1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko.
5 * Copyright (c) 2014 Yandex LLC
6 * Copyright (c) 2014 Alexander V. Chernikov
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 /*
34 * Lookup table support for ipfw.
35 *
36 * This file contains handlers for all generic tables' operations:
37 * add/del/flush entries, list/dump tables etc..
38 *
39 * Table data modification is protected by both UH and runtime lock
40 * while reading configuration/data is protected by UH lock.
41 *
42 * Lookup algorithms for all table types are located in ip_fw_table_algo.c
43 */
44
45 #include "opt_ipfw.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/rmlock.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/queue.h>
57 #include <net/if.h> /* ip_fw.h requires IFNAMSIZ */
58
59 #include <netinet/in.h>
60 #include <netinet/ip_var.h> /* struct ipfw_rule_ref */
61 #include <netinet/ip_fw.h>
62
63 #include <netpfil/ipfw/ip_fw_private.h>
64 #include <netpfil/ipfw/ip_fw_table.h>
65
66 /*
67 * Table has the following `type` concepts:
68 *
69 * `no.type` represents lookup key type (addr, ifp, uid, etc..)
70 * vmask represents bitmask of table values which are present at the moment.
71 * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old
72 * single-value-for-all approach.
73 */
74 struct table_config {
75 struct named_object no;
76 uint8_t tflags; /* type flags */
77 uint8_t locked; /* 1 if locked from changes */
78 uint8_t linked; /* 1 if already linked */
79 uint8_t ochanged; /* used by set swapping */
80 uint8_t vshared; /* 1 if using shared value array */
81 uint8_t spare[3];
82 uint32_t count; /* Number of records */
83 uint32_t limit; /* Max number of records */
84 uint32_t vmask; /* bitmask with supported values */
85 uint32_t ocount; /* used by set swapping */
86 uint64_t gencnt; /* generation count */
87 char tablename[64]; /* table name */
88 struct table_algo *ta; /* Callbacks for given algo */
89 void *astate; /* algorithm state */
90 struct table_info ti_copy; /* data to put to table_info */
91 struct namedobj_instance *vi;
92 };
93
94 static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
95 struct table_config **tc);
96 static struct table_config *find_table(struct namedobj_instance *ni,
97 struct tid_info *ti);
98 static struct table_config *alloc_table_config(struct ip_fw_chain *ch,
99 struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags);
100 static void free_table_config(struct namedobj_instance *ni,
101 struct table_config *tc);
102 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
103 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref);
104 static void link_table(struct ip_fw_chain *ch, struct table_config *tc);
105 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc);
106 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
107 struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc);
108 #define OP_ADD 1
109 #define OP_DEL 0
110 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
111 struct sockopt_data *sd);
112 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
113 ipfw_xtable_info *i);
114 static int dump_table_tentry(void *e, void *arg);
115 static int dump_table_xentry(void *e, void *arg);
116
117 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
118 struct tid_info *b);
119
120 static int check_table_name(const char *name);
121 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
122 struct table_config *tc, struct table_info *ti, uint32_t count);
123 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti);
124
125 static struct table_algo *find_table_algo(struct tables_config *tableconf,
126 struct tid_info *ti, char *name);
127
128 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti);
129 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti);
130
131 #define CHAIN_TO_NI(chain) (CHAIN_TO_TCFG(chain)->namehash)
132 #define KIDX_TO_TI(ch, k) (&(((struct table_info *)(ch)->tablestate)[k]))
133
134 #define TA_BUF_SZ 128 /* On-stack buffer for add/delete state */
135
136 void
rollback_toperation_state(struct ip_fw_chain * ch,void * object)137 rollback_toperation_state(struct ip_fw_chain *ch, void *object)
138 {
139 struct tables_config *tcfg;
140 struct op_state *os;
141
142 tcfg = CHAIN_TO_TCFG(ch);
143 TAILQ_FOREACH(os, &tcfg->state_list, next)
144 os->func(object, os);
145 }
146
147 void
add_toperation_state(struct ip_fw_chain * ch,struct tableop_state * ts)148 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
149 {
150 struct tables_config *tcfg;
151
152 tcfg = CHAIN_TO_TCFG(ch);
153 TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next);
154 }
155
156 void
del_toperation_state(struct ip_fw_chain * ch,struct tableop_state * ts)157 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
158 {
159 struct tables_config *tcfg;
160
161 tcfg = CHAIN_TO_TCFG(ch);
162 TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next);
163 }
164
165 void
tc_ref(struct table_config * tc)166 tc_ref(struct table_config *tc)
167 {
168
169 tc->no.refcnt++;
170 }
171
172 void
tc_unref(struct table_config * tc)173 tc_unref(struct table_config *tc)
174 {
175
176 tc->no.refcnt--;
177 }
178
179 static struct table_value *
get_table_value(struct ip_fw_chain * ch,struct table_config * tc,uint32_t kidx)180 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx)
181 {
182 struct table_value *pval;
183
184 pval = (struct table_value *)ch->valuestate;
185
186 return (&pval[kidx]);
187 }
188
189 /*
190 * Checks if we're able to insert/update entry @tei into table
191 * w.r.t @tc limits.
192 * May alter @tei to indicate insertion error / insert
193 * options.
194 *
195 * Returns 0 if operation can be performed/
196 */
197 static int
check_table_limit(struct table_config * tc,struct tentry_info * tei)198 check_table_limit(struct table_config *tc, struct tentry_info *tei)
199 {
200
201 if (tc->limit == 0 || tc->count < tc->limit)
202 return (0);
203
204 if ((tei->flags & TEI_FLAGS_UPDATE) == 0) {
205 /* Notify userland on error cause */
206 tei->flags |= TEI_FLAGS_LIMIT;
207 return (EFBIG);
208 }
209
210 /*
211 * We have UPDATE flag set.
212 * Permit updating record (if found),
213 * but restrict adding new one since we've
214 * already hit the limit.
215 */
216 tei->flags |= TEI_FLAGS_DONTADD;
217
218 return (0);
219 }
220
221 /*
222 * Convert algorithm callback return code into
223 * one of pre-defined states known by userland.
224 */
225 static void
store_tei_result(struct tentry_info * tei,int op,int error,uint32_t num)226 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num)
227 {
228 int flag;
229
230 flag = 0;
231
232 switch (error) {
233 case 0:
234 if (op == OP_ADD && num != 0)
235 flag = TEI_FLAGS_ADDED;
236 if (op == OP_DEL)
237 flag = TEI_FLAGS_DELETED;
238 break;
239 case ENOENT:
240 flag = TEI_FLAGS_NOTFOUND;
241 break;
242 case EEXIST:
243 flag = TEI_FLAGS_EXISTS;
244 break;
245 default:
246 flag = TEI_FLAGS_ERROR;
247 }
248
249 tei->flags |= flag;
250 }
251
252 /*
253 * Creates and references table with default parameters.
254 * Saves table config, algo and allocated kidx info @ptc, @pta and
255 * @pkidx if non-zero.
256 * Used for table auto-creation to support old binaries.
257 *
258 * Returns 0 on success.
259 */
260 static int
create_table_compat(struct ip_fw_chain * ch,struct tid_info * ti,uint16_t * pkidx)261 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti,
262 uint16_t *pkidx)
263 {
264 ipfw_xtable_info xi;
265 int error;
266
267 memset(&xi, 0, sizeof(xi));
268 /* Set default value mask for legacy clients */
269 xi.vmask = IPFW_VTYPE_LEGACY;
270
271 error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1);
272 if (error != 0)
273 return (error);
274
275 return (0);
276 }
277
278 /*
279 * Find and reference existing table optionally
280 * creating new one.
281 *
282 * Saves found table config into @ptc.
283 * Note function may drop/acquire UH_WLOCK.
284 * Returns 0 if table was found/created and referenced
285 * or non-zero return code.
286 */
287 static int
find_ref_table(struct ip_fw_chain * ch,struct tid_info * ti,struct tentry_info * tei,uint32_t count,int op,struct table_config ** ptc)288 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
289 struct tentry_info *tei, uint32_t count, int op,
290 struct table_config **ptc)
291 {
292 struct namedobj_instance *ni;
293 struct table_config *tc;
294 uint16_t kidx;
295 int error;
296
297 IPFW_UH_WLOCK_ASSERT(ch);
298
299 ni = CHAIN_TO_NI(ch);
300 tc = NULL;
301 if ((tc = find_table(ni, ti)) != NULL) {
302 /* check table type */
303 if (tc->no.subtype != ti->type)
304 return (EINVAL);
305
306 if (tc->locked != 0)
307 return (EACCES);
308
309 /* Try to exit early on limit hit */
310 if (op == OP_ADD && count == 1 &&
311 check_table_limit(tc, tei) != 0)
312 return (EFBIG);
313
314 /* Reference and return */
315 tc->no.refcnt++;
316 *ptc = tc;
317 return (0);
318 }
319
320 if (op == OP_DEL)
321 return (ESRCH);
322
323 /* Compatibility mode: create new table for old clients */
324 if ((tei->flags & TEI_FLAGS_COMPAT) == 0)
325 return (ESRCH);
326
327 IPFW_UH_WUNLOCK(ch);
328 error = create_table_compat(ch, ti, &kidx);
329 IPFW_UH_WLOCK(ch);
330
331 if (error != 0)
332 return (error);
333
334 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
335 KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx));
336
337 /* OK, now we've got referenced table. */
338 *ptc = tc;
339 return (0);
340 }
341
342 /*
343 * Rolls back already @added to @tc entries using state array @ta_buf_m.
344 * Assume the following layout:
345 * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases
346 * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1])
347 * for storing deleted state
348 */
349 static void
rollback_added_entries(struct ip_fw_chain * ch,struct table_config * tc,struct table_info * tinfo,struct tentry_info * tei,caddr_t ta_buf_m,uint32_t count,uint32_t added)350 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc,
351 struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m,
352 uint32_t count, uint32_t added)
353 {
354 struct table_algo *ta;
355 struct tentry_info *ptei;
356 caddr_t v, vv;
357 size_t ta_buf_sz;
358 int error, i;
359 uint32_t num;
360
361 IPFW_UH_WLOCK_ASSERT(ch);
362
363 ta = tc->ta;
364 ta_buf_sz = ta->ta_buf_size;
365 v = ta_buf_m;
366 vv = v + count * ta_buf_sz;
367 for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) {
368 ptei = &tei[i];
369 if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) {
370 /*
371 * We have old value stored by previous
372 * call in @ptei->value. Do add once again
373 * to restore it.
374 */
375 error = ta->add(tc->astate, tinfo, ptei, v, &num);
376 KASSERT(error == 0, ("rollback UPDATE fail"));
377 KASSERT(num == 0, ("rollback UPDATE fail2"));
378 continue;
379 }
380
381 error = ta->prepare_del(ch, ptei, vv);
382 KASSERT(error == 0, ("pre-rollback INSERT failed"));
383 error = ta->del(tc->astate, tinfo, ptei, vv, &num);
384 KASSERT(error == 0, ("rollback INSERT failed"));
385 tc->count -= num;
386 }
387 }
388
389 /*
390 * Prepares add/del state for all @count entries in @tei.
391 * Uses either stack buffer (@ta_buf) or allocates a new one.
392 * Stores pointer to allocated buffer back to @ta_buf.
393 *
394 * Returns 0 on success.
395 */
396 static int
prepare_batch_buffer(struct ip_fw_chain * ch,struct table_algo * ta,struct tentry_info * tei,uint32_t count,int op,caddr_t * ta_buf)397 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
398 struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf)
399 {
400 caddr_t ta_buf_m, v;
401 size_t ta_buf_sz, sz;
402 struct tentry_info *ptei;
403 int error, i;
404
405 error = 0;
406 ta_buf_sz = ta->ta_buf_size;
407 if (count == 1) {
408 /* Single add/delete, use on-stack buffer */
409 memset(*ta_buf, 0, TA_BUF_SZ);
410 ta_buf_m = *ta_buf;
411 } else {
412 /*
413 * Multiple adds/deletes, allocate larger buffer
414 *
415 * Note we need 2xcount buffer for add case:
416 * we have hold both ADD state
417 * and DELETE state (this may be needed
418 * if we need to rollback all changes)
419 */
420 sz = count * ta_buf_sz;
421 ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP,
422 M_WAITOK | M_ZERO);
423 }
424
425 v = ta_buf_m;
426 for (i = 0; i < count; i++, v += ta_buf_sz) {
427 ptei = &tei[i];
428 error = (op == OP_ADD) ?
429 ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v);
430
431 /*
432 * Some syntax error (incorrect mask, or address, or
433 * anything). Return error regardless of atomicity
434 * settings.
435 */
436 if (error != 0)
437 break;
438 }
439
440 *ta_buf = ta_buf_m;
441 return (error);
442 }
443
444 /*
445 * Flushes allocated state for each @count entries in @tei.
446 * Frees @ta_buf_m if differs from stack buffer @ta_buf.
