccum:
9202     return SatUnsignedLongAccumTy;
9203   case BuiltinType::ShortFract:
9204     return UnsignedShortFractTy;
9205   case BuiltinType::Fract:
9206     return UnsignedFractTy;
9207   case BuiltinType::LongFract:
9208     return UnsignedLongFractTy;
9209   case BuiltinType::SatShortFract:
9210     return SatUnsignedShortFractTy;
9211   case BuiltinType::SatFract:
9212     return SatUnsignedFractTy;
9213   case BuiltinType::SatLongFract:
9214     return SatUnsignedLongFractTy;
9215   default:
9216     llvm_unreachable("Unexpected signed integer or fixed point type");
9217   }
9218 }
9219 
9220 ASTMutationListener::~ASTMutationListener() = default;
9221 
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)9222 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
9223                                             QualType ReturnType) {}
9224 
9225 //===----------------------------------------------------------------------===//
9226 //                          Builtin Type Computation
9227 //===----------------------------------------------------------------------===//
9228 
9229 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
9230 /// pointer over the consumed characters.  This returns the resultant type.  If
9231 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
9232 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
9233 /// a vector of "i*".
9234 ///
9235 /// RequiresICE is filled in on return to indicate whether the value is required
9236 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)9237 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
9238                                   ASTContext::GetBuiltinTypeError &Error,
9239                                   bool &RequiresICE,
9240                                   bool AllowTypeModifiers) {
9241   // Modifiers.
9242   int HowLong = 0;
9243   bool Signed = false, Unsigned = false;
9244   RequiresICE = false;
9245 
9246   // Read the prefixed modifiers first.
9247   bool Done = false;
9248   #ifndef NDEBUG
9249   bool IsSpecialLong = false;
9250   #endif
9251   while (!Done) {
9252     switch (*Str++) {
9253     default: Done = true; --Str; break;
9254     case 'I':
9255       RequiresICE = true;
9256       break;
9257     case 'S':
9258       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
9259       assert(!Signed && "Can't use 'S' modifier multiple times!");
9260       Signed = true;
9261       break;
9262     case 'U':
9263       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
9264       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
9265       Unsigned = true;
9266       break;
9267     case 'L':
9268       assert(!IsSpecialLong && "Can't use 'L' with 'W' or 'N' modifiers");
9269       assert(HowLong <= 2 && "Can't have LLLL modifier");
9270       ++HowLong;
9271       break;
9272     case 'N':
9273       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
9274       assert(!IsSpecialLong && "Can't use two 'N' or 'W' modifiers!");
9275       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
9276       #ifndef NDEBUG
9277       IsSpecialLong = true;
9278       #endif
9279       if (Context.getTargetInfo().getLongWidth() == 32)
9280         ++HowLong;
9281       break;
9282     case 'W':
9283       // This modifier represents int64 type.
9284       assert(!IsSpecialLong && "Can't use two 'N' or 'W' modifiers!");
9285       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
9286       #ifndef NDEBUG
9287       IsSpecialLong = true;
9288       #endif
9289       switch (Context.getTargetInfo().getInt64Type()) {
9290       default:
9291         llvm_unreachable("Unexpected integer type");
9292       case TargetInfo::SignedLong:
9293         HowLong = 1;
9294         break;
9295       case TargetInfo::SignedLongLong:
9296         HowLong = 2;
9297         break;
9298       }
9299       break;
9300     }
9301   }
9302 
9303   QualType Type;
9304 
9305   // Read the base type.
9306   switch (*Str++) {
9307   default: llvm_unreachable("Unknown builtin type letter!");
9308   case 'v':
9309     assert(HowLong == 0 && !Signed && !Unsigned &&
9310            "Bad modifiers used with 'v'!");
9311     Type = Context.VoidTy;
9312     break;
9313   case 'h':
9314     assert(HowLong == 0 && !Signed && !Unsigned &&
9315            "Bad modifiers used with 'h'!");
9316     Type = Context.HalfTy;
9317     break;
9318   case 'f':
9319     assert(HowLong == 0 && !Signed && !Unsigned &&
9320            "Bad modifiers used with 'f'!");
9321     Type = Context.FloatTy;
9322     break;
9323   case 'd':
9324     assert(HowLong < 3 && !Signed && !Unsigned &&
9325            "Bad modifiers used with 'd'!");
9326     if (HowLong == 1)
9327       Type = Context.LongDoubleTy;
9328     else if (HowLong == 2)
9329       Type = Context.Float128Ty;
9330     else
9331       Type = Context.DoubleTy;
9332     break;
9333   case 's':
9334     assert(HowLong == 0 && "Bad modifiers used with 's'!");
9335     if (Unsigned)
9336       Type = Context.UnsignedShortTy;
9337     else
9338       Type = Context.ShortTy;
9339     break;
9340   case 'i':
9341     if (HowLong == 3)
9342       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
9343     else if (HowLong == 2)
9344       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
9345     else if (HowLong == 1)
9346       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
9347     else
9348       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
9349     break;
9350   case 'c':
9351     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
9352     if (Signed)
9353       Type = Context.SignedCharTy;
9354     else if (Unsigned)
9355       Type = Context.UnsignedCharTy;
9356     else
9357       Type = Context.CharTy;
9358     break;
9359   case 'b': // boolean
9360     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
9361     Type = Context.BoolTy;
9362     break;
9363   case 'z':  // size_t.
9364     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
9365     Type = Context.getSizeType();
9366     break;
9367   case 'w':  // wchar_t.
9368     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
9369     Type = Context.getWideCharType();
9370     break;
9371   case 'F':
9372     Type = Context.getCFConstantStringType();
9373     break;
9374   case 'G':
9375     Type = Context.getObjCIdType();
9376     break;
9377   case 'H':
9378     Type = Context.getObjCSelType();
9379     break;
9380   case 'M':
9381     Type = Context.getObjCSuperType();
9382     break;
9383   case 'a':
9384     Type = Context.getBuiltinVaListType();
9385     assert(!Type.isNull() && "builtin va list type not initialized!");
9386     break;
9387   case 'A':
9388     // This is a "reference" to a va_list; however, what exactly
9389     // this means depends on how va_list is defined. There are two
9390     // different kinds of va_list: ones passed by value, and ones
9391     // passed by reference.  An example of a by-value va_list is
9392     // x86, where va_list is a char*. An example of by-ref va_list
9393     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
9394     // we want this argument to be a char*&; for x86-64, we want
9395     // it to be a __va_list_tag*.
