1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
25 */
26 /*
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 */
29
30 /*
31 * Copyright (c) 2016 by Delphix. All rights reserved.
32 */
33
34 /*
35 * Fletcher Checksums
36 * ------------------
37 *
38 * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
39 * recurrence relations:
40 *
41 * a = a + f
42 * i i-1 i-1
43 *
44 * b = b + a
45 * i i-1 i
46 *
47 * c = c + b (fletcher-4 only)
48 * i i-1 i
49 *
50 * d = d + c (fletcher-4 only)
51 * i i-1 i
52 *
53 * Where
54 * a_0 = b_0 = c_0 = d_0 = 0
55 * and
56 * f_0 .. f_(n-1) are the input data.
57 *
58 * Using standard techniques, these translate into the following series:
59 *
60 * __n_ __n_
61 * \ | \ |
62 * a = > f b = > i * f
63 * n /___| n - i n /___| n - i
64 * i = 1 i = 1
65 *
66 *
67 * __n_ __n_
68 * \ | i*(i+1) \ | i*(i+1)*(i+2)
69 * c = > ------- f d = > ------------- f
70 * n /___| 2 n - i n /___| 6 n - i
71 * i = 1 i = 1
72 *
73 * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
74 * Since the additions are done mod (2^64), errors in the high bits may not
75 * be noticed. For this reason, fletcher-2 is deprecated.
76 *
77 * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
78 * A conservative estimate of how big the buffer can get before we overflow
79 * can be estimated using f_i = 0xffffffff for all i:
80 *
81 * % bc
82 * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
83 * 2264
84 * quit
85 * %
86 *
87 * So blocks of up to 2k will not overflow. Our largest block size is
88 * 128k, which has 32k 4-byte words, so we can compute the largest possible
89 * accumulators, then divide by 2^64 to figure the max amount of overflow:
90 *
91 * % bc
92 * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
93 * a/2^64;b/2^64;c/2^64;d/2^64
94 * 0
95 * 0
96 * 1365
97 * 11186858
98 * quit
99 * %
100 *
101 * So a and b cannot overflow. To make sure each bit of input has some
102 * effect on the contents of c and d, we can look at what the factors of
103 * the coefficients in the equations for c_n and d_n are. The number of 2s
104 * in the factors determines the lowest set bit in the multiplier. Running
105 * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
106 * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
107 * the 64-bit accumulators, every bit of every f_i effects every accumulator,
108 * even for 128k blocks.
109 *
110 * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
111 * we could do our calculations mod (2^32 - 1) by adding in the carries
112 * periodically, and store the number of carries in the top 32-bits.
113 *
114 * --------------------
115 * Checksum Performance
116 * --------------------
117 *
118 * There are two interesting components to checksum performance: cached and
119 * uncached performance. With cached data, fletcher-2 is about four times
120 * faster than fletcher-4. With uncached data, the performance difference is
121 * negligible, since the cost of a cache fill dominates the processing time.
122 * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
123 * efficient pass over the data.
124 *
125 * In normal operation, the data which is being checksummed is in a buffer
126 * which has been filled either by:
127 *
128 * 1. a compression step, which will be mostly cached, or
129 * 2. a bcopy() or copyin(), which will be uncached (because the
130 * copy is cache-bypassing).
131 *
132 * For both cached and uncached data, both fletcher checksums are much faster
133 * than sha-256, and slower than 'off', which doesn't touch the data at all.