447 */
448 static void
flush_batch_buffer(struct ip_fw_chain * ch,struct table_algo * ta,struct tentry_info * tei,uint32_t count,int rollback,caddr_t ta_buf_m,caddr_t ta_buf)449 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
450 struct tentry_info *tei, uint32_t count, int rollback,
451 caddr_t ta_buf_m, caddr_t ta_buf)
452 {
453 caddr_t v;
454 struct tentry_info *ptei;
455 size_t ta_buf_sz;
456 int i;
457
458 ta_buf_sz = ta->ta_buf_size;
459
460 /* Run cleaning callback anyway */
461 v = ta_buf_m;
462 for (i = 0; i < count; i++, v += ta_buf_sz) {
463 ptei = &tei[i];
464 ta->flush_entry(ch, ptei, v);
465 if (ptei->ptv != NULL) {
466 free(ptei->ptv, M_IPFW);
467 ptei->ptv = NULL;
468 }
469 }
470
471 /* Clean up "deleted" state in case of rollback */
472 if (rollback != 0) {
473 v = ta_buf_m + count * ta_buf_sz;
474 for (i = 0; i < count; i++, v += ta_buf_sz)
475 ta->flush_entry(ch, &tei[i], v);
476 }
477
478 if (ta_buf_m != ta_buf)
479 free(ta_buf_m, M_TEMP);
480 }
481
482 static void
rollback_add_entry(void * object,struct op_state * _state)483 rollback_add_entry(void *object, struct op_state *_state)
484 {
485 struct ip_fw_chain *ch;
486 struct tableop_state *ts;
487
488 ts = (struct tableop_state *)_state;
489
490 if (ts->tc != object && ts->ch != object)
491 return;
492
493 ch = ts->ch;
494
495 IPFW_UH_WLOCK_ASSERT(ch);
496
497 /* Call specifid unlockers */
498 rollback_table_values(ts);
499
500 /* Indicate we've called */
501 ts->modified = 1;
502 }
503
504 /*
505 * Adds/updates one or more entries in table @ti.
506 *
507 * Function may drop/reacquire UH wlock multiple times due to
508 * items alloc, algorithm callbacks (check_space), value linkage
509 * (new values, value storage realloc), etc..
510 * Other processes like other adds (which may involve storage resize),
511 * table swaps (which changes table data and may change algo type),
512 * table modify (which may change value mask) may be executed
513 * simultaneously so we need to deal with it.
514 *
515 * The following approach was implemented:
516 * we have per-chain linked list, protected with UH lock.
517 * add_table_entry prepares special on-stack structure wthich is passed
518 * to its descendants. Users add this structure to this list before unlock.
519 * After performing needed operations and acquiring UH lock back, each user
520 * checks if structure has changed. If true, it rolls local state back and
521 * returns without error to the caller.
522 * add_table_entry() on its own checks if structure has changed and restarts
523 * its operation from the beginning (goto restart).
524 *
525 * Functions which are modifying fields of interest (currently
526 * resize_shared_value_storage() and swap_tables() )
527 * traverses given list while holding UH lock immediately before
528 * performing their operations calling function provided be list entry
529 * ( currently rollback_add_entry ) which performs rollback for all necessary
530 * state and sets appropriate values in structure indicating rollback
531 * has happened.
532 *
533 * Algo interaction:
534 * Function references @ti first to ensure table won't
535 * disappear or change its type.
536 * After that, prepare_add callback is called for each @tei entry.
537 * Next, we try to add each entry under UH+WHLOCK
538 * using add() callback.
539 * Finally, we free all state by calling flush_entry callback
540 * for each @tei.
541 *
542 * Returns 0 on success.
543 */
544 int
add_table_entry(struct ip_fw_chain * ch,struct tid_info * ti,struct tentry_info * tei,uint8_t flags,uint32_t count)545 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
546 struct tentry_info *tei, uint8_t flags, uint32_t count)
547 {
548 struct table_config *tc;
549 struct table_algo *ta;
550 uint16_t kidx;
551 int error, first_error, i, rollback;
552 uint32_t num, numadd;
553 struct tentry_info *ptei;
554 struct tableop_state ts;
555 char ta_buf[TA_BUF_SZ];
556 caddr_t ta_buf_m, v;
557
558 memset(&ts, 0, sizeof(ts));
559 ta = NULL;
560 IPFW_UH_WLOCK(ch);
561
562 /*
563 * Find and reference existing table.
564 */
565 restart:
566 if (ts.modified != 0) {
567 IPFW_UH_WUNLOCK(ch);
568 flush_batch_buffer(ch, ta, tei, count, rollback,
569 ta_buf_m, ta_buf);
570 memset(&ts, 0, sizeof(ts));
571 ta = NULL;
572 IPFW_UH_WLOCK(ch);
573 }
574
575 error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc);
576 if (error != 0) {
577 IPFW_UH_WUNLOCK(ch);
578 return (error);
579 }
580 ta = tc->ta;
581
582 /* Fill in tablestate */
583 ts.ch = ch;
584 ts.opstate.func = rollback_add_entry;
585 ts.tc = tc;
586 ts.vshared = tc->vshared;
587 ts.vmask = tc->vmask;
588 ts.ta = ta;
589 ts.tei = tei;
590 ts.count = count;
591 rollback = 0;
592 add_toperation_state(ch, &ts);
593 IPFW_UH_WUNLOCK(ch);
594
595 /* Allocate memory and prepare record(s) */
596 /* Pass stack buffer by default */
597 ta_buf_m = ta_buf;
598 error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m);
599
600 IPFW_UH_WLOCK(ch);
601 del_toperation_state(ch, &ts);
602 /* Drop reference we've used in first search */
603 tc->no.refcnt--;
604
605 /* Check prepare_batch_buffer() error */
606 if (error != 0)
607 goto cleanup;
608
609 /*
610 * Check if table swap has happened.
611 * (so table algo might be changed).
612 * Restart operation to achieve consistent behavior.
613 */
614 if (ts.modified != 0)
615 goto restart;
616
617 /*
618 * Link all values values to shared/per-table value array.
619 *
620 * May release/reacquire UH_WLOCK.
621 */
622 error = ipfw_link_table_values(ch, &ts, flags);
623 if (error != 0)
624 goto cleanup;
625 if (ts.modified != 0)
626 goto restart;
627
628 /*
629 * Ensure we are able to add all entries without additional
630 * memory allocations. May release/reacquire UH_WLOCK.
631 */
632 kidx = tc->no.kidx;
633 error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count);
634 if (error != 0)
635 goto cleanup;
636 if (ts.modified != 0)
637 goto restart;
638
639 /* We've got valid table in @tc. Let's try to add data */
640 kidx = tc->no.kidx;
641 ta = tc->ta;
642 numadd = 0;
643 first_error = 0;
644
645 IPFW_WLOCK(ch);
646
647 v = ta_buf_m;
648 for (i = 0; i < count; i++, v += ta->ta_buf_size) {
649 ptei = &tei[i];
650 num = 0;
651 /* check limit before adding */
652 if ((error = check_table_limit(tc, ptei)) == 0) {
653 /*
654 * It should be safe to insert a record w/o
655 * a properly-linked value if atomicity is
656 * not required.
657 *
658 * If the added item does not have a valid value
659 * index, it would get rejected by ta->add().
660 * */
661 error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx),
662 ptei, v, &num);
663 /* Set status flag to inform userland */
664 store_tei_result(ptei, OP_ADD, error, num);
665 }
666 if (error == 0) {
667 /* Update number of records to ease limit checking */
668 tc->count += num;
669 numadd += num;
670 continue;
671 }
672
673 if (first_error == 0)
674 first_error = error;
675
676 /*
677 * Some error have happened. Check our atomicity
678 * settings: continue if atomicity is not required,
679 * rollback changes otherwise.
680 */
681 if ((flags & IPFW_CTF_ATOMIC) == 0)
682 continue;
683
684 rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx),
685 tei, ta_buf_m, count, i);
686
687 rollback = 1;
688 break;
689 }
690
691 IPFW_WUNLOCK(ch);
692
693 ipfw_garbage_table_values(ch, tc, tei, count, rollback);
694
695 /* Permit post-add algorithm grow/rehash. */
696 if (numadd != 0)
697 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
698
699 /* Return first error to user, if any */
700 error = first_error;
701
702 cleanup:
703 IPFW_UH_WUNLOCK(ch);
704
705 flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf);
706
707 return (error);
708 }
709
710 /*
711 * Deletes one or more entries in table @ti.
712 *
713 * Returns 0 on success.
714 */
715 int
del_table_entry(struct ip_fw_chain * ch,struct tid_info * ti,struct tentry_info * tei,uint8_t flags,uint32_t count)716 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
717 struct tentry_info *tei, uint8_t flags, uint32_t count)
718 {
719 struct table_config *tc;
720 struct table_algo *ta;
721 struct tentry_info *ptei;
722 uint16_t kidx;
723 int error, first_error, i;
724 uint32_t num, numdel;
725 char ta_buf[TA_BUF_SZ];
726 caddr_t ta_buf_m, v;
727
728 /*
729 * Find and reference existing table.
730 */
731 IPFW_UH_WLOCK(ch);
732 error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc);
733 if (error != 0) {
734 IPFW_UH_WUNLOCK(ch);
735 return (error);
736 }
737 ta = tc->ta;
738 IPFW_UH_WUNLOCK(ch);
739
740 /* Allocate memory and prepare record(s) */
741 /* Pass stack buffer by default */
742 ta_buf_m = ta_buf;
743 error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m);
744 if (error != 0)
745 goto cleanup;
746
747 IPFW_UH_WLOCK(ch);
748
749 /* Drop reference we've used in first search */
750 tc->no.refcnt--;
751
752 /*
753 * Check if table algo is still the same.
754 * (changed ta may be the result of table swap).
755 */
756 if (ta != tc->ta) {
757 IPFW_UH_WUNLOCK(ch);
758 error = EINVAL;
759 goto cleanup;
760 }
761
762 kidx = tc->no.kidx;
763 numdel = 0;
764 first_error = 0;
765
766 IPFW_WLOCK(ch);
767 v = ta_buf_m;
768 for (i = 0; i < count; i++, v += ta->ta_buf_size) {
769 ptei = &tei[i];
770 num = 0;
771 error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v,
772 &num);
773 /* Save state for userland */
774 store_tei_result(ptei, OP_DEL, error, num);
775 if (error != 0 && first_error == 0)
776 first_error = error;
777 tc->count -= num;
778 numdel += num;
779 }
780 IPFW_WUNLOCK(ch);
781
782 /* Unlink non-used values */
783 ipfw_garbage_table_values(ch, tc, tei, count, 0);
784
785 if (numdel != 0) {
786 /* Run post-del hook to permit shrinking */
787 check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
788 }
789
790 IPFW_UH_WUNLOCK(ch);
791
792 /* Return first error to user, if any */
793 error = first_error;
794
795 cleanup:
796 flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf);
797
798 return (error);
799 }
800
801 /*
802 * Ensure that table @tc has enough space to add @count entries without
803 * need for reallocation.
804 *
805 * Callbacks order:
806 * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize.
807 *
808 * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags.
809 * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage
810 * 3) modify (UH_WLOCK + WLOCK) - switch pointers
811 * 4) flush_modify (UH_WLOCK) - free state, if needed
812 *
813 * Returns 0 on success.
814 */
815 static int
check_table_space(struct ip_fw_chain * ch,struct tableop_state * ts,struct table_config * tc,struct table_info * ti,uint32_t count)816 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
817 struct table_config *tc, struct table_info *ti, uint32_t count)
818 {
819 struct table_algo *ta;
820 uint64_t pflags;
821 char ta_buf[TA_BUF_SZ];
822 int error;
823
824 IPFW_UH_WLOCK_ASSERT(ch);
825
826 error = 0;
827 ta = tc->ta;
828 if (ta->need_modify == NULL)
829 return (0);
830
831 /* Acquire reference not to loose @tc between locks/unlocks */
832 tc->no.refcnt++;
833
834 /*
835 * TODO: think about avoiding race between large add/large delete
836 * operation on algorithm which implements shrinking along with
837 * growing.
838 */
839 while (true) {
840 pflags = 0;
841 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
842 error = 0;
843 break;
844 }
845
846 /* We have to shrink/grow table */
847 if (ts != NULL)
848 add_toperation_state(ch, ts);
849 IPFW_UH_WUNLOCK(ch);
850
851 memset(&ta_buf, 0, sizeof(ta_buf));
852 error = ta->prepare_mod(ta_buf, &pflags);
853
854 IPFW_UH_WLOCK(ch);
855 if (ts != NULL)
856 del_toperation_state(ch, ts);
857
858 if (error != 0)
859 break;
860
861 if (ts != NULL && ts->modified != 0) {
862 /*
863 * Swap operation has happened
864 * so we're currently operating on other
865 * table data. Stop doing this.
866 */
867 ta->flush_mod(ta_buf);
868 break;
869 }
870
871 /* Check if we still need to alter table */
872 ti = KIDX_TO_TI(ch, tc->no.kidx);
873 if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
874 IPFW_UH_WUNLOCK(ch);
875
876 /*
877 * Other thread has already performed resize.
878 * Flush our state and return.
879 */
880 ta->flush_mod(ta_buf);
881 break;
882 }
883
884 error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags);
885 if (error == 0) {
886 /* Do actual modification */
887 IPFW_WLOCK(ch);
888 ta->modify(tc->astate, ti, ta_buf, pflags);
889 IPFW_WUNLOCK(ch);
890 }
891
892 /* Anyway, flush data and retry */
893 ta->flush_mod(ta_buf);
894 }
895
896 tc->no.refcnt--;
897 return (error);
898 }
899
900 /*
901 * Adds or deletes record in table.