9396     Type = Context.getBuiltinVaListType();
9397     assert(!Type.isNull() && "builtin va list type not initialized!");
9398     if (Type->isArrayType())
9399       Type = Context.getArrayDecayedType(Type);
9400     else
9401       Type = Context.getLValueReferenceType(Type);
9402     break;
9403   case 'V': {
9404     char *End;
9405     unsigned NumElements = strtoul(Str, &End, 10);
9406     assert(End != Str && "Missing vector size");
9407     Str = End;
9408 
9409     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
9410                                              RequiresICE, false);
9411     assert(!RequiresICE && "Can't require vector ICE");
9412 
9413     // TODO: No way to make AltiVec vectors in builtins yet.
9414     Type = Context.getVectorType(ElementType, NumElements,
9415                                  VectorType::GenericVector);
9416     break;
9417   }
9418   case 'E': {
9419     char *End;
9420 
9421     unsigned NumElements = strtoul(Str, &End, 10);
9422     assert(End != Str && "Missing vector size");
9423 
9424     Str = End;
9425 
9426     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
9427                                              false);
9428     Type = Context.getExtVectorType(ElementType, NumElements);
9429     break;
9430   }
9431   case 'X': {
9432     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
9433                                              false);
9434     assert(!RequiresICE && "Can't require complex ICE");
9435     Type = Context.getComplexType(ElementType);
9436     break;
9437   }
9438   case 'Y':
9439     Type = Context.getPointerDiffType();
9440     break;
9441   case 'P':
9442     Type = Context.getFILEType();
9443     if (Type.isNull()) {
9444       Error = ASTContext::GE_Missing_stdio;
9445       return {};
9446     }
9447     break;
9448   case 'J':
9449     if (Signed)
9450       Type = Context.getsigjmp_bufType();
9451     else
9452       Type = Context.getjmp_bufType();
9453 
9454     if (Type.isNull()) {
9455       Error = ASTContext::GE_Missing_setjmp;
9456       return {};
9457     }
9458     break;
9459   case 'K':
9460     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
9461     Type = Context.getucontext_tType();
9462 
9463     if (Type.isNull()) {
9464       Error = ASTContext::GE_Missing_ucontext;
9465       return {};
9466     }
9467     break;
9468   case 'p':
9469     Type = Context.getProcessIDType();
9470     break;
9471   }
9472 
9473   // If there are modifiers and if we're allowed to parse them, go for it.
9474   Done = !AllowTypeModifiers;
9475   while (!Done) {
9476     switch (char c = *Str++) {
9477     default: Done = true; --Str; break;
9478     case '*':
9479     case '&': {
9480       // Both pointers and references can have their pointee types
9481       // qualified with an address space.
9482       char *End;
9483       unsigned AddrSpace = strtoul(Str, &End, 10);
9484       if (End != Str) {
9485         // Note AddrSpace == 0 is not the same as an unspecified address space.
9486         Type = Context.getAddrSpaceQualType(
9487           Type,
9488           Context.getLangASForBuiltinAddressSpace(AddrSpace));
9489         Str = End;
9490       }
9491       if (c == '*')
9492         Type = Context.getPointerType(Type);
9493       else
9494         Type = Context.getLValueReferenceType(Type);
9495       break;
9496     }
9497     // FIXME: There's no way to have a built-in with an rvalue ref arg.
9498     case 'C':
9499       Type = Type.withConst();
9500       break;
9501     case 'D':
9502       Type = Context.getVolatileType(Type);
9503       break;
9504     case 'R':
9505       Type = Type.withRestrict();
9506       break;
9507     }
9508   }
9509 
9510   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
9511          "Integer constant 'I' type must be an integer");
9512 
9513   return Type;
9514 }
9515 
9516 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const9517 QualType ASTContext::GetBuiltinType(unsigned Id,
9518                                     GetBuiltinTypeError &Error,
9519                                     unsigned *IntegerConstantArgs) const {
9520   const char *TypeStr = BuiltinInfo.getTypeString(Id);
9521 
9522   SmallVector<QualType, 8> ArgTypes;
9523 
9524   bool RequiresICE = false;
9525   Error = GE_None;
9526   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
9527                                        RequiresICE, true);
9528   if (Error != GE_None)
9529     return {};
9530 
9531   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
9532 
9533   while (TypeStr[0] && TypeStr[0] != '.') {
9534     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
9535     if (Error != GE_None)
9536       return {};
9537 
9538     // If this argument is required to be an IntegerConstantExpression and the
9539     // caller cares, fill in the bitmask we return.
9540     if (RequiresICE && IntegerConstantArgs)
9541       *IntegerConstantArgs |= 1 << ArgTypes.size();
9542 
9543     // Do array -> pointer decay.  The builtin should use the decayed type.
9544     if (Ty->isArrayType())
9545       Ty = getArrayDecayedType(Ty);
9546 
9547     ArgTypes.push_back(Ty);
9548   }
9549 
9550   if (Id == Builtin::BI__GetExceptionInfo)
9551     return {};
9552 
9553   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
9554          "'.' should only occur at end of builtin type list!");
9555 
9556   FunctionType::ExtInfo EI(CC_C);
9557   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
9558 
9559   bool Variadic = (TypeStr[0] == '.');
9560 
9561   // We really shouldn't be making a no-proto type here.
9562   if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
9563     return getFunctionNoProtoType(ResType, EI);
9564 
9565   FunctionProtoType::ExtProtoInfo EPI;
9566   EPI.ExtInfo = EI;
9567   EPI.Variadic = Variadic;
9568   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
9569     EPI.ExceptionSpec.Type =
9570         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
9571 
9572   return getFunctionType(ResType, ArgTypes, EPI);
9573 }
9574 
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)9575 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
9576                                              const FunctionDecl *FD) {
9577   if (!FD->isExternallyVisible())
9578     return GVA_Internal;
9579 
9580   // Non-user-provided functions get emitted as weak definitions with every
9581   // use, no matter whether they've been explicitly instantiated etc.