134 */
135
136 #include <sys/types.h>
137 #include <sys/sysmacros.h>
138 #include <sys/byteorder.h>
139 #include <sys/spa.h>
140 #include <sys/simd.h>
141 #include <sys/zio_checksum.h>
142 #include <sys/zfs_context.h>
143 #include <zfs_fletcher.h>
144
145 #define FLETCHER_MIN_SIMD_SIZE 64
146
147 static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
148 static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
149 static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
150 const void *buf, uint64_t size);
151 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
152 const void *buf, uint64_t size);
153 static boolean_t fletcher_4_scalar_valid(void);
154
155 static const fletcher_4_ops_t fletcher_4_scalar_ops = {
156 .init_native = fletcher_4_scalar_init,
157 .fini_native = fletcher_4_scalar_fini,
158 .compute_native = fletcher_4_scalar_native,
159 .init_byteswap = fletcher_4_scalar_init,
160 .fini_byteswap = fletcher_4_scalar_fini,
161 .compute_byteswap = fletcher_4_scalar_byteswap,
162 .valid = fletcher_4_scalar_valid,
163 .name = "scalar"
164 };
165
166 static fletcher_4_ops_t fletcher_4_fastest_impl = {
167 .name = "fastest",
168 .valid = fletcher_4_scalar_valid
169 };
170
171 static const fletcher_4_ops_t *fletcher_4_impls[] = {
172 &fletcher_4_scalar_ops,
173 &fletcher_4_superscalar_ops,
174 &fletcher_4_superscalar4_ops,
175 #if defined(HAVE_SSE2)
176 &fletcher_4_sse2_ops,
177 #endif
178 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
179 &fletcher_4_ssse3_ops,
180 #endif
181 #if defined(HAVE_AVX) && defined(HAVE_AVX2)
182 &fletcher_4_avx2_ops,
183 #endif
184 #if defined(__x86_64) && defined(HAVE_AVX512F)
185 &fletcher_4_avx512f_ops,
186 #endif
187 #if defined(__x86_64) && defined(HAVE_AVX512BW)
188 &fletcher_4_avx512bw_ops,
189 #endif
190 #if defined(__aarch64__) && !defined(__FreeBSD__)
191 &fletcher_4_aarch64_neon_ops,
192 #endif
193 };
194
195 /* Hold all supported implementations */
196 static uint32_t fletcher_4_supp_impls_cnt = 0;
197 static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
198
199 /* Select fletcher4 implementation */
200 #define IMPL_FASTEST (UINT32_MAX)
201 #define IMPL_CYCLE (UINT32_MAX - 1)
202 #define IMPL_SCALAR (0)
203
204 static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
205
206 #define IMPL_READ(i) (*(volatile uint32_t *) &(i))
207
208 static struct fletcher_4_impl_selector {
209 const char *fis_name;
210 uint32_t fis_sel;
211 } fletcher_4_impl_selectors[] = {
212 { "cycle", IMPL_CYCLE },
213 { "fastest", IMPL_FASTEST },
214 { "scalar", IMPL_SCALAR }
215 };
216
217 #if defined(_KERNEL)
218 static kstat_t *fletcher_4_kstat;
219
220 static struct fletcher_4_kstat {
221 uint64_t native;
222 uint64_t byteswap;
223 } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
224 #endif
225
226 /* Indicate that benchmark has been completed */
227 static boolean_t fletcher_4_initialized = B_FALSE;
228
229 /*ARGSUSED*/
230 void
fletcher_init(zio_cksum_t * zcp)231 fletcher_init(zio_cksum_t *zcp)
232 {
233 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
234 }
235
236 int
fletcher_2_incremental_native(void * buf,size_t size,void * data)237 fletcher_2_incremental_native(void *buf, size_t size, void *data)
238 {
239 zio_cksum_t *zcp = data;
240
241 const uint64_t *ip = buf;
242 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
243 uint64_t a0, b0, a1, b1;
244
245 a0 = zcp->zc_word[0];
246 a1 = zcp->zc_word[1];
247 b0 = zcp->zc_word[2];
248 b1 = zcp->zc_word[3];
249
250 for (; ip < ipend; ip += 2) {
251 a0 += ip[0];
252 a1 += ip[1];
253 b0 += a0;
254 b1 += a1;
255 }
256
257 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
258 return (0);
259 }
260
261 /*ARGSUSED*/
262 void
fletcher_2_native(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)263 fletcher_2_native(const void *buf, uint64_t size,
264 const void *ctx_template, zio_cksum_t *zcp)
265 {
266 fletcher_init(zcp);
267 (void) fletcher_2_incremental_native((void *) buf, size, zcp);
