1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the target machine instruction set to the code generator. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H 15 #define LLVM_TARGET_TARGETINSTRINFO_H 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseMapInfo.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/CodeGen/LiveRegUnits.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineCombinerPattern.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineOutliner.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/MC/MCInstrInfo.h" 31 #include "llvm/Support/BranchProbability.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <utility> 37 #include <vector> 38 39 namespace llvm { 40 41 class DFAPacketizer; 42 class InstrItineraryData; 43 class LiveIntervals; 44 class LiveVariables; 45 class MachineMemOperand; 46 class MachineRegisterInfo; 47 class MCAsmInfo; 48 class MCInst; 49 struct MCSchedModel; 50 class Module; 51 class ScheduleDAG; 52 class ScheduleHazardRecognizer; 53 class SDNode; 54 class SelectionDAG; 55 class RegScavenger; 56 class TargetRegisterClass; 57 class TargetRegisterInfo; 58 class TargetSchedModel; 59 class TargetSubtargetInfo; 60 61 template <class T> class SmallVectorImpl; 62 63 //--------------------------------------------------------------------------- 64 /// 65 /// TargetInstrInfo - Interface to description of machine instruction set 66 /// 67 class TargetInstrInfo : public MCInstrInfo { 68 public: 69 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, 70 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u) CallFrameSetupOpcode(CFSetupOpcode)71 : CallFrameSetupOpcode(CFSetupOpcode), 72 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode), 73 ReturnOpcode(ReturnOpcode) {} 74 TargetInstrInfo(const TargetInstrInfo &) = delete; 75 TargetInstrInfo &operator=(const TargetInstrInfo &) = delete; 76 virtual ~TargetInstrInfo(); 77 isGenericOpcode(unsigned Opc)78 static bool isGenericOpcode(unsigned Opc) { 79 return Opc <= TargetOpcode::GENERIC_OP_END; 80 } 81 82 /// Given a machine instruction descriptor, returns the register 83 /// class constraint for OpNum, or NULL. 84 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 85 const TargetRegisterInfo *TRI, 86 const MachineFunction &MF) const; 87 88 /// Return true if the instruction is trivially rematerializable, meaning it 89 /// has no side effects and requires no operands that aren't always available. 90 /// This means the only allowed uses are constants and unallocatable physical 91 /// registers so that the instructions result is independent of the place 92 /// in the function. 93 bool isTriviallyReMaterializable(const MachineInstr &MI, 94 AliasAnalysis *AA = nullptr) const { 95 return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF || 96 (MI.getDesc().isRematerializable() && 97 (isReallyTriviallyReMaterializable(MI, AA) || 98 isReallyTriviallyReMaterializableGeneric(MI, AA))); 99 } 100 101 protected: 102 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 103 /// set, this hook lets the target specify whether the instruction is actually 104 /// trivially rematerializable, taking into consideration its operands. This 105 /// predicate must return false if the instruction has any side effects other 106 /// than producing a value, or if it requres any address registers that are 107 /// not always available. 108 /// Requirements must be check as stated in isTriviallyReMaterializable() . isReallyTriviallyReMaterializable(const MachineInstr & MI,AliasAnalysis * AA)109 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI, 110 AliasAnalysis *AA) const { 111 return false; 112 } 113 114 /// This method commutes the operands of the given machine instruction MI. 115 /// The operands to be commuted are specified by their indices OpIdx1 and 116 /// OpIdx2. 117 /// 118 /// If a target has any instructions that are commutable but require 119 /// converting to different instructions or making non-trivial changes 120 /// to commute them, this method can be overloaded to do that. 121 /// The default implementation simply swaps the commutable operands. 122 /// 123 /// If NewMI is false, MI is modified in place and returned; otherwise, a 124 /// new machine instruction is created and returned. 125 /// 126 /// Do not call this method for a non-commutable instruction. 127 /// Even though the instruction is commutable, the method may still 128 /// fail to commute the operands, null pointer is returned in such cases. 129 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, 130 unsigned OpIdx1, 131 unsigned OpIdx2) const; 132 133 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable 134 /// operand indices to (ResultIdx1, ResultIdx2). 135 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be 136 /// predefined to some indices or be undefined (designated by the special 137 /// value 'CommuteAnyOperandIndex'). 138 /// The predefined result indices cannot be re-defined. 139 /// The function returns true iff after the result pair redefinition 140 /// the fixed result pair is equal to or equivalent to the source pair of 141 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that 142 /// the pairs (x,y) and (y,x) are equivalent. 143 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, 144 unsigned CommutableOpIdx1, 145 unsigned CommutableOpIdx2); 146 147 private: 148 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 149 /// set and the target hook isReallyTriviallyReMaterializable returns false, 150 /// this function does target-independent tests to determine if the 151 /// instruction is really trivially rematerializable. 152 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI, 153 AliasAnalysis *AA) const; 154 155 public: 156 /// These methods return the opcode of the frame setup/destroy instructions 157 /// if they exist (-1 otherwise). Some targets use pseudo instructions in 158 /// order to abstract away the difference between operating with a frame 159 /// pointer and operating without, through the use of these two instructions. 160 /// getCallFrameSetupOpcode()161 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } getCallFrameDestroyOpcode()162 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } 163 164 /// Returns true if the argument is a frame pseudo instruction. isFrameInstr(const MachineInstr & I)165 bool isFrameInstr(const MachineInstr &I) const { 166 return I.getOpcode() == getCallFrameSetupOpcode() || 167 I.getOpcode() == getCallFrameDestroyOpcode(); 168 } 169 170 /// Returns true if the argument is a frame setup pseudo instruction. isFrameSetup(const MachineInstr & I)171 bool isFrameSetup(const MachineInstr &I) const { 172 return I.getOpcode() == getCallFrameSetupOpcode(); 173 } 174 175 /// Returns size of the frame associated with the given frame instruction. 176 /// For frame setup instruction this is frame that is set up space set up 177 /// after the instruction. For frame destroy instruction this is the frame 178 /// freed by the caller. 179 /// Note, in some cases a call frame (or a part of it) may be prepared prior 180 /// to the frame setup instruction. It occurs in the calls that involve 181 /// inalloca arguments. This function reports only the size of the frame part 182 /// that is set up between the frame setup and destroy pseudo instructions. getFrameSize(const MachineInstr & I)183 int64_t getFrameSize(const MachineInstr &I) const { 184 assert(isFrameInstr(I) && "Not a frame instruction"); 185 assert(I.getOperand(0).getImm() >= 0); 186 return I.getOperand(0).getImm(); 187 } 188 189 /// Returns the total frame size, which is made up of the space set up inside 190 /// the pair of frame start-stop instructions and the space that is set up 191 /// prior to the pair. getFrameTotalSize(const MachineInstr & I)192 int64_t getFrameTotalSize(const MachineInstr &I) const { 193 if (isFrameSetup(I)) { 194 assert(I.getOperand(1).getImm() >= 0 && 195 "Frame size must not be negative"); 196 return getFrameSize(I) + I.getOperand(1).getImm(); 197 } 198 return getFrameSize(I); 199 } 200 getCatchReturnOpcode()201 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } getReturnOpcode()202 unsigned getReturnOpcode() const { return ReturnOpcode; } 203 204 /// Returns the actual stack pointer adjustment made by an instruction 205 /// as part of a call sequence. By default, only call frame setup/destroy 206 /// instructions adjust the stack, but targets may want to override this 207 /// to enable more fine-grained adjustment, or adjust by a different value. 208 virtual int getSPAdjust(const MachineInstr &MI) const; 209 210 /// Return true if the instruction is a "coalescable" extension instruction. 211 /// That is, it's like a copy where it's legal for the source to overlap the 212 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's 213 /// expected the pre-extension value is available as a subreg of the result 214 /// register. This also returns the sub-register index in SubIdx. isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx)215 virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, 216 unsigned &DstReg, unsigned &SubIdx) const { 217 return false; 218 } 219 220 /// If the specified machine instruction is a direct 221 /// load from a stack slot, return the virtual or physical register number of 222 /// the destination along with the FrameIndex of the loaded stack slot. If 223 /// not, return 0. This predicate must return 0 if the instruction has 224 /// any side effects other than loading from the stack slot. isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex)225 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, 226 int &FrameIndex) const { 227 return 0; 228 } 229 230 /// Optional extension of isLoadFromStackSlot that returns the number of 231 /// bytes loaded from the stack. This must be implemented if a backend 232 /// supports partial stack slot spills/loads to further disambiguate 233 /// what the load does. isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)234 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, 235 int &FrameIndex, 236 unsigned &MemBytes) const { 237 MemBytes = 0; 238 return isLoadFromStackSlot(MI, FrameIndex); 239 } 240 241 /// Check for post-frame ptr elimination stack locations as well. 242 /// This uses a heuristic so it isn't reliable for correctness. isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)243 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, 244 int &FrameIndex) const { 245 return 0; 246 } 247 248 /// If the specified machine instruction has a load from a stack slot, 249 /// return true along with the FrameIndices of the loaded stack slot and the 250 /// machine mem operands containing the reference. 