9582   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
9583     if (!MD->isUserProvided())
9584       return GVA_DiscardableODR;
9585 
9586   GVALinkage External;
9587   switch (FD->getTemplateSpecializationKind()) {
9588   case TSK_Undeclared:
9589   case TSK_ExplicitSpecialization:
9590     External = GVA_StrongExternal;
9591     break;
9592 
9593   case TSK_ExplicitInstantiationDefinition:
9594     return GVA_StrongODR;
9595 
9596   // C++11 [temp.explicit]p10:
9597   //   [ Note: The intent is that an inline function that is the subject of
9598   //   an explicit instantiation declaration will still be implicitly
9599   //   instantiated when used so that the body can be considered for
9600   //   inlining, but that no out-of-line copy of the inline function would be
9601   //   generated in the translation unit. -- end note ]
9602   case TSK_ExplicitInstantiationDeclaration:
9603     return GVA_AvailableExternally;
9604 
9605   case TSK_ImplicitInstantiation:
9606     External = GVA_DiscardableODR;
9607     break;
9608   }
9609 
9610   if (!FD->isInlined())
9611     return External;
9612 
9613   if ((!Context.getLangOpts().CPlusPlus &&
9614        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9615        !FD->hasAttr<DLLExportAttr>()) ||
9616       FD->hasAttr<GNUInlineAttr>()) {
9617     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
9618 
9619     // GNU or C99 inline semantics. Determine whether this symbol should be
9620     // externally visible.
9621     if (FD->isInlineDefinitionExternallyVisible())
9622       return External;
9623 
9624     // C99 inline semantics, where the symbol is not externally visible.
9625     return GVA_AvailableExternally;
9626   }
9627 
9628   // Functions specified with extern and inline in -fms-compatibility mode
9629   // forcibly get emitted.  While the body of the function cannot be later
9630   // replaced, the function definition cannot be discarded.
9631   if (FD->isMSExternInline())
9632     return GVA_StrongODR;
9633 
9634   return GVA_DiscardableODR;
9635 }
9636 
adjustGVALinkageForAttributes(const ASTContext & Context,const Decl * D,GVALinkage L)9637 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
9638                                                 const Decl *D, GVALinkage L) {
9639   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
9640   // dllexport/dllimport on inline functions.
9641   if (D->hasAttr<DLLImportAttr>()) {
9642     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
9643       return GVA_AvailableExternally;
9644   } else if (D->hasAttr<DLLExportAttr>()) {
9645     if (L == GVA_DiscardableODR)
9646       return GVA_StrongODR;
9647   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice &&
9648              D->hasAttr<CUDAGlobalAttr>()) {
9649     // Device-side functions with __global__ attribute must always be
9650     // visible externally so they can be launched from host.
9651     if (L == GVA_DiscardableODR || L == GVA_Internal)
9652       return GVA_StrongODR;
9653   }
9654   return L;
9655 }
9656 
9657 /// Adjust the GVALinkage for a declaration based on what an external AST source
9658 /// knows about whether there can be other definitions of this declaration.
9659 static GVALinkage
adjustGVALinkageForExternalDefinitionKind(const ASTContext & Ctx,const Decl * D,GVALinkage L)9660 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
9661                                           GVALinkage L) {
9662   ExternalASTSource *Source = Ctx.getExternalSource();
9663   if (!Source)
9664     return L;
9665 
9666   switch (Source->hasExternalDefinitions(D)) {
9667   case ExternalASTSource::EK_Never:
9668     // Other translation units rely on us to provide the definition.
9669     if (L == GVA_DiscardableODR)
9670       return GVA_StrongODR;
9671     break;
9672 
9673   case ExternalASTSource::EK_Always:
9674     return GVA_AvailableExternally;
9675 
9676   case ExternalASTSource::EK_ReplyHazy:
9677     break;
9678   }
9679   return L;
9680 }
9681 
GetGVALinkageForFunction(const FunctionDecl * FD) const9682 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
9683   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
9684            adjustGVALinkageForAttributes(*this, FD,
9685              basicGVALinkageForFunction(*this, FD)));
9686 }
9687 
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)9688 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
9689                                              const VarDecl *VD) {
9690   if (!VD->isExternallyVisible())
9691     return GVA_Internal;
9692 
9693   if (VD->isStaticLocal()) {
9694     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
9695     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
9696       LexicalContext = LexicalContext->getLexicalParent();
9697 
9698     // ObjC Blocks can create local variables that don't have a FunctionDecl
9699     // LexicalContext.
9700     if (!LexicalContext)
9701       return GVA_DiscardableODR;
9702 
9703     // Otherwise, let the static local variable inherit its linkage from the
9704     // nearest enclosing function.
9705     auto StaticLocalLinkage =
9706         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
9707 
9708     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
9709     // be emitted in any object with references to the symbol for the object it
9710     // contains, whether inline or out-of-line."
9711     // Similar behavior is observed with MSVC. An alternative ABI could use
9712     // StrongODR/AvailableExternally to match the function, but none are
9713     // known/supported currently.
9714     if (StaticLocalLinkage == GVA_StrongODR ||
9715         StaticLocalLinkage == GVA_AvailableExternally)
9716       return GVA_DiscardableODR;
9717     return StaticLocalLinkage;
9718   }
9719 
9720   // MSVC treats in-class initialized static data members as definitions.
9721   // By giving them non-strong linkage, out-of-line definitions won't
9722   // cause link errors.
9723   if (Context.isMSStaticDataMemberInlineDefinition(VD))
9724     return GVA_DiscardableODR;
9725 
9726   // Most non-template variables have strong linkage; inline variables are
9727   // linkonce_odr or (occasionally, for compatibility) weak_odr.
