1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1990 William Jolitz.
5 * Copyright (c) 1991 The Regents of the University of California.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)npx.c 7.2 (Berkeley) 5/12/91
33 */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/domainset.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/sysctl.h>
50 #include <sys/sysent.h>
51 #include <machine/bus.h>
52 #include <sys/rman.h>
53 #include <sys/signalvar.h>
54 #include <vm/uma.h>
55
56 #include <machine/cputypes.h>
57 #include <machine/frame.h>
58 #include <machine/intr_machdep.h>
59 #include <machine/md_var.h>
60 #include <machine/pcb.h>
61 #include <machine/psl.h>
62 #include <machine/resource.h>
63 #include <machine/specialreg.h>
64 #include <machine/segments.h>
65 #include <machine/ucontext.h>
66 #include <x86/ifunc.h>
67
68 /*
69 * Floating point support.
70 */
71
72 #if defined(__GNUCLIKE_ASM) && !defined(lint)
73
74 #define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw))
75 #define fnclex() __asm __volatile("fnclex")
76 #define fninit() __asm __volatile("fninit")
77 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr)))
78 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr)))
79 #define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr)))
80 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr)))
81 #define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr))
82 #define stmxcsr(addr) __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
83
84 static __inline void
xrstor32(char * addr,uint64_t mask)85 xrstor32(char *addr, uint64_t mask)
86 {
87 uint32_t low, hi;
88
89 low = mask;
90 hi = mask >> 32;
91 __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
92 }
93
94 static __inline void
xrstor64(char * addr,uint64_t mask)95 xrstor64(char *addr, uint64_t mask)
96 {
97 uint32_t low, hi;
98
99 low = mask;
100 hi = mask >> 32;
101 __asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
102 }
103
104 static __inline void
xsave32(char * addr,uint64_t mask)105 xsave32(char *addr, uint64_t mask)
106 {
107 uint32_t low, hi;
108
109 low = mask;
110 hi = mask >> 32;
111 __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
112 "memory");
113 }
114
115 static __inline void
xsave64(char * addr,uint64_t mask)116 xsave64(char *addr, uint64_t mask)
117 {
118 uint32_t low, hi;
119
120 low = mask;
121 hi = mask >> 32;
122 __asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
123 "memory");
124 }
125
126 static __inline void
xsaveopt32(char * addr,uint64_t mask)127 xsaveopt32(char *addr, uint64_t mask)
128 {
129 uint32_t low, hi;
130
131 low = mask;
132 hi = mask >> 32;
133 __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
134 "memory");
135 }
136
137 static __inline void
xsaveopt64(char * addr,uint64_t mask)138 xsaveopt64(char *addr, uint64_t mask)
139 {
140 uint32_t low, hi;
141
142 low = mask;
143 hi = mask >> 32;
144 __asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
145 "memory");
146 }
147
148 #else /* !(__GNUCLIKE_ASM && !lint) */
149
150 void fldcw(u_short cw);
151 void fnclex(void);
152 void fninit(void);
153 void fnstcw(caddr_t addr);
154 void fnstsw(caddr_t addr);
155 void fxsave(caddr_t addr);
156 void fxrstor(caddr_t addr);
157 void ldmxcsr(u_int csr);
158 void stmxcsr(u_int *csr);
159 void xrstor32(char *addr, uint64_t mask);
160 void xrstor64(char *addr, uint64_t mask);
161 void xsave32(char *addr, uint64_t mask);
162 void xsave64(char *addr, uint64_t mask);
163 void xsaveopt32(char *addr, uint64_t mask);
164 void xsaveopt64(char *addr, uint64_t mask);
165
166 #endif /* __GNUCLIKE_ASM && !lint */
167
168 #define start_emulating() load_cr0(rcr0() | CR0_TS)
169 #define stop_emulating() clts()
170
171 CTASSERT(sizeof(struct savefpu) == 512);
172 CTASSERT(sizeof(struct xstate_hdr) == 64);
173 CTASSERT(sizeof(struct savefpu_ymm) == 832);
174
175 /*
176 * This requirement is to make it easier for asm code to calculate
177 * offset of the fpu save area from the pcb address. FPU save area
178 * must be 64-byte aligned.
179 */
180 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
181
182 /*
183 * Ensure the copy of XCR0 saved in a core is contained in the padding
184 * area.