251 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for 252 /// any instructions that loads from the stack. This is just a hint, as some 253 /// cases may be missed. 254 virtual bool hasLoadFromStackSlot( 255 const MachineInstr &MI, 256 SmallVectorImpl<const MachineMemOperand *> &Accesses) const; 257 258 /// If the specified machine instruction is a direct 259 /// store to a stack slot, return the virtual or physical register number of 260 /// the source reg along with the FrameIndex of the loaded stack slot. If 261 /// not, return 0. This predicate must return 0 if the instruction has 262 /// any side effects other than storing to the stack slot. isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex)263 virtual unsigned isStoreToStackSlot(const MachineInstr &MI, 264 int &FrameIndex) const { 265 return 0; 266 } 267 268 /// Optional extension of isStoreToStackSlot that returns the number of 269 /// bytes stored to the stack. This must be implemented if a backend 270 /// supports partial stack slot spills/loads to further disambiguate 271 /// what the store does. isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes)272 virtual unsigned isStoreToStackSlot(const MachineInstr &MI, 273 int &FrameIndex, 274 unsigned &MemBytes) const { 275 MemBytes = 0; 276 return isStoreToStackSlot(MI, FrameIndex); 277 } 278 279 /// Check for post-frame ptr elimination stack locations as well. 280 /// This uses a heuristic, so it isn't reliable for correctness. isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)281 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, 282 int &FrameIndex) const { 283 return 0; 284 } 285 286 /// If the specified machine instruction has a store to a stack slot, 287 /// return true along with the FrameIndices of the loaded stack slot and the 288 /// machine mem operands containing the reference. 289 /// If not, return false. Unlike isStoreToStackSlot, 290 /// this returns true for any instructions that stores to the 291 /// stack. This is just a hint, as some cases may be missed. 292 virtual bool hasStoreToStackSlot( 293 const MachineInstr &MI, 294 SmallVectorImpl<const MachineMemOperand *> &Accesses) const; 295 296 /// Return true if the specified machine instruction 297 /// is a copy of one stack slot to another and has no other effect. 298 /// Provide the identity of the two frame indices. isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex)299 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, 300 int &SrcFrameIndex) const { 301 return false; 302 } 303 304 /// Compute the size in bytes and offset within a stack slot of a spilled 305 /// register or subregister. 306 /// 307 /// \param [out] Size in bytes of the spilled value. 308 /// \param [out] Offset in bytes within the stack slot. 309 /// \returns true if both Size and Offset are successfully computed. 310 /// 311 /// Not all subregisters have computable spill slots. For example, 312 /// subregisters registers may not be byte-sized, and a pair of discontiguous 313 /// subregisters has no single offset. 314 /// 315 /// Targets with nontrivial bigendian implementations may need to override 316 /// this, particularly to support spilled vector registers. 317 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, 318 unsigned &Size, unsigned &Offset, 319 const MachineFunction &MF) const; 320 321 /// Returns the size in bytes of the specified MachineInstr, or ~0U 322 /// when this function is not implemented by a target. getInstSizeInBytes(const MachineInstr & MI)323 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const { 324 return ~0U; 325 } 326 327 /// Return true if the instruction is as cheap as a move instruction. 328 /// 329 /// Targets for different archs need to override this, and different 330 /// micro-architectures can also be finely tuned inside. isAsCheapAsAMove(const MachineInstr & MI)331 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const { 332 return MI.isAsCheapAsAMove(); 333 } 334 335 /// Return true if the instruction should be sunk by MachineSink. 336 /// 337 /// MachineSink determines on its own whether the instruction is safe to sink; 338 /// this gives the target a hook to override the default behavior with regards 339 /// to which instructions should be sunk. shouldSink(const MachineInstr & MI)340 virtual bool shouldSink(const MachineInstr &MI) const { return true; } 341 342 /// Re-issue the specified 'original' instruction at the 343 /// specific location targeting a new destination register. 344 /// The register in Orig->getOperand(0).getReg() will be substituted by 345 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with 346 /// SubIdx. 347 virtual void reMaterialize(MachineBasicBlock &MBB, 348 MachineBasicBlock::iterator MI, unsigned DestReg, 349 unsigned SubIdx, const MachineInstr &Orig, 350 const TargetRegisterInfo &TRI) const; 351 352 /// Clones instruction or the whole instruction bundle \p Orig and 353 /// insert into \p MBB before \p InsertBefore. The target may update operands 354 /// that are required to be unique. 355 /// 356 /// \p Orig must not return true for MachineInstr::isNotDuplicable(). 357 virtual MachineInstr &duplicate(MachineBasicBlock &MBB, 358 MachineBasicBlock::iterator InsertBefore, 359 const MachineInstr &Orig) const; 360 361 /// This method must be implemented by targets that 362 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 363 /// may be able to convert a two-address instruction into one or more true 364 /// three-address instructions on demand. This allows the X86 target (for 365 /// example) to convert ADD and SHL instructions into LEA instructions if they 366 /// would require register copies due to two-addressness. 367 /// 368 /// This method returns a null pointer if the transformation cannot be 369 /// performed, otherwise it returns the last new instruction. 370 /// convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV)371 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, 372 MachineInstr &MI, 373 LiveVariables *LV) const { 374 return nullptr; 375 } 376 377 // This constant can be used as an input value of operand index passed to 378 // the method findCommutedOpIndices() to tell the method that the 379 // corresponding operand index is not pre-defined and that the method 380 // can pick any commutable operand. 381 static const unsigned CommuteAnyOperandIndex = ~0U; 382 383 /// This method commutes the operands of the given machine instruction MI. 384 /// 385 /// The operands to be commuted are specified by their indices OpIdx1 and 386 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value 387 /// 'CommuteAnyOperandIndex', which means that the method is free to choose 388 /// any arbitrarily chosen commutable operand. If both arguments are set to 389 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable 390 /// operands; then commutes them if such operands could be found. 391 /// 392 /// If NewMI is false, MI is modified in place and returned; otherwise, a 393 /// new machine instruction is created and returned. 394 /// 395 /// Do not call this method for a non-commutable instruction or 396 /// for non-commuable operands. 397 /// Even though the instruction is commutable, the method may still 398 /// fail to commute the operands, null pointer is returned in such cases. 399 MachineInstr * 400 commuteInstruction(MachineInstr &MI, bool NewMI = false, 401 unsigned OpIdx1 = CommuteAnyOperandIndex, 402 unsigned OpIdx2 = CommuteAnyOperandIndex) const; 403 404 /// Returns true iff the routine could find two commutable operands in the 405 /// given machine instruction. 406 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. 407 /// If any of the INPUT values is set to the special value 408 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable 409 /// operand, then returns its index in the corresponding argument. 410 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method 411 /// looks for 2 commutable operands. 412 /// If INPUT values refer to some operands of MI, then the method simply 413 /// returns true if the corresponding operands are commutable and returns 414 /// false otherwise. 415 /// 416 /// For example, calling this method this way: 417 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; 418 /// findCommutedOpIndices(MI, Op1, Op2); 419 /// can be interpreted as a query asking to find an operand that would be 420 /// commutable with the operand#1. 421 virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 422 unsigned &SrcOpIdx2) const; 423 424 /// A pair composed of a register and a sub-register index. 425 /// Used to give some type checking when modeling Reg:SubReg. 426 struct RegSubRegPair { 427 unsigned Reg; 428 unsigned SubReg; 429 430 RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0) RegRegSubRegPair431 : Reg(Reg), SubReg(SubReg) {} 432 }; 433 434 /// A pair composed of a pair of a register and a sub-register index, 435 /// and another sub-register index. 436 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. 