268 }
269
270 int
fletcher_2_incremental_byteswap(void * buf,size_t size,void * data)271 fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
272 {
273 zio_cksum_t *zcp = data;
274
275 const uint64_t *ip = buf;
276 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
277 uint64_t a0, b0, a1, b1;
278
279 a0 = zcp->zc_word[0];
280 a1 = zcp->zc_word[1];
281 b0 = zcp->zc_word[2];
282 b1 = zcp->zc_word[3];
283
284 for (; ip < ipend; ip += 2) {
285 a0 += BSWAP_64(ip[0]);
286 a1 += BSWAP_64(ip[1]);
287 b0 += a0;
288 b1 += a1;
289 }
290
291 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
292 return (0);
293 }
294
295 /*ARGSUSED*/
296 void
fletcher_2_byteswap(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)297 fletcher_2_byteswap(const void *buf, uint64_t size,
298 const void *ctx_template, zio_cksum_t *zcp)
299 {
300 fletcher_init(zcp);
301 (void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
302 }
303
304 static void
fletcher_4_scalar_init(fletcher_4_ctx_t * ctx)305 fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
306 {
307 ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
308 }
309
310 static void
fletcher_4_scalar_fini(fletcher_4_ctx_t * ctx,zio_cksum_t * zcp)311 fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
312 {
313 memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
314 }
315
316 static void
fletcher_4_scalar_native(fletcher_4_ctx_t * ctx,const void * buf,uint64_t size)317 fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
318 uint64_t size)
319 {
320 const uint32_t *ip = buf;
321 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
322 uint64_t a, b, c, d;
323
324 a = ctx->scalar.zc_word[0];
325 b = ctx->scalar.zc_word[1];
326 c = ctx->scalar.zc_word[2];
327 d = ctx->scalar.zc_word[3];
328
329 for (; ip < ipend; ip++) {
330 a += ip[0];
331 b += a;
332 c += b;
333 d += c;
334 }
335
336 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
337 }
338
339 static void
fletcher_4_scalar_byteswap(fletcher_4_ctx_t * ctx,const void * buf,uint64_t size)340 fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
341 uint64_t size)
342 {
343 const uint32_t *ip = buf;
344 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
345 uint64_t a, b, c, d;
346
347 a = ctx->scalar.zc_word[0];
348 b = ctx->scalar.zc_word[1];
349 c = ctx->scalar.zc_word[2];
350 d = ctx->scalar.zc_word[3];
351
352 for (; ip < ipend; ip++) {
353 a += BSWAP_32(ip[0]);
354 b += a;
355 c += b;
356 d += c;
357 }
358
359 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
360 }
361
362 static boolean_t
fletcher_4_scalar_valid(void)363 fletcher_4_scalar_valid(void)
364 {
365 return (B_TRUE);
366 }
367
368 int
fletcher_4_impl_set(const char * val)369 fletcher_4_impl_set(const char *val)
370 {
371 int err = -EINVAL;
372 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
373 size_t i, val_len;
374
375 val_len = strlen(val);
376 while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
377 val_len--;
378
379 /* check mandatory implementations */
380 for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
381 const char *name = fletcher_4_impl_selectors[i].fis_name;
382
383 if (val_len == strlen(name) &&
384 strncmp(val, name, val_len) == 0) {
385 impl = fletcher_4_impl_selectors[i].fis_sel;
386 err = 0;
387 break;
388 }
389 }
390
391 if (err != 0 && fletcher_4_initialized) {
392 /* check all supported implementations */
393 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
394 const char *name = fletcher_4_supp_impls[i]->name;
395
396 if (val_len == strlen(name) &&
397 strncmp(val, name, val_len) == 0) {
398 impl = i;
399 err = 0;
400 break;
401 }
402 }
403 }
404
405 if (err == 0) {
406 atomic_swap_32(&fletcher_4_impl_chosen, impl);
407 membar_producer();
408 }
409
410 return (err);
411 }
412
413 /*
414 * Returns the Fletcher 4 operations for checksums. When a SIMD
415 * implementation is not allowed in the current context, then fallback
416 * to the fastest generic implementation.