185 */
186 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
187 X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
188
189 static void fpu_clean_state(void);
190
191 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
192 SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
193
194 int use_xsave; /* non-static for cpu_switch.S */
195 uint64_t xsave_mask; /* the same */
196 static uma_zone_t fpu_save_area_zone;
197 static struct savefpu *fpu_initialstate;
198
199 static struct xsave_area_elm_descr {
200 u_int offset;
201 u_int size;
202 } *xsave_area_desc;
203
204 static void
fpusave_xsaveopt64(void * addr)205 fpusave_xsaveopt64(void *addr)
206 {
207 xsaveopt64((char *)addr, xsave_mask);
208 }
209
210 static void
fpusave_xsaveopt3264(void * addr)211 fpusave_xsaveopt3264(void *addr)
212 {
213 if (SV_CURPROC_FLAG(SV_ILP32))
214 xsaveopt32((char *)addr, xsave_mask);
215 else
216 xsaveopt64((char *)addr, xsave_mask);
217 }
218
219 static void
fpusave_xsave64(void * addr)220 fpusave_xsave64(void *addr)
221 {
222 xsave64((char *)addr, xsave_mask);
223 }
224
225 static void
fpusave_xsave3264(void * addr)226 fpusave_xsave3264(void *addr)
227 {
228 if (SV_CURPROC_FLAG(SV_ILP32))
229 xsave32((char *)addr, xsave_mask);
230 else
231 xsave64((char *)addr, xsave_mask);
232 }
233
234 static void
fpurestore_xrstor64(void * addr)235 fpurestore_xrstor64(void *addr)
236 {
237 xrstor64((char *)addr, xsave_mask);
238 }
239
240 static void
fpurestore_xrstor3264(void * addr)241 fpurestore_xrstor3264(void *addr)
242 {
243 if (SV_CURPROC_FLAG(SV_ILP32))
244 xrstor32((char *)addr, xsave_mask);
245 else
246 xrstor64((char *)addr, xsave_mask);
247 }
248
249 static void
fpusave_fxsave(void * addr)250 fpusave_fxsave(void *addr)
251 {
252
253 fxsave((char *)addr);
254 }
255
256 static void
fpurestore_fxrstor(void * addr)257 fpurestore_fxrstor(void *addr)
258 {
259
260 fxrstor((char *)addr);
261 }
262
263 static void
init_xsave(void)264 init_xsave(void)
265 {
266
267 if (use_xsave)
268 return;
269 if ((cpu_feature2 & CPUID2_XSAVE) == 0)
270 return;
271 use_xsave = 1;
272 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
273 }
274
275 DEFINE_IFUNC(, void, fpusave, (void *))
276 {
277
278 init_xsave();
279 if (!use_xsave)
280 return (fpusave_fxsave);
281 if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
282 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
283 fpusave_xsaveopt64 : fpusave_xsaveopt3264);
284 }
285 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
286 fpusave_xsave64 : fpusave_xsave3264);
287 }
288
289 DEFINE_IFUNC(, void, fpurestore, (void *))
290 {
291
292 init_xsave();
293 if (!use_xsave)
294 return (fpurestore_fxrstor);
295 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
296 fpurestore_xrstor64 : fpurestore_xrstor3264);
297 }
298
299 void
fpususpend(void * addr)300 fpususpend(void *addr)
301 {
302 u_long cr0;
303
304 cr0 = rcr0();
305 stop_emulating();
306 fpusave(addr);
307 load_cr0(cr0);
308 }
309
310 void
fpuresume(void * addr)311 fpuresume(void *addr)
312 {
313 u_long cr0;
314
315 cr0 = rcr0();
316 stop_emulating();
317 fninit();
318 if (use_xsave)
319 load_xcr(XCR0, xsave_mask);
320 fpurestore(addr);
321 load_cr0(cr0);
322 }
323
324 /*
325 * Enable XSAVE if supported and allowed by user.
326 * Calculate the xsave_mask.
327 */
328 static void
fpuinit_bsp1(void)329 fpuinit_bsp1(void)
330 {
331 u_int cp[4];
332 uint64_t xsave_mask_user;
333 bool old_wp;
334
335 if (!use_xsave)
336 return;
337 cpuid_count(0xd, 0x0, cp);
338 xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
339 if ((cp[0] & xsave_mask) != xsave_mask)
340 panic("CPU0 does not support X87 or SSE: %x", cp[0]);
341 xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
342 xsave_mask_user = xsave_mask;
343 TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
344 xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
345 xsave_mask &= xsave_mask_user;
346 if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
347 xsave_mask &= ~XFEATURE_AVX512;
348 if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
349 xsave_mask &= ~XFEATURE_MPX;
350
351 cpuid_count(0xd, 0x1, cp);
352 if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
353 /*
354 * Patch the XSAVE instruction in the cpu_switch code
355 * to XSAVEOPT. We assume that XSAVE encoding used
356 * REX byte, and set the bit 4 of the r/m byte.
357 *
358 * It seems that some BIOSes give control to the OS
359 * with CR0.WP already set, making the kernel text
360 * read-only before cpu_startup().
361 */
362 old_wp = disable_wp();
363 ctx_switch_xsave32[3] |= 0x10;
364 ctx_switch_xsave[3] |= 0x10;
365 restore_wp(old_wp);
366 }
367 }
368
369 /*
370 * Calculate the fpu save area size.