9728   GVALinkage StrongLinkage;
9729   switch (Context.getInlineVariableDefinitionKind(VD)) {
9730   case ASTContext::InlineVariableDefinitionKind::None:
9731     StrongLinkage = GVA_StrongExternal;
9732     break;
9733   case ASTContext::InlineVariableDefinitionKind::Weak:
9734   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
9735     StrongLinkage = GVA_DiscardableODR;
9736     break;
9737   case ASTContext::InlineVariableDefinitionKind::Strong:
9738     StrongLinkage = GVA_StrongODR;
9739     break;
9740   }
9741 
9742   switch (VD->getTemplateSpecializationKind()) {
9743   case TSK_Undeclared:
9744     return StrongLinkage;
9745 
9746   case TSK_ExplicitSpecialization:
9747     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9748                    VD->isStaticDataMember()
9749                ? GVA_StrongODR
9750                : StrongLinkage;
9751 
9752   case TSK_ExplicitInstantiationDefinition:
9753     return GVA_StrongODR;
9754 
9755   case TSK_ExplicitInstantiationDeclaration:
9756     return GVA_AvailableExternally;
9757 
9758   case TSK_ImplicitInstantiation:
9759     return GVA_DiscardableODR;
9760   }
9761 
9762   llvm_unreachable("Invalid Linkage!");
9763 }
9764 
GetGVALinkageForVariable(const VarDecl * VD)9765 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
9766   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
9767            adjustGVALinkageForAttributes(*this, VD,
9768              basicGVALinkageForVariable(*this, VD)));
9769 }
9770 
DeclMustBeEmitted(const Decl * D)9771 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
9772   if (const auto *VD = dyn_cast<VarDecl>(D)) {
9773     if (!VD->isFileVarDecl())
9774       return false;
9775     // Global named register variables (GNU extension) are never emitted.
9776     if (VD->getStorageClass() == SC_Register)
9777       return false;
9778     if (VD->getDescribedVarTemplate() ||
9779         isa<VarTemplatePartialSpecializationDecl>(VD))
9780       return false;
9781   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
9782     // We never need to emit an uninstantiated function template.
9783     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9784       return false;
9785   } else if (isa<PragmaCommentDecl>(D))
9786     return true;
9787   else if (isa<OMPThreadPrivateDecl>(D))
9788     return true;
9789   else if (isa<PragmaDetectMismatchDecl>(D))
9790     return true;
9791   else if (isa<OMPThreadPrivateDecl>(D))
9792     return !D->getDeclContext()->isDependentContext();
9793   else if (isa<OMPDeclareReductionDecl>(D))
9794     return !D->getDeclContext()->isDependentContext();
9795   else if (isa<ImportDecl>(D))
9796     return true;
9797   else
9798     return false;
9799 
9800   if (D->isFromASTFile() && !LangOpts.BuildingPCHWithObjectFile) {
9801     assert(getExternalSource() && "It's from an AST file; must have a source.");
9802     // On Windows, PCH files are built together with an object file. If this
9803     // declaration comes from such a PCH and DeclMustBeEmitted would return
9804     // true, it would have returned true and the decl would have been emitted
9805     // into that object file, so it doesn't need to be emitted here.
9806     // Note that decls are still emitted if they're referenced, as usual;
9807     // DeclMustBeEmitted is used to decide whether a decl must be emitted even
9808     // if it's not referenced.
9809     //
9810     // Explicit template instantiation definitions are tricky. If there was an
9811     // explicit template instantiation decl in the PCH before, it will look like
9812     // the definition comes from there, even if that was just the declaration.
9813     // (Explicit instantiation defs of variable templates always get emitted.)
9814     bool IsExpInstDef =
9815         isa<FunctionDecl>(D) &&
9816         cast<FunctionDecl>(D)->getTemplateSpecializationKind() ==
9817             TSK_ExplicitInstantiationDefinition;
9818 
9819     // Implicit member function definitions, such as operator= might not be
9820     // marked as template specializations, since they're not coming from a
9821     // template but synthesized directly on the class.
9822     IsExpInstDef |=
9823         isa<CXXMethodDecl>(D) &&
9824         cast<CXXMethodDecl>(D)->getParent()->getTemplateSpecializationKind() ==
9825             TSK_ExplicitInstantiationDefinition;
9826 
9827     if (getExternalSource()->DeclIsFromPCHWithObjectFile(D) && !IsExpInstDef)
9828       return false;
9829   }
9830 
9831   // If this is a member of a class template, we do not need to emit it.
9832   if (D->getDeclContext()->isDependentContext())
9833     return false;
9834 
9835   // Weak references don't produce any output by themselves.
9836   if (D->hasAttr<WeakRefAttr>())
9837     return false;
9838 
9839   // Aliases and used decls are required.
9840   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
9841     return true;
9842 
9843   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
9844     // Forward declarations aren't required.
9845     if (!FD->doesThisDeclarationHaveABody())
9846       return FD->doesDeclarationForceExternallyVisibleDefinition();
9847 
9848     // Constructors and destructors are required.
9849     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
9850       return true;
9851 
9852     // The key function for a class is required.  This rule only comes
9853     // into play when inline functions can be key functions, though.
9854     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
9855       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
9856         const CXXRecordDecl *RD = MD->getParent();
9857         if (MD->isOutOfLine() && RD->isDynamicClass()) {
9858           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
9859           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
9860             return true;
9861         }
9862       }
9863     }
9864 
9865     GVALinkage Linkage = GetGVALinkageForFunction(FD);
9866 
9867     // static, static inline, always_inline, and extern inline functions can
9868     // always be deferred.  Normal inline functions can be deferred in C99/C++.
9869     // Implicit template instantiations can also be deferred in C++.
9870     return !isDiscardableGVALinkage(Linkage);
9871   }
9872 
9873   const auto *VD = cast<VarDecl>(D);
9874   assert(VD->isFileVarDecl() && "Expected file scoped var");
9875 
9876   // If the decl is marked as `declare target to`, it should be emitted for the
9877   // host and for the device.
9878   if (LangOpts.OpenMP &&
9879       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
9880     return true;
9881 
9882   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
9883       !isMSStaticDataMemberInlineDefinition(VD))
9884     return false;
9885 
9886   // Variables that can be needed in other TUs are required.