902 * Data layout (v0):
903 * Request: [ ip_fw3_opheader ipfw_table_xentry ]
904 *
905 * Returns 0 on success
906 */
907 static int
manage_table_ent_v0(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)908 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
909 struct sockopt_data *sd)
910 {
911 ipfw_table_xentry *xent;
912 struct tentry_info tei;
913 struct tid_info ti;
914 struct table_value v;
915 int error, hdrlen, read;
916
917 hdrlen = offsetof(ipfw_table_xentry, k);
918
919 /* Check minimum header size */
920 if (sd->valsize < (sizeof(*op3) + hdrlen))
921 return (EINVAL);
922
923 read = sizeof(ip_fw3_opheader);
924
925 /* Check if xentry len field is valid */
926 xent = (ipfw_table_xentry *)(op3 + 1);
927 if (xent->len < hdrlen || xent->len + read > sd->valsize)
928 return (EINVAL);
929
930 memset(&tei, 0, sizeof(tei));
931 tei.paddr = &xent->k;
932 tei.masklen = xent->masklen;
933 ipfw_import_table_value_legacy(xent->value, &v);
934 tei.pvalue = &v;
935 /* Old requests compatibility */
936 tei.flags = TEI_FLAGS_COMPAT;
937 if (xent->type == IPFW_TABLE_ADDR) {
938 if (xent->len - hdrlen == sizeof(in_addr_t))
939 tei.subtype = AF_INET;
940 else
941 tei.subtype = AF_INET6;
942 }
943
944 memset(&ti, 0, sizeof(ti));
945 ti.uidx = xent->tbl;
946 ti.type = xent->type;
947
948 error = (op3->opcode == IP_FW_TABLE_XADD) ?
949 add_table_entry(ch, &ti, &tei, 0, 1) :
950 del_table_entry(ch, &ti, &tei, 0, 1);
951
952 return (error);
953 }
954
955 /*
956 * Adds or deletes record in table.
957 * Data layout (v1)(current):
958 * Request: [ ipfw_obj_header
959 * ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ]
960 * ]
961 *
962 * Returns 0 on success
963 */
964 static int
manage_table_ent_v1(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)965 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
966 struct sockopt_data *sd)
967 {
968 ipfw_obj_tentry *tent, *ptent;
969 ipfw_obj_ctlv *ctlv;
970 ipfw_obj_header *oh;
971 struct tentry_info *ptei, tei, *tei_buf;
972 struct tid_info ti;
973 int error, i, kidx, read;
974
975 /* Check minimum header size */
976 if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv)))
977 return (EINVAL);
978
979 /* Check if passed data is too long */
980 if (sd->valsize != sd->kavail)
981 return (EINVAL);
982
983 oh = (ipfw_obj_header *)sd->kbuf;
984
985 /* Basic length checks for TLVs */
986 if (oh->ntlv.head.length != sizeof(oh->ntlv))
987 return (EINVAL);
988
989 read = sizeof(*oh);
990
991 ctlv = (ipfw_obj_ctlv *)(oh + 1);
992 if (ctlv->head.length + read != sd->valsize)
993 return (EINVAL);
994
995 read += sizeof(*ctlv);
996 tent = (ipfw_obj_tentry *)(ctlv + 1);
997 if (ctlv->count * sizeof(*tent) + read != sd->valsize)
998 return (EINVAL);
999
1000 if (ctlv->count == 0)
1001 return (0);
1002
1003 /*
1004 * Mark entire buffer as "read".
1005 * This instructs sopt api write it back
1006 * after function return.
1007 */
1008 ipfw_get_sopt_header(sd, sd->valsize);
1009
1010 /* Perform basic checks for each entry */
1011 ptent = tent;
1012 kidx = tent->idx;
1013 for (i = 0; i < ctlv->count; i++, ptent++) {
1014 if (ptent->head.length != sizeof(*ptent))
1015 return (EINVAL);
1016 if (ptent->idx != kidx)
1017 return (ENOTSUP);
1018 }
1019
1020 /* Convert data into kernel request objects */
1021 objheader_to_ti(oh, &ti);
1022 ti.type = oh->ntlv.type;
1023 ti.uidx = kidx;
1024
1025 /* Use on-stack buffer for single add/del */
1026 if (ctlv->count == 1) {
1027 memset(&tei, 0, sizeof(tei));
1028 tei_buf = &tei;
1029 } else
1030 tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP,
1031 M_WAITOK | M_ZERO);
1032
1033 ptei = tei_buf;
1034 ptent = tent;
1035 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1036 ptei->paddr = &ptent->k;
1037 ptei->subtype = ptent->subtype;
1038 ptei->masklen = ptent->masklen;
1039 if (ptent->head.flags & IPFW_TF_UPDATE)
1040 ptei->flags |= TEI_FLAGS_UPDATE;
1041
1042 ipfw_import_table_value_v1(&ptent->v.value);
1043 ptei->pvalue = (struct table_value *)&ptent->v.value;
1044 }
1045
1046 error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ?
1047 add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) :
1048 del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count);
1049
1050 /* Translate result back to userland */
1051 ptei = tei_buf;
1052 ptent = tent;
1053 for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1054 if (ptei->flags & TEI_FLAGS_ADDED)
1055 ptent->result = IPFW_TR_ADDED;
1056 else if (ptei->flags & TEI_FLAGS_DELETED)
1057 ptent->result = IPFW_TR_DELETED;
1058 else if (ptei->flags & TEI_FLAGS_UPDATED)
1059 ptent->result = IPFW_TR_UPDATED;
1060 else if (ptei->flags & TEI_FLAGS_LIMIT)
1061 ptent->result = IPFW_TR_LIMIT;
1062 else if (ptei->flags & TEI_FLAGS_ERROR)
1063 ptent->result = IPFW_TR_ERROR;
1064 else if (ptei->flags & TEI_FLAGS_NOTFOUND)
1065 ptent->result = IPFW_TR_NOTFOUND;
1066 else if (ptei->flags & TEI_FLAGS_EXISTS)
1067 ptent->result = IPFW_TR_EXISTS;
1068 ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value);
1069 }
1070
1071 if (tei_buf != &tei)
1072 free(tei_buf, M_TEMP);
1073
1074 return (error);
1075 }
1076
1077 /*
1078 * Looks up an entry in given table.
1079 * Data layout (v0)(current):
1080 * Request: [ ipfw_obj_header ipfw_obj_tentry ]
1081 * Reply: [ ipfw_obj_header ipfw_obj_tentry ]
1082 *
1083 * Returns 0 on success
1084 */
1085 static int
find_table_entry(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1086 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1087 struct sockopt_data *sd)
1088 {
1089 ipfw_obj_tentry *tent;
1090 ipfw_obj_header *oh;
1091 struct tid_info ti;
1092 struct table_config *tc;
1093 struct table_algo *ta;
1094 struct table_info *kti;
1095 struct table_value *pval;
1096 struct namedobj_instance *ni;
1097 int error;
1098 size_t sz;
1099
1100 /* Check minimum header size */
1101 sz = sizeof(*oh) + sizeof(*tent);
1102 if (sd->valsize != sz)
1103 return (EINVAL);
1104
1105 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1106 tent = (ipfw_obj_tentry *)(oh + 1);
1107
1108 /* Basic length checks for TLVs */
1109 if (oh->ntlv.head.length != sizeof(oh->ntlv))
1110 return (EINVAL);
1111
1112 objheader_to_ti(oh, &ti);
1113 ti.type = oh->ntlv.type;
1114 ti.uidx = tent->idx;
1115
1116 IPFW_UH_RLOCK(ch);
1117 ni = CHAIN_TO_NI(ch);
1118
1119 /*
1120 * Find existing table and check its type .
1121 */
1122 ta = NULL;
1123 if ((tc = find_table(ni, &ti)) == NULL) {
1124 IPFW_UH_RUNLOCK(ch);
1125 return (ESRCH);
1126 }
1127
1128 /* check table type */
1129 if (tc->no.subtype != ti.type) {
1130 IPFW_UH_RUNLOCK(ch);
1131 return (EINVAL);
1132 }
1133
1134 kti = KIDX_TO_TI(ch, tc->no.kidx);
1135 ta = tc->ta;
1136
1137 if (ta->find_tentry == NULL)
1138 return (ENOTSUP);
1139
1140 error = ta->find_tentry(tc->astate, kti, tent);
1141 if (error == 0) {
1142 pval = get_table_value(ch, tc, tent->v.kidx);
1143 ipfw_export_table_value_v1(pval, &tent->v.value);
1144 }
1145 IPFW_UH_RUNLOCK(ch);
1146
1147 return (error);
1148 }
1149
1150 /*
1151 * Flushes all entries or destroys given table.
1152 * Data layout (v0)(current):
1153 * Request: [ ipfw_obj_header ]
1154 *
1155 * Returns 0 on success
1156 */
1157 static int
flush_table_v0(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1158 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1159 struct sockopt_data *sd)
1160 {
1161 int error;
1162 struct _ipfw_obj_header *oh;
1163 struct tid_info ti;
1164
1165 if (sd->valsize != sizeof(*oh))
1166 return (EINVAL);
1167
1168 oh = (struct _ipfw_obj_header *)op3;
1169 objheader_to_ti(oh, &ti);
1170
1171 if (op3->opcode == IP_FW_TABLE_XDESTROY)
1172 error = destroy_table(ch, &ti);
1173 else if (op3->opcode == IP_FW_TABLE_XFLUSH)
1174 error = flush_table(ch, &ti);
1175 else
1176 return (ENOTSUP);
1177
1178 return (error);
1179 }
1180
1181 static void
restart_flush(void * object,struct op_state * _state)1182 restart_flush(void *object, struct op_state *_state)
1183 {
1184 struct tableop_state *ts;
1185
1186 ts = (struct tableop_state *)_state;
1187
1188 if (ts->tc != object)
1189 return;
1190
1191 /* Indicate we've called */
1192 ts->modified = 1;
1193 }
1194
1195 /*
1196 * Flushes given table.
1197 *
1198 * Function create new table instance with the same
1199 * parameters, swaps it with old one and
1200 * flushes state without holding runtime WLOCK.
1201 *
1202 * Returns 0 on success.
1203 */
1204 int
flush_table(struct ip_fw_chain * ch,struct tid_info * ti)1205 flush_table(struct ip_fw_chain *ch, struct tid_info *ti)
1206 {
1207 struct namedobj_instance *ni;
1208 struct table_config *tc;
1209 struct table_algo *ta;
1210 struct table_info ti_old, ti_new, *tablestate;
1211 void *astate_old, *astate_new;
1212 char algostate[64], *pstate;
1213 struct tableop_state ts;
1214 int error, need_gc;
1215 uint16_t kidx;
1216 uint8_t tflags;
1217
1218 /*
1219 * Stage 1: save table algorithm.
1220 * Reference found table to ensure it won't disappear.
1221 */
1222 IPFW_UH_WLOCK(ch);
1223 ni = CHAIN_TO_NI(ch);
1224 if ((tc = find_table(ni, ti)) == NULL) {
1225 IPFW_UH_WUNLOCK(ch);
1226 return (ESRCH);
1227 }
1228 need_gc = 0;
1229 astate_new = NULL;
1230 memset(&ti_new, 0, sizeof(ti_new));
1231 restart:
1232 /* Set up swap handler */
1233 memset(&ts, 0, sizeof(ts));
1234 ts.opstate.func = restart_flush;
1235 ts.tc = tc;
1236
1237 ta = tc->ta;
1238 /* Do not flush readonly tables */
1239 if ((ta->flags & TA_FLAG_READONLY) != 0) {
1240 IPFW_UH_WUNLOCK(ch);
1241 return (EACCES);
1242 }
1243 /* Save startup algo parameters */
1244 if (ta->print_config != NULL) {
1245 ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx),
1246 algostate, sizeof(algostate));
1247 pstate = algostate;
1248 } else
1249 pstate = NULL;
1250 tflags = tc->tflags;
1251 tc->no.refcnt++;
1252 add_toperation_state(ch, &ts);
1253 IPFW_UH_WUNLOCK(ch);
1254
1255 /*
1256 * Stage 1.5: if this is not the first attempt, destroy previous state
1257 */
1258 if (need_gc != 0) {
1259 ta->destroy(astate_new, &ti_new);
1260 need_gc = 0;
1261 }
1262
1263 /*
1264 * Stage 2: allocate new table instance using same algo.
1265 */
1266 memset(&ti_new, 0, sizeof(struct table_info));
1267 error = ta->init(ch, &astate_new, &ti_new, pstate, tflags);
1268
1269 /*
1270 * Stage 3: swap old state pointers with newly-allocated ones.
1271 * Decrease refcount.
1272 */
1273 IPFW_UH_WLOCK(ch);
1274 tc->no.refcnt--;
1275 del_toperation_state(ch, &ts);
1276
1277 if (error != 0) {
1278 IPFW_UH_WUNLOCK(ch);
1279 return (error);
1280 }
1281
1282 /*
1283 * Restart operation if table swap has happened:
1284 * even if algo may be the same, algo init parameters
1285 * may change. Restart operation instead of doing
1286 * complex checks.