417 */
418 static inline const fletcher_4_ops_t *
fletcher_4_impl_get(void)419 fletcher_4_impl_get(void)
420 {
421 if (!kfpu_allowed())
422 return (&fletcher_4_superscalar4_ops);
423
424 const fletcher_4_ops_t *ops = NULL;
425 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
426
427 switch (impl) {
428 case IMPL_FASTEST:
429 ASSERT(fletcher_4_initialized);
430 ops = &fletcher_4_fastest_impl;
431 break;
432 case IMPL_CYCLE:
433 /* Cycle through supported implementations */
434 ASSERT(fletcher_4_initialized);
435 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
436 static uint32_t cycle_count = 0;
437 uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
438 ops = fletcher_4_supp_impls[idx];
439 break;
440 default:
441 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
442 ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
443 ops = fletcher_4_supp_impls[impl];
444 break;
445 }
446
447 ASSERT3P(ops, !=, NULL);
448
449 return (ops);
450 }
451
452 static inline void
fletcher_4_native_impl(const void * buf,uint64_t size,zio_cksum_t * zcp)453 fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
454 {
455 fletcher_4_ctx_t ctx;
456 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
457
458 ops->init_native(&ctx);
459 ops->compute_native(&ctx, buf, size);
460 ops->fini_native(&ctx, zcp);
461 }
462
463 /*ARGSUSED*/
464 void
fletcher_4_native(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)465 fletcher_4_native(const void *buf, uint64_t size,
466 const void *ctx_template, zio_cksum_t *zcp)
467 {
468 const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
469
470 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
471
472 if (size == 0 || p2size == 0) {
473 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
474
475 if (size > 0)
476 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
477 buf, size);
478 } else {
479 fletcher_4_native_impl(buf, p2size, zcp);
480
481 if (p2size < size)
482 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
483 (char *)buf + p2size, size - p2size);
484 }
485 }
486
487 void
fletcher_4_native_varsize(const void * buf,uint64_t size,zio_cksum_t * zcp)488 fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
489 {
490 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
491 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
492 }
493
494 static inline void
fletcher_4_byteswap_impl(const void * buf,uint64_t size,zio_cksum_t * zcp)495 fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
496 {
497 fletcher_4_ctx_t ctx;
498 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
499
500 ops->init_byteswap(&ctx);
501 ops->compute_byteswap(&ctx, buf, size);
502 ops->fini_byteswap(&ctx, zcp);
503 }
504
505 /*ARGSUSED*/
506 void
fletcher_4_byteswap(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)507 fletcher_4_byteswap(const void *buf, uint64_t size,
508 const void *ctx_template, zio_cksum_t *zcp)
509 {
510 const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
511
512 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
513
514 if (size == 0 || p2size == 0) {
515 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
516
517 if (size > 0)
518 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
519 buf, size);
520 } else {
521 fletcher_4_byteswap_impl(buf, p2size, zcp);
522
523 if (p2size < size)
524 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
525 (char *)buf + p2size, size - p2size);
526 }
527 }
528
529 /* Incremental Fletcher 4 */
530
531 #define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20)
532
533 static inline void
fletcher_4_incremental_combine(zio_cksum_t * zcp,const uint64_t size,const zio_cksum_t * nzcp)534 fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
535 const zio_cksum_t *nzcp)
536 {
537 const uint64_t c1 = size / sizeof (uint32_t);
538 const uint64_t c2 = c1 * (c1 + 1) / 2;
539 const uint64_t c3 = c2 * (c1 + 2) / 3;
540
541 /*
542 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
543 * reason we split incremental fletcher4 computation of large buffers
544 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
545 */
546 ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
547
548 zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
549 c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
550 zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
551 c2 * zcp->zc_word[0];
552 zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
553 zcp->zc_word[0] += nzcp->zc_word[0];
554 }
555
556 static inline void
fletcher_4_incremental_impl(boolean_t native,const void * buf,uint64_t size,zio_cksum_t * zcp)557 fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
558 zio_cksum_t *zcp)
559 {
560 while (size > 0) {
561 zio_cksum_t nzc;
562 uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
563
564 if (native)
565 fletcher_4_native(buf, len, NULL, &nzc);
566 else
567 fletcher_4_byteswap(buf, len, NULL, &nzc);