371 */
372 static void
fpuinit_bsp2(void)373 fpuinit_bsp2(void)
374 {
375 u_int cp[4];
376
377 if (use_xsave) {
378 cpuid_count(0xd, 0x0, cp);
379 cpu_max_ext_state_size = cp[1];
380
381 /*
382 * Reload the cpu_feature2, since we enabled OSXSAVE.
383 */
384 do_cpuid(1, cp);
385 cpu_feature2 = cp[2];
386 } else
387 cpu_max_ext_state_size = sizeof(struct savefpu);
388 }
389
390 /*
391 * Initialize the floating point unit.
392 */
393 void
fpuinit(void)394 fpuinit(void)
395 {
396 register_t saveintr;
397 u_int mxcsr;
398 u_short control;
399
400 if (IS_BSP())
401 fpuinit_bsp1();
402
403 if (use_xsave) {
404 load_cr4(rcr4() | CR4_XSAVE);
405 load_xcr(XCR0, xsave_mask);
406 }
407
408 /*
409 * XCR0 shall be set up before CPU can report the save area size.
410 */
411 if (IS_BSP())
412 fpuinit_bsp2();
413
414 /*
415 * It is too early for critical_enter() to work on AP.
416 */
417 saveintr = intr_disable();
418 stop_emulating();
419 fninit();
420 control = __INITIAL_FPUCW__;
421 fldcw(control);
422 mxcsr = __INITIAL_MXCSR__;
423 ldmxcsr(mxcsr);
424 start_emulating();
425 intr_restore(saveintr);
426 }
427
428 /*
429 * On the boot CPU we generate a clean state that is used to
430 * initialize the floating point unit when it is first used by a
431 * process.
432 */
433 static void
fpuinitstate(void * arg __unused)434 fpuinitstate(void *arg __unused)
435 {
436 uint64_t *xstate_bv;
437 register_t saveintr;
438 int cp[4], i, max_ext_n;
439
440 /* Do potentially blocking operations before disabling interrupts. */
441 fpu_save_area_zone = uma_zcreate("FPU_save_area",
442 cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
443 XSAVE_AREA_ALIGN - 1, 0);
444 fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
445 if (use_xsave) {
446 max_ext_n = flsl(xsave_mask);
447 xsave_area_desc = malloc(max_ext_n * sizeof(struct
448 xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
449 }
450
451 saveintr = intr_disable();
452 stop_emulating();
453
454 fpusave_fxsave(fpu_initialstate);
455 if (fpu_initialstate->sv_env.en_mxcsr_mask)
456 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
457 else
458 cpu_mxcsr_mask = 0xFFBF;
459
460 /*
461 * The fninit instruction does not modify XMM registers or x87
462 * registers (MM/ST). The fpusave call dumped the garbage
463 * contained in the registers after reset to the initial state
464 * saved. Clear XMM and x87 registers file image to make the
465 * startup program state and signal handler XMM/x87 register
466 * content predictable.
467 */
468 bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
469 bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
470
471 /*
472 * Create a table describing the layout of the CPU Extended
473 * Save Area.
474 */
475 if (use_xsave) {
476 xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
477 offsetof(struct xstate_hdr, xstate_bv));
478 *xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
479
480 /* x87 state */
481 xsave_area_desc[0].offset = 0;
482 xsave_area_desc[0].size = 160;
483 /* XMM */
484 xsave_area_desc[1].offset = 160;
485 xsave_area_desc[1].size = 288 - 160;
486
487 for (i = 2; i < max_ext_n; i++) {
488 cpuid_count(0xd, i, cp);
489 xsave_area_desc[i].offset = cp[1];
490 xsave_area_desc[i].size = cp[0];
491 }
492 }
493
494 start_emulating();
495 intr_restore(saveintr);
496 }
497 /* EFIRT needs this to be initialized before we can enter our EFI environment */
498 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL);
499
500 /*
501 * Free coprocessor (if we have it).
502 */
503 void
fpuexit(struct thread * td)504 fpuexit(struct thread *td)
505 {
506
507 critical_enter();
508 if (curthread == PCPU_GET(fpcurthread)) {
509 stop_emulating();
510 fpusave(curpcb->pcb_save);
511 start_emulating();
512 PCPU_SET(fpcurthread, NULL);
513 }
514 critical_exit();
515 }
516
517 int
fpuformat(void)518 fpuformat(void)
519 {
520
521 return (_MC_FPFMT_XMM);
522 }
523
524 /*
525 * The following mechanism is used to ensure that the FPE_... value
526 * that is passed as a trapcode to the signal handler of the user
527 * process does not have more than one bit set.
528 *
529 * Multiple bits may be set if the user process modifies the control
530 * word while a status word bit is already set. While this is a sign
531 * of bad coding, we have no choise than to narrow them down to one
532 * bit, since we must not send a trapcode that is not exactly one of
533 * the FPE_ macros.
534 *
535 * The mechanism has a static table with 127 entries. Each combination
536 * of the 7 FPU status word exception bits directly translates to a
537 * position in this table, where a single FPE_... value is stored.