1287 */
1288 if (ts.modified != 0) {
1289 /* Delay destroying data since we're holding UH lock */
1290 need_gc = 1;
1291 goto restart;
1292 }
1293
1294 ni = CHAIN_TO_NI(ch);
1295 kidx = tc->no.kidx;
1296 tablestate = (struct table_info *)ch->tablestate;
1297
1298 IPFW_WLOCK(ch);
1299 ti_old = tablestate[kidx];
1300 tablestate[kidx] = ti_new;
1301 IPFW_WUNLOCK(ch);
1302
1303 astate_old = tc->astate;
1304 tc->astate = astate_new;
1305 tc->ti_copy = ti_new;
1306 tc->count = 0;
1307
1308 /* Notify algo on real @ti address */
1309 if (ta->change_ti != NULL)
1310 ta->change_ti(tc->astate, &tablestate[kidx]);
1311
1312 /*
1313 * Stage 4: unref values.
1314 */
1315 ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old);
1316 IPFW_UH_WUNLOCK(ch);
1317
1318 /*
1319 * Stage 5: perform real flush/destroy.
1320 */
1321 ta->destroy(astate_old, &ti_old);
1322
1323 return (0);
1324 }
1325
1326 /*
1327 * Swaps two tables.
1328 * Data layout (v0)(current):
1329 * Request: [ ipfw_obj_header ipfw_obj_ntlv ]
1330 *
1331 * Returns 0 on success
1332 */
1333 static int
swap_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1334 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1335 struct sockopt_data *sd)
1336 {
1337 int error;
1338 struct _ipfw_obj_header *oh;
1339 struct tid_info ti_a, ti_b;
1340
1341 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv))
1342 return (EINVAL);
1343
1344 oh = (struct _ipfw_obj_header *)op3;
1345 ntlv_to_ti(&oh->ntlv, &ti_a);
1346 ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b);
1347
1348 error = swap_tables(ch, &ti_a, &ti_b);
1349
1350 return (error);
1351 }
1352
1353 /*
1354 * Swaps two tables of the same type/valtype.
1355 *
1356 * Checks if tables are compatible and limits
1357 * permits swap, than actually perform swap.
1358 *
1359 * Each table consists of 2 different parts:
1360 * config:
1361 * @tc (with name, set, kidx) and rule bindings, which is "stable".
1362 * number of items
1363 * table algo
1364 * runtime:
1365 * runtime data @ti (ch->tablestate)
1366 * runtime cache in @tc
1367 * algo-specific data (@tc->astate)
1368 *
1369 * So we switch:
1370 * all runtime data
1371 * number of items
1372 * table algo
1373 *
1374 * After that we call @ti change handler for each table.
1375 *
1376 * Note that referencing @tc won't protect tc->ta from change.
1377 * XXX: Do we need to restrict swap between locked tables?
1378 * XXX: Do we need to exchange ftype?
1379 *
1380 * Returns 0 on success.
1381 */
1382 static int
swap_tables(struct ip_fw_chain * ch,struct tid_info * a,struct tid_info * b)1383 swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
1384 struct tid_info *b)
1385 {
1386 struct namedobj_instance *ni;
1387 struct table_config *tc_a, *tc_b;
1388 struct table_algo *ta;
1389 struct table_info ti, *tablestate;
1390 void *astate;
1391 uint32_t count;
1392
1393 /*
1394 * Stage 1: find both tables and ensure they are of
1395 * the same type.
1396 */
1397 IPFW_UH_WLOCK(ch);
1398 ni = CHAIN_TO_NI(ch);
1399 if ((tc_a = find_table(ni, a)) == NULL) {
1400 IPFW_UH_WUNLOCK(ch);
1401 return (ESRCH);
1402 }
1403 if ((tc_b = find_table(ni, b)) == NULL) {
1404 IPFW_UH_WUNLOCK(ch);
1405 return (ESRCH);
1406 }
1407
1408 /* It is very easy to swap between the same table */
1409 if (tc_a == tc_b) {
1410 IPFW_UH_WUNLOCK(ch);
1411 return (0);
1412 }
1413
1414 /* Check type and value are the same */
1415 if (tc_a->no.subtype!=tc_b->no.subtype || tc_a->tflags!=tc_b->tflags) {
1416 IPFW_UH_WUNLOCK(ch);
1417 return (EINVAL);
1418 }
1419
1420 /* Check limits before swap */
1421 if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) ||
1422 (tc_b->limit != 0 && tc_a->count > tc_b->limit)) {
1423 IPFW_UH_WUNLOCK(ch);
1424 return (EFBIG);
1425 }
1426
1427 /* Check if one of the tables is readonly */
1428 if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) {
1429 IPFW_UH_WUNLOCK(ch);
1430 return (EACCES);
1431 }
1432
1433 /* Notify we're going to swap */
1434 rollback_toperation_state(ch, tc_a);
1435 rollback_toperation_state(ch, tc_b);
1436
1437 /* Everything is fine, prepare to swap */
1438 tablestate = (struct table_info *)ch->tablestate;
1439 ti = tablestate[tc_a->no.kidx];
1440 ta = tc_a->ta;
1441 astate = tc_a->astate;
1442 count = tc_a->count;
1443
1444 IPFW_WLOCK(ch);
1445 /* a <- b */
1446 tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx];
1447 tc_a->ta = tc_b->ta;
1448 tc_a->astate = tc_b->astate;
1449 tc_a->count = tc_b->count;
1450 /* b <- a */
1451 tablestate[tc_b->no.kidx] = ti;
1452 tc_b->ta = ta;
1453 tc_b->astate = astate;
1454 tc_b->count = count;
1455 IPFW_WUNLOCK(ch);
1456
1457 /* Ensure tc.ti copies are in sync */
1458 tc_a->ti_copy = tablestate[tc_a->no.kidx];
1459 tc_b->ti_copy = tablestate[tc_b->no.kidx];
1460
1461 /* Notify both tables on @ti change */
1462 if (tc_a->ta->change_ti != NULL)
1463 tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]);
1464 if (tc_b->ta->change_ti != NULL)
1465 tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]);
1466
1467 IPFW_UH_WUNLOCK(ch);
1468
1469 return (0);
1470 }
1471
1472 /*
1473 * Destroys table specified by @ti.
1474 * Data layout (v0)(current):
1475 * Request: [ ip_fw3_opheader ]
1476 *
1477 * Returns 0 on success
1478 */
1479 static int
destroy_table(struct ip_fw_chain * ch,struct tid_info * ti)1480 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti)
1481 {
1482 struct namedobj_instance *ni;
1483 struct table_config *tc;
1484
1485 IPFW_UH_WLOCK(ch);
1486
1487 ni = CHAIN_TO_NI(ch);
1488 if ((tc = find_table(ni, ti)) == NULL) {
1489 IPFW_UH_WUNLOCK(ch);
1490 return (ESRCH);
1491 }
1492
1493 /* Do not permit destroying referenced tables */
1494 if (tc->no.refcnt > 0) {
1495 IPFW_UH_WUNLOCK(ch);
1496 return (EBUSY);
1497 }
1498
1499 IPFW_WLOCK(ch);
1500 unlink_table(ch, tc);
1501 IPFW_WUNLOCK(ch);
1502
1503 /* Free obj index */
1504 if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0)
1505 printf("Error unlinking kidx %d from table %s\n",
1506 tc->no.kidx, tc->tablename);
1507
1508 /* Unref values used in tables while holding UH lock */
1509 ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy);
1510 IPFW_UH_WUNLOCK(ch);
1511
1512 free_table_config(ni, tc);
1513
1514 return (0);
1515 }
1516
1517 static uint32_t
roundup2p(uint32_t v)1518 roundup2p(uint32_t v)
1519 {
1520
1521 v--;
1522 v |= v >> 1;
1523 v |= v >> 2;
1524 v |= v >> 4;
1525 v |= v >> 8;
1526 v |= v >> 16;
1527 v++;
1528
1529 return (v);
1530 }
1531
1532 /*
1533 * Grow tables index.
1534 *
1535 * Returns 0 on success.
1536 */
1537 int
ipfw_resize_tables(struct ip_fw_chain * ch,unsigned int ntables)1538 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables)
1539 {
1540 unsigned int ntables_old, tbl;
1541 struct namedobj_instance *ni;
1542 void *new_idx, *old_tablestate, *tablestate;
1543 struct table_info *ti;
1544 struct table_config *tc;
1545 int i, new_blocks;
1546
1547 /* Check new value for validity */
1548 if (ntables == 0)
1549 return (EINVAL);
1550 if (ntables > IPFW_TABLES_MAX)
1551 ntables = IPFW_TABLES_MAX;
1552 /* Alight to nearest power of 2 */
1553 ntables = (unsigned int)roundup2p(ntables);
1554
1555 /* Allocate new pointers */
1556 tablestate = malloc(ntables * sizeof(struct table_info),
1557 M_IPFW, M_WAITOK | M_ZERO);
1558
1559 ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks);
1560
1561 IPFW_UH_WLOCK(ch);
1562
1563 tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables;
1564 ni = CHAIN_TO_NI(ch);
1565
1566 /* Temporary restrict decreasing max_tables */
1567 if (ntables < V_fw_tables_max) {
1568 /*
1569 * FIXME: Check if we really can shrink
1570 */
1571 IPFW_UH_WUNLOCK(ch);
1572 return (EINVAL);
1573 }
1574
1575 /* Copy table info/indices */
1576 memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl);
1577 ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks);
1578
1579 IPFW_WLOCK(ch);
1580
1581 /* Change pointers */
1582 old_tablestate = ch->tablestate;
1583 ch->tablestate = tablestate;
1584 ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks);
1585
1586 ntables_old = V_fw_tables_max;
1587 V_fw_tables_max = ntables;
1588
1589 IPFW_WUNLOCK(ch);
1590
1591 /* Notify all consumers that their @ti pointer has changed */
1592 ti = (struct table_info *)ch->tablestate;
1593 for (i = 0; i < tbl; i++, ti++) {
1594 if (ti->lookup == NULL)
1595 continue;
1596 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i);
1597 if (tc == NULL || tc->ta->change_ti == NULL)
1598 continue;
1599
1600 tc->ta->change_ti(tc->astate, ti);
1601 }
1602
1603 IPFW_UH_WUNLOCK(ch);
1604
1605 /* Free old pointers */
1606 free(old_tablestate, M_IPFW);
1607 ipfw_objhash_bitmap_free(new_idx, new_blocks);
1608
1609 return (0);
1610 }
1611
1612 /*
1613 * Lookup table's named object by its @kidx.
1614 */
1615 struct named_object *
ipfw_objhash_lookup_table_kidx(struct ip_fw_chain * ch,uint16_t kidx)1616 ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx)
1617 {
1618
1619 return (ipfw_objhash_lookup_kidx(CHAIN_TO_NI(ch), kidx));
1620 }
1621
1622 /*
1623 * Take reference to table specified in @ntlv.
1624 * On success return its @kidx.
1625 */
1626 int
ipfw_ref_table(struct ip_fw_chain * ch,ipfw_obj_ntlv * ntlv,uint16_t * kidx)1627 ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx)
1628 {
1629 struct tid_info ti;
1630 struct table_config *tc;
1631 int error;
1632
1633 IPFW_UH_WLOCK_ASSERT(ch);
1634
1635 ntlv_to_ti(ntlv, &ti);
1636 error = find_table_err(CHAIN_TO_NI(ch), &ti, &tc);
1637 if (error != 0)
1638 return (error);
1639
1640 if (tc == NULL)
1641 return (ESRCH);
1642
1643 tc_ref(tc);
1644 *kidx = tc->no.kidx;
1645
1646 return (0);
1647 }
1648
1649 void
ipfw_unref_table(struct ip_fw_chain * ch,uint16_t kidx)1650 ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx)
1651 {
1652
1653 struct namedobj_instance *ni;
1654 struct named_object *no;
1655
1656 IPFW_UH_WLOCK_ASSERT(ch);
1657 ni = CHAIN_TO_NI(ch);
1658 no = ipfw_objhash_lookup_kidx(ni, kidx);
1659 KASSERT(no != NULL, ("Table with index %d not found", kidx));
1660 no->refcnt--;
1661 }
1662
1663 /*
1664 * Lookup an arbitrary key @paddr of length @plen in table @tbl.
1665 * Stores found value in @val.
1666 *
1667 * Returns 1 if key was found.
1668 */
1669 int
ipfw_lookup_table(struct ip_fw_chain * ch,uint16_t tbl,uint16_t plen,void * paddr,uint32_t * val)1670 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen,
1671 void *paddr, uint32_t *val)
1672 {
1673 struct table_info *ti;
1674
1675 ti = KIDX_TO_TI(ch, tbl);
1676
1677 return (ti->lookup(ti, paddr, plen, val));
1678 }
1679
1680 /*
1681 * Info/List/dump support for tables.
1682 *
1683 */
1684
1685 /*
1686 * High-level 'get' cmds sysctl handlers
1687 */
1688
1689 /*
1690 * Lists all tables currently available in kernel.
1691 * Data layout (v0)(current):
1692 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
1693 * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ]
1694 *
1695 * Returns 0 on success
1696 */
1697 static int
list_tables(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1698 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1699 struct sockopt_data *sd)
1700 {
1701 struct _ipfw_obj_lheader *olh;
1702 int error;
1703
1704 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
1705 if (olh == NULL)
1706 return (EINVAL);
1707 if (sd->valsize < olh->size)
1708 return (EINVAL);
1709
1710 IPFW_UH_RLOCK(ch);
1711 error = export_tables(ch, olh, sd);
1712 IPFW_UH_RUNLOCK(ch);
1713
1714 return (error);
1715 }
1716
1717 /*
1718 * Store table info to buffer provided by @sd.