568
569 fletcher_4_incremental_combine(zcp, len, &nzc);
570
571 size -= len;
572 buf += len;
573 }
574 }
575
576 int
fletcher_4_incremental_native(void * buf,size_t size,void * data)577 fletcher_4_incremental_native(void *buf, size_t size, void *data)
578 {
579 zio_cksum_t *zcp = data;
580 /* Use scalar impl to directly update cksum of small blocks */
581 if (size < SPA_MINBLOCKSIZE)
582 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
583 else
584 fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
585 return (0);
586 }
587
588 int
fletcher_4_incremental_byteswap(void * buf,size_t size,void * data)589 fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
590 {
591 zio_cksum_t *zcp = data;
592 /* Use scalar impl to directly update cksum of small blocks */
593 if (size < SPA_MINBLOCKSIZE)
594 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
595 else
596 fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
597 return (0);
598 }
599
600 #if defined(_KERNEL)
601 /*
602 * Fletcher 4 kstats
603 */
604 static int
fletcher_4_kstat_headers(char * buf,size_t size)605 fletcher_4_kstat_headers(char *buf, size_t size)
606 {
607 ssize_t off = 0;
608
609 off += snprintf(buf + off, size, "%-17s", "implementation");
610 off += snprintf(buf + off, size - off, "%-15s", "native");
611 (void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
612
613 return (0);
614 }
615
616 static int
fletcher_4_kstat_data(char * buf,size_t size,void * data)617 fletcher_4_kstat_data(char *buf, size_t size, void *data)
618 {
619 struct fletcher_4_kstat *fastest_stat =
620 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
621 struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
622 ssize_t off = 0;
623
624 if (curr_stat == fastest_stat) {
625 off += snprintf(buf + off, size - off, "%-17s", "fastest");
626 off += snprintf(buf + off, size - off, "%-15s",
627 fletcher_4_supp_impls[fastest_stat->native]->name);
628 off += snprintf(buf + off, size - off, "%-15s\n",
629 fletcher_4_supp_impls[fastest_stat->byteswap]->name);
630 } else {
631 ptrdiff_t id = curr_stat - fletcher_4_stat_data;
632
633 off += snprintf(buf + off, size - off, "%-17s",
634 fletcher_4_supp_impls[id]->name);
635 off += snprintf(buf + off, size - off, "%-15llu",
636 (u_longlong_t)curr_stat->native);
637 off += snprintf(buf + off, size - off, "%-15llu\n",
638 (u_longlong_t)curr_stat->byteswap);
639 }
640
641 return (0);
642 }
643
644 static void *
fletcher_4_kstat_addr(kstat_t * ksp,loff_t n)645 fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
646 {
647 if (n <= fletcher_4_supp_impls_cnt)
648 ksp->ks_private = (void *) (fletcher_4_stat_data + n);
649 else
650 ksp->ks_private = NULL;
651
652 return (ksp->ks_private);
653 }
654 #endif
655
656 #define FLETCHER_4_FASTEST_FN_COPY(type, src) \
657 { \
658 fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \
659 fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \
660 fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
661 }
662
663 #define FLETCHER_4_BENCH_NS (MSEC2NSEC(1)) /* 1ms */
664
665 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
666 zio_cksum_t *);
667
668 #if defined(_KERNEL)
669 static void
fletcher_4_benchmark_impl(boolean_t native,char * data,uint64_t data_size)670 fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
671 {
672
673 struct fletcher_4_kstat *fastest_stat =
674 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
675 hrtime_t start;
676 uint64_t run_bw, run_time_ns, best_run = 0;
677 zio_cksum_t zc;
678 uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
679
680 fletcher_checksum_func_t *fletcher_4_test = native ?
681 fletcher_4_native : fletcher_4_byteswap;
682
683 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
684 struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
685 uint64_t run_count = 0;
686
687 /* temporary set an implementation */
688 fletcher_4_impl_chosen = i;
689
690 kpreempt_disable();
691 start = gethrtime();
692 do {
693 for (l = 0; l < 32; l++, run_count++)
694 fletcher_4_test(data, data_size, NULL, &zc);
695
696 run_time_ns = gethrtime() - start;
697 } while (run_time_ns < FLETCHER_4_BENCH_NS);
698 kpreempt_enable();
699
700 run_bw = data_size * run_count * NANOSEC;
701 run_bw /= run_time_ns; /* B/s */
702
703 if (native)
704 stat->native = run_bw;
705 else
706 stat->byteswap = run_bw;
707
708 if (run_bw > best_run) {
709 best_run = run_bw;
710
711 if (native) {
712 fastest_stat->native = i;
713 FLETCHER_4_FASTEST_FN_COPY(native,
714 fletcher_4_supp_impls[i]);
715 } else {
716 fastest_stat->byteswap = i;
717 FLETCHER_4_FASTEST_FN_COPY(byteswap,
718 fletcher_4_supp_impls[i]);
719 }
720 }
721 }
722
723 /* restore original selection */
724 atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
725 }
726 #endif /* _KERNEL */
727
728 /*
729 * Initialize and benchmark all supported implementations.