437 struct RegSubRegPairAndIdx : RegSubRegPair { 438 unsigned SubIdx; 439 440 RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0, 441 unsigned SubIdx = 0) RegSubRegPairRegSubRegPairAndIdx442 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} 443 }; 444 445 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI 446 /// and \p DefIdx. 447 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of 448 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef 449 /// flag are not added to this list. 450 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce 451 /// two elements: 452 /// - %1:sub1, sub0 453 /// - %2<:0>, sub1 454 /// 455 /// \returns true if it is possible to build such an input sequence 456 /// with the pair \p MI, \p DefIdx. False otherwise. 457 /// 458 /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). 459 /// 460 /// \note The generic implementation does not provide any support for 461 /// MI.isRegSequenceLike(). In other words, one has to override 462 /// getRegSequenceLikeInputs for target specific instructions. 463 bool 464 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, 465 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; 466 467 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI 468 /// and \p DefIdx. 469 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. 470 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce: 471 /// - %1:sub1, sub0 472 /// 473 /// \returns true if it is possible to build such an input sequence 474 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. 475 /// False otherwise. 476 /// 477 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). 478 /// 479 /// \note The generic implementation does not provide any support for 480 /// MI.isExtractSubregLike(). In other words, one has to override 481 /// getExtractSubregLikeInputs for target specific instructions. 482 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, 483 RegSubRegPairAndIdx &InputReg) const; 484 485 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI 486 /// and \p DefIdx. 487 /// \p [out] BaseReg and \p [out] InsertedReg contain 488 /// the equivalent inputs of INSERT_SUBREG. 489 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce: 490 /// - BaseReg: %0:sub0 491 /// - InsertedReg: %1:sub1, sub3 492 /// 493 /// \returns true if it is possible to build such an input sequence 494 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. 495 /// False otherwise. 496 /// 497 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). 498 /// 499 /// \note The generic implementation does not provide any support for 500 /// MI.isInsertSubregLike(). In other words, one has to override 501 /// getInsertSubregLikeInputs for target specific instructions. 502 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, 503 RegSubRegPair &BaseReg, 504 RegSubRegPairAndIdx &InsertedReg) const; 505 506 /// Return true if two machine instructions would produce identical values. 507 /// By default, this is only true when the two instructions 508 /// are deemed identical except for defs. If this function is called when the 509 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for 510 /// aggressive checks. 511 virtual bool produceSameValue(const MachineInstr &MI0, 512 const MachineInstr &MI1, 513 const MachineRegisterInfo *MRI = nullptr) const; 514 515 /// \returns true if a branch from an instruction with opcode \p BranchOpc 516 /// bytes is capable of jumping to a position \p BrOffset bytes away. isBranchOffsetInRange(unsigned BranchOpc,int64_t BrOffset)517 virtual bool isBranchOffsetInRange(unsigned BranchOpc, 518 int64_t BrOffset) const { 519 llvm_unreachable("target did not implement"); 520 } 521 522 /// \returns The block that branch instruction \p MI jumps to. getBranchDestBlock(const MachineInstr & MI)523 virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const { 524 llvm_unreachable("target did not implement"); 525 } 526 527 /// Insert an unconditional indirect branch at the end of \p MBB to \p 528 /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to 529 /// the offset of the position to insert the new branch. 530 /// 531 /// \returns The number of bytes added to the block. 532 virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB, 533 MachineBasicBlock &NewDestBB, 534 const DebugLoc &DL, 535 int64_t BrOffset = 0, 536 RegScavenger *RS = nullptr) const { 537 llvm_unreachable("target did not implement"); 538 } 539 540 /// Analyze the branching code at the end of MBB, returning 541 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't 542 /// implemented for a target). Upon success, this returns false and returns 543 /// with the following information in various cases: 544 /// 545 /// 1. If this block ends with no branches (it just falls through to its succ) 546 /// just return false, leaving TBB/FBB null. 547 /// 2. If this block ends with only an unconditional branch, it sets TBB to be 548 /// the destination block. 549 /// 3. If this block ends with a conditional branch and it falls through to a 550 /// successor block, it sets TBB to be the branch destination block and a 551 /// list of operands that evaluate the condition. These operands can be 552 /// passed to other TargetInstrInfo methods to create new branches. 553 /// 4. If this block ends with a conditional branch followed by an 554 /// unconditional branch, it returns the 'true' destination in TBB, the 555 /// 'false' destination in FBB, and a list of operands that evaluate the 556 /// condition. These operands can be passed to other TargetInstrInfo 557 /// methods to create new branches. 558 /// 559 /// Note that removeBranch and insertBranch must be implemented to support 560 /// cases where this method returns success. 561 /// 562 /// If AllowModify is true, then this routine is allowed to modify the basic 563 /// block (e.g. delete instructions after the unconditional branch). 564 /// 565 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 566 /// before calling this function. 567 virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 568 MachineBasicBlock *&FBB, 569 SmallVectorImpl<MachineOperand> &Cond, 570 bool AllowModify = false) const { 571 return true; 572 } 573 574 /// Represents a predicate at the MachineFunction level. The control flow a 575 /// MachineBranchPredicate represents is: 576 /// 577 /// Reg = LHS `Predicate` RHS == ConditionDef 578 /// if Reg then goto TrueDest else goto FalseDest 579 /// 580 struct MachineBranchPredicate { 581 enum ComparePredicate { 582 PRED_EQ, // True if two values are equal 583 PRED_NE, // True if two values are not equal 584 PRED_INVALID // Sentinel value 585 }; 586 587 ComparePredicate Predicate = PRED_INVALID; 588 MachineOperand LHS = MachineOperand::CreateImm(0); 589 MachineOperand RHS = MachineOperand::CreateImm(0); 590 MachineBasicBlock *TrueDest = nullptr; 591 MachineBasicBlock *FalseDest = nullptr; 592 MachineInstr *ConditionDef = nullptr; 593 594 /// SingleUseCondition is true if ConditionDef is dead except for the 595 /// branch(es) at the end of the basic block. 596 /// 597 bool SingleUseCondition = false; 598 599 explicit MachineBranchPredicate() = default; 600 }; 601 602 /// Analyze the branching code at the end of MBB and parse it into the 603 /// MachineBranchPredicate structure if possible. Returns false on success 604 /// and true on failure. 605 /// 606 /// If AllowModify is true, then this routine is allowed to modify the basic 607 /// block (e.g. delete instructions after the unconditional branch). 608 /// 609 virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, 610 MachineBranchPredicate &MBP, 611 bool AllowModify = false) const { 612 return true; 613 } 614 615 /// Remove the branching code at the end of the specific MBB. 616 /// This is only invoked in cases where AnalyzeBranch returns success. It 617 /// returns the number of instructions that were removed. 618 /// If \p BytesRemoved is non-null, report the change in code size from the 619 /// removed instructions. 620 virtual unsigned removeBranch(MachineBasicBlock &MBB, 621 int *BytesRemoved = nullptr) const { 622 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!"); 623 } 624 625 /// Insert branch code into the end of the specified MachineBasicBlock. The 626 /// operands to this method are the same as those returned by AnalyzeBranch. 627 /// This is only invoked in cases where AnalyzeBranch returns success. It 628 /// returns the number of instructions inserted. If \p BytesAdded is non-null, 629 /// report the change in code size from the added instructions. 630 /// 631 /// It is also invoked by tail merging to add unconditional branches in 632 /// cases where AnalyzeBranch doesn't apply because there was no original 633 /// branch to analyze. At least this much must be implemented, else tail 634 /// merging needs to be disabled. 635 /// 636 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 637 /// before calling this function. 