1719 * Data layout (v0)(current):
1720 * Request: [ ipfw_obj_header ipfw_xtable_info(empty)]
1721 * Reply: [ ipfw_obj_header ipfw_xtable_info ]
1722 *
1723 * Returns 0 on success.
1724 */
1725 static int
describe_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1726 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1727 struct sockopt_data *sd)
1728 {
1729 struct _ipfw_obj_header *oh;
1730 struct table_config *tc;
1731 struct tid_info ti;
1732 size_t sz;
1733
1734 sz = sizeof(*oh) + sizeof(ipfw_xtable_info);
1735 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1736 if (oh == NULL)
1737 return (EINVAL);
1738
1739 objheader_to_ti(oh, &ti);
1740
1741 IPFW_UH_RLOCK(ch);
1742 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
1743 IPFW_UH_RUNLOCK(ch);
1744 return (ESRCH);
1745 }
1746
1747 export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1));
1748 IPFW_UH_RUNLOCK(ch);
1749
1750 return (0);
1751 }
1752
1753 /*
1754 * Modifies existing table.
1755 * Data layout (v0)(current):
1756 * Request: [ ipfw_obj_header ipfw_xtable_info ]
1757 *
1758 * Returns 0 on success
1759 */
1760 static int
modify_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1761 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1762 struct sockopt_data *sd)
1763 {
1764 struct _ipfw_obj_header *oh;
1765 ipfw_xtable_info *i;
1766 char *tname;
1767 struct tid_info ti;
1768 struct namedobj_instance *ni;
1769 struct table_config *tc;
1770
1771 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1772 return (EINVAL);
1773
1774 oh = (struct _ipfw_obj_header *)sd->kbuf;
1775 i = (ipfw_xtable_info *)(oh + 1);
1776
1777 /*
1778 * Verify user-supplied strings.
1779 * Check for null-terminated/zero-length strings/
1780 */
1781 tname = oh->ntlv.name;
1782 if (check_table_name(tname) != 0)
1783 return (EINVAL);
1784
1785 objheader_to_ti(oh, &ti);
1786 ti.type = i->type;
1787
1788 IPFW_UH_WLOCK(ch);
1789 ni = CHAIN_TO_NI(ch);
1790 if ((tc = find_table(ni, &ti)) == NULL) {
1791 IPFW_UH_WUNLOCK(ch);
1792 return (ESRCH);
1793 }
1794
1795 /* Do not support any modifications for readonly tables */
1796 if ((tc->ta->flags & TA_FLAG_READONLY) != 0) {
1797 IPFW_UH_WUNLOCK(ch);
1798 return (EACCES);
1799 }
1800
1801 if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0)
1802 tc->limit = i->limit;
1803 if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0)
1804 tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0);
1805 IPFW_UH_WUNLOCK(ch);
1806
1807 return (0);
1808 }
1809
1810 /*
1811 * Creates new table.
1812 * Data layout (v0)(current):
1813 * Request: [ ipfw_obj_header ipfw_xtable_info ]
1814 *
1815 * Returns 0 on success
1816 */
1817 static int
create_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1818 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1819 struct sockopt_data *sd)
1820 {
1821 struct _ipfw_obj_header *oh;
1822 ipfw_xtable_info *i;
1823 char *tname, *aname;
1824 struct tid_info ti;
1825 struct namedobj_instance *ni;
1826
1827 if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1828 return (EINVAL);
1829
1830 oh = (struct _ipfw_obj_header *)sd->kbuf;
1831 i = (ipfw_xtable_info *)(oh + 1);
1832
1833 /*
1834 * Verify user-supplied strings.
1835 * Check for null-terminated/zero-length strings/
1836 */
1837 tname = oh->ntlv.name;
1838 aname = i->algoname;
1839 if (check_table_name(tname) != 0 ||
1840 strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname))
1841 return (EINVAL);
1842
1843 if (aname[0] == '\0') {
1844 /* Use default algorithm */
1845 aname = NULL;
1846 }
1847
1848 objheader_to_ti(oh, &ti);
1849 ti.type = i->type;
1850
1851 ni = CHAIN_TO_NI(ch);
1852
1853 IPFW_UH_RLOCK(ch);
1854 if (find_table(ni, &ti) != NULL) {
1855 IPFW_UH_RUNLOCK(ch);
1856 return (EEXIST);
1857 }
1858 IPFW_UH_RUNLOCK(ch);
1859
1860 return (create_table_internal(ch, &ti, aname, i, NULL, 0));
1861 }
1862
1863 /*
1864 * Creates new table based on @ti and @aname.
1865 *
1866 * Assume @aname to be checked and valid.
1867 * Stores allocated table kidx inside @pkidx (if non-NULL).
1868 * Reference created table if @compat is non-zero.
1869 *
1870 * Returns 0 on success.
1871 */
1872 static int
create_table_internal(struct ip_fw_chain * ch,struct tid_info * ti,char * aname,ipfw_xtable_info * i,uint16_t * pkidx,int compat)1873 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
1874 char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat)
1875 {
1876 struct namedobj_instance *ni;
1877 struct table_config *tc, *tc_new, *tmp;
1878 struct table_algo *ta;
1879 uint16_t kidx;
1880
1881 ni = CHAIN_TO_NI(ch);
1882
1883 ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname);
1884 if (ta == NULL)
1885 return (ENOTSUP);
1886
1887 tc = alloc_table_config(ch, ti, ta, aname, i->tflags);
1888 if (tc == NULL)
1889 return (ENOMEM);
1890
1891 tc->vmask = i->vmask;
1892 tc->limit = i->limit;
1893 if (ta->flags & TA_FLAG_READONLY)
1894 tc->locked = 1;
1895 else
1896 tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0;
1897
1898 IPFW_UH_WLOCK(ch);
1899
1900 /* Check if table has been already created */
1901 tc_new = find_table(ni, ti);
1902 if (tc_new != NULL) {
1903 /*
1904 * Compat: do not fail if we're
1905 * requesting to create existing table
1906 * which has the same type
1907 */
1908 if (compat == 0 || tc_new->no.subtype != tc->no.subtype) {
1909 IPFW_UH_WUNLOCK(ch);
1910 free_table_config(ni, tc);
1911 return (EEXIST);
1912 }
1913
1914 /* Exchange tc and tc_new for proper refcounting & freeing */
1915 tmp = tc;
1916 tc = tc_new;
1917 tc_new = tmp;
1918 } else {
1919 /* New table */
1920 if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) {
1921 IPFW_UH_WUNLOCK(ch);
1922 printf("Unable to allocate table index."
1923 " Consider increasing net.inet.ip.fw.tables_max");
1924 free_table_config(ni, tc);
1925 return (EBUSY);
1926 }
1927 tc->no.kidx = kidx;
1928 tc->no.etlv = IPFW_TLV_TBL_NAME;
1929
1930 link_table(ch, tc);
1931 }
1932
1933 if (compat != 0)
1934 tc->no.refcnt++;
1935 if (pkidx != NULL)
1936 *pkidx = tc->no.kidx;
1937
1938 IPFW_UH_WUNLOCK(ch);
1939
1940 if (tc_new != NULL)
1941 free_table_config(ni, tc_new);
1942
1943 return (0);
1944 }
1945
1946 static void
ntlv_to_ti(ipfw_obj_ntlv * ntlv,struct tid_info * ti)1947 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti)
1948 {
1949
1950 memset(ti, 0, sizeof(struct tid_info));
1951 ti->set = ntlv->set;
1952 ti->uidx = ntlv->idx;
1953 ti->tlvs = ntlv;
1954 ti->tlen = ntlv->head.length;
1955 }
1956
1957 static void
objheader_to_ti(struct _ipfw_obj_header * oh,struct tid_info * ti)1958 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti)
1959 {
1960
1961 ntlv_to_ti(&oh->ntlv, ti);
1962 }
1963
1964 struct namedobj_instance *
ipfw_get_table_objhash(struct ip_fw_chain * ch)1965 ipfw_get_table_objhash(struct ip_fw_chain *ch)
1966 {
1967
1968 return (CHAIN_TO_NI(ch));
1969 }
1970
1971 /*
1972 * Exports basic table info as name TLV.
1973 * Used inside dump_static_rules() to provide info
1974 * about all tables referenced by current ruleset.
1975 *
1976 * Returns 0 on success.
1977 */
1978 int
ipfw_export_table_ntlv(struct ip_fw_chain * ch,uint16_t kidx,struct sockopt_data * sd)1979 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx,
1980 struct sockopt_data *sd)
1981 {
1982 struct namedobj_instance *ni;
1983 struct named_object *no;
1984 ipfw_obj_ntlv *ntlv;
1985
1986 ni = CHAIN_TO_NI(ch);
1987
1988 no = ipfw_objhash_lookup_kidx(ni, kidx);
1989 KASSERT(no != NULL, ("invalid table kidx passed"));
1990
1991 ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1992 if (ntlv == NULL)
1993 return (ENOMEM);
1994
1995 ntlv->head.type = IPFW_TLV_TBL_NAME;
1996 ntlv->head.length = sizeof(*ntlv);
1997 ntlv->idx = no->kidx;
1998 strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
1999
2000 return (0);
2001 }
2002
2003 struct dump_args {
2004 struct ip_fw_chain *ch;
2005 struct table_info *ti;
2006 struct table_config *tc;
2007 struct sockopt_data *sd;
2008 uint32_t cnt;
2009 uint16_t uidx;
2010 int error;
2011 uint32_t size;
2012 ipfw_table_entry *ent;
2013 ta_foreach_f *f;
2014 void *farg;
2015 ipfw_obj_tentry tent;
2016 };
2017
2018 static int
count_ext_entries(void * e,void * arg)2019 count_ext_entries(void *e, void *arg)
2020 {
2021 struct dump_args *da;
2022
2023 da = (struct dump_args *)arg;
2024 da->cnt++;
2025
2026 return (0);
2027 }
2028
2029 /*
2030 * Gets number of items from table either using
2031 * internal counter or calling algo callback for
2032 * externally-managed tables.
2033 *
2034 * Returns number of records.
2035 */
2036 static uint32_t
table_get_count(struct ip_fw_chain * ch,struct table_config * tc)2037 table_get_count(struct ip_fw_chain *ch, struct table_config *tc)
2038 {
2039 struct table_info *ti;
2040 struct table_algo *ta;
2041 struct dump_args da;
2042
2043 ti = KIDX_TO_TI(ch, tc->no.kidx);
2044 ta = tc->ta;
2045
2046 /* Use internal counter for self-managed tables */
2047 if ((ta->flags & TA_FLAG_READONLY) == 0)
2048 return (tc->count);
2049
2050 /* Use callback to quickly get number of items */
2051 if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0)
2052 return (ta->get_count(tc->astate, ti));
2053
2054 /* Count number of iterms ourselves */
2055 memset(&da, 0, sizeof(da));
2056 ta->foreach(tc->astate, ti, count_ext_entries, &da);
2057
2058 return (da.cnt);
2059 }
2060
2061 /*
2062 * Exports table @tc info into standard ipfw_xtable_info format.
2063 */
2064 static void
export_table_info(struct ip_fw_chain * ch,struct table_config * tc,ipfw_xtable_info * i)2065 export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
2066 ipfw_xtable_info *i)
2067 {
2068 struct table_info *ti;
2069 struct table_algo *ta;
2070
2071 i->type = tc->no.subtype;
2072 i->tflags = tc->tflags;
2073 i->vmask = tc->vmask;
2074 i->set = tc->no.set;
2075 i->kidx = tc->no.kidx;
2076 i->refcnt = tc->no.refcnt;
2077 i->count = table_get_count(ch, tc);
2078 i->limit = tc->limit;
2079 i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0;
2080 i->size = i->count * sizeof(ipfw_obj_tentry);
2081 i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2082 strlcpy(i->tablename, tc->tablename, sizeof(i->tablename));
2083 ti = KIDX_TO_TI(ch, tc->no.kidx);
2084 ta = tc->ta;
2085 if (ta->print_config != NULL) {
2086 /* Use algo function to print table config to string */
2087 ta->print_config(tc->astate, ti, i->algoname,
2088 sizeof(i->algoname));
2089 } else
2090 strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2091 /* Dump algo-specific data, if possible */
2092 if (ta->dump_tinfo != NULL) {
2093 ta->dump_tinfo(tc->astate, ti, &i->ta_info);
2094 i->ta_info.flags |= IPFW_TATFLAGS_DATA;
2095 }
2096 }
2097
2098 struct dump_table_args {
2099 struct ip_fw_chain *ch;
2100 struct sockopt_data *sd;
2101 };
2102
2103 static int
export_table_internal(struct namedobj_instance * ni,struct named_object * no,void * arg)2104 export_table_internal(struct namedobj_instance *ni, struct named_object *no,
2105 void *arg)
2106 {
2107 ipfw_xtable_info *i;
2108 struct dump_table_args *dta;
2109
2110 dta = (struct dump_table_args *)arg;
2111
2112 i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i));
2113 KASSERT(i != NULL, ("previously checked buffer is not enough"));
2114
2115 export_table_info(dta->ch, (struct table_config *)no, i);
2116 return (0);
2117 }
2118
2119 /*
2120 * Export all tables as ipfw_xtable_info structures to
2121 * storage provided by @sd.
2122 *
2123 * If supplied buffer is too small, fills in required size
2124 * and returns ENOMEM.
2125 * Returns 0 on success.