9887   auto Linkage = GetGVALinkageForVariable(VD);
9888   if (!isDiscardableGVALinkage(Linkage))
9889     return true;
9890 
9891   // We never need to emit a variable that is available in another TU.
9892   if (Linkage == GVA_AvailableExternally)
9893     return false;
9894 
9895   // Variables that have destruction with side-effects are required.
9896   if (VD->getType().isDestructedType())
9897     return true;
9898 
9899   // Variables that have initialization with side-effects are required.
9900   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
9901       // We can get a value-dependent initializer during error recovery.
9902       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
9903     return true;
9904 
9905   // Likewise, variables with tuple-like bindings are required if their
9906   // bindings have side-effects.
9907   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
9908     for (const auto *BD : DD->bindings())
9909       if (const auto *BindingVD = BD->getHoldingVar())
9910         if (DeclMustBeEmitted(BindingVD))
9911           return true;
9912 
9913   return false;
9914 }
9915 
forEachMultiversionedFunctionVersion(const FunctionDecl * FD,llvm::function_ref<void (FunctionDecl *)> Pred) const9916 void ASTContext::forEachMultiversionedFunctionVersion(
9917     const FunctionDecl *FD,
9918     llvm::function_ref<void(FunctionDecl *)> Pred) const {
9919   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
9920   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
9921   FD = FD->getMostRecentDecl();
9922   for (auto *CurDecl :
9923        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
9924     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
9925     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
9926         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
9927       SeenDecls.insert(CurFD);
9928       Pred(CurFD);
9929     }
9930   }
9931 }
9932 
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod) const9933 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
9934                                                     bool IsCXXMethod) const {
9935   // Pass through to the C++ ABI object
9936   if (IsCXXMethod)
9937     return ABI->getDefaultMethodCallConv(IsVariadic);
9938 
9939   switch (LangOpts.getDefaultCallingConv()) {
9940   case LangOptions::DCC_None:
9941     break;
9942   case LangOptions::DCC_CDecl:
9943     return CC_C;
9944   case LangOptions::DCC_FastCall:
9945     if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
9946       return CC_X86FastCall;
9947     break;
9948   case LangOptions::DCC_StdCall:
9949     if (!IsVariadic)
9950       return CC_X86StdCall;
9951     break;
9952   case LangOptions::DCC_VectorCall:
9953     // __vectorcall cannot be applied to variadic functions.
9954     if (!IsVariadic)
9955       return CC_X86VectorCall;
9956     break;
9957   case LangOptions::DCC_RegCall:
9958     // __regcall cannot be applied to variadic functions.
9959     if (!IsVariadic)
9960       return CC_X86RegCall;
9961     break;
9962   }
9963   return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown);
9964 }
9965 
isNearlyEmpty(const CXXRecordDecl * RD) const9966 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
9967   // Pass through to the C++ ABI object
9968   return ABI->isNearlyEmpty(RD);
9969 }
9970 
getVTableContext()9971 VTableContextBase *ASTContext::getVTableContext() {
9972   if (!VTContext.get()) {
9973     if (Target->getCXXABI().isMicrosoft())
9974       VTContext.reset(new MicrosoftVTableContext(*this));
9975     else
9976       VTContext.reset(new ItaniumVTableContext(*this));
9977   }
9978   return VTContext.get();
9979 }
9980 
createMangleContext()9981 MangleContext *ASTContext::createMangleContext() {
9982   switch (Target->getCXXABI().getKind()) {
9983   case TargetCXXABI::GenericAArch64:
9984   case TargetCXXABI::GenericItanium:
9985   case TargetCXXABI::GenericARM:
9986   case TargetCXXABI::GenericMIPS:
9987   case TargetCXXABI::iOS:
9988   case TargetCXXABI::iOS64:
9989   case TargetCXXABI::WebAssembly:
9990   case TargetCXXABI::WatchOS:
9991     return ItaniumMangleContext::create(*this, getDiagnostics());
9992   case TargetCXXABI::Microsoft:
9993     return MicrosoftMangleContext::create(*this, getDiagnostics());
9994   }
9995   llvm_unreachable("Unsupported ABI");
9996 }
9997 
9998 CXXABI::~CXXABI() = default;
9999 
getSideTableAllocatedMemory() const10000 size_t ASTContext::getSideTableAllocatedMemory() const {
10001   return ASTRecordLayouts.getMemorySize() +
10002          llvm::capacity_in_bytes(ObjCLayouts) +
10003          llvm::capacity_in_bytes(KeyFunctions) +
10004          llvm::capacity_in_bytes(ObjCImpls) +
10005          llvm::capacity_in_bytes(BlockVarCopyInits) +
10006          llvm::capacity_in_bytes(DeclAttrs) +
10007          llvm::capacity_in_bytes(TemplateOrInstantiation) +
10008          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
10009          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
10010          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
10011          llvm::capacity_in_bytes(OverriddenMethods) +
10012          llvm::capacity_in_bytes(Types) +
10013          llvm::capacity_in_bytes(VariableArrayTypes) +
10014          llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
10015 }
10016 
10017 /// getIntTypeForBitwidth -
10018 /// sets integer QualTy according to specified details:
10019 /// bitwidth, signed/unsigned.
10020 /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const10021 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
10022                                            unsigned Signed) const {
10023   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
10024   CanQualType QualTy = getFromTargetType(Ty);
10025   if (!QualTy && DestWidth == 128)
10026     return Signed ? Int128Ty : UnsignedInt128Ty;
10027   return QualTy;
10028 }
10029 
10030 /// getRealTypeForBitwidth -
10031 /// sets floating point QualTy according to specified bitwidth.