538 * This FPE_... value stored there is considered the "most important"
539 * of the exception bits and will be sent as the signal code. The
540 * precedence of the bits is based upon Intel Document "Numerical
541 * Applications", Chapter "Special Computational Situations".
542 *
543 * The macro to choose one of these values does these steps: 1) Throw
544 * away status word bits that cannot be masked. 2) Throw away the bits
545 * currently masked in the control word, assuming the user isn't
546 * interested in them anymore. 3) Reinsert status word bit 7 (stack
547 * fault) if it is set, which cannot be masked but must be presered.
548 * 4) Use the remaining bits to point into the trapcode table.
549 *
550 * The 6 maskable bits in order of their preference, as stated in the
551 * above referenced Intel manual:
552 * 1 Invalid operation (FP_X_INV)
553 * 1a Stack underflow
554 * 1b Stack overflow
555 * 1c Operand of unsupported format
556 * 1d SNaN operand.
557 * 2 QNaN operand (not an exception, irrelavant here)
558 * 3 Any other invalid-operation not mentioned above or zero divide
559 * (FP_X_INV, FP_X_DZ)
560 * 4 Denormal operand (FP_X_DNML)
561 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL)
562 * 6 Inexact result (FP_X_IMP)
563 */
564 static char fpetable[128] = {
565 0,
566 FPE_FLTINV, /* 1 - INV */
567 FPE_FLTUND, /* 2 - DNML */
568 FPE_FLTINV, /* 3 - INV | DNML */
569 FPE_FLTDIV, /* 4 - DZ */
570 FPE_FLTINV, /* 5 - INV | DZ */
571 FPE_FLTDIV, /* 6 - DNML | DZ */
572 FPE_FLTINV, /* 7 - INV | DNML | DZ */
573 FPE_FLTOVF, /* 8 - OFL */
574 FPE_FLTINV, /* 9 - INV | OFL */
575 FPE_FLTUND, /* A - DNML | OFL */
576 FPE_FLTINV, /* B - INV | DNML | OFL */
577 FPE_FLTDIV, /* C - DZ | OFL */
578 FPE_FLTINV, /* D - INV | DZ | OFL */
579 FPE_FLTDIV, /* E - DNML | DZ | OFL */
580 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */
581 FPE_FLTUND, /* 10 - UFL */
582 FPE_FLTINV, /* 11 - INV | UFL */
583 FPE_FLTUND, /* 12 - DNML | UFL */
584 FPE_FLTINV, /* 13 - INV | DNML | UFL */
585 FPE_FLTDIV, /* 14 - DZ | UFL */
586 FPE_FLTINV, /* 15 - INV | DZ | UFL */
587 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */
588 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */
589 FPE_FLTOVF, /* 18 - OFL | UFL */
590 FPE_FLTINV, /* 19 - INV | OFL | UFL */
591 FPE_FLTUND, /* 1A - DNML | OFL | UFL */
592 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */
593 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */
594 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */
595 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */
596 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */
597 FPE_FLTRES, /* 20 - IMP */
598 FPE_FLTINV, /* 21 - INV | IMP */
599 FPE_FLTUND, /* 22 - DNML | IMP */
600 FPE_FLTINV, /* 23 - INV | DNML | IMP */
601 FPE_FLTDIV, /* 24 - DZ | IMP */
602 FPE_FLTINV, /* 25 - INV | DZ | IMP */
603 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */
604 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */
605 FPE_FLTOVF, /* 28 - OFL | IMP */
606 FPE_FLTINV, /* 29 - INV | OFL | IMP */
607 FPE_FLTUND, /* 2A - DNML | OFL | IMP */
608 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */
609 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */
610 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */
611 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */
612 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */
613 FPE_FLTUND, /* 30 - UFL | IMP */
614 FPE_FLTINV, /* 31 - INV | UFL | IMP */
615 FPE_FLTUND, /* 32 - DNML | UFL | IMP */
616 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */
617 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */
618 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */
619 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */
620 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */
621 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */
622 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */
623 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */
624 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */
625 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */
626 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */
627 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */
628 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
629 FPE_FLTSUB, /* 40 - STK */
630 FPE_FLTSUB, /* 41 - INV | STK */
631 FPE_FLTUND, /* 42 - DNML | STK */
632 FPE_FLTSUB, /* 43 - INV | DNML | STK */
633 FPE_FLTDIV, /* 44 - DZ | STK */
634 FPE_FLTSUB, /* 45 - INV | DZ | STK */
635 FPE_FLTDIV, /* 46 - DNML | DZ | STK */
636 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */
637 FPE_FLTOVF, /* 48 - OFL | STK */
638 FPE_FLTSUB, /* 49 - INV | OFL | STK */
639 FPE_FLTUND, /* 4A - DNML | OFL | STK */
640 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */
641 FPE_FLTDIV, /* 4C - DZ | OFL | STK */
642 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */
643 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */
644 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */
645 FPE_FLTUND, /* 50 - UFL | STK */
646 FPE_FLTSUB, /* 51 - INV | UFL | STK */
647 FPE_FLTUND, /* 52 - DNML | UFL | STK */
648 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */
649 FPE_FLTDIV, /* 54 - DZ | UFL | STK */
650 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */
651 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */
652 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */
653 FPE_FLTOVF, /* 58 - OFL | UFL | STK */
654 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */
655 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */
656 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */
657 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */
658 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */
659 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */
660 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */
661 FPE_FLTRES, /* 60 - IMP | STK */
662 FPE_FLTSUB, /* 61 - INV | IMP | STK */
663 FPE_FLTUND, /* 62 - DNML | IMP | STK */
664 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */
665 FPE_FLTDIV, /* 64 - DZ | IMP | STK */
666 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */
667 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */
668 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */
669 FPE_FLTOVF, /* 68 - OFL | IMP | STK */
670 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */
671 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */
672 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */
673 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */
674 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */
675 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */
676 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */
677 FPE_FLTUND, /* 70 - UFL | IMP | STK */
678 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */
679 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */
680 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */
681 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */
682 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */
683 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */
684 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */
685 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */
686 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */
687 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */
688 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */
689 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */
690 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */
691 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
692 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
693 };
694
695 /*
696 * Read the FP status and control words, then generate si_code value
697 * for SIGFPE. The error code chosen will be one of the
698 * FPE_... macros. It will be sent as the second argument to old
699 * BSD-style signal handlers and as "siginfo_t->si_code" (second
700 * argument) to SA_SIGINFO signal handlers.
701 *
702 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
703 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The
704 * usermode code which understands the FPU hardware enough to enable
705 * the exceptions, can also handle clearing the exception state in the
706 * handler. The only consequence of not clearing the exception is the
707 * rethrow of the SIGFPE on return from the signal handler and
708 * reexecution of the corresponding instruction.
709 *
710 * For XMM traps, the exceptions were never cleared.
711 */
712 int
fputrap_x87(void)713 fputrap_x87(void)
714 {
715 struct savefpu *pcb_save;
716 u_short control, status;
717
718 critical_enter();
719
720 /*
721 * Interrupt handling (for another interrupt) may have pushed the
722 * state to memory. Fetch the relevant parts of the state from
723 * wherever they are.
724 */
725 if (PCPU_GET(fpcurthread) != curthread) {
726 pcb_save = curpcb->pcb_save;
727 control = pcb_save->sv_env.en_cw;
728 status = pcb_save->sv_env.en_sw;
729 } else {
730 fnstcw(&control);
731 fnstsw(&status);
732 }
733
734 critical_exit();
735 return (fpetable[status & ((~control & 0x3f) | 0x40)]);
736 }
737
738 int
fputrap_sse(void)739 fputrap_sse(void)
740 {
741 u_int mxcsr;
742
743 critical_enter();
744 if (PCPU_GET(fpcurthread) != curthread)
745 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
746 else
747 stmxcsr(&mxcsr);
748 critical_exit();
749 return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
750 }
751
752 static void
restore_fpu_curthread(struct thread * td)753 restore_fpu_curthread(struct thread *td)
754 {
755 struct pcb *pcb;
756
757 /*
758 * Record new context early in case frstor causes a trap.
759 */
760 PCPU_SET(fpcurthread, td);
761
762 stop_emulating();
763 fpu_clean_state();
764 pcb = td->td_pcb;
765
766 if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
767 /*
768 * This is the first time this thread has used the FPU or
769 * the PCB doesn't contain a clean FPU state. Explicitly
770 * load an initial state.
771 *
772 * We prefer to restore the state from the actual save
773 * area in PCB instead of directly loading from
774 * fpu_initialstate, to ignite the XSAVEOPT
775 * tracking engine.
776 */
777 bcopy(fpu_initialstate, pcb->pcb_save,
778 cpu_max_ext_state_size);
779 fpurestore(pcb->pcb_save);
780 if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
781 fldcw(pcb->pcb_initial_fpucw);
782 if (PCB_USER_FPU(pcb))
783 set_pcb_flags(pcb, PCB_FPUINITDONE |
784 PCB_USERFPUINITDONE);
785 else
786 set_pcb_flags(pcb, PCB_FPUINITDONE);
787 } else
788 fpurestore(pcb->pcb_save);
789 }
790
791 /*
792 * Device Not Available (DNA, #NM) exception handler.
793 *
794 * It would be better to switch FP context here (if curthread !=
795 * fpcurthread) and not necessarily for every context switch, but it
796 * is too hard to access foreign pcb's.