638 virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 639 MachineBasicBlock *FBB, 640 ArrayRef<MachineOperand> Cond, 641 const DebugLoc &DL, 642 int *BytesAdded = nullptr) const { 643 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!"); 644 } 645 646 unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, 647 MachineBasicBlock *DestBB, 648 const DebugLoc &DL, 649 int *BytesAdded = nullptr) const { 650 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL, 651 BytesAdded); 652 } 653 654 /// Analyze the loop code, return true if it cannot be understoo. Upon 655 /// success, this function returns false and returns information about the 656 /// induction variable and compare instruction used at the end. analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst)657 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, 658 MachineInstr *&CmpInst) const { 659 return true; 660 } 661 662 /// Generate code to reduce the loop iteration by one and check if the loop 663 /// is finished. Return the value/register of the new loop count. We need 664 /// this function when peeling off one or more iterations of a loop. This 665 /// function assumes the nth iteration is peeled first. reduceLoopCount(MachineBasicBlock & MBB,MachineInstr * IndVar,MachineInstr & Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter)666 virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar, 667 MachineInstr &Cmp, 668 SmallVectorImpl<MachineOperand> &Cond, 669 SmallVectorImpl<MachineInstr *> &PrevInsts, 670 unsigned Iter, unsigned MaxIter) const { 671 llvm_unreachable("Target didn't implement ReduceLoopCount"); 672 } 673 674 /// Delete the instruction OldInst and everything after it, replacing it with 675 /// an unconditional branch to NewDest. This is used by the tail merging pass. 676 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 677 MachineBasicBlock *NewDest) const; 678 679 /// Return true if it's legal to split the given basic 680 /// block at the specified instruction (i.e. instruction would be the start 681 /// of a new basic block). isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)682 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, 683 MachineBasicBlock::iterator MBBI) const { 684 return true; 685 } 686 687 /// Return true if it's profitable to predicate 688 /// instructions with accumulated instruction latency of "NumCycles" 689 /// of the specified basic block, where the probability of the instructions 690 /// being executed is given by Probability, and Confidence is a measure 691 /// of our confidence that it will be properly predicted. isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)692 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 693 unsigned ExtraPredCycles, 694 BranchProbability Probability) const { 695 return false; 696 } 697 698 /// Second variant of isProfitableToIfCvt. This one 699 /// checks for the case where two basic blocks from true and false path 700 /// of a if-then-else (diamond) are predicated on mutally exclusive 701 /// predicates, where the probability of the true path being taken is given 702 /// by Probability, and Confidence is a measure of our confidence that it 703 /// will be properly predicted. isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability)704 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, 705 unsigned ExtraTCycles, 706 MachineBasicBlock &FMBB, unsigned NumFCycles, 707 unsigned ExtraFCycles, 708 BranchProbability Probability) const { 709 return false; 710 } 711 712 /// Return true if it's profitable for if-converter to duplicate instructions 713 /// of specified accumulated instruction latencies in the specified MBB to 714 /// enable if-conversion. 715 /// The probability of the instructions being executed is given by 716 /// Probability, and Confidence is a measure of our confidence that it 717 /// will be properly predicted. isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)718 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, 719 unsigned NumCycles, 720 BranchProbability Probability) const { 721 return false; 722 } 723 724 /// Return true if it's profitable to unpredicate 725 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually 726 /// exclusive predicates. 727 /// e.g. 728 /// subeq r0, r1, #1 729 /// addne r0, r1, #1 730 /// => 731 /// sub r0, r1, #1 732 /// addne r0, r1, #1 733 /// 734 /// This may be profitable is conditional instructions are always executed. isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)735 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, 736 MachineBasicBlock &FMBB) const { 737 return false; 738 } 739 740 /// Return true if it is possible to insert a select 741 /// instruction that chooses between TrueReg and FalseReg based on the 742 /// condition code in Cond. 743 /// 744 /// When successful, also return the latency in cycles from TrueReg, 745 /// FalseReg, and Cond to the destination register. In most cases, a select 746 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 747 /// 748 /// Some x86 implementations have 2-cycle cmov instructions. 749 /// 750 /// @param MBB Block where select instruction would be inserted. 751 /// @param Cond Condition returned by AnalyzeBranch. 752 /// @param TrueReg Virtual register to select when Cond is true. 753 /// @param FalseReg Virtual register to select when Cond is false. 754 /// @param CondCycles Latency from Cond+Branch to select output. 755 /// @param TrueCycles Latency from TrueReg to select output. 756 /// @param FalseCycles Latency from FalseReg to select output. canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)757 virtual bool canInsertSelect(const MachineBasicBlock &MBB, 758 ArrayRef<MachineOperand> Cond, unsigned TrueReg, 759 unsigned FalseReg, int &CondCycles, 760 int &TrueCycles, int &FalseCycles) const { 761 return false; 762 } 763 764 /// Insert a select instruction into MBB before I that will copy TrueReg to 765 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. 766 /// 767 /// This function can only be called after canInsertSelect() returned true. 768 /// The condition in Cond comes from AnalyzeBranch, and it can be assumed 769 /// that the same flags or registers required by Cond are available at the 770 /// insertion point. 771 /// 772 /// @param MBB Block where select instruction should be inserted. 773 /// @param I Insertion point. 774 /// @param DL Source location for debugging. 775 /// @param DstReg Virtual register to be defined by select instruction. 776 /// @param Cond Condition as computed by AnalyzeBranch. 777 /// @param TrueReg Virtual register to copy when Cond is true. 778 /// @param FalseReg Virtual register to copy when Cons is false. insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DstReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg)779 virtual void insertSelect(MachineBasicBlock &MBB, 780 MachineBasicBlock::iterator I, const DebugLoc &DL, 781 unsigned DstReg, ArrayRef<MachineOperand> Cond, 782 unsigned TrueReg, unsigned FalseReg) const { 783 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); 784 } 785 786 /// Analyze the given select instruction, returning true if 787 /// it cannot be understood. It is assumed that MI->isSelect() is true. 788 /// 789 /// When successful, return the controlling condition and the operands that 790 /// determine the true and false result values. 791 /// 792 /// Result = SELECT Cond, TrueOp, FalseOp 793 /// 794 /// Some targets can optimize select instructions, for example by predicating 795 /// the instruction defining one of the operands. Such targets should set 796 /// Optimizable. 797 /// 798 /// @param MI Select instruction to analyze. 799 /// @param Cond Condition controlling the select. 800 /// @param TrueOp Operand number of the value selected when Cond is true. 801 /// @param FalseOp Operand number of the value selected when Cond is false. 802 /// @param Optimizable Returned as true if MI is optimizable. 803 /// @returns False on success. analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)804 virtual bool analyzeSelect(const MachineInstr &MI, 805 SmallVectorImpl<MachineOperand> &Cond, 806 unsigned &TrueOp, unsigned &FalseOp, 807 bool &Optimizable) const { 808 assert(MI.getDesc().isSelect() && "MI must be a select instruction"); 809 return true; 810 } 811 812 /// Given a select instruction that was understood by 813 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by 814 /// merging it with one of its operands. Returns NULL on failure. 815 /// 816 /// When successful, returns the new select instruction. The client is 817 /// responsible for deleting MI. 818 /// 819 /// If both sides of the select can be optimized, PreferFalse is used to pick 820 /// a side. 821 /// 822 /// @param MI Optimizable select instruction. 823 /// @param NewMIs Set that record all MIs in the basic block up to \p 824 /// MI. Has to be updated with any newly created MI or deleted ones. 825 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. 826 /// @returns Optimized instruction or NULL. 827 virtual MachineInstr *optimizeSelect(MachineInstr &MI, 828 SmallPtrSetImpl<MachineInstr *> &NewMIs, 829 bool PreferFalse = false) const { 830 // This function must be implemented if Optimizable is ever set. 831 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); 832 } 833 834 /// Emit instructions to copy a pair of physical registers. 835 /// 836 /// This function should support copies within any legal register class as 837 /// well as any cross-class copies created during instruction selection. 838 /// 839 /// The source and destination registers may overlap, which may require a 840 /// careful implementation when multiple copy instructions are required for 841 /// large registers. See for example the ARM target. copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc)842 virtual void copyPhysReg(MachineBasicBlock &MBB, 843 MachineBasicBlock::iterator MI, const DebugLoc &DL, 844 unsigned DestReg, unsigned SrcReg, 845 bool KillSrc) const { 846 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); 847 } 848 849 protected: 850 /// Target-dependent implemenation for IsCopyInstr. 851 /// If the specific machine instruction is a instruction that moves/copies 852 /// value from one register to another register return true along with 853 /// @Source machine operand and @Destination machine operand. isCopyInstrImpl(const MachineInstr & MI,const MachineOperand * & Source,const MachineOperand * & Destination)854 virtual bool isCopyInstrImpl(const MachineInstr &MI, 855 const MachineOperand *&Source, 856 const MachineOperand *&Destination) const { 857 return false; 858 } 859 860 public: 861 /// If the specific machine instruction is a instruction that moves/copies 862 /// value from one register to another register return true along with 863 /// @Source machine operand and @Destination machine operand. 