730 */
731 static void
fletcher_4_benchmark(void)732 fletcher_4_benchmark(void)
733 {
734 fletcher_4_ops_t *curr_impl;
735 int i, c;
736
737 /* Move supported implementations into fletcher_4_supp_impls */
738 for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
739 curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
740
741 if (curr_impl->valid && curr_impl->valid())
742 fletcher_4_supp_impls[c++] = curr_impl;
743 }
744 membar_producer(); /* complete fletcher_4_supp_impls[] init */
745 fletcher_4_supp_impls_cnt = c; /* number of supported impl */
746
747 #if defined(_KERNEL)
748 static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
749 char *databuf = vmem_alloc(data_size, KM_SLEEP);
750
751 for (i = 0; i < data_size / sizeof (uint64_t); i++)
752 ((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
753
754 fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
755 fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
756
757 vmem_free(databuf, data_size);
758 #else
759 /*
760 * Skip the benchmark in user space to avoid impacting libzpool
761 * consumers (zdb, zhack, zinject, ztest). The last implementation
762 * is assumed to be the fastest and used by default.
763 */
764 memcpy(&fletcher_4_fastest_impl,
765 fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
766 sizeof (fletcher_4_fastest_impl));
767 fletcher_4_fastest_impl.name = "fastest";
768 membar_producer();
769 #endif /* _KERNEL */
770 }
771
772 void
fletcher_4_init(void)773 fletcher_4_init(void)
774 {
775 /* Determine the fastest available implementation. */
776 fletcher_4_benchmark();
777
778 #if defined(_KERNEL)
779 /* Install kstats for all implementations */
780 fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
781 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
782 if (fletcher_4_kstat != NULL) {
783 fletcher_4_kstat->ks_data = NULL;
784 fletcher_4_kstat->ks_ndata = UINT32_MAX;
785 kstat_set_raw_ops(fletcher_4_kstat,
786 fletcher_4_kstat_headers,
787 fletcher_4_kstat_data,
788 fletcher_4_kstat_addr);
789 kstat_install(fletcher_4_kstat);
790 }
791 #endif
792
793 /* Finish initialization */
794 fletcher_4_initialized = B_TRUE;
795 }
796
797 void
fletcher_4_fini(void)798 fletcher_4_fini(void)
799 {
800 #if defined(_KERNEL)
801 if (fletcher_4_kstat != NULL) {
802 kstat_delete(fletcher_4_kstat);
803 fletcher_4_kstat = NULL;
804 }
805 #endif
806 }
807
808 /* ABD adapters */
809
810 static void
abd_fletcher_4_init(zio_abd_checksum_data_t * cdp)811 abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
812 {
813 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
814 cdp->acd_private = (void *) ops;
815
816 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
817 ops->init_native(cdp->acd_ctx);
818 else
819 ops->init_byteswap(cdp->acd_ctx);
820 }
821
822 static void
abd_fletcher_4_fini(zio_abd_checksum_data_t * cdp)823 abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
824 {
825 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
826
827 ASSERT(ops);
828
829 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
830 ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
831 else
832 ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
833 }
834
835 static void
abd_fletcher_4_simd2scalar(boolean_t native,void * data,size_t size,zio_abd_checksum_data_t * cdp)836 abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
837 zio_abd_checksum_data_t *cdp)
838 {
839 zio_cksum_t *zcp = cdp->acd_zcp;
840
841 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
842
843 abd_fletcher_4_fini(cdp);
844 cdp->acd_private = (void *)&fletcher_4_scalar_ops;
845
846 if (native)
847 fletcher_4_incremental_native(data, size, zcp);
848 else
849 fletcher_4_incremental_byteswap(data, size, zcp);
850 }
851
852 static int
abd_fletcher_4_iter(void * data,size_t size,void * private)853 abd_fletcher_4_iter(void *data, size_t size, void *private)