797 */
798 void
fpudna(void)799 fpudna(void)
800 {
801 struct thread *td;
802
803 td = curthread;
804 /*
805 * This handler is entered with interrupts enabled, so context
806 * switches may occur before critical_enter() is executed. If
807 * a context switch occurs, then when we regain control, our
808 * state will have been completely restored. The CPU may
809 * change underneath us, but the only part of our context that
810 * lives in the CPU is CR0.TS and that will be "restored" by
811 * setting it on the new CPU.
812 */
813 critical_enter();
814
815 KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
816 ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
817 if (__predict_false(PCPU_GET(fpcurthread) == td)) {
818 /*
819 * Some virtual machines seems to set %cr0.TS at
820 * arbitrary moments. Silently clear the TS bit
821 * regardless of the eager/lazy FPU context switch
822 * mode.
823 */
824 stop_emulating();
825 } else {
826 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
827 panic(
828 "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
829 PCPU_GET(fpcurthread),
830 PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
831 }
832 restore_fpu_curthread(td);
833 }
834 critical_exit();
835 }
836
837 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
838 void
fpu_activate_sw(struct thread * td)839 fpu_activate_sw(struct thread *td)
840 {
841
842 if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
843 PCPU_SET(fpcurthread, NULL);
844 start_emulating();
845 } else if (PCPU_GET(fpcurthread) != td) {
846 restore_fpu_curthread(td);
847 }
848 }
849
850 void
fpudrop(void)851 fpudrop(void)
852 {
853 struct thread *td;
854
855 td = PCPU_GET(fpcurthread);
856 KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
857 CRITICAL_ASSERT(td);
858 PCPU_SET(fpcurthread, NULL);
859 clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
860 start_emulating();
861 }
862
863 /*
864 * Get the user state of the FPU into pcb->pcb_user_save without
865 * dropping ownership (if possible). It returns the FPU ownership
866 * status.
867 */
868 int
fpugetregs(struct thread * td)869 fpugetregs(struct thread *td)
870 {
871 struct pcb *pcb;
872 uint64_t *xstate_bv, bit;
873 char *sa;
874 int max_ext_n, i, owned;
875
876 pcb = td->td_pcb;
877 critical_enter();
878 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
879 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
880 cpu_max_ext_state_size);
881 get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
882 pcb->pcb_initial_fpucw;
883 fpuuserinited(td);
884 critical_exit();
885 return (_MC_FPOWNED_PCB);
886 }
887 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
888 fpusave(get_pcb_user_save_pcb(pcb));
889 owned = _MC_FPOWNED_FPU;
890 } else {
891 owned = _MC_FPOWNED_PCB;
892 }
893 if (use_xsave) {
894 /*
895 * Handle partially saved state.
896 */
897 sa = (char *)get_pcb_user_save_pcb(pcb);
898 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
899 offsetof(struct xstate_hdr, xstate_bv));
900 max_ext_n = flsl(xsave_mask);
901 for (i = 0; i < max_ext_n; i++) {
902 bit = 1ULL << i;
903 if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
904 continue;
905 bcopy((char *)fpu_initialstate +
906 xsave_area_desc[i].offset,
907 sa + xsave_area_desc[i].offset,
908 xsave_area_desc[i].size);
909 *xstate_bv |= bit;
910 }
911 }
912 critical_exit();
913 return (owned);
914 }
915
916 void
fpuuserinited(struct thread * td)917 fpuuserinited(struct thread *td)
918 {
919 struct pcb *pcb;
920
921 CRITICAL_ASSERT(td);
922 pcb = td->td_pcb;
923 if (PCB_USER_FPU(pcb))
924 set_pcb_flags(pcb,
925 PCB_FPUINITDONE | PCB_USERFPUINITDONE);
926 else
927 set_pcb_flags(pcb, PCB_FPUINITDONE);
928 }
929
930 int
fpusetxstate(struct thread * td,char * xfpustate,size_t xfpustate_size)931 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
932 {
933 struct xstate_hdr *hdr, *ehdr;
934 size_t len, max_len;
935 uint64_t bv;
936
937 /* XXXKIB should we clear all extended state in xstate_bv instead ? */
938 if (xfpustate == NULL)
939 return (0);
940 if (!use_xsave)
941 return (EOPNOTSUPP);
942
943 len = xfpustate_size;
944 if (len < sizeof(struct xstate_hdr))
945 return (EINVAL);
946 max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
947 if (len > max_len)
948 return (EINVAL);
949
950 ehdr = (struct xstate_hdr *)xfpustate;
951 bv = ehdr->xstate_bv;
952
953 /*
954 * Avoid #gp.
955 */
956 if (bv & ~xsave_mask)
957 return (EINVAL);
958
959 hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
960
961 hdr->xstate_bv = bv;
962 bcopy(xfpustate + sizeof(struct xstate_hdr),
963 (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
964
965 return (0);
966 }
967
968 /*
969 * Set the state of the FPU.