864 /// For COPY-instruction the method naturally returns true, for all other 865 /// instructions the method calls target-dependent implementation. isCopyInstr(const MachineInstr & MI,const MachineOperand * & Source,const MachineOperand * & Destination)866 bool isCopyInstr(const MachineInstr &MI, const MachineOperand *&Source, 867 const MachineOperand *&Destination) const { 868 if (MI.isCopy()) { 869 Destination = &MI.getOperand(0); 870 Source = &MI.getOperand(1); 871 return true; 872 } 873 return isCopyInstrImpl(MI, Source, Destination); 874 } 875 876 /// Store the specified register of the given register class to the specified 877 /// stack frame index. The store instruction is to be added to the given 878 /// machine basic block before the specified machine instruction. If isKill 879 /// is true, the register operand is the last use and must be marked kill. storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)880 virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 881 MachineBasicBlock::iterator MI, 882 unsigned SrcReg, bool isKill, int FrameIndex, 883 const TargetRegisterClass *RC, 884 const TargetRegisterInfo *TRI) const { 885 llvm_unreachable("Target didn't implement " 886 "TargetInstrInfo::storeRegToStackSlot!"); 887 } 888 889 /// Load the specified register of the given register class from the specified 890 /// stack frame index. The load instruction is to be added to the given 891 /// machine basic block before the specified machine instruction. loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)892 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 893 MachineBasicBlock::iterator MI, 894 unsigned DestReg, int FrameIndex, 895 const TargetRegisterClass *RC, 896 const TargetRegisterInfo *TRI) const { 897 llvm_unreachable("Target didn't implement " 898 "TargetInstrInfo::loadRegFromStackSlot!"); 899 } 900 901 /// This function is called for all pseudo instructions 902 /// that remain after register allocation. Many pseudo instructions are 903 /// created to help register allocation. This is the place to convert them 904 /// into real instructions. The target can edit MI in place, or it can insert 905 /// new instructions and erase MI. The function should return true if 906 /// anything was changed. expandPostRAPseudo(MachineInstr & MI)907 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; } 908 909 /// Check whether the target can fold a load that feeds a subreg operand 910 /// (or a subreg operand that feeds a store). 911 /// For example, X86 may want to return true if it can fold 912 /// movl (%esp), %eax 913 /// subb, %al, ... 914 /// Into: 915 /// subb (%esp), ... 916 /// 917 /// Ideally, we'd like the target implementation of foldMemoryOperand() to 918 /// reject subregs - but since this behavior used to be enforced in the 919 /// target-independent code, moving this responsibility to the targets 920 /// has the potential of causing nasty silent breakage in out-of-tree targets. isSubregFoldable()921 virtual bool isSubregFoldable() const { return false; } 922 923 /// Attempt to fold a load or store of the specified stack 924 /// slot into the specified machine instruction for the specified operand(s). 925 /// If this is possible, a new instruction is returned with the specified 926 /// operand folded, otherwise NULL is returned. 927 /// The new instruction is inserted before MI, and the client is responsible 928 /// for removing the old instruction. 929 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 930 int FI, 931 LiveIntervals *LIS = nullptr) const; 932 933 /// Same as the previous version except it allows folding of any load and 934 /// store from / to any address, not just from a specific stack slot. 935 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 936 MachineInstr &LoadMI, 937 LiveIntervals *LIS = nullptr) const; 938 939 /// Return true when there is potentially a faster code sequence 940 /// for an instruction chain ending in \p Root. All potential patterns are 941 /// returned in the \p Pattern vector. Pattern should be sorted in priority 942 /// order since the pattern evaluator stops checking as soon as it finds a 943 /// faster sequence. 944 /// \param Root - Instruction that could be combined with one of its operands 945 /// \param Patterns - Vector of possible combination patterns 946 virtual bool getMachineCombinerPatterns( 947 MachineInstr &Root, 948 SmallVectorImpl<MachineCombinerPattern> &Patterns) const; 949 950 /// Return true when a code sequence can improve throughput. It 951 /// should be called only for instructions in loops. 952 /// \param Pattern - combiner pattern 953 virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const; 954 955 /// Return true if the input \P Inst is part of a chain of dependent ops 956 /// that are suitable for reassociation, otherwise return false. 957 /// If the instruction's operands must be commuted to have a previous 958 /// instruction of the same type define the first source operand, \P Commuted 959 /// will be set to true. 960 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; 961 962 /// Return true when \P Inst is both associative and commutative. isAssociativeAndCommutative(const MachineInstr & Inst)963 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const { 964 return false; 965 } 966 967 /// Return true when \P Inst has reassociable operands in the same \P MBB. 968 virtual bool hasReassociableOperands(const MachineInstr &Inst, 969 const MachineBasicBlock *MBB) const; 970 971 /// Return true when \P Inst has reassociable sibling. 972 bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const; 973 974 /// When getMachineCombinerPatterns() finds patterns, this function generates 975 /// the instructions that could replace the original code sequence. The client 976 /// has to decide whether the actual replacement is beneficial or not. 977 /// \param Root - Instruction that could be combined with one of its operands 978 /// \param Pattern - Combination pattern for Root 979 /// \param InsInstrs - Vector of new instructions that implement P 980 /// \param DelInstrs - Old instructions, including Root, that could be 981 /// replaced by InsInstr 982 /// \param InstIdxForVirtReg - map of virtual register to instruction in 983 /// InsInstr that defines it 984 virtual void genAlternativeCodeSequence( 985 MachineInstr &Root, MachineCombinerPattern Pattern, 986 SmallVectorImpl<MachineInstr *> &InsInstrs, 987 SmallVectorImpl<MachineInstr *> &DelInstrs, 988 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const; 989 990 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to 991 /// reduce critical path length. 992 void reassociateOps(MachineInstr &Root, MachineInstr &Prev, 993 MachineCombinerPattern Pattern, 994 SmallVectorImpl<MachineInstr *> &InsInstrs, 995 SmallVectorImpl<MachineInstr *> &DelInstrs, 996 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; 997 998 /// This is an architecture-specific helper function of reassociateOps. 999 /// Set special operand attributes for new instructions after reassociation. setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2)1000 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, 1001 MachineInstr &NewMI1, 1002 MachineInstr &NewMI2) const {} 1003 1004 /// Return true when a target supports MachineCombiner. useMachineCombiner()1005 virtual bool useMachineCombiner() const { return false; } 1006 1007 /// Return true if the given SDNode can be copied during scheduling 1008 /// even if it has glue. canCopyGluedNodeDuringSchedule(SDNode * N)1009 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; } 1010 1011 protected: 1012 /// Target-dependent implementation for foldMemoryOperand. 1013 /// Target-independent code in foldMemoryOperand will 1014 /// take care of adding a MachineMemOperand to the newly created instruction. 1015 /// The instruction and any auxiliary instructions necessary will be inserted 1016 /// at InsertPt. 1017 virtual MachineInstr * 1018 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 1019 ArrayRef<unsigned> Ops, 1020 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1021 LiveIntervals *LIS = nullptr) const { 1022 return nullptr; 1023 } 1024 1025 /// Target-dependent implementation for foldMemoryOperand. 1026 /// Target-independent code in foldMemoryOperand will 1027 /// take care of adding a MachineMemOperand to the newly created instruction. 1028 /// The instruction and any auxiliary instructions necessary will be inserted 1029 /// at InsertPt. 1030 virtual MachineInstr *foldMemoryOperandImpl( 1031 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1032 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1033 LiveIntervals *LIS = nullptr) const { 1034 return nullptr; 1035 } 1036 1037 /// Target-dependent implementation of getRegSequenceInputs. 1038 /// 1039 /// \returns true if it is possible to build the equivalent 1040 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. 1041 /// 1042 /// \pre MI.isRegSequenceLike(). 1043 /// 1044 /// \see TargetInstrInfo::getRegSequenceInputs. getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs)1045 virtual bool getRegSequenceLikeInputs( 1046 const MachineInstr &MI, unsigned DefIdx, 1047 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1048 return false; 1049 } 1050 1051 /// Target-dependent implementation of getExtractSubregInputs. 1052 /// 1053 /// \returns true if it is possible to build the equivalent 1054 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 1055 /// 1056 /// \pre MI.isExtractSubregLike(). 1057 /// 1058 /// \see TargetInstrInfo::getExtractSubregInputs. getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg)1059 virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, 1060 unsigned DefIdx, 1061 RegSubRegPairAndIdx &InputReg) const { 1062 return false; 1063 } 1064 1065 /// Target-dependent implementation of getInsertSubregInputs. 1066 /// 1067 /// \returns true if it is possible to build the equivalent 1068 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 1069 /// 1070 /// \pre MI.isInsertSubregLike(). 1071 /// 1072 /// \see TargetInstrInfo::getInsertSubregInputs. 