2126 */
2127 static int
export_tables(struct ip_fw_chain * ch,ipfw_obj_lheader * olh,struct sockopt_data * sd)2128 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
2129 struct sockopt_data *sd)
2130 {
2131 uint32_t size;
2132 uint32_t count;
2133 struct dump_table_args dta;
2134
2135 count = ipfw_objhash_count(CHAIN_TO_NI(ch));
2136 size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader);
2137
2138 /* Fill in header regadless of buffer size */
2139 olh->count = count;
2140 olh->objsize = sizeof(ipfw_xtable_info);
2141
2142 if (size > olh->size) {
2143 olh->size = size;
2144 return (ENOMEM);
2145 }
2146
2147 olh->size = size;
2148
2149 dta.ch = ch;
2150 dta.sd = sd;
2151
2152 ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta);
2153
2154 return (0);
2155 }
2156
2157 /*
2158 * Dumps all table data
2159 * Data layout (v1)(current):
2160 * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size
2161 * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ]
2162 *
2163 * Returns 0 on success
2164 */
2165 static int
dump_table_v1(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2166 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2167 struct sockopt_data *sd)
2168 {
2169 struct _ipfw_obj_header *oh;
2170 ipfw_xtable_info *i;
2171 struct tid_info ti;
2172 struct table_config *tc;
2173 struct table_algo *ta;
2174 struct dump_args da;
2175 uint32_t sz;
2176
2177 sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2178 oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
2179 if (oh == NULL)
2180 return (EINVAL);
2181
2182 i = (ipfw_xtable_info *)(oh + 1);
2183 objheader_to_ti(oh, &ti);
2184
2185 IPFW_UH_RLOCK(ch);
2186 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2187 IPFW_UH_RUNLOCK(ch);
2188 return (ESRCH);
2189 }
2190 export_table_info(ch, tc, i);
2191
2192 if (sd->valsize < i->size) {
2193 /*
2194 * Submitted buffer size is not enough.
2195 * WE've already filled in @i structure with
2196 * relevant table info including size, so we
2197 * can return. Buffer will be flushed automatically.
2198 */
2199 IPFW_UH_RUNLOCK(ch);
2200 return (ENOMEM);
2201 }
2202
2203 /*
2204 * Do the actual dump in eXtended format
2205 */
2206 memset(&da, 0, sizeof(da));
2207 da.ch = ch;
2208 da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2209 da.tc = tc;
2210 da.sd = sd;
2211
2212 ta = tc->ta;
2213
2214 ta->foreach(tc->astate, da.ti, dump_table_tentry, &da);
2215 IPFW_UH_RUNLOCK(ch);
2216
2217 return (da.error);
2218 }
2219
2220 /*
2221 * Dumps all table data
2222 * Data layout (version 0)(legacy):
2223 * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE()
2224 * Reply: [ ipfw_xtable ipfw_table_xentry x N ]
2225 *
2226 * Returns 0 on success
2227 */
2228 static int
dump_table_v0(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2229 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2230 struct sockopt_data *sd)
2231 {
2232 ipfw_xtable *xtbl;
2233 struct tid_info ti;
2234 struct table_config *tc;
2235 struct table_algo *ta;
2236 struct dump_args da;
2237 size_t sz, count;
2238
2239 xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable));
2240 if (xtbl == NULL)
2241 return (EINVAL);
2242
2243 memset(&ti, 0, sizeof(ti));
2244 ti.uidx = xtbl->tbl;
2245
2246 IPFW_UH_RLOCK(ch);
2247 if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2248 IPFW_UH_RUNLOCK(ch);
2249 return (0);
2250 }
2251 count = table_get_count(ch, tc);
2252 sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable);
2253
2254 xtbl->cnt = count;
2255 xtbl->size = sz;
2256 xtbl->type = tc->no.subtype;
2257 xtbl->tbl = ti.uidx;
2258
2259 if (sd->valsize < sz) {
2260 /*
2261 * Submitted buffer size is not enough.
2262 * WE've already filled in @i structure with
2263 * relevant table info including size, so we
2264 * can return. Buffer will be flushed automatically.
2265 */
2266 IPFW_UH_RUNLOCK(ch);
2267 return (ENOMEM);
2268 }
2269
2270 /* Do the actual dump in eXtended format */
2271 memset(&da, 0, sizeof(da));
2272 da.ch = ch;
2273 da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2274 da.tc = tc;
2275 da.sd = sd;
2276
2277 ta = tc->ta;
2278
2279 ta->foreach(tc->astate, da.ti, dump_table_xentry, &da);
2280 IPFW_UH_RUNLOCK(ch);
2281
2282 return (0);
2283 }
2284
2285 /*
2286 * Legacy function to retrieve number of items in table.
2287 */
2288 static int
get_table_size(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2289 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2290 struct sockopt_data *sd)
2291 {
2292 uint32_t *tbl;
2293 struct tid_info ti;
2294 size_t sz;
2295 int error;
2296
2297 sz = sizeof(*op3) + sizeof(uint32_t);
2298 op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz);
2299 if (op3 == NULL)
2300 return (EINVAL);
2301
2302 tbl = (uint32_t *)(op3 + 1);
2303 memset(&ti, 0, sizeof(ti));
2304 ti.uidx = *tbl;
2305 IPFW_UH_RLOCK(ch);
2306 error = ipfw_count_xtable(ch, &ti, tbl);
2307 IPFW_UH_RUNLOCK(ch);
2308 return (error);
2309 }
2310
2311 /*
2312 * Legacy IP_FW_TABLE_GETSIZE handler
2313 */
2314 int
ipfw_count_table(struct ip_fw_chain * ch,struct tid_info * ti,uint32_t * cnt)2315 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2316 {
2317 struct table_config *tc;
2318
2319 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2320 return (ESRCH);
2321 *cnt = table_get_count(ch, tc);
2322 return (0);
2323 }
2324
2325 /*
2326 * Legacy IP_FW_TABLE_XGETSIZE handler
2327 */
2328 int
ipfw_count_xtable(struct ip_fw_chain * ch,struct tid_info * ti,uint32_t * cnt)2329 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2330 {
2331 struct table_config *tc;
2332 uint32_t count;
2333
2334 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) {
2335 *cnt = 0;
2336 return (0); /* 'table all list' requires success */
2337 }
2338
2339 count = table_get_count(ch, tc);
2340 *cnt = count * sizeof(ipfw_table_xentry);
2341 if (count > 0)
2342 *cnt += sizeof(ipfw_xtable);
2343 return (0);
2344 }
2345
2346 static int
dump_table_entry(void * e,void * arg)2347 dump_table_entry(void *e, void *arg)
2348 {
2349 struct dump_args *da;
2350 struct table_config *tc;
2351 struct table_algo *ta;
2352 ipfw_table_entry *ent;
2353 struct table_value *pval;
2354 int error;
2355
2356 da = (struct dump_args *)arg;
2357
2358 tc = da->tc;
2359 ta = tc->ta;
2360
2361 /* Out of memory, returning */
2362 if (da->cnt == da->size)
2363 return (1);
2364 ent = da->ent++;
2365 ent->tbl = da->uidx;
2366 da->cnt++;
2367
2368 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2369 if (error != 0)
2370 return (error);
2371
2372 ent->addr = da->tent.k.addr.s_addr;
2373 ent->masklen = da->tent.masklen;
2374 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2375 ent->value = ipfw_export_table_value_legacy(pval);
2376
2377 return (0);
2378 }
2379
2380 /*
2381 * Dumps table in pre-8.1 legacy format.
2382 */
2383 int
ipfw_dump_table_legacy(struct ip_fw_chain * ch,struct tid_info * ti,ipfw_table * tbl)2384 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti,
2385 ipfw_table *tbl)
2386 {
2387 struct table_config *tc;
2388 struct table_algo *ta;
2389 struct dump_args da;
2390
2391 tbl->cnt = 0;
2392
2393 if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2394 return (0); /* XXX: We should return ESRCH */
2395
2396 ta = tc->ta;
2397
2398 /* This dump format supports IPv4 only */
2399 if (tc->no.subtype != IPFW_TABLE_ADDR)
2400 return (0);
2401
2402 memset(&da, 0, sizeof(da));
2403 da.ch = ch;
2404 da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2405 da.tc = tc;
2406 da.ent = &tbl->ent[0];
2407 da.size = tbl->size;
2408
2409 tbl->cnt = 0;
2410 ta->foreach(tc->astate, da.ti, dump_table_entry, &da);
2411 tbl->cnt = da.cnt;
2412
2413 return (0);
2414 }
2415
2416 /*
2417 * Dumps table entry in eXtended format (v1)(current).
2418 */
2419 static int
dump_table_tentry(void * e,void * arg)2420 dump_table_tentry(void *e, void *arg)
2421 {
2422 struct dump_args *da;
2423 struct table_config *tc;
2424 struct table_algo *ta;
2425 struct table_value *pval;
2426 ipfw_obj_tentry *tent;
2427 int error;
2428
2429 da = (struct dump_args *)arg;
2430
2431 tc = da->tc;
2432 ta = tc->ta;
2433
2434 tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent));
2435 /* Out of memory, returning */
2436 if (tent == NULL) {
2437 da->error = ENOMEM;
2438 return (1);
2439 }
2440 tent->head.length = sizeof(ipfw_obj_tentry);
2441 tent->idx = da->uidx;
2442
2443 error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2444 if (error != 0)
2445 return (error);
2446
2447 pval = get_table_value(da->ch, da->tc, tent->v.kidx);
2448 ipfw_export_table_value_v1(pval, &tent->v.value);
2449
2450 return (0);
2451 }
2452
2453 /*
2454 * Dumps table entry in eXtended format (v0).
2455 */
2456 static int
dump_table_xentry(void * e,void * arg)2457 dump_table_xentry(void *e, void *arg)
2458 {
2459 struct dump_args *da;
2460 struct table_config *tc;
2461 struct table_algo *ta;
2462 ipfw_table_xentry *xent;
2463 ipfw_obj_tentry *tent;
2464 struct table_value *pval;
2465 int error;
2466
2467 da = (struct dump_args *)arg;
2468
2469 tc = da->tc;
2470 ta = tc->ta;
2471
2472 xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent));
2473 /* Out of memory, returning */
2474 if (xent == NULL)
2475 return (1);
2476 xent->len = sizeof(ipfw_table_xentry);
2477 xent->tbl = da->uidx;
2478
2479 memset(&da->tent, 0, sizeof(da->tent));
2480 tent = &da->tent;
2481 error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2482 if (error != 0)
2483 return (error);
2484
2485 /* Convert current format to previous one */
2486 xent->masklen = tent->masklen;
2487 pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2488 xent->value = ipfw_export_table_value_legacy(pval);
2489 /* Apply some hacks */
2490 if (tc->no.subtype == IPFW_TABLE_ADDR && tent->subtype == AF_INET) {
2491 xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr;
2492 xent->flags = IPFW_TCF_INET;
2493 } else
2494 memcpy(&xent->k, &tent->k, sizeof(xent->k));
2495
2496 return (0);
2497 }
2498
2499 /*
2500 * Helper function to export table algo data
2501 * to tentry format before calling user function.
2502 *
2503 * Returns 0 on success.
2504 */
2505 static int
prepare_table_tentry(void * e,void * arg)2506 prepare_table_tentry(void *e, void *arg)
2507 {
2508 struct dump_args *da;
2509 struct table_config *tc;
2510 struct table_algo *ta;
2511 int error;
2512
2513 da = (struct dump_args *)arg;
2514
2515 tc = da->tc;
2516 ta = tc->ta;
2517
2518 error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2519 if (error != 0)
2520 return (error);
2521
2522 da->f(&da->tent, da->farg);
2523
2524 return (0);
2525 }
2526
2527 /*
2528 * Allow external consumers to read table entries in standard format.
2529 */
2530 int
ipfw_foreach_table_tentry(struct ip_fw_chain * ch,uint16_t kidx,ta_foreach_f * f,void * arg)2531 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx,
2532 ta_foreach_f *f, void *arg)
2533 {
2534 struct namedobj_instance *ni;
2535 struct table_config *tc;
2536 struct table_algo *ta;
2537 struct dump_args da;
2538
2539 ni = CHAIN_TO_NI(ch);
2540
2541 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
2542 if (tc == NULL)
2543 return (ESRCH);
2544
2545 ta = tc->ta;
2546
2547 memset(&da, 0, sizeof(da));
2548 da.ch = ch;
2549 da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2550 da.tc = tc;
2551 da.f = f;
2552 da.farg = arg;
2553
2554 ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da);
2555
2556 return (0);
2557 }
2558
2559 /*
2560 * Table algorithms
2561 */
2562
2563 /*
2564 * Finds algorithm by index, table type or supplied name.
2565 *
2566 * Returns pointer to algo or NULL.