970 */
971 int
fpusetregs(struct thread * td,struct savefpu * addr,char * xfpustate,size_t xfpustate_size)972 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
973 size_t xfpustate_size)
974 {
975 struct pcb *pcb;
976 int error;
977
978 addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
979 pcb = td->td_pcb;
980 error = 0;
981 critical_enter();
982 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
983 error = fpusetxstate(td, xfpustate, xfpustate_size);
984 if (error == 0) {
985 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
986 fpurestore(get_pcb_user_save_td(td));
987 set_pcb_flags(pcb, PCB_FPUINITDONE |
988 PCB_USERFPUINITDONE);
989 }
990 } else {
991 error = fpusetxstate(td, xfpustate, xfpustate_size);
992 if (error == 0) {
993 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
994 fpuuserinited(td);
995 }
996 }
997 critical_exit();
998 return (error);
999 }
1000
1001 /*
1002 * On AuthenticAMD processors, the fxrstor instruction does not restore
1003 * the x87's stored last instruction pointer, last data pointer, and last
1004 * opcode values, except in the rare case in which the exception summary
1005 * (ES) bit in the x87 status word is set to 1.
1006 *
1007 * In order to avoid leaking this information across processes, we clean
1008 * these values by performing a dummy load before executing fxrstor().
1009 */
1010 static void
fpu_clean_state(void)1011 fpu_clean_state(void)
1012 {
1013 static float dummy_variable = 0.0;
1014 u_short status;
1015
1016 /*
1017 * Clear the ES bit in the x87 status word if it is currently
1018 * set, in order to avoid causing a fault in the upcoming load.
1019 */
1020 fnstsw(&status);
1021 if (status & 0x80)
1022 fnclex();
1023
1024 /*
1025 * Load the dummy variable into the x87 stack. This mangles
1026 * the x87 stack, but we don't care since we're about to call
1027 * fxrstor() anyway.
1028 */
1029 __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1030 }
1031
1032 /*
1033 * This really sucks. We want the acpi version only, but it requires
1034 * the isa_if.h file in order to get the definitions.
1035 */
1036 #include "opt_isa.h"
1037 #ifdef DEV_ISA
1038 #include <isa/isavar.h>
1039 /*
1040 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1041 */
1042 static struct isa_pnp_id fpupnp_ids[] = {
1043 { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1044 { 0 }
1045 };
1046
1047 static int
fpupnp_probe(device_t dev)1048 fpupnp_probe(device_t dev)
1049 {
1050 int result;
1051
1052 result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1053 if (result <= 0)
1054 device_quiet(dev);
1055 return (result);
1056 }
1057
1058 static int
fpupnp_attach(device_t dev)1059 fpupnp_attach(device_t dev)
1060 {
1061
1062 return (0);
1063 }
1064
1065 static device_method_t fpupnp_methods[] = {
1066 /* Device interface */
1067 DEVMETHOD(device_probe, fpupnp_probe),
1068 DEVMETHOD(device_attach, fpupnp_attach),
1069 DEVMETHOD(device_detach, bus_generic_detach),
1070 DEVMETHOD(device_shutdown, bus_generic_shutdown),
1071 DEVMETHOD(device_suspend, bus_generic_suspend),
1072 DEVMETHOD(device_resume, bus_generic_resume),
1073 { 0, 0 }
1074 };
1075
1076 static driver_t fpupnp_driver = {
1077 "fpupnp",
1078 fpupnp_methods,
1079 1, /* no softc */
1080 };
1081
1082 static devclass_t fpupnp_devclass;
1083
1084 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
1085 ISA_PNP_INFO(fpupnp_ids);
1086 #endif /* DEV_ISA */
1087
1088 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1089 "Kernel contexts for FPU state");
1090
1091 #define FPU_KERN_CTX_FPUINITDONE 0x01
1092 #define FPU_KERN_CTX_DUMMY 0x02 /* avoided save for the kern thread */
1093 #define FPU_KERN_CTX_INUSE 0x04
1094
1095 struct fpu_kern_ctx {
1096 struct savefpu *prev;
1097 uint32_t flags;
1098 char hwstate1[];
1099 };
1100
1101 static inline size_t __pure2
fpu_kern_alloc_sz(u_int max_est)1102 fpu_kern_alloc_sz(u_int max_est)
1103 {
1104 return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1105 }
1106
1107 static inline int __pure2
fpu_kern_malloc_flags(u_int fpflags)1108 fpu_kern_malloc_flags(u_int fpflags)
1109 {
1110 return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1111 }
1112
1113 struct fpu_kern_ctx *
fpu_kern_alloc_ctx_domain(int domain,u_int flags)1114 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1115 {
1116 return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1117 M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1118 fpu_kern_malloc_flags(flags)));
1119 }
1120
1121 struct fpu_kern_ctx *
fpu_kern_alloc_ctx(u_int flags)1122 fpu_kern_alloc_ctx(u_int flags)
1123 {
1124 return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1125 M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1126 }
1127
1128 void
fpu_kern_free_ctx(struct fpu_kern_ctx * ctx)1129 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1130 {
1131
1132 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1133 /* XXXKIB clear the memory ? */
1134 free(ctx, M_FPUKERN_CTX);