1073 virtual bool getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg)1074 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, 1075 RegSubRegPair &BaseReg, 1076 RegSubRegPairAndIdx &InsertedReg) const { 1077 return false; 1078 } 1079 1080 public: 1081 /// getAddressSpaceForPseudoSourceKind - Given the kind of memory 1082 /// (e.g. stack) the target returns the corresponding address space. 1083 virtual unsigned getAddressSpaceForPseudoSourceKind(unsigned Kind)1084 getAddressSpaceForPseudoSourceKind(unsigned Kind) const { 1085 return 0; 1086 } 1087 1088 /// unfoldMemoryOperand - Separate a single instruction which folded a load or 1089 /// a store or a load and a store into two or more instruction. If this is 1090 /// possible, returns true as well as the new instructions by reference. 1091 virtual bool unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)1092 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, 1093 bool UnfoldLoad, bool UnfoldStore, 1094 SmallVectorImpl<MachineInstr *> &NewMIs) const { 1095 return false; 1096 } 1097 unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)1098 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 1099 SmallVectorImpl<SDNode *> &NewNodes) const { 1100 return false; 1101 } 1102 1103 /// Returns the opcode of the would be new 1104 /// instruction after load / store are unfolded from an instruction of the 1105 /// specified opcode. It returns zero if the specified unfolding is not 1106 /// possible. If LoadRegIndex is non-null, it is filled in with the operand 1107 /// index of the operand which will hold the register holding the loaded 1108 /// value. 1109 virtual unsigned 1110 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, 1111 unsigned *LoadRegIndex = nullptr) const { 1112 return 0; 1113 } 1114 1115 /// This is used by the pre-regalloc scheduler to determine if two loads are 1116 /// loading from the same base address. It should only return true if the base 1117 /// pointers are the same and the only differences between the two addresses 1118 /// are the offset. It also returns the offsets by reference. areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)1119 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1120 int64_t &Offset1, 1121 int64_t &Offset2) const { 1122 return false; 1123 } 1124 1125 /// This is a used by the pre-regalloc scheduler to determine (in conjunction 1126 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. 1127 /// On some targets if two loads are loading from 1128 /// addresses in the same cache line, it's better if they are scheduled 1129 /// together. This function takes two integers that represent the load offsets 1130 /// from the common base address. It returns true if it decides it's desirable 1131 /// to schedule the two loads together. "NumLoads" is the number of loads that 1132 /// have already been scheduled after Load1. shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)1133 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1134 int64_t Offset1, int64_t Offset2, 1135 unsigned NumLoads) const { 1136 return false; 1137 } 1138 1139 /// Get the base operand and byte offset of an instruction that reads/writes 1140 /// memory. getMemOperandWithOffset(MachineInstr & MI,MachineOperand * & BaseOp,int64_t & Offset,const TargetRegisterInfo * TRI)1141 virtual bool getMemOperandWithOffset(MachineInstr &MI, 1142 MachineOperand *&BaseOp, int64_t &Offset, 1143 const TargetRegisterInfo *TRI) const { 1144 return false; 1145 } 1146 1147 /// Return true if the instruction contains a base register and offset. If 1148 /// true, the function also sets the operand position in the instruction 1149 /// for the base register and offset. getBaseAndOffsetPosition(const MachineInstr & MI,unsigned & BasePos,unsigned & OffsetPos)1150 virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, 1151 unsigned &BasePos, 1152 unsigned &OffsetPos) const { 1153 return false; 1154 } 1155 1156 /// If the instruction is an increment of a constant value, return the amount. getIncrementValue(const MachineInstr & MI,int & Value)1157 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const { 1158 return false; 1159 } 1160 1161 /// Returns true if the two given memory operations should be scheduled 1162 /// adjacent. Note that you have to add: 1163 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1164 /// or 1165 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 1166 /// to TargetPassConfig::createMachineScheduler() to have an effect. shouldClusterMemOps(MachineOperand & BaseOp1,MachineOperand & BaseOp2,unsigned NumLoads)1167 virtual bool shouldClusterMemOps(MachineOperand &BaseOp1, 1168 MachineOperand &BaseOp2, 1169 unsigned NumLoads) const { 1170 llvm_unreachable("target did not implement shouldClusterMemOps()"); 1171 } 1172 1173 /// Reverses the branch condition of the specified condition list, 1174 /// returning false on success and true if it cannot be reversed. 1175 virtual bool reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)1176 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1177 return true; 1178 } 1179 1180 /// Insert a noop into the instruction stream at the specified point. 1181 virtual void insertNoop(MachineBasicBlock &MBB, 1182 MachineBasicBlock::iterator MI) const; 1183 1184 /// Return the noop instruction to use for a noop. 1185 virtual void getNoop(MCInst &NopInst) const; 1186 1187 /// Return true for post-incremented instructions. isPostIncrement(const MachineInstr & MI)1188 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; } 1189 1190 /// Returns true if the instruction is already predicated. isPredicated(const MachineInstr & MI)1191 virtual bool isPredicated(const MachineInstr &MI) const { return false; } 1192 1193 /// Returns true if the instruction is a 1194 /// terminator instruction that has not been predicated. 1195 virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const; 1196 1197 /// Returns true if MI is an unconditional tail call. isUnconditionalTailCall(const MachineInstr & MI)1198 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const { 1199 return false; 1200 } 1201 1202 /// Returns true if the tail call can be made conditional on BranchCond. canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1203 virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond, 1204 const MachineInstr &TailCall) const { 1205 return false; 1206 } 1207 1208 /// Replace the conditional branch in MBB with a conditional tail call. replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & Cond,const MachineInstr & TailCall)1209 virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, 1210 SmallVectorImpl<MachineOperand> &Cond, 1211 const MachineInstr &TailCall) const { 1212 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!"); 1213 } 1214 1215 /// Convert the instruction into a predicated instruction. 1216 /// It returns true if the operation was successful. 1217 virtual bool PredicateInstruction(MachineInstr &MI, 1218 ArrayRef<MachineOperand> Pred) const; 1219 1220 /// Returns true if the first specified predicate 1221 /// subsumes the second, e.g. GE subsumes GT. SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2)1222 virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1223 ArrayRef<MachineOperand> Pred2) const { 1224 return false; 1225 } 1226 1227 /// If the specified instruction defines any predicate 1228 /// or condition code register(s) used for predication, returns true as well 1229 /// as the definition predicate(s) by reference. DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred)1230 virtual bool DefinesPredicate(MachineInstr &MI, 1231 std::vector<MachineOperand> &Pred) const { 1232 return false; 1233 } 1234 1235 /// Return true if the specified instruction can be predicated. 1236 /// By default, this returns true for every instruction with a 1237 /// PredicateOperand. isPredicable(const MachineInstr & MI)1238 virtual bool isPredicable(const MachineInstr &MI) const { 1239 return MI.getDesc().isPredicable(); 1240 } 1241 1242 /// Return true if it's safe to move a machine 1243 /// instruction that defines the specified register class. isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)1244 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 1245 return true; 1246 } 1247 1248 /// Test if the given instruction should be considered a scheduling boundary. 1249 /// This primarily includes labels and terminators. 1250 virtual bool isSchedulingBoundary(const MachineInstr &MI, 1251 const MachineBasicBlock *MBB, 1252 const MachineFunction &MF) const; 1253 1254 /// Measure the specified inline asm to determine an approximation of its 1255 /// length. 1256 virtual unsigned getInlineAsmLength(const char *Str, 1257 const MCAsmInfo &MAI) const; 1258 1259 /// Allocate and return a hazard recognizer to use for this target when 1260 /// scheduling the machine instructions before register allocation. 1261 virtual ScheduleHazardRecognizer * 1262 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1263 const ScheduleDAG *DAG) const; 1264 1265 /// Allocate and return a hazard recognizer to use for this target when 1266 /// scheduling the machine instructions before register allocation. 1267 virtual ScheduleHazardRecognizer * 1268 CreateTargetMIHazardRecognizer(const InstrItineraryData *, 1269 const ScheduleDAG *DAG) const; 1270 1271 /// Allocate and return a hazard recognizer to use for this target when 1272 /// scheduling the machine instructions after register allocation. 1273 virtual ScheduleHazardRecognizer * 1274 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, 1275 const ScheduleDAG *DAG) const; 1276 1277 /// Allocate and return a hazard recognizer to use for by non-scheduling 1278 /// passes. 1279 virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const MachineFunction & MF)1280 CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 1281 return nullptr; 1282 } 1283 1284 /// Provide a global flag for disabling the PreRA hazard recognizer that 1285 /// targets may choose to honor. 