2567 */
2568 static struct table_algo *
find_table_algo(struct tables_config * tcfg,struct tid_info * ti,char * name)2569 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name)
2570 {
2571 int i, l;
2572 struct table_algo *ta;
2573
2574 if (ti->type > IPFW_TABLE_MAXTYPE)
2575 return (NULL);
2576
2577 /* Search by index */
2578 if (ti->atype != 0) {
2579 if (ti->atype > tcfg->algo_count)
2580 return (NULL);
2581 return (tcfg->algo[ti->atype]);
2582 }
2583
2584 if (name == NULL) {
2585 /* Return default algorithm for given type if set */
2586 return (tcfg->def_algo[ti->type]);
2587 }
2588
2589 /* Search by name */
2590 /* TODO: better search */
2591 for (i = 1; i <= tcfg->algo_count; i++) {
2592 ta = tcfg->algo[i];
2593
2594 /*
2595 * One can supply additional algorithm
2596 * parameters so we compare only the first word
2597 * of supplied name:
2598 * 'addr:chash hsize=32'
2599 * '^^^^^^^^^'
2600 *
2601 */
2602 l = strlen(ta->name);
2603 if (strncmp(name, ta->name, l) != 0)
2604 continue;
2605 if (name[l] != '\0' && name[l] != ' ')
2606 continue;
2607 /* Check if we're requesting proper table type */
2608 if (ti->type != 0 && ti->type != ta->type)
2609 return (NULL);
2610 return (ta);
2611 }
2612
2613 return (NULL);
2614 }
2615
2616 /*
2617 * Register new table algo @ta.
2618 * Stores algo id inside @idx.
2619 *
2620 * Returns 0 on success.
2621 */
2622 int
ipfw_add_table_algo(struct ip_fw_chain * ch,struct table_algo * ta,size_t size,int * idx)2623 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size,
2624 int *idx)
2625 {
2626 struct tables_config *tcfg;
2627 struct table_algo *ta_new;
2628 size_t sz;
2629
2630 if (size > sizeof(struct table_algo))
2631 return (EINVAL);
2632
2633 /* Check for the required on-stack size for add/del */
2634 sz = roundup2(ta->ta_buf_size, sizeof(void *));
2635 if (sz > TA_BUF_SZ)
2636 return (EINVAL);
2637
2638 KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE"));
2639
2640 /* Copy algorithm data to stable storage. */
2641 ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO);
2642 memcpy(ta_new, ta, size);
2643
2644 tcfg = CHAIN_TO_TCFG(ch);
2645
2646 KASSERT(tcfg->algo_count < 255, ("Increase algo array size"));
2647
2648 tcfg->algo[++tcfg->algo_count] = ta_new;
2649 ta_new->idx = tcfg->algo_count;
2650
2651 /* Set algorithm as default one for given type */
2652 if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 &&
2653 tcfg->def_algo[ta_new->type] == NULL)
2654 tcfg->def_algo[ta_new->type] = ta_new;
2655
2656 *idx = ta_new->idx;
2657
2658 return (0);
2659 }
2660
2661 /*
2662 * Unregisters table algo using @idx as id.
2663 * XXX: It is NOT safe to call this function in any place
2664 * other than ipfw instance destroy handler.
2665 */
2666 void
ipfw_del_table_algo(struct ip_fw_chain * ch,int idx)2667 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx)
2668 {
2669 struct tables_config *tcfg;
2670 struct table_algo *ta;
2671
2672 tcfg = CHAIN_TO_TCFG(ch);
2673
2674 KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d",
2675 idx, tcfg->algo_count));
2676
2677 ta = tcfg->algo[idx];
2678 KASSERT(ta != NULL, ("algo idx %d is NULL", idx));
2679
2680 if (tcfg->def_algo[ta->type] == ta)
2681 tcfg->def_algo[ta->type] = NULL;
2682
2683 free(ta, M_IPFW);
2684 }
2685
2686 /*
2687 * Lists all table algorithms currently available.
2688 * Data layout (v0)(current):
2689 * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2690 * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ]
2691 *
2692 * Returns 0 on success
2693 */
2694 static int
list_table_algo(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2695 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2696 struct sockopt_data *sd)
2697 {
2698 struct _ipfw_obj_lheader *olh;
2699 struct tables_config *tcfg;
2700 ipfw_ta_info *i;
2701 struct table_algo *ta;
2702 uint32_t count, n, size;
2703
2704 olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
2705 if (olh == NULL)
2706 return (EINVAL);
2707 if (sd->valsize < olh->size)
2708 return (EINVAL);
2709
2710 IPFW_UH_RLOCK(ch);
2711 tcfg = CHAIN_TO_TCFG(ch);
2712 count = tcfg->algo_count;
2713 size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader);
2714
2715 /* Fill in header regadless of buffer size */
2716 olh->count = count;
2717 olh->objsize = sizeof(ipfw_ta_info);
2718
2719 if (size > olh->size) {
2720 olh->size = size;
2721 IPFW_UH_RUNLOCK(ch);
2722 return (ENOMEM);
2723 }
2724 olh->size = size;
2725
2726 for (n = 1; n <= count; n++) {
2727 i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2728 KASSERT(i != NULL, ("previously checked buffer is not enough"));
2729 ta = tcfg->algo[n];
2730 strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2731 i->type = ta->type;
2732 i->refcnt = ta->refcnt;
2733 }
2734
2735 IPFW_UH_RUNLOCK(ch);
2736
2737 return (0);
2738 }
2739
2740 static int
classify_srcdst(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2741 classify_srcdst(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2742 {
2743 /* Basic IPv4/IPv6 or u32 lookups */
2744 *puidx = cmd->arg1;
2745 /* Assume ADDR by default */
2746 *ptype = IPFW_TABLE_ADDR;
2747 int v;
2748
2749 if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) {
2750 /*
2751 * generic lookup. The key must be
2752 * in 32bit big-endian format.
2753 */
2754 v = ((ipfw_insn_u32 *)cmd)->d[1];
2755 switch (v) {
2756 case 0:
2757 case 1:
2758 /* IPv4 src/dst */
2759 break;
2760 case 2:
2761 case 3:
2762 /* src/dst port */
2763 *ptype = IPFW_TABLE_NUMBER;
2764 break;
2765 case 4:
2766 /* uid/gid */
2767 *ptype = IPFW_TABLE_NUMBER;
2768 break;
2769 case 5:
2770 /* jid */
2771 *ptype = IPFW_TABLE_NUMBER;
2772 break;
2773 case 6:
2774 /* dscp */
2775 *ptype = IPFW_TABLE_NUMBER;
2776 break;
2777 }
2778 }
2779
2780 return (0);
2781 }
2782
2783 static int
classify_via(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2784 classify_via(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2785 {
2786 ipfw_insn_if *cmdif;
2787
2788 /* Interface table, possibly */
2789 cmdif = (ipfw_insn_if *)cmd;
2790 if (cmdif->name[0] != '\1')
2791 return (1);
2792
2793 *ptype = IPFW_TABLE_INTERFACE;
2794 *puidx = cmdif->p.kidx;
2795
2796 return (0);
2797 }
2798
2799 static int
classify_flow(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2800 classify_flow(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2801 {
2802
2803 *puidx = cmd->arg1;
2804 *ptype = IPFW_TABLE_FLOW;
2805
2806 return (0);
2807 }
2808
2809 static void
update_arg1(ipfw_insn * cmd,uint16_t idx)2810 update_arg1(ipfw_insn *cmd, uint16_t idx)
2811 {
2812
2813 cmd->arg1 = idx;
2814 }
2815
2816 static void
update_via(ipfw_insn * cmd,uint16_t idx)2817 update_via(ipfw_insn *cmd, uint16_t idx)
2818 {
2819 ipfw_insn_if *cmdif;
2820
2821 cmdif = (ipfw_insn_if *)cmd;
2822 cmdif->p.kidx = idx;
2823 }
2824
2825 static int
table_findbyname(struct ip_fw_chain * ch,struct tid_info * ti,struct named_object ** pno)2826 table_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
2827 struct named_object **pno)
2828 {
2829 struct table_config *tc;
2830 int error;
2831
2832 IPFW_UH_WLOCK_ASSERT(ch);
2833
2834 error = find_table_err(CHAIN_TO_NI(ch), ti, &tc);
2835 if (error != 0)
2836 return (error);
2837
2838 *pno = &tc->no;
2839 return (0);
2840 }
2841
2842 /* XXX: sets-sets! */
2843 static struct named_object *
table_findbykidx(struct ip_fw_chain * ch,uint16_t idx)2844 table_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
2845 {
2846 struct namedobj_instance *ni;
2847 struct table_config *tc;
2848
2849 IPFW_UH_WLOCK_ASSERT(ch);
2850 ni = CHAIN_TO_NI(ch);
2851 tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, idx);
2852 KASSERT(tc != NULL, ("Table with index %d not found", idx));
2853
2854 return (&tc->no);
2855 }
2856
2857 static int
table_manage_sets(struct ip_fw_chain * ch,uint16_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)2858 table_manage_sets(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2859 enum ipfw_sets_cmd cmd)
2860 {
2861
2862 switch (cmd) {
2863 case SWAP_ALL:
2864 case TEST_ALL:
2865 case MOVE_ALL:
2866 /*
2867 * Always return success, the real action and decision
2868 * should make table_manage_sets_all().
2869 */
2870 return (0);
2871 case TEST_ONE:
2872 case MOVE_ONE:
2873 /*
2874 * NOTE: we need to use ipfw_objhash_del/ipfw_objhash_add
2875 * if set number will be used in hash function. Currently
2876 * we can just use generic handler that replaces set value.
2877 */
2878 if (V_fw_tables_sets == 0)
2879 return (0);
2880 break;
2881 case COUNT_ONE:
2882 /*
2883 * Return EOPNOTSUPP for COUNT_ONE when per-set sysctl is
2884 * disabled. This allow skip table's opcodes from additional
2885 * checks when specific rules moved to another set.
2886 */
2887 if (V_fw_tables_sets == 0)
2888 return (EOPNOTSUPP);
2889 }
2890 /* Use generic sets handler when per-set sysctl is enabled. */
2891 return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2892 set, new_set, cmd));
2893 }
2894
2895 /*
2896 * We register several opcode rewriters for lookup tables.
2897 * All tables opcodes have the same ETLV type, but different subtype.
2898 * To avoid invoking sets handler several times for XXX_ALL commands,
2899 * we use separate manage_sets handler. O_RECV has the lowest value,
2900 * so it should be called first.
2901 */
2902 static int
table_manage_sets_all(struct ip_fw_chain * ch,uint16_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)2903 table_manage_sets_all(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2904 enum ipfw_sets_cmd cmd)
2905 {
2906
2907 switch (cmd) {
2908 case SWAP_ALL:
2909 case TEST_ALL:
2910 /*
2911 * Return success for TEST_ALL, since nothing prevents
2912 * move rules from one set to another. All tables are
2913 * accessible from all sets when per-set tables sysctl
2914 * is disabled.
2915 */
2916 case MOVE_ALL:
2917 if (V_fw_tables_sets == 0)
2918 return (0);
2919 break;
2920 default:
2921 return (table_manage_sets(ch, set, new_set, cmd));
2922 }
2923 /* Use generic sets handler when per-set sysctl is enabled. */
2924 return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2925 set, new_set, cmd));
2926 }
2927
2928 static struct opcode_obj_rewrite opcodes[] = {
2929 {
2930 .opcode = O_IP_SRC_LOOKUP,
2931 .etlv = IPFW_TLV_TBL_NAME,
2932 .classifier = classify_srcdst,
2933 .update = update_arg1,
2934 .find_byname = table_findbyname,
2935 .find_bykidx = table_findbykidx,
2936 .create_object = create_table_compat,
2937 .manage_sets = table_manage_sets,
2938 },
2939 {
2940 .opcode = O_IP_DST_LOOKUP,
2941 .etlv = IPFW_TLV_TBL_NAME,
2942 .classifier = classify_srcdst,
2943 .update = update_arg1,
2944 .find_byname = table_findbyname,
2945 .find_bykidx = table_findbykidx,
2946 .create_object = create_table_compat,
2947 .manage_sets = table_manage_sets,
2948 },
2949 {
2950 .opcode = O_IP_FLOW_LOOKUP,
2951 .etlv = IPFW_TLV_TBL_NAME,
2952 .classifier = classify_flow,
2953 .update = update_arg1,
2954 .find_byname = table_findbyname,
2955 .find_bykidx = table_findbykidx,
2956 .create_object = create_table_compat,
2957 .manage_sets = table_manage_sets,
2958 },
2959 {
2960 .opcode = O_XMIT,
2961 .etlv = IPFW_TLV_TBL_NAME,
2962 .classifier = classify_via,
2963 .update = update_via,
2964 .find_byname = table_findbyname,
2965 .find_bykidx = table_findbykidx,
2966 .create_object = create_table_compat,
2967 .manage_sets = table_manage_sets,
2968 },
2969 {
2970 .opcode = O_RECV,
2971 .etlv = IPFW_TLV_TBL_NAME,
2972 .classifier = classify_via,
2973 .update = update_via,
2974 .find_byname = table_findbyname,
2975 .find_bykidx = table_findbykidx,
2976 .create_object = create_table_compat,
2977 .manage_sets = table_manage_sets_all,
2978 },
2979 {
2980 .opcode = O_VIA,
2981 .etlv = IPFW_TLV_TBL_NAME,
2982 .classifier = classify_via,
2983 .update = update_via,
2984 .find_byname = table_findbyname,
2985 .find_bykidx = table_findbykidx,
2986 .create_object = create_table_compat,
2987 .manage_sets = table_manage_sets,
2988 },
2989 };
2990
2991 static int
test_sets_cb(struct namedobj_instance * ni __unused,struct named_object * no,void * arg __unused)2992 test_sets_cb(struct namedobj_instance *ni __unused, struct named_object *no,
2993 void *arg __unused)
2994 {
2995
2996 /* Check that there aren't any tables in not default set */
2997 if (no->set != 0)
2998 return (EBUSY);
2999 return (0);
3000 }
3001
3002 /*
3003 * Switch between "set 0" and "rule's set" table binding,
3004 * Check all ruleset bindings and permits changing
3005 * IFF each binding has both rule AND table in default set (set 0).