1135 }
1136
1137 static struct savefpu *
fpu_kern_ctx_savefpu(struct fpu_kern_ctx * ctx)1138 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1139 {
1140 vm_offset_t p;
1141
1142 p = (vm_offset_t)&ctx->hwstate1;
1143 p = roundup2(p, XSAVE_AREA_ALIGN);
1144 return ((struct savefpu *)p);
1145 }
1146
1147 void
fpu_kern_enter(struct thread * td,struct fpu_kern_ctx * ctx,u_int flags)1148 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1149 {
1150 struct pcb *pcb;
1151
1152 pcb = td->td_pcb;
1153 KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1154 ("ctx is required when !FPU_KERN_NOCTX"));
1155 KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1156 ("using inuse ctx"));
1157 KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1158 ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1159
1160 if ((flags & FPU_KERN_NOCTX) != 0) {
1161 critical_enter();
1162 stop_emulating();
1163 if (curthread == PCPU_GET(fpcurthread)) {
1164 fpusave(curpcb->pcb_save);
1165 PCPU_SET(fpcurthread, NULL);
1166 } else {
1167 KASSERT(PCPU_GET(fpcurthread) == NULL,
1168 ("invalid fpcurthread"));
1169 }
1170
1171 /*
1172 * This breaks XSAVEOPT tracker, but
1173 * PCB_FPUNOSAVE state is supposed to never need to
1174 * save FPU context at all.
1175 */
1176 fpurestore(fpu_initialstate);
1177 set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1178 PCB_FPUINITDONE);
1179 return;
1180 }
1181 if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1182 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1183 return;
1184 }
1185 critical_enter();
1186 KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1187 get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1188 ctx->flags = FPU_KERN_CTX_INUSE;
1189 if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1190 ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1191 fpuexit(td);
1192 ctx->prev = pcb->pcb_save;
1193 pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1194 set_pcb_flags(pcb, PCB_KERNFPU);
1195 clear_pcb_flags(pcb, PCB_FPUINITDONE);
1196 critical_exit();
1197 }
1198
1199 int
fpu_kern_leave(struct thread * td,struct fpu_kern_ctx * ctx)1200 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1201 {
1202 struct pcb *pcb;
1203
1204 pcb = td->td_pcb;
1205
1206 if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1207 KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1208 KASSERT(PCPU_GET(fpcurthread) == NULL,
1209 ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1210 CRITICAL_ASSERT(td);
1211
1212 clear_pcb_flags(pcb, PCB_FPUNOSAVE | PCB_FPUINITDONE);
1213 start_emulating();
1214 } else {
1215 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1216 ("leaving not inuse ctx"));
1217 ctx->flags &= ~FPU_KERN_CTX_INUSE;
1218
1219 if (is_fpu_kern_thread(0) &&
1220 (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1221 return (0);
1222 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1223 ("dummy ctx"));
1224 critical_enter();
1225 if (curthread == PCPU_GET(fpcurthread))
1226 fpudrop();
1227 pcb->pcb_save = ctx->prev;
1228 }
1229
1230 if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1231 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1232 set_pcb_flags(pcb, PCB_FPUINITDONE);
1233 if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1234 clear_pcb_flags(pcb, PCB_KERNFPU);
1235 } else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1236 clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1237 } else {
1238 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1239 set_pcb_flags(pcb, PCB_FPUINITDONE);
1240 else
1241 clear_pcb_flags(pcb, PCB_FPUINITDONE);
1242 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1243 }
1244 critical_exit();
1245 return (0);
1246 }
1247
1248 int
fpu_kern_thread(u_int flags)1249 fpu_kern_thread(u_int flags)
1250 {
1251
1252 KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1253 ("Only kthread may use fpu_kern_thread"));
1254 KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1255 ("mangled pcb_save"));
1256 KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1257
1258 set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1259 return (0);
1260 }
1261
1262 int
is_fpu_kern_thread(u_int flags)1263 is_fpu_kern_thread(u_int flags)
1264 {
1265
1266 if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1267 return (0);
1268 return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1269 }
1270
1271 /*
1272 * FPU save area alloc/free/init utility routines
1273 */
1274 struct savefpu *
fpu_save_area_alloc(void)1275 fpu_save_area_alloc(void)
1276 {
1277
1278 return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1279 }
1280
1281 void
fpu_save_area_free(struct savefpu * fsa)1282 fpu_save_area_free(struct savefpu *fsa)
1283 {
1284
1285 uma_zfree(fpu_save_area_zone, fsa);
1286 }
1287
1288 void
fpu_save_area_reset(struct savefpu * fsa)1289 fpu_save_area_reset(struct savefpu *fsa)
1290 {
1291
1292 bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1293 }
1294