1286 bool usePreRAHazardRecognizer() const; 1287 1288 /// For a comparison instruction, return the source registers 1289 /// in SrcReg and SrcReg2 if having two register operands, and the value it 1290 /// compares against in CmpValue. Return true if the comparison instruction 1291 /// can be analyzed. analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value)1292 virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1293 unsigned &SrcReg2, int &Mask, int &Value) const { 1294 return false; 1295 } 1296 1297 /// See if the comparison instruction can be converted 1298 /// into something more efficient. E.g., on ARM most instructions can set the 1299 /// flags register, obviating the need for a separate CMP. optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI)1300 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1301 unsigned SrcReg2, int Mask, int Value, 1302 const MachineRegisterInfo *MRI) const { 1303 return false; 1304 } optimizeCondBranch(MachineInstr & MI)1305 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; } 1306 1307 /// Try to remove the load by folding it to a register operand at the use. 1308 /// We fold the load instructions if and only if the 1309 /// def and use are in the same BB. We only look at one load and see 1310 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register 1311 /// defined by the load we are trying to fold. DefMI returns the machine 1312 /// instruction that defines FoldAsLoadDefReg, and the function returns 1313 /// the machine instruction generated due to folding. optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI)1314 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI, 1315 const MachineRegisterInfo *MRI, 1316 unsigned &FoldAsLoadDefReg, 1317 MachineInstr *&DefMI) const { 1318 return nullptr; 1319 } 1320 1321 /// 'Reg' is known to be defined by a move immediate instruction, 1322 /// try to fold the immediate into the use instruction. 1323 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, 1324 /// then the caller may assume that DefMI has been erased from its parent 1325 /// block. The caller may assume that it will not be erased by this 1326 /// function otherwise. FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI)1327 virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1328 unsigned Reg, MachineRegisterInfo *MRI) const { 1329 return false; 1330 } 1331 1332 /// Return the number of u-operations the given machine 1333 /// instruction will be decoded to on the target cpu. The itinerary's 1334 /// IssueWidth is the number of microops that can be dispatched each 1335 /// cycle. An instruction with zero microops takes no dispatch resources. 1336 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, 1337 const MachineInstr &MI) const; 1338 1339 /// Return true for pseudo instructions that don't consume any 1340 /// machine resources in their current form. These are common cases that the 1341 /// scheduler should consider free, rather than conservatively handling them 1342 /// as instructions with no itinerary. isZeroCost(unsigned Opcode)1343 bool isZeroCost(unsigned Opcode) const { 1344 return Opcode <= TargetOpcode::COPY; 1345 } 1346 1347 virtual int getOperandLatency(const InstrItineraryData *ItinData, 1348 SDNode *DefNode, unsigned DefIdx, 1349 SDNode *UseNode, unsigned UseIdx) const; 1350 1351 /// Compute and return the use operand latency of a given pair of def and use. 1352 /// In most cases, the static scheduling itinerary was enough to determine the 1353 /// operand latency. But it may not be possible for instructions with variable 1354 /// number of defs / uses. 1355 /// 1356 /// This is a raw interface to the itinerary that may be directly overridden 1357 /// by a target. Use computeOperandLatency to get the best estimate of 1358 /// latency. 1359 virtual int getOperandLatency(const InstrItineraryData *ItinData, 1360 const MachineInstr &DefMI, unsigned DefIdx, 1361 const MachineInstr &UseMI, 1362 unsigned UseIdx) const; 1363 1364 /// Compute the instruction latency of a given instruction. 1365 /// If the instruction has higher cost when predicated, it's returned via 1366 /// PredCost. 1367 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, 1368 const MachineInstr &MI, 1369 unsigned *PredCost = nullptr) const; 1370 1371 virtual unsigned getPredicationCost(const MachineInstr &MI) const; 1372 1373 virtual int getInstrLatency(const InstrItineraryData *ItinData, 1374 SDNode *Node) const; 1375 1376 /// Return the default expected latency for a def based on its opcode. 1377 unsigned defaultDefLatency(const MCSchedModel &SchedModel, 1378 const MachineInstr &DefMI) const; 1379 1380 int computeDefOperandLatency(const InstrItineraryData *ItinData, 1381 const MachineInstr &DefMI) const; 1382 1383 /// Return true if this opcode has high latency to its result. isHighLatencyDef(int opc)1384 virtual bool isHighLatencyDef(int opc) const { return false; } 1385 1386 /// Compute operand latency between a def of 'Reg' 1387 /// and a use in the current loop. Return true if the target considered 1388 /// it 'high'. This is used by optimization passes such as machine LICM to 1389 /// determine whether it makes sense to hoist an instruction out even in a 1390 /// high register pressure situation. hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx)1391 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, 1392 const MachineRegisterInfo *MRI, 1393 const MachineInstr &DefMI, unsigned DefIdx, 1394 const MachineInstr &UseMI, 1395 unsigned UseIdx) const { 1396 return false; 1397 } 1398 1399 /// Compute operand latency of a def of 'Reg'. Return true 1400 /// if the target considered it 'low'. 1401 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, 1402 const MachineInstr &DefMI, 1403 unsigned DefIdx) const; 1404 1405 /// Perform target-specific instruction verification. verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo)1406 virtual bool verifyInstruction(const MachineInstr &MI, 1407 StringRef &ErrInfo) const { 1408 return true; 1409 } 1410 1411 /// Return the current execution domain and bit mask of 1412 /// possible domains for instruction. 1413 /// 1414 /// Some micro-architectures have multiple execution domains, and multiple 1415 /// opcodes that perform the same operation in different domains. For 1416 /// example, the x86 architecture provides the por, orps, and orpd 1417 /// instructions that all do the same thing. There is a latency penalty if a 1418 /// register is written in one domain and read in another. 1419 /// 1420 /// This function returns a pair (domain, mask) containing the execution 1421 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain 1422 /// function can be used to change the opcode to one of the domains in the 1423 /// bit mask. Instructions whose execution domain can't be changed should 1424 /// return a 0 mask. 1425 /// 1426 /// The execution domain numbers don't have any special meaning except domain 1427 /// 0 is used for instructions that are not associated with any interesting 1428 /// execution domain. 1429 /// 1430 virtual std::pair<uint16_t, uint16_t> getExecutionDomain(const MachineInstr & MI)1431 getExecutionDomain(const MachineInstr &MI) const { 1432 return std::make_pair(0, 0); 1433 } 1434 1435 /// Change the opcode of MI to execute in Domain. 1436 /// 1437 /// The bit (1 << Domain) must be set in the mask returned from 1438 /// getExecutionDomain(MI). setExecutionDomain(MachineInstr & MI,unsigned Domain)1439 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {} 1440 1441 /// Returns the preferred minimum clearance 1442 /// before an instruction with an unwanted partial register update. 1443 /// 1444 /// Some instructions only write part of a register, and implicitly need to 1445 /// read the other parts of the register. This may cause unwanted stalls 1446 /// preventing otherwise unrelated instructions from executing in parallel in 1447 /// an out-of-order CPU. 1448 /// 1449 /// For example, the x86 instruction cvtsi2ss writes its result to bits 1450 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so 1451 /// the instruction needs to wait for the old value of the register to become 1452 /// available: 1453 /// 1454 /// addps %xmm1, %xmm0 1455 /// movaps %xmm0, (%rax) 1456 /// cvtsi2ss %rbx, %xmm0 1457 /// 1458 /// In the code above, the cvtsi2ss instruction needs to wait for the addps 1459 /// instruction before it can issue, even though the high bits of %xmm0 1460 /// probably aren't needed. 1461 /// 1462 /// This hook returns the preferred clearance before MI, measured in 1463 /// instructions. Other defs of MI's operand OpNum are avoided in the last N 1464 /// instructions before MI. It should only return a positive value for 1465 /// unwanted dependencies. If the old bits of the defined register have 1466 /// useful values, or if MI is determined to otherwise read the dependency, 1467 /// the hook should return 0. 1468 /// 1469 /// The unwanted dependency may be handled by: 1470 /// 1471 /// 1. Allocating the same register for an MI def and use. That makes the 1472 /// unwanted dependency identical to a required dependency. 1473 /// 1474 /// 2. Allocating a register for the def that has no defs in the previous N 1475 /// instructions. 1476 /// 1477 /// 3. Calling breakPartialRegDependency() with the same arguments. This 1478 /// allows the target to insert a dependency breaking instruction. 1479 /// 1480 virtual unsigned getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1481 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, 1482 const TargetRegisterInfo *TRI) const { 1483 // The default implementation returns 0 for no partial register dependency. 1484 return 0; 1485 } 1486 1487 /// Return the minimum clearance before an instruction that reads an 1488 /// unused register. 