10032 /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth) const10033 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
10034   TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
10035   switch (Ty) {
10036   case TargetInfo::Float:
10037     return FloatTy;
10038   case TargetInfo::Double:
10039     return DoubleTy;
10040   case TargetInfo::LongDouble:
10041     return LongDoubleTy;
10042   case TargetInfo::Float128:
10043     return Float128Ty;
10044   case TargetInfo::NoFloat:
10045     return {};
10046   }
10047 
10048   llvm_unreachable("Unhandled TargetInfo::RealType value");
10049 }
10050 
setManglingNumber(const NamedDecl * ND,unsigned Number)10051 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
10052   if (Number > 1)
10053     MangleNumbers[ND] = Number;
10054 }
10055 
getManglingNumber(const NamedDecl * ND) const10056 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
10057   auto I = MangleNumbers.find(ND);
10058   return I != MangleNumbers.end() ? I->second : 1;
10059 }
10060 
setStaticLocalNumber(const VarDecl * VD,unsigned Number)10061 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
10062   if (Number > 1)
10063     StaticLocalNumbers[VD] = Number;
10064 }
10065 
getStaticLocalNumber(const VarDecl * VD) const10066 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
10067   auto I = StaticLocalNumbers.find(VD);
10068   return I != StaticLocalNumbers.end() ? I->second : 1;
10069 }
10070 
10071 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)10072 ASTContext::getManglingNumberContext(const DeclContext *DC) {
10073   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
10074   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
10075   if (!MCtx)
10076     MCtx = createMangleNumberingContext();
10077   return *MCtx;
10078 }
10079 
10080 std::unique_ptr<MangleNumberingContext>
createMangleNumberingContext() const10081 ASTContext::createMangleNumberingContext() const {
10082   return ABI->createMangleNumberingContext();
10083 }
10084 
10085 const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl * RD)10086 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
10087   return ABI->getCopyConstructorForExceptionObject(
10088       cast<CXXRecordDecl>(RD->getFirstDecl()));
10089 }
10090 
addCopyConstructorForExceptionObject(CXXRecordDecl * RD,CXXConstructorDecl * CD)10091 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
10092                                                       CXXConstructorDecl *CD) {
10093   return ABI->addCopyConstructorForExceptionObject(
10094       cast<CXXRecordDecl>(RD->getFirstDecl()),
10095       cast<CXXConstructorDecl>(CD->getFirstDecl()));
10096 }
10097 
addTypedefNameForUnnamedTagDecl(TagDecl * TD,TypedefNameDecl * DD)10098 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
10099                                                  TypedefNameDecl *DD) {
10100   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
10101 }
10102 
10103 TypedefNameDecl *
getTypedefNameForUnnamedTagDecl(const TagDecl * TD)10104 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
10105   return ABI->getTypedefNameForUnnamedTagDecl(TD);
10106 }
10107 
addDeclaratorForUnnamedTagDecl(TagDecl * TD,DeclaratorDecl * DD)10108 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
10109                                                 DeclaratorDecl *DD) {
10110   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
10111 }
10112 
getDeclaratorForUnnamedTagDecl(const TagDecl * TD)10113 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
10114   return ABI->getDeclaratorForUnnamedTagDecl(TD);
10115 }
10116 
setParameterIndex(const ParmVarDecl * D,unsigned int index)10117 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
10118   ParamIndices[D] = index;
10119 }
10120 
getParameterIndex(const ParmVarDecl * D) const10121 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
10122   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
10123   assert(I != ParamIndices.end() &&
10124          "ParmIndices lacks entry set by ParmVarDecl");
10125   return I->second;
10126 }
10127 
10128 APValue *
getMaterializedTemporaryValue(const MaterializeTemporaryExpr * E,bool MayCreate)10129 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
10130                                           bool MayCreate) {
10131   assert(E && E->getStorageDuration() == SD_Static &&
10132          "don't need to cache the computed value for this temporary");
10133   if (MayCreate) {
10134     APValue *&MTVI = MaterializedTemporaryValues[E];
10135     if (!MTVI)
10136       MTVI = new (*this) APValue;
10137     return MTVI;
10138   }
10139 
10140   return MaterializedTemporaryValues.lookup(E);
10141 }
10142 
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const10143 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
10144   const llvm::Triple &T = getTargetInfo().getTriple();
10145   if (!T.isOSDarwin())
10146     return false;
10147 
10148   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
10149       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
10150     return false;
10151 
10152   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
10153   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
10154   uint64_t Size = sizeChars.getQuantity();
10155   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
10156   unsigned Align = alignChars.getQuantity();
10157   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
10158   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
10159 }
10160 
10161 /// Template specializations to abstract away from pointers and TypeLocs.
10162 /// @{
10163 template <typename T>
createDynTypedNode(const T & Node)10164 static ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) {
10165   return ast_type_traits::DynTypedNode::create(*Node);
10166 }
10167 template <>
createDynTypedNode(const TypeLoc & Node)10168 ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) {
10169   return ast_type_traits::DynTypedNode::create(Node);
10170 }
10171 template <>
10172 ast_type_traits::DynTypedNode
createDynTypedNode(const NestedNameSpecifierLoc & Node)10173 createDynTypedNode(const NestedNameSpecifierLoc &Node) {
10174   return ast_type_traits::DynTypedNode::create(Node);
10175 }
10176 /// @}
10177 
10178 /// A \c RecursiveASTVisitor that builds a map from nodes to their
10179 /// parents as defined by the \c RecursiveASTVisitor.
10180 ///
10181 /// Note that the relationship described here is purely in terms of AST
10182 /// traversal - there are other relationships (for example declaration context)
10183 /// in the AST that are better modeled by special matchers.
10184 ///
10185 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
10186 class ASTContext::ParentMap::ASTVisitor
10187     : public RecursiveASTVisitor<ASTVisitor> {
10188 public:
ASTVisitor(ParentMap & Map)10189   ASTVisitor(ParentMap &Map) : Map(Map) {}
10190 
10191 private:
10192   friend class RecursiveASTVisitor<ASTVisitor>;
10193 
10194   using VisitorBase = RecursiveASTVisitor<ASTVisitor>;
10195 
shouldVisitTemplateInstantiations() const10196   bool shouldVisitTemplateInstantiations() const { return true; }
10197 
shouldVisitImplicitCode() const10198   bool shouldVisitImplicitCode() const { return true; }
10199 
10200   template <typename T, typename MapNodeTy, typename BaseTraverseFn,
10201             typename MapTy>
TraverseNode(T Node,MapNodeTy MapNode,BaseTraverseFn BaseTraverse,MapTy * Parents)10202   bool TraverseNode(T Node, MapNodeTy MapNode, BaseTraverseFn BaseTraverse,
10203                     MapTy *Parents) {
10204     if (!Node)
10205       return true;
10206     if (ParentStack.size() > 0) {
10207       // FIXME: Currently we add the same parent multiple times, but only
10208       // when no memoization data is available for the type.