3006 *
3007 * Returns 0 on success.
3008 */
3009 int
ipfw_switch_tables_namespace(struct ip_fw_chain * ch,unsigned int sets)3010 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets)
3011 {
3012 struct opcode_obj_rewrite *rw;
3013 struct namedobj_instance *ni;
3014 struct named_object *no;
3015 struct ip_fw *rule;
3016 ipfw_insn *cmd;
3017 int cmdlen, i, l;
3018 uint16_t kidx;
3019 uint8_t subtype;
3020
3021 IPFW_UH_WLOCK(ch);
3022
3023 if (V_fw_tables_sets == sets) {
3024 IPFW_UH_WUNLOCK(ch);
3025 return (0);
3026 }
3027 ni = CHAIN_TO_NI(ch);
3028 if (sets == 0) {
3029 /*
3030 * Prevent disabling sets support if we have some tables
3031 * in not default sets.
3032 */
3033 if (ipfw_objhash_foreach_type(ni, test_sets_cb,
3034 NULL, IPFW_TLV_TBL_NAME) != 0) {
3035 IPFW_UH_WUNLOCK(ch);
3036 return (EBUSY);
3037 }
3038 }
3039 /*
3040 * Scan all rules and examine tables opcodes.
3041 */
3042 for (i = 0; i < ch->n_rules; i++) {
3043 rule = ch->map[i];
3044
3045 l = rule->cmd_len;
3046 cmd = rule->cmd;
3047 cmdlen = 0;
3048 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
3049 cmdlen = F_LEN(cmd);
3050 /* Check only tables opcodes */
3051 for (kidx = 0, rw = opcodes;
3052 rw < opcodes + nitems(opcodes); rw++) {
3053 if (rw->opcode != cmd->opcode)
3054 continue;
3055 if (rw->classifier(cmd, &kidx, &subtype) == 0)
3056 break;
3057 }
3058 if (kidx == 0)
3059 continue;
3060 no = ipfw_objhash_lookup_kidx(ni, kidx);
3061 /* Check if both table object and rule has the set 0 */
3062 if (no->set != 0 || rule->set != 0) {
3063 IPFW_UH_WUNLOCK(ch);
3064 return (EBUSY);
3065 }
3066 }
3067 }
3068 V_fw_tables_sets = sets;
3069 IPFW_UH_WUNLOCK(ch);
3070 return (0);
3071 }
3072
3073 /*
3074 * Checks table name for validity.
3075 * Enforce basic length checks, the rest
3076 * should be done in userland.
3077 *
3078 * Returns 0 if name is considered valid.
3079 */
3080 static int
check_table_name(const char * name)3081 check_table_name(const char *name)
3082 {
3083
3084 /*
3085 * TODO: do some more complicated checks
3086 */
3087 return (ipfw_check_object_name_generic(name));
3088 }
3089
3090 /*
3091 * Finds table config based on either legacy index
3092 * or name in ntlv.
3093 * Note @ti structure contains unchecked data from userland.
3094 *
3095 * Returns 0 in success and fills in @tc with found config
3096 */
3097 static int
find_table_err(struct namedobj_instance * ni,struct tid_info * ti,struct table_config ** tc)3098 find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
3099 struct table_config **tc)
3100 {
3101 char *name, bname[16];
3102 struct named_object *no;
3103 ipfw_obj_ntlv *ntlv;
3104 uint32_t set;
3105
3106 if (ti->tlvs != NULL) {
3107 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3108 IPFW_TLV_TBL_NAME);
3109 if (ntlv == NULL)
3110 return (EINVAL);
3111 name = ntlv->name;
3112
3113 /*
3114 * Use set provided by @ti instead of @ntlv one.
3115 * This is needed due to different sets behavior
3116 * controlled by V_fw_tables_sets.
3117 */
3118 set = (V_fw_tables_sets != 0) ? ti->set : 0;
3119 } else {
3120 snprintf(bname, sizeof(bname), "%d", ti->uidx);
3121 name = bname;
3122 set = 0;
3123 }
3124
3125 no = ipfw_objhash_lookup_name(ni, set, name);
3126 *tc = (struct table_config *)no;
3127
3128 return (0);
3129 }
3130
3131 /*
3132 * Finds table config based on either legacy index
3133 * or name in ntlv.
3134 * Note @ti structure contains unchecked data from userland.
3135 *
3136 * Returns pointer to table_config or NULL.
3137 */
3138 static struct table_config *
find_table(struct namedobj_instance * ni,struct tid_info * ti)3139 find_table(struct namedobj_instance *ni, struct tid_info *ti)
3140 {
3141 struct table_config *tc;
3142
3143 if (find_table_err(ni, ti, &tc) != 0)
3144 return (NULL);
3145
3146 return (tc);
3147 }
3148
3149 /*
3150 * Allocate new table config structure using
3151 * specified @algo and @aname.
3152 *
3153 * Returns pointer to config or NULL.
3154 */
3155 static struct table_config *
alloc_table_config(struct ip_fw_chain * ch,struct tid_info * ti,struct table_algo * ta,char * aname,uint8_t tflags)3156 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti,
3157 struct table_algo *ta, char *aname, uint8_t tflags)
3158 {
3159 char *name, bname[16];
3160 struct table_config *tc;
3161 int error;
3162 ipfw_obj_ntlv *ntlv;
3163 uint32_t set;
3164
3165 if (ti->tlvs != NULL) {
3166 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3167 IPFW_TLV_TBL_NAME);
3168 if (ntlv == NULL)
3169 return (NULL);
3170 name = ntlv->name;
3171 set = (V_fw_tables_sets == 0) ? 0 : ntlv->set;
3172 } else {
3173 /* Compat part: convert number to string representation */
3174 snprintf(bname, sizeof(bname), "%d", ti->uidx);
3175 name = bname;
3176 set = 0;
3177 }
3178
3179 tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO);
3180 tc->no.name = tc->tablename;
3181 tc->no.subtype = ta->type;
3182 tc->no.set = set;
3183 tc->tflags = tflags;
3184 tc->ta = ta;
3185 strlcpy(tc->tablename, name, sizeof(tc->tablename));
3186 /* Set "shared" value type by default */
3187 tc->vshared = 1;
3188
3189 /* Preallocate data structures for new tables */
3190 error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags);
3191 if (error != 0) {
3192 free(tc, M_IPFW);
3193 return (NULL);
3194 }
3195
3196 return (tc);
3197 }
3198
3199 /*
3200 * Destroys table state and config.
3201 */
3202 static void
free_table_config(struct namedobj_instance * ni,struct table_config * tc)3203 free_table_config(struct namedobj_instance *ni, struct table_config *tc)
3204 {
3205
3206 KASSERT(tc->linked == 0, ("free() on linked config"));
3207 /* UH lock MUST NOT be held */
3208
3209 /*
3210 * We're using ta without any locking/referencing.
3211 * TODO: fix this if we're going to use unloadable algos.
3212 */
3213 tc->ta->destroy(tc->astate, &tc->ti_copy);
3214 free(tc, M_IPFW);
3215 }
3216
3217 /*
3218 * Links @tc to @chain table named instance.
3219 * Sets appropriate type/states in @chain table info.
3220 */
3221 static void
link_table(struct ip_fw_chain * ch,struct table_config * tc)3222 link_table(struct ip_fw_chain *ch, struct table_config *tc)
3223 {
3224 struct namedobj_instance *ni;
3225 struct table_info *ti;
3226 uint16_t kidx;
3227
3228 IPFW_UH_WLOCK_ASSERT(ch);
3229
3230 ni = CHAIN_TO_NI(ch);
3231 kidx = tc->no.kidx;
3232
3233 ipfw_objhash_add(ni, &tc->no);
3234
3235 ti = KIDX_TO_TI(ch, kidx);
3236 *ti = tc->ti_copy;
3237
3238 /* Notify algo on real @ti address */
3239 if (tc->ta->change_ti != NULL)
3240 tc->ta->change_ti(tc->astate, ti);
3241
3242 tc->linked = 1;
3243 tc->ta->refcnt++;
3244 }
3245
3246 /*
3247 * Unlinks @tc from @chain table named instance.
3248 * Zeroes states in @chain and stores them in @tc.
3249 */
3250 static void
unlink_table(struct ip_fw_chain * ch,struct table_config * tc)3251 unlink_table(struct ip_fw_chain *ch, struct table_config *tc)
3252 {
3253 struct namedobj_instance *ni;
3254 struct table_info *ti;
3255 uint16_t kidx;
3256
3257 IPFW_UH_WLOCK_ASSERT(ch);
3258 IPFW_WLOCK_ASSERT(ch);
3259
3260 ni = CHAIN_TO_NI(ch);
3261 kidx = tc->no.kidx;
3262
3263 /* Clear state. @ti copy is already saved inside @tc */
3264 ipfw_objhash_del(ni, &tc->no);
3265 ti = KIDX_TO_TI(ch, kidx);
3266 memset(ti, 0, sizeof(struct table_info));
3267 tc->linked = 0;
3268 tc->ta->refcnt--;
3269
3270 /* Notify algo on real @ti address */
3271 if (tc->ta->change_ti != NULL)
3272 tc->ta->change_ti(tc->astate, NULL);
3273 }
3274
3275 static struct ipfw_sopt_handler scodes[] = {
3276 { IP_FW_TABLE_XCREATE, 0, HDIR_SET, create_table },
3277 { IP_FW_TABLE_XDESTROY, 0, HDIR_SET, flush_table_v0 },
3278 { IP_FW_TABLE_XFLUSH, 0, HDIR_SET, flush_table_v0 },
3279 { IP_FW_TABLE_XMODIFY, 0, HDIR_BOTH, modify_table },
3280 { IP_FW_TABLE_XINFO, 0, HDIR_GET, describe_table },
3281 { IP_FW_TABLES_XLIST, 0, HDIR_GET, list_tables },
3282 { IP_FW_TABLE_XLIST, 0, HDIR_GET, dump_table_v0 },
3283 { IP_FW_TABLE_XLIST, 1, HDIR_GET, dump_table_v1 },
3284 { IP_FW_TABLE_XADD, 0, HDIR_BOTH, manage_table_ent_v0 },
3285 { IP_FW_TABLE_XADD, 1, HDIR_BOTH, manage_table_ent_v1 },
3286 { IP_FW_TABLE_XDEL, 0, HDIR_BOTH, manage_table_ent_v0 },
3287 { IP_FW_TABLE_XDEL, 1, HDIR_BOTH, manage_table_ent_v1 },
3288 { IP_FW_TABLE_XFIND, 0, HDIR_GET, find_table_entry },
3289 { IP_FW_TABLE_XSWAP, 0, HDIR_SET, swap_table },
3290 { IP_FW_TABLES_ALIST, 0, HDIR_GET, list_table_algo },
3291 { IP_FW_TABLE_XGETSIZE, 0, HDIR_GET, get_table_size },
3292 };
3293
3294 static int
destroy_table_locked(struct namedobj_instance * ni,struct named_object * no,void * arg)3295 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no,
3296 void *arg)
3297 {
3298
3299 unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no);
3300 if (ipfw_objhash_free_idx(ni, no->kidx) != 0)
3301 printf("Error unlinking kidx %d from table %s\n",
3302 no->kidx, no->name);
3303 free_table_config(ni, (struct table_config *)no);
3304 return (0);
3305 }
3306
3307 /*
3308 * Shuts tables module down.
3309 */
3310 void
ipfw_destroy_tables(struct ip_fw_chain * ch,int last)3311 ipfw_destroy_tables(struct ip_fw_chain *ch, int last)
3312 {
3313
3314 IPFW_DEL_SOPT_HANDLER(last, scodes);
3315 IPFW_DEL_OBJ_REWRITER(last, opcodes);
3316
3317 /* Remove all tables from working set */
3318 IPFW_UH_WLOCK(ch);
3319 IPFW_WLOCK(ch);
3320 ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch);
3321 IPFW_WUNLOCK(ch);
3322 IPFW_UH_WUNLOCK(ch);
3323
3324 /* Free pointers itself */
3325 free(ch->tablestate, M_IPFW);
3326
3327 ipfw_table_value_destroy(ch, last);
3328 ipfw_table_algo_destroy(ch);
3329
3330 ipfw_objhash_destroy(CHAIN_TO_NI(ch));
3331 free(CHAIN_TO_TCFG(ch), M_IPFW);
3332 }
3333
3334 /*
3335 * Starts tables module.
3336 */
3337 int
ipfw_init_tables(struct ip_fw_chain * ch,int first)3338 ipfw_init_tables(struct ip_fw_chain *ch, int first)
3339 {
3340 struct tables_config *tcfg;
3341
3342 /* Allocate pointers */
3343 ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info),
3344 M_IPFW, M_WAITOK | M_ZERO);
3345
3346 tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO);
3347 tcfg->namehash = ipfw_objhash_create(V_fw_tables_max);
3348 ch->tblcfg = tcfg;
3349
3350 ipfw_table_value_init(ch, first);
3351 ipfw_table_algo_init(ch);
3352
3353 IPFW_ADD_OBJ_REWRITER(first, opcodes);
3354 IPFW_ADD_SOPT_HANDLER(first, scodes);
3355 return (0);
3356 }
3357