1489 /// 1490 /// For example, AVX instructions may copy part of a register operand into 1491 /// the unused high bits of the destination register. 1492 /// 1493 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 1494 /// 1495 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a 1496 /// false dependence on any previous write to %xmm0. 1497 /// 1498 /// This hook works similarly to getPartialRegUpdateClearance, except that it 1499 /// does not take an operand index. Instead sets \p OpNum to the index of the 1500 /// unused register. getUndefRegClearance(const MachineInstr & MI,unsigned & OpNum,const TargetRegisterInfo * TRI)1501 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, 1502 const TargetRegisterInfo *TRI) const { 1503 // The default implementation returns 0 for no undef register dependency. 1504 return 0; 1505 } 1506 1507 /// Insert a dependency-breaking instruction 1508 /// before MI to eliminate an unwanted dependency on OpNum. 1509 /// 1510 /// If it wasn't possible to avoid a def in the last N instructions before MI 1511 /// (see getPartialRegUpdateClearance), this hook will be called to break the 1512 /// unwanted dependency. 1513 /// 1514 /// On x86, an xorps instruction can be used as a dependency breaker: 1515 /// 1516 /// addps %xmm1, %xmm0 1517 /// movaps %xmm0, (%rax) 1518 /// xorps %xmm0, %xmm0 1519 /// cvtsi2ss %rbx, %xmm0 1520 /// 1521 /// An <imp-kill> operand should be added to MI if an instruction was 1522 /// inserted. This ties the instructions together in the post-ra scheduler. 1523 /// breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1524 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, 1525 const TargetRegisterInfo *TRI) const {} 1526 1527 /// Create machine specific model for scheduling. 1528 virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &)1529 CreateTargetScheduleState(const TargetSubtargetInfo &) const { 1530 return nullptr; 1531 } 1532 1533 /// Sometimes, it is possible for the target 1534 /// to tell, even without aliasing information, that two MIs access different 1535 /// memory addresses. This function returns true if two MIs access different 1536 /// memory addresses and false otherwise. 1537 /// 1538 /// Assumes any physical registers used to compute addresses have the same 1539 /// value for both instructions. (This is the most useful assumption for 1540 /// post-RA scheduling.) 1541 /// 1542 /// See also MachineInstr::mayAlias, which is implemented on top of this 1543 /// function. 1544 virtual bool 1545 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, 1546 AliasAnalysis *AA = nullptr) const { 1547 assert((MIa.mayLoad() || MIa.mayStore()) && 1548 "MIa must load from or modify a memory location"); 1549 assert((MIb.mayLoad() || MIb.mayStore()) && 1550 "MIb must load from or modify a memory location"); 1551 return false; 1552 } 1553 1554 /// Return the value to use for the MachineCSE's LookAheadLimit, 1555 /// which is a heuristic used for CSE'ing phys reg defs. getMachineCSELookAheadLimit()1556 virtual unsigned getMachineCSELookAheadLimit() const { 1557 // The default lookahead is small to prevent unprofitable quadratic 1558 // behavior. 1559 return 5; 1560 } 1561 1562 /// Return an array that contains the ids of the target indices (used for the 1563 /// TargetIndex machine operand) and their names. 1564 /// 1565 /// MIR Serialization is able to serialize only the target indices that are 1566 /// defined by this method. 1567 virtual ArrayRef<std::pair<int, const char *>> getSerializableTargetIndices()1568 getSerializableTargetIndices() const { 1569 return None; 1570 } 1571 1572 /// Decompose the machine operand's target flags into two values - the direct 1573 /// target flag value and any of bit flags that are applied. 1574 virtual std::pair<unsigned, unsigned> decomposeMachineOperandsTargetFlags(unsigned)1575 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { 1576 return std::make_pair(0u, 0u); 1577 } 1578 1579 /// Return an array that contains the direct target flag values and their 1580 /// names. 1581 /// 1582 /// MIR Serialization is able to serialize only the target flags that are 1583 /// defined by this method. 1584 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableDirectMachineOperandTargetFlags()1585 getSerializableDirectMachineOperandTargetFlags() const { 1586 return None; 1587 } 1588 1589 /// Return an array that contains the bitmask target flag values and their 1590 /// names. 1591 /// 1592 /// MIR Serialization is able to serialize only the target flags that are 1593 /// defined by this method. 1594 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableBitmaskMachineOperandTargetFlags()1595 getSerializableBitmaskMachineOperandTargetFlags() const { 1596 return None; 1597 } 1598 1599 /// Return an array that contains the MMO target flag values and their 1600 /// names. 1601 /// 1602 /// MIR Serialization is able to serialize only the MMO target flags that are 1603 /// defined by this method. 1604 virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> getSerializableMachineMemOperandTargetFlags()1605 getSerializableMachineMemOperandTargetFlags() const { 1606 return None; 1607 } 1608 1609 /// Determines whether \p Inst is a tail call instruction. Override this 1610 /// method on targets that do not properly set MCID::Return and MCID::Call on 1611 /// tail call instructions." isTailCall(const MachineInstr & Inst)1612 virtual bool isTailCall(const MachineInstr &Inst) const { 1613 return Inst.isReturn() && Inst.isCall(); 1614 } 1615 1616 /// True if the instruction is bound to the top of its basic block and no 1617 /// other instructions shall be inserted before it. This can be implemented 1618 /// to prevent register allocator to insert spills before such instructions. isBasicBlockPrologue(const MachineInstr & MI)1619 virtual bool isBasicBlockPrologue(const MachineInstr &MI) const { 1620 return false; 1621 } 1622 1623 /// Returns a \p outliner::OutlinedFunction struct containing target-specific 1624 /// information for a set of outlining candidates. getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs)1625 virtual outliner::OutlinedFunction getOutliningCandidateInfo( 1626 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 1627 llvm_unreachable( 1628 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!"); 1629 } 1630 1631 /// Returns how or if \p MI should be outlined. 1632 virtual outliner::InstrType getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags)1633 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { 1634 llvm_unreachable( 1635 "Target didn't implement TargetInstrInfo::getOutliningType!"); 1636 } 1637 1638 /// Optional target hook that returns true if \p MBB is safe to outline from, 1639 /// and returns any target-specific information in \p Flags. isMBBSafeToOutlineFrom(MachineBasicBlock & MBB,unsigned & Flags)1640 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 1641 unsigned &Flags) const { 1642 return true; 1643 } 1644 1645 /// Insert a custom frame for outlined functions. buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF)1646 virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, 1647 const outliner::OutlinedFunction &OF) const { 1648 llvm_unreachable( 1649 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!"); 1650 } 1651 1652 /// Insert a call to an outlined function into the program. 1653 /// Returns an iterator to the spot where we inserted the call. This must be 1654 /// implemented by the target. 1655 virtual MachineBasicBlock::iterator insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,const outliner::Candidate & C)1656 insertOutlinedCall(Module &M, MachineBasicBlock &MBB, 1657 MachineBasicBlock::iterator &It, MachineFunction &MF, 1658 const outliner::Candidate &C) const { 1659 llvm_unreachable( 1660 "Target didn't implement TargetInstrInfo::insertOutlinedCall!"); 1661 } 1662 1663 /// Return true if the function can safely be outlined from. 1664 /// A function \p MF is considered safe for outlining if an outlined function 1665 /// produced from instructions in F will produce a program which produces the 1666 /// same output for any set of given inputs. isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs)1667 virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, 1668 bool OutlineFromLinkOnceODRs) const { 1669 llvm_unreachable("Target didn't implement " 1670 "TargetInstrInfo::isFunctionSafeToOutlineFrom!"); 1671 } 1672 1673 /// Return true if the function should be outlined from by default. shouldOutlineFromFunctionByDefault(MachineFunction & MF)1674 virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const { 1675 return false; 1676 } 1677 1678 private: 1679 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; 1680 unsigned CatchRetOpcode; 1681 unsigned ReturnOpcode; 1682 }; 1683 1684 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. 1685 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { 1686 using RegInfo = DenseMapInfo<unsigned>; 1687 1688 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { 1689 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), 1690 RegInfo::getEmptyKey()); 1691 } 1692 1693 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { 1694 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), 1695 RegInfo::getTombstoneKey()); 1696 } 1697 1698 /// Reuse getHashValue implementation from 1699 /// std::pair<unsigned, unsigned>. 1700 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { 1701 std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg); 1702 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); 1703 } 1704 1705 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, 1706 const TargetInstrInfo::RegSubRegPair &RHS) { 1707 return RegInfo::isEqual(LHS.Reg, RHS.Reg) && 1708 RegInfo::isEqual(LHS.SubReg, RHS.SubReg); 1709 } 1710 }; 1711 1712 } // end namespace llvm 1713 1714 #endif // LLVM_TARGET_TARGETINSTRINFO_H 1715