10209       // For example when we visit all subexpressions of template
10210       // instantiations; this is suboptimal, but benign: the only way to
10211       // visit those is with hasAncestor / hasParent, and those do not create
10212       // new matches.
10213       // The plan is to enable DynTypedNode to be storable in a map or hash
10214       // map. The main problem there is to implement hash functions /
10215       // comparison operators for all types that DynTypedNode supports that
10216       // do not have pointer identity.
10217       auto &NodeOrVector = (*Parents)[MapNode];
10218       if (NodeOrVector.isNull()) {
10219         if (const auto *D = ParentStack.back().get<Decl>())
10220           NodeOrVector = D;
10221         else if (const auto *S = ParentStack.back().get<Stmt>())
10222           NodeOrVector = S;
10223         else
10224           NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
10225       } else {
10226         if (!NodeOrVector.template is<ParentVector *>()) {
10227           auto *Vector = new ParentVector(
10228               1, getSingleDynTypedNodeFromParentMap(NodeOrVector));
10229           delete NodeOrVector
10230               .template dyn_cast<ast_type_traits::DynTypedNode *>();
10231           NodeOrVector = Vector;
10232         }
10233 
10234         auto *Vector = NodeOrVector.template get<ParentVector *>();
10235         // Skip duplicates for types that have memoization data.
10236         // We must check that the type has memoization data before calling
10237         // std::find() because DynTypedNode::operator== can't compare all
10238         // types.
10239         bool Found = ParentStack.back().getMemoizationData() &&
10240                      std::find(Vector->begin(), Vector->end(),
10241                                ParentStack.back()) != Vector->end();
10242         if (!Found)
10243           Vector->push_back(ParentStack.back());
10244       }
10245     }
10246     ParentStack.push_back(createDynTypedNode(Node));
10247     bool Result = BaseTraverse();
10248     ParentStack.pop_back();
10249     return Result;
10250   }
10251 
TraverseDecl(Decl * DeclNode)10252   bool TraverseDecl(Decl *DeclNode) {
10253     return TraverseNode(
10254         DeclNode, DeclNode, [&] { return VisitorBase::TraverseDecl(DeclNode); },
10255         &Map.PointerParents);
10256   }
10257 
TraverseStmt(Stmt * StmtNode)10258   bool TraverseStmt(Stmt *StmtNode) {
10259     return TraverseNode(
10260         StmtNode, StmtNode, [&] { return VisitorBase::TraverseStmt(StmtNode); },
10261         &Map.PointerParents);
10262   }
10263 
TraverseTypeLoc(TypeLoc TypeLocNode)10264   bool TraverseTypeLoc(TypeLoc TypeLocNode) {
10265     return TraverseNode(
10266         TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode),
10267         [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); },
10268         &Map.OtherParents);
10269   }
10270 
TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode)10271   bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) {
10272     return TraverseNode(
10273         NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode),
10274         [&] { return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); },
10275         &Map.OtherParents);
10276   }
10277 
10278   ParentMap &Map;
10279   llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
10280 };
10281 
ParentMap(ASTContext & Ctx)10282 ASTContext::ParentMap::ParentMap(ASTContext &Ctx) {
10283   ASTVisitor(*this).TraverseAST(Ctx);
10284 }
10285 
10286 ASTContext::DynTypedNodeList
getParents(const ast_type_traits::DynTypedNode & Node)10287 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
10288   if (!Parents)
10289     // We build the parent map for the traversal scope (usually whole TU), as
10290     // hasAncestor can escape any subtree.
10291     Parents = llvm::make_unique<ParentMap>(*this);
10292   return Parents->getParents(Node);
10293 }
10294 
10295 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)10296 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
10297                                 const ObjCMethodDecl *MethodImpl) {
10298   // No point trying to match an unavailable/deprecated mothod.
10299   if (MethodDecl->hasAttr<UnavailableAttr>()
10300       || MethodDecl->hasAttr<DeprecatedAttr>())
10301     return false;
10302   if (MethodDecl->getObjCDeclQualifier() !=
10303       MethodImpl->getObjCDeclQualifier())
10304     return false;
10305   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
10306     return false;
10307 
10308   if (MethodDecl->param_size() != MethodImpl->param_size())
10309     return false;
10310 
10311   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
10312        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
10313        EF = MethodDecl->param_end();
10314        IM != EM && IF != EF; ++IM, ++IF) {
10315     const ParmVarDecl *DeclVar = (*IF);
10316     const ParmVarDecl *ImplVar = (*IM);
10317     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
10318       return false;
10319     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
10320       return false;
10321   }
10322 
10323   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
10324 }
10325 
getTargetNullPointerValue(QualType QT) const10326 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
10327   LangAS AS;
10328   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
10329     AS = LangAS::Default;
10330   else
10331     AS = QT->getPointeeType().getAddressSpace();
10332 
10333   return getTargetInfo().getNullPointerValue(AS);
10334 }
10335 
getTargetAddressSpace(LangAS AS) const10336 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
10337   if (isTargetAddressSpace(AS))
10338     return toTargetAddressSpace(AS);
10339   else
10340     return (*AddrSpaceMap)[(unsigned)AS];
10341 }
10342 
getCorrespondingSaturatedType(QualType Ty) const10343 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
10344   assert(Ty->isFixedPointType());
10345 
10346   if (Ty->isSaturatedFixedPointType()) return Ty;
10347 
10348   const auto &BT = Ty->getAs<BuiltinType>();
10349   switch (BT->getKind()) {
10350     default:
10351       llvm_unreachable("Not a fixed point type!");
10352     case BuiltinType::ShortAccum:
10353       return SatShortAccumTy;
10354     case BuiltinType::Accum:
10355       return SatAccumTy;
10356     case BuiltinType::LongAccum:
10357       return SatLongAccumTy;
10358     case BuiltinType::UShortAccum:
10359       return SatUnsignedShortAccumTy;
10360     case BuiltinType::UAccum:
10361       return SatUnsignedAccumTy;
10362     case BuiltinType::ULongAccum:
10363       return SatUnsignedLongAccumTy;
10364     case BuiltinType::ShortFract:
10365       return SatShortFractTy;
10366     case BuiltinType::Fract:
10367       return SatFractTy;
10368     case BuiltinType::LongFract:
10369       return SatLongFractTy;
10370     case BuiltinType::UShortFract:
10371       return SatUnsignedShortFractTy;
10372     case BuiltinType::UFract:
10373       return SatUnsignedFractTy;
10374     case BuiltinType::ULongFract:
10375       return SatUnsignedLongFractTy;
10376   }
10377 }
10378 
getLangASForBuiltinAddressSpace(unsigned AS) const10379 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
10380   if (LangOpts.OpenCL)
10381     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
10382 
10383   if (LangOpts.CUDA)
10384     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
10385 
10386   return getLangASFromTargetAS(AS);
10387 }
10388 
10389 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
10390 // doesn't include ASTContext.h
10391 template
10392 clang::LazyGenerationalUpdatePtr<
10393     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
10394 clang::LazyGenerationalUpdatePtr<
10395     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
10396         const clang::ASTContext &Ctx, Decl *Value);
10397 
getFixedPointScale(QualType Ty) const10398 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
10399   assert(Ty->isFixedPointType());
10400 
10401   const auto *BT = Ty->getAs<BuiltinType>();
10402   const TargetInfo &Target = getTargetInfo();
10403   switch (BT->getKind()) {
10404     default:
10405       llvm_unreachable("Not a fixed point type!");
10406     case BuiltinType::ShortAccum:
10407     case BuiltinType::SatShortAccum:
10408       return Target.getShortAccumScale();
10409     case BuiltinType::Accum:
10410     case BuiltinType::SatAccum:
10411       return Target.getAccumScale();
10412     case BuiltinType::LongAccum:
10413     case BuiltinType::SatLongAccum:
10414       return Target.getLongAccumScale();
10415     case BuiltinType::UShortAccum:
10416     case BuiltinType::SatUShortAccum:
10417       return Target.getUnsignedShortAccumScale();
10418     case BuiltinType::UAccum:
10419     case BuiltinType::SatUAccum:
10420       return Target.getUnsignedAccumScale();
10421     case BuiltinType::ULongAccum:
10422     case BuiltinType::SatULongAccum:
10423       return Target.getUnsignedLongAccumScale();
10424     case BuiltinType::ShortFract:
10425     case BuiltinType::SatShortFract:
10426       return Target.getShortFractScale();
10427     case BuiltinType::Fract:
10428     case BuiltinType::SatFract:
10429       return Target.getFractScale();
10430     case BuiltinType::LongFract:
10431     case BuiltinType::SatLongFract:
10432       return Target.getLongFractScale();
10433     case BuiltinType::UShortFract:
10434     case BuiltinType::SatUShortFract:
10435       return Target.getUnsignedShortFractScale();
10436     case BuiltinType::UFract:
10437     case BuiltinType::SatUFract:
10438       return Target.getUnsignedFractScale();
10439     case BuiltinType::ULongFract:
10440     case BuiltinType::SatULongFract:
10441       return Target.getUnsignedLongFractScale();
10442   }
10443 }
10444 
getFixedPointIBits(QualType Ty) const10445 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
10446   assert(Ty->isFixedPointType());
10447 
10448   const auto *BT = Ty->getAs<BuiltinType>();
10449   const TargetInfo &Target = getTargetInfo();
10450   switch (BT->getKind()) {
10451     default:
10452       llvm_unreachable("Not a fixed point type!");
10453     case BuiltinType::ShortAccum:
10454     case BuiltinType::SatShortAccum:
10455       return Target.getShortAccumIBits();
10456     case BuiltinType::Accum:
10457     case BuiltinType::SatAccum:
10458       return Target.getAccumIBits();
10459     case BuiltinType::LongAccum:
10460     case BuiltinType::SatLongAccum:
10461       return Target.getLongAccumIBits();
10462     case BuiltinType::UShortAccum:
10463     case BuiltinType::SatUShortAccum:
10464       return Target.getUnsignedShortAccumIBits();
10465     case BuiltinType::UAccum:
10466     case BuiltinType::SatUAccum:
10467       return Target.getUnsignedAccumIBits();
10468     case BuiltinType::ULongAccum:
10469     case BuiltinType::SatULongAccum:
10470       return Target.getUnsignedLongAccumIBits();
10471     case BuiltinType::ShortFract:
10472     case BuiltinType::SatShortFract:
10473     case BuiltinType::Fract:
10474     case BuiltinType::SatFract:
10475     case BuiltinType::LongFract:
10476     case BuiltinType::SatLongFract:
10477     case BuiltinType::UShortFract:
10478     case BuiltinType::SatUShortFract:
10479     case BuiltinType::UFract:
10480     case BuiltinType::SatUFract:
10481     case BuiltinType::ULongFract:
10482     case BuiltinType::SatULongFract:
10483       return 0;
10484   }
10485 }
10486 
getFixedPointSemantics(QualType Ty) const10487 FixedPointSemantics ASTContext::getFixedPointSemantics(QualType Ty) const {
10488   assert(Ty->isFixedPointType());
10489   bool isSigned = Ty->isSignedFixedPointType();
10490   return FixedPointSemantics(
10491       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
10492       Ty->isSaturatedFixedPointType(),
10493       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
10494 }
10495 
getFixedPointMax(QualType Ty) const10496 APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
10497   assert(Ty->isFixedPointType());
10498   return APFixedPoint::getMax(getFixedPointSemantics(Ty));
10499 }
10500 
getFixedPointMin(QualType Ty) const10501 APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
10502   assert(Ty->isFixedPointType());
10503   return APFixedPoint::getMin(getFixedPointSemantics(Ty));
10504 }
10505