854 {
855 zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
856 fletcher_4_ctx_t *ctx = cdp->acd_ctx;
857 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
858 boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
859 uint64_t asize = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
860
861 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
862
863 if (asize > 0) {
864 if (native)
865 ops->compute_native(ctx, data, asize);
866 else
867 ops->compute_byteswap(ctx, data, asize);
868
869 size -= asize;
870 data = (char *)data + asize;
871 }
872
873 if (size > 0) {
874 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
875 /* At this point we have to switch to scalar impl */
876 abd_fletcher_4_simd2scalar(native, data, size, cdp);
877 }
878
879 return (0);
880 }
881
882 zio_abd_checksum_func_t fletcher_4_abd_ops = {
883 .acf_init = abd_fletcher_4_init,
884 .acf_fini = abd_fletcher_4_fini,
885 .acf_iter = abd_fletcher_4_iter
886 };
887
888 #if defined(_KERNEL)
889
890 #define IMPL_FMT(impl, i) (((impl) == (i)) ? "[%s] " : "%s ")
891
892 #if defined(__linux__)
893
894 static int
fletcher_4_param_get(char * buffer,zfs_kernel_param_t * unused)895 fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
896 {
897 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
898 char *fmt;
899 int cnt = 0;
900
901 /* list fastest */
902 fmt = IMPL_FMT(impl, IMPL_FASTEST);
903 cnt += sprintf(buffer + cnt, fmt, "fastest");
904
905 /* list all supported implementations */
906 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
907 fmt = IMPL_FMT(impl, i);
908 cnt += sprintf(buffer + cnt, fmt,
909 fletcher_4_supp_impls[i]->name);
910 }
911
912 return (cnt);
913 }
914
915 static int
fletcher_4_param_set(const char * val,zfs_kernel_param_t * unused)916 fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
917 {
918 return (fletcher_4_impl_set(val));
919 }
920
921 #else
922
923 #include <sys/sbuf.h>
924
925 static int
fletcher_4_param(ZFS_MODULE_PARAM_ARGS)926 fletcher_4_param(ZFS_MODULE_PARAM_ARGS)
927 {
928 int err;
929
930 if (req->newptr == NULL) {
931 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
932 const int init_buflen = 64;
933 const char *fmt;
934 struct sbuf *s;
935
936 s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req);
937
938 /* list fastest */
939 fmt = IMPL_FMT(impl, IMPL_FASTEST);
940 (void) sbuf_printf(s, fmt, "fastest");
941
942 /* list all supported implementations */
943 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
944 fmt = IMPL_FMT(impl, i);
945 (void) sbuf_printf(s, fmt,
946 fletcher_4_supp_impls[i]->name);
947 }
948
949 err = sbuf_finish(s);
950 sbuf_delete(s);
951
952 return (err);
953 }
954
955 char buf[16];
956
957 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
958 if (err)
959 return (err);
960 return (-fletcher_4_impl_set(buf));
961 }
962
963 #endif
964
965 #undef IMPL_FMT
966
967 /*
968 * Choose a fletcher 4 implementation in ZFS.
969 * Users can choose "cycle" to exercise all implementations, but this is
970 * for testing purpose therefore it can only be set in user space.
971 */
972 /* BEGIN CSTYLED */
973 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl,
974 fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW,
975 "Select fletcher 4 implementation.");
976 /* END CSTYLED */
977
978 EXPORT_SYMBOL(fletcher_init);
979 EXPORT_SYMBOL(fletcher_2_incremental_native);
980 EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
981 EXPORT_SYMBOL(fletcher_4_init);
982 EXPORT_SYMBOL(fletcher_4_fini);
983 EXPORT_SYMBOL(fletcher_2_native);
984 EXPORT_SYMBOL(fletcher_2_byteswap);
985 EXPORT_SYMBOL(fletcher_4_native);
986 EXPORT_SYMBOL(fletcher_4_native_varsize);
987 EXPORT_SYMBOL(fletcher_4_byteswap);
988 EXPORT_SYMBOL(fletcher_4_incremental_native);
989 EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
990 EXPORT_SYMBOL(fletcher_4_abd_